NASA Astrophysics Data System (ADS)
Poryazov, V. A.; Krainov, A. Yu.
2016-05-01
A physicomathematical model of combustion of a metallized composite solid propellant based on ammonium perchlorate has been presented. The model takes account of the thermal effect of decomposition of a condensed phase (c phase), convection, diffusion, the exothermal chemical reaction in a gas phase, the heating and combustion of aluminum particles in the gas flow, and the velocity lag of the particles behind the gas. The influence of the granulometric composition of aluminum particles escaping from the combustion surface on the linear rate of combustion has been investigated. It has been shown that information not only on the kinetics of chemical reactions in the gas phase, but also on the granulometric composition of aluminum particles escaping from the surface of the c phase into the gas, is of importance for determination of the linear rate of combustion.
Freeze drying for gas chromatography stationary phase deposition
Sylwester, Alan P [Livermore, CA
2007-01-02
The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.
Laboratory Studies Of Titan Haze: Simultaneous In Situ Detection Of Gas And Particle Species
NASA Astrophysics Data System (ADS)
Horst, Sarah; Li, R.; Yoon, H.; Hicks, R.; de Gouw, J.; Tolbert, M.
2012-10-01
Analyses of data obtained by multiple instruments carried by Cassini and Huygens have increased our knowledge of the composition of Titan’s atmosphere. While a wealth of new information about the aerosols in Titan’s atmosphere was obtained, their composition is still not well constrained. Laboratory experiments will therefore play a key role in furthering our understanding of the chemical processes resulting in the formation of haze in Titan’s atmosphere and its possible composition. We have obtained simultaneous in situ measurements of the gas- and particle-phase compositions produced by our Titan atmosphere simulation experiments (see e.g. [1]). The gas phase composition was measured using a Proton-Transfer Ion-Trap Mass Spectrometer (PIT-MS) and the aerosol composition was measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). This complementary set of measurements will allow us to address the partitioning of gas- and aerosol-phase species. Knowledge of the gas phase composition in which the particles in our experiments form allows both for better comparison to the chemistry that is occurring in Titan’s atmosphere and for enabling more accurate determination of the possible pathways involved in the transition from gas phase to aerosol. We will compare the results from experiments that used two different initial gas mixtures (98% N2/2% CH4 and 98%N2/2%CH4/50 ppm CO) and two different energy sources to initiate the chemical reactions that result in particle formation (spark discharge using a Tesla coil or FUV irradiation from a deuterium lamp (115-400 nm)). [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326. SMH is supported by NSF Astronomy and Astrophysics Postdoctoral Fellowship AST-1102827.
NASA Astrophysics Data System (ADS)
Yang, Jijun; Zhang, Feifei; Wan, Qiang; Lu, Chenyang; Peng, Mingjing; Liao, Jiali; Yang, Yuanyou; Wang, Lumin; Liu, Ning
2016-12-01
Reactive gas pulse (RGP) sputtering approach was used to prepare TiN thin films through periodically changing the N2/Ar gas flow ratio. The obtained RGPsbnd TiN film possessed a hybrid architecture containing compositionally graded and multilayered structures, composed of hcp Ti-phase and fcc TiN-phase sublayers. Meanwhile, the RGP-TiN film exhibited a composition-oscillation along the film thickness direction, where the Ti-phase sublayer had a compositional gradient and the TiN-phase retained a constant stoichiometric ratio of Ti:N ≈ 1. The film modulation ratio λ (the thicknesses ratio of the Ti and TiN-phase sublayer) can be effectively tuned by controlling the undulation behavior of the N2 partial flow rate. Detailed analysis showed that this hybrid structure originated from a periodic transition of the film growth mode during the reactive sputtering process.
Heterogeneous fuel for hybrid rocket
NASA Technical Reports Server (NTRS)
Stickler, David B. (Inventor)
1996-01-01
Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.
NASA Astrophysics Data System (ADS)
Schoell, M.; Etiope, G.
2015-12-01
Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.
Effects of Soot Structure on Soot Oxidation Kinetics
2011-06-01
information from PSDs, temperature, gas -phase composition was used to develop an oxidation kinetic expression that accounts for the effects of...from PSDs, temperature, gas -phase composition was used to develop an oxidation kinetic expression that accounts for the effects of temperature, O2, and...systematic studies of these effects under the temperatures and times of interest to soot oxidation in gas turbine engines. Studies have shown that soot
Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.
Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W
2010-04-01
Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures.
Stern, Laura A.; Lorenson, T.D.; Pinkston, John C.
2011-01-01
Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA–DOE–USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70–75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20–120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas.
Stern, L.A.; Lorenson, T.D.; Pinkston, J.C.
2011-01-01
Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5. m to 760.1. m depth, and sections investigated here were retrieved from 619.9. m and 661.0. m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70-75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20-120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas. ?? 2009.
Phase and flow behavior of mixed gas hydrate systems during gas injection
NASA Astrophysics Data System (ADS)
Darnell, K.; Flemings, P. B.; DiCarlo, D. A.
2017-12-01
We present one-dimensional, multi-phase flow model results for injections of carbon dioxide and nitrogen mixtures, or flue gas, into methane hydrate bearing reservoirs. Our flow model is coupled to a thermodynamic simulator that predicts phase stabilities as a function of composition, so multiple phases can appear, disappear, or change composition as the injection invades the reservoir. We show that the coupling of multi-phase fluid flow with phase behavior causes preferential phase fractionation in which each component flows through the system at different speeds and in different phases. We further demonstrate that phase and flow behavior within the reservoir are driven by hydrate stability of each individual component in addition to the hydrate stability of the injection composition. For example, if carbon dioxide and nitrogen are both individually hydrate stable at the reservoir P-T conditions, then any injection composition will convert all available water into hydrate and plug the reservoir. In contrast, if only carbon dioxide is hydrate stable at the reservoir P-T conditions, then nitrogen preferentially stays in the gaseous phase, while the carbon dioxide partitions into the hydrate and liquid water phases. For all injections of this type, methane originally held in hydrate is released by dissociation into the nitrogen-rich gaseous phase. The net consequence is that a gas phase composed of nitrogen and methane propagates through the reservoir in a fast-moving front. A slower-moving front lags behind where carbon dioxide and nitrogen form a mixed hydrate, but methane is absent due to dissociation-induced methane stripping from the first, fast-moving front. The entire composition path traces through the phase space as the flow develops with each front moving at different, constant velocities. This behavior is qualitatively similar to the dynamics present in enhanced oil recovery or enhanced coalbed methane recovery. These results explain why the inclusion of nitrogen in mixed gas injection into methane hydrate reservoirs has been far more successful at producing methane than pure carbon dioxide injections. These results also provide a test for the validity of equilibrium thermodynamics in transport-dominated mixed hydrate systems that can be validated by laboratory-scale flow-through experiments.
Xiang, Changsheng; Cox, Paris J; Kukovecz, Akos; Genorio, Bostjan; Hashim, Daniel P; Yan, Zheng; Peng, Zhiwei; Hwang, Chih-Chau; Ruan, Gedeng; Samuel, Errol L G; Sudeep, Parambath M; Konya, Zoltan; Vajtai, Robert; Ajayan, Pulickel M; Tour, James M
2013-11-26
A thermoplastic polyurethane (TPU) composite film containing hexadecyl-functionalized low-defect graphene nanoribbons (HD-GNRs) was produced by solution casting. The HD-GNRs were well distributed within the polyurethane matrix, leading to phase separation of the TPU. Nitrogen gas effective diffusivity of TPU was decreased by 3 orders of magnitude with only 0.5 wt % HD-GNRs. The incorporation of HD-GNRs also improved the mechanical properties of the composite films, as predicted by the phase separation and indicated by tensile tests and dynamic mechanical analyses. The improved properties of the composite film could lead to potential applications in food packaging and lightweight mobile gas storage containers.
High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.
Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L
2014-01-24
The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather accurate and reproducible measurements in a timely fashion.
Gebert, Julia; Groengroeft, Alexander
2006-01-01
A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h(-1)m(-3) filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.
High temperature coatings for gas turbines
Zheng, Xiaoci Maggie
2003-10-21
Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.
Robust high temperature composite and CO sensor made from such composite
Dutta, Prabir K.; Ramasamy, Ramamoorthy; Li, Xiaogan; Akbar, Sheikh A.
2010-04-13
Described herein is a composite exhibiting a change in electrical resistance proportional to the concentration of a reducing gas present in a gas mixture, detector and sensor devices comprising the composite, a method for making the composite and for making devices comprising the composite, and a process for detecting and measuring a reducing gas in an atmosphere. In particular, the reducing gas may be carbon monoxide and the composite may comprise rutile-phase TiO2 particles and platinum nanoclusters. The composite, upon exposure to a gas mixture containing CO in concentrations of up to 10,000 ppm, exhibits an electrical resistance proportional to the concentration of the CO present. The composite is useful for making sensitive, low drift, fast recovering detectors and sensors, and for measuring CO concentrations in a gas mixture present at levels from sub-ppm up to 10,000 ppm. The composites, and devices made from the composites, are stable and operable in a temperature range of from about 450.degree. C. to about 700.degree. C., such as may be found in a combustion chamber.
The impact of aerosol composition on the particle to gas partitioning of reactive mercury.
Rutter, Andrew P; Schauer, James J
2007-06-01
A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.
Analysis of phase transformations in Inconel 738C alloy after regenerative heat treatment
NASA Astrophysics Data System (ADS)
Kazantseva, N.; Davidov, D.; Vinogradova, N.; Ezhov, I.; Stepanova, N.
2018-03-01
Study is based on the characterization of the chemical composition the phase transformations in Inconel 738C gas turbine blade after standard regenerative heat treatment. The microstructure and chemical composition were examined by scanning electron microscope and transmission electron microscope equipped with an energy dispersive X-ray spectrometer. It was found the degradation of microstructure of the blade feather. Redistribution of the chemical elements decreasing the corrosion resistance was observed inside the blade feather. The carbide transformation and sigma phase were found in the structure of the blade feather. It is found that the standard regenerative heat treatment of the IN738 operative gas turbine blade does not effect on carbides transformation, TCP σ-phase dissolution, and thus do not guarantee the full recovery of the IN738 gas turbine blade.
a Facile Synthesis of Fully Porous Tazo Composite and its Remarkable Gas Sensitive Performance
NASA Astrophysics Data System (ADS)
Liang, Dongdong; Liu, Shimin; Wang, Zhinuo; Guo, Yu; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan; Zhang, Zhihua
The composite of a nanocrystalline SnO2 thick film deposited on an Al-doped ZnO ceramic substrate was firstly proposed. This study also provided a simple, fast and cost effective method to prepare SnO2 thick film and Al-doped ZnO ceramic as well as the final composite. The crystal structure, morphology, composition, pore size distribution and gas sensitivity of the composite were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Barrett-Joyner-Halenda analysis and gas sensitive measurement system. Results indicated that the composite was fully porous consisted of SnO2, ZnO and ZnAl2O4 crystal phases. The macrosized pores generated in the composite could enhance the gas infiltration into the sensing layers effectively. In this way, combining a high gas-transporting-capability and a nanocrystalline SnO2 thick film, the composite showed very impressive performance. The gas sensitivity of the composite was high enough for ethanol vapor with different concentrations, which was comparable to other kinds of reported SnO2 gas sensors, while showing two straight lines with a turning point at 1000ppm. Finally, the gas sensitive mechanism was proposed based on the microstructure and composition of the composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok
New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less
Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; ...
2016-11-03
New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Li, Zhidong; Firoozabadi, Abbas
2012-12-01
Most simulators for subsurface flow of water, gas, and oil phases use empirical correlations, such as Henry's law, for the CO2 composition in the aqueous phase, and equations of state (EOS) that do not represent the polar interactions between CO2and water. Widely used simulators are also based on lowest-order finite difference methods and suffer from numerical dispersion and grid sensitivity. They may not capture the viscous and gravitational fingering that can negatively affect hydrocarbon (HC) recovery, or aid carbon sequestration in aquifers. We present a three-phase compositional model based on higher-order finite element methods and incorporate rigorous and efficient three-phase-split computations for either three HC phases or water-oil-gas systems. For HC phases, we use the Peng-Robinson EOS. We allow solubility of CO2in water and adopt a new cubic-plus-association (CPA) EOS, which accounts for cross association between H2O and CO2 molecules, and association between H2O molecules. The CPA-EOS is highly accurate over a broad range of pressures and temperatures. The main novelty of this work is the formulation of a reservoir simulator with new EOS-based unique three-phase-split computations, which satisfy both the equalities of fugacities in all three phases and the global minimum of Gibbs free energy. We provide five examples that demonstrate twice the convergence rate of our method compared with a finite difference approach, and compare with experimental data and other simulators. The examples consider gravitational fingering during CO2sequestration in aquifers, viscous fingering in water-alternating-gas injection, and full compositional modeling of three HC phases.
Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions
NASA Astrophysics Data System (ADS)
Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong
2017-05-01
We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.
Aromatherapy: composition of the gaseous phase at equilibrium with liquid bergamot essential oil.
Leggio, Antonella; Leotta, Vanessa; Belsito, Emilia Lucia; Di Gioia, Maria Luisa; Romio, Emanuela; Santoro, Ilaria; Taverna, Domenico; Sindona, Giovanni; Liguori, Angelo
2017-11-02
This work compares the composition at different temperatures of gaseous phase of bergamot essential oil at equilibrium with the liquid phase. A new GC-MS methodology to determine quantitatively the volatile aroma compounds was developed. The adopted methodology involved the direct injection of headspace gas into injection port of GC-MS system and of known amounts of the corresponding authentic volatile compounds. The methodology was validated. This study showed that gaseous phase composition is different from that of the liquid phase at equilibrium with it.
FACTORS INFLUENCING THE DEPOSITION OF A COMPOUND THAT PARTITIONS BETWEEN GAS AND PARTICULATE PHASES
How will atmospheric deposition behave for a compound when it reversibly sorbs between gas and atmospheric particulate phases? Two factors influence the answer. What physical mechanisms occur in the sorption process? What are the concentration and composition of atmospheric par...
Phase equilibrium of methane and nitrogen at low temperatures - Application to Titan
NASA Technical Reports Server (NTRS)
Kouvaris, Louis C.; Flasar, F. M.
1991-01-01
Since the vapor phase composition of Titan's methane-nitrogen lower atmosphere is uniquely determined as a function of the Gibbs phase rule, these data are presently computed via integration of the Gibbs-Duhem equation. The thermodynamic consistency of published measurements and calculations of the vapor phase composition is then examined, and the saturated mole fraction of gaseous methane is computed as a function of altitude up to the 700-mbar level. The mole fraction is found to lie approximately halfway between that computed from Raoult's law, for a gas in equilibrium with an ideal solution of liquid nitrogen and methane, and that for a gas in equilibrium with pure liquid methane.
Grain Surface Chemistry and the Composition of Interstellar Ices
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.
2006-01-01
Submicron sized dust grains are an important component of the interstellar medium. In particular they provide surface where active chemistry can take place. At the low temperatures (-10 K) of the interstellar medium, colliding gas phase species will stick, diffuse, react, and form an icy mantle on these dust grains. This talk will review the principles of grain surface chemistry and delineate important grain surface routes, focusing on reactions involving H, D, and O among each other and with molecules such as CO. Interstellar ice mantles can be studied through the fundamental vibrations of molecular species in the mid-infrared spectra of sources embedded in or located behind dense molecular clouds. Analysis of this type of data has provided a complex view of the composition of these ices and the processes involved. Specifically, besides grain surface chemistry, the composition of interstellar ices is also affected by thermal processing due to nearby newly formed stars. This leads to segregation between different ice components as well as outgassing. The latter results in the formation of a so-called Hot Core region with a gas phase composition dominated by evaporated mantle species. Studies of such regions provide thus a different view on the ice composition and the chemical processes involved. Interstellar ices can also be processed by FUV photons and high energy cosmic ray ions. Cosmic ray processing likely dominates the return of accreted species to the gas phase where further gas phase reactions can take place. These different chemical routes towards molecular complexity in molecular clouds and particularly regions of star formation will be discussed.
Effect of shielding gas composition on the properties of hyperbaric GMA welds in duplex steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, N.; Dos Santos, J.F.; Richardson, I.
1994-12-31
By using Ar/He based shielding gas mixtures with a variety of oxygen and nitrogen additions the absorption of active gas components into duplex stainless steels welded under hyperbaric conditions was examined. The pressure levels used corresponded to seawater depths of 100m, 200m and 300m. The GMAW process in the short circuit transfer mode was used for all tests. Both bead-on-plate and ``V`` butt joints were carried out. The effect of variations in the weld metal active gas components on the weld metal chemical composition and phase balance was investigated. In a second set of tests the effect of varying heatmore » inputs on the phase balance and microstructure was assessed.« less
NASA Astrophysics Data System (ADS)
Shilling, J. E.; Alexander, L.; Jayne, J.; Fortner, E.
2010-12-01
An Aerodyne High Resolution Aerosol Mass Spectrometer (AMS) and an Ionicon Proton Transfer Reaction Mass Spectrometer (PTRMS) were deployed on the G1 research aircraft during the CARES campaign in Sacramento, CA to investigate aerosol gas- and particle-phase chemical composition. Preliminary analysis of PTRMS data suggests that biogenic volatile organic compounds (VOCs), particularly isoprene, dominate the region with anthropogenic VOCs, such as benzene and toluene, providing much smaller contributions to the VOC pool. Data from the AMS shows that the particle phase is dominated by organic material with smaller concentrations of ammonium sulfate and ammonium nitrate observed. Organic particle mass concentration strongly correlated with isoprene and gas-phase isoprene oxidation products, suggesting isoprene chemistry is largely controlling the organic aerosol loading in the area. The chemical evolution of the plume as it traveled downwind from Sacramento and into the foothills will also be discussed.
Thermodynamic properties of gas-condensate system with abnormally high content of heavy hydrocarbons
NASA Astrophysics Data System (ADS)
Zanochuev, S. A.; Shabarov, A. B.; Podorozhnikov, S. Yu; Zakharov, A. A.
2018-05-01
Gas-condensate systems (GCS) with an abnormally high content of heavy hydrocarbons are characterized by a sharp change in both phase and component compositions with an insignificant decrease in pressure below the start pressure of the phase transitions (the beginning of condensation). Calculation methods for describing the phase behavior of such systems are very sensitive to the quality of the initial information. The uncertainty of the input data leads not only to significant errors in the forecast of phase compositions, but also to an incorrect phase state estimation of the whole system. The research presents the experimental thermodynamic parameters of the GCS of the BT reservoirs on the Beregovoye field, obtained at the phase equilibrium facility. The data contribute to the adaptation of the calculated models of the phase behavior of the GCS with a change in pressure.
A composite reactor with wetted-wall column for mineral carbonation study in three-phase systems.
Zhu, Chen; Yao, Xizhi; Zhao, Liang; Teng, H Henry
2016-11-01
Despite the availability of various reactors designed to study gas-liquid reactions, no appropriate devices are available to accurately investigate triple-phased mineral carbonation reactions involving CO 2 gas, aqueous solutions (containing divalent cations), and carbonate minerals. This report presents a composite reactor that combines a modified conventional wetted-wall column, a pH control module, and an attachment to monitor precipitation reactions. Our test and calibration experiments show that the absorption column behaved largely in agreement with theoretical predictions and previous observations. Experimental confirmation of CO 2 absorption in NaOH and ethanolamine supported the effectiveness of the column for gas-liquid interaction. A test run in the CO 2 -NH 3 -MgCl 2 system carried out for real time investigation of the relevant carbonation reactions shows that the reactor's performance closely followed the expected reaction path reflected in pH change, the occurrence of precipitation, and the rate of NH 3 addition, indicating the appropriateness of the composite device in studying triple-phase carbonation process.
Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek
2015-02-03
In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Jinqiao; Zhang, Ling; Xie, Bing
2015-09-28
Anti-ferroelectric (AFE) composite ceramics of (Pb{sub 0.858}Ba{sub 0.1}La{sub 0.02}Y{sub 0.008})(Zr{sub 0.65}Sn{sub 0.3}Ti{sub 0.05})O{sub 3}-(Pb{sub 0.97}La{sub 0.02})(Zr{sub 0.9}Sn{sub 0.05} Ti{sub 0.05})O{sub 3} (PBLYZST-PLZST) were fabricated by the conventional solid-state sintering process (CS), the glass-aided sintering (GAS), and the spark plasma sintering (SPS), respectively. The influence of the temperature induced phase transition on the phase structure, hysteresis loops, and energy storage properties of the composite ceramics were investigated in detail. The measured results of X-ray diffraction demonstrate that the composite ceramics exhibit the perovskite phases and small amounts of non-functional pyrochlore phases. Compared with the CS process, the GAS and SPS processesmore » are proven more helpful to suppress the diffusion behaviors between the PBLYZST and PLZST phases according to the field emission scanning electron microscopy, thereby being able to improve the contribution of PBLYZST phase to the temperature stability of the orthogonal AFE phase. When the ambient temperature rises from 25 °C to 125 °C, CS and GAS samples have undergone a phase transition from orthorhombic AFE phase to tetragonal AFE phase, which results in a sharp decline in the energy storage density. However, the phase transition temperature of SPS samples is higher than 125 °C, and the energy storage density only slightly decreases due to the disorder of material microstructure caused by the high temperature. As a result, the SPS composite ceramics obtain a recoverable high energy storage density of 6.46 J/cm{sup 3} and the excellent temperature stability of the energy storage density of 1.16 × 10{sup −2} J/°C·cm{sup 3}, which is 1.29 × 10{sup −2} J/°C·cm{sup 3} lower than that of CS samples and about 0.43 times as that of GAS samples.« less
Modeling the Phase Composition of Gas Condensate in Pipelines
NASA Astrophysics Data System (ADS)
Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.
2016-10-01
Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.
The Binary Temperature-Composition Phase Diagram
ERIC Educational Resources Information Center
Sanders, Philip C.; Reeves, James H.; Messina, Michael
2006-01-01
The equations for the liquid and gas lines in the binary temperature-composition phase diagram are derived by approximating that delta(H)[subscript vap] of the two liquids are equal. It is shown that within this approximation, the resulting equations are not too difficult to present in an undergraduate physical chemistry lecture.
NASA Astrophysics Data System (ADS)
Hörst, Sarah M.; Yoon, Y. Heidi; Ugelow, Melissa S.; Parker, Alex H.; Li, Rui; de Gouw, Joost A.; Tolbert, Margaret A.
2018-02-01
Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan's atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, measurements taken by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and Cassini Plasma Spectrometer (CAPS) indicate that haze formation initiates in the thermosphere where there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2. The discovery of previously unpredicted nitrogen species in measurements of Titan's atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini. The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan's atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (Tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ real-time measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products. The results presented here confirm that FUV photons produce not only solid phase nitrogen bearing products but also gas phase nitrogen species. We find that in both the gas and solid phase, nitrogen is found in nitriles rather than amines and that both the gas phase and solid phase products are composed primarily of molecules with a low degree of aromaticity. The UV experiments reproduce the absolute abundances measured in Titan's stratosphere for a number of gas phase species including C4H2, C6H6, HCN, CH3CN, HC3N, and C2H5CN.
NASA Astrophysics Data System (ADS)
Zuend, A.; Marcolli, C.; Peter, T.
2009-04-01
The chemical composition of organic-inorganic aerosols is linked to several processes and specific topics in the field of atmospheric aerosol science. Photochemical oxidation of organics in the gas phase lowers the volatility of semi-volatile compounds and contributes to the particulate matter by gas/particle partitioning. Heterogeneous chemistry and changes in the ambient relative humidity influence the aerosol composition as well. Molecular interactions between condensed phase species show typically non-ideal thermodynamic behavior. Liquid-liquid phase separations into a mainly polar, aqueous and a less polar, organic phase may considerably influence the gas/particle partitioning of semi-volatile organics and inorganics (Erdakos and Pankow, 2004; Chang and Pankow, 2006). Moreover, the phases present in the aerosol particles feed back on the heterogeneous, multi-phase chemistry, influence the scattering and absorption of radiation and affect the CCN ability of the particles. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy, enabling the calculation of activity coefficients. We use the group-contribution model AIOMFAC (Zuend et al., 2008) to calculate activity coefficients, chemical potentials and the total Gibbs energy of mixed organic-inorganic systems. This thermodynamic model was combined with a robust global optimization module to compute potential liquid-liquid (LLE) and vapor-liquid-liquid equilibria (VLLE) as a function of particle composition at room temperature. And related to that, the gas/particle partitioning of semi-volatile components. Furthermore, we compute the thermodynamic stability (spinodal limits) of single-phase solutions, which provides information on the process type and kinetics of a phase separation. References Chang, E. I. and Pankow, J. F.: Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water - Part 2: Consideration of phase separation effects by an XUNIFAC model, Atmos. Environ., 40, 6422-6436, 2006. Erdakos, G. B. and Pankow, J. F.: Gas/particle partitioning of neutral and ionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds, Atmos. Environ., 38, 1005-1013, 2004. Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559-4593, 2008.
NASA Astrophysics Data System (ADS)
Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.
2012-12-01
Hydrocarbon gases, nitrogen, carbon dioxide and water were collected from production streams at the Ignik Sikumi gas hydrate production test well (TD, 791.6 m), drilled on the Alaska North Slope. The well was drilled to test the feasibility of producing methane by carbon dioxide injection that replaces methane in the solid gas hydrate. The Ignik Sikumi well penetrated a stratigraphically-bounded prospect within the Eileen gas hydrate accumulation. Regionally, the Eileen gas hydrate accumulation overlies the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and is restricted to the up-dip portion of a series of nearshore deltaic sandstone reservoirs in the Sagavanirktok Formation. Hydrate-bearing sandstones penetrated by Ignik Sikumi well occur in three primary horizons; an upper zone, ("E" sand, 579.7 - 597.4 m) containing 17.7 meters of gas hydrate-bearing sands, a middle zone ("D" sand, 628.2 - 648.6 m) with 20.4 m of gas hydrate-bearing sands and a lower zone ("C" sand, 678.8 - 710.8 m), containing 32 m of gas hydrate-bearing sands with neutron porosity log-interpreted average gas hydrate saturations of 58, 76 and 81% respectively. A known volume mixture of 77% nitrogen and 23% carbon dioxide was injected into an isolated section of the upper part of the "C" sand to start the test. Production flow-back part of the test occurred in three stages each followed by a period of shut-in: (1) unassisted flowback; (2) pumping above native methane gas hydrate stability conditions; and (3) pumping below the native methane gas hydrate stability conditions. Methane production occurred immediately after commencing unassisted flowback. Methane concentration increased from 0 to 40% while nitrogen and carbon dioxide concentrations decreased to 48 and 12% respectively. Pumping above the hydrate stability phase boundary produced gas with a methane concentration climbing above 80% while the carbon dioxide and nitrogen concentrations fell to 2 and 18% respectively. Pumping below the gas hydrate stability phase boundary occurred in two periods with the composition of the produced gases continually increasing in methane reaching an excess of 96%, along with carbon dioxide decreasing to <1% and nitrogen to ~3%. The isotopic composition of all the gases was monitored. Methane carbon and hydrogen isotopic compositions remained stable throughout the test, while the carbon dioxide carbon became isotopically heavier. Nitrogen isotopic composition remained stable or became slightly isotopically depleted at the later phase of the test. These results imply that the produced methane was not isotopically fractionated, whereas carbon dioxide was fractionated becoming isotopically heavier at the end of each production phase. In addition, water samples were analyzed during the production phase documenting an increase in salinity.
Some considerations in the combustion of AP/composite propellants
NASA Technical Reports Server (NTRS)
Kumar, R. N.
1972-01-01
Theoretical studies are presented on the time-independent and oscillatory combustion of nonmetallized AP/composite propellants. Three hypotheses are introduced: (1) The extent of propellant degradation at the vaporization step has to be specified through a scientific criterion. (2) The condensed phase degradation reaction of ammonium perchlorate to a vaporizable state is the overall rate-limiting step. (3) Gas phase combustion rate is controlled by the mixing rate of fuel and oxidizer vapors. In the treatment of oscillatory combustion, the assumption of quasi-steady fluctuations in the gas phase is used to supplement these hypotheses. In comparison with experimental data, this study predicts several of the observations including a few that remain inconsistent with theoretical results.
Shock Equation of State of Multi-Phase Epoxy-Based Composite (Al-MnO2-Epoxy)
2010-10-01
single stage light gas gun , two...using three different loading techniques— single stage light gas gun , two stage light gas gun , and explosive loading—with multiple diagnostic...wave speed. B. Single stage gas gun loading experiments Four gas gun -driven equation of state experiments were conducted at NSWC-Indian Head using
NASA Astrophysics Data System (ADS)
Shilling, J.; Pekour, M. S.; Fortner, E.; Hubbe, J. M.; Longo, K.; Martin, S. T.; Mei, F.; Springston, S. R.; Tomlinson, J. M.; Wang, J.
2014-12-01
The Green Ocean Amazon (GoAmazon) campaign conducted from January 2014 - December 2015 in the vicinity of Manaus, Brazil, was designed to study the aerosol lifecycle and aerosol-cloud interactions in both pristine and anthropogenically influenced conditions. As part of this campaign, the DOE G-1 research aircraft was deployed from February 17th - March 25th 2014 and September 6th - October 5th 2014 to investigate aerosol and cloud properties aloft. An Aerodyne High Resolution Aerosol Mass Spectrometer (AMS) and an Ionicon Proton Transfer Reaction Mass Spectrometer (PTRMS) were part of the G-1 research aircraft payload and were used to investigate aerosol gas- and particle-phase chemical composition. Here we present preliminary analysis of the aerosol and gas phase chemical composition. PTR-MS measurements show that isoprene and its oxidation products are the dominant VOCs during research flights. HR-AMS measurements reveal that the particle phase is dominated by organic material with smaller concentrations of sulfate and nitrate observed. Organic particle concentrations are enhanced when encountering the urban plume from Manaus. During the wet season, we observe increased concentrations of organic particle when passing through low-altitude clouds. PMF analysis of the organic mass spectra shows that the chemical composition of the particles observed in-cloud is distinctly different from particles observed outside clouds. We will also compare measurements made during the wet and dry seasons.
Viscous and gravitational fingering in multiphase compositional and compressible flow
NASA Astrophysics Data System (ADS)
Moortgat, Joachim
2016-03-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.
A Computer Model for Analyzing Volatile Removal Assembly
NASA Technical Reports Server (NTRS)
Guo, Boyun
2010-01-01
A computer model simulates reactional gas/liquid two-phase flow processes in porous media. A typical process is the oxygen/wastewater flow in the Volatile Removal Assembly (VRA) in the Closed Environment Life Support System (CELSS) installed in the International Space Station (ISS). The volatile organics in the wastewater are combusted by oxygen gas to form clean water and carbon dioxide, which is solved in the water phase. The model predicts the oxygen gas concentration profile in the reactor, which is an indicator of reactor performance. In this innovation, a mathematical model is included in the computer model for calculating the mass transfer from the gas phase to the liquid phase. The amount of mass transfer depends on several factors, including gas-phase concentration, distribution, and reaction rate. For a given reactor dimension, these factors depend on pressure and temperature in the reactor and composition and flow rate of the influent.
NASA Astrophysics Data System (ADS)
Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.
2010-05-01
Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of the phase diagram. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation. For simplified partitioning parametrizations, we suggest a modified definition of the effective saturation concentration, C*j, by including water and other inorganics in the absorbing phase. Such a C*j definition reduces the RH-dependency of the gas/particle partitioning of semivolatile organics in organic-inorganic aerosols by an order of magnitude as compared to the currently accepted definition, which considers the organic species only.
Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface.
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2018-04-06
We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface-controlled by a crossover in how methane is supplied from the gas and liquid phases-which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.
NASA Astrophysics Data System (ADS)
Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.
2010-08-01
Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation. For simplified partitioning parametrizations, we suggest a modified definition of the effective saturation concentration, Cj*, by including water and other inorganics in the absorbing phase. Such a Cj* definition reduces the RH-dependency of the gas/particle partitioning of semivolatile organics in organic-inorganic aerosols by an order of magnitude as compared to the currently accepted definition, which considers the organic species only.
NASA Astrophysics Data System (ADS)
Zhenyang, Wang; Jianliang, Zhang; Gang, An; Zhengjian, Liu; Zhengming, Cheng; Junjie, Huang; Jingwei, Zhang
2016-02-01
Through analyzed and regressed the actual productive desulfurization data from the oversize blast furnace (5500 m3) in north China, the relationship between the sulfur distribution parameters and the slag composition in actual production situation was investigated. As the slag and hot metal phases have their own balance sulfur content or sulfur partial pressure in gas phase, respectively, the non-equilibrium of sulfur among gas, slag, and metal phases leads to the transmission and distribution of sulfur. Combined with sulfur transmission reactions between gas, slag and metal phases, C/CO pairs equilibrium, and Wagner model, the measured sulfide capacity can be acquired using sulfur distribution ratio, sulfur activity coefficient, and oxygen activity in hot metal. Based on the theory of congregated electron phase, a new sulfide capacity prediction model (CEPM) has been developed, which has a good liner relationship with the measured sulfide capacity. Thus, using the burden structure for BF, the ironmaking slag composition can be obtained simply and can be used to reliably predict the ironmaking slag desulfurization ability a few hours later after charging under a certain temperature by CEPM.
Mineralogy, textures and mode of formation of a hibonite-bearing Allende inclusion
NASA Technical Reports Server (NTRS)
Allen, J. M.; Grossman, L.; Davis, A. M.; Hutcheon, I. D.
1978-01-01
The origin of a Type A, hibonite-rich, coarse-grained inclusion is investigated with the electron microprobe and petrographic and scanning electron microscopes. The primary phases are hibonite, rhonite, Ti-Al-pyroxene, spinel, perovskite and melilite. Evidence for the crystallization of the bulk of the primary phases, hibonite and melilite, from a melt is lacking, suggesting that they may have condensed directly from a solar nebular gas instead. Primary phases were intensely altered during a later condensation event which deposited grossular, anorthite, nepheline and wollastonite in veins and cavities. Four or five condensate rims were deposited as successive layers on the outside of the inclusion. From inside to outside, they consist of perovskite + spinel, nepheline + anorthite, Ti-Al-pyroxene + diopside, hedenbergite + or - wollastonite + or - andradite and, finally, prisms of diopside and hedenbergite with wollastonite and andradite. Reverse zoning in melilite; alteration phases and rim phases, which are not stable condensates from a gas of solar composition; and details of the sequence of rim condensates all suggest that the entire condensation history of this inclusion was interrupted by changes in pressure and/or temperature and/or gas phase composition.
Chen, Hongda; Wang, Jihui; Ding, Anxin; Han, Xia; Sun, Ziheng
2018-01-01
In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame-retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively. PMID:29324716
Chen, Hongda; Wang, Jihui; Ni, Aiqing; Ding, Anxin; Han, Xia; Sun, Ziheng
2018-01-11
In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and ¹H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame-retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively.
Attrition resistant, zinc titanate-containing, reduced sulfur sorbents and methods of use thereof
Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.
2006-06-27
Reduced sulfur gas species (e.g., H.sub.2S, COS and CS.sub.2) are removed from a gas stream by compositions wherein a zinc titanate ingredient is associated with a metal oxide-aluminate phase material in the same particle species. Nonlimiting examples of metal oxides comprising the compositions include magnesium oxide, zinc oxide, calcium oxide, nickel oxide, etc.
Higher modulus compositions incorporating particulate rubber
Bauman, B.D.; Williams, M.A.; Bagheri, R.
1997-12-02
Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.
Higher modulus compositions incorporating particulate rubber
McInnis, E.L.; Scharff, R.P.; Bauman, B.D.; Williams, M.A.
1995-01-17
Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figures.
Higher modulus compositions incorporating particulate rubber
McInnis, E.L.; Bauman, B.D.; Williams, M.A.
1996-04-09
Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.
Understanding Gas-Phase Ammonia Chemistry in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Chambers, Lauren; Oberg, Karin I.; Cleeves, Lauren Ilsedore
2017-01-01
Protoplanetary disks are dynamic regions of gas and dust around young stars, the remnants of star formation, that evolve and coagulate over millions of years in order to ultimately form planets. The chemical composition of protoplanetary disks is affected by both the chemical and physical conditions in which they develop, including the initial molecular abundances in the birth cloud, the spectrum and intensity of radiation from the host star and nearby systems, and mixing and turbulence within the disk. A more complete understanding of the chemical evolution of disks enables a more complete understanding of the chemical composition of planets that may form within them, and of their capability to support life. One element known to be essential for life on Earth is nitrogen, which often is present in the form of ammonia (NH3). Recent observations by Salinas et al. (2016) reveal a theoretical discrepancy in the gas-phase and ice-phase ammonia abundances in protoplanetary disks; while observations of comets and protostars estimate the ice-phase NH3/H2O ratio in disks to be 5%, Salinas reports a gas-phase NH3/H2O ratio of ~7-84% in the disk surrounding TW Hydra, a young nearby star. Through computational chemical modeling of the TW Hydra disk using a reaction network of over 5000 chemical reactions, I am investigating the possible sources of excess gas-phase NH3 by determining the primary reaction pathways of NH3 production; the downstream chemical effects of ionization by ultraviolet photons, X-rays, and cosmic rays; and the effects of altering the initial abundances of key molecules such as N and N2. Beyond providing a theoretical explanation for the NH3 ice/gas discrepancy, this new model may lead to fuller understanding of the gas-phase formation processes of all nitrogen hydrides (NHx), and thus fuller understanding of the nitrogen-bearing molecules that are fundamental for life as we know it.
Surface chemistry in photodissociation regions
NASA Astrophysics Data System (ADS)
Esplugues, G. B.; Cazaux, S.; Meijerink, R.; Spaans, M.; Caselli, P.
2016-06-01
Context. The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Aims: Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. Methods: We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. Results: We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in different environments. In addition, we study how chemistry is affected by the presence/absence of ice mantles (bare dust or icy dust) and the impact of considering different desorption probabilities. Conclusions: The type of substrate (bare dust or icy dust) and the probability of desorption can significantly alter the chemistry occurring on grain surfaces, leading to differences of several orders of magnitude in the abundances of gas-phase species, such as CO, H2CO, and CH3OH. The type of substrate, together with the density and intensity of the radiation field, also determine the threshold extinction to form ices of CO2 and H2O. We also conclude that H2CO and CH3OH are mainly released into the gas phase of low, far-ultraviolet illuminated PDRs through chemical desorption upon two-body surface reactions, rather than through photodesorption.
The free radical chemistry of cloud droplets and its impact upon the composition of rain
NASA Technical Reports Server (NTRS)
Chameides, W. L.; Davis, D. D.
1982-01-01
Calculations are presented that simulate the free radical chemistries of the gas phase and aqueous phase within a warm cloud during midday. It is demonstrated that in the presence of midday solar fluxes, the heterogeneous scavenging of OH and HO2 from the gas phase by cloud droplets can represent a major source of free radicals to cloud water, provided the accommodation or sticking coefficient for these species impinging upon water droplets is not less than 0.0001. The aqueous-phase of HO2 radicals are found to be converted to H2O2 by aqueous-phase chemical reactions at a rate that suggests that this mechanism could produce a significant fraction of the H2O2 found in cloud droplets. The rapid oxidation of sulfur species dissolved in cloudwater by this free-radical-produced H2O2 as well as by aqueous-phase OH radicals could conceivably have a significant impact upon the chemical composition of rain.
Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Y.; Institute of Physics, University of Tsukuba, Ibaraki 305; Griffin, A.
2003-03-01
We investigate strong-coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasiboson that can give rise to an additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy 2{nu} of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a crossover from a BCS state to a Bose-Einstein condensate (BEC) of the Nozieres and Schmitt-Rink kind, in which the BCS-type superfluid phasemore » transition continuously changes into the BEC type as the threshold energy is decreased. In this paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the local-density approximation. We also give results for both weak and strong coupling to the Feshbach resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density profile at the superfluid phase-transition temperature T{sub c}, reflecting the change of the dominant particles going from Fermi atoms to composite bosons. In the BEC regime, these composite bosons are shown to first appear well above T{sub c}. We also discuss the 'phase diagram' above T{sub c} as a function of the tunable threshold energy 2{nu}. We introduce a characteristic temperature T*(2{nu}) describing the effective crossover in the normal phase from a Fermi gas of atoms to a gas of stable molecules.« less
Microwave plasma synthesis of Si/Ge and Si/WSi2 nanoparticles for thermoelectric applications
NASA Astrophysics Data System (ADS)
Petermann, Nils; Schneider, Tom; Stötzel, Julia; Stein, Niklas; Weise, Claudia; Wlokas, Irenäus; Schierning, Gabi; Wiggers, Hartmut
2015-08-01
The utilization of microwave-based plasma systems enables a contamination-free synthesis of highly specific nanoparticles in the gas phase. A reactor setup allowing stable, long-term operation was developed with the support of computational fluid dynamics. This paper highlights the prospects of gas-phase plasma synthesis to produce specific materials for bulk thermoelectrics. Taking advantage of specific plasma reactor properties such as Coulomb repulsion in combination with gas temperatures considerably higher than 1000 K, spherical and non-aggregated nanoparticles of multiple compositions are accessible. Different strategies towards various nanostructured composites and alloys are discussed. It is shown that, based on doped silicon/germanium alloys and composites, thermoelectric materials with zT values up to almost unity can be synthesized in one step. First experimental results concerning silicon/tungsten silicide thermoelectrics applying the nanoparticle-in-alloy idea are presented indicating that this concept might work. However, it is found that tungsten silicides show a surprising sinter activity more than 1000 K below their melting temperature.
Role of Plasma Temperature and Residence Time in Stagnation Plasma Synthesis of c-BN Nanopowders
2013-01-01
outer diameter of 15mm. A center injection 19 nozzle of 1.4mm diameter is implemented for precursor introduction. Plasma and sheath gas ... Gas Phase Synthesis of Nanoparticles..................................................... 5 2.2 Cubic Boron Nitride Synthesis...11 2.2.4 Effects of gas composition ............................................................................................ 11
Hydrogen storage and phase transformations in Mg-Pd nanoparticles
NASA Astrophysics Data System (ADS)
Callini, E.; Pasquini, L.; Rude, L. H.; Nielsen, T. K.; Jensen, T. R.; Bonetti, E.
2010-10-01
Microstructure refinement and synergic coupling among different phases are currently explored strategies to improve the hydrogen storage properties of traditional materials. In this work, we apply a combination of these methods and synthesize Mg-Pd composite nanoparticles by inert gas condensation of Mg vapors followed by vacuum evaporation of Pd clusters. Irreversible formation of the Mg6Pd intermetallic phase takes place upon vacuum annealing, resulting in Mg/Mg6Pd composite nanoparticles. Their hydrogen storage properties are investigated and connected to the undergoing phase transformations by gas-volumetric techniques and in situ synchrotron radiation powder x-ray diffraction. Mg6Pd transforms reversibly into different Mg-Pd intermetallic compounds upon hydrogen absorption, depending on temperature and pressure. In particular, at 573 K and 1 MPa hydrogen pressure, the metal-hydride transition leads to the formation of Mg3Pd and Mg5Pd2 phases. By increasing the pressure to 5 MPa, the Pd-richer MgPd intermetallic is obtained. Upon hydrogen desorption, the Mg6Pd phase is reversibly recovered. These phase transformations result in a specific hydrogen storage capacity associated with Mg-Pd intermetallics, which attain the maximum value of 3.96 wt % for MgPd and influence both the thermodynamics and kinetics of hydrogen sorption in the composite nanoparticles.
Shock initiated reactions of reactive multi-phase blast explosives
NASA Astrophysics Data System (ADS)
Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald
2017-01-01
This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.
NASA Astrophysics Data System (ADS)
Larson, T.; Sathaye, K.
2014-12-01
A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish thermogenic and microbial methane.
NASA Astrophysics Data System (ADS)
Latroche, M.; Joubert, J.-M.; Guégan, A. Percheron; Isnard, O.
2004-07-01
LaNi5-type alloys store reversibly hydrogen and are used as negative electrode materials in Ni-MH batteries. Substitutions on La and Ni crystallographic sites have led to competitive materials with complex formulae Mm(Ni4.3-xMn0.4Al0.3Cox)1+y (Mm: mishmetal). Materials involving an unexpected metastable phase γ show the best cycle lives. This phase occurrence depends on the mishmetal composition, the cobalt rate and the over-stoichiometry. It is observed as a transitory phase only for charge in electrochemical process. To confirm the appearance of this phase during gas loading, in beam D2 gas absorption has been performed on two materials for which the γ phase is expected. Phase amounts and cell volumes have been measured by in situ neutron powder diffraction analysis under controlled gas pressure as a function of the state of charge.
Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface
NASA Astrophysics Data System (ADS)
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2018-04-01
We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.
A Computationally Efficient Equation of State for Ternary Gas Hydrate Systems
NASA Astrophysics Data System (ADS)
White, M. D.
2012-12-01
The potential energy resource of natural gas hydrates held in geologic accumulations, using lower volumetric estimates, is sufficient to meet the world demand for natural gas for nearly eight decades, at current rates of increase. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. The thermodynamic complexity of gas hydrate systems makes numerical simulation a particularly attractive research tool for understanding production strategies and experimental observations. Simply stated, producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. Alternatively, the guest-molecule exchange technology releases CH4 by replacing it with more thermodynamically stable molecules (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it potentially releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, nonaqueous liquid, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulations that predict the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. The phase equilibria for the ternary gas hydrate system within the gas hydrate stability range of composition, temperature and pressure, includes regions where the gas hydrate is in equilibrium with gas, nonaqueous liquid, or mixtures of gas and nonaqeuous liquid near the CO2-CH4-N2 mixture critical point. In these regions, solutions to cubic equations of state can be nonconvergent without accurate initial guesses. A hybrid tabular-cubic equation of state is described which avoids convergence issues, but conserves the characteristics and advantages of the cubic equation of state approaches to phase equilibria calculations. The application of interest will be the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.
NASA Astrophysics Data System (ADS)
Wyche, K. P.; Monks, P. S.; Smallbone, K. L.; Hamilton, J. F.; Alfarra, M. R.; Rickard, A. R.; McFiggans, G. B.; Jenkin, M. E.; Bloss, W. J.; Ryan, A. C.; Hewitt, C. N.; MacKenzie, A. R.
2015-07-01
Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i.e. toluene) oxidation and "more realistic" plant mesocosm systems, demonstrates that such an ensemble of chemometric mapping has the potential to be used for the classification of more complex spectra of unknown origin. More specifically, the addition of mesocosm data from fig and birch tree experiments shows that isoprene and monoterpene emitting sources, respectively, can be mapped onto the statistical model structure and their positional vectors can provide insight into their biological sources and controlling oxidative chemistry. The potential to extend the methodology to the analysis of ambient air is discussed using results obtained from a zero-dimensional box model incorporating mechanistic data obtained from the Master Chemical Mechanism (MCMv3.2). Such an extension to analysing ambient air would prove a powerful asset in assisting with the identification of SOA sources and the elucidation of the underlying chemical mechanisms involved.
NASA Astrophysics Data System (ADS)
Liu, X.; Day, D. A.; Ziemann, P. J.; Krechmer, J. E.; Jimenez, J. L.
2017-12-01
The partitioning of semivolatile organic compounds (SVOCs) into and out of particles plays an essential role in secondary organic aerosol (SOA) formation and evolution. Most atmospheric models treat the gas/particle partitioning as an equilibrium between bulk gas and particle phases, despite potential kinetic limitations and differences in thermodynamics as a function of SOA and pre-existing OA composition. This study directly measures the partitioning of oxidized compounds in a Teflon chamber in the presence of single component seeds of different phases and polarities, including oleic acid, squalane, dioctyl sebacate, pentaethylene glycol, dry/wet ammonium sulfate, and dry/wet sucrose. The oxidized compounds are generated by a fast OH oxidation of a series of alkanols under high nitric oxide conditions. The observed SOA mass enhancements are highest with oleic acid, and lowest with wet ammonium sulfate and sucrose. A chemical ionization mass spectrometer (CIMS) was used to measure the decay of gas-phase organic nitrates, which reflects uptake by particles and chamber walls. We observed clear changes in equilibrium timescales with varying seed concentrations and in equilibrium gas-phase concentrations across different seeds. In general, the gas evolution can be reproduced by a kinetic box model that considers partitioning and evaporation with particles and chamber walls, except for the wet sucrose system. The accommodation coefficient and saturation mass concentration of each species in the presence of each seed are derived using the model. The changes in particle size distributions and composition monitored by a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) are investigated to probe the SOA formation mechanism. Based on these results, the applicability of partitioning theory to these systems and the relevant quantitative parameters, including the dependencies on seed particle composition, will be discussed.
Surface Composition Influence on Internal Gas Flow at Large Knudsen Numbers
2000-07-09
situated in an ultra high vacuum system . The system is supplied with means of gas phase, surface CP585, Rarefied Gas Dynamics: 22nd International...control and gas flow measuring system . The experimental procedure consists in a few stages. The first stage includes surface preparation process at...solid body system , Proceedings 20-th Int. Symp. Rarefied Gas Dynamics, Peking University Press, Beijing, China, 1997, pp. 387-391. 3. Lord, R.G
NASA Astrophysics Data System (ADS)
Liang, Wei; Yang, Jijun; Zhang, Feifei; Lu, Chenyang; Wang, Lumin; Liao, Jiali; Yang, Yuanyou; Liu, Ning
2018-04-01
This study investigates the improved irradiation tolerance of reactive gas pulse (RGP) sputtered TiN coatings which has hybrid architecture of multilayered and compositionally graded structures. The multilayered RGP-TiN coating is composed of hexagonal close-packed Ti phase and face-centred cubic TiN phase sublayers, where the former sublayer has a compositionally graded structure and the latter one maintains constant stoichiometric atomic ratio of Ti:N. After 100 keV He ion irradiation, the RGP-TiN coating exhibits improved irradiation resistance compared with its single layered (SL) counterpart. The size and density of He bubbles are smaller in the RGP-TiN coating than in the SL-TiN coating. The irradiation-induced surface blistering of the coatings shows a similar tendency. Meanwhile, the irradiation hardening and adhesion strength of the RGP-TiN coatings were not greatly affected by He irradiation. Moreover, the irradiation damage tolerance of the coatings can be well tuned by changing the undulation period number of N2 gas flow rate. Detailed analysis suggested that this improved irradiation tolerance could be related to the combined contribution of the multilayered and compositionally graded structures.
Masoum, Saeed; Gholami, Ali; Ghaheri, Salehe; Bouveresse, Delphine Jouan-Rimbaud; Cordella, Christophe B Y; Rutledge, Douglas N
2016-07-01
A new composite coating of polypyrrole and sodium lauryl ether sulfate was electrochemically prepared on a stainless-steel wire using cyclic voltammetry. The application and performance of the fiber was evaluated for the headspace solid-phase microextraction of a fragrance in aqueous bleach samples followed by gas chromatography combined with mass spectrometry to assess the fragrance stability in this kind of household cleaning product. To obtain a stable and efficient composite coating, parameters related to the coating process such as scan rate and numbers of cycles were optimized using a central composite design. In addition, the effects of various parameters on the extraction efficiency of the headspace solid-phase microextraction process such as extraction temperature and time, ionic strength, sample volume, and stirring rate were investigated by experimental design methods using Plackett-Burman and Doehlert designs. The optimum values of 53°C and 28 min for sample temperature and time, respectively, were found through response surface methodology. Results show that the combination of polypyrrole and sodium lauryl ether sulfate in a composite form presents desirable opportunities to produce new materials to study fragrance stability by headspace solid-phase microextraction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szweda, A.
2001-01-01
The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.
One-step large scale gas phase synthesis of Mn2 + doped ZnS nanoparticles in reducing flames
NASA Astrophysics Data System (ADS)
Athanassiou, E. K.; Grass, R. N.; Stark, W. J.
2010-05-01
Metal sulfide nanoparticles have attracted considerable interest because of their unique semiconducting and electronic properties. In order to prepare these fascinating materials at an industrial scale, however, solvent-free, dry processes would be most advantageous. In the present work, we demonstrate how traditional oxide nanoparticle synthesis in flames can be extended to sulfides if we apply a careful control on flame gas composition and sulfur content. The ultra-fast (<1 ms) gas phase kinetics at elevated temperatures allow direct sulfidization of metals in flames (\\mathrm {MO}_{x} \\Rightarrow \\mathrm {MS}_{x} ). As a representative example, we prepared air-stable Mn2 + doped zinc sulfide nanoparticles. Post-sintering of the initially polycrystalline nanopowder resulted in a material of high crystallinity and improved photoluminescence. An analysis of the thermodynamics, gas composition, and kinetics in these reducing flames indicates that the here-presented extension of flame synthesis provides access to a broad range of metal sulfide nanoparticles and offers an alternative to non-oxide phosphor preparation.
Role of a gas phase in the kinetics of zinc and iron reduction with carbon from slag melts
NASA Astrophysics Data System (ADS)
Chumarev, V. M.; Selivanov, E. N.
2013-03-01
The influence of the mass transfer conditions in the gas phase having formed at the carbon-slag melt interface on CO regeneration is approximately estimated in the framework of a two-stage scheme of metal reduction from slag melts by carbon. The effect of zinc vapors on the combined reduction of iron and zinc from slags is considered. The influence of the slag composition and temperature on the critical concentration of zinc oxide above which no iron forms as an individual phase is explained.
Fan, Xing; Li, Jian; Qiu, Danqi; Zhu, Tianle
2018-04-01
Effects of carrier gas composition (N 2 /air) on NH 3 production, energy efficiency regarding NH 3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al 2 O 3 -packed dielectric barrier discharge (DBD) reactor at room temperature. Results show that the presence of O 2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH 3 . The final yield of NH 3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23kV, respectively when air was used as the carrier gas instead of N 2 . From the viewpoint of energy savings, however, air carrier gas is better than N 2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al 2 O 3 catalyst to give NH 3 and CO 2 as the main products. Compared to a small amount of N 2 O formed with N 2 as the carrier gas, however, more byproducts including N 2 O and NO 2 in the gas phase and NH 4 NO 3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH 3 , the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma. Copyright © 2017. Published by Elsevier B.V.
Peacock, Harold B [Evans, GA; Imrich, Kenneth J [Grovetown, GA
2009-03-17
A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.
NASA Astrophysics Data System (ADS)
Davidov, D. I.; Kazantseva, N. V.; Vinogradova, N. I.; Ezhov, I. V.
2017-12-01
Investigation of the structure and chemical composition of the protective coating of the first stage IN738 gas turbine blade after standard regenerative heat treatment was done. It was found the degradation of microstructure and chemical composition of both the blade feather and its protective coating. Redistribution of the chemical elements decreasing the corrosion resistance was observed inside the protective coating. Cracks on the boundary between the blade feather and the protective coating were found by scanning electron microscopy. The carbide transformation and sigma phase were found in the structure of the blade feather. Based upon the structural and chemical composition studies, it is concluded that the standard regenerative heat treatment of the IN738 operative gas turbine blade does not provide full structure regeneration.
NASA Technical Reports Server (NTRS)
Nicol, M.; Johnson, M.; Koumvakalis, A. S.
1985-01-01
The behavior of gas-ice mixtures in major planets at very high pressures was studied. Some relevant pressure-temperature-composition (P-T-X) regions of the hydrogen (H2)-helium (He)-water (H2O-ammonia (NH3)-methane (CH4) phase diagram were determined. The studies, and theoretical model, of the relevant phases, are needed to interpret the compositions of ice-gas systems at conditions of planetary interest. The compositions and structures of a multiphase, multicomponent system at very high pressures care characterized, and the goal is to characterize this system over a wide range of low and high temperatures. The NH3-H2O compositions that are relevant to planetary problems yet are easy to prepare were applied. The P-T surface of water was examined and the corresponding surface for NH3 was determined. The T-X diagram of ammonia-water at atmospheric pressure was studied and two water-rich phases were found, NH3-2H2O (ammonia dihydrate), which melts incongruently, and NH3.H2O (ammonia monohydrate), which is nonstoichiometric and melts at a higher temperature than the dihydrate. It is suggested that a P-T surface at approximately the monohydrate composition and the P-X surface at room temperature is determined.
The characterisation of diesel exhaust particles - composition, size distribution and partitioning.
Alam, Mohammed S; Zeraati-Rezaei, Soheil; Stark, Christopher P; Liang, Zhirong; Xu, Hongming; Harrison, Roy M
2016-07-18
A number of major research questions remain concerning the sources and properties of road traffic generated particulate matter. A full understanding of the composition of primary vehicle exhaust aerosol and its contribution to secondary organic aerosol (SOA) formation still remains elusive, and many uncertainties exist relating to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOCs) are compounds which partition directly between the gas and aerosol phases under ambient conditions. The SVOCs in engine exhaust are typically hydrocarbons in the C15-C35 range, and are largely uncharacterised because they are unresolved by traditional gas chromatography, forming a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, thermal desorption coupled to comprehensive Two Dimensional Gas-Chromatography Time-of-Flight Mass-Spectrometry (TD-GC × GC-ToF-MS) was exploited to characterise and quantify the composition of SVOCs from the exhaust emission. Samples were collected from the exhaust of a diesel engine, sampling before and after a diesel oxidation catalyst (DOC), while testing at steady state conditions. Engine exhaust was diluted with air and collected using both filter and impaction (nano-MOUDI), to resolve total mass and size resolved mass respectively. Adsorption tubes were utilised to collect SVOCs in the gas phase and they were then analysed using thermal desorption, while particle size distribution was evaluated by sampling with a DMS500. The SVOCs were observed to contain predominantly n-alkanes, branched alkanes, alkyl-cycloalkanes, alkyl-benzenes, PAHs and various cyclic aromatics. Particle phase compounds identified were similar to those observed in engine lubricants, while vapour phase constituents were similar to those measured in fuels. Preliminary results are presented illustrating differences in the particle size distribution and SVOCs composition when collecting samples with and without a DOC. The results indicate that the DOC tested is of very limited efficiency, under the studied engine operating conditions, for removal of SVOCs, especially at the upper end of the molecular weight range.
Gas chromatographic analysis of volatiles in fluid and gas inclusions
Andrawes, F.; Holzer, G.; Roedder, E.; Gibson, E.K.; Oro, John
1984-01-01
Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping.These inclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels.We present here some analyses of inclusions in a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography—mass spectrometry (GC—MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crusing surfaces, and is operated in a pure helium atmosphere at a controlled temperature.Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC—MS. This combination of procedures has been shown to provide geochemically useful information on the process involved in the history of the samples analyzed.
Gas chromatographic analysis of volatiles in fluid and gas inclusions.
Andrawes, F; Holzer, G; Roedder, E; Gibson, E K; Oro, J
1984-01-01
Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These conclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusion on a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crushing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the processes involved in the history of the samples analyzed.
Cross, B A; Grant, B J; Guz, A; Jones, P W; Semple, S J; Stidwill, R P
1979-01-01
1. The hypothesis that respiratory oscillations of arterial blood gas composition influence ventilation has been examined. 2. Phrenic motoneurone output recorded in the C5 root of the left phrenic nerve and the respiratory oscillations of arterial pH in the right common carotid artery were measured in vagotomized anaesthetized dogs which had been paralysed and artificially ventilated. 3. The effect of a change in tidal volume for one or two breaths on phrenic motoneurone output was measured with the inspiratory pump set at a constant frequency similar to, and in phase with, the animal's own respiratory frequency. A reduction of tidal volume to zero or an increase by 30% led to a corresponding change of mean carotid artery pH level. The changes of carotid artery pH resulted in a change of phrenic motoneurone output, predominantly of expiratory time (Te) but to a lesser extent of inspiratory time (T1) and also peak amplitude of 'integrated' phrenic motoneurone output (Phr). Denervation of the carotid bifurcation blocked this response. 4. The onset of movement of the inspiratory pump was triggered by the onset of phrenic motoneurone output. When a time delay was interposed between them, the phase relationship between respiratory oscillations of arterial pH and phrenic motoneurone output altered. The dominant effect was to alter Te; smaller and less consistent changes of Phr and T1 were observed. 5. When the inspiratory pump was maintained at a constant frequency but independent of and slightly different from the animal's own respiratory frequency (as judged by phrenic motoneurone output), the phase relationship between phrenic motoneurone output and the respiratory oscillations of pH changed breath by breath over a sequence of 100-200 breaths, without change of the mean level of arterial blood gas composition. Te varied by up to 30% about its mean value depending on the phase relationship. Ti and Phr were also dependent on the phase relationship but varied to a lesser extent. The changes were comparable to the results obtained in paragraph 4. 6. It was concluded that phrenic motoneurone output is dependent in part on its relationship to the respiratory oscillations of arterial blood gas composition. 7. Information concerning a transient ventilatory disturbance is stored in the arterial blood in the form of an altered pattern of the respiratory oscillations of blood gas composition; this in turn can change breathing by an effect on the carotid bodies. Images Fig. 3 PMID:38333
NASA Astrophysics Data System (ADS)
Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin
2016-11-01
In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be applied to a large number of molecules thanks to the technical development of lasers and detectors over the last decades, and is a complementary and visual alternative to traditional MS to be used in environments difficult to asses with MS. In this article we will review general considerations when performing PLIF experiments, our experimental set-up for PLIF and discuss relevant examples of PLIF applied to catalysis.
NASA Astrophysics Data System (ADS)
Gaston, C. J.; Riedel, T. P.; Thornton, J. A.; Wagner, N.; Brown, S. S.; Quinn, P.; Bates, T. S.; Prather, K. A.
2011-12-01
Sea spray particles are ubiquitous in marine environments. Heterogeneous reactions between sea spray particles and gas phase pollutants, such as HNO3(g), and N2O5(g), alter particle composition by displacing particulate phase halogens in sea spray and releasing these halogen species into the gas phase; these halogen-containing gas phase species play a significant role in tropospheric ozone production. Measurements of both gas phase and particle phase species on board the R/V Atlantis during the CalNEX 2010 field campaign provided an opportunity to examine the impact of heterogeneous reactivity of marine aerosols along the California coast. During the cruise, coastal measurements were made near the Santa Monica and Port of Los Angeles regions to monitor the chemical processing of marine aerosols. Sea spray particles were analyzed since these particles were the major chloride-containing particles detected. Real-time single particle measurements made using an aerosol time-of-flight mass spectrometer (ATOFMS) revealed the nocturnal processing of sea spray particles through the loss of particulate chloride and a simultaneous gain in particulate nitrate. Gas phase measurements are consistent with the particle phase observations: As N2O5(g) levels rose overnight, the production of ClNO2(g) coincided with the decrease in particulate chloride. These observations provide unique insight into heterogeneous reactivity from both a gas and particle phase perspective. Results from these measurements can be used to better constrain the rate of heterogeneous reactions on sea spray particles.
Gas-phase kinetics modifies the CCN activity of a biogenic SOA.
Vizenor, A E; Asa-Awuku, A A
2018-02-28
Our current knowledge of cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. Here, we examine the CCN activation of 3 SOA systems (2 biogenic single precursor and 1 mixed precursor SOA system) in relation to gas-phase decay. Specifically, the relationship between time, gas-phase precursor decay and CCN activity of 100 nm SOA is studied. The studied SOA systems exhibit a time-dependent growth of CCN activity at an instrument supersaturation of ∼0.2%. As such, we define a critical activation time, t 50 , above which a 100 nm SOA particle will activate. The critical activation time for isoprene, longifolene and a mixture of the two precursor SOA is 2.01 hours, 2.53 hours and 3.17 hours, respectively. The activation times are then predicted with gas-phase kinetic data inferred from measurements of precursor decay. The gas-phase prediction of t 50 agrees well with CCN measured t 50 (within 0.05 hours of the actual critical times) and suggests that the gas-to-particle phase partitioning may be more significant for SOA CCN prediction than previously thought.
NASA Astrophysics Data System (ADS)
Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.
2014-11-01
We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.
Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo
2017-12-01
Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.
Controllable fabrication of porous free-standing polypyrrole films via a gas phase polymerization.
Lei, Junyu; Li, Zhicheng; Lu, Xiaofeng; Wang, Wei; Bian, Xiujie; Zheng, Tian; Xue, Yanpeng; Wang, Ce
2011-12-15
A facile gas phase polymerization method has been proposed in this work to fabricate porous free-standing polypyrrole (PPy) films. In the presence of pyrrole vapor, the films are obtained in the gas/water interface spontaneously through the interface polymerization with the oxidant of FeCl(3) in the water. Both the thickness of the film and the size of the pores could be controlled by adjusting the concentrations of the oxidant and the reaction time. The as-prepared PPy films exhibited a superhydrophilic behavior due to its composition and porous structures. We have demonstrated a possible formation mechanism for the porous free-standing PPy films. This gas phase polymerization is shown to be readily scalable to prepare large area of PPy films. Copyright © 2011 Elsevier Inc. All rights reserved.
Phase change of iron ore reduction process using EFB as reducing agent at 900-1200°C
NASA Astrophysics Data System (ADS)
Purwanto, H.; Salleh, H. M.; Rozhan, A. N.; Mohamad, A. S.; Zakiyuddin, A.
2018-04-01
Treatment of low grade iron ore involved reduction of oxygen in iron oxide by using reductant such as carbon monoxide or hydrogen gas. Presently, carboneous materials such as coke/coal are widely used as a source to provide reducing gas, but some problem arises from this material as the gas can harm the environments. Therefore, empty fruit bunch biomass from oil palm becomes an alternative to replace the usage of coke/coal as their major composition is carbon and hydrogen. The idea of replacing coke with biomass will reduce the amount of carbon dioxide release as biomass is a carbon neutral and renewable source, and at the same time abundance of waste from oil palm industries can be overcome. Therefore, the aim of this research is to upgrade the low grade iron with reducibility more than 50% being used in iron and steel making. In this research, low grade iron ore are mixed together with EFB then is making into composite pellet before being reduced at certain parameter chosen. The variables involved in this research is composition EFB (10%, 30% and 50%), temperature (1000°C, 1100°C and 1200°C) and reduction time is fixed with 30 minutes. From the experiment conducted, the highest reducibility achieved is 76.37% at temperature 1200°C. While XRD analysis shows the existence of metallic iron phase started to form at 1000°C with composition of 30% of EFB. Meanwhile, from magnetization test show that at 1200°C the highest magnetic susceptibility is achieved as the dominance phase at 1200°C is metallic phase. Therefore it is an interesting alternative to replace coke with biomass for reducing agent in upgrading low grade iron into workable ores.
Metal Alloy Compositions And Process Background Of The Invention
Flemings, Merton C.; Martinez-Ayers, Raul A.; de Figueredo, Anacleto M.; Yurko, James A.
2003-11-11
A skinless metal alloy composition free of entrapped gas and comprising primary solid discrete degenerate dendrites homogeneously dispersed within a secondary phase is formed by a process wherein the metal alloy is heated in a vessel to render it a liquid. The liquid is then rapidly cooled while vigorously agitating it under conditions to avoid entrapment of gas while forming solid nuclei homogeneously distributed in the liquid. Agitation then is ceased when the liquid contains a small fraction solid or the liquid-solid alloy is removed from the source of agitation while cooling is continued to form the primary solid discrete degenerate dendrites in liquid secondary phase. The solid-liquid mixture then can be formed such as by casting.
Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite
NASA Technical Reports Server (NTRS)
Hashimoto, Akihiko; Grossman, Lawrence
1987-01-01
The primary phases of Al-rich inclusions in amoeboid olivine aggregates have undergone alteration reactions with the solar nebular gas. The simplest interpretation of the present observations is that melilite was the first primary phase to disappear with falling temperature, and was replaced by grossular + anorthite + feldspathoids, followed by fassaite; spinel was the last phase to be altered. Thermodynamic calculations suggest that Na-rich phlogopite could have formed at about 470 K and chlorite at about 328 K at a water fugacity of 0.000001, which is that of a gas of solar composition in this temperature range. The olivine around Al-rich inclusions is not serpentized, indicating the cessation of gas-solid equilibrium above 274 K.
2016-04-01
the Deflagration of Ammonium Perchlorate— Hydroxyl-Terminated Polybutadiene Composite Propellants by Chiung-Chu Chen and Michael McQuaid...for Modeling the Deflagration of Ammonium Perchlorate— Hydroxyl-Terminated Polybutadiene Composite Propellants by Chiung-Chu Chen and Michael...Ammonium Perchlorate—Hydroxyl-Terminated Polybutadiene Composite Propellants 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
NASA Astrophysics Data System (ADS)
Liang, Yuan-Chang; Lee, Chia-Min
2016-10-01
ZnO-In2O3 (InO) composite thin films were grown by radio frequency cosputtering ZnO and InO ceramic targets in this study. The indium content of the composite films was varied from 1.7 at. % to 8.2 at. % by varying the InO sputtering power during cosputtering thin-film growth. X-ray diffraction and transmission electron microscopy analysis results show that the high indium content leads to the formation of a separated InO phase in the ZnO matrix. The surface crystallite size and roughness of the ZnO-InO composite films grown here increased with an increasing indium content. Furthermore, under the conditions of a higher indium content and InO sputtering power, the number of crystal defects in the composite films increased, and the optical absorbance edge of the composite films broadened. The photoactivity and ethanol gas sensing response of the ZnO-InO composite films increased as their indium content increased; this finding is highly correlated with the microstructural evolution of ZnO-InO composite films of various indium contents, which is achieved by varying the InO sputtering power during cosputtering.
Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R
2015-11-05
Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major role in the lifecycle of atmospheric OA.
Li, Huishu; Son, Ji-Hee; Carlson, Kenneth H
2016-01-01
The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport. Copyright © 2015 Elsevier Ltd. All rights reserved.
Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.
Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek
2017-08-17
Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lixue; Li, Li; Yang, Ying
2013-10-15
Graphical abstract: The Cu/Cu{sub x}O nanoarchitectures with 30–70 nm hollow nanospheres reduced by 3 mmol NaBH{sub 4} exhibits excellent gas-sensing property to low-concentration NO{sub x} gas at room temperature. - Highlights: • The Cu/Cu{sub x}O nanoarchitectures with hollow nanospheres are successfully synthesized. • The method is used for preparing the with Cu/Cu{sub x}O adjustable phase composition. • The C3 sample exhibites excellent gas-sensing propertie to NO{sub x} at room temperation. • The Cu/Cu{sub x}O nanoarchitectures have significant for application of gas sensor. - Abstract: The Cu/Cu{sub x}O nanoarchitectures with 30–70 nm hollow nanospheres are successfully synthesized by a facile wetmore » chemical method. The synthesized products have been studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo gravimetric-differential scanning calorimetry (TG-DSC) analysis. The Cu/Cu{sub x}O sensors based on the nanoarchitectures are used to detect the NO{sub x} at room temperature. The results demonstrate that the obtained Cu/Cu{sub x}O nanoarchitectures reduced by 3 mmol NaBH{sub 4} exhibits excellent gas-sensing properties: low detection limit of 0.97 ppm, relatively high sensitivity, short response time, broad linear range and high selectivity. The reasons for gas-sensing activity enhancement on Cu/Cu{sub x}O nanoarchitectures are discussed. The Cu/Cu{sub x}O nanocrystalline with the hierarchical pores structure and tunable compositions have significant for application of gas sensor.« less
Mass spectrometric determination of the composition of the Venus clouds
NASA Technical Reports Server (NTRS)
Herzog, R. F. K.
1973-01-01
The instrumentation is analyzed for determining the composition of the clouds on Venus. Direct analysis of the gas phase atmosphere, and the detection of ferrous chloride with a mass spectrometer are dicussed along with the mass analyzer, and the pre-separation of cloud particles from the ambient atmosphere.
Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Löbel, M.; Lindner, T.; Kohrt, C.; Lampke, T.
2017-03-01
High Entropy Alloys (HEA) are gaining increasing interest due to their unique combination of properties. Especially the combination of high mechanical strength and hardness with distinct ductility makes them attractive for numerous applications. One interesting alloy system that exhibits excellent properties in bulk state is AlCoCrFeNiTi. A high strength, wear resistance and high-temperature resistance are the necessary requirements for the application in surface engineering. The suitability of blended, mechanically ball milled and inert gas atomized feedstock powders for the development of atmospheric plasma sprayed (APS) coatings is investigated in this study. The ball milled and inert gas atomized powders were characterized regarding their particle morphology, phase composition, chemical composition and powder size distribution. The microstructure and phase composition of the thermal spray coatings produced with different feedstock materials was investigated and compared with the feedstock material. Furthermore, the Vickers hardness (HV) was measured and the wear behavior under different tribological conditions was tested in ball-on-disk, oscillating wear and scratch tests. The results show that all produced feedstock materials and coatings exhibit a multiphase composition. The coatings produced with inert gas atomized feedstock material provide the best wear resistance and the highest degree of homogeneity.
NASA Astrophysics Data System (ADS)
Belyakov, I. I.; Belokonova, A. F.
2010-07-01
We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.
NASA Astrophysics Data System (ADS)
Love, Brooke; Lilley, Marvin; Butterfield, David; Olson, Eric; Larson, Benjamin
2017-02-01
Previous work at the Main Endeavour Field (MEF) has shown that chloride concentration in high-temperature vent fluids has not exceeded 510 mmol/kg (94% of seawater), which is consistent with brine condensation and loss at depth, followed by upward flow of a vapor phase toward the seafloor. Magmatic and seismic events have been shown to affect fluid temperature and composition and these effects help narrow the possibilities for sub-surface processes. However, chloride-temperature data alone are insufficient to determine details of phase separation in the upflow zone. Here we use variation in chloride and gas content in a set of fluid samples collected over several days from one sulfide chimney structure in the MEF to constrain processes of mixing and phase separation. The combination of gas (primarily magmatic CO2 and seawater-derived Ar) and chloride data, indicate that neither variation in the amount of brine lost, nor mixing of the vapor phase produced at depth with variable quantities of (i) brine or (ii) altered gas rich seawater that has not undergone phase separation, can explain the co-variation of gas and chloride content. The gas-chloride data require additional phase separation of the ascending vapor-like fluid. Mixing and gas partitioning calculations show that near-critical temperature and pressure conditions can produce the fluid compositions observed at Sully vent as a vapor-liquid conjugate pair or as vapor-liquid pair with some remixing, and that the gas partition coefficients implied agree with theoretically predicted values.
Online Measurements of Highly Oxidized Organics in the Gas and Particle phase during SOAS and SENEX
NASA Astrophysics Data System (ADS)
Lopez-Hilfiker, F.; Lee, B. H.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Thornton, J. A.
2014-12-01
We present measurements of a large suite of gas and particle phase organic compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington and with airborne HR-ToF-CIMS measurements. The FIGAERO instrument was deployed on the Jülich Plant Atmosphere Chamber to study α-pinene oxidation, and subsequently at the SMEAR II forest station in Hyytiälä, Finland and the SOAS ground site, in Brent Alabama. During the Southern Atmosphere Study, a gas-phase only version of the HR-ToF-CIMS was deployed on the NOAA WP-3 aircraft as part of SENEX. We focus here on highly oxygenated organic compounds derived from monoterpene oxidation detected both aloft during SENEX and at the ground-based site during SOAS. In both chamber and the atmosphere, many highly oxidized, low volatility compounds were observed in the gas and particles and many of the same compositions detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition such as O/C ratios, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. The detailed structure in the thermograms reveals a significant contribution from large molecular weight organics and/or oligomers in both chamber and ambient aerosol samples. Approximately 50% of the measured organics in the particle phase are associated with compounds having effective vapour pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. We discuss the implications of these findings for measurements of gas-particle partitioning and for evaluating the contribution of monoterpene oxidation to organic aerosol formation and growth. We also use the aircraft measurements and a steady state model to estimate the yield of such highly oxidized compounds from monoterpene oxidation.
Yee, Lindsay D; Craven, Jill S; Loza, Christine L; Schilling, Katherine A; Ng, Nga Lee; Canagaratna, Manjula R; Ziemann, Paul J; Flagan, Richard C; Seinfeld, John H
2012-06-21
The extended photooxidation of and secondary organic aerosol (SOA) formation from dodecane (C(12)H(26)) under low-NO(x) conditions, such that RO(2) + HO(2) chemistry dominates the fate of the peroxy radicals, is studied in the Caltech Environmental Chamber based on simultaneous gas and particle-phase measurements. A mechanism simulation indicates that greater than 67% of the initial carbon ends up as fourth and higher generation products after 10 h of reaction, and simulated trends for seven species are supported by gas-phase measurements. A characteristic set of hydroperoxide gas-phase products are formed under these low-NO(x) conditions. Production of semivolatile hydroperoxide species within three generations of chemistry is consistent with observed initial aerosol growth. Continued gas-phase oxidation of these semivolatile species produces multifunctional low volatility compounds. This study elucidates the complex evolution of the gas-phase photooxidation chemistry and subsequent SOA formation through a novel approach comparing molecular level information from a chemical ionization mass spectrometer (CIMS) and high m/z ion fragments from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Combination of these techniques reveals that particle-phase chemistry leading to peroxyhemiacetal formation is the likely mechanism by which these species are incorporated in the particle phase. The current findings are relevant toward understanding atmospheric SOA formation and aging from the "unresolved complex mixture," comprising, in part, long-chain alkanes.
The efficiency of photodissociation for molecules in interstellar ices
NASA Astrophysics Data System (ADS)
Kalvāns, J.
2018-05-01
Processing by interstellar photons affects the composition of the icy mantles on interstellar grains. The rate of photodissociation in solids differs from that of molecules in the gas phase. The aim of this work was to determine an average, general ratio between photodissociation coefficients for molecules in ice and gas. A 1D astrochemical model was utilized to simulate the chemical composition for a line of sight through a collapsing interstellar cloud core, whose interstellar extinction changes with time. At different extinctions, the calculated column densities of icy carbon oxides and ammonia (relative to water ice) were compared to observations. The latter were taken from literature data of background stars sampling ices in molecular clouds. The best-fit value for the solid/gas photodissociation coefficient ratio was found to be ≈0.3. In other words, gas-phase photodissociation rate coefficients have to be reduced by a factor of 0.3 before applying them to icy species. A crucial part of the model is a proper inclusion of cosmic-ray induced desorption. Observations sampling gas with total extinctions in excess of ≈22 mag were found to be uncorrelated to modelling results, possibly because of grains being covered with non-polar molecules.
Regioselectivity of pyridine deprotonation in the gas phase.
Schafman, Bonnie S; Wenthold, Paul G
2007-03-02
The regioselective deprotonation of pyridine in the gas phase has been investigated by using chemical reactivity studies. The mixture of regioisomers, trapped as carboxylates, formed in an equilibrium mixture is determined to result from 70-80% deprotonation in the 4-position, and 20-30% deprotonation at the 3-position. The ion formed by deprotonation in the 2-position is not measurably deprotonated at equilibrium because the ion is destabilized by lone-pair repulsion. From the composition of the mixture, the gas-phase acidities (DeltaH degrees acid) at the 4-, 3-, and 2-positions are determined to be 389.9 +/- 2.0, 391.2-391.5, and >391.5 kcal/mol, respectively. The relative acidities of the 4- and 3-positions are explained by using Hammett-Taft parameters, derived by using the measured gas-phase acidities of pyridine carboxylic acids. The values of sigmaF and sigmaR are -0.18 and 0.74, respectively, showing the infused nitrogen in pyridine to have a strong pi electron-withdrawing effect, but with little sigma-inductive effect.
Wetting in a Colloidal Liquid-Gas System
NASA Astrophysics Data System (ADS)
Wijting, W. K.; Besseling, N. A.; Stuart, M. A.
2003-05-01
We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.
Wetting in a colloidal liquid-gas system.
Wijting, W K; Besseling, N A M; Stuart, M A Cohen
2003-05-16
We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.
Design and Implementation of Energized Fracture Treatment in Tight Gas Sands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukul Sharma; Kyle Friehauf
2009-12-31
Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressuremore » that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.« less
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2017-12-01
Experimental studies were undertaken to determine the gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C), P(SO2) = 0.25 atm, and a range of P(O2)'s. The experimental methodology involved high-temperature equilibration using a substrate support technique in controlled gas atmospheres (CO/CO2/SO2/Ar), rapid quenching of equilibrium phases, followed by direct measurement of the chemical compositions of the phases with Electron Probe X-ray Microanalysis (EPMA). The experimental data for slag and matte were presented as a function of copper concentration in matte (matte grade). The data provided are essential for the evaluation of the effect of oxygen potential under controlled atmosphere on the matte grade, liquidus composition of slag and chemically dissolved copper in slag. The new data provide important accurate and reliable quantitative foundation for improvement of the thermodynamic databases for copper-containing systems.
Automated measurement of respiratory gas exchange by an inert gas dilution technique
NASA Technical Reports Server (NTRS)
Sawin, C. F.; Rummel, J. A.; Michel, E. L.
1974-01-01
A respiratory gas analyzer (RGA) has been developed wherein a mass spectrometer is the sole transducer required for measurement of respiratory gas exchange. The mass spectrometer maintains all signals in absolute phase relationships, precluding the need to synchronize flow and gas composition as required in other systems. The RGA system was evaluated by comparison with the Douglas bag technique. The RGA system established the feasibility of the inert gas dilution method for measuring breath-by-breath respiratory gas exchange. This breath-by-breath analytical capability permits detailed study of transient respiratory responses to exercise.
NASA Astrophysics Data System (ADS)
Žák, Karel; SkáLA, Roman; Šanda, Zdeněk.; Mizera, Jiří.
2012-06-01
Tektites, natural silica-rich glasses produced during impact events, commonly contain bubbles. The paper reviews published data on pressure and composition of a gas phase contained in the tektite bubbles and data on other volatile compounds which can be released from tektites by either high-temperature melting or by crushing or milling under vacuum. Gas extraction from tektites using high-temperature melting generally produced higher gas yield and different gas composition than the low-temperature extraction using crushing or milling under vacuum. The high-temperature extraction obviously releases volatiles not only from the bubbles, but also volatile compounds contained directly in the glass. Moreover, the gas composition can be modified by reactions between the released gases and the glass melt. Published data indicate that besides CO2 and/or CO in the bubbles, another carbon reservoir is present directly in the tektite glass. To clarify the problem of carbon content and carbon isotopic composition of the tektite glass, three samples from the Central European tektite strewn field—moldavites—were analyzed. The samples contained only 35-41 ppm C with δ13C values in the range from -28.5 to -29.9‰ VPDB. This indicates that terrestrial organic matter was a dominant carbon source during moldavite formation.
NASA Astrophysics Data System (ADS)
Qin, Tongran; Grigoriev, Roman
2017-11-01
We consider convection in a layer of binary fluid with free surface subject to a horizontal temperature gradient in the presence of noncondensable gases, which is driven by a combination of three different forces: buoyancy, thermocapillarity, and solutocapillarity. Unlike buoyancy, both thermo- and solutocapillary stresses depend sensitively on the local phase equilibrium at the liquid-gas interface. In particular, thermocapillarity associated with the interfacial temperature gradient is controlled by the vapors' concentration along the interface, and solutocapillarity associated with the interfacial concentration gradient is controlled by differential phase change of two components of the liquid, which is strongly influenced by the presence of noncondensables. Therefore, flows in both phases, phase change, and effect of noncondensables all have to be considered. Numerical simulations based on a comprehensive model taking these effects into account show qualitative agreement with recent experiments which identified a number of flow regimes at various compositions of both phases. In particular,we find that the composition of both the gas and liquid phase have a significant effect on the observed convection patterns; this dependence can be understood using a simple analytical model. This material is based upon work supported by the National Science Foundation under Grant No. 1511470.
NASA Astrophysics Data System (ADS)
Ballentine, C. J.; Zhou, Z.; Harris, N. B.
2015-12-01
The mass of hydrocarbons that have migrated through tight-gas-sandstone systems before the permeability reduces to trap the hydrocarbon gases provides critical information in the hydrocarbon potential analysis of a basin. The noble gas content (Ne, Ar, Kr, Xe) of the groundwater has a unique isotopic and elemental composition. As gas migrates through the water column, the groundwater-derived noble gases partition into the hydrocarbon phase. Determination of the noble gases in the produced hydrocarbon phase then provides a record of the type of interaction (simple phase equilibrium or open system Rayleigh fractionation). The tight-gas-sand reservoirs of the Rocky Mountains represent one of the most significant gas resources in the United States. The producing reservoirs are generally developed in low permeability (averaging <0.1mD) Upper Cretaceous fluvial to marginal marine sandstones and commonly form isolated overpressured reservoir bodies encased in even lower permeability muddy sediments. We present noble gas data from producing fields in the Greater Green River Basin, Wyoming; the the Piceance Basin, Colorado; and in the Uinta Basin, Utah. The data is consistent from all three basins. We show how in each basin the noble gases record open system gas migration through a water column at maximum basin burial. The data within an open system model indicates that the gas now in-place represents the last ~10% of hydrocarbon gas to have passed through the water column, most likely prior to permeability closedown.
NASA Astrophysics Data System (ADS)
Voisin, Didier; Legrand, Michel; Chaumerliac, Nadine
2000-03-01
In order to study scavenging processes of chemical species in mixed phase clouds, in-cloud field measurements were conducted in December 1997 at the Puy de Dôme mountain (center of France, 1465 m above sea level). Soluble species including NH+4, Cl-;, NO3-3, SO-4, HCOO-, CH3COO-, and C2O-4 present in the different phases (supercooled water droplets, rimed snowflakes, interstitial gases, and aerosols) of cold clouds have been investigated. Conducted in parallel to microphysical studies of clouds (liquid water and ice contents, and size distribution of hydrometeors), these chemical investigations allow us to examine the partitioning of strong (HNO3 and HCl) and weak (SO2, HCOOH, and CH3COOH) acids as well as ammonia between interstitial air and the condensed phases (liquid and solid water particles) in mixed clouds present during winter at midlatitude regions. From that, we discuss the processes by which these key atmospheric species are taken up from the gas phase by the condensed phases (liquid and ice) in these cold clouds. We examine several factors which are of importance in driving the final composition of cloud ice. They include the partitioning of species between gaseous and supercooled liquid phases, the amount of rimed ice collected by snowflakes, and the retention of gas during shock freezing of supercooled droplets onto ice particles. Strong acids (HCl and HNO3) as well as NH3, being sufficiently soluble in water, are mainly partitioned into supercooled water droplets. Furthermore, being subsaturated in liquid droplets, these species are well retained in rimed ice. For these species, riming is found to be the main process driving the final composition of snowflakes, direct incorporation from the gas phase during growth of snowflakes remaining insignificant because of low concentrations in the gas phase. For light carboxylic acids the riming process mainly determines the composition of the snowflakes, but an additional significant contribution by gas incorporation during the growth of snowflakes cannot be excluded. SO2 is also present at significant levels in the interstitial air and is poorly retained in ice during riming of supercooled water droplets. However, hydroxymethanesulfonate (HMSA) was likely present in supercooled liquid droplets, making it difficult to evaluate by which mechanism S(IV) (i.e., HMSA plus SO2) has been incorporated into snowflakes.
Vesicles in Apollo 15 Green Glasses: The Nature of Ancient Lunar Gases
NASA Technical Reports Server (NTRS)
Thomas-Keprta, K. L.; Clemett, S. J.; Berger, E. L.; Rahman, Z.; McKay, D. S.; Gibson, E. K.; Wentworth, S. J.
2014-01-01
Detailed studies of Apollo 15 green glass and related beads have shown they were formed in gas-rich fire fountains.. As the magmatic fluid became super-saturated in volatile gas, bubbles or vesicles formed within the magma. These exsolved gases became trapped within vesicles as the glasses were ejected from the fire-fountain and subsequently quenched. One of the keys to understanding formation processes on the ancient moon includes determining the composition of volatile species and elements, including metals, dissolved in magmatic gases. Here we report the nature of mineral phases spatially associated with vesicles in a green glass bead from Apollo sample 15411,42. The phases reflect the composition of the cooling/degassing magmatic vapors and fluids present at the time of bead formation approx, 3 Ga ago
In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Atsushi; Nonaka, Hidehiko
2009-09-15
A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicabilitymore » of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.« less
Oxygen Transport Membrane Reactors for Oxy-Fuel Combustion and Carbon Capture Purposes
NASA Astrophysics Data System (ADS)
Falkenstein-Smith, Ryan L.
This thesis investigates oxygen transport membrane reactors (OTMs) for the application of oxy-fuel combustion. This is done by evaluating the material properties and oxygen permeability of different OTM compositions subjected to a variety of operating conditions. The scope of this work consists of three components: (1) evaluate the oxygen permeation capabilities of perovskite-type materials for the application of oxy-fuel combustion; (2) determine the effects of dual-phase membrane compositions on the oxygen permeation performance and membrane characteristics; and (3) develop a new method for estimating the oxygen permeation performance of OTMs utilized for the application of oxy-fuel combustion. SrSc0.1Co0.9O3-delta (SSC) is selected as the primary perovskite-type material used in this research due to its reported high ionic and electronic conductive properties and chemical stability. SSC's oxygen ion diffusivity is investigated using a conductivity relaxation technique and thermogravimetric analysis. Material properties such as chemical structure, morphology, and ionic and electronic conductivity are examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and conductivity testing using a four-probe method, respectively. Oxygen permeation tests study the oxygen permeability OTMs under modified membrane temperatures, sweeping gas flow rates, sweeping gas compositions, membrane configurations, and membrane compositions. When utilizing a pure CO2 sweeping gas, the membrane composition was modified with the addition of Sm0.2Ce0.8O1.9-delta (SDC) at varying wt.% to improve the membranes mechanical stability. A newly developed method to evaluate the oxygen permeation performance of OTMs is also presented by fitting OTM's oxygen permeability to the methane fraction in the sweeping gas composition. The fitted data is used to estimate the overall performance and size of OTMs utilized for the application of oxy-fuel combustion. The findings from this research show that under a wide range of membrane temperatures and in a variety of atmospheres, a pure SSC OTM can achieve superior surface exchange and oxygen chemical diffusion coefficients compared to other commonly studied materials. SSC's high oxygen permeability (>1 ml.min -1.cm-2) demonstrates the material's candidacy for the application of oxy-fuel combustion. However, in the presence of rich CO 2 atmospheres, SSC shows mechanical and chemical instabilities due to the carbonate formation on the perovskite structure. The addition of SDC in the membrane composition produces a dual-phase OTM which is observed to improve the oxygen permeation flux when subjected to pure CO2 sweeping gases. When subjected to pure methane sweeping gases, dual-phase OTM compositions exhibits lower oxygen permeability compared to the single-phase SSC OTM. Despite the decline in the oxygen permeation flux, some dual-phase compositions still exhibit a high oxygen permeability, indicating their potential for the application of oxy-fuel combustion. Furthermore, a newly developed method for evaluating OTMs for the application of oxy-fuel combustion is presented in a portion of this work. This new method calculates key components such as the average oxygen permeation flux, approximate effective surface area, and the impact of additional recirculated exhaust into the incoming sweeping gas to provide a detailed understanding of OTM's application for oxy-fuel combustion. The development of this approach will aid in the evaluation of newly developed materials and create a new standard for implementing OTMs for the application of oxy-fuel combustion.
Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges
NASA Astrophysics Data System (ADS)
Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.
2015-10-01
An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.
Conductive ceramic composition and method of preparation
Smith, J.L.; Kucera, E.H.
1991-04-16
A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.
Conductive ceramic composition and method of preparation
Smith, James L.; Kucera, Eugenia H.
1991-01-01
A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.
Characterization of emissions composition for selected household products available in Korea.
Kwon, Ki-Dong; Jo, Wan-Kuen; Lim, Ho-Jin; Jeong, Woo-Sik
2007-09-05
The present study investigated the emission composition for 59 household products currently sold in Korea, using a headspace analysis. The chemical composition and concentrations of total volatile organic compounds (VOCs) broadly varied along with products, even within the same product category. Up to 1-17 organic compounds were detected in the headspace gas phase of any one of the products. The chemical composition of certain household products determined in the current study was different from that of other studies from other countries. Between 4 and 37 compounds were detected in the headspace gas phase of each product class. Several compounds were identified in more than one product class. Of the 59 household products analyzed, 58 emitted one or more of the 72 compounds at chromatographic peak areas above 10(4). There were 11 analytes which occurred with a frequency of more than 10%: limonene (44.2%), ethanol (30.5%), acetone (18.6%), alpha-pinene (18.6%), o,m,p-xylenes (18.6%), decane (17.0%), toluene (17.0%), beta-myrcene (11.9%), ammonia (10.2%), ethylbenzene (10.2%), and hexane (10.2%).
Schicks, J M; Ziemann, M A; Lu, H; Ripmeester, J A
2010-12-01
Natural gas hydrates usually are found in the form of structure I, encasing predominantly methane in the hydrate lattices as guest molecules, sometimes also minor amount of higher hydrocarbons, CO2 or H2S. Raman spectroscopy is an approved tool to determine the composition of the hydrate phase. Thus, in this study Raman spectroscopic analyses have been applied to hydrate samples obtained from Integrated Ocean Drilling Program (IODP) Expedition 311 in two different approaches: studying the samples randomly taken from the hydrate core, and--as a new application--mapping small areas on the surface of clear hydrate crystals. The results obtained imply that the gas composition of hydrate, in terms of relative concentrations of CH4 and H2S, is not homogeneous over a core or even within a crystal. The mapping method yielded results with very high lateral resolution, indicating the coexistence of different phases with the same structure but different compositions within a hydrate crystal. Copyright © 2010 Elsevier B.V. All rights reserved.
Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite
2014-11-04
Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.
Chemical Evolution of a Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Semenov, Dmitry A.
2011-12-01
In this paper we review recent progress in our understanding of the chemical evolution of protoplanetary disks. Current observational constraints and theoretical modeling on the chemical composition of gas and dust in these systems are presented. Strong variations of temperature, density, high-energy radiation intensities in these disks, both radially and vertically, result in a peculiar disk chemical structure, where a variety of processes are active. In hot, dilute and heavily irradiated atmosphere only the most photostable simple radicals and atoms and atomic ions exist, formed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich ion-molecule and radical-radical chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex polyatomic (organic) species are synthesized. Dynamical processes affect disk chemical composition by enriching it in abundances of complex species produced via slow surface processes, which will become detectable with ALMA.
Optimization of the sintering atmosphere for high-density hydroxyapatite–carbon nanotube composites
White, Ashley A.; Kinloch, Ian A.; Windle, Alan H.; Best, Serena M.
2010-01-01
Hydroxyapatite–carbon nanotube (HA–CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the ‘water–gas reaction’) would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water–gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density. PMID:20573629
High-temperature experimental analogs of primitive meteoritic metal-sulfide-oxide assemblages
NASA Astrophysics Data System (ADS)
Schrader, Devin L.; Lauretta, Dante S.
2010-03-01
We studied the oxidation-sulfidation behavior of an Fe-based alloy containing 4.75 wt.% Ni, 0.99 wt.% Co, 0.89 wt.% Cr, and 0.66 wt.% P in H 2-H 2O-CO-CO 2-H 2S gas mixtures at 1000 °C. The samples were cooled at rates of ˜3000 °C/h, comparable to estimates of the conditions after a chondrule-formation event in the early Solar System. Gas compositions were monitored in real time by a quadrupole mass spectrometer residual gas analyzer. Linear rate constants associated with gas-phase adsorption were determined. Reaction products were analyzed by optical microscopy, wavelength-dispersive-spectroscopy X-ray elemental mapping, and electron probe microanalysis. Based on analysis of the Fe-Ni-S ternary phase diagram and the reaction products, the primary corrosion product is a liquid of composition 66.6 wt.% Fe, 3.5 wt.% Ni, 29.9 wt.% S, and minor amounts of P, Cr, and Co. Chromite (FeCr 2O 4) inclusions formed by oxidation and are present in the metal foil and at the outer boundary between the sulfide and experimental atmosphere. During cooling the liquid initially crystallizes into taenite (average composition ˜15 wt.% Ni), monosulfide solid solution [mss, (Fe,Ni,Co,Cr) 1-xS], and Fe-phosphates. Upon further cooling, kamacite exsolves from this metal, enriching the taenite in Ni. The remnant metal core is enriched in P and Co and depleted in Cr at the reaction interface, relative to the starting composition. The unreacted metal core composition remains unchanged, suggesting the reactions did not reach equilibrium. We present a detailed model of reaction mechanisms based on the observed kinetics and sample morphologies, and discuss meteoritic analogs in the CR chondrite MacAlpine Hills 87320.
An efficient approach for treating composition-dependent diffusion within organic particles
O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.; ...
2017-09-07
Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less
An efficient approach for treating composition-dependent diffusion within organic particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.
Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less
Etching and oxidation of InAs in planar inductively coupled plasma
NASA Astrophysics Data System (ADS)
Dultsev, F. N.; Kesler, V. G.
2009-10-01
The surface of InAs (1 1 1)A was investigated under plasmachemical etching in the gas mixture CH 4/H 2/Ar. Etching was performed using the RF (13.56 MHz) and ICP plasma with the power 30-150 and 50-300 W, respectively; gas pressure in the reactor was 3-10 mTorr. It was demonstrated that the composition of the subsurface layer less than 5 nm thick changes during plasmachemical etching. A method of deep etching of InAs involving ICP plasma and hydrocarbon based chemistry providing the conservation of the surface relief is proposed. Optimal conditions and the composition of the gas phase for plasmachemical etching ensuring acceptable etch rates were selected.
Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method
Sinha, Dipen N.
2016-01-12
An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.
Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method
Sinha, Dipen N
2014-02-04
An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.
Rosenberry, D.O.; Glaser, P.H.; Siegel, D.I.
2006-01-01
Recent research indicates that accumulation and release of biogenic gas from northern peatlands may substantially affect future climate. Sudden release of free-phase gas bubbles into the atmosphere may preclude the conversion of methane to carbon dioxide in the uppermost oxic layer of the peat, resulting in greater contribution of methane to the atmosphere than is currently estimated. The hydrology of these peatlands also affects and is affected by this process, especially when gas is released suddenly and episodically. Indirect hydrological evidence indicates that ebullitive gas releases are relatively frequent in some peatlands and time-averaged rates may be significantly greater than diffusive releases. Estimates of free-phase gas contained in peat have ranged from 0 to nearly 20% of the peat volume. Abrupt changes in the volume of gas may alter hydraulic gradients and movement of water and solutes in peat, which in turn could alter composition and fluxes of the gas. Peat surfaces also move vertically and horizontally in response to accumulation and release of free-phase gas. Future research should address the distribution, temporal variability, and relative significance of ebullition in peatlands and the consequent hydrological responses to these gas-emission events. Copyright ?? 2006 John Wiley & Sons, Ltd.
Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H
2013-07-21
Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.
Propagation of a Chemical Reaction through Heterogeneous Lithium- Polytetrafluoroethylene Mixtures
1975-12-11
Condensed Phases ........... ............... 9 1.2.1 Lithium-Gas Surface Reactions. .......... 10 1.2.2 Composite Solid Propellant Combustion. . .. 13...f:- the o:cu:=ence _A a surface reaction was developed, but no analyti7al reaction zate model was presented- 1.2.2 Composite S’-lid Propellant...Combustion Composite solid propellants are plastic-like materials consisting of small oxidizer particles embedded in a fuel matrix. Ammonium perchlorate is
The effect of hydrate promoters on gas uptake.
Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen
2017-08-16
Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.
Kinetics of binary nucleation of vapors in size and composition space.
Fisenko, Sergey P; Wilemski, Gerald
2004-11-01
We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent variables: the total number of molecules g and the molar composition x of the cluster. The resulting kinetic equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coefficients in cluster size and composition space are obtained. For characterization of binary nucleation in gases three criteria are established. These criteria establish the relative importance of the rate processes in cluster size and composition space for different gas phase conditions and types of liquid mixtures. The equilibrium distribution function of the clusters is determined in terms of the variables g and x. We obtain an approximate analytical solution for the steady-state binary nucleation rate that has the correct limit in the transition to unary nucleation. To further illustrate our description, the nonequilibrium steady-state cluster concentrations are found by numerically solving the reformulated kinetic equation. For the reformulated transient problem, the relaxation or induction time for binary nucleation was calculated using Galerkin's method. This relaxation time is affected by processes in both size and composition space, but the contributions from each process can be separated only approximately.
NASA Astrophysics Data System (ADS)
Sarrafzadeh, M.; Hastie, D. R.
2013-12-01
Biogenic volatile organic compounds (VOC) are emitted in large quantities into the atmosphere. These VOC, which includes β-pinene, can react to produce secondary organic aerosols (SOA), which contribute to a substantial fraction of ambient organic aerosols and are known to adversely affect visibility, climate and health. Despite this, the current knowledge regarding the SOA composition, their physical properties and the chemical aging processes they undergo in the atmosphere is limited. In this study, chemical aging of SOA generated from the photooxidation of β-pinene was investigated in the York University smog chamber. The formation and aging of both gas and particle phase products were analyzed using an atmospheric pressure chemical ionization triple quadrupole mass spectrometer. The density of secondary organic matter was also simultaneously measured over the course of the aging experiments, allowing us to improve our understanding in changes in particle composition that may occur. In addition, particle phase and shape was investigated for generated particles from β-pinene oxidation by scanning electron microscope (SEM). Results of this work, including particle density and morphology will be presented as well as comparisons of gas and particle phase products time profiles during aging.
NASA Astrophysics Data System (ADS)
Chi, Wu-Cheng
2016-04-01
A bottom-simulating reflector (BSR), representing the base of the gas hydrate stability zone, can be used to estimate geothermal gradients under seafloor. However, to derive temperature estimates at the BSR, the correct hydrate composition is needed to calculate the phase boundary. Here we applied the method by Minshull and Keddie to constrain the hydrate composition and the pore fluid salinity. We used a 3D seismic dataset offshore SW Taiwan to test the method. Different from previous studies, we have considered the effects of 3D topographic effects using finite element modelling and also depth-dependent thermal conductivity. Using a pore water salinity of 2% at the BSR depth as found from the nearby core samples, we successfully used 99% methane and 1% ethane gas hydrate phase boundary to derive a sub-bottom depth vs. temperature plot which is consistent with the seafloor temperature from in-situ measurements. The results are also consistent with geochemical analyses of the pore fluids. The derived regional geothermal gradient is 40.1oC/km, which is similar to 40oC/km used in the 3D finite element modelling used in this study. This study is among the first documented successful use of Minshull and Keddie's method to constrain seafloor gas hydrate composition.
NASA Astrophysics Data System (ADS)
Brown, Steven S.; Thornton, Joel A.; Keene, William C.; Pszenny, Alexander A. P.; Sive, Barkley C.; Dubé, William P.; Wagner, Nicholas L.; Young, Cora J.; Riedel, Theran P.; Roberts, James M.; VandenBoer, Trevor C.; Bahreini, Roya; Öztürk, Fatma; Middlebrook, Ann M.; Kim, Saewung; Hübler, Gerhard; Wolfe, Daniel E.
2013-07-01
The Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) field experiment took place during late winter, 2011, at a site 33 km north of Denver, Colorado. The study included fixed-height measurements of aerosols, soluble trace gases, and volatile organic compounds near surface level, as well as vertically resolved measurements of nitrogen oxides, aerosol composition, soluble gas-phase acids, and halogen species from 3 to 270 m above ground level. There were 1928 individual profiles during the three-week campaign to characterize trace gas and aerosol distributions in the lower levels of the boundary layer. Nitrate and ammonium dominated the ionic composition of aerosols and originated primarily from local or regional sources. Sulfate and organic matter were also significant and were associated primarily with longer-range transport to the region. Aerosol chloride was associated primarily with supermicron size fractions and was always present in excess of gas-phase chlorine compounds. The nighttime radical reservoirs, nitryl chloride, ClNO2, and nitrous acid, HONO, were both consistently present in nighttime urban air. Nitryl chloride was especially pronounced in plumes from large point sources sampled aloft at night. Nitrous acid was typically most concentrated near the ground surface and was the dominant contributor (80%) to diurnally averaged primary OH radical production in near-surface air. Large observed mixing ratios of light alkanes, both in near-surface air and aloft, were attributable to local emissions from oil and gas activities.
Kotian, Ravindra; Rao, P. Prasad; Madhyastha, Prashanthi
2017-01-01
Objective: The aim is to study the effect of plasma working gas on composition, crystallinity, and microstructure of hydroxyapatite (HA) coated on Ti and Ti-6Al-4V metal substrates. Materials and Methods: Ti and Ti-6Al-4V metal substrates were coated with HA by plasma spray using four plasma gas atmospheres of argon, argon/hydrogen, nitrogen, and nitrogen/hydrogen. The degree of crystallinity, the phases present, and microstructure of HA coating were characterized using X-ray diffraction and scanning electron microscopy. Results: Variation in crystallinity and the microstructure of HA coating on plasma gas atmosphere was observed. Micro-cracks due to thermal stresses and shift in the 2θ angle of HA compared to feedstock was seen. Conclusion: Plasma gas atmosphere has a significant influence on composition, crystallinity, and micro-cracks of HA-coated dental implants. PMID:29279668
NASA Technical Reports Server (NTRS)
Selle, Laurent C.; Bellan, Josette
2006-01-01
A model of multicomponent-liquid (MC-liquid) drop evaporation in a three-dimensional mixing layer is here exercised at larger Reynolds numbers than in a previous study, and transitional states are obtained. The gas phase is followed in an Eulerian frame and the multitude of drops is described in a Lagrangian frame. Complete coupling between phases is included with source terms in the gas conservation equations accounting for the drop/flow interaction in terms of drop drag, drop heating and species evaporation. The liquid composition, initially specified as a single-Gamma (SG) probability distribution function (PDF) depending on the molar mass is allowed to evolve into a linear combination of two SGPDFs, called the double-Gamma PDF (DGPDF). The compositions of liquid and vapor emanating from the drops are calculated through four moments of the DGPDFs, which are drop-specific and location-specific, respectively. The mixing layer is initially excited to promote the double pairing of its four initial spanwise vortices into an ultimate vortex in which small scales proliferate. Simulations are performed for four liquids of different compositions and the effect of the initial mass loading and initial free-stream gas temperature are explored. For reference, Simulations are also performed for gaseous multicomponent mixing layers for which the effect of Reynolds number is investigated. The results encompass examination of the global layer characteristics, flow visualizations and homogeneous-plane statistics at transition. Comparisons are performed with previous pre-transitional MC-liquid simulations and with transitional single-component (SC) liquid studies. It is found that MCC flows at transition, the classical energy cascade is of similar strength, but that the smallest scales contain orders of magnitude less energy than SC flows, which is confirmed by the larger viscous dissipation in the former case. Contrasting to pre-transitional MC flows, the vorticity and drop organization depend on the initial gas temperature, this being due to the drop/turbulence coupling. The vapor-composition mean molar mass and standard deviation distributions strongly correlate with the initial liquid-composition PDF; such a correlation only exists for the magnitude of the mean but not for that of the standard deviation. Unlike in pre-transitional situations, regions of large composition standard deviation no longer necessarily coincide with regions of large mean molar mass. The kinetic energy, rotational and composition characteristics, and dissipation are liquid specific and the variation among liquids is amplified with increasing free-stream gas temperature. Eulerian and Lagrangian statistics of gas-phase quantities show that the different. Observation framework may affect the perception of the flow characteristics. The gas composition, of which the first four moments are calculated, is shown to be close to, but distinct from a SGPDF. The PDF of the scalar dissipation rate is calculated for drop-laden layers and is shown to depart more significantly from the typically assumed Gaussian in gaseous flows than experimentally measured gaseous scalar dissipation rates, this being attributed to the increased heterogeneity due to drop/flow interactions.
CLEPS 1.0: A new protocol for cloud aqueous phase oxidation of VOC mechanisms
NASA Astrophysics Data System (ADS)
Mouchel-Vallon, Camille; Deguillaume, Laurent; Monod, Anne; Perroux, Hélène; Rose, Clémence; Ghigo, Giovanni; Long, Yoann; Leriche, Maud; Aumont, Bernard; Patryl, Luc; Armand, Patrick; Chaumerliac, Nadine
2017-03-01
A new detailed aqueous phase mechanism named the Cloud Explicit Physico-chemical Scheme (CLEPS 1.0) is proposed to describe the oxidation of water soluble organic compounds resulting from isoprene oxidation. It is based on structure activity relationships (SARs) which provide global rate constants together with branching ratios for HOṡ abstraction and addition on atmospheric organic compounds. The GROMHE SAR allows the evaluation of Henry's law constants for undocumented organic compounds. This new aqueous phase mechanism is coupled with the MCM v3.3.1 gas phase mechanism through a mass transfer scheme between gas phase and aqueous phase. The resulting multiphase mechanism has then been implemented in a model based on the Dynamically Simple Model for Atmospheric Chemical Complexity (DSMACC) using the Kinetic PreProcessor (KPP) that can serve to analyze data from cloud chamber experiments and field campaigns. The simulation of permanent cloud under low-NOx conditions describes the formation of oxidized monoacids and diacids in the aqueous phase as well as a significant influence on the gas phase chemistry and composition and shows that the aqueous phase reactivity leads to an efficient fragmentation and functionalization of organic compounds.
Method of making a continuous ceramic fiber composite hot gas filter
Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.
1999-01-01
A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.
Madsen, René B; Christensen, Per S; Houlberg, Kasper; Lappa, Elpiniki; Mørup, Anders J; Klemmer, Maika; Olsen, Eva M; Jensen, Mads M; Becker, Jacob; Iversen, Bo B; Glasius, Marianne
2015-09-01
This work provides a comprehensive characterization of the gas phase from hydrothermal liquefaction of Dried Distillers Grains with Solubles (DDGS) collected during a 24-h continuous experiment. The gas consisted mainly of CO2, CO, H2, CH4 and C2H6 accounting for 96 v/v% while further analysis by gas chromatography coupled to mass spectrometry (GC-MS) showed additionally 62 compounds of which 54 were tentatively identified. These products included methanethiol, dimethyl sulfide, various olefins and several aromatic compounds. The composition provided clear indication of the steady state of the system. Apart from CO2, olefins were the most abundant compound class and could provide a source of revenue. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Straub, D.
2016-12-01
The chemical composition of radiation fog has been studied at a rural site in central Pennsylvania over an eight year period extending through 2015. Bulk fog samples were collected with an automated Caltech Heated Rod Cloud Collector (CHRCC) and analyzed for pH, inorganic ions, organic acids, total organic carbon (TOC), and total nitrogen (TN). Over the duration of the project, 146 samples were collected and used to document chemical composition, evaluate changes over time, and to investigate partitioning between the gas and aqueous phases. Ammonium, sulfate, calcium, and nitrate were the most abundant inorganic ions while acetate and formate were the dominant organic acids. Organic acids contributed about 15% to TOC. Inorganic nitrogen accounted for the majority of TN, with only 18% of TN attributed to organic nitrogen. Overall, organic matter contributed 52% to the total mass loading of the fog samples, a value that is higher than reported for other radiation fog studies. Statistically significant decreasing trends were observed for sulfate, ammonium, chloride, nitrate, and pH. These trends coincide with reductions in emissions from fossil fuel combustion that have been documented over this time period. Seasonal trends were also detected for nitrate, ammonium, potassium, phosphate, acetate and formate which appear to be related to the agricultural growing season. Based on simultaneous measurements of gas phase ammonia and ammonium in the fog samples, significant deviations from equilibrium were found. In low pH samples, ammonium concentrations were much lower than equilibrium predicts, while the opposite occurred in high pH samples. Modeling suggested that mass transfer limitations contributed to the departure from equilibrium. Similarly, predictions of bicarbonate concentrations based on equilibrium with gas phase carbon dioxide appears to underestimate the actual amount of bicarbonate present in samples collected during this study.
NASA Technical Reports Server (NTRS)
Jamieson, C. S.; Guo, Y.; Gu, X.; Zhang, F.; Bennett, C. J.; Kaiser, R. I.
2006-01-01
A detailed knowledge of the formation of carbon-bearing molecules in interstellar ices and in the gas phase of the interstellar medium is of paramount interest to understand the astrochemical evolution of extraterrestrial environments (1). This research also holds strong implications to comprehend the chemical processing of Solar System environments such as icy planets and their moons together with the atmospheres of planets and their satellites (2). Since the present composition of each interstellar and Solar System environment reflects the matter from which it was formed and the processes which have changed the chemical nature since the origin (solar wind, planetary magnetospheres, cosmic ray exposure, photolysis, chemical reactions), a detailed investigation of the physicochemical mechanisms altering the pristine environment is of paramount importance to grasp the contemporary composition. Once these underlying processes have been unraveled, we can identify those molecules, which belonged to the nascent setting, distinguish molecular species synthesized in a later stage, and predict the imminent chemical evolution of, for instance, molecular clouds. Laboratory experiments under controlled physicochemical conditions (temperature, pressure, chemical composition, high energy components) present ideal tools for simulating the chemical evolution of interstellar and Solar System environments. Here, laboratory experiments can predict where and how (reaction mechanisms; chemicals necessary) in extraterrestrial environments and in the interstellar medium complex, carbon bearing molecules can be formed on interstellar grains and in the gas phase. This paper overviews the experimental setups utilized in our laboratory to mimic the chemical processing of gas phase and solid state (ices) environments. These are a crossed molecular beams machine (3) and a surface scattering setup (4). We also present typical results of each setup (formation of amino acids, aldehydes, epoxides; synthesis of hydrogen terminated carbon chains as precursors to complex PAHs and to carbonaceous dust grains in general; nitriles as precursor to amino acids).
Operando characterization of catalysts through use of a portable microreactor
Zhao, Shen; Li, Yuanyuan; Stavitski, Eli; ...
2015-10-09
To provide new understandings of the mechanisms of catalytic reactions, improved methods are needed than can monitor changes in the electronic, structural and chemical properties of catalysts, doing so in the operando conditions in which catalysts work. We describe here a microreactor-based approach that integrates the capabilities of advanced x-ray, electron, optical and gas-phase compositional analysis techniques in operando conditions. For several exemplary catalytic systems, we demonstrate how this approach enables characterization of three major factors contributing to structure-property correlations evidenced in heterogeneously catalyzed reactions, namely: the atomic structure and elemental compositions of nanocatalysts; the physiochemical properties of the supportmore » and catalyst-support interfaces; and the gas and surface-phase chemistry occurring under operando conditions. We highlight the generality of the approach as well as outline opportunities for future developments.« less
NASA Astrophysics Data System (ADS)
Siva Prasad, M.; Ashfaq, M.; Kishore Babu, N.; Sreekanth, A.; Sivaprasad, K.; Muthupandi, V.
2017-05-01
In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.
NASA Astrophysics Data System (ADS)
Aumont, B.; Camredon, M.; Isaacman-VanWertz, G. A.; Karam, C.; Valorso, R.; Madronich, S.; Kroll, J. H.
2016-12-01
Gas phase oxidation of VOC is a gradual process leading to the formation of multifunctional organic compounds, i.e., typically species with higher oxidation state, high water solubility and low volatility. These species contribute to the formation of secondary organic aerosols (SOA) viamultiphase processes involving a myriad of organic species that evolve through thousands of reactions and gas/particle mass exchanges. Explicit chemical mechanisms reflect the understanding of these multigenerational oxidation steps. These mechanisms rely directly on elementary reactions to describe the chemical evolution and track the identity of organic carbon through various phases down to ultimate oxidation products. The development, assessment and improvement of such explicit schemes is a key issue, as major uncertainties remain on the chemical pathways involved during atmospheric oxidation of organic matter. An array of mass spectrometric techniques (CIMS, PTRMS, AMS) was recently used to track the composition of organic species during α-pinene oxidation in the MIT environmental chamber, providing an experimental database to evaluate and improve explicit mechanisms. In this study, the GECKO-A tool (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to generate fully explicit oxidation schemes for α-pinene multiphase oxidation simulating the MIT experiment. The ability of the GECKO-A chemical scheme to explain the organic molecular composition in the gas and the condensed phases is explored. First results of this model/observation comparison at the molecular level will be presented.
Fast chemical and isotopic exchange of nitrogen during reaction with hot molybdenum
NASA Astrophysics Data System (ADS)
Yokochi, Reika; Marty, Bernard
2006-07-01
Molybdenum crucibles are commonly used to extract nitrogen from geological samples by induction heating. Because nitrogen is known to be reactive with certain metals (e.g., Ti and Fe), we have tested the reactivity of gaseous nitrogen with a Mo crucible held at 1800°C. The consumption of nitrogen, determined by monitoring the N2/40Ar ratio of the gas phase, varied between 25 and 100%, depending on the reaction duration. Nitrogen of the reacted gas was found to be systematically enriched in 15N relative to 14N by 10‰ compared to the initial isotopic composition, without any correlation with nitrogen consumption. We propose that a rapid isotopic exchange occurs between nitrogen originally trapped in the crucible and nitrogen from the gas phase, which modifies the isotopic composition of the reacted gas. This process can significantly bias the isotopic determination of nitrogen in rocks and minerals when a Mo furnace is used for gas extraction. Meanwhile, the rate of N-Mo chemical bonding may be controlled by the formation of nitride (rather than solid solution), a process slower than the isotopic exchange. The use of a Mo furnace for the extraction of trace nitrogen from rocks and minerals should therefore be avoided.
NASA Astrophysics Data System (ADS)
Khan, M. H.; Holzinger, R.
2013-12-01
A Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS) with different sampling systems (multi-stage denuder for gas phase and impact on a collector for aerosol phase) has been deployed in summer 2013 during the Southern Oxidant and Aerosol Study (SOAS) at the SEARCH ground site, Centreville, Alabama for in-situ gas phase and aerosol measurements on an hourly time resolution. A bunch of DB-1 column (0.53 mm x 5.0 μm) is used in the denuder for capturing the bulk of SVOCs and a collection-thermal-desorption (CTD) cell is used for collecting aerosol particles. Several hundreds semivolatile organic compounds (SVOCs) in gas phase and aerosol phases have been detected. The high mass resolution capabilities of ~5000, low detection limit (<0.05 pptv for gas species, <0.01 ng m-3 for aerosol species) and good physical and chemical characterization of SVOCs with the TD-PTR-MS allows constraining both, the quantity and the chemical composition. The SEARCH site was highly impacted by Biogenic Volatile Organic Compounds (BVOCs) and occasionally influenced by anthropogenic pollution. BVOCs and their oxidation products are capable of partitioning into the particle phase, so their simultaneous quantification in both phases has been used to determine the gas/particle-phase partitioning. Our results show the expected diurnal variation based on the changes of air temperature for many species. The results from this study give valuable insights into sources and processing of Secondary Organic Aerosols (SOAs) that can be used to improve parameterization algorithms in regional and global climate models.
Carbon Fiber Foam Composites and Methods for Making the Same
NASA Technical Reports Server (NTRS)
Atwater, Mark Andrew (Inventor); Leseman, Zayd Chad (Inventor); Phillips, Jonathan (Inventor)
2014-01-01
Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.
Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica
NASA Astrophysics Data System (ADS)
Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip
2014-08-01
Several studies at Erebus volcano have recorded pulsatory behavior in many of the observable properties of its active lava lake. A strong correlation between the variations in surface speed of the lake and the composition of gas emitted has previously been noted. While previous studies have shown that the SO2 flux and the surface elevation exhibit pulsatory behavior with a similar period to that of the surface speed and gas composition, suggesting they are linked, a lack of overlap between the different measurements has prevented direct comparisons from being made. Using high time-resolution measurements of surface elevation, surface speed, gas composition, and SO2 flux, we demonstrate for the first time an unambiguous link between the cyclic behavior in each of these properties. We also show that the variation in gas composition may be explained by a subtle change in oxygen fugacity. The cycles are found to be in-phase with each other, with a small but consistent lag of 1-3 min between the peaks in surface elevation and surface speed. Explosive events are found to have no observable effect on the pulsatory behavior beyond the ˜5 min period required for lake refill. The close correspondences between the varying lake surface motion, gas flux and composition, and modeled oxygen fugacity suggest strong links between magma degassing, redox change, and the fluid dynamics of the shallow magmatic system.
International comparison CCQM-K119 liquefied petroleum gas
NASA Astrophysics Data System (ADS)
Brewer, P. J.; Downey, M. L.; Atkins, E.; Brown, R. J. C.; Brown, A. S.; Zalewska, E. T.; van der Veen, A. M. H.; Smeulders, D. E.; McCallum, J. B.; Satumba, R. T.; Kim, Y. D.; Kang, N.; Bae, H. K.; Woo, J. C.; Konopelko, L. A.; Popova, T. A.; Meshkov, A. V.; Efremova, O. V.; Kustikov, Y.
2018-01-01
Liquefied hydrocarbon mixtures with traceable composition are required in order to underpin measurements of the composition and other physical properties of LPG (liquefied petroleum gas), thus meeting the needs of an increasingly large industrial market. This comparison aims to assess the analytical capabilities of laboratories for measuring the composition of a Liquid Petroleum Gas (LPG) mixture when sampled in the liquid phase from a Constant Pressure Cylinder. Mixtures contained ethane, propane, propene, i-butane, n-butane, but-1-ene and i-pentane with nominal amount fractions of 2, 71, 9, 4, 10, 3 and 1 cmol mol-1 respectively. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
NASA Technical Reports Server (NTRS)
Webster, Christopher R.; Sander, Stanley P.; Beer, Reinhard; May, Randy D.; Knollenberg, Robert G.
1990-01-01
A new instrument, the Probe Infrared Laser Spectrometer (PIRLS), is described for in situ sensing of the gas composition and particle size distribution of Titan's atmosphere on the NASA/ESA Cassini mission. For gas composition measurements, several narrow-band (0.0001/cm) tunable lead-salt diode lasers operating near 80 K at selected mid-IR wavelengths are directed over a path length defined by a small reflector extending over the edge of the probe spacecraft platform; volume mixing ratios of 10 to the -9th should be measurable for several species of interest. A cloud-particle-size spectrometer using a diode laser source at 780 nm shares the optical path and deployed reflector; a combination of imaging and light scattering techniques is used to determine sizes of haze and cloud particles and their number density as a function of altitude.
Combustion of Micro- and Nanothermites under Elevating Pressure
NASA Astrophysics Data System (ADS)
Monogarov, K.; Pivkina, Alla; Muravyev, N.; Meerov, D.; Dilhan, D.
Non-equilibrium process of combustion-wave propagation of thermite compositions (Mg/Fe2O3) inside the sealed steel tube have been investigated to study the burning rate at elevating pressure. Under confinement the hot gas-phase products, formed during thermite combustion result in considerable overpressure inside the tube that reverses the gas flow and leads to pressure-driven preheating effect of the burned-gas permeation. Convective origin of this preheating effect is discussed. The pressure-time dependency is obtained experimentally. The composition was pressed inside the steel tube in pellets; the size of each part was measured to obtain burning rate - pressure dependency. Both micro- and nanosized components were used to prepare thermite compositions under study. The significant difference in burning parameters of micron- and nanosized thermites is observed and analyzed. Based on obtained results, the combustion mechanism of thermites with the micro- and nanosized components is discussed.
Equilibrium gas-oil ratio measurements using a microfluidic technique.
Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid
2013-07-07
A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.
Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using SAFT-VR.
Zhao, Binwu; Lindeboom, Tom; Benner, Steven; Jackson, George; Galindo, Amparo; Hall, Carol K
2017-10-24
The statistical associating fluid theory for potentials of variable range (SAFT-VR) is used to predict the fluid phase behavior of elastin-like polypeptide (ELP) sequences in aqueous solution with special focus on the loci of lower critical solution temperatures (LCSTs). A SAFT-VR model for these solutions is developed following a coarse-graining approach combining information from atomistic simulations and from previous SAFT models for previously reported relevant systems. Constant-pressure temperature-composition phase diagrams are determined for solutions of (VPGVG) n sequences + water with n = 1 to 300. The SAFT-VR equation of state lends itself to the straightforward calculation of phase boundaries so that complete fluid-phase equilibria can be calculated efficiently. A broad range of thermodynamic conditions of temperature and pressure are considered, and regions of vapor-liquid and liquid-liquid coexistence, including LCSTs, are found. The calculated phase boundaries at low concentrations match those measured experimentally. The temperature-composition phase diagrams of the aqueous ELP solutions at low pressure (0.1 MPa) are similar to those of types V and VI phase behavior in the classification of Scott and van Konynenburg. An analysis of the high-pressure phase behavior confirms, however, that a closed-loop liquid-liquid immiscibility region, separate from the gas-liquid envelope, is present for aqueous solutions of (VPGVG) 30 ; such a phase diagram is typical of type VI phase behavior. ELPs with shorter lengths exhibit both liquid-liquid and gas-liquid regions, both of which become less extensive as the chain length of the ELP is decreased. The strength of the hydrogen-bonding interaction is also found to affect the phase diagram of the (VPGVG) 30 system in that the liquid-liquid and gas-liquid regions expand as the hydrogen-bonding strength is decreased and shrink as it is increased. The LCSTs of the mixtures are seen to decrease as the ELP chain length is increased.
NASA Astrophysics Data System (ADS)
Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Thornton, Joel A.; Turpin, Barbara J.; Surratt, Jason D.
2017-03-01
Ozonolysis of alkenes results in the formation of primary ozonides (POZs), which can subsequently decompose into carbonyl compounds and stabilized Criegee intermediates (sCIs). The sCIs generated from isoprene ozonolysis include the simplest congener, formaldehyde oxide (CH2OO), and isomers of C4-sCI. Although the bimolecular reaction with H2O is expected to be the main fate of sCIs, it was reported that sCIs can also react with carboxylic acids and/or organic hydroperoxides leading to gas-phase oligomeric compounds. While the impact of the gas-phase composition (H2O, sCI scavenger) on the formation of such products was recently studied, their fate remains unclear. In the present work, formation of oligomeric hydroperoxides from isoprene ozonolysis, proposed as reaction products composed of the sCI as a chain unit and formed from the insertion of sCI into a hydroperoxide or a carboxylic acid, was systematically examined in the presence of aerosol with varying compositions. The effect of hydroxyl (OH) radicals on the gas- and particle-phase compositions was investigated using diethyl ether as an OH radical scavenger. Thirty-four oligomeric compounds resulting from the insertion of sCIs into organic hydroperoxides or carboxylic acids were identified using iodide chemical ionization high-resolution mass spectrometry. Large reactive uptake onto acidified sulfate aerosol was observed for most of the characterized gaseous oligomeric species, whereas the presence of organic coatings and the lack of aerosol water significantly reduced or halted the reactive uptake of these species. These results indicate that highly oxidized molecules, such as hydroperoxides, could undergo multiphase reactions, which are significantly influenced by the chemical composition of seed aerosol. Furthermore, in addition to functionalization and accretion, decomposition and re-volatilization should be considered in SOA formation.
NASA Astrophysics Data System (ADS)
Fetherolf, B. L.; Litzinger, T. A.; Lu, Y.-C.; Kuo, Kenneth K.
1993-11-01
The RDX-based composite propellants XM39 and M43 are similar in composition but exhibit significant differences in burning behavior. Experimental studies of the physical and chemical processes governing the CO2 laser-induced pyrolysis and deflagration of these two materials were conducted to characterize these differences in behavior and to gain some insight into the mechanisms responsible for the observed differences. Tests were conducted at one, three, and five atmospheres and laser heat fluxes of 100 - 1000 W/sq cm. Quantitative gaseous species profiles were measured with a microprobe/mass spectrometer system and both gas-phase temperature profiles and surface temperatures were measured with fine-wire thermocouples. Both materials exhibited similar gas-phase reaction chemistry to that of RDX with a primary nonluminous flame zone due to the reaction of CH2O and NO2 and a final luminous flame zone where HCN, NO, and a smaller amount of N2O were consumed to form the final products. However, the gas-phase zonal structure was significantly stretched out in comparison to the structure for pure RDX. The luminous flame was only observed above three atmospheres for M43 and above five atmospheres for XM39. Species and temperature measurements at the surfaces of the pyrolyzing propellants appeared to indicate more reaction in the condensed phase (i.e., melt layer) for M43 than for XM39. Subsurface gas species were measured by placing a probe within a hole drilled partway through a sample of XM39. The results indicated substantially less H2O, CH2O, HCN, and NO2 than were measured directly above the surface. This result and the observation of a temperature rise of about 100 degrees within the first 150 microns above the surface for both XM39 and M43 support the possible existence of a thin gas-phase reaction zone directly above the propellant surface.
Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A
2013-10-15
Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.
Modeling biogenic gas bubbles formation and migration in coarse sand
NASA Astrophysics Data System (ADS)
Ye, S.
2011-12-01
Shujun Ye Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China; sjye@nju.edu.cn Brent E. Sleep Department of Civil Engineering, University of Toronto, Toronto, ON, M5S 1A4 CANADA; sleep@ecf.utoronto.ca Methane gas generation in porous media was investigated in an anaerobic two-dimensional sand-filled cell. Inoculation of the lower portion of the cell with a methanogenic culture and addition of methanol to the bottom of the cell led to biomass growth and formation of a gas phase. The formation, migration, distribution and saturation of gases in the cell were visualized by the charge-coupled device (CCD) camera. Gas generated at the bottom of the cell in the biologically active zone moved upwards in discrete fingers, so that gas phase saturations (gas-filled fraction of void space) in the biologically active zone at the bottom of the cell did not exceed 40-50%, while gas accumulation at the top of the cell produced gas phase saturations as high as 80%. Macroscopic invasion percolation (MIP) at near pore scale[Glass, et al., 2001; Kueper and McWhorter, 1992]was used to model gas bubbles growth in porous media. The nonwetting phase migration pathway can be yielded directly by MIP. MIP was adopted to simulate the expansion, fragmentation, and mobilization of gas clusters in the cell. The production of gas, and gas phash saturations were simulated by a continuum model - compositional simulator (COMPSIM) [Sleep and Sykes, 1993]. So a combination of a continuum model and a MIP model was used to simulate the formation, fragmentation and migration of biogenic gas bubbles. Key words: biogenic gas; two dimensional; porous media; MIP; COMPSIM
NASA Astrophysics Data System (ADS)
Ovcharenko, V. E.; Ivanov, K. V.; Mokhovikov, A. A.
2017-12-01
Exemplified by metal-ceramic composite TiC-(Ni-Cr) with the ratio of components 50:50, the paper presents findings of the study on patterns of nanoscale structural-phase state formation in the surface layer of the composite under pulsed electron irradiation in inert gas plasmas with different ionization energies and atomic weights and their influence on tribological and strength properties of the surface layer.
NASA Astrophysics Data System (ADS)
Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas
2016-10-01
Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the samples even if the number of released compounds can significantly differ. The hydrocarbon chain content increases in tholins when the CH4 ratio increases. A semi-quantitative study of the nitriles (most abundant chemical family in our chromatograms) released during the pyrolysis shows the existence of a correlation between the amount of a nitrile released and its molecular mass, similarly to the previous quantification of nitriles in the plasma gas-phase. Moreover, numerous nitriles are present both in tholins and in the gas phase, confirming their suspected role in the gas phase as precursors of the solid organic particles.
HPHT reservoir evolution: a case study from Jade and Judy fields, Central Graben, UK North Sea
NASA Astrophysics Data System (ADS)
di Primio, Rolando; Neumann, Volkmar
2008-09-01
3D basin modelling of a study area in Quadrant 30, UK North Sea was performed in order to elucidate the burial, thermal, pressure and hydrocarbon generation, migration and accumulation history in the Jurassic and Triassic high pressure high temperature sequences. Calibration data, including reservoir temperatures, pressures, petroleum compositional data, vitrinite reflectance profiles and published fluid inclusion data were used to constrain model predictions. The comparison of different pressure generating processes indicated that only when gas generation is taken into account as a pressure generating mechanism, both the predicted present day as well as palaeo-pressure evolution matches the available calibration data. Compositional modelling of hydrocarbon generation, migration and accumulation also reproduced present and palaeo bulk fluid properties such as the reservoir fluid gas to oil ratios. The reconstruction of the filling histories of both reservoirs indicates that both were first charged around 100 Ma ago and contained initially a two-phase system in which gas dominated volumetrically. Upon burial reservoir fluid composition evolved to higher GORs and became undersaturated as a function of increasing pore pressure up to the present day situation. Our results indicate that gas compositions must be taken into account when calculating the volumetric effect of gas generation on overpressure.
St. Fergus terminal gets turboexpanders for critical service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lillard, J.K.; Nicol, G.
1994-09-05
To expand the St. Fergus gas-reception terminal for the Scottish Area Gas Evacuation (SAGE) system, Mobil North Sea Ltd. is adding a second separation train and two treatment trains. To meet pipeline-gas specifications over a wide range of low rates and feed-gas compositions, single-stage turboexpander chilling was selected over Joule-Thomson valve expansion. Four turboexpanders (two per process train) will operate in parallel to achieve the required performance over the entire flow range of 90--575 MMscfd per process train. Unusual operating conditions for the turboexpanders include dense-phase inlet gas, expansion near the cricondenbar, and high equilibrium liquid content at the exhaustmore » (up to 50 wt %). The two turboexpanders in each train share common suction and discharge facilities as do their associated brake compressor. Details of the more than 400 million pounds Sterling Phase B discussed here include commissioning, start-up, and operation.« less
Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Tsaplin, A. I.; Bochkarev, S. V.
2016-01-01
Results of an experimental investigation into the deformation and destruction of a metal composite vessel with a cryogenic gas are presented. Its structure is based on basalt, carbon, and organic fibers. The vessel proved to be serviceable at cryogenic temperatures up to a burst pressure of 45 MPa, and its destruction was without fragmentation. A mathematical model adequately describing the rise of pressure in the cryogenic vessel due to the formation of a gaseous phase upon boiling of the liquefied natural gas during its storage without drainage at the initial stage is proposed.
Optimization of air plasma reconversion of UF6 to UO2 based on thermodynamic calculations
NASA Astrophysics Data System (ADS)
Tundeshev, Nikolay; Karengin, Alexander; Shamanin, Igor
2018-03-01
The possibility of plasma-chemical conversion of depleted uranium-235 hexafluoride (DUHF) in air plasma in the form of gas-air mixtures with hydrogen is considered in the paper. Calculation of burning parameters of gas-air mixtures is carried out and the compositions of mixtures obtained via energy-efficient conversion of DUHF in air plasma are determined. With the help of plasma-chemical conversion, thermodynamic modeling optimal composition of UF6-H2-Air mixtures and its burning parameters, the modes for production of uranium dioxide in the condensed phase are determined. The results of the conducted researches can be used for creation of technology for plasma-chemical conversion of DUHF in the form of air-gas mixtures with hydrogen.
NASA Astrophysics Data System (ADS)
Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.
2014-05-01
Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01
Turbin-Orger, A; Babin, P; Boller, E; Chaunier, L; Chiron, H; Della Valle, G; Dendievel, R; Réguerre, A L; Salvo, L
2015-05-07
X-ray tomography is a relevant technique for the dynamic follow-up of gas bubbles in an opaque viscoelastic matrix, especially using image analysis. It has been applied here to pieces of fermenting wheat flour dough of various compositions, at two different voxel sizes (15 and 5 μm). The resulting evolution of the main cellular features shows that the creation of cellular structures follows two regimes that are defined by a characteristic time of connectivity, tc [30 and 80 min]: first (t ≤ tc), bubbles grow freely and then (t ≥ tc) they become connected since the percolation of the gas phase is limited by liquid films. During the first regime, bubbles can be tracked and the local strain rate can be measured. Its values (10(-4)-5 × 10(-4) s(-1)) are in agreement with those computed from dough viscosity and internal gas pressure, both of which depend on the composition. For higher porosity, P = 0.64 in our case, and thus occurring in the second regime, different cellular structures are obtained and XRT images show deformed gas cells that display complex shapes. The comparison of these images with confocal laser scanning microscopy images suggests the presence of liquid films that separate these cells. The dough can therefore be seen as a three-phase medium: viscoelastic matrix/gas cell/liquid phase. The contributions of the different levels of matter organization can be integrated by defining a capillary number (C = 0.1-1) that makes it possible to predict the macroscopic dough behavior.
Stern, Laura A.; Lorenson, T.D.
2014-01-01
We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.
NASA Astrophysics Data System (ADS)
Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.
2014-12-01
Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.
CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column.
Gu, Congying; Shamsi, Shahab A
2010-04-01
A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) monolithic column was simply prepared by in situ co-polymerization of 11-acrylaminoundecanoic acid and ethylene dimethacrylate with 1-propanol, 1,4-butanediol and water as porogens in 100 microm id fused-silica capillary in one step. This column was used in CEC-atmospheric pressure photoionization (APPI)-MS system for separation and detection of N-methylcarbamates pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions, S/Ns around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine N-methylcarbamates in spiked apple juice sample after solid phase extraction with recoveries in the range of 65-109%.
Effects of in-sewer processes: a stochastic model approach.
Vollertsen, J; Nielsen, A H; Yang, W; Hvitved-Jacobsen, T
2005-01-01
Transformations of organic matter, nitrogen and sulfur in sewers can be simulated taking into account the relevant transformation and transport processes. One objective of such simulation is the assessment and management of hydrogen sulfide formation and corrosion. Sulfide is formed in the biofilms and sediments of the water phase, but corrosion occurs on the moist surfaces of the sewer gas phase. Consequently, both phases and the transport of volatile substances between these phases must be included. Furthermore, wastewater composition and transformations in sewers are complex and subject to high, natural variability. This paper presents the latest developments of the WATS model concept, allowing integrated aerobic, anoxic and anaerobic simulation of the water phase and of gas phase processes. The resulting model is complex and with high parameter variability. An example applying stochastic modeling shows how this complexity and variability can be taken into account.
Gas-liquid chromatography with a volatile "stationary" liquid phase.
Wells, P S; Zhou, S; Parcher, J F
2002-05-01
A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.
The solar system/interstellar medium connection - Gas phase abundances
NASA Technical Reports Server (NTRS)
Lutz, Barry L.
1987-01-01
Gas-phase abundances in the outer solar system are presented as diagnostics of the interstellar medium at the time of the solar system formation, some 4.55 billion years ago. Possible influences of the thermal and chemical histories of the primitive solar nebula and of the processes which led to the formation and evolution of the outer planets and comets on the elemental and molecular composition of the primordial matter are outlined. The major components of the atmospheres of the outer planets and of the comae of comets are identified, and the cosmogonical and cosmological implications are discussed.
Gas-Phase Coordination Complexes of UVIO{2/2+}, NpVIO{2/2+}, and PuVIO{2/2+} with Dimethylformamide
NASA Astrophysics Data System (ADS)
Rutkowski, Philip X.; Rios, Daniel; Gibson, John K.; van Stipdonk, Michael J.
2011-11-01
Electrospray ionization of actinyl perchlorate solutions in H2O with 5% by volume of dimethylformamide (DMF) produced the isolatable gas-phase complexes, [AnVIO2(DMF)3(H2O)]2+ and [AnVIO2(DMF)4]2+, where An = U, Np, and Pu. Collision-induced dissociation confirmed the composition of the dipositive coordination complexes, and produced doubly- and singly-charged fragment ions. The fragmentation products reveal differences in underlying chemistries of uranyl, neptunyl, and plutonyl, including the lower stability of Np(VI) and Pu(VI) compared with U(VI).
Birak, P.S.; Miller, C.T.
2008-01-01
The remediation of dense non-aqueous phase liquids (DNAPLs) in porous media continues to be one of the most challenging problems facing environmental scientists and engineers. Of all the environmentally relevant DNAPLs, tars in the subsurface at former manufactured gas plants (FMGP’s) pose one of the biggest challenges due to their complex chemical composition and tendency to alter wettability. To further our understanding of these complex materials, we consulted historic documentation to evaluate the impact of gas manufacturing on the composition and physicochemical nature of the resulting tars. In the recent literature, most work to date has been focused in a relatively narrow portion of the expected range of tar materials, which has yielded a bias toward samples of relatively low viscosity and density. In this work, we consider the dissolution and movement of tars in the subsurface, models used to predict these phenomena, and approaches used for remediation. We also explore the open issues and detail important gaps in our fundamental understanding of these extraordinarily complex systems that must be resolved to reach a mature level of understanding. PMID:19176266
Patil, M P; Sonolikar, R L
2008-10-01
This paper presents a detailed computational fluid dynamics (CFD) based approach for modeling thermal destruction of hazardous wastes in a circulating fluidized bed (CFB) incinerator. The model is based on Eular - Lagrangian approach in which gas phase (continuous phase) is treated in a Eularian reference frame, whereas the waste particulate (dispersed phase) is treated in a Lagrangian reference frame. The reaction chemistry hasbeen modeled through a mixture fraction/ PDF approach. The conservation equations for mass, momentum, energy, mixture fraction and other closure equations have been solved using a general purpose CFD code FLUENT4.5. Afinite volume method on a structured grid has been used for solution of governing equations. The model provides detailed information on the hydrodynamics (gas velocity, particulate trajectories), gas composition (CO, CO2, O2) and temperature inside the riser. The model also allows different operating scenarios to be examined in an efficient manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Luther W.; Campbell, James A.; Clark, Sue B.
2014-01-21
Electrospray ionization - mass spectrometry (ESI-MS) was used for the characterization of uranyl complexed to tributyl phosphate (TBP) and dibutyl phosphate (DBP). The stoichiometry of uranyl with TBP and DBP was determined, and the gas phase speciation was found to be dependent on the cone voltage applied to induce fragmentation on the gas phase complexes. To quantitatively compare the gas phase distribution of species to solution, apparent stability constants were calculated. With a cone voltage of 80V, the apparent stability constants for the complexes UO2(NO3)2•2TBP, UO2(NO3)2(H2O)•2TBP, and UO2(DBP)+ were determined. With a lower cone voltage applied, larger complexes were observedmore » and stability constants for the complexes UO2(NO3)2•3TBP and UO2(DBP)42- were determined.« less
Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model
NASA Astrophysics Data System (ADS)
Ruaud, Maxime; Wakelam, Valentine; Hersant, Franck
2016-07-01
We present an extended version of the two-phase gas-grain code NAUTILUS to the three-phase modelling of gas and grain chemistry of cold cores. In this model, both the mantle and the surface are considered as chemically active. We also take into account the competition among reaction, diffusion and evaporation. The model predictions are confronted to ice observations in the envelope of low-mass and massive young stellar objects as well as towards background stars. Modelled gas-phase abundances are compared to species observed towards TMC-1 (CP) and L134N dark clouds. We find that our model successfully reproduces the observed ice species. It is found that the reaction-diffusion competition strongly enhances reactions with barriers and more specifically reactions with H2, which is abundant on grains. This finding highlights the importance having a good approach to determine the abundance of H2 on grains. Consequently, it is found that the major N-bearing species on grains go from NH3 to N2 and HCN when the reaction-diffusion competition is taken into account. In the gas phase and before a few 105 yr, we find that the three-phase model does not have a strong impact on the observed species compared to the two-phase model. After this time, the computed abundances dramatically decrease due to the strong accretion on dust, which is not counterbalanced by the desorption less efficient than in the two-phase model. This strongly constrains the chemical age of cold cores to be of the order of few 105 yr.
NASA Astrophysics Data System (ADS)
Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Janda, Vaclav; Sunka, Pavel
2005-02-01
Ozone formation by a pulse positive corona discharge generated in the gas phase between a planar high voltage electrode made from reticulated vitreous carbon and a water surface with an immersed ground stainless steel plate electrode was investigated under various operating conditions. The effects of gas flow rate (0.5-3 litre min-1), discharge gap spacing (2.5-10 mm), applied input power (2-45 W) and gas composition (oxygen containing argon or nitrogen) on ozone production were determined. Ozone concentration increased with increasing power input and with increasing discharge gap. The production of ozone was significantly affected by the presence of water vapour formed through vaporization of water at the gas-liquid interface by the action of the gas phase discharge. The highest energy efficiency for ozone production was obtained using high voltage pulses of approximately 150 ns duration in Ar/O2 mixtures with the maximum efficiency (energy yield) of 23 g kW h-1 for 40% argon content.
Wilkinson, Mia; Kafizas, Andreas; Bawaked, Salem M; Obaid, Abdullah Y; Al-Thabaiti, Shaeel A; Basahel, Sulaiman N; Carmalt, Claire J; Parkin, Ivan P
2013-06-10
A combinatorial film with a phase gradient from V:TiO₂ (V: Ti ≥ 0.08), through a range of TiO₂-VO₂ composites, to a vanadium-rich composite (V: Ti = 1.81) was grown by combinatorial atmospheric pressure chemical vapor deposition (cAPCVD). The film was grown from the reaction of TiCl₄, VCl₄, ethyl acetate (EtAc), and H₂O at 550 °C on glass. The gradient in gas mixtures across the reactor induced compositional film growth, producing a single film with numerous phases and compositions at different positions. Seventeen unique positions distributed evenly along a central horizontal strip were investigated. The physical properties were characterized by wavelength dispersive X-ray (WDX) analysis, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and UV-visible spectroscopy. The functional properties examined included the degree of photoinduced hydrophilicity (PIH), UVC-photocatalysis, and thermochromism. Superhydrophilic contact angles could be achieved at all positions, even within a highly VO₂-rich composite (V: Ti = 1.81). A maximum level of UVC photocatalysis was observed at a position bordering the solubility limit of V:TiO₂ (V: Ti ≈ 0.21) and fragmentation into a mixed-phase composite. Within the mixed-phase TiO₂: VO₂ composition region (V: Ti = 1.09 to 1.81) a decrease in the semiconductor-to-metal transition temperature of VO₂ from 68 to 51 °C was observed.
NASA Astrophysics Data System (ADS)
Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas
2018-01-01
A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.
Geochemical and isotopic features of geothermal fluids around the Sea of Marmara, NW Turkey
NASA Astrophysics Data System (ADS)
Italiano, Francesco; Woith, Heiko; Seyis, Cemil; Pizzino, Luca; Sciarra, Alessandra
2016-04-01
Earthquake processes provoke modifications of the crust affecting the fluid regime with changes in water level in wells, in temperature and/or chemical composition of groundwaters, in the flow-rate of gas discharges and in their chemical and isotopic composition. In the frame of MARsite (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417) the relationship between fluids and seismogenesis has been approached collecting geochemical data of local significance and evaluating them in geochemical interpretative models of fluids circulation and interactions as well as defining their behaviour over a seismic-prone area. During three fluid sampling campaigns in 2013, 2014, and 2015 a suite of 120 gas samples were collected from 72 thermal and mineral water springs/wells in the wider Marmara region along the Northern and Southern branches of the North Anatolian Fault Zone (NAFZ). Bubbling gases were collected if available, in all other cases the gas phase was extracted from water samples collected on that purpose. Gas samples were analyzed for the main chemical composition as well as their isotopic composition (He and C). The results highlight that the vented gases are a binary mixture of two end-members having nitrogen and carbon dioxide as main components. The geochemical features of the gas phase are the result of several processes that have modified their pristine composition. Atmospheric and deep-originated volatiles mix at variable extents and interact with cold and hot groundwaters. CO2 is normally the main gas species. But it's concentration may decrease due to gas-water interactions (GWI) increasing the relative concentration of N2 and other less soluble gases. A high CO2 content indicates minor interactions. Thus, the easier and faster the pathways are from the deep layers toward the Earth's surface, the lower are the interactions. The volatiles keep their pristine composition. Faults represent a preferential way for rising volatiles due to local high permeability. 3He/4He ratios ranging from 0.1 to 4.8Ra (Ra = 3He/4He atmospheric ratio) indicate the presence of mantle contribution. The highest ratio was found at the eastern end of the Ganos fault. Mantle degassing is not obvious in non-volcanic areas, however the measured helium isotopic ratios indicate mantle degassing likely through lithospheric faults. All the information we got indicate that the fluids circulating over this area are the result of fluid mixing at variable extents of three end-members: mantle, crust and atmosphere.
NASA Astrophysics Data System (ADS)
Rosa, R.; Lima, I.; Ramos, F.; Bambace, L.; Assireu, A.; Stech, J.; Novo, E.; Lorenzeti, L.
Atmospheric greenhouse gases concentration has increased during the past centuries basically due to biogenic and pyrogenic anthopogenic emissions Recent investigations have shown that gas emission methane as an important example from tropical hydroelectric reservoirs may comprise a considerable fraction of the total anthropogenic bulk In order to evaluate the concentration of gases of potential importance in environmental chemistry the solubility of such gases have been collected and converted into a uniform format using the Henry s law which states that the solubility of a gas in a liquid is directly proportional to its partial pressure However the Henry s law can be derived as a function of temperature density molar mixing ratio in the aqueous phase and molar mass of water In this paper we show that due to the complex temperature variation and water composition measured in brazilian tropical reservoirs as Serra da Mesa and Manso expressive secular variation on the traditional solubility constants concentration of a species in the aqueous phase by the partial pressure of that species in the gas phase can change in a rate of approximately 30 in 6 decades This estimation comes from a computational analysis of temperature variation measured during 6 months in Serra da Mesa and Manso reservoirs taking into account a simulated density and molar mass variation of the aqueous composition in these environments As an important global change issue from this preliminary analysis we discuss its role in the current estimations on the concentration emission rates
Barker, C.E.; Halley, R.B.
1988-01-01
Vadose cements in the Late Pleistocene Miami Limestone contain regions with two-phase aqueous fluid inclusions that have consistent vapor to liquid (V-L) ratios. When heated, these seemingly primary inclusions homogenize to a liquid phase in a range between 75??C and 130??C (mean = 100??C) and have final melting temperatures between -0.3?? and 0.0??C. The original distribution of Th was broadened during measurements because of fluid inclusion reequilibration. The narrow range of Th in these fluid inclusions suggest unusually consistent V-L ratios. They occur with small, obscure, single phase liquid-filled inclusions, which infer a low temperature origin (less than 60??C), and contradict the higher temperature origin implied by the two phase inclusions. The diagenetic environment producing these seemingly primary fluid inclusions can be inferred from the origin of the host calcite enclosing them. The ??18O composition of these cements (-4 to-5.5%., PDB) and the fresh water in the fluid inclusions are consistent with precipitation from low-temperature meteoric water. The carbon-isotope composition of the vadose cements that contain only rare two-phase fluid inclusions are comparable to the host rock matrix (??13C between 0 and +4%., PDB). Cements that contain common two-phase fluid-inclusions have a distinctly lighter carbon isotopic composition of -3 to -5%.. The carbon isotope composition of cements that contain common two-phase inclusions are about 6%. lighter than those of other vadose cements; models of early meteoric diagenesis indicate that this is the result of precipitation from water that has been influenced by soil gas CO2. Our hypothesis is that the primary fluid inclusions, those with consistent V-L ratios and the single-phase liquid inclusions, form at near-surface temperature (25??C) and pressure when consistent proportions of soil gas and meteoric water percolating through the vadose zone are trapped within elongate vacuoles. This study corroborates that Th measurements on two phase inclusions in vadose cements can be misleading evidence of thermal diagenesis, even if the measurements are well grouped. ?? 1988.
Heavy haze in winter Beijing driven by fast gas phase oxidation
NASA Astrophysics Data System (ADS)
Lu, K.; Tan, Z.; Wang, H.; Li, X.; Wu, Z.; Chen, Q.; Wu, Y.; Ma, X.; Liu, Y.; Chen, X.; Shang, D.; Dong, H.; Zeng, L.; Shao, M.; Hu, M.; Fuchs, H.; Novelli, A.; Broch, S.; Hofzumahaus, A.; Holland, F.; Rohrer, F.; Bohn, B.; Georgios, G.; Schmitt, S. H.; Schlag, P.; Kiendler-Scharr, A.; Wahner, A.; Zhang, Y.
2017-12-01
Heavy haze conditions were frequently presented in the airsheds of Beijing and surrounding areas, especially during winter time. To explore the trace gas oxidation and the subsequent formation of aerosols, a comprehensive field campaign was performed at a regional site (in the campus of University of Chinese Academy of Science, UCAS) in Beijing winter 2016. Serious haze pollution processes were often observed with the fast increase of inorganic salt (especially nitrate) and these pollutions were always associated with enhanced humidity and the concentrations of PAN (PeroxyAcyl Nitrates) which is normally a marker of gas phase oxidations from NOx and VOCs. Moreover, based on the measurements of OH, HO2, RO2, total OH reactivity, N2O5, NO, NO2, SO2, particle concentrations/distributions/chemical compositions, and meteorological parameters, the gas phase oxidation rates that leads to the formation of sulfate, nitrate and secondary organic aerosols were estimated. These determined formation rates were clearly enhanced by several folds during pollution episodes compared to that of the clean air masses. Preliminary analysis result showed that the gas phase formation potential of nitrate and secondary organic aerosols were larger than the observed concentrations of nitrate and SOA of which the excess production may be explained by deposition and dilution.
Growth of copper-zinc and copper-magnesium particles by gas-evaporation technique
NASA Astrophysics Data System (ADS)
Ohno, T.
1984-12-01
Fine particles of Cu-Zn and Cu-Mg systems of diameter less than 500 nm were prepared by evaporating the constituent metals simultaneously from two evaporation sources in an atmosphere of argon of 10 to 30 Torr. The composition, crystal structure and habit of the alloy particles were investigated by electron microscopy. The composition of the alloy particles varied depending on the growth zone of metal smoke and almost all phases known in Cu-Zn or Cu-Mg system were found at the same time. The particles with single phase showed generally well-defined crystal habits characteristic of their crystal structures. For the particles with two phases, a fixed lattice relation between the two phases was generally recognized. The formation process of the alloy particles is discussed through these observations.
Conaway, Christopher; Thordsen, James J.; Manning, Michael A.; Cook, Paul J.; Trautz, Robert C.; Thomas, Burt; Kharaka, Yousif K.
2016-01-01
The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a characterization well in the Citronelle Oil Field, Alabama, as part of the Southeast Regional Carbon Sequestration Partnership (SECARB) Phase III Anthropogenic Test, which is an integrated carbon capture and storage project. In this study, formation water and gas samples were obtained from well D-9-8 #2 at Citronelle using gas lift, electric submersible pump, U-tube, and a downhole vacuum sampler (VS) and subjected to both field and laboratory analyses. Field chemical analyses included electrical conductivity, dissolved sulfide concentration, alkalinity, and pH; laboratory analyses included major, minor and trace elements, dissolved carbon, volatile fatty acids, free and dissolved gas species. The formation water obtained from this well is a Na–Ca–Cl-type brine with a salinity of about 200,000 mg/L total dissolved solids. Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity. There was little gas in samples, and gas composition results were strongly influenced by sampling methods. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the VS and U-tube system performing most favorably in this aspect.
NASA Astrophysics Data System (ADS)
Aplin, Andrew C.; Larter, Steve R.; Bigge, M. Ashley; MacLeod, Gordon; Swarbrick, Richard E.; Grunberger, Daniel
2000-11-01
We present two examples of how fluid inclusion data can be used to determine geologic pressure histories and to quantify the compositional evolution of petroleum in oil reservoirs. Volumetric liquid: vapor ratios generated with a confocal laser scanning microscope are used along with pressure-vapor-temperature (P-V-T) modeling software to estimate the composition, P-T phase envelope, and isochore of single petroleum inclusions in the North Sea's Judy and Alwyn fields. In both cases, the gas condensates currently in the reservoirs formed by the emplacement of gas into preexisting oil accumulations. Pressure histories of individual units in each field are also revealed, providing the kind of data needed to determine the permeability and fluid flow histories of sedimentary basins.
Ejection of Particles from the Free Surface of Shock-Loaded Lead into Vacuum and Gas Medium
NASA Astrophysics Data System (ADS)
Ogorodnikov, V. A.; Mikhailov, A. L.; Erunov, S. V.; Antipov, M. V.; Fedorov, A. V.; Syrunin, M. A.; Kulakov, E. V.; Kleshchevnikov, O. A.; Yurtov, I. V.; Utenkov, A. A.; Finyushin, S. A.; Chudakov, E. A.; Kalashnikov, D. A.; Pupkov, A. S.; Chapaev, A. V.; Mishanov, A. V.; Glushikhin, V. V.; Fedoseev, A. V.; Tagirov, R. R.; Kostyukov, S. A.; Tagirova, I. Yu.; Saprykina, E. V.
2017-12-01
The presence and behavior of a gas-metal interfacial layer at the free surface of shock-wave driven flying vehicles in gases of various compositions and densities has not been sufficiently studied so far. We present new comparative data on "dusting" from the free surface of lead into vacuum and gas as dependent on the surface roughness, pressure amplitude at the shock-wave front, and phase state of the material. Methods of estimating the mass flux of ejected particles in the presence of a gas medium at the free metal surface are proposed.
Koch, Rainer; Finnerty, Justin J; Bruhn, Torsten; Borget, Fabien; Wentrup, Curt
2008-09-25
The complex reaction of thermally generated iminopropadienones with amines in the gas phase and upon matrix deposition and its varying product composition is investigated using density functional theory. In the high energy gas phase addition a single amine molecule reacts readily with iminopropadienone with the decisive step being a 1,3-hydrogen shift and activation barriers of at least 100 kJ/mol. In accordance with the experiment, the formation of ketenes is favored. In the condensed phase of an amine matrix, the utilization of amine dimers both as reagents and as explicit solvents lowers the activation energy required to a feasible 20-30 kJ/mol and predicts ketenimines as the main products, as observed experimentally.
Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo
2009-04-03
An assessment of aqueous solubility (leaching potential) of soil contaminations with petroleum hydrocarbons (TPH) is important in the context of the evaluation of (migration) risks and soil/groundwater remediation. Field measurements using monitoring wells often overestimate real TPH concentrations in case of presence of pure oil in the screened interval of the well. This paper presents a method to calculate TPH equilibrium concentrations in groundwater using soil analysis by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography (HPLC-GCXGC). The oil in the soil sample is divided into 79 defined hydrocarbon fractions on two GCXGC color plots. To each of these fractions a representative water solubility is assigned. Overall equilibrium water solubility of the non-aqueous phase liquid (NAPL) present in the sample and the water phase's chemical composition (in terms of the 79 fractions defined) are then calculated using Raoult's law. The calculation method was validated using soil spiked with 13 different TPH mixtures and 1 field-contaminated soil. Measured water solubilities using a column recirculation equilibration experiment agreed well to calculated equilibrium concentrations and water phase TPH composition.
Yang, Xiaohong; Li, Changxia; Qi, Meiling; Qu, Liangti
2016-08-19
This work presents the separation performance of graphene-ZIF8 (G-Z) composite material as stationary phase for capillary gas chromatography (GC). The G-Z stationary phase achieved high column efficiency of 5000 plates/m determined by n-dodecane (k=1.22) at 120°C and showed weakly polar nature. Importantly, it exhibited high selectivity and resolving capability for branched alkane isomers and aromatic positional isomers, showing clear advantages over the reported neat graphene and ZIF8. In addition, it attained high resolution for geometric cis-/trans-isomers. The G-Z column exhibited good column thermal stability up to 300°C and column repeatability with RSD values of retention times in the range of 0.01-0.19% for intra-day, 0.05-0.88% for inter-day and 0.66-5.6% for between-column, respectively, Moreover, the G-Z column was employed for the determination of minor impurity isomers in real reagent samples, which demonstrates its promising potential in GC applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moortgat, J.; Amooie, M. A.; Soltanian, M. R.
2016-12-01
Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows transitions between advective, diffusive, ballistic, sub-diffusive, and non-Fickian diffusive behavior. These scaling relations can be used to improve the predictive powers of field-scale reservoir simulations that cannot resolve the complexities of unstable flow and transport at cm-m scales.
Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T
2015-10-01
This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.
NASA Astrophysics Data System (ADS)
Khrushchov, M.; Levin, I.; Marchenko, E.; Avdyukhina, V.; Petrzhik, M.
2016-07-01
The results of a comprehensive research on atomic structure, phase composition, micromechanical and tribological characteristics of alloyed DLC coatings have been presented. The coatings have been deposited by reactive magnetron sputtering in acetylene-nitrogen gas mixtures of different compositions (a-C:H:Cr), by plasma-assisted chemical vapor deposition in atmospheres of silicone-organic precursor gases (a-C:H:Mo:Si), and by nonreactive magnetron sputtering of a composite target (a-C:H:W).
NASA Astrophysics Data System (ADS)
Görlitz, Marco; Abratis, Michael; Wiersberg, Thomas
2014-05-01
Online monitoring and sampling of drill mud gas (OLGA) was conducted during standard rotary drilling and core drilling of the INFLUINS borehole EF-FB 1/12 to gain information on the composition of gases and their distribution at depth within the Thuringian Syncline (Germany). The method can help to identify areas of enhanced permeability and/or porosity, open fractures, and other strata associated with gases at depth. The gas-loaded drill mud was continuously degassed in a modified gas-water separator, which was installed in the mud ditch in close distance to the drill mud outlet. The extracted gas phase was pumped in a nearby field laboratory for continuous on-line analysis. First information on the gas composition (H2, He, N2, O2, CO2, CH4, Ar, Kr) was available only few minutes after gas extraction. More than 40 gas samples were taken from the gas line during drilling and pumping tests for further laboratory studies. Enhanced concentration of methane, helium, hydrogen and carbon dioxide were detected in drill mud when the drill hole encountered gas-rich strata. Down to a depth of 620 m, the drill mud contained maximum concentration of 55 ppmv He, 1400 ppmv of CH4, 400 ppmv of hydrogen and 1.1 vol-% of CO2. The drilling mud gas composition is linked with the drilled strata. Buntsandstein and Muschelkalk show different formation gas composition and are therefore hydraulically separated. Except for helium, the overall abundance of formation gases in drilling mud is relatively low. We therefore consider the INFLUINS borehole to be dry. The correlation between hydrogen and helium and the relatively high helium abundance rules out any artificial origin of hydrogen and suggest a radiolytic origin of hydrogen. Values CH4/(C2H6/C3H8)
NASA Astrophysics Data System (ADS)
Minissale, A.; Magro, G.; Vaselli, O.; Verrucchi, C.; Perticone, I.
1997-12-01
The Mt. Amiata volcano in central Italy is intimately related to the post-orogenic magmatic activity which started in Pliocene times. Major, trace elements, and isotopic composition of thermal and cold spring waters and gas manifestations indicate the occurrence of three main reservoir of the thermal and cold waters in the Mt. Amiata region. The deepest one is located in an extensive carbonate reservoir buried by thick sequences of low-permeability allochthonous and neo-autochthonous formations. Thermal spring waters discharging from this aquifer have a neutral Ca-SO 4 composition due to the presence of anhydrite layers at the base of the carbonate series and, possibly, to absorption of deep-derived H 2S with subsequent oxidation to SO 42- in a system where pH is buffered by the calcite-anhydrite pair ( Marini and Chiodini, 1994). Isotopic signature of these springs and N 2-rich composition of associated gas phases suggest a clear local meteoric origin of the feeding waters, and atmospheric O 2 may be responsible for the oxidation of H 2S. The two shallower aquifers have different chemical features. One is Ca-HCO 3 in composition and located in several sedimentary formations above the Mesozoic carbonates. The other one has a Na-Cl composition and is hosted in marine sediments filling many post-orogenic NW-SE-trending basins. Strontium, Ba, F, and Br contents have been used to group waters associated with each aquifer. Although circulating to some extent in the same carbonate reservoir, the deep geothermal fluids at Latera and Mt. Amiata and thermal springs discharging from their outcropping areas have different composition: Na-Cl and Ca-SO 4 type, respectively. Considering the high permeability of the reservoir rock, the meteoric origin of thermal springs and the two different composition of the thermal waters, self-sealed barriers must be present at the boundaries of the geothermal systems. The complex hydrology of the reservoir rocks greatly affects the reliability of geothermometers in liquid phase, which understimate the real temperatures of the discovered geothermal fields. More reliable temperatures are envisaged by using gas composition-based geothermometers. Bulk composition of the 67 gas samples studied seems to be the result of a continuous mixing between a N 2-rich component of meteoric origin related to the Ca-SO 4 aquifer and a deep CO 2-rich component rising largely along the boundaries of the geothermal systems. Nitrogen-rich gas samples have nearly atmospheric N 2/Ar (=83) and 15N/ 14N ( δ=0‰) ratios whereas CO 2-rich samples show anomalously high δ15N values (up to +6.13 ‰), likely related to N 2 from metamorphic schists lying below the carbonate formations. On the basis of average 13C/ 12C isotopic ratio ( δ13C around 0‰), CO 2 seems to originate mainly from thermometamorphic reactions in the carbonate reservoir and/or in carbonate layers embedded in the underlying metamorphic basement. Distribution of 3He/ 4He isotopic ratios indicates a radiogenic origin of helium in a tectonic environment that, in spite of the presence of many post-orogenic basins and mantle-derived magmatics, can presently be considered in a compressive phase.
In situ study of LaY2Ni9 compound as Ni MH negative-electrode material
NASA Astrophysics Data System (ADS)
Latroche, M.; Isnard, O.
2008-03-01
The behavior of a Ni-MH (metal hydride) negative composite electrode made of LaY2Ni9 active material has been studied dynamically using in situ neutron diffraction during a complete charge-discharge electrochemical cycle. From the analysis of the collected diffraction patterns, the phase identity, phase amount variations and cell volume evolutions have been determined as a function of the electrochemical state of (dis)charge. The active material shows a typical two-phase behavior with equilibrium between a hydrogen-poor α phase and a hydrogen-rich β one. The lower electrochemical reversible capacity as compared to solid-gas properties has been interpreted in terms of hydrogen gas evolving during charge and kinetic limitation due to slow β to α transformation during discharge, which hinders high discharge rates.
NASA Astrophysics Data System (ADS)
Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.
2013-12-01
We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation
FastChem: An ultra-fast equilibrium chemistry
NASA Astrophysics Data System (ADS)
Kitzmann, Daniel; Stock, Joachim
2018-04-01
FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.
DETERMINATION OF ELEMENTAL COMPOSITIONS BY HIGH RESOLUTION MASS SPECTROMETRY WITHOUT MASS CALIBRANTS
Widely applicable mass calibrants, including perfluorokerosene, are available for gas-phase introduction of analytes ionized by electron impact (EI) prior to analysis using high resolution mass spectrometry. Unfortunately, no all-purpose calibrants are available for recently dev...
Interstellar abundances - Gas and dust
NASA Technical Reports Server (NTRS)
Field, G. B.
1974-01-01
Data on abundances of interstellar atoms, ions and molecules in front of zeta Oph are assembled and analyzed. The gas-phase abundances of at least 11 heavy elements are significantly lower, relative to hydrogen, than in the solar system. The abundance deficiencies of certain elements correlate with the temperatures derived theoretically for particle condensation in stellar atmospheres or nebulae, suggesting that these elements have condensed into dust grains near stars. There is evidence that other elements have accreted onto such grains after their arrival in interstellar space. The extinction spectrum of zeta Oph can be explained qualitatively and, to a degree, quantitatively by dust grains composed of silicates, graphite, silicon carbide, and iron, with mantles composed of complex molecules of H, C, N, and O. This composition is consistent with the observed gas-phase deficiencies.
Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy
NASA Astrophysics Data System (ADS)
Goodfellow, A. J.; Galindo-Nava, E. I.; Christofidou, K. A.; Jones, N. G.; Martin, T.; Bagot, P. A. J.; Boyer, C. D.; Hardy, M. C.; Stone, H. J.
2018-03-01
The microstructural stability of nickel-based superalloys is critical for maintaining alloy performance during service in gas turbine engines. In this study, the precipitate evolution in a model polycrystalline Ni-based superalloy during aging to 1000 hours has been studied via transmission electron microscopy, atom probe tomography, and neutron diffraction. Variations in phase composition and precipitate morphology, size, and volume fraction were observed during aging, while the constrained lattice misfit remained constant at approximately zero. The experimental composition of the γ matrix phase was consistent with thermodynamic equilibrium predictions, while significant differences were identified between the experimental and predicted results from the γ' phase. These results have implications for the evolution of mechanical properties in service and their prediction using modeling methods.
NASA Astrophysics Data System (ADS)
Seemüller, C.; Hartwig, T.; Mulser, M.; Adkins, N.; Wickins, M.; Heilmaier, M.
2014-09-01
Refractory metal silicide composites on the basis of Nbss-Nb5Si3 have been investigated as potential alternatives for nickel-base superalloys for years because of their low densities and good high-temperature strengths. NbSi-based composites are typically produced by arc-melting or casting. Samples in this study, however, were produced by powder metallurgy because of the potential for near net-shape component fabrication with very homogeneous microstructures. Either gas atomized powder or high-energy mechanically alloyed elemental powders were compacted by powder injection molding or hot isostatic pressing. Heat treatments were applied for phase stability evaluation. Slight compositional changes (oxygen, nitrogen, or iron) introduced by the processing route, i.e., powder production and consolidation, can affect phase formations and phase transitions during the process. Special focus is put on the distinction between different silicides (Nb5Si3 and Nb3Si) and silicide modifications (α-, β-, and γ-Nb5Si3), respectively. These were evaluated by x-ray diffraction and energy-dispersive spectroscopy measurements with the additional inclusion of thermodynamic calculations using the calculated phase diagram method.
He, Xi; Yang, Wei; Li, Sijia; Liu, Yu; Hu, Baichun; Wang, Ting; Hou, Xiaohong
2018-01-24
An amino-functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized using a solvothermal method. The material was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption, and magnetometry. The composite combines the advantages of amino-modified Fe 3 O 4 and MIL-101(Cr). The presence of amino groups facilitates the fairly specific adsorption of pyrethroids. The composite was employed as a sorbent for magnetic solid phase extraction of five pyrethroids from environmental water samples. Following desorption with acidified acetone, the pyrethroids were quantified by gas chromatography with electron capture detection. The detection limits for bifenthrin, fenpropathrin, λ-cyhalothrin, permethrin, and deltamethrin range from 5 to 9 pg·mL -1 . The method is rapid, accurate, and highly sensitive. The molecular interactions and free binding energies between MIL-101(Cr) and the five pyrethroids were calculated by means of molecular docking. Graphical abstract A novel functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized. It was applied as a sorbent for magnetic solid phase extraction of pyrethroids prior to their quantitation by gas chromatography with electron capture detection. The molecular interactions of analytes and MIL-101(Cr) were studied.
Li, Lingling; Dong, Xinfa; Dong, Yingchao; Zhu, Li; You, Sheng-Jie; Wang, Ya-Fen
2015-04-28
In order to reduce environment risk of zinc, a spinel-based porous membrane support was prepared by the high-temperature reaction of zinc and bauxite mineral. The phase evolution process, shrinkage, porosity, mechanical property, pore size distribution, gas permeation flux and microstructure were systematically studied. The XRD results, based on a Zn/Al stoichiometric composition of 1/2, show a formation of ZnAl2O4 structure starting from 1000°C and then accomplished at 1300°C. For spinel-based composite membrane, shrinkage and porosity are mainly influenced by a combination of an expansion induced by ZnAl2O4 formation and a general densification due to amorphous liquid SiO2. The highest porosity, as high as 44%, is observed in ZnAl4 membrane support among all the investigated compositions. Compared with pure bauxite (Al), ZnAl4 composite membrane support is reinforced by ZnAl2O4 phase and inter-locked mullite crystals, which is proved by the empirical strength-porosity relationships. Also, an increase in average pore diameter and gas flux can be observed in ZnAl4. A prolonged leaching experiment reveals the zinc can be successfully incorporated into ceramic membrane support via formation of ZnAl2O4, which has substantially better resistance toward acidic attack. Copyright © 2015 Elsevier B.V. All rights reserved.
Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.
Yin, Jun; Shan, Shiyao; Ng, Mei Shan; Yang, Lefu; Mott, Derrick; Fang, Weiqin; Kang, Ning; Luo, Jin; Zhong, Chuan-Jian
2013-07-23
The control of the nanoscale composition and structure of alloy catalysts plays an important role in heterogeneous catalysis. This paper describes novel findings of an investigation for Pd-based nanoalloy catalysts (PdCo and PdCu) for ethanol oxidation reaction (EOR) in gas phase and alkaline electrolyte. Although the PdCo catalyst exhibits a mass activity similar to Pd, the PdCu catalyst is shown to display a much higher mass activity than Pd for the electrocatalytic EOR in alkaline electrolyte. This finding is consistent with the finding on the surface enrichment of Pd on the alloyed PdCu surface, in contrast to the surface enrichment of Co in the alloyed PdCo surface. The viability of C-C bond cleavage was also probed for the PdCu catalysts in both gas-phase and electrolyte-phase EOR. In the gas-phase reaction, although the catalytic conversion rate for CO2 product is higher over Pd than PdCu, the nanoalloy PdCu catalyst appears to suppress the formation of acetic acid, which is a significant portion of the product in the case of pure Pd catalyst. In the alkaline electrolyte, CO2 was detected from the gas phase above the electrolyte upon acid treatment following the electrolysis, along with traces of aldehyde and acetic acid. An analysis of the electrochemical properties indicates that the oxophilicity of the base metal alloyed with Pd, in addition to the surface enrichment of metals, may have played an important role in the observed difference of the catalytic and electrocatalytic activities. In comparison with Pd alloyed with Co, the results for Pd alloyed with Cu showed a more significant positive shift of the reduction potential of the oxygenated Pd species on the surface. These findings have important implications for further fine-tuning of the Pd nanoalloys in terms of base metal composition toward highly active and selective catalysts for EOR.
Review of the impacts of leaking CO 2 gas and brine on groundwater quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nikolla P.; Lawter, Amanda R.; Bacon, Diana H.
2017-06-01
This review paper provides a synthetic view of the existing knowledge and summarizes data and findings of the recent literature on the subject of the potential leaking of CO2 from the deep subsurface storage reservoirs and the effects on aquifer quality. New ideas and concepts are developed and insights are also provided. The objectives of this paper are to: 1) present and discuss potential risks for groundwater degradation due to CO2 gas and brine exposure; 2) identify the set of geochemical data required to assess and predict aquifer responses to CO2 and brine leakage. Specifically, this paper will discuss themore » following issues: 1) Aquifer responses (such as changes in aqueous phase/groundwater chemical composition; changes in solid phase chemistry and mineralogy; changes in the extent and rate of reactions and processes and possible establishment of a new network of reactions and processes affecting or controlling overall mobility of major, minor, and trace elements; development of conceptual and reduced order models (ROMs) to describe and predict aquifer responses); 2) The degree of impact such as significant or insignificant changes in pH and major, minor, and trace element release that depend on the following controlling variables; the effect of leaking plume characteristics (gas composition, pure CO2 and/or CO2 -CH4 -H2S mixtures and brine concentration and composition (trace metals); aquifer properties [such as initial aqueous phase conditions and mineralogy: minerals controlling sediments’ response (e.g., calcite, Si bearing minerals, etc.)]; overview of relevant hydrogeological and geochemical processes related to the impact of CO2 gas and brine on groundwater quality; the fate of the elements released from sediments or transported with brine (such as precipitation/incorporation into minerals (calcite and other minerals), adsorption, electron transfer reactions, the role of natural attenuation; whether or not the release of metals following exposure to CO2 harmful (risk assessment).« less
NASA Astrophysics Data System (ADS)
Sanibondi, Paolo
2015-09-01
Fume formation during arc welding has been modelled using a stochastic approach taking into account iron oxidation reactions. The model includes the nucleation and condensation of Fe and FeO vapours, the reaction of gaseous O2 and O on the nanoparticle surface, the coagulation of the nanoparticles including a sintering time as a function of temperature and composition, assuming chemical equilibrium for species in the gaseous phase. Results suggest that fumes generated in gas metal arc welding with oxidizing shielding mixtures are composed of aggregates of primary particles that are nucleated from gas-phase FeO and further oxidized to Fe3O4 and Fe2O3 in the liquid and solid phase, respectively. The composition of the fumes at the end of the formation process depends on the relative initial concentration of Fe and O2 species in the gas mixture and on the diameter of the primary particles that compose the aggregates: as the oxidation reactions are driven by deposition of oxygen on nanoparticle surface, the oxidation of larger particles is slower than that of smaller particles because of their lower surface to volume ratio. Solid-state diffusion is limiting the oxidation process at temperatures lower than 1500 K, inducing the formation of not fully oxidized particles composed of Fe3O4.
NASA Astrophysics Data System (ADS)
D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; Shilling, John E.; Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Schobesberger, Siegfried; Zaveri, Rahul A.; Mohr, Claudia; Lutz, Anna; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Rivera-Rios, Jean C.; Keutsch, Frank N.; Thornton, Joel A.
2017-01-01
We present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C5 compounds were major components (˜ 50 %) of SOA. The SOA composition and effective volatility evolved both as a function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, > 30 % of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.
NASA Astrophysics Data System (ADS)
Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C.
2017-03-01
Context. Interstellar dust grain particles are immersed in vacuum ultraviolet (VUV) and cosmic ray radiation environments influencing their physicochemical composition. Owing to the energetic ionizing interactions, carbonaceous dust particles release fragments that have direct impact on the gas phase chemistry. Aims: The exposure of carbonaceous dust analogues to cosmic rays is simulated in the laboratory by irradiating films of hydrogenated amorphous carbon interstellar analogues with energetic ions. New species formed and released into the gas phase are explored. Methods: Thin carbonaceous interstellar dust analogues were irradiated with gold (950 MeV), xenon (630 MeV), and carbon (43 MeV) ions at the GSI UNILAC accelerator. The evolution of the dust analogues is monitored in situ as a function of fluence at 40, 100, and 300 K. Effects on the solid phase are studied by means of infrared spectroscopy complemented by simultaneously recording mass spectrometry of species released into the gas phase. Results: Specific species produced and released under the ion beam are analyzed. Cross sections derived from ion-solid interaction processes are implemented in an astrophysical context.
NASA Astrophysics Data System (ADS)
Carvalho, P.; Borges, J.; Rodrigues, M. S.; Barradas, N. P.; Alves, E.; Espinós, J. P.; González-Elipe, A. R.; Cunha, L.; Marques, L.; Vasilevskiy, M. I.; Vaz, F.
2015-12-01
This work is devoted to the investigation of zirconium oxynitride (ZrOxNy) films with varied optical responses prompted by the variations in their compositional and structural properties. The films were prepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N2 + O2 (17:3). The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gas flows to red-brownish for intermediate gas flows. Associated to this colour change there was a significant decrease of brightness. With further increase of the reactive gas flow, the colour of the samples changed from red-brownish to dark blue or even to interference colourations. The variations in composition disclosed the existence of four different zones, which were found to be closely related with the variations in the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirconium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallized over-stoichiometric nitride phase, which may be similar to that of Zr3N4 with some probable oxygen inclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For high reactive gas flows, the films developed an oxynitride-type phase, similar to that of γ-Zr2ON2 with some oxygen atoms occupying some of the nitrogen positions, evolving to a ZrO2 monoclinic type structure within the zone where films were prepared with relatively high reactive gas flows. The analysis carried out by reflected electron energy loss spectroscopy (REELS) revealed a continuous depopulation of the d-band and an opening of an energy gap between the valence band (2p) and the Fermi level close to 5 eV. The ZrN-based coatings (zone I and II) presented intrinsic colourations, with a decrease in brightness and a colour change from bright yellow to golden yellow, red brownish and dark blue. Associated to these changes, there was also a shift of the reflectivity minimum to lower energies, with the increase of the non-metallic content. The samples lying in the two last zones (zone III, oxynitride and zone IV, oxide films) revealed a typical semi-transparent-optical behaviour showing interference-like colourations only due to the complete depopulation of the d band at the Fermi level. The samples lying in these zones presented also an increase of the optical bandgap from 2 to 3.6 eV.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2000-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2001-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Direct Observations of Isoprene Secondary Organic Aerosol Formation in Ambient Cloud Droplets
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Bell, D.; Thornton, J. A.; Fast, J. D.; Shrivastava, M. B.; Berg, L. K.; Imre, D. G.; Mei, F.; Shilling, J.; Suski, K. J.; Liu, J.; Tomlinson, J. M.; Wang, J.
2017-12-01
Multiphase chemistry of isoprene photooxidation products has been shown to be one of the major sources of secondary organic aerosol (SOA) in the atmosphere. A number of recent studies indicate that aqueous aerosol phase provides a medium for reactive uptake of isoprene photooxidation products, and in particular, isomeric isoprene epoxydiols (IEPOX), with reaction rates and yields being dependent on aerosol acidity, water content, sulfate concentration, and organic coatings. However, very few studies focused on chemistry occurring within actual cloud droplets. We will present data acquired during recent Holistic Interactions of Shallow Clouds, Aerosols, and Land Ecosystems (HI-SCALE) Campaign, which provide direct evidence for IEPOX-SOA formation in cloud droplets. Single particle mass spectrometer, miniSPLAT, and a high-resolution, time-of-flight aerosol mass spectrometer were used to characterize the composition of aerosol particles and cloud droplet residuals, while a high-resolution, time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) was used to characterize gas-phase compounds. We find that the composition of cloud droplet residuals was markedly different than that of aerosol particles sampled outside the cloud. Cloud droplet residuals were comprised of individual particles with high relative fractions of sulfate and nitrate and significant fraction of particles with mass spectra that are nearly identical to those of laboratory-generated IEPOX-SOA particles. The observed cloud-induced formation of IEPOX-SOA was accompanied by simultaneous decrease in measured concentrations of IEPOX and other gas-phase isoprene photooxidation products. Ultimately, the combined cloud, aerosol, and gas-phase measurements conducted during HI-SCALE will be used to develop and evaluate model treatments of aqueous-phase isoprene SOA formation.
Modelling the molecular composition and nuclear-spin chemistry of collapsing prestellar sources
NASA Astrophysics Data System (ADS)
Hily-Blant, P.; Faure, A.; Rist, C.; Pineau des Forêts, G.; Flower, D. R.
2018-04-01
We study the gravitational collapse of prestellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H+3, and of the hydrides of carbon, nitrogen, oxygen, and sulfur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H_3^+ + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the prestellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes—as assumed in our gas-phase network—and direct nucleus- or atom-exchange reactions.
Modelling the molecular composition and nuclear-spin chemistryof collapsing pre-stellar sources
NASA Astrophysics Data System (ADS)
Hily-Blant, P.; Faure, A.; Rist, C.; Pineau des Forêts, G.; Flower, D. R.
2018-07-01
We study the gravitational collapse of pre-stellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H_3^+, and of the hydrides of carbon, nitrogen, oxygen, and sulphur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H_3^+ + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the pre-stellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes - as assumed in our gas-phase network - and direct nucleus- or atom-exchange reactions.
The calculation of the phase equilibrium of the multicomponent hydrocarbon systems
NASA Astrophysics Data System (ADS)
Molchanov, D. A.
2018-01-01
Hydrocarbon mixtures filtration process simulation development has resulted in use of cubic equations of state of the van der Waals type to describe the thermodynamic properties of natural fluids under real thermobaric conditions. Binary hydrocarbon systems allow to simulate the fluids of different types of reservoirs qualitatively, what makes it possible to carry out the experimental study of their filtration features. Exploitation of gas-condensate reservoirs shows the possibility of existence of various two-phase filtration regimes, including self-oscillatory one, which occurs under certain values of mixture composition, temperature and pressure drop. Plotting of the phase diagram of the model mixture is required to determine these values. A software package to calculate the vapor-liquid equilibrium of binary systems using cubic equation of state of the van der Waals type has been created. Phase diagrams of gas-condensate model mixtures have been calculated.
NASA Astrophysics Data System (ADS)
Hassouni, Khaled
2013-09-01
In this paper we present two examples that illustrate two different contexts of the interplay between plasma-surface interaction process and discharge physics and gas phase chemistry in hydrocarbon discharges. In the first example we address the case of diamond deposition processes and illustrate how a detailed investigation of the discharge physics, collisional processes and transport phenomena in the plasma phase make possible to accurately predict the key local-parameters, i.e., species density at the growing substrate, as function of the macroscopic process parameters, thus allowing for a precise control of diamond deposition process. In the second example, we illustrate how the interaction between a rare gas pristine discharge and carbon (graphite) electrode induce a dramatic change on the discharge nature, i.e., composition, ionization kinetics, charge equilibrium, etc., through molecular growth and clustering processes, solid particle formation and dusty plasma generation. Work done in collaboration with Alix Gicquel, Francois Silva, Armelle Michau, Guillaume Lombardi, Xavier Bonnin, Xavier Duten, CNRS, Universite Paris 13.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni
2018-04-01
New experimental data were obtained on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C) and P(SO2) = 0.25 atm covering Cu concentrations in matte between 42 and 78 wt pct Cu. Accurate measurements were obtained using high-temperature equilibration and the rapid quenching technique, followed by electron-probe X-ray microanalysis of equilibrium phase compositions. The use of spinel substrates made to support the samples ensures equilibrium with this primary phase solid, eliminates crucible contamination, and facilitates direct gas-condensed phase equilibrium and high quenching rates. Particular attention was given to the confirmation of the achievement of equilibrium. The results quantify the relationship between Cu in matte and oxygen partial pressure, sulfur in matte, oxygen in matte, Fe/SiO2 at slag liquidus, sulfur in slag, and dissolved copper in slag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Tongan; Chun, Jaehun; Dixon, Derek R.
During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less
Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems
NASA Astrophysics Data System (ADS)
White, M. D.
2011-12-01
Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. This paper describes and demonstrates a numerical solution scheme for ternary hydrate systems that seeks a balance between accuracy and computational efficiency. This scheme uses a generalize cubic equation of state, functional forms for the hydrate equilibria and cage occupancies, variable switching scheme for phase transitions, and kinetic exchange of hydrate formers (i.e., CH4, CO2, and N2) between the mobile phases (i.e., aqueous, liquid CO2, and gas) and hydrate phase. Accuracy of the scheme will be evaluated by comparing property values and phase equilibria against experimental data. Computational efficiency of the scheme will be evaluated by comparing the base scheme against variants. The application of interest will the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.
NASA Astrophysics Data System (ADS)
Akazawa, Housei; Ueno, Yuko
2014-01-01
Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.
NASA Astrophysics Data System (ADS)
Zolotov, Mikhail
2018-01-01
Chemical and phase compositions of Venus's surface could reflect history of gas- and fluid-rock interactions, recent and past climate changes, and a loss of water from the Earth's sister planet. The concept of chemical weathering on Venus through gas-solid type reactions has been established in 1960s after the discovery of hot and dense CO2-rich atmosphere inferred from Earth-based and Mariner 2 radio emission data. Initial works suggested carbonation, hydration, and oxidation of exposed igneous rocks and a control (buffering) of atmospheric gases by solid-gas type chemical equilibria in the near-surface lithosphere. Calcite, quartz, wollastonite, amphiboles, and Fe oxides were considered likely secondary minerals. Since the late 1970s, measurements of trace gases in the sub-cloud atmosphere by Pioneer Venus and Venera entry probes and Earth-based infrared spectroscopy doubted the likelihood of hydration and carbonation. The H2O gas content appeared to be low to allow a stable existence of hydrated and a majority of OH-bearing minerals. The concentration of SO2 was too high to allow the stability of calcite and Ca-rich silicates with respect to sulfatization to CaSO4. In 1980s, the supposed ongoing consumption of atmospheric SO2 to sulfates gained support by the detection of an elevated bulk S content at Venera and Vega landing sites. The induced composition of the near-surface atmosphere implied oxidation of ferrous minerals to magnetite and hematite, consistent with the infrared reflectance of surface materials. The likelihood of sulfatization and oxidation has been illustrated in modeling experiments at simulated Venus conditions. Venus's surface morphology suggests that hot surface rocks and fines of mainly mafic composition contacted atmospheric gases during several hundreds of millions years since a global volcanic resurfacing. Some exposed materials could have reacted at higher and lower temperatures in a presence of diverse gases at different altitudinal, volcanic, impact, and atmospheric settings. On highly deformed tessera terrains, more ancient rocks of unknown composition could reflect interactions with putative water-rich atmospheres and even aqueous solutions. Salt-, Fe oxide, or silica-rich formations would indicate past aqueous processes. The apparent diversity of affected solids, surface temperatures, pressures, and gas/fluid compositions throughout Venus's history implies multiple signs of chemical alteration, which remain to be investigated. The current understanding of chemical weathering is limited by the uncertain composition of the deep atmosphere, by the lack of direct data on the phase composition of surface materials, and by the uncertain data on thermodynamics of minerals and their solid solutions. In the preparation for further entry probe and lander missions, rock alteration needs to be investigated through chemical kinetic experiments and calculations of solid-gas(fluid) equilibria to constrain past and present processes.
Custer, Jenny E; Goddard, Bryan D; Matter, Stephen F; Kaneshiro, Edna S
2014-06-01
The oral cariogenic bacterial pathogen Streptococcus mutans strain UA159 has become an important research organism strain since its genome was sequenced. However, there is a paucity of information on its lipidome using direct analytical biochemical approaches. We here report on comprehensive analyses of the major lipid classes and their fatty acids in cells grown in batch standing cultures. Using 2-D high-performance thin-layer chromatography lipid class composition changes were detected with culture age. More lipid components were detected in the stationary-phase compared to log-phase cells. The major lipids identified included 1,3-bis(sn-3'-phosphatidyl)-sn-glycerol (phosphatidylglycerol), 1,3-diphosphatidylglycerol (cardiolipin), aminoacyl-phosphatidylglycerol, monoglucosyldiacylglycerol, diglucosyldiacylglycerol, diglucosylmonoacylglycerol and, glycerophosphoryldiglucosyldiacylglycerol. Culture age also affected the fatty acid composition of the total polar lipid fraction. Thus, the major lipid classes detected in log-phase and stationary-phase cells were isolated and their fatty acids were analyzed by gas-liquid chromatography to determine the basis for the fatty acid compositional changes in the total polar lipid fraction. The analyses showed that the relative proportions of these acids changed with culture age within individual lipid classes. Hence fatty acid changes in the total polar lipid fraction reflected changes in both lipid class composition and fatty acid compositions within individual lipid classes.
The molecular composition of dense interstellar clouds
NASA Technical Reports Server (NTRS)
Allen, M.; Robinson, G. W.
1977-01-01
Presented in this paper is an ab initio chemical model for dense interstellar clouds that incorporates 598 grain surface reactions, with small grains providing the reaction area. Gas-phase molecules are depleted through collisions with grains. The abundances of 372 chemical species are calculated as a function of time and are found to be of sufficient magnitude to explain most observations. Peak abundances are achieved on time scales of the order of 100,000 to 1 million years, depending on cloud density and kinetic temperature. The reaction rates for ion-molecule chemistry are approximately the same, indicating that surface and gas-phase chemistry may be coupled in certain regions. The composition of grain mantles is shown to be a function of grain radius. In certain grain-size ranges, large molecules containing two or more heavy atoms are more predominant than lighter 'ices' - H2O, NH3, and CH4. It is possible that absorption due to these large molecules in the mantle may contribute to the observed 3-micron band in astronomical spectra.
Structural and thermodynamic properties of the Cm III ion solvated by water and methanol
Kelley, Morgan P.; Yang, Ping; Clark, Sue B.; ...
2016-04-27
The geometric and electronic structures of the 9-coordinate Cm 3+ ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller–Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion–solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion–solvent dissociation energy and the ion–solvent distance are shownmore » to be dependent on the solvent-shell composition. Furthermore, this has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle.« less
Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating
NASA Astrophysics Data System (ADS)
Rosli, Z. M.; Kwan, W. L.; Juoi, J. M.
2016-07-01
Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (RN), and substrate temperature (TS). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % RN. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB2 phase within the coatings. The TS, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.
Savareear, Benjamin; Lizak, Radoslaw; Brokl, Michał; Wright, Chris; Liu, Chuan; Focant, Jean-Francois
2017-10-20
A method involving headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was developed and optimised to elucidate the volatile composition of the particulate phase fraction of aerosol produced by tobacco heating products (THPs). Three SPME fiber types were studied in terms of extraction capacity and precision measurements. Divinylbenzene polydimethylsiloxane appeared as the most efficient coating for these measurements. A central composite design of experiment was utilised for the optimization of the extraction conditions. Qualitative and semi-quantitative analysis of the headspace above THP aerosol condensate was carried out using optimised extraction conditions. Semi-quantitative analyses of detected constituents were performed by assuming that their relative response factors to the closest internal standard ( i t R ) were equal to 1. Using deconvoluted mass spectral data (library similarity and reverse match >750) and linear retention indices (match window of ±15 index units), 205 peaks were assigned to individual compounds, 82 of which (including 43 substances previously reported to be present in tobacco) have not been reported previously in tobacco aerosol. The major volatile fraction of the headspace contained ketones, alcohols, aldehydes, alicyclic hydrocarbons alkenes, and alkanes. The method was further applied to compare the volatiles from the particulate phase of aerosol composition of THP with that of reference cigarette smoke and showed that the THP produced a less complex chemical mixture. This new method showed good efficiency and precision for the peak areas and peak numbers from the volatile fraction of aerosol particulate phase for both THP and reference cigarettes. Copyright © 2017 Elsevier B.V. All rights reserved.
Composition, morphology, and growth of clusters in a gas of particles with random interactions
NASA Astrophysics Data System (ADS)
Azizi, Itay; Rabin, Yitzhak
2018-03-01
We use Langevin dynamics simulations to study the growth kinetics and the steady-state properties of condensed clusters in a dilute two-dimensional system of particles that are all different (APD) in the sense that each particle is characterized by a randomly chosen interaction parameter. The growth exponents, the transition temperatures, and the steady-state properties of the clusters and of the surrounding gas phase are obtained and compared with those of one-component systems. We investigate the fractionation phenomenon, i.e., how particles of different identities are distributed between the coexisting mother (gas) and daughter (clusters) phases. We study the local organization of particles inside clusters, according to their identity—neighbourhood identity ordering (NIO)—and compare the results with those of previous studies of NIO in dense APD systems.
Effect of Bubbles and Silica Dissolution on Melter Feed Rheology during Conversion to Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.
As the nuclear waste glass melter feed is converted to molten glass, the feed becomes a continuous glass-forming melt where dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion as it occurs during melting. We studied the melter feed viscosity during heating and correlated it with volume fractions of dissolving quartz particles and gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles,more » gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases.« less
Defense Small Business Innovation Research Program (SBIR). Program Solicitation Number 89.1. FY-1989
1989-01-06
scale testing, such as plasma-arc and oxyacetylene torch test are performed. However, correlations to relate ablation rate from these test data to...helicopter rotor. In phase II, the contractor should construct and demonstrate a working model. 36 A89-010 TITLE: Smooth, Erosion Resistant Coatings ...for Organic Matrix Composites OBJECTIVE: Erosion Resistant Coatings for Organic Matrix Composites for use in Compressor Section of Future Gas Turbine
Advances in covalent organic frameworks in separation science.
Qian, Hai-Long; Yang, Cheng-Xiong; Wang, Wen-Long; Yang, Cheng; Yan, Xiu-Ping
2018-03-23
Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. Copyright © 2018 Elsevier B.V. All rights reserved.
Fundamental and applied aspects of the chemistry of radioactive iodine in gas and aqueous media
NASA Astrophysics Data System (ADS)
Kulyukhin, Sergei A.
2012-10-01
The results of investigations carried out in the past 15-20 years in the chemistry of radioactive iodine in the gas phase and in aqueous media of various compositions are described systematically and analyzed. The prospects for practical application of the obtained data in various fields of nuclear power industry including accidents at nuclear power plants and enterprises engaged in spent nuclear fuel reprocessing are estimated. The bibliography includes 206 references.
Mixture optimization for mixed gas Joule-Thomson cycle
NASA Astrophysics Data System (ADS)
Detlor, J.; Pfotenhauer, J.; Nellis, G.
2017-12-01
An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.
NASA Technical Reports Server (NTRS)
Zolotov, M. Y.; Mironenko, M. V.; Shock, E. L.
2005-01-01
Ordinary chondrites are the most abundant class of meteorites that could represent rocky parts of solar system bodies. However, even the most primitive unequilibrated ordinary chondrites (UOC) reveal signs of mild alteration that affected the matrix and peripheral zones of chondrules. Major chemical changes include oxidation of kamacite, alteration of glass, removal of alkalis, Al, and Si from chondrules, and formation of phases enriched in halogens, alkalis, and hydrogen. Secondary mineralogical changes include formation of magnetite, ferrous olivine, fayalite, pentlandite, awaruite, smectites, phosphates, carbonates, and carbides. Aqueous alteration is consistent with the oxygen isotope data for magnetite. The presence of secondary magnetite, Ni-rich metal alloys, and ferrous silicates in UOC implies that H2O was the oxidizing agent. However, oxidation by H2O means that H2 is produced in each oxidative pathway. In turn, production of H2, and its redistribution and possible escape should have affected total pressure, as well as the oxidation state of gas, aqueous and mineral phases in the parent body. Here we use equilibrium thermodynamic modeling to explore water-rock reactions in UOC. The chemical composition of gas, aqueous, and mineral phases is considered.
Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation.
Preis, S; Panorel, I C; Kornev, I; Hatakka, H; Kallas, J
2013-01-01
Ozone and hydroxyl radical are the most active oxidizing species in water treated with gas-phase pulsed corona discharge (PCD). The ratio of the species dependent on the gas phase composition and treated water contact surface was the objective for the experimental research undertaken for aqueous phenol (fast reaction) and oxalic acid (slow reaction) solutions. The experiments were carried out in the reactor, where aqueous solutions showered between electrodes were treated with 100-ns pulses of 20 kV voltage and 400 A current amplitude. The role of ozone increased with increasing oxygen concentration and the oxidation reaction rate. The PCD treatment showed energy efficiency surpassing that of conventional ozonation.
Kleeberg, K K; Liu, Y; Jans, M; Schlegelmilch, M; Streese, J; Stegmann, R
2005-01-01
A solid-phase microextraction (SPME) method has been developed for the extraction of odorous compounds from waste gas. The enriched compounds were characterized by gas chromatography-mass spectrometry (GC-MS) and gas chromatography followed by simultaneous flame ionization detection and olfactometry (GC-FID/O). Five different SPME fiber coatings were tested, and the carboxen/polydimethylsiloxane (CAR/PDMS) fiber showed the highest ability to extract odorous compounds from the waste gas. Furthermore, parameters such as exposure time, desorption temperature, and desorption time have been optimized. The SPME method was successfully used to characterize an odorous waste gas from a fat refinery prior to and after waste gas treatment in order to describe the treatment efficiency of the used laboratory scale plant which consisted of a bioscrubber/biofilter combination and an activated carbon adsorber. The developed method is a valuable approach to provide detailed information of waste gas composition and complements existing methods for the determination of odors. However, caution should be exercised if CAR/PDMS fibers are used for the quantification of odorous compounds in multi-component matrices like waste gas emissions since the relative affinity of each analyte was shown to differ according to the total amount of analytes present in the sample.
Fibrous-Ceramic/Aerogel Composite Insulating Tiles
NASA Technical Reports Server (NTRS)
White, Susan M.; Rasky, Daniel J.
2004-01-01
Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at normal atmospheric pressure is not much greater than that of the fibrous ceramic alone in a vacuum.
NASA Astrophysics Data System (ADS)
Akhbari, D.
2017-12-01
Bravo Dome, the largest CO2 reservoir in the US, is a hydrogeologically closed system that has stored a very large amount of CO2 on millennial time scales. The pre-production gas pressures in Bravo Dome indicate that the reservoir is highly under-pressured and is divided into separate pressure compartments that do not communicate hydrologically. Previous studies used the noble gas composition at Bravo Dome to constrain the amount of dissolved CO2 into the brine. This CO2 dissolution into brine plays an important role in the observed under-pressure at the reservoir. However, the dissolution rates and transport mechanisms remain unknown. In this study, we are looking into reservoir pressures and noble gas composition in the northeastern section of the reservoir to constrain timescales of CO2 dissolution. We are interested in northeastern part of the reservoir because the largest amount of CO2 was dissolved into brine in this section. Also, we specifically look into the evolution of the CO2/3He and 20Ne concentration during convective CO2 dissolution at Bravo Dome. 20Ne has atmospheric origin and is initially in the brine, while 3He and CO2 have magmatic sources and were introduced with the gas. CO2/3He decreases as more CO2 dissolves into brine, due to the higher solubility of CO2 compare to that of 3He. However, 20Ne concentration in the gas increases due to exsolution of 20Ne from brine into the gas phase. We present 2D numerical simulation that demonstrate the persistence of CO2 over 1Ma and reproduce the observed reservoir pressures and noble gas compositions. Our results indicate that convection is required to produce observed changes in gas composition. But diffusion makes a significant contribution to mass transport.
Glass composite waste forms for iodine confined in bismuth-embedded SBA-15
NASA Astrophysics Data System (ADS)
Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung
2016-11-01
The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.
Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilley, Lorie M.
2015-04-13
The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded bymore » fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO 2-rich and contain low concentrations of light gases (i.e. H 2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to create fluid models for the system. The hope is that the methodologies developed will allow bulk fluid inclusion gas analysis to be a useful tool for estimating relative temperatures, identifying the sources and origins of the geothermal fluids, and developing conceptual models that can be used to help target areas of enhanced permeability.« less
Parkhurst, David L.; Appelo, C.A.J.
1999-01-01
PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.
Simulations of the thermodynamics and kinetics of NH3 at the RuO2 (110) surface
NASA Astrophysics Data System (ADS)
Erdtman, Edvin; Andersson, Mike; Lloyd Spetz, Anita; Ojamäe, Lars
2017-02-01
Ruthenium(IV)oxide (RuO2) is a material used for various purposes. It acts as a catalytic agent in several reactions, for example oxidation of carbon monoxide. Furthermore, it is used as gate material in gas sensors. In this work theoretical and computational studies were made on adsorbed molecules on RuO2 (110) surface, in order to follow the chemistry on the molecular level. Density functional theory calculations of the reactions on the surface have been performed. The calculated reaction and activation energies have been used as input for thermodynamic and kinetics calculations. A surface phase diagram was calculated, presenting the equilibrium composition of the surface at different temperature and gas compositions. The kinetics results are in line with the experimental studies of gas sensors, where water has been produced on the surface, and hydrogen is found at the surface which is responsible for the sensor response.
Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface
NASA Astrophysics Data System (ADS)
Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.
2018-03-01
Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.
An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor
Calvo, L. F.; García, A. I.; Otero, M.
2013-01-01
The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 < A/F < 0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863
Isotope effect of mercury diffusion in air
Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.
2014-01-01
Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380
Isotope effect of mercury diffusion in air.
Koster van Groos, Paul G; Esser, Bradley K; Williams, Ross W; Hunt, James R
2014-01-01
Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature.
Using multiple isotopes to understand the source of ingredients used in golden beverages
NASA Astrophysics Data System (ADS)
Wynn, J. G.
2011-12-01
Traditionally, beer contains 4 simple ingredients: water, barley, hops and yeast. Each of these ingredients used in the brewing process contributes some combination of a number of "traditional" stable isotopes (i.e., isotopes of H, C, O, N and S) to the final product. As an educational exercise in an "Analytical Techniques in Geology" course, a group of students analyzed the isotopic composition of the gas, liquid and solid phases of a variety of beer samples collected from throughout the world (including other beverages). The hydrogen and oxygen isotopic composition of the water followed closely the isotopic composition of local meteoric water at the source of the brewery, although there is a systematic offset from the global meteoric water line that may be due to the effects of CO2-H2O equilibration. The carbon isotopic composition of the CO2 reflected that of the solid residue (the source of carbon used as a fermentation substrate), but may potentially be modified by addition of gas-phase CO2 from an inorganic source. The carbon isotopic composition of the solid residue similarly tracks that of the fermentation substrate, and may indicate some alcohol fermented from added sugars in some cases. The nitrogen isotopic composition of the solid residue was relatively constant, and may track the source of nitrogen in the barley, hops and yeast. Each of the analytical methods used is a relatively standard technique used in geological applications, making this a "fun" exercise for those involved, and gives the students hands-on experience with a variety of analytes from a non-traditional sample material.
Barton, P.B.; Toulmin, P.
1964-01-01
A new method for the determination of the fugacity of sulfur in laboratory systems consists of visual observation of the development and decomposition of a sulfide tarnish phase on silver-gold alloy (electrum) of precisely known composition. The alloy system is calibrated against pure sulfur. The method has the following advantages: simple apparatus; ability to cover a large range of fugacity of S2; ability to cover a large temperature range by permitting runs of long duration; ability to tolerate other components in the gas phase; and ease of recovery of the quenched charges for determinations of phases and compositions. Results obtained by the electrum-tarnish method are in satisfactory agreement with those obtained by other workers for the fs2 vs. T curves for the assemblage Ni(1-x)S + NiS2. The electrum-tarnish method shows promise for investigating many other reactions. Univariant reactions studied by this method can be represented as lines forming a genetic grid in terms of the environmental parameters fs2 and T, The slopes of such lines can yield valuable thermodynamic data for the phases involved, but activity coefficients must be known for phases of variable composition. ?? 1964.
D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; ...
2017-01-04
Here, we present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO 2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C 5 compounds were major components (~50%) of SOA. The SOA composition and effective volatility evolved both as amore » function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, >30% of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.« less
Modelling the Composition of Outgassing Bubbles at Basaltic Open Vent Volcanoes
NASA Astrophysics Data System (ADS)
Edmonds, M.; Clements, N.; Houghton, B. F.; Oppenheimer, C.; Jones, R. L.; Burton, M. R.
2015-12-01
Basaltic open vent volcanoes exhibit a wide range in eruption styles, from passive outgassing to Strombolian and Hawaiian explosive activity. Transitions between these styles are linked to contrasting two-phase (melt and gas) flow regimes in the conduit system. A wealth of data now exists characterising the fluxes and compositions of gases emitted from these volcanoes, alongside detailed observations of patterns of outgassing at the magma free surfaces. Complex variations in gas composition are apparent from high temporal resolution measurement techniques such as open path spectroscopy. This variability with time is likely a function of individual bubbles' histories of growth during ascent, with variable degrees of kinetic inhibition. Our previous studies at Kilauea and Stromboli have, for example, linked CO2-rich gases with the bursting of bubbles that last equilibrated at some depth beneath the surface. However, very few studies have attempted to reconcile such observations with quantitative models of diffusion-limited bubble growth in magmas prior to eruption. We present here an analytical model that simulates the growth of populations of bubbles by addition of volatile mass during decompression, with growth limited by diffusion. The model simulates a range of behaviors between the end members of separated two-phase flow and homogeneous bubbly flow in the conduit, tied to thermodynamic models of solubility and partitioning of volatile species (carbon, water, sulfur). We explore the effects of the form of bubble populations at depth, melt viscosity, total volatile content, magma decompression rate and other intrinsic parameters on expected gas compositions at the surface and consider implications for transitions between eruption styles. We compare the the model to data suites from Stromboli and Kilauea.
NASA Technical Reports Server (NTRS)
Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.
2015-01-01
To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.
Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.
1999-01-01
The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.
HI-SCALE Nanoparticle Composition and Precursors Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James; Stark, Harald; Browne, Eleanor
From 21 August to 27 September, 2016, during the second Intensive Operational Period (IOP) of the Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecoystems (HI-SCALE) field campaign, a suite of instruments were placed in the Guest Instrument Facility (GIF) at the Central Facility of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site in Lamont, Oklahoma. The goal of these measurements was to fully characterize the formation and evolution of atmospheric aerosol particles through measurements of gas-phase precursor and ambient nanoparticle composition. Specifically, we sought to: 1. investigate the role ofmore » acid-base chemistry in new-particle growth through measurements of ammonia and amines as well as organic and inorganic acids in both atmospheric nanoparticles and the gas phase; 2. investigate the contribution of other surface-area or volume-controlled processes to nanoparticle formation and growth, such as the uptake of extremely low volatility organic compounds (ELVOCs); 3. evaluate the performance of a new instrument being developed with funding from the DOE Small Business Innovation Research (SBIR) program for measuring gas-phase amines and related compounds; and 4. together with colleagues measuring on the ground and onboard the ARM Gulfstream-1 (G-1) aircraft during HI-SCALE, create a comprehensive data set related to new particle formation and growth that can be used in modeling efforts by the research team as well as DOE collaborators.« less
NASA Technical Reports Server (NTRS)
Zehe, Michael J.; Jaffe, Richard L.
2010-01-01
High-level ab initio calculations have been performed on the exo and endo isomers of gas-phase tetrahydrodicyclopentadiene (THDCPD), a principal component of the jet fuel JP10, using the Gaussian Gx and Gx(MPx) composite methods, as well as the CBS-QB3 method, and using a variety of isodesmic and homodesmotic reaction schemes. The impetus for this work is to help resolve large discrepancies existing between literature measurements of the formation enthalpy Delta (sub f)H deg (298) for exo-THDCPD. We find that use of the isodesmic bond separation reaction C10H16 + 14CH4 yields 12C2H6 yields results for the exo isomer (JP10) in between the two experimentally accepted values, for the composite methods G3(MP2), G3(MP2)//B3LYP, and CBS-QB3. Application of this same isodesmic bond separation scheme to gas-phase adamantane yields a value for Delta (sub f)H deg (298) within 5 kJ/mol of experiment. Isodesmic bond separation calculations for the endo isomer give a heat of formation in excellent agreement with the experimental measurement. Combining our calculated values for the gas-phase heat of formation with recent measurements of the heat of vaporization yields recommended values for Delta (sub f)H deg (298)liq of -126.4 and -114.7 kJ/mol for the exo and endo isomers, respectively.
THERMODYNAMICS OF THE CHLORINE-HYDROGEN-SILICON SYSTEM.
The equilibrium composition of the gas phase and the weight of silicon deposited were calculated for SiCl4 /H2 and SiHCl3/H2 mixtures at temperatures... SiCl4 /H2 and SiHCl3/H2 mixtures may be explained in terms of thermodynamics alone. (Author)
Evidence for extreme Ti-50 enrichments in primitive meteorites
NASA Technical Reports Server (NTRS)
Fahey, A.; Mckeegan, K. D.; Zinner, E.; Goswami, J. N.
1985-01-01
The results of the first high mass resolution ion microprobe study of Ti isotopic compositions in individual refractory grains from primitive carbonaceous meteorites are reported. One hibonite from the Murray carbonaceous chondrite has a 10 percent excess of Ti-50, 25 times higher than the maximum value previously reported for bulk samples of refractory inclusions from carbonaceous chondrites. The variation of the Ti compositions between different hibonite grains, and among pyroxenes from a single Allende refractory inclusion, indicates isotopic inhomogeneities over small scale lengths in the solar nebula and emphasizes the importance of the analysis of small individual phases. This heterogeneity makes it unlikely that the isotopic anomalies were carried into the solar system in the gas phase.
Trace gas and particulate emissions from biomass burning in temperate ecosystems
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.
1991-01-01
Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.
Steam gasification of waste tyre: Influence of process temperature on yield and product composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portofino, Sabrina, E-mail: sabrina.portofino@enea.it; Donatelli, Antonio; Iovane, Pierpaolo
Highlights: ► Steam gasification of waste tyre as matter and energy recovery treatment. ► Process temperature affects products yield and gas composition. ► High temperature promotes hydrogen production. ► Char exploitation as activated carbon or carbon source. - Abstract: An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850–1000 °C, holding all the other operationalmore » parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid–gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000 °C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.« less
NASA Astrophysics Data System (ADS)
Virgile, R.
2016-12-01
The continental degassing of mantle volatiles is known from a variety of areas characterized by Asthenosphere updoming, such as the US Basin and Range and the European Cenozoic Rift System. Mantle degassing is there usually associated to magmatic provinces where non-volcanic upwellings of cold to hot waters are frequently associated with high CO2 gas loads. The resulting aquifers, springs and mofets express variable gas compositions which are often attributed to the mixing of crustal and mantle CO2, and less often to the variable degassing states of the waters. Indeed, the compositions of water and gas in CO2, δ13C and the noble gases may justify both models. However, the implications of each model for the bulk degassing mass quantification of mantle volatiles are drastically different, and would therefore need to be confirmed or rejected on a case by case basis. We introduce here a new model for predicting fluid phase equilibrium for systems comprising CO2-CH4-H2-H2S-N2-O2-He-Ne-Ar-Kr-Xe-H2O-NaCl at shallow subsurface conditions (1-250 bars, 0-150°C). The model was applied in P-T conditions comparable to non-volcanic CO2 degassing systems, where initial fluids were defined as variable mixtures of air equilibrated water (AEW) and mantle volatiles (CO2, He, CO2/3He = 5 x109). Literature data from European non-volcanic mantle degassing systems were compiled and compared to different modeling scenarios. The distribution of the CO2/3He (from 108 to 1012) and N2/3He (from 106 to 1011) ratios in natural samples are consistent with the open system degassing of initial fluids at depths above 2000m, with variable recharges of AEW. Initial single phase fluids are composed of up to 300 mol.m-3 CO2, 7 x10-3 mol.m-3 He and N2 with typical AEW contents (0.5 mol.m-3). Most degassed systems correspond to 98% degassed initial fluids, which incorporated up to 10% of fresh AEW subsequently to degassing. Our results suggest that fluid phase fractionation effects alone are sufficient to generate the range of compositions observed in the studied natural water-gas systems, without the need to invoke a crustal CO2 end-member.
NASA Astrophysics Data System (ADS)
Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.
2017-12-01
An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.
Steam gasification of waste tyre: influence of process temperature on yield and product composition.
Portofino, Sabrina; Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto; Galvagno, Sergio
2013-03-01
An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850-1000°C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid-gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000°C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shock wave induced condensation in fuel-rich gaseous and gas-particles mixtures
NASA Astrophysics Data System (ADS)
Fomin, P. A.
2018-03-01
The possibility of fuel vapor condensation in shock waves in fuel-rich (cyclohexane-oxygen) gaseous mixtures and explosion safety aspects of this effect are discussed. It is shown, that condensation process can essentially change the chemical composition of the gas. For example, the molar fraction of the oxidizer can increase in a few times. As a result, mixtures in which the initial concentration of fuel vapor exceeds the Upper Flammability Limit can, nevertheless, explode, if condensation shifts the composition of the mixture into the ignition region. The rate of the condensation process is estimated. This process can be fast enough to significantly change the chemical composition of the gas and shift it into the flammable range during the compression phase of blast waves, generated by explosions of fuel-vapor clouds or rapture of pressurized chemical reactors, with characteristic size of a few meters. It is shown that the presence of chemically inert microparticles in the gas mixtures under consideration increases the degree of supercooling and the mass of fuel vapors that have passed into the liquid and reduces the characteristic condensation time in comparison with the gas mixture without microparticles. The fuel vapor condensation should be taken into account in estimation the explosion hazard of chemical reactors, industrial and civil constructions, which may contain fuel-rich gaseous mixtures of heavy hydrocarbons with air.
The Effect of Foaming and Silica Dissolution on Melter Feed Rheology during Conversion to Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.
As the nuclear waste glass melter feed is converted to molten glass, the feed eventually becomes a continuous glass-forming melt in which dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the melter feed is crucial for understanding the feed-to-glass conversion as it occurs in the cold cap. We measured the viscosity during heating of the feed and correlated it with the independently determined volume fractions of dissolving quartz particles and the gas phase. The measurement was performed with a rotating spindle rheometer on the melter feed heated at 5 K/min starting at severalmore » different temperatures. The effect of quartz particles, gas bubbles, and compositional inhomogeneity on the glass-forming melt viscosity was determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases to data.« less
Green spherules from Apollo 15 - Inferences about their origin from inert gas measurements.
NASA Technical Reports Server (NTRS)
Lakatos, S.; Yaniv, A.; Heymann, D.
1973-01-01
Green spherules from the 'clod' 15426 and from fines 15421 contain about 100 times less trapped inert gases than normal bulk fines from Apollo 15. These spherules have apparently never been directly exposed to the solar wind. Spherules from other fines contain about 10 times more trapped gas than those from the 'clod.' The gas in the former is surface correlated. However, spherules from fines 15401 are exceptionally gas-poor. The trapped gases can be of solar-wind origin, but this origin requires a two-stage model for the spherules from the clods. Another possibility is that the gases were absorbed from an ambient gas phase. The trapped gases may also be assumed to represent primordial lunar gas. The composition of this gas is then similar to the 'solar' or 'unfractionated' component of gas-rich meteorites, but unlike that in most of the carbonaceous chondrites.
Anal gas evacuation and colonic microbiota in patients with flatulence: effect of diet.
Manichanh, Chaysavanh; Eck, Anat; Varela, Encarna; Roca, Joaquim; Clemente, José C; González, Antonio; Knights, Dan; Knight, Rob; Estrella, Sandra; Hernandez, Carlos; Guyonnet, Denis; Accarino, Anna; Santos, Javier; Malagelada, Juan-R; Guarner, Francisco; Azpiroz, Fernando
2014-03-01
To characterise the influence of diet on abdominal symptoms, anal gas evacuation, intestinal gas distribution and colonic microbiota in patients complaining of flatulence. Patients complaining of flatulence (n=30) and healthy subjects (n=20) were instructed to follow their usual diet for 3 days (basal phase) and to consume a high-flatulogenic diet for another 3 days (challenge phase). During basal phase, patients recorded more abdominal symptoms than healthy subjects in daily questionnaires (5.8±0.3 vs 0.4±0.2 mean discomfort/pain score, respectively; p=<0.0001) and more gas evacuations by an event marker (21.9±2.8 vs 7.4±1.0 daytime evacuations, respectively; p=0.0001), without differences in the volume of gas evacuated after a standard meal (262±22 and 265±25 mL, respectively). On flatulogenic diet, both groups recorded more abdominal symptoms (7.9±0.3 and 2.8±0.4 discomfort/pain, respectively), number of gas evacuations (44.4±5.3 and 21.7±2.9 daytime evacuations, respectively) and had more gas production (656±52 and 673±78 mL, respectively; p<0.05 vs basal diet for all). When challenged with flatulogenic diet, patients' microbiota developed instability in composition, exhibiting variations in the main phyla and reduction of microbial diversity, whereas healthy subjects' microbiota were stable. Taxa from Bacteroides fragilis or Bilophila wadsworthia correlated with number of gas evacuations or volume of gas evacuated, respectively. Patients complaining of flatulence have a poor tolerance of intestinal gas, which is associated with instability of the microbial ecosystem.
Gas Release as a Deformation Signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Stephen J.
Radiogenic noble gases are contained in crustal rock at inter and intra granular sites. The gas composition depends on lithology, geologic history, fluid phases, and the aging effect by decay of U, Th, and K. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes inmore » gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. The purpose of this study has been to evaluate the effect of deformation/strain rate upon noble gas release. Four triaxial experiments were attempted for a strain rate range of %7E10-8 /s (180,000s) to %7E 10-4/s (500s); the three fully successful experiments (at the faster strain rates) imply the following: (1) helium is measurably released for all strain rates during deformation, this release is in amounts 1-2 orders of magnitude greater than that present in the air, and (2) helium gas release increases with decreasing strain rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regmi, Yagya; Rogers, Bridget; Labbe, Nicole
We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less
Regmi, Yagya; Rogers, Bridget; Labbe, Nicole; ...
2017-07-13
We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less
Málek, Přemysl; Minárik, Peter; Chráska, Tomáš; Novák, Pavel; Průša, Filip
2017-01-01
The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder’s microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al3Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder. PMID:28930192
Sookhak Lari, Kaveh; Johnston, Colin D; Rayner, John L; Davis, Greg B
2018-03-05
Remediation of subsurface systems, including groundwater, soil and soil gas, contaminated with light non-aqueous phase liquids (LNAPLs) is challenging. Field-scale pilot trials of multi-phase remediation were undertaken at a site to determine the effectiveness of recovery options. Sequential LNAPL skimming and vacuum-enhanced skimming, with and without water table drawdown were trialled over 78days; in total extracting over 5m 3 of LNAPL. For the first time, a multi-component simulation framework (including the multi-phase multi-component code TMVOC-MP and processing codes) was developed and applied to simulate the broad range of multi-phase remediation and recovery methods used in the field trials. This framework was validated against the sequential pilot trials by comparing predicted and measured LNAPL mass removal rates and compositional changes. The framework was tested on both a Cray supercomputer and a cluster. Simulations mimicked trends in LNAPL recovery rates (from 0.14 to 3mL/s) across all remediation techniques each operating over periods of 4-14days over the 78day trial. The code also approximated order of magnitude compositional changes of hazardous chemical concentrations in extracted gas during vacuum-enhanced recovery. The verified framework enables longer term prediction of the effectiveness of remediation approaches allowing better determination of remediation endpoints and long-term risks. Copyright © 2017 Commonwealth Scientific and Industrial Research Organisation. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gallimore, Peter J.; Mahon, Brendan M.; Wragg, Francis P. H.; Fuller, Stephen J.; Giorio, Chiara; Kourtchev, Ivan; Kalberer, Markus
2017-08-01
The chemical composition of organic aerosols influences their impacts on human health and the climate system. Aerosol formation from gas-to-particle conversion and in-particle reaction was studied for the oxidation of limonene in a new facility, the Cambridge Atmospheric Simulation Chamber (CASC). Health-relevant oxidising organic species produced during secondary organic aerosol (SOA) formation were quantified in real time using an Online Particle-bound Reactive Oxygen Species Instrument (OPROSI). Two categories of reactive oxygen species (ROS) were identified based on time series analysis: a short-lived component produced during precursor ozonolysis with a lifetime of the order of minutes, and a stable component that was long-lived on the experiment timescale (˜ 4 h). Individual organic species were monitored continuously over this time using Extractive Electrospray Ionisation (EESI) Mass Spectrometry (MS) for the particle phase and Proton Transfer Reaction (PTR) MS for the gas phase. Many first-generation oxidation products are unsaturated, and we observed multiphase aging via further ozonolysis reactions. Volatile products such as C9H14O (limonaketone) and C10H16O2 (limonaldehyde) were observed in the gas phase early in the experiment, before reacting again with ozone. Loss of C10H16O4 (7-hydroxy limononic acid) from the particle phase was surprisingly slow. A combination of reduced C = C reactivity and viscous particle formation (relative to other SOA systems) may explain this, and both scenarios were tested in the Pretty Good Aerosol Model (PG-AM). A range of characterisation measurements were also carried out to benchmark the chamber against existing facilities. This work demonstrates the utility of CASC, particularly for understanding the reactivity and health-relevant properties of organic aerosols using novel, highly time-resolved techniques.
Computer Aided Design of Ni-Based Single Crystal Superalloy for Industrial Gas Turbine Blades
NASA Astrophysics Data System (ADS)
Wei, Xianping; Gong, Xiufang; Yang, Gongxian; Wang, Haiwei; Li, Haisong; Chen, Xueda; Gao, Zhenhuan; Xu, Yongfeng; Yang, Ming
The influence of molybdenum, tungsten and cobalt on stress-rupture properties of single crystal superalloy PWA1483 has been investigated using the simulated calculation of JMatPro software which ha s been widely used to develop single crystal superalloy, and the effect of alloying element on the stability of strengthening phase has been revealed by using the Thermo-Calc software. Those properties calculation results showed that the increasing of alloy content could facilitate the precipitation of TCP phases and increase the lattice misfit between γ and γ' phase, and the effect of molybdenum, tantalum was the strongest and that of cobalt was the weakest. Then the chemical composition was optimized, and the selected compositions showed excellent microstructure stability and stress-rupture properties by the confirmation of d-electrons concept and software calculation.
Radiolytic Gas-Driven Cryovolcanism in the Outer Solar System
NASA Technical Reports Server (NTRS)
Cooper, John F.; Cooper, Paul D.; Sittler, Edward C.; Sturner, Steven J.; Rymer, Abigail M.; Hill, Matthew E.
2007-01-01
Water ices in surface crusts of Europa, Enceladus, Saturn's main rings, and Kuiper Belt Objects can become heavily oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. Oxidant accumulations and gas production are manifested in part through observed H2O2 on Europa. tentatively also on Enceladus, and found elsewhere in gaseous or condensed phases at moons and rings of Jupiter and Saturn. On subsequent chemical contact in sub-surface environments with significant concentrations of primordially abundant reductants such as NH3 and CH4, oxidants of radiolytic origin can react exothermically to power gas-driven cryovolcanism. The gas-piston effect enormously amplifies the mass flow output in the case of gas formation at basal thermal margins of incompressible fluid reservoirs. Surface irradiation, H2O2 production, NH3 oxidation, and resultant heat, gas, and gas-driven mass flow rates are computed in the fluid reservoir case for selected bodies. At Enceladus the oxidant power inputs are comparable to limits on nonthermal kinetic power for the south polar plumes. Total heat output and plume gas abundance may be accounted for at Enceladus if plume activity is cyclic in high and low "Old Faithful" phases, so that oxidants can accumulate during low activity phases. Interior upwelling of primordially abundant NH3 and CH4 hydrates is assumed to resupply the reductant fuels. Much lower irradiation fluxes on Kuiper Belt Objects require correspondingly larger times for accumulation of oxidants to produce comparable resurfacing, but brightness and surface composition of some objects suggest that such activity may be ongoing.
NASA Astrophysics Data System (ADS)
Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.
2016-01-01
In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.
NASA Astrophysics Data System (ADS)
Zhilyaev, Yu. V.; Zelenin, V. V.; Orlova, T. A.; Panteleev, V. N.; Poletaev, N. K.; Rodin, S. N.; Snytkina, S. A.
2015-05-01
We have studied epitaxial layers of gallium nitride (GaN) in a template composition grown by surfactant-mediated hydride-chloride vapor phase epitaxy. The surfactant component was provided by 5 mass % additives of antimony and indium to the source of gallium. Comparative analysis of the obtained results shows evidence of the positive influence of surfactants on the morphology of epitaxial GaN layers.
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2018-04-01
To assist in the optimization of copper smelting and converting processes, accurate new measurements of the phase equilibria of the Cu-Fe-O-S-Si system have been undertaken. The experimental investigation was focused on the characterization of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1523 K (1250 °C), P(SO2) = 0.25 atm, and a range of P(O2)s. The experimental methodology, developed in PYROSEARCH, includes high-temperature equilibration of samples on substrate made from the silica primary phase in controlled gas atmospheres (CO/CO2/SO2/Ar) followed by rapid quenching of the equilibrium condensed phases and direct measurement of the phase compositions with electron-probe X-ray microanalysis (EPMA). The data provided in the present study at 1523 K (1250 °C) and the previous study by the authors at 1473 K (1200 °C) has enabled the determination of the effects of temperature on the phase equilibria of the multicomponent multiphase system, including such characteristics as the chemically dissolved copper in slag and Fe/SiO2 ratio at silica saturation as a function of copper concentration in matte. The new data will be used in the optimization of the thermodynamic database for the copper-containing systems.
Comprehensive Analysis of the Gas- and Particle-Phase Products of VOC Oxidation
NASA Astrophysics Data System (ADS)
Bakker-Arkema, J.; Ziemann, P. J.
2017-12-01
Controlled environmental chamber studies are important for determining atmospheric reaction mechanisms and gas and aerosol products formed in the oxidation of volatile organic compounds (VOCs). Such information is necessary for developing detailed chemical models for use in predicting the atmospheric fate of VOCs and also secondary organic aerosol (SOA) formation. However, complete characterization of atmospheric oxidation reactions, including gas- and particle-phase product yields, and reaction branching ratios, are difficult to achieve. In this work, we investigated the reactions of terminal and internal alkenes with OH radicals in the presence of NOx in an attempt to fully characterize the chemistry of these systems while minimizing and accounting for the inherent uncertainties associated with environmental chamber experiments. Gas-phase products (aldehydes formed by alkoxy radical decomposition) and particle-phase products (alkyl nitrates, β-hydroxynitrates, dihydroxynitrates, 1,4-hydroxynitrates, 1,4-hydroxycarbonyls, and dihydroxycarbonyls) formed through pathways involving addition of OH to the C=C double bond as well as H-atom abstraction were identified and quantified using a suite of analytical techniques. Particle-phase products were analyzed in real time with a thermal desorption particle beam mass spectrometer; and off-line by collection onto filters, extraction, and subsequent analysis of functional groups by derivatization-spectrophotometric methods developed in our lab. Derivatized products were also separated by liquid chromatography for molecular quantitation by UV absorbance and identification using chemical ionization-ion trap mass spectrometry. Gas phase aldehydes were analyzed off-line by collection onto Tenax and a 5-channel denuder with subsequent analysis by gas chromatography, or by collection onto DNPH-coated cartridges and subsequent analysis by liquid chromatography. The full product identification and quantitation, with careful minimization of uncertainties for the various components of the experiment and analyses, demonstrates our capability to comprehensively and accurately analyze the complex chemical composition of products formed in the oxidation of organic compounds in laboratory chamber studies.
Phase transitions in mixed gas hydrates: experimental observations versus calculated data.
Schicks, Judith M; Naumann, Rudolf; Erzinger, Jörg; Hester, Keith C; Koh, Carolyn A; Sloan, E Dendy
2006-06-15
This paper presents the phase behavior of multicomponent gas hydrate systems formed from primarily methane with small amounts of ethane and propane. Experimental conditions were typically in a pressure range between 1 and 6 MPa, and the temperature range was between 260 and 290 K. These multicomponent systems have been investigated using a variety of techniques including microscopic observations, Raman spectroscopy, and X-ray diffraction. These techniques, used in combination, allowed for measurement of the hydrate structure and composition, while observing the morphology of the hydrate crystals measured. The hydrate formed immediately below the three-phase line (V-L --> V-L-H) and contained crystals that were both light and dark in appearance. The light crystals, which visually were a single solid phase, showed a spectroscopic indication for the presence of occluded free gas in the hydrate. In contrast, the dark crystals were measured to be structure II (sII) without the presence of these occluded phases. Along with hydrate measurements near the decomposition line, an unexpected transformation process was visually observed at P-T-conditions in the stability field of the hydrates. Larger crystallites transformed into a foamy solid upon cooling over this transition line (between 5 and 10 K below the decomposition temperature). Below the transition line, a mixture of sI and sII was detected. This is the first time that these multicomponent systems have been investigated at these pressure and temperature conditions using both visual and spectroscopic techniques. These techniques enabled us to observe and measure the unexpected transformation process showing coexistence of different gas hydrate phases.
Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA
NASA Astrophysics Data System (ADS)
Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.
2015-12-01
An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.
Method and apparatus for sensing the natural frequency of a cantilevered body
Duncan, Michael G.
2000-01-01
A method and apparatus for measuring the natural resonant frequency of a spring element by monitoring a phase difference between an output signal from the spring element and an input signal to the spring element and by adjusting frequency of the input signal until a detected phase difference signals that the natural resonant frequency has been reached. The method and apparatus are applied to a micro-cantilevered elements used to measure gas compositions and concentrations. Such elements are provided with coatings that absorb gas to cause deflections and changes in the mass or spring constant of the cantilevered element. These changes correspond to changes in the natural resonant frequency of the cantilevered element which are measured using the method and apparatus described herein.
Low-Energy Collisions of Protonated Enantiopure Amino Acids with Chiral Target Gases
NASA Astrophysics Data System (ADS)
Kulyk, K.; Rebrov, O.; Ryding, M.; Thomas, R. D.; Uggerud, E.; Larsson, M.
2017-12-01
Here we report on the gas-phase interactions between protonated enantiopure amino acids ( l- and d-enantiomers of Met, Phe, and Trp) and chiral target gases [( R)- and ( S)-2-butanol, and ( S)-1-phenylethanol] in 0.1-10.0 eV low-energy collisions. Two major processes are seen to occur over this collision energy regime, collision-induced dissociation and ion-molecule complex formation. Both processes were found to be independent of the stereo-chemical composition of the interacting ions and targets. These data shed light on the currently debated mechanisms of gas-phase chiral selectivity by demonstrating the inapplicability of the three-point model to these interactions, at least under single collision conditions. [Figure not available: see fulltext.
Wang, Wenquan; Li, Wenmo; Xu, Hongyong
2017-07-11
The strengthening hard phases TiN/C 1- x N x Ti were generated by in-situ solid-gas reaction in Ni-based composite coatings prepared using a plasma spray welding process to reinforce the wear resistance of the coatings. The microstructures and properties of the coatings were investigated. The results showed that the coatings mainly consisted of phases such as TiN, C 1- x N x Ti, TiC, etc. A small amount of CrB, M₇C₃, and M 23 C₆ were also detected in the coatings by micro-analysis method. Compared with the originally pure NiCrBSi coatings, the hardness of the NiCrBSi coatings reinforced by in-situ solid-gas reaction was 900 HV 0.5 , increased by more than 35%. Consequently, the wear resistance of the reinforced coatings was greatly improved due to the finely and uniformly dispersed hard phases mentioned above. The weight losses after wear test for the two kinds of coatings were 15 mg and 8 mg, respectively.
NASA Technical Reports Server (NTRS)
Heymann, D.; Dziczkaniec, M.; Walker, A.; Huss, G.; Morgan, J. A.
1978-01-01
In the present paper, isotopic effects in magnesium generated in a proton-irradiated gas phase are examined, taking only (p,n), (p,d), and (p, alpha) reactions in magnesium, aluminum, and silicon into consideration. In the presence of proton radiation, the three elements are 'removed' from the gas phase by condensation. It is required that a value of Al-26/Al-27 greater than 6 times 10 to the -5th must be reached, consistent with the value deduced by Lee Papanastassiou, and Wasserburg (1976) from their studies of the Allende meteorite. The calculations show that fast aluminum condensation reduces the required proton fluence substantially, that a significant fraction of aluminum remains uncondensed when the above value of the Al-26/Al-27 ratio is reached, that a detectable MG-24 excess is very likely to occur, that detectable negative MG-28 anomalies can be generated, and that proton fluxes and irradiation times can be varied simultaneously, and over a wide range of values, without significant changes in the required proton fluence.
NASA Astrophysics Data System (ADS)
Takashima, Keisuke; Kaneko, Toshiro
2016-09-01
The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.
Possible Causes of Double-BSRs on the Hikurangi Margin, New Zealand
NASA Astrophysics Data System (ADS)
Pecher, I. A.; Mountjoy, J. J.; Crutchley, G. J.; Krastel, S.; Koch, S.; Dannowski, A.; Bialas, J.; Henrys, S. A.
2014-12-01
Bottom Simulating Reflections (BSRs) are commonly thought to be caused by free gas at the base of gas hydrate stability (BGHS). BSRs usually occur at the pressure-temperature conditions for the phase boundary of gas hydrate, which depends on gas composition, pore water chemistry, and various other factors. Hence, BSRs should only occur at a single depth level beneath the seafloor. At several locations worldwide however, double and multiple BSRs have been observed. We have recently discovered localized double-BSRs on the Hikurangi Margin east of New Zealand and present first results from studying the possible origin of these double-BSRs. Both BSRs display negative polarity compared to the seafloor ruling out diagenetic origins. The deeper BSR (BSR-2) is found to be anomalously deep, while the shallower BSR (BSR-1) is at similar depths as BSRs regionally. BSR-2 and BSR-1 are clearly separated on seismic lines from east to west, while they converge from north to south. We propose two possible models for formation of these double-BSRs: 1. Uplift leads to depressurization and an upward movement of the BGHS with respect to the seafloor. BSR-1 may have formed at the new BGHS while immobile gas may remain in place at the original level of the BGHS causing BSR-2. 2. Thermogenic gas may leak from a deeper hydrocarbon reservoir. Gas mixes of thermogenic origin are predicted to form hydrate that is more stable than pure methane hydrate, in particular if the mix contains gases that lead to formation of Structure-II hydrate. BSR-2 may form at a level of the BGHS for a more stable gas mix; residual gases may migrate further until they reach the phase boundary for less stable hydrates at BSR-1. We currently slightly favour uplift as cause of the double-BSRs largely because of the smooth topography of BSR-2: Small-scale lateral variations of gas composition should lead to significant BSR topography. More importantly, we note that the process of fractionation of gas during hydrate formation from thermogenic gas mixes in nature is only poorly understood.
Composition, structure, and chemistry of interstellar dust
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.; Allamandola, L. J.
1987-01-01
Different dust components present in the interstellar medium (IM) such as amorphous carbon, polycyclic aromatic hydrocarbons, and those IM components which are organic refractory grains and icy grain mantles are discussed as well as their relative importance. The physical properties of grain surface chemistry are discussed with attention given to the surface structure of materials, the adsorption energy and residence time of species on a grain surface, and the sticking probability. Consideration is also given to the contribution of grains to the gas-phase composition of molecular clouds.
2014-10-01
Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for
The adsorption of HCl on volcanic ash
NASA Astrophysics Data System (ADS)
Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans
2016-03-01
Understanding the interaction between volcanic gases and ash is important to derive gas compositions from ash leachates and to constrain the environmental impact of eruptions. Volcanic HCl could potentially damage the ozone layer, but it is unclear what fraction of HCl actually reaches the stratosphere. The adsorption of HCl on volcanic ash was therefore studied from -76 to +150 °C to simulate the behavior of HCl in the dilute parts of a volcanic plume. Finely ground synthetic glasses of andesitic, dacitic, and rhyolitic composition as well as a natural obsidian from Vulcano (Italy) served as proxies for fresh natural ash. HCl adsorption is an irreversible process and appears to increase with the total alkali content of the glass. Adsorption kinetics follow a first order law with rate constants of 2.13 ṡ10-6 s-1 to 1.80 ṡ10-4 s-1 in the temperature range investigated. For dacitic composition, the temperature and pressure dependence of adsorption can be described by the equation ln c = 1.26 + 0.27 ln p - 715.3 / T, where c is the surface concentration of adsorbed HCl in mg/m2, T is temperature in Kelvin, and p is the partial pressure of HCl in mbar. A comparison of this model with a large data set for the composition of volcanic ash suggests that adsorption of HCl from the gas phase at relatively low temperatures can quantitatively account for the majority of the observed Cl concentrations. The model implies that adsorption of HCl on ash increases with temperature, probably because of the increasing number of accessible adsorption sites. This temperature dependence is opposite to that observed for SO2, so that HCl and SO2 are fractionated by the adsorption process and the fractionation factor changes by four orders of magnitude over a temperature range of 250 K. The assumption of equal adsorption of different species is therefore not appropriate for deriving volcanic gas compositions from analyses of adsorbates on ash. However, with the experimental data provided here, the gas compositions in equilibrium with the ash surfaces can be calculated. In particular, for dacitic composition, the molar ratio of S/Cl adsorbed to the ash surface is related to the molar S/Cl ratio in the gas phase according to the equation ln (S / Cl) adsorbed = 2855T-1 + 0.28 ln (S / Cl) gas - 11.14. Our data also show that adsorption on ash will significantly reduce the fraction of HCl reaching the stratosphere, only if the initial HCl content in the volcanic gas is low (<1 mol%). For higher initial HCl concentrations, adsorption on ash has only a minor effect. While HCl scavenging by hydrometeors may remove a considerable fraction of HCl from the eruption column, recent models suggest that this process is much less efficient than previously thought. Our experimental data therefore support the idea that the HCl loading from major explosive eruptions may indeed cause severe depletions of stratospheric ozone.
Degenerate stars and gravitational collapse in AdS/CFT
NASA Astrophysics Data System (ADS)
Arsiwalla, Xerxes; de Boer, Jan; Papadodimas, Kyriakos; Verlinde, Erik
2011-01-01
We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.
Development of a model and computer code to describe solar grade silicon production processes
NASA Technical Reports Server (NTRS)
Gould, R. K.; Srivastava, R.
1979-01-01
Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morisato, A.; Shen, H.C.; Toy, L.G.
1996-12-31
Permeation properties of phase-separated blends prepared from glassy poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-phenyl-1-propyne) (PPP) were determined as a function of blend composition with pure hydrogen, nitrogen, oxygen, carbon dioxide, and butane. Blend permeabilities decrease significantly with increasing PPP concentration and suggest the occurrence of a phase inversion at low PPP content (5 to 20 wt%). Based on TEM analysis high-aspect-ratio (extended) PPP ellipsoidal dispersions are found in a PTMSP matrix, indicating that the phase inversion is closely related to dispersed-phase connectivity in the blends.
NASA Astrophysics Data System (ADS)
Sidorov, A. A.; Yastrebov, A. K.
2018-01-01
A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.
Reactive Blast Waves from Composite Charges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Bell, J B; Beckner, V E
2009-10-16
Investigated here is the performance of composite explosives - measured in terms of the blast wave they drive into the surrounding environment. The composite charge configuration studied here was a spherical booster (1/3 charge mass), surrounded by aluminum (Al) powder (2/3 charge mass) at an initial density of {rho}{sub 0} = 0.604 g/cc. The Al powder acts as a fuel but does not detonate - thereby providing an extreme example of a 'non-ideal' explosive (where 2/3 of the charge does not detonate). Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuingmore » Al-air mixture - thereby forming a two-phase combustion cloud embedded in the explosion. Afterburning of the booster detonation products with air also enhances and promotes the Al-air combustion process. Pressure waves from such reactive blast waves have been measured in bomb calorimeter experiments. Here we describe numerical simulations of those experiments. A Heterogeneous Continuum Model was used to model the dispersion and combustion of the Al particle cloud. It combines the gasdynamic conservation laws for the gas phase with a dilute continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Adaptive Mesh Refinement (AMR) was used to capture the energy-bearing scales of the turbulent flow on the computational grid, and to track/resolve reaction zones. Numerical simulations of the explosion fields from 1.5-g and 10-kg composite charges were performed. Computed pressure histories (red curve) are compared with measured waveforms (black curves) in Fig. 1. Comparison of these results with a waveform for a non-combustion case in nitrogen (blue curve) demonstrates that a reactive blast wave was formed. Cross-sectional views of the temperature field at various times are presented in Fig. 2, which shows that the flow is turbulent. Initially, combustion occurs at the fuel-air interface, and the energy release rate is controlled by the rate of turbulent mixing. Eventually, oxidizer becomes distributed throughout the cloud via ballistic mixing of the particles with air; energy release then occurs in a distributed combustion mode, and Al particle kinetics controls the energy release rate. Details of the Heterogeneous Continuum Model and results of the numerical simulations of composite charge explosions will be described in the paper.« less
Selectivity assessment of DB-200 and DB-VRX open-tubular capillary columns.
Kiridena, W; Koziola, W W; Poole, C F
2001-10-12
The solvation parameter model is used to study the influence of composition and temperature on the selectivity of two poly(siloxane) stationary phases used for open-tubular capillary column gas chromatography. The poly(methyltrifluoropropyldimethylsiloxane) stationary phase, DB-200, has low cohesion, intermediate dipolarity/polarizability, low hydrogen-bond basicity, no hydrogen-bond acidity, and repulsive electron lone pair interactions. The DB-VRX stationary phase has low cohesion, low dipolarity/polarizability, low hydrogen-bond basicity and no hydrogen-bond acidity and no capacity for electron lone pair interactions. The selectivity of the two stationary phases is complementary to those in a database of 11 stationary phase chemistries determined under the same experimental conditions.
Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles
Veith, Gabriel M.; Lupini, Andrew R.; Baggetto, Loïc; ...
2013-12-03
Here, we report evidence for the formation of nitrogen-rich precious metal nanoparticles (Pt, Pd) prepared by reactive sputtering of the pure metal in a N 2 plasma. The composition of the nanoparticles varies as a function of particle size and growth conditions. For the smallest particles the nitrogen content appears to be as high as 6.7 N atoms for each Pd atom or 5.9 N atoms for each Pt atom whereas bulk films have nominal compositions of Pt 7.3N and Pd 2.5N. The nanoparticles are metastable in air and moisture, slowly decomposing over several years. This paper describes the synthesismore » of these materials along with experimental evidence of the composition, oxidation state, and growth modes. Moreover, the catalytic properties of these N-rich nanoparticles were accessed by rotating disk electrode electrochemical studies, the liquid phase oxidation of benzyl alcohol and gas phase CO oxidation and support the experimental evidence for the materials composition.« less
Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; ...
2015-09-26
Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that canmore » determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.« less
Hernández-Borges, Javier; Rodriguez-Delgado, Miguel Angel; García-Montelongo, Francisco J; Cifuentes, Alejandro
2005-06-01
In this work, the determination of a group of triazolopyrimidine sulfoanilide herbicides (cloransulam-methyl, metosulam, flumetsulam, florasulam, and diclosulam) in soy milk by capillary electrophoresis-mass spectrometry (CE-MS) is presented. The main electrospray interface (ESI) parameters (nebulizer pressure, dry gas flow rate, dry gas temperature, and composition of the sheath liquid) are optimized using a central composite design. To increase the sensitivity of the CE-MS method, an off-line sample preconcentration procedure based on solid-phase extraction (SPE) is combined with an on-line stacking procedure (i.e. normal stacking mode, NSM). Samples could be injected for up to 100 s, providing limits of detection (LODs) down to 74 microg/L, i.e., at the low ppb level, with relative standard deviation values (RSD,%) between 3.8% and 6.4% for peak areas on the same day, and between 6.5% and 8.1% on three different days. The usefulness of the optimized SPE-NSM-CE-MS procedure is demonstrated through the sensitive quantification of the selected pesticides in soy milk samples.
Shock Initiated Reactions of Reactive Multiphase Blast Explosives
NASA Astrophysics Data System (ADS)
Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald
2015-06-01
This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.
Modeling Growth of Nanostructures in Plasmas
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.
2004-01-01
As semiconductor circuits shrink to CDs below 0.1 nm, it is becoming increasingly critical to replace and/or enhance existing technology with nanoscale structures, such as nanowires for interconnects. Nanowires grown in plasmas are strongly dependent on processing conditions, such as gas composition and substrate temperature. Growth occurs at specific sites, or step-edges, with the bulk growth rate of the nanowires determined from the equation of motion of the nucleating crystalline steps. Traditional front-tracking algorithms, such as string-based or level set methods, suffer either from numerical complications in higher spatial dimensions, or from difficulties in incorporating surface-intense physical and chemical phenomena. Phase field models have the robustness of the level set method, combined with the ability to implement surface-specific chemistry that is required to model crystal growth, although they do not necessarily directly solve for the advancing front location. We have adopted a phase field approach and will present results of the adatom density and step-growth location in time as a function of processing conditions, such as temperature and plasma gas composition.
Laboratory studies of monoterpene secondary organic aerosol formation and evolution
NASA Astrophysics Data System (ADS)
Thornton, J. A.; D'Ambro, E.; Zhao, Y.; Lee, B. H.; Pye, H. O. T.; Schobesberger, S.; Shilling, J.; Liu, J.
2017-12-01
We have conducted a series of chamber experiments to study the molecular composition and properties of secondary organic aerosol (SOA) formed from monoterpenes under a range of photochemical and dark conditions. We connect variations in the SOA mass yield to molecular composition and volatility, and use a detailed Master Chemical Mechanism (MCM) based chemical box model with dynamic gas-particle partitioning to examine the importance of various peroxy radical reaction mechanisms in setting the SOA yield and properties. We compare the volatility distribution predicted by the model to that inferred from isothermal room-temperature evaporation experiments using the FIGAERO-CIMS where SOA particles collected on a filter are allowed to evaporate under humidified pure nitrogen flow stream for up to 24 hours. We show that the combination of results requires prompt formation of low volatility SOA from predominantly gas-phase mechanisms, with important differences between monoterpenes (alpha-Pinene and delta-3-Carene) followed by slower non-radical particle phase chemistry that modulates both the chemical and physical properties of the SOA. Implications for the regional evolution of atmospheric monoterpene SOA are also discussed.
Kichko, Tatjana I.; Kobal, Gerd
2015-01-01
Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1−/− and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1−/− and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research. PMID:26472811
Liu; Wene
2000-09-01
An empirical model describing the relationship between the partition coefficients (K) of perfume materials in the solid-phase microextraction (SPME) fiber stationary phase and the Linearly Temperature Programmed Retention Index (LTPRI) is obtained. This is established using a mixture of eleven selected fragrance materials spiked in mineral oil at different concentration levels to simulate liquid laundry detergent matrices. Headspace concentrations of the materials are measured using both static headspace and SPME-gas chromatography analysis. The empirical model is tested by measuring the K values for fourteen perfume materials experimentally. Three of the calculated K values are within 2-19% of the measured K value, and the other eleven calculated K values are within 22-59%. This range of deviation is understandable because a diverse mixture was used to cover most chemical functionalities in order to make the model generally applicable. Better prediction accuracy is expected when a model is established using a specific category of compounds, such as hydrocarbons or aromatics. The use of this method to estimate distribution constants of fragrance materials in liquid matrices is demonstrated. The headspace SPME using the established relationship between the gas-liquid partition coefficient and the LTPRI is applied to measure the headspace concentration of fragrances. It is demonstrated that this approach can be used to monitor the headspace perfume profiles over consumer laundry and cleaning products. This method can provide high sample throughput, reproducibility, simplicity, and accuracy for many applications for screening major fragrance materials over consumer products. The approach demonstrated here can be used to translate headspace SPME results into true static headspace concentration profiles. This translation is critical for obtaining the gas-phase composition by correcting for the inherent differential partitioning of analytes into the fiber stationary phase.
Hyperpolarized 131Xe NMR spectroscopy
Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas
2011-01-01
Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249
NASA Technical Reports Server (NTRS)
Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.;
2014-01-01
Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.
Farhadi, Khalil; Bochani, Shayesteh; Hatami, Mehdi; Molaei, Rahim; Pirkharrati, Hossein
2014-07-01
In this research, a new solid-phase microextraction fiber based on carbon ceramic composites with copper nanoparticles followed by gas chromatography with flame ionization detection was applied for the extraction and determination of some nitro explosive compounds in soil samples. The proposed method provides an overview of trends related to synthesis of solid-phase microextraction sorbents and their applications in preconcentration and determination of nitro explosives. The sorbents were prepared by mixing of copper nanoparticles with a ceramic composite produced by mixture of methyltrimethoxysilane, graphite, methanol, and hydrochloric acid. The prepared sorbents were coated on copper wires by dip-coating method. The prepared nanocomposites were evaluated statistically and provided better limits of detection than the pure carbon ceramic. The limit of detection of the proposed method was 0.6 μg/g with a linear response over the concentration range of 2-160 μg/g and square of correlation coefficient >0.992. The new proposed fiber has been demonstrated to be a suitable, inexpensive, and sensitive candidate for extraction of nitro explosive compounds in contaminated soil samples. The constructed fiber can be used more than 100 times without the need for surface generation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Mian; Zhang, Haibo; Zhao, Faqiong; Zeng, Baizhao
2014-11-19
A novel poly(3,4-ethylenedioxythiophene)-ionic liquid (i.e., 1-hydroxyethyl-3-methyl imidazolium-bis[(trifluoromethyl)sulfonyl]imide) composite film was electrodeposited on a Pt wire for headspace solid-phase microextraction. The film showed nodular structure and had large specific surface. In addition, it displayed high thermal stability (up to 300°C) and durable property (could be used for more than 200 times). Coupled with gas chromatography-flame ionization detection, the resulting fiber was applied to the headspace solid-phase microextraction and determination of several alcohols (i.e., linalool, nonanol, terpineol, geraniol, decanol and dodecanol). It presented higher extraction capability in comparison with the poly(3,4-ethylenedioxythiophene) and commercial polydimethylsiloxane/divinylbenzene fiber. Under the optimized conditions, the linear ranges exceeded three magnitudes with correlation coefficients above 0.9952 and the low limits of detection were 34.2-81.3ng L(-1). For different alcohols the repeatabilities (defined as RSD) were <5.8% and <7.8% for single fiber (n=5) and fiber-to-fiber (n=4), respectively. The proposed method was applied to the determination of these alcohols in real samples with acceptable recoveries from 81.1% to 106.6%. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.
2017-01-01
The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.
Polyaniline-polypyrrole composites with enhanced hydrogen storage capacities.
Attia, Nour F; Geckeler, Kurt E
2013-06-13
A facile method for the synthesis of polyaniline-polypyrrole composite materials with network morphology is developed based on polyaniline nanofibers covered by a thin layer of polypyrrole via vapor phase polymerization. The hydrogen storage capacity of the composites is evaluated at room temperature exhibits a twofold increase in hydrogen storage capacity. The HCl-doped polyaniline nanofibers exhibit a storage capacity of 0.46 wt%, whereas the polyaniline-polypyrrole composites could store 0.91 wt% of hydrogen gas. In addition, the effect of the dopant type, counteranion size, and the doping with palladium nanoparticles on the storage properties are also investigated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gao, Ru-qin; Sun, Qian; Fang, Zhi; Li, Guo-ting; Jia, Meng-zhe; Hou, Xin-mei
2018-01-01
Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650°C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ = 0.576 mg·m-3·min-1 and K = 0.048 m3/mg.
Impact melting of the Cachari eucrite 3.0 Gy ago
NASA Technical Reports Server (NTRS)
Bogard, D. D.; Taylor, G. J.; Keil, K.; Smith, M. R.; Schmitt, R. A.
1985-01-01
The chemical compositions and Ar-isotope gas-retention ages of host phase and glass veins in the Cachari eucrite are determined by microprobe and neutron-activation analysis and mass spectrometry, respectively. The results are presented in tables, graphs, and back-scattered electron images and characterized in detail. The compositions are found to support the thesis that the glass formed by shock melting of the host rock (or of rock having the same composition). The Ar-39/Ar-40 ages of host and glass are given as 3.04 + or - 0.07 Gyr and 3.47 + or - 0.04 Gyr, respectively; the former value is taken as the true data of melting, and the latter is attributed to incomplete postmelt degassing of Ar from the glass phase. The implications of the relative youth of this and other eucrites and howardites for the regolith history of the parent body are considered.
Kristensen, K; Jensen, L N; Glasius, M; Bilde, M
2017-10-18
This study presents a newly constructed temperature controlled cold-room smog chamber at Aarhus University, Denmark. The chamber is herein utilized to study the effect of sub-zero temperature on the formation and chemical composition of secondary organic aerosol (SOA) from ozone initiated oxidation of α-pinene. The chemical composition of α-pinene SOA formed from dark ozonolysis of α-pinene at 293 K and 258 K was investigated using High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS) and Ultra-High Performance Liquid Chromatography/Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry (UHPLC/ESI-qToF-MS). For comparison, an OH-initiated oxidation experiment was performed at 293 K. In ozonolysis experiments it was found that oxygen-to-carbon (O : C) ratios were higher in the particles formed at 293 K compared to 258 K. A total of 16 different organic acids and 30 dimers esters were quantified in the collected particles composing up to 34% of the total α-pinene SOA mass with increased mass fraction of carboxylic acids in particles from α-pinene ozonolysis at 258 K compared to 293 K. In contrast, dimer esters showed suppressed formation at the sub-zero reaction temperature, thus contributing 3% to SOA mass at 258 K while contributing 9% at 293 K. SOA formed in the OH-initiated oxidation of α-pinene at 293 K resulted in low concentrations of dimer esters supporting Criegee intermediates as a possible pathway to dimer ester formation. Vapour pressure estimates of the identified carboxylic acids and dimer esters are presented and show how otherwise semi-volatile carboxylic acids at sufficiently low temperatures may classify as low or even extremely low volatile organic compounds (ELVOC), thus may add to an enhanced particle formation observed at the sub-zero temperature through gas-to-particle conversion. The change in chemical composition of the SOA particles with temperature is ascribed to a combination of effects: the decreased vapour pressures and hence increased condensation of carboxylic acids from the gas phase to the particle phase along with suppressed formation of the high molecular weight dimer esters and different gas and particle phase chemistry results in particles of different chemical composition as a consequence of low reaction temperatures.
Isotopic Evidence for a Martian Regolith Component in Martian Meteorites
NASA Technical Reports Server (NTRS)
Rao, M. N.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Sutton, S.
2009-01-01
Noble gas measurements in gas-rich impact-melt (GRIM) glasses in EET79001 shergottite showed that their elemental and isotopic composition is similar to that of the Martian atmosphere [1-3]. The GRIM glasses contain large amounts of Martian atmospheric gases. Those measurements further suggested that the Kr isotopic composition of Martian atmosphere is approximately similar to that of solar Kr. The (80)Kr(sub n) - (80)Kr(sub M) mixing ratio in the Martian atmosphere reported here is approximately 3%. These neutron-capture reactions presumably occurred in the glass-precursor regolith materials containing Sm- and Br- bearing mineral phases near the EET79001/ Shergotty sites on Mars. The irradiated materials were mobilized into host rock voids either during shock-melting or possibly by earlier aeolian / fluvial activity.
Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth.
Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John; Englezos, Peter
2015-06-07
Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ∼11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed.
NASA Astrophysics Data System (ADS)
Sreenivas, Bura; Nayak, H. Gurudath; Venkatarathnam, G.
2017-01-01
The composition of the refrigerant mixture in circulation during steady state operation of J-T and allied refrigerators is not the same as that charged due to liquid hold up in the heat exchangers and phase separators, as well as the differential solubility of different refrigerant components in the compressor lubricating oil. The performance of refrigerators/liquefiers operating on mixed refrigerant cycles is dependent on the mixture composition. It is therefore important to charge the right mixture that results in an optimum composition in circulation during steady state operation. The relationship between the charged and circulating composition has been experimentally studied in a J-T refrigerator operating in the liquid refrigerant supply (LRS) mode and an auto refrigerant cascade refrigerator (with a phase separator) operating in the gas refrigerant supply (GRS) mode. The results of the study are presented in this work. The results show that the method presented earlier for J-T refrigerators operating in GRS mode is also applicable in the case of refrigerators studied in this work.
NASA Technical Reports Server (NTRS)
Cook, Anthony J.
2011-01-01
As NASA has retired the Space Shuttle Program, a new method of transporting compressed gaseous nitrogen and oxygen needed to be created for delivery of these crucial life support resources to the International Space Station (ISS). One of the methods selected by NASA includes the use of highly pressurized, unprotected Recharge Tank Assemblies (RTAs) utilizing Composite Overwrapped Pressure Vessels (COPVs). A COPV consists of a thin liner wrapped with a fiber composite and resin or epoxy. It is typically lighter weight than an all metal pressure vessel of similar volume and therefore provides a higher-efficiency means for gas storage. However COPVs are known to be susceptible to damage resulting from handling, tool drop impacts, or impacts from other objects. As a result, a comprehensive Damage Control Plan has been established to mitigate damage to the RTA COPV throughout its life cycle. The DCP is intended to evaluate and mitigate defined threats during manufacturing, shipping and handling, test, assembly level integration, shipment while pressurized, launch vehicle integration and mission operations by defining credible threats and methods for preventing potential damage while still maintaining the primary goal of resupplying ISS gas resources. A comprehensive threat assessment is performed to identify all threats posed to the COPV during the different phases of its lifecycle. The threat assessment is then used as the basis for creating a series of general inspection, surveillance and reporting requirements which apply across all phases of the COPV's life, targeted requirements only applicable to specific work phases and a series of training courses for both ground personnel and crew aboard the ISS. A particularly important area of emphasis deals with creating DCP requirements for a highly pressurized, large and unprotected RTA COPV for use during Inter Vehicular Activities (IVA) operations in the micro gravity environment while supplying pressurized gas to the ISS for crew life support.
Integrated Experimental and Modelling Research for Non-Ferrous Smelting and Recycling Systems
NASA Astrophysics Data System (ADS)
Jak, Evgueni; Hidayat, Taufiq; Shishin, Denis; Mehrjardi, Ata Fallah; Chen, Jiang; Decterov, Sergei; Hayes, Peter
The chemistries of industrial pyrometallurgical non-ferrous smelting and recycling processes are becoming increasingly complex. Optimisation of process conditions, charge composition, temperature, oxygen partial pressure, and partitioning of minor elements between phases and different process streams require accurate description of phase equilibria and thermodynamics which are the focus of the present research. The experiments involve high temperature equilibration in controlled gas atmospheres, rapid quenching and direct measurement of equilibrium phase compositions with quantitative microanalytical techniques including electron probe X-ray microanalysis and Laser Ablation ICP-MS. The thermodynamic modelling is undertaken using computer package FactSage with the quasi-chemical model for the liquid slag phase and other advanced models. Experimental and modelling studies are combined into an integrated research program focused on the major elements Cu-Pb-Fe-O-Si-S system, slagging Al, Ca, Mg and other minor elements. The ongoing development of the research methodologies has resulted in significant advances in research capabilities. Examples of applications are given.
Support Services for Ceramic Fiber-Ceramic Matrix Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, J.P.; Crocker, C.R.
2000-06-28
Structural and functional materials used in solid- and liquid-fueled energy systems are subject to gas- and condensed-phase corrosion and erosion by entrained particles. For a given material, its temperature and the composition of the corrodents determine the corrosion rates, while gas flow conditions and particle aerodynamic diameters determine erosion rates. Because there are several mechanisms by which corrodents deposit on a surface, the corrodent composition depends not only on the composition of the fuel, but also on the temperature of the material and the size range of the particles being deposited. In general, it is difficult to simulate under controlledmore » laboratory conditions all of the possible corrosion and erosion mechanisms to which a material may be exposed in an energy system. Therefore, with funding from the Advanced Research Materials Program, the University of North Dakota Energy and Environmental Research Center (EERC) is coordinating with NCC Engineering and the National Energy Technology Laboratory (NETL) to provide researchers with no-cost opportunities to expose materials in pilot-scale systems to conditions of corrosion and erosion similar to those occurring in commercial power systems.« less
Kosiba, Graham D.; Wixom, Ryan R.; Oehlschlaeger, Matthew A.
2017-10-27
Image processing and stereological techniques were used to characterize the heterogeneity of composite propellant and inform a predictive burn rate model. Composite propellant samples made up of ammonium perchlorate (AP), hydroxyl-terminated polybutadiene (HTPB), and aluminum (Al) were faced with an ion mill and imaged with a scanning electron microscope (SEM) and x-ray tomography (micro-CT). Properties of both the bulk and individual components of the composite propellant were determined from a variety of image processing tools. An algebraic model, based on the improved Beckstead-Derr-Price model developed by Cohen and Strand, was used to predict the steady-state burning of the aluminized compositemore » propellant. In the presented model the presence of aluminum particles within the propellant was introduced. The thermal effects of aluminum particles are accounted for at the solid-gas propellant surface interface and aluminum combustion is considered in the gas phase using a single global reaction. In conclusion, properties derived from image processing were used directly as model inputs, leading to a sample-specific predictive combustion model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosiba, Graham D.; Wixom, Ryan R.; Oehlschlaeger, Matthew A.
Image processing and stereological techniques were used to characterize the heterogeneity of composite propellant and inform a predictive burn rate model. Composite propellant samples made up of ammonium perchlorate (AP), hydroxyl-terminated polybutadiene (HTPB), and aluminum (Al) were faced with an ion mill and imaged with a scanning electron microscope (SEM) and x-ray tomography (micro-CT). Properties of both the bulk and individual components of the composite propellant were determined from a variety of image processing tools. An algebraic model, based on the improved Beckstead-Derr-Price model developed by Cohen and Strand, was used to predict the steady-state burning of the aluminized compositemore » propellant. In the presented model the presence of aluminum particles within the propellant was introduced. The thermal effects of aluminum particles are accounted for at the solid-gas propellant surface interface and aluminum combustion is considered in the gas phase using a single global reaction. In conclusion, properties derived from image processing were used directly as model inputs, leading to a sample-specific predictive combustion model.« less
NASA Astrophysics Data System (ADS)
Renggli, C. J.; King, P. L.; Henley, R. W.; Norman, M. D.
2017-06-01
The transport of metals in volcanic gases on the Moon differs greatly from their transport on the Earth because metal speciation depends largely on gas composition, temperature, pressure and oxidation state. We present a new thermochemical model for the major and trace element composition of lunar volcanic gas during pyroclastic eruptions of picritic magmas calculated at 200-1500 °C and over 10-9-103 bar. Using published volatile component concentrations in picritic lunar glasses, we have calculated the speciation of major elements (H, O, C, Cl, S and F) in the coexisting volcanic gas as the eruption proceeds. The most abundant gases are CO, H2, H2S, COS and S2, with a transition from predominantly triatomic gases to diatomic gases with increasing temperatures and decreasing pressures. Hydrogen occurs as H2, H2S, H2S2, HCl, and HF, with H2 making up 0.5-0.8 mol fractions of the total H. Water (H2O) concentrations are at trace levels, which implies that H-species other than H2O need to be considered in lunar melts and estimates of the bulk lunar composition. The Cl and S contents of the gas control metal chloride gas species, and sulfide gas and precipitated solid species. We calculate the speciation of trace metals (Zn, Ga, Cu, Pb, Ni, Fe) in the gas phase, and also the pressure and temperature conditions at which solids form from the gas. During initial stages of the eruption, elemental gases are the dominant metal species. As the gas loses heat, chloride and sulfide species become more abundant. Our chemical speciation model is applied to a lunar pyroclastic eruption model with isentropic gas decompression. The relative abundances of the deposited metal-bearing solids with distance from the vent are predicted for slow cooling rates (<5 °C/s). Close to a volcanic vent we predict native metals are deposited, whereas metal sulfides dominate with increasing distance from the vent. Finally, the lunar gas speciation model is compared with the speciation of a H2O-, CO2- and Cl-rich volcanic gas from Erta Ale volcano (Ethiopia) as an analogy for more oxidized planetary eruptions. In the terrestrial Cl-rich gas the metals are predominantly transported as chlorides, as opposed to metallic vapors and sulfides in the lunar gas. Due to the presence of Cl-species, metal transport is more efficient in the volcanic gas from Erta Ale compared to the Moon.
The U.S. Gas Flooding Experience: CO2 Injection Strategies and Impact on Ultimate Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunez-Lopez, Vanessa; Hosseini, Seyyed; Gil-Egui, Ramon
The Permian Basin in West Texas and southwestern New Mexico has seen 45 years of oil reserve growth through CO2 enhanced oil recovery (CO2 EOR). More than 60 CO2 EOR projects are currently active in the region’s limestone, sandstone and dolomite reservoirs. Water alternating gas (WAG) has been the development strategy of choice in the Permian for several technical and economic reasons. More recently, the technology started to get implemented in the much more porous and permeable clastic depositional systems of the onshore U.S. Gulf Coast. Continued CO2 injection (CGI), as opposed to WAG, was selected as the injection strategymore » to develop Gulf Coast oil fields, where CO2 injection volumes are significantly larger (up to 6 times larger) than those of the Permian. We conducted a compositional simulation based study with the objective of comparing the CO2 utilization ratios (volume of CO2 injected to produce a barrel of oil) of 4 conventional and novel CO2 injection strategies: (1) continuous gas injection (CGI), (2) water alternating gas (WAG), (3) water curtain injection (WCI), and (4) WAG and WCI combination. These injection scenarios were simulated using the GEM module from the Computer Modeling Group (CMG). GEM is an advanced general equation-of-state compositional simulator, which includes equation of state, CO2 miscible flood, CO2/brine interactions, and complex phase behavior. The simulator is set up to model three fluid phases including water, oil, and gas. Our study demonstrates how the selected field development strategy has a significant impact on the ultimate recovery of CO2-EOR projects, with GCI injection providing maximum oil recovery in absolute volume terms, but with WAG offering a more balanced technical-economical approach.« less
Alaf, M; Gultekin, D; Akbulut, H
2012-12-01
In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2017-12-01
The majority of primary pyrometallurgical copper making processes involve the formation of two immiscible liquid phases, i.e., matte product and the slag phase. There are significant gaps and discrepancies in the phase equilibria data of the slag and the matte systems due to issues and difficulties in performing the experiments and phase analysis. The present study aims to develop an improved experimental methodology for accurate characterisation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system under controlled atmospheres. The experiments involve high-temperature equilibration of synthetic mixtures on silica substrates in CO/CO2/SO2/Ar atmospheres, rapid quenching of samples into water, and direct composition measurement of the equilibrium phases using Electron Probe X-ray Microanalysis (EPMA). A four-point-test procedure was applied to ensure the achievement of equilibrium, which included the following: (i) investigation of equilibration as a function of time, (ii) assessment of phase homogeneity, (iii) confirmation of equilibrium by approaching from different starting conditions, and (iv) systematic analysis of the reactions specific to the system. An iterative improved experimental methodology was developed using this four-point-test approach to characterize the complex multi-component, multi-phase equilibria with high accuracy and precision. The present study is a part of a broader overall research program on the characterisation of the multi-component (Cu-Fe-O-S-Si-Al-Ca-Mg), multi-phase (gas/slag/matte/metal/solids) systems with minor elements (Pb, Zn, As, Bi, Sn, Sb, Ag, and Au).
Origin of planetary primordial rare gas - The possible role of adsorption.
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Cannon, W. A.
1972-01-01
The degree of physical adsorption of Ne, Ar, Kr, and Xe on pulverized samples of the Allende meteorite at 113 K has been measured. The observed pattern of equilibrium enrichment of heavy rare gases over light on the pulverized meteorite surfaces relative to the gas phase is similar to the enrichment pattern exhibited by planetary primordial rare gas when compared with the composition of solar rare gas. Results indicate that, at 113 K, a total nebular pressure of from .01 to .001 atm would be required to explain the Ar, Kr, and Xe abundances in carbonaceous chondrites with an adsorption mechanism. This pressure estimate is compatible with the range of possible nebular pressures suggested by astrophysical arguments. However, the subsequent mechanism by which initially adsorbed gas might have been transferred into the interiors of grains cannot be identified at present.
Delmore, J.E.; Appelhans, A.D.; Peterson, E.S.
1996-04-09
A rare earth oxide matrix (composition of matter) is formed which emits (upon heating) heavy metal oxide anions (oxyanions) into a gas phase, wherein the anions are emitted with high intensity, and wherein longevity of life of the composition of matter is retained. The matter is formed by blending a major component of a rare earth oxide, europium oxide (Eu{sub 2}O{sub 3}) or ytterbium oxide (Yb{sub 2}O{sub 3}), with a minor component of a barium (Ba), calcium (Ca) or strontium (Sr) salt of a heavy metal oxyanion. Heavy anions are emitted upon heating the composition of matter to a predetermined temperature of about 800 C.
Delmore, James E.; Appelhans, Anthony D.; Peterson, Eric S.
1996-01-01
A rare earth oxide matrix (composition of matter) is formed which emits (upon heating) heavy metal oxide anions (oxyanions) into a gas phase, wherein the anions are emitted with high intensity, and wherein longevity of life of the composition of matter is retained. The matter is formed by blending a major component of a rare earth oxide, Europium oxide (Eu.sub.2 O.sub.3) or Ytterbium oxide (Yb.sub.2 O.sub.3), with a minor component of a Barium (Ba), Calcium (Ca) or Strontium (Sr) salt of a heavy metal oxyanion. Heavy anions are emitted upon heating the composition of matter to a predetermined temperature of about 800.degree. C.
Lu, Weijie; Steigerwalt, Eve S; Moore, Joshua T; Sullivan, Lisa M; Collins, W Eugene; Lukehart, C M
2004-09-01
Carbon nanofiber/silica aerogel composites are prepared by sol-gel processing of surface-enhanced herringbone graphitic carbon nanofibers (GCNF) and Si(OMe)4, followed by supercritical CO2 drying. Heating the resulting GCNF/silica aerogel composites to 1650 degrees C under a partial pressure of Ar gas initiates carbothermal reaction between the silica aerogel matrix and the carbon nanofiber component to form SiC/silica nanocomposites. The SiC phase is present as nearly spherical nanoparticles, having an average diameter of ca. 8 nm. Formation of SiC is confirmed by powder XRD and by Raman spectroscopy.
HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sell, D. A.; Baily, C. E.; Malewitz, T. J.
2016-09-01
A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium aftermore » the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.« less
Aircraft Particle Emissions eXperiment (APEX)
NASA Technical Reports Server (NTRS)
Wey, C. C.; Anderson, B. E.; Hudgins, C.; Wey, C.; Li-Jones, X.; Winstead, E.; Thornhill, L. K.; Lobo, P.; Hagen, D.; Whitefield, P.
2006-01-01
APEX systematically investigated the gas-phase and particle emissions from a CFM56-2C1 engine on NASA's DC-8 aircraft as functions of engine power, fuel composition, and exhaust plumage. Emissions parameters were measured at 11 engine power, settings, ranging from idle to maximum thrust, in samples collected at 1, 10, and 30 m downstream of the exhaust plane as the aircraft burned three fuels to stress relevant chemistry. Gas-phase emission indices measured at 1 m were in good agreement with the ICAO data and predictions provided by GEAE empirical modeling tools. Soot particles emitted by the engine exhibited a log-normal size distribution peaked between 15 and 40 nm, depending on engine power. Samples collected 30 m downstream of the engine exhaust plane exhibited a prominent nucleation mode.
Condurso, Cettina; Verzera, Antonella; Romeo, Vincenza; Ziino, Marisa; Trozzi, Alessandra; Ragusa, Salvatore
2006-08-01
The leaf volatile constituents of Isatis tinctoria L. (Brassicaceae) have been studied by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry (SPME/GC-MS). Seventy components were fully characterized by mass spectra, linear retention indices, and injection of standards; the average composition (ppm) as single components and classes of substances is reported. Aliphatic hydrocarbons, acids, alcohols, aldehydes and esters, aromatic aldehydes, esters and ethers, furans, isothiocyanates and thiocyanates, sulfurated compounds, nitriles, terpenes and sesquiterpenes were identified. Leaf volatiles in Isatis tinctoria L. were characterized by a high amount of isothiocyanates which accounted for about 40 % of the total volatile fraction. Isothiocyanates are important and characteristic flavour compounds in Brassica vegetables and the cancer chemo-protective attributes are recently responsible for their growing interest.
Phase diagrams of Janus fluids with up-down constrained orientations
NASA Astrophysics Data System (ADS)
Fantoni, Riccardo; Giacometti, Achille; Maestre, Miguel Ángel G.; Santos, Andrés
2013-11-01
A class of binary mixtures of Janus fluids formed by colloidal spheres with the hydrophobic hemispheres constrained to point either up or down are studied by means of Gibbs ensemble Monte Carlo simulations and simple analytical approximations. These fluids can be experimentally realized by the application of an external static electrical field. The gas-liquid and demixing phase transitions in five specific models with different patch-patch affinities are analyzed. It is found that a gas-liquid transition is present in all the models, even if only one of the four possible patch-patch interactions is attractive. Moreover, provided the attraction between like particles is stronger than between unlike particles, the system demixes into two subsystems with different composition at sufficiently low temperatures and high densities.
Gas-phase synthesis of magnetic metal/polymer nanocomposites.
Starsich, Fabian H L; Hirt, Ann M; Stark, Wendelin J; Grass, Robert N
2014-12-19
Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.
Gas-phase synthesis of magnetic metal/polymer nanocomposites
NASA Astrophysics Data System (ADS)
Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.
2014-12-01
Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.
d'Hendecourt, L; Dartois, E
2001-03-15
Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.
Mass Flux of ZnSe by Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Sha, Yi-Gao; Su, Ching-Hua; Palosz, W.; Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Liu, Hao-Chieh; Brebrick, R. F.
1995-01-01
Mass fluxes of ZnSe by physical vapor transport (PVT) were measured in the temperature range of 1050 to 1160 C using an in-situ dynamic technique. The starting materials were either baked out or distilled under vacuum to obtain near-congruently subliming compositions. Using an optical absorption technique Zn and Se, were found to be the dominant vapor species. Partial pressures of Zn and Se, over the starting materials at temperatures between 960 and 1140 C were obtained by measuring the optical densities of the vapor phase at the wavelengths of 2138, 3405, 3508, 3613, and 3792 A. The amount and composition of the residual gas inside the experimental ampoules were measured after the run using a total pressure gauge. For the first time, the experimentally determined partial pressures of Zn and Se, and the amount and composition of the residual gas were used in a one-dimensional diffusion limited analysis of the mass transport rates for a PVT system. Reasonable agreement between the experimental and theoretical results was observed.
Fatty acid composition and its association with chemical and sensory analysis of boar taint.
Liu, Xiaoye; Trautmann, Johanna; Wigger, Ruth; Zhou, Guanghong; Mörlein, Daniel
2017-09-15
A certain level of disagreement between the chemical analysis of androstenone and skatole and the human perception of boar taint has been found in many studies. Here we analyze whether the fatty acid composition can explain such inconsistency between sensory evaluation and chemical analysis of boar taint compounds. Therefore, back fat samples (n=143) were selected according to their sensory evaluation by a 10-person sensory panel, and the chemical analysis (stable isotope dilution analysis with headspace solid-phase microextraction and gas chromatography-mass spectrometry) of androstenone and skatole. Subsequently a quantification of fatty acids using gas chromatography-flame ionization detection was conducted. The correlation analyses revealed that several fatty acids are significantly correlated with androstenone, skatole, and the sensory rating. However, multivariate analyses (principal component analysis) revealed no explanation of the fatty acid composition with respect to the (dis-)agreement between sensory and chemical analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shieh, Ian C; Zasadzinski, Joseph A
2015-02-24
Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.
Pre-cometary ice composition from hot core chemistry.
Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe
2005-10-01
Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieten, V.E.J. van; Dekker, J.P.; Hurkmans, E.J.
1993-11-01
In the particle precipitation-aided chemical vapor deposition process, an aerosol is formed in the gas phase at elevated temperatures. The particles are deposited on a cooled substrate. Coherent layers with a controlled porosity can be obtained by a simultaneous heterogeneous reaction, which interconnects the deposited particles. The synthesis of submicrometer powder of the perovskite oxide yttrium chromite (YCrO[sub 3]) by gas to particle conversion, which is the first step of the PP-CVD process, has been investigated, and preliminary results are shown. The powders have been synthesized using yttrium trichloride vapor (YCl[sub 3]), chromium trichloride vapor (CrCl[sub 3]), and steam andmore » oxygen as reactants. The influence of the input molar ratio of the elements on the composition and characteristics of the powders has been investigated. Phase composition has been determined by X-ray diffraction (XRD). The powders have been characterized by transmission electron microscopy (TEM) and sedimentation field flow fractionation (SF[sup 3]). At a reaction temperature of 1283 K the powders consist of the chromium sesquioxide (Cr[sub 2]O[sub 3]), or a mixture of Cr[sub 2]O[sub 3] and YCrO[sub 3]. At stoichiometeric input amounts of metal chlorides and steam the formation of YCrO[sub 3] seems to be favored. 19 refs., 6 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Ivanova, Mariya E.; Escolástico, Sonia; Balaguer, Maria; Palisaitis, Justinas; Sohn, Yoo Jung; Meulenberg, Wilhelm A.; Guillon, Olivier; Mayer, Joachim; Serra, Jose M.
2016-11-01
Hydrogen permeation membranes are a key element in improving the energy conversion efficiency and decreasing the greenhouse gas emissions from energy generation. The scientific community faces the challenge of identifying and optimizing stable and effective ceramic materials for H2 separation membranes at elevated temperature (400-800 °C) for industrial separations and intensified catalytic reactors. As such, composite materials with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ revealed unprecedented H2 permeation levels of 0.4 to 0.61 mL·min-1·cm-2 at 700 °C measured on 500 μm-thick-specimen. A detailed structural and phase study revealed single phase perovskite and fluorite starting materials synthesized via the conventional ceramic route. Strong tendency of Eu to migrate from the perovskite to the fluorite phase was observed at sintering temperature, leading to significant Eu depletion of the proton conducing BaCe0.8Eu0.2O3-δ phase. Composite microstructure was examined prior and after a variety of functional tests, including electrical conductivity, H2-permeation and stability in CO2 containing atmospheres at elevated temperatures, revealing stable material without morphological and structural changes, with segregation-free interfaces and no further diffusive effects between the constituting phases. In this context, dual phase material based on BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ represents a very promising candidate for H2 separating membrane in energy- and environmentally-related applications.
Structural, chemical, and isotopic microanalytical investigations of graphite from supernovae
NASA Astrophysics Data System (ADS)
Croat, T. Kevin; Bernatowicz, Thomas; Amari, Sachiko; Messenger, Scott; Stadermann, Frank J.
2003-12-01
We report the results of coordinated ion microprobe and transmission electron microscope (TEM) studies of presolar graphites from the KE3 separate (1.65-1.72 g/cm 3) of the Murchison CM2 meteorite. Isotopic analysis of individual graphites (1-12 μm) with the ion microprobe shows many to have large 18O excesses combined with large silicon isotopic anomalies, indicative of a supernova (SN) origin. Transmission electron microscopy (TEM) of ultramicrotome slices of these SN graphites revealed a high abundance (25-2400 ppm) of internal titanium carbides (TiCs), with a single graphite in some cases containing hundreds of TiCs. Isotopic compositions of individual TiCs by nanoscale resolution secondary ion mass spectrometry (NanoSIMS) confirmed their presolar origin. In addition to TiCs, composite TiC/Fe grains (TiCs with attached iron-nickel subgrains) and solitary kamacite internal grains were found. In the composite grains, the attached iron phase (kamacite [0-24 at. % Ni] or taenite [up to 60 at. % Ni]) was epitaxially grown onto one or more TiC faces. In contrast to the denser Murchison KFC1 graphites, no Zr-Ti-Mo carbides were observed. The average TiC diameters were quite variable among the SN graphites, from 30 to 232 nm, and were generally independent of the host graphite size. TiC grain morphologies ranged from euhedral to anhedral, with the grain surfaces exhibiting variable degrees of corrosion, and sometimes partially amorphous rims (3 to 15 nm thick). Partially amorphous rims of similar thickness were also observed on some solitary kamacite grains. We speculate that the rims on the internal grains are most plausibly the result of atom bombardment caused by drift of grains with respect to the ambient gas, requiring relative outflow speeds ˜100 km/s (i.e., a few percent of the SN mass outflow speed). Energy dispersive X-ray spectrometry (EDXS) of TiCs revealed significant V in solid solution, with an average V/Ti ratio over all TiCs of ˜83% of the solar value of 0.122. Significant variations about the mean V/Ti ratio were also seen among TiCs in the same graphite, likely indicating chemical equilibration with the surrounding gas over a range of temperatures. In general, the diversity in internal TiC properties suggests that TiCs formed first and had substantially diverse histories before incorporation into the graphite, implying some degree of turbulent mixing in the SN outflows. In most graphites, there is a decrease in the number density of TiCs as a function of increasing radial dis- tance, caused by either preferential depletion of TiCs from the gas or an acceleration of graphite growth with decreasing ambient temperature. In several graphites, TiCs showed a trend of larger V/Ti ratios with increasing distance from the graphite center, an indication of progressive equilibration with the surrounding gas before they were sequestered in the graphites. In all but one graphite, no trend was seen in the TiC size vs. distance from the graphite center, implying that appreciable TiC growth had effectively stopped before the graphites formed, or else that graphite growth was rapid compared to TiC growth. Taken together, the chemical variations among internal grains as well as the presence of partially amorphous rims and epitaxial Fe phases on some TiCs clearly indicate that the phase condensation sequence was TiC, followed by the iron phases (only found in some graphites) and finally graphite. Since graphite typically condenses at a higher temperature than iron at low pressures (<10 -3 bars) in a gas with C > O and otherwise solar composition, the observed condensation sequence implies a relative iron enrichment in the gas or greater supersaturation of graphite relative to iron. The TEM observations allow inferences to be made about the physical conditions in the gas from which the grains condensed. Given the TiC sizes and abundances, the gas was evidently quite dusty. From the observed TiC size range of ˜20 nm to ˜500 nm (assuming ˜1 yr growth time and T ˜ 1800°K), we infer minimum Ti number densities in the gas to be ˜7 × 10 4 to ˜2 × 10 6 atoms/cc, respectively. Although the gas composition is clearly not solar, for scale, these number densities would correspond to a pressure range of ˜0.2 μbar to ˜5.0 μbar in a gas of solar composition. They also correspond to minimum TiC grain number densities of ˜3 × 10 -4 to ˜0.2 grains/cc, assuming complete condensation of Ti in TiC. We estimate the maximum ratio of mean TiC grain separation distance in the gas to grain diameter from the Ti number densities as ˜3 × 10 5 to ˜1 × 10 6.
Experimental Study of Lunar and SNC Magmas
NASA Technical Reports Server (NTRS)
Rutherford, Malcolm J.
2004-01-01
The research described in this progress report involved the study of petrological, geochemical, and volcanic processes that occur on the Moon and the SNC meteorite parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the types of magmas (magma compositions) present, the role of volatiles in magmatic processes, and on processes of magma evolution on these planets. We are also interested in how these processes and magma types varied over time.In earlier work on the A15 green and A17 orange lunar glasses, we discovered a variety of metal blebs. Some of these Fe-Ni metal blebs occur in the glass; others (in A17) were found in olivine phenocrysts that we find make up about 2 vol 96 of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption . They also yield important information about the composition of the gas phase present, the gas that drove the lunar fire-fountaining. During the tenure of this grant, we have continued to work on the remaining questions regarding the origin and evolution of the gas phase in lunar basaltic magmas, what they indicate about the lunar interior, and how the gas affects volcanic eruptions. Work on Martian magmas petrogenesis questions during the tenure of this grant has resulted in advances in our methods of evaluating magmatic oxidation state variations in Mars and some new insights into the compositional variations that existed in the SNC magmas over time . Additionally, Minitti has continued to work on the problem of possible shock effects on the abundance and distribution of water in Mars minerals.
Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization
NASA Astrophysics Data System (ADS)
Behúlová, M.; Grgač, P.; Čička, R.
2017-11-01
Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.
Spectroscopic diagnostics of organic chemistry in the protostellar environment
NASA Technical Reports Server (NTRS)
Charnley, S. B.; Ehrenfreund, P.; Kuan, Y. J.
2001-01-01
A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.
NASA Astrophysics Data System (ADS)
Lesne, P.; Witham, F.; Kohn, S.; Blundy, J.; Botcharnikov, R. E.; Behrens, H.
2010-12-01
Geochemical measurements, from chemistry of melt inclusion to gas fluxes and compositions, give important clues to help understand magma and gas transport from a magma chamber towards the surface. These data are of the utmost importance to constrain models of the mass transport processes occurring in volcanic systems. Experimental work is central to testing such models. The behaviour of water and carbon dioxide fluids in basaltic melts have been well studied in previous works (i.e. Dixon et al., 1995; Newman & Lowenstern, 2002; Papale et al., 2006). The various models agree that the gases exsolved at high pressures are rich in CO_{2}, and at lower pressures, when most of the CO_{2} has already moved to the fluid phase, H_{2}O strongly partitions into the fluid and the melt become dehydrated (e.g. Newman & Lowenstern, 2002; Papale et al, 2006). S and Cl are much less abundant in the atmosphere than H_{2}O and CO_{2} and therefore give much higher signal ratio to noise ratios than volcanogenic H_{2}O and CO_{2}. H_{2}O, CO_{2}, S and Cl being the major volatiles measured at vent in melt inclusions in volcanic systems, a detailed model of S and Cl behaviour in basaltic melts is highly valuable in order to better understand volcanic gas emissions, and to test models of degassing processes. We have developed a model for mixed C-O-H-S-Cl fluids in equilibrium with basalt. The model is based on the premise that the volumetrically dominant volatile components, H_{2}O and CO_{2}, will determine the behaviour of S and Cl. Equilibrium experiments between a C-O-H-S-Cl fluid and basaltic melts from Stromboli and Masaya have been performed, at 1150°C, under oxidized conditions and at pressure from 25 to 400MPa. Analyses of volatiles dissolved in the melt and determined fluid composition allow us to determine equilibrium constants and partition coefficients of S and Cl between a CO_{2}-H_{2}O-rich fluid phase and basaltic melt. Equilibrium constants were parameterized using a S-rich basaltic composition (Stromboli), and have been tested against independent S-poor basaltic composition melts for Stromboli, and two volatile compositions from Masaya volcano. Our model reproduces all these experimental data with good agreement. The geochemical model will be published as a user-friendly software package, SolEx, to allow easy prediction of melt and fluid phase chemistries. We hope that this will facilitate comparisons between fluid-mechanical models of volcanic behaviour and measurements of melt inclusion chemistry and emitted gas compositions and fluxes. Dixon et al., 1995, J. Pet., 36, 1607-1631; Newman & Lowenstern, 2002, Computers & Geosciences, 28, 597-604; Papale et al., 2006, Chem. Geol., 229, 78-95.
NASA Astrophysics Data System (ADS)
Haddadi, Baptiste; Moune, Séverine; Sigmarsson, Olgeir; Gauthier, Pierre-Jean; Gouhier, Mathieu
2015-04-01
The 2014 Holuhraun eruption on the Bárðarbunga Volcanic System is the largest fissure eruption in Iceland since the 1783 Laki eruption. The eruption started end of August 2014 and has been characterized by large emission of SO2 into the atmosphere. It provides a rare opportunity to study in details magmatic and degassing processes during a large-volume fissure eruption. In order to characterize the pre-eruptive magmatic composition and to assess the plume chemistry at the eruption site, lava and tephra were sampled together with the eruption plume. The basalt composition is olivine tholeiite with MgO close to 7 wt%. It is phenocryst-poor with plagioclase as the dominant mineral phase but olivine and clinopyroxene are also present together with sulphide globules composed principally of pyrite and chalcopyrite. The volatile (S, Cl and F) and major element concentrations were measured by the electron microprobe in melt inclusions (MIs) trapped in plagioclase and clinopyroxene and groundmass glass. The MIs composition ranges from fairly primitive basaltic compositions (MgO: 9.03 wt%) down to evolved qz-tholeiites (MgO: 5.57 wt%), with estimated pre-eruptive S concentrations of 1500 ppm. Tephra groundmass glass contains 400 ppm S, whereas Cl and F concentrations are respectively slightly lower and indistinguishable from those in the MIs. This implies limited exsolution of halogens but 75% of the initial sulphur content. Relatively to their total iron content, MIs are sulphur saturated, and their oxygen fugacity close to the FMQ buffer. The difference between the estimated initial volatile concentrations measured in the MIs and in the tephra groundmass (i.e. the so-called petrological method) yields 7.2 Mt SO2, limited HCl and no HF atmospheric mass loading from the Holuhraun 2014 eruption. The SO2/HCl molar ratio of the gas phase, calculated from the MIs, is 13 and 14, respectively, using average and estimated pre-eruptive S and Cl concentrations in the MIs. Filter-pack sampling of the gas plume was performed 2 October 2014 few hundred meters to the W of the active crater row. Filter packs were composed of three filters in series: one PTFE filter to collect particulate phases, followed by two impregnated filters to trap major gaseous species (SO2, HF and HCl). Sulphate (SO4) and halide (Cl- and F-) ion concentrations were determined by ion chromatography. The SO2/HCl molar ratio in the erupted gas phase at the eruption site is 29-46, only slightly higher than that estimated from the MIs. Trace element volatility and fluxes are discussed elsewhere (Gauthier et al., 2015) but the average SO2 flux calculated from lava volume estimate end of November as 1.2 km3 (Gouhier et al., 2015) is close to 1100 kg/sec. This is the highest SO2 flux ever estimated from gas plume measurements. References: Gauthier et al. (2015) Trace element degassing patterns and volcanic fluxes to the atmosphere during the 2014 Holuhraun eruption, Iceland. EGU General Assembly 2015. Gouhier et al. (2015) Retrieval of lava and SO2 long-lived emissions using MSG-SEVIRI data during the 2014 Holuhraun eruption. EGU General Assembly 2015.
Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH
NASA Astrophysics Data System (ADS)
Zuend, A.; Seinfeld, J.
2011-12-01
Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal mixtures substantially overestimates the SOA mass, especially at high relative humidity.
NASA Astrophysics Data System (ADS)
Han, Y.; Gong, Z.; Liu, P.; de Sá, S. S.; McKinney, K. A.; Martin, S. T.
2017-12-01
Atmospheric secondary organic material (SOM) from oxidation of volatile organic compounds can exist in amorphous solid, semisolid, and liquid states depending on a range of factors such as relative humidity (RH), temperature, and reaction history. The phase state of SOM affects the dynamic exchange and reactivity between particles and gas-phase molecules. Dicarboxylic acids are ubiquitous in ambient atmosphere and the uptake of which may lead to substantial changes in hygroscopicity, absorption property, and light scattering of aerosol particles. This study investigates the diffusivity of dicarboxylic acids to the matrix of SOM particles. SOM was generated from dark ozonolysis of a-pinene in Harvard Environmental Chamber. The produced SOM particles were passed through an ozone scrubber to remove gas-phase chemistry before being led into a flask reactor, where gas-phase dicarboxylic acid was injected continuously and RH was varied from 5% to 85%. The probe dicarboxylic acids molecules including malonic acid and a-ketoglutaric acid have been investigated for the uptake to SOM particles. Organic composition in the outflow of the flask was measured with a high-resolution time-of-flight aerosol mass spectrometer. The mass fractions of tracer ions in total organic mass for both malonic acid and a-ketoglutaric acid increased substantially with the increase of RH values. The tracer ions of malonic acid were also more abundant in a-pinene SOM particles with increased gas-phase concentrations. These results suggest that the diffusion of the studied dicarboxylic acids molecules to a-pinene SOM particles was enhanced at increased RH values, which is possibly due to the phase transition of a-pinene SOM particles from non-liquid to liquid states. Therefore, particle phase state may be an important factor governing the diffusivity of dicarboxylic acids molecules to a-pinene SOM. Further dicarboxylic acids with various functional groups will be investigated to understand the effects of volatility and structure on their diffusivity.
NASA Technical Reports Server (NTRS)
Benkel, Samantha; Zhu, Dongming
2011-01-01
Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.
NASA Astrophysics Data System (ADS)
Isaacman, Gabriel Avram
Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with vacuum ultraviolet (VUV) photo-ionization. Chapters 3 and 4 describe this new analytical technique and its initial application to determine the structures of unknown compounds and formerly unresolvable mixtures, including a complete description of the chemical composition of two common petroleum products related to anthropogenic emissions: diesel fuel and motor oil. The distribution of hydrocarbon isomers in these mixtures - found to be mostly of branched, cyclic, and saturated -- is described with unprecedented detail. Instead of measuring average bulk aerosol properties, the methods developed and applied in this work directly measure the polarity, volatility, and structure of individual components to allow a mechanistic understanding of oxidation processes. Novel characterizations of these complex mixtures are used to elucidate the role of structure and functionality in particle-phase oxidation, including in Chapter 4 the first measurements of relative reaction rates in a complex hydrocarbon particle. Molecular structure is observed to influence particle-phase oxidation in unexpected and important ways, with cyclization decreasing reaction rates by ~30% and branching increasing reaction rates by ~20-50%. The observed structural dependence is proposed to result in compositional changes in anthropogenic organic aerosol downwind of urban areas, which has been confirmed in subsequent work by applying the techniques described here. Measurement of organic aerosol components is extended to ambient environments through the development of instrumentation with the unprecedented capability to measure hourly concentrations and gas/particle partitioning of individual highly oxygenated organic compounds in the atmosphere. Chapters 5 and 6 describe development of new procedures and hardware for the calibration and analysis of oxygenates using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG), a custom instrument for in situ quantification of gas- and particle-phase organic compounds in the atmosphere. High time resolution measurement of oxygenated compounds is achieved through a reproducible and quantitative methodology for in situ "derivatization" -- replacing highly polar functional groups that cannot be analyzed by traditional gas chromatography with less polar groups. Implementation of a two-channel sampling system for the simultaneous collection of particle-phase and total gas-plus-particle phase samples allows for the first direct measurements of gas/particle partitioning in the atmosphere, significantly advancing the study of atmospheric composition and variability, as well as the processes governing condensation and re-volatilization. This work presents the first in situ measurements of a large suite of highly oxygenated biogenic oxidation products in both the gas- and particle-phase. Isoprene, the most ubiquitous biogenic emission, oxidizes to form 2-methyltetrols and C5 alkene triols, while α-pinene, the most common monoterpene, forms pinic, pinonic, hydroxyglutaric, and other acids. These compounds are reported in Chapter 7 with unprecedented time resolution and are shown for the first time to have a large gas-phase component, contrary to typical assumptions. Hourly comparisons of these products with anthropogenic aerosol components elucidate the interaction of human and natural emissions at two rural sites: the southeastern, U.S. and Amazonia, Brazil. Anthropogenic influence on SOA formation is proposed to occur through the increase in liquid water caused by anthropogenic sulfate. Furthermore, these unparalleled observations of gas/particle partitioning of biogenic oxidation products demonstrate that partitioning of oxygenates is unexpectedly independent of volatility: many volatile, highly oxygenated compounds have a large particle-phase component that is poorly described by traditional models. These novel conclusions are reached in part by applying the new frameworks developed in previous chapters to understand the properties of unidentified compounds, demonstrating the importance of detailed characterization of atmospheric organic mixtures. Comprehensive analysis of anthropogenic and biogenic emissions and oxidation product mixtures is coupled in this work with high time-resolution measurement of individual organic components to yield significant insights into the transformations of organic aerosols. Oxidation chemistry is observed in both laboratory and field settings to depend on molecular properties, volatility, and atmospheric composition. However, this work demonstrates that these complex processes can be understood through the quantification of individual known and unidentified compounds, combined with their classification into descriptive frameworks.
Munasinghe, Pradeep Chaminda; Khanal, Samir Kumar
2012-10-01
In this study, the volumetric mass transfer coefficients (Ka) for CO were examined in a composite hollow fiber (CHF) membrane bioreactor. The mass transfer experiments were conducted at various inlet gas pressures (from 5 to 30 psig (34.5-206.8 kPa(g))) and recirculation flow rates (300, 600, 900, 1200 and 1500 mL/min) through CHF module. The highest Ka value of 946.6 1/h was observed at a recirculation rate of 1500 mL/min and at an inlet gas pressure of 30 psig(206.8 kPa(g)). The findings of this study confirm that the use of CHF membranes is effective and improves the efficiency CO mass transfer into the aqueous phase. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Horst, Sarah; Yoon, Heidi; Li, Rui; deGouw, Joost; Tolbert, Margaret
2014-11-01
Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan’s atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, the discovery of very heavy ions, coupled with Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation measurements that show haze absorption up to 1000 km altitude (Liang et al., 2007), indicates that haze formation initiates in the thermosphere. The energy environment of the thermosphere is significantly different from the stratosphere; in particular there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2, in the upper atmosphere. The discovery of previously unpredicted nitrogen species in measurements of Titan’s atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini (Vuitton et al., 2007). Additionally, measurements obtained by the Aerosol Collector Pyrolyzer (ACP) carried by Huygens to Titan’s surface may indicate that Titan’s aerosols contain significant amounts of nitrogen (Israël et al., 2005, 2006). The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan’s atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products.
Iglesias, Daniel; Senokos, Evgeny; Alemán, Belén; Cabana, Laura; Navío, Cristina; Marcilla, Rebeca; Prato, Maurizio; Vilatela, Juan J; Marchesan, Silvia
2018-02-14
The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.
Chemistry in a gravitationally unstable protoplanetary disc
NASA Astrophysics Data System (ADS)
Ilee, J. D.; Boley, A. C.; Caselli, P.; Durisen, R. H.; Hartquist, T. W.; Rawlings, J. M. C.
2011-11-01
Until now, axisymmetric, α-disc models have been adopted for calculations of the chemical composition of protoplanetary discs. While this approach is reasonable for many discs, it is not appropriate when self-gravity is important. In this case, spiral waves and shocks cause temperature and density variations that affect the chemistry. We have adopted a dynamical model of a solar-mass star surrounded by a massive (0.39 M⊙), self-gravitating disc, similar to those that may be found around Class 0 and early Class I protostars, in a study of disc chemistry. We find that for each of a number of species, e.g. H2O, adsorption and desorption dominate the changes in the gas-phase fractional abundance; because the desorption rates are very sensitive to temperature, maps of the emissions from such species should reveal the locations of shocks of varying strengths. The gas-phase fractional abundances of some other species, e.g. CS, are also affected by gas-phase reactions, particularly in warm shocked regions. We conclude that the dynamics of massive discs have a strong impact on how they appear when imaged in the emission lines of various molecular species.
NASA Astrophysics Data System (ADS)
Burnat, Dariusz; Nasdaurk, Gunnar; Holzer, Lorenz; Kopecki, Michal; Heel, Andre
2018-05-01
Electrochemical performance of ceramic (Ni-free) SOFC anodes based on La0.2Sr0.7TiO3-δ (LST) and Gd0.1Ce0.9O1.95-δ (CGO) is thoroughly investigated. Microstructures and compositions are systematically varied around the percolation thresholds of both phases by modification of phase volume fractions, particle size distributions and firing temperature. Differential impedance spectroscopy was performed while varying gas composition, electrical potential and operating temperature, which allows determining four distinct electrode processes. Significant anode impedances are measured at low frequencies, which in contrast to the literature cannot be linked with gas concentration impedance. The dominant low frequency process (∼1 Hz) is attributed to the chemical capacitance. Combined EIS and microstructure investigations show that the chemical capacitance correlates inversely with the available surface area of CGO, indicating CGO surface reactions as the kinetic limitation for the dominant anode process and for the associated chemical capacitance. In anodes with a fine-grained microstructure this limitation is significantly smaller, which results in an impressive power output as high as 0.34 Wcm-2. The anodes show high redox stability by not only withstanding 30 isothermal redox cycles, but even improving the performance. Hence, compared to conventional Ni-cermet anodes the new LST-CGO material represents an interesting alternative with much improved redox-stability.
NASA Astrophysics Data System (ADS)
Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.
2015-08-01
This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Typically only photolysis of smaller organic molecules (e.g., formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low and high NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after 4 days of chemical aging under those conditions (equivalent to 8 days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields, i.e., ~15 % (low NOx) to ~45 % (high NOx) for α-pinene, ~15 % for toluene, ~25 % for C12 n-alkane, and ~10 % for C16 n-alkane. The small effect of gas-phase photolysis on low-volatility n-alkanes such as C16 n-alkane is due to the rapid partitioning of early-generation products to the particle phase, where they are protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass is increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an empirically estimated SOA photolysis rate of JSOA = 4 × 10-4 JNO2. Modeling results indicate that this photolytic loss rate would decrease SOA mass by 40-60 % for most species after 10 days of equivalent atmospheric aging at mid-latitudes in the summer. It should be noted that in our simulations we do not consider in-particle or aqueous-phase reactions which could modify the chemical composition of the particle and thus the quantity of photolabile species. The atmospheric implications of our results are significant for both the SOA global distribution and lifetime. GEOS-Chem global model results suggest that particle-phase photolytic reactions could be an important loss process for SOA in the atmosphere, removing aerosols from the troposphere on timescales of less than 7 days that are comparable to wet deposition.
NASA Astrophysics Data System (ADS)
Kristensen, Kasper; Bilde, Merete; Aalto, Pasi P.; Petäjä, Tuukka; Glasius, Marianne
2016-04-01
Carboxylic acids and organosulfates comprise an important fraction of atmospheric secondary organic aerosols formed from both anthropogenic and biogenic precursors. The partitioning of these compounds between the gas and particle phase is still unclear and further research is warranted to better understand the abundance and effect of organic acids and organosulfates on the formation and properties of atmospheric aerosols. This work compares atmospheric aerosols collected at an urban and a boreal forest site using two side-by-side sampling systems; a high volume sampler (HVS) and a low volume (LVS) denuder/filter sampling system allowing for separate collection of gas- and particle-phase organics. All particle filters and denuder samples were collected at H.C. Andersen Boulevard (HCAB), Copenhagen, Denmark in the summer of 2010, and at the remote boreal forest site at Hyytiälä forestry field station in Finland in the summer of 2012. The chemical composition of gas- and particle-phase secondary organic aerosol was investigated by ultra-high performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOFMS), with a focus on carboxylic acids and organosulfates. Results show gas-phase concentrations higher than those observed in the particle phase by a factor of 5-6 in HCAB 2010 and 50-80 in Hyytiälä 2012. Although abundant in the particle phase, no organosulfates were detected in the gas phase at either site. Through a comparison of samples collected by the HVS and the LVS denuder/filter sampling system we evaluate the potential artifacts associated with sampling of atmospheric aerosols. Such comparison shows that particle phase concentrations of semi-volatile organic acids obtained from the filters collected by HVS are more than two times higher than concentrations obtained from filters collected using LVS denuder/filter system. In most cases, higher concentrations of organosulfates are observed in particles collected by HVS compared to samples collected by LVS denuder/filter sampling system. The present study shows that volatile organics may absorb onto filter materials in the HVS (and similar sampling systems without denuder) and furthermore undergo subsequent on-filter oxidation and sulfation resulting in formation of both organic acids and organosulfates.
Nucleation and growth constraints and outcome in the natural gas hydrate system
NASA Astrophysics Data System (ADS)
Osegovic, J. P.; Max, M. D.
2016-12-01
Hydrate formation processes are functions of energy distribution constrained by physical and kinetic parameters. The generation of energy and energy derivative plots of a constrained growth crucible are used to demonstrate nucleation probability zones (phase origin(s)). Nucleation sets the stage for growth by further constraining the pathways through changes in heat capacity, heat flow coefficient, and enthalpy which in turn modify the mass and energy flow into the hydrate formation region. Nucleation events result from the accumulation of materials and energy relative to pressure, temperature, and composition. Nucleation induction is predictive (a frequency parameter) rather than directly dependent on time. Growth, as mass tranfer into a new phase, adds time as a direct parameter. Growth has direct feedback on phase transfer, energy dynamics, and mass export/import rates. Many studies have shown that hydrate growth is largely an equilibrium process controlled by either mass or energy flows. Subtle changes in the overall energy distribution shift the equilibrium in a predictable fashion. We will demonstrate the localization of hydrate nucleation in a reservoir followed by likely evolution of growth in a capped, sand filled environment. The gas hydrate stability zone (GHSZ) can be characterized as a semi-batch crystallizer in which nucleation and growth of natural gas hydrate (NGH) is a continuous process that may result in very large concentrations of NGH. Gas flux, or the relative concentration of hydrate-forming gas is the critical factor in a GHSZ. In an open groundwater system in which flow rate exceeds diffusion transport rate, dissolved natural gas is transported into and through the GHSZ. In a closed system, such as a geological trap, diffusion of hydrate-forming gas from a free gas zone below the GHSZ is the primary mechanism for movement of gas reactants. Because of the lower molecular weight of methane, where diffusion is the principal transport mechanism, the natural system can be a purification process for formation of increasingly pure NGH from a mixed gas solution over time.
May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A
2014-02-18
Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.
2014-01-01
Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877
NASA Astrophysics Data System (ADS)
Glowacki, E.; Hunt, K.; Abud, D.; Marshall, K. L.
2010-08-01
Stimuli-responsive gas permeation membranes hold substantial potential for industrial processes as well as in analytical and screening applications. Such "smart" membrane systems, although prevalent in liquid mass-transfer manipulations, have yet to be realized for gas applications. We report our progress in developing gas permeation membranes in which liquid crystalline (LC) phases afford the active region of permeation. To achieve rapid and reversible switching between LC and isotropic permeation states, we harnessed the photomechanical action of mesogenic azobenzene dyes that can produce isothermal nematic-isotropic transitions. Both polymeric and low-molecular-weight LC materials were tested. Three different dye-doped LC mixtures with mesogenic azo dyes were infused into commercially available track-etched porous membranes with regular cylindrical pores (0.4 to 10.0 μm). Photoinduced isothermal phase changes in the imbibed material produced large and fully reversible changes in the permeability of the membrane to nitrogen with 5 s of irradiation at 2 mW/cm2. Using two measurement tools constructed in-house, the permeability of the photoswitched membranes was determined by both variable-pressure and variable-volume methods. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure (ideal sorption) relationship, with up to a 16-fold difference in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic-or vice versa. This approach is the first system offering reversible tunable gas permeation membranes.
NASA Astrophysics Data System (ADS)
Velivetskaya, Tatiana A.; Ignatiev, Alexander V.; Budnitskiy, Sergey Y.; Yakovenko, Victoria V.; Vysotskiy, Sergey V.
2016-11-01
Hydrogen peroxide is an important atmospheric component involved in various gas-phase and aqueous-phase transformation processes in the Earth's atmosphere. A study of mass-independent 17O anomalies in H2O2 can provide additional insights into the chemistry of the modern atmosphere and, possibly, of the ancient atmosphere. Here, we report the results of laboratory experiments to study the fractionation of three oxygen isotopes (16O, 17O, and 18O) during H2O2 formation from products of water vapour dissociation. The experiments were carried out by passing an electrical discharge through a gaseous mixture of helium and water at atmospheric pressure. The effect of the presence of O2 in the gas mixture on the isotopic composition of H2O2 was also investigated. All of the experiments showed that H2O2 produced under two different conditions (with or without O2 added in the gas mixtures) was mass-independently fractionated (MIF). We found a positive MIF signal (∼1.4‰) in the no-O2 added experiments, and this signal increased to ∼2.5‰ once O2 was added (1.6% mixing ratio). We suggest that if O2 concentrations are very low, the hydroxyl radical recombination reaction is the dominant pathway for H2O2 formation and is the source of MIF in H2O2. Although H2O2 formation via a hydroxyl radical recombination process is limited in the modern atmosphere, it would be possible in the Archean atmosphere when O2 was a trace constituent, and H2O2 would be mass-independently fractionated. The anomalous 17O excess, which was observed in H2O2 produced by spark discharge experiments, may provide useful information about the radical chemistry of the ancient atmosphere and the role of H2O2 in maintaining and controlling the atmospheric composition.
Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow
NASA Astrophysics Data System (ADS)
Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.
2017-10-01
We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 °C, with B/(B + Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges from x = 0.06 to 0.16, closely following the gas-flow ratios. Transmission electron microscopy indicates the sole presence of a wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B + Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B + Al) gas-flow ratios that we have studied, which is significantly higher than previously thought.
Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.
NASA Technical Reports Server (NTRS)
1995-01-01
The success of any solution methodology for studying gas-turbine combustor flows depends a great deal on how well it can model various complex, rate-controlling processes associated with turbulent transport, mixing, chemical kinetics, evaporation and spreading rates of the spray, convective and radiative heat transfer, and other phenomena. These phenomena often strongly interact with each other at disparate time and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. Turbulence manifests its influence in a diffusion flame in several forms depending on how turbulence interacts with various flame scales. These forms range from the so-called wrinkled, or stretched, flamelets regime, to the distributed combustion regime. Conventional turbulence closure models have difficulty in treating highly nonlinear reaction rates. A solution procedure based on the joint composition probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices such as extinction, blowoff limits, and emissions predictions because it can handle the nonlinear chemical reaction rates without any approximation. In this approach, mean and turbulence gas-phase velocity fields are determined from a standard turbulence model; the joint composition field of species and enthalpy are determined from the solution of a modeled PDF transport equation; and a Lagrangian-based dilute spray model is used for the liquid-phase representation with appropriate consideration of the exchanges of mass, momentum, and energy between the two phases. The PDF transport equation is solved by a Monte Carlo method, and existing state-of-the-art numerical representations are used to solve the mean gasphase velocity and turbulence fields together with the liquid-phase equations. The joint composition PDF approach was extended in our previous work to the study of compressible reacting flows. The application of this method to several supersonic diffusion flames associated with scramjet combustor flow fields provided favorable comparisons with the available experimental data. A further extension of this approach to spray flames, three-dimensional computations, and parallel computing was reported in a recent paper. The recently developed PDF/SPRAY/computational fluid dynamics (CFD) module combines the novelty of the joint composition PDF approach with the ability to run on parallel architectures. This algorithm was implemented on the NASA Lewis Research Center's Cray T3D, a massively parallel computer with an aggregate of 64 processor elements. The calculation procedure was applied to predict the flow properties of both open and confined swirl-stabilized spray flames.
Control of iron nitride layers growth kinetics in the binary Fe-N system
NASA Astrophysics Data System (ADS)
Torchane, L.; Bilger, P.; Dulcy, J.; Gantois, M.
1996-07-01
This study is within the framework of a research program dedicated to defining the optimal conditions for the nitriding of iron and steels at atmospheric pressure by using various mixtures, NH3-N2-H2 and NH3-Ar. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the nitride layer growth rate, and the nitrogen concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses, and metallurgical observations (X-ray diffraction, optical microscopy, and electron microprobe anal-ysis). The results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions. By applying the model to the iron-nitrogen binary system, when the ɛ/γ/α configuration referred to the Fe-N phase diagram is formed, we have experimentally determined the effective diffusion coefficient of nitrogen in the ɛ phase. The latter is constant for a composition of the ɛ nitride between 8 and 9.5 wt pct nitrogen. All the results obtained show that it is possible, by means of dynamic gas flow regulation, to eliminate the incubation period and to control the thickness, composition, and structure of the compound layer at the beginning of the treatment.
Efficient mixing of the solar nebula from uniform Mo isotopic composition of meteorites.
Becker, Harry; Walker, Richard J
2003-09-11
The abundances of elements and their isotopes in our Galaxy show wide variations, reflecting different nucleosynthetic processes in stars and the effects of Galactic evolution. These variations contrast with the uniformity of stable isotope abundances for many elements in the Solar System, which implies that processes efficiently homogenized dust and gas from different stellar sources within the young solar nebula. However, isotopic heterogeneity has been recognized on the subcentimetre scale in primitive meteorites, indicating that these preserve a compositional memory of their stellar sources. Small differences in the abundance of stable molybdenum isotopes in bulk rocks of some primitive and differentiated meteorites, relative to terrestrial Mo, suggest large-scale Mo isotopic heterogeneity between some inner Solar System bodies, which implies physical conditions that did not permit efficient mixing of gas and dust. Here we report Mo isotopic data for bulk samples of primitive and differentiated meteorites that show no resolvable deviations from terrestrial Mo. This suggests efficient mixing of gas and dust in the solar nebula at least to 3 au from the Sun, possibly induced by magnetohydrodynamic instabilities. These mixing processes must have occurred before isotopic fractionation of gas-phase elements and volatility-controlled chemical fractionations were established.
Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization
NASA Astrophysics Data System (ADS)
Kuhn, J.; Kesler, O.
2015-03-01
In the first of a two part publication, the effect of fuel utilization (Uf) on carbon deposition rates in solid oxide fuel cell nickel-based anodes was studied. Representative 5-component CH4 reformate compositions (CH4, H2, CO, H2O, & CO2) were selected graphically by plotting the solutions to a system of mass-balance constraint equations. The centroid of the solution space was chosen to represent a typical anode gas mixture for each nominal Uf value. Selected 5-component and 3-component gas mixtures were then delivered to anode-supported cells for 10 h, followed by determination of the resulting deposited carbon mass. The empirical carbon deposition thresholds were affected by atomic carbon (C), hydrogen (H), and oxygen (O) fractions of the delivered gas mixtures and temperature. It was also found that CH4-rich gas mixtures caused irreversible damage, whereas atomically equivalent CO-rich compositions did not. The coking threshold predicted by thermodynamic equilibrium calculations employing graphite for the solid carbon phase agreed well with empirical thresholds at 700 °C (Uf ≈ 32%); however, at 600 °C, poor agreement was observed with the empirical threshold of ∼36%. Finally, cell operating temperatures correlated well with the difference in enthalpy between the supplied anode gas mixtures and their resulting thermodynamic equilibrium gas mixtures.
NASA Astrophysics Data System (ADS)
Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet
2014-10-01
In the Phuong Dong gas condensate field, Cuu Long Basin, Vietnam, hydrocarbon inclusions in quartz trapped a variety of petroleum fluids in the gas zone. Based on the attributes of the oil inclusion assemblages (fluorescence colour of the oil, bubble size, presence of bitumen), the presence of a palaeo-oil column is inferred prior to migration of gas into the reservoir. When a palaeo-oil column is displaced by gas, a residual volume fraction of oil remains in pores. If the gas does not completely mix with the oil, molecular partitioning between the residual oil and the new gas charge may change the composition and properties of the residual oil (gas stripping or gas washing). To simulate this phenomenon in the laboratory, we sealed small amounts of crude oil (42 and 30 °API) and excess pure gas (methane, ethane, or propane) in fused silica capillary capsules (FSCCs), with and without water. These mixtures were characterized with the same methods used to characterize the fluid inclusions, heating and cooling stage microscopy, fluorescence spectroscopy, synchrotron FT-IR, and Raman spectroscopy. At room temperature, mixtures of ethane and propane with the 30 °API oil formed a new immiscible fluorescent liquid phase with colour that is visually more blue than the initial oil. The fluorescence of the original oil phase shifted to yellow or disappeared with formation of semi-solid residues. The blue-shift of the fluorescence of the immiscible phases and strong CH stretching bands in FT-IR spectra are consistent with stripping of hydrocarbon molecules from the oil. In experiments in FSCCs with water solid residues are common. At elevated temperature, reproducing geologic reservoir conditions, the fluorescence changes and therefore the molecular fractionation are enhanced. However, the precipitation of solid residues is responsible of more complex changes. Mixing experiments with the 42 °API oil do not form a new immiscible hydrocarbon liquid although the fluorescence displays a similar yellow shift when gas is added. Solid residues rarely form in mixtures with 42 °API oil. FT-IR spectra suggest that the decrease of fluorescence intensity of the original oil at short wavelengths to be due to the partitioning of low molecular weight aromatic molecules into the vapour phase and/or the new immiscible liquid phase. The decrease of fluorescence intensity at long wavelengths appears to be due to loss of high molecular weight aromatics during precipitation of solid residues by desorption of aromatics and resins from asphaltenes. Desorption of low molecular weight aromatics and resins from asphaltenes during precipitation can also increase the fluorescence intensity at short wavelengths of the residual oil. Water clearly affects the precipitation of semi-solid residues from the oil phase of the lowest API gravity oil. The change of hydrocarbon phase(s) in UV-visible fluorescence and FT-IR enclosed within the FSCCs were compared with the fluorescence patterns of natural fluid inclusions at Phuong Dong gas condensate field. The experimental results support the concept of gas-washing of residual oil and are consistent with the oil inclusion attributes from the current gas zone at Phuong Dong field. The hydrocarbon charge history of the fractured granite reservoir is interpreted to result from the trapping of residual oil after drainage of a palaeo-oil column by gas.
Characteristics of aerosol pollution during heavy haze events in Suzhou, China
NASA Astrophysics Data System (ADS)
Tian, M.; Wang, H. B.; Chen, Y.; Yang, F. M.; Zhang, X. H.; Zou, Q.; Zhang, R. Q.; Ma, Y. L.; He, K. B.
2015-11-01
A comprehensive measurement was carried out to analyze the heavy haze events in Suzhou in January 2013 when extremely severe haze pollution occurred in many cities in China especially in the East. Hourly concentrations of PM2.5, chemical composition (including water-soluble inorganic ions, OC, and EC), and gas-phase precursors were obtained via on-line monitoring system. Based on these data, detailed aerosol composition, light extinction and gas-phase precursors were analyzed to understand the characteristics of the haze events, moreover, the formation mechanism of nitrate and sulfate in PM2.5 and the regional sources deduced from trajectory and PSCF were discussed to explore the origin of the heavy aerosol pollution. The results showed that frequent haze events were occurred on January 2013 and the concentrations of PM2.5 often exceeded 150 μg m-3 during the haze occurrence, with a maximum concentration of 324 μg m-3 on 14 January 2013. Unfavorable weather conditions (high RH, and low rainfall, wind speed and atmospheric pressure), high concentration of secondary aerosol species (including SO42-, NO3-, NH4+, and SOC) and precursors were observed during the haze events. Additionally, OM, (NH4)2SO4, NH4NO3 were demonstrated to be the major contributors to the visibility impairment but the share differed from haze events. This study also found that the high concentration of sulfate might be explained by the heterogeneous reactions in the aqueous surface layer of pre-existing particles or in cloud processes while nitrate might be mainly formed through homogeneous gas-phase reactions. The results of trajectory clustering and the PSCF method manifested that aerosol pollutions in the studied areas were mainly affected by local activities and surrounding sources transported from nearby cities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Imre, Dan G.; Wilson, Jacqueline
2017-01-01
When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to ‘pure’ SOA particles, these particles exhibit slower evaporation kinetics,more » have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.« less
Geochemical and thermodynamic specificity of volcanic, hydrothermal and soil aerosols
NASA Astrophysics Data System (ADS)
Mukhamadiyarova, Renata V.; Alekhin, Yury V.; Karpov, Gennady A.; Makarova, Marina A.
2010-05-01
On the basis of element composition analyses results (ICP-MS) of hydrothermal and soil aerosols condensates, and also results of diagnostics of ultradisperse phases by means of power dispersive x-ray spectrometers features of phase and microelement composition of issue aerosols are discussed. Our researches of streams of polyelement issue from a soil cover and specificity of structure of volcanic aerosols have led us to a conclusion that is geochemistry area practically is not developed in the relation of microelement migration in lithosphere - atmosphere. Nanoaerosol particles (0,001 - 1 microns) submit to laws of gas dynamics and in fluid streams are steady enough. Experimental researches of polyelement emission streams from soils and low-temperature microelements migration have allowed to detail the reasons of rather high values of the soil issue. Complexity of authentic definition of forms of carrying over, structure and dispersion of particles of the gas phase emitting from a soil cover, is substantially connected with absence of methodically well-founded receptions of selection of water condensates, free from aerosol components, and methods of their reliable division in a stationary stage of processes of issue and condensation. Reception of the information on factors of distribution of metals between pore solutions, true gas complexes and mineral phases of soils, an estimation of a role gas electrophoresis at transition to molecular cluster and to water colloid aerosols (0.1 microns and less) have allowed us to clear up estimations of streams of soil issue. The differentiation of a multicomponent gas phase in near surface conditions at powerful Tolbachinsky eruption (PTE) 1975 - 1976 to formation of many native metals - gold, silver, copper, lead, bismuth, tungsten, numerous intermetallic compounds. In eruption ashes of Kamchatka volcanoes - Karymsky, Bezymyanny, Kljuchevskoy and Shivelutch we found not only iron oxides but also numerous grains of native metals - Fe, Al, Zn, Cu. Geochemical specificity of aerosol carrying over in eruption columns at volcanic eruptions, often consists in high cleanliness individual many native metals allocations from typical elements - impurity. Presence of tungsten allocations without molybdenum and similar examples for other metals force to assume presence of the specific gas complexes which stability sharply changes at variations of pressure and temperatures in eruption columns at eruptions. Our analysis has shown that for a role of such forms of carrying over can apply metals carbonyls, widely used at reception of especially pure substances. These covalent compounds with formally 0-valency Me in a complex kernel contain variable quantity of groups CO in ligand parts and always complete the electronic cover to a cover of following inert gas, i.e. have in external sphere 4, 5, 6 groups CO, that together with the big distinctions in dependences of constants of formation on temperature their disintegration does non-simultaneous. The thermodynamical description superfluous components fugacity for aerosol systems is developed.
NASA Astrophysics Data System (ADS)
Schmutzer, G.; Avram, V.; Feher, I.; David, L.; Moldovan, Z.
2012-02-01
The volatile composition of alcoholic beverage was studied by headspace solid-phase microextraction (HSSPME) method and gas chromatography - mass spectrometry (GC-MS). Some volatile compounds, such as alcohols, esters, terpenes and other are mainly responsible for the flavor of fortified wines and their amounts specify the quality of the alcoholic beverages. From this perspective it is interesting to develop a rapid, selective and sensitive analytical method suitable for simultaneous quantification of the main molecules being responsible for the organoleptic characteristic of alcoholic beverages. Vermouth fortified drink was analyzed in order to characterize the volatile profile. Using the HS-SPME/GC-MS a number of twenty-six volatile compounds from a commercial market alcoholic beverage were identified. The most abundant compounds were m-thymol, o-thymol and eugenol, alongside of the ethyl ester compounds.
Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Sandvik; Stanislav Soloviev; Emad Andarawis
2007-08-10
The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements asmore » a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.« less
Lv, Dong; Zhu, Tianle; Liu, Runwei; Li, Xinghua; Zhao, Yuan; Sun, Ye; Wang, Hongmei; Zhang, Fan; Zhao, Qinglin
2018-04-08
To understand the effects of co-processing sewage sludge in the cement kiln on non-criterion pollutants emissions and its surrounding environment, the flue gas from a cement kiln stack, ambient air and soil from the background/downwind sites were collected in the cement plant. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals of the samples were analyzed. The results show that PAHs in flue gas mainly exist in the gas phase and the low molecular weight PAHs are the predominant congener. The co-processing sewage sludge results in the increase in PAHs and heavy metals emissions, especially high molecular weight PAHs and low-volatile heavy metals such as Cd and Pb in the particle phase, while it does not change their compositions and distribution patterns significantly. The concentrations and their distributions of the PAHs and heavy metals between the emissions and ambient air have a positive correlation and the co-processing sewage sludge results in the increase of PAHs and heavy metals concentrations in the ambient air. The PAHs concentration level and their distribution in soil are proportional to those in the particle phase of flue gas, and the co-processing sewage sludge can accelerate the accumulation of the PAHs and heavy metals in the surrounding soil, especially high/middle molecular weight PAHs and low-volatile heavy metals.
An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)
NASA Technical Reports Server (NTRS)
Pratt, B. S.; Pratt, D. T.
1984-01-01
A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces.
A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.; Kuczmarski, M. A.
1993-01-01
Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.
Cloud Condensation in Titan's Lower Stratosphere
NASA Technical Reports Server (NTRS)
Romani, Paul N.; Anderson, Carrie M.
2011-01-01
A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability of the clouds.
Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R
2009-01-28
Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Meyer, Matthew; Guo, Haiquan; Rogers, Richard B.; DeMange, Jeffrey J.; Richardson, Hayley
2016-01-01
A variety of thermal protection applications require lightweight insulation capable of withstanding temperatures well above 900 C. Aerogels offer extremely low-density thermal insulation due to their mesoporous structure, which inhibits both gas convection and solid conduction. Silica aerogel systems are limited to use temperatures of 600-700 C, above which they sinter. Alumina aerogels maintain a porous structure to higher temperatures than silica, before transforming to -alumina and densifying. We have synthesized aluminosilicate aerogels capable of maintaining higher surface areas at temperatures above 1100 C than an all-alumina aerogel using -Boehmite as the aluminum source and tetraethoxysilane (TEOS) as the silicon source. The pore structure of these aerogels varies with thermal exposure temperature and time, as the aluminosilicate undergoes a variety of phase changes to form transition aluminas. Transformation to -alumina is inhibited by incorporation of silica into the alumina lattice. The aerogels are fragile, but can be reinforced using a large variety of ceramic papers, felts or fabrics. The objective of the current study is to characterize the influence of choice of reinforcement and architecture on gas permeability of the aerogel composites in both the as fabricated condition and following thermal exposure, as well as understand the effects of incorporating hydrophobic treatments in the composites.
The comet-like composition of a protoplanetary disk as revealed by complex cyanides.
Öberg, Karin I; Guzmán, Viviana V; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M; Loomis, Ryan; Wilner, David J
2015-04-09
Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition. The presence of cyanides in comets, including 0.01 per cent of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can readily be explained by a combination of gas-phase chemistry (to form, for example, HCN) and an active ice-phase chemistry on grain surfaces that advances complexity. Simple volatiles, including water and HCN, have been detected previously in solar nebula analogues, indicating that they survive disk formation or are re-formed in situ. It has hitherto been unclear whether the same holds for more complex organic molecules outside the solar nebula, given that recent observations show a marked change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks. Here we report the detection of the complex cyanides CH3CN and HC3N (and HCN) in the protoplanetary disk around the young star MWC 480. We find that the abundance ratios of these nitrogen-bearing organics in the gas phase are similar to those in comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of our solar nebula was not unique.
The comet-like composition of a protoplanetary disk as revealed by complex cyanides
NASA Astrophysics Data System (ADS)
Öberg, Karin I.; Guzmán, Viviana V.; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M.; Loomis, Ryan; Wilner, David J.
2015-04-01
Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition. The presence of cyanides in comets, including 0.01 per cent of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can readily be explained by a combination of gas-phase chemistry (to form, for example, HCN) and an active ice-phase chemistry on grain surfaces that advances complexity. Simple volatiles, including water and HCN, have been detected previously in solar nebula analogues, indicating that they survive disk formation or are re-formed in situ. It has hitherto been unclear whether the same holds for more complex organic molecules outside the solar nebula, given that recent observations show a marked change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks. Here we report the detection of the complex cyanides CH3CN and HC3N (and HCN) in the protoplanetary disk around the young star MWC 480. We find that the abundance ratios of these nitrogen-bearing organics in the gas phase are similar to those in comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of our solar nebula was not unique.
Microstructure and properties of pure iron/copper composite cladding layers on carbon steel
NASA Astrophysics Data System (ADS)
Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang
2016-08-01
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
NASA Technical Reports Server (NTRS)
Needham, A. W.; Messenger, S.
2013-01-01
Calcium, Aluminum-rich inclusions (CAIs) are composed of the suite of minerals predicted to be the first to condense from a cooling gas of solar composition [1]. Yet, the first phase to condense, corundum, is rare in CAIs, having mostly reacted to form hibonite followed by other phases at lower temperatures. Many CAIs show evidence of complex post-formational histories, including condensation, evaporation, and melting [e.g. 2, 3]. However, the nature of these thermal events and the nebular environments in which they took place are poorly constrained. Some corundum and corundum-hibonite grains appear to have survived or avoided these complex CAI reprocessing events. Such ultra-refractory CAIs may provide a clearer record of the O isotopic composition of the Sun and the evolution of the O isotopic composition of the planet-forming region [4-6]. Here we present in situ O and Mg isotopic analyses of two corundum/hibonite inclusions that record differing formation histories.
NASA Astrophysics Data System (ADS)
Sucipto, Retno Kumala Hesti; Kuswandi, Wibawa, Gede
2017-05-01
The objective of this study was to determine ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure. Using 25 mL equilibrium cell equipped jacketted water connected to water bath to maintain equilibrium temperature constant. The procedure of this experiment was conducted by inserting mixture of eugenol + tert-butanol + water system at certain composition into equilibrium cell. The solution was stirred for 4 hours and then was allowed for 20 hours in order to separate aqueous and organic phases completely. The temperature equilibrium cell of and the atmosphere pressure were recorded as equilibrium temperature and pressure for each measurenment. The equilibrium compositions of each phase were analyzed using Gas Chromatography. The experimental data obtained in this work were correlated with NRTL and UNIQUAC models with root mean square deviation between esperimental and calculated equilibrium compositions of 0.03% and 0.04% respectively.
Study of thermite mixture consolidated by the cold gas dynamic spray process
NASA Astrophysics Data System (ADS)
Bacciochini, A.; Maines, G.; Poupart, C.; Akbarnejad, H.; Radulescu, M.; Jodoin, B.; Zhang, F.; Lee, J. J.
2014-05-01
The present study focused on the cold gas dynamic spray process for manufacturing porosity free, finely structured energetic materials with high reactivity and structural integrity. The experiments have focused the reaction between the aluminium and metal oxide, such as Al-CuO system. The consolidation of the materials used the cold gas dynamic spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact. Reactive composites are formed in arbitrary shapes with close to zero porosity and without any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.
Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy
NASA Astrophysics Data System (ADS)
Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; Allerman, Andrew A.; Lee, Stephen R.
2017-04-01
Using metalorganic vapor phase epitaxy, a comprehensive study of BxGa1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750-900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to 7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stacking faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at 362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. Only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.
NASA Astrophysics Data System (ADS)
Mahmood, M. A.; Pope, F.; Bloss, W.
2015-12-01
The global incidence of hay fever has been rising for decades, however, the underlying reasons behind this rise remain unclear. It is hypothesized that exposure of pollen to common gas phase pollutants, such as nitrogen dioxide (NO2) and ozone (O3), increases the allergenicity of the pollen and thus increases hay fever incidence. Since atmospheric pollutants tend to have greater concentrations within urban areas (in particular NO2) the hypothesis suggests that greater allergenicity should occur in urban areas. Indeed, several studies do suggest higher hay fever incidence within urban areas compared to rural areas. Previous published work suggests a link between increased allergies with changes in the chemical composition of the pollen protein via posttranslational modification of the protein. This study investigates the posttranslational modification of two highly allergenic pollen species (Birch and Ragweed) that are common in Europe. Within the laboratory, we expose pollen grains to atmospherically relevant exposures of gas phase NO2, O3 and other common gas phase oxidants under a range of environmentally relevant conditions. The effects of the environmentally relevant exposures on the biochemistry of the pollen grains were probed using a proteomic approach (liquid chromatography coupled ultra-high resolution spectrometer). Our findings indicate the interaction between gas phase pollutants and pollen cause protein specific modifications; in particular, nitration occurs upon tyrosine residues and nitrosylation on cysteine residues. Possibly, these modifications may affect the immune response of the pollen protein, which may suggest a possible reason for increased allergies in reaction to such biologically altered protein. The laboratory-derived results will be supported with a time series analysis of asthma incidence rates for the London area, which take into account the pollen count, and pollutant concentrations. The implications of the results will be discussed in terms of better planning of city infrastructure. In particular, the relevance of the results upon urban tree planting schemes will be put into context.
Parkhurst, D.L.
1995-01-01
PHREEQC is a computer program written in the C pwgranuning language that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations, (2) reaction-path and advective-transport calculations involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria surface-complex-ation reactions, and ion-exchange reactions, and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for composition differences between waters, within specified compositional uncertainties. PHREEQC is derived from the Fortran program PHREEQE, but it has been completely rewritten in C with the addition many new capabilities. New features include the capabilities to use redox couples to distribute redox elements among their valence states in speciation calculations; to model ion-exchange and surface-compiexation reactions; to model reactions with a fixed-pressure, multicomponent gas phase (that is, a gas bubble); to calculate the mass of water in the aqueous phase during reaction and transport calculations; to keep track of the moles of minerals present in the solid phases and determine antomaticaHy the thermodynamically stable phase assemblage; to simulate advective transport in combination with PHREEQC's reaction-modeling capability; and to make inverse modeling calculations that allow for uncertainties in the analytical data. The user interface is improved through the use of a simplified approach to redox reactions, which includes explicit mole-balance equations for hydrogen and oxygen; the use of a revised input that is modular and completely free format; and the use of mineral names and standard chemical symbolism rather than index numbers. The use of (2 eliminates nearly all limitations on army sizes, including numbers of elements, aqueous species, solutions, phases, and lengths of character strings. A new equation solver that optimizes a set of equalities subject to both equality and inequality constraints is used to determine the thermodynamically stable set of phases in equilibrium with a solution. A more complete Newton-Raphson formulation, master-species switching, and scaling of the algebraic equations reduce the number of failures of the nunmrical method in PHREEQC relative to PHREEQE. This report presents the equations that are the basis for chemical equilibrium and inverse-modeling calculations in PHREEQC, describes the input for the program, and presents twelve examples that demonstrate most of the program's capabilities.
Silicon oxide permeation barrier coating of PET bottles and foils
NASA Astrophysics Data System (ADS)
Steves, Simon; Deilmann, Michael; Awakowicz, Peter
2009-10-01
Modern packaging materials such as polyethylene terephthalate (PET) have displaced established materials in many areas of food and beverage packaging. Plastic packing materials offer are various advantages concerning production and handling. PET bottles for instance are non-breakable and lightweight compared to glass and metal containers. However, PET offers poor barrier properties against gas permeation. Therefore, the shelf live of packaged food is reduced. Permeation of gases can be reduced by depositing transparent plasma polymerized silicon oxide (SiOx) barrier coatings. A microwave (2.45 GHz) driven low pressure plasma reactor is developed based on a modified Plasmaline antenna to treat PET foils or bottles. To increase the barrier properties of the coatings furthermore a RF substrate bias (13.56 MHz) is applied. The composition of the coatings is analyzed by means of Fourier transform infrared (FTIR) spectroscopy regarding carbon and hydrogen content. Influence of gas phase composition and substrate bias on chemical composition of the coatings is discussed. A strong relation between barrier properties and film composition is found: good oxygen barriers are observed as carbon content is reduced and films become quartz-like. Regarding oxygen permeation a barrier improvement factor (BIF) of 70 is achieved.
NASA Astrophysics Data System (ADS)
Wu, Haitang; Chen, Mingwei; Wei, Xi; Ge, Min; Zhang, Weigang
2010-12-01
Boron nitride thin films were deposited on silicon carbide fibers by chemical vapor deposition at atmospheric pressure from the single source precursor B-trichloroborazine (Cl 3B 3N 3H 3, TCB). The film growth and structure, as a function of deposition temperature, hydrogen gas flow rate, and deposition time, were discussed. The deposition rate reaches a maximum at 1000 °C, then decreases with the increasing of temperature, and the apparent activation energy of the reaction is 127 kJ/mol. Above 1000 °C, gas-phase nucleation determines the deposition process. The deposited BN films were characterized by Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of BN interphase on the mechanical properties of the unidirectional SiC fiber-reinforced SiC matrix (SiC/SiC) composites was also investigated. The results show that the flexural strength of SiC/SiC composites with and without coating is 276 MPa and 70 MPa, respectively, which indicates that BN interphase coating deposited from B-trichloroborazine precursor can effectively adjust the fiber/matrix interface, thus causing a dramatic increase in the mechanical properties of the composites.
NASA Astrophysics Data System (ADS)
Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.
2015-08-01
Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.
Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Larson, Toti; Mickler, Patrick; Darvari, Roxana
2016-11-01
This study places constraints on the source and transport mechanisms of methane found in groundwater within the Barnett Shale footprint in Texas using dissolved noble gases, with particular emphasis on 84 Kr and 132 Xe. Dissolved methane concentrations are positively correlated with crustal 4 He, 21 Ne, and 40 Ar and suggest that noble gases and methane originate from common sedimentary strata, likely the Strawn Group. In contrast to most samples, four water wells with the highest dissolved methane concentrations unequivocally show strong depletion of all atmospheric noble gases ( 20 Ne, 36 Ar, 84 Kr, 132 Xe) with respect to air-saturated water (ASW). This is consistent with predicted noble gas concentrations in a water phase in contact with a gas phase with initial ASW composition at 18 °C-25 °C and it suggests an in situ, highly localized gas source. All of these four water wells tap into the Strawn Group and it is likely that small gas accumulations known to be present in the shallow subsurface were reached. Additionally, lack of correlation of 84 Kr/ 36 Ar and 132 Xe/ 36 Ar fractionation levels along with 4 He/ 20 Ne with distance to the nearest gas production wells does not support the notion that methane present in these groundwaters migrated from nearby production wells either conventional or using hydraulic fracturing techniques.
NASA Technical Reports Server (NTRS)
Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.;
2013-01-01
The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).
Perspective: Aerosol microphysics: From molecules to the chemical physics of aerosols
NASA Astrophysics Data System (ADS)
Bzdek, Bryan R.; Reid, Jonathan P.
2017-12-01
Aerosols are found in a wide diversity of contexts and applications, including the atmosphere, pharmaceutics, and industry. Aerosols are dispersions of particles in a gas, and the coupling of the two phases results in highly dynamic systems where chemical and physical properties like size, composition, phase, and refractive index change rapidly in response to environmental perturbations. Aerosol particles span a wide range of sizes from 1 nm to tens of micrometres or from small molecular clusters that may more closely resemble gas phase molecules to large particles that can have similar qualities to bulk materials. However, even large particles with finite volumes exhibit distinct properties from the bulk condensed phase, due in part to their higher surface-to-volume ratio and their ability to easily access supersaturated solute states inaccessible in the bulk. Aerosols represent a major challenge for study because of the facile coupling between the particle and gas, the small amounts of sample available for analysis, and the sheer breadth of operative processes. Time scales of aerosol processes can be as short as nanoseconds or as long as years. Despite their very different impacts and applications, fundamental chemical physics processes serve as a common theme that underpins our understanding of aerosols. This perspective article discusses challenges in the study of aerosols and highlights recent chemical physics advancements that have enabled improved understanding of these complex systems.
NASA Astrophysics Data System (ADS)
Chim, Man Mei; Cheng, Chiu Tung; Davies, James F.; Berkemeier, Thomas; Shiraiwa, Manabu; Zuend, Andreas; Nin Chan, Man
2017-12-01
Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4) droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART) coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5) hydroxyl functionalization product (C5H8O5) and a C4 fragmentation product (C4H6O3). These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon-carbon bond scission) of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model) coupled with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from 0.362 to 0.424; however, the diameter of the droplets decreases by 6.1 %. This can be attributed to the formation of volatile fragmentation products that partition to the gas phase, leading to a net loss of organic species and associated particle-phase water, and thus a smaller droplet size. Overall, fragmentation and volatilization processes play a larger role than the functionalization process in determining the evolution of aerosol water content and droplet size at high-oxidation stages.
Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes
NASA Astrophysics Data System (ADS)
Loo, Rachel R. Ogorzalek; Loo, Joseph A.
2016-06-01
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes.
Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes.
Loo, Rachel R Ogorzalek; Loo, Joseph A
2016-06-01
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes. Graphical Abstract ᅟ.
Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver
2014-08-05
A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibitedmore » five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated at Ames Lab as a function of reactive gas composition and bulk alloy composition. The results indicated that the pulsatile gas atomization mechanism and a significantly enhanced yield of fine powders reported in the literature for this type of process were not observed. Also it was determined that reactive gas may marginally improve the fine powder yield but further experiments are required. The oxygen content in the gas also did not have any detrimental effect on the microstructure (i.e. did not significantly reduce undercooling). On the contrary, the oxygen addition to the atomization gas may have mitigated some potent catalytic nucleation sites, but not enough to significantly alter the microstructure vs. particle size relationship. Overall the downstream injection of oxygen was not found to significantly affect either the particle size distribution or undercooling (as inferred from microstructure and XRD observations) but injection further upstream, including in the gas atomization nozzle, remains to be investigated in later work.« less
Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.
2016-12-01
Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.
NASA Technical Reports Server (NTRS)
Klock, W.; Mckay, D. S.; Thomas, K. L.; Palme, H.
1989-01-01
The presence, in both a number of interplanetary dust particles (IDPs) and in meteorite matrices, of olivine and orthopyroxene grains, low in FeO but containing up to 5 wt pct MnO, is reported. The majority of olivines and pyroxenes in meteorites contain less than 0.5 wt pct MnO. The presence of these low-iron, manganese-enriched (LIME) olivines and pyroxenes in IDPs and meteorites may indicate a link between the origin and history of IDPs and the matrix material of primitive meteorites. The origin of the LIME silicates could be explained by condensation from a gas of solar composition. Forsterite is the first major silicate phase to condense from a solar nebula gas, and Mn, which is not stable as a metal under solar nebula conditions, would condense at about 1100 K as Mn2SiO4 in solid solution with forsterite.
NASA Astrophysics Data System (ADS)
Chen, Zeyu; Cui, Qingjie; Chen, Chen; Xu, Dehui; Liu, Dingxin; Chen, H. L.; Kong, Michael G.
2018-02-01
In plasma cancer therapy, the inactivation of cancer cells under plasma treatment is closely related to the reactive oxygen and nitrogen species (RONS) induced by plasmas. Quantitative study on the plasma-induced RONS that related to cancer cells apoptosis is critical for advancing the research of plasma cancer therapy. In this paper, the effects of several reactive species on the inactivation of LP-1 myeloma cancer cells are comparatively studied with variable working gas composition, surrounding gas composition, and discharge power. The results show that helium plasma jet has a higher cell inactivation efficiency than argon plasma jet under the same discharge power. By comparing the concentration of aqueous phase reactive species and the cell inactivation efficiency under different working gases and discharge powers, it is demonstrated that the inactivation efficiency of LP-1 myeloma cancer cells is strongly correlated with the concentration of peroxynitrite (ONOOH/ONOO-).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eres, Gyula
Chemical vapor infiltration is a convenient method for synthesizing carbon nanotube (CNT)-reinforced ceramic coatings. The thickness over which infiltration is relatively uniform is limited by gas phase diffusion in the pore structure. These effects were investigated in two types of silicon nitride matrix composites. With CNTs that were distributed uniformly on the substrate surface dense coatings were limited to thicknesses of several microns. With dual structured CNT arrays produced by photolithography coatings up to 400 gm thick were obtained with minimal residual porosity. Gas transport into these dual structured materials was facilitated by creating micron sized channels between "CNT pillars"more » (i.e. each pillar consisted of a large number of individual CNTs). The experimental results are consistent with basic comparisons between the rates of gas diffusion and silicon nitride growth in porous structures. This analysis also provides a general insight into optimizing infiltration conditions during the fabrication of thick CNT-reinforced composite coatings. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Gas-Grain Simulation Facility (GGSF). Volume 2: Conceptual design definition
NASA Technical Reports Server (NTRS)
Zamel, James M.
1993-01-01
This document is Volume 2 of the Final Report for the Phase A Study of the Gas-Grain Simulation Facility (GGSF), and presents the GGSF Conceptual Design. It is a follow-on to the Volume 1 Facility Definition Study, NASA report CR 177606. The development of a conceptual design for a Space Station Freedom (SSF) facility that will be used for investigating particle interactions in varying environments, including various gas mixtures, pressures, and temperatures is delineated. It's not possible to study these experiments on earth due to the long reaction times associated with this type of phenomena, hence the need for extended periods of microgravity. The particle types will vary in composition (solids and liquids), sizes (from submicrons to centimeters), and concentrations (from single particles to 10(exp 10) per cubic centimeter). The results of the experiments pursued in the GGSF will benefit a variety of scientific inquiries. These investigations span such diverse topics as the formation of planets and planetary rings, cloud and haze processes in planetary atmospheres, the composition and structure of astrophysical objects, and the viability of airborne microbes (e.g., in a manned spacecraft).
Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings
NASA Astrophysics Data System (ADS)
Zhou, Jian; Liu, Hongwei; Sun, Sihao
2017-12-01
Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.
Theory for a gas composition sensor based on acoustic properties
NASA Technical Reports Server (NTRS)
Phillips, Scott; Dain, Yefim; Lueptow, Richard M.
2003-01-01
Sound travelling through a gas propagates at different speeds and its intensity attenuates to different degrees depending upon the composition of the gas. Theoretically, a real-time gaseous composition sensor could be based on measuring the sound speed and the acoustic attenuation. To this end, the speed of sound was modelled using standard relations, and the acoustic attenuation was modelled using the theory for vibrational relaxation of gas molecules. The concept for a gas composition sensor is demonstrated theoretically for nitrogen-methane-water and hydrogen-oxygen-water mixtures. For a three-component gas mixture, the measured sound speed and acoustic attenuation each define separate lines in the composition plane of two of the gases. The intersection of the two lines defines the gas composition. It should also be possible to use the concept for mixtures of more than three components, if the nature of the gas composition is known to some extent.
Bulk flow strength of forsterite?enstatite composites as a function of forsterite content
NASA Astrophysics Data System (ADS)
Ji, Shaocheng; Wang, Zichao; Wirth, Richard
2001-11-01
Creep experiments have been conducted to investigate the effect of varying forsterite content ( VFo) on the bulk flow strength of dry forsterite-enstatite (Fo-En) aggregates in order to evaluate the applicability of existing theoretical models to two-phase rocks, as well as to understand the rheology of polyphase systems in general. The experiments were performed at temperatures of 1423-1593 K, stresses of 18-100 MPa, oxygen fugacities of 10 -14-10 -2.5 MPa and 0.1 MPa total pressure. The fine-grained (Fo: 10-17 μm; En: 14-31 μm) composites of various Fo volume fractions ( VFo=0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1) were synthesized by isostatically hot-pressing in a gas-medium apparatus at 1523 and 350 MPa. Our experiments show that flow strength contrasts between Fo and En are in the range of 3-8 at the given experimental conditions, with Fo as the stronger phase. The measured stress exponent ( n) and activation energy ( Q) values of the Fo-En composites fall between those of the end-members. The n values show a nearly linear increase from 1.3 to 2.0, while the Q values display a non-linear increase from 472 to 584 kJ/mol with En volume fraction from 0 to 1.0. There is no clear dependence of creep rates on oxygen fugacity for the Fo-En composites. The mechanical data and TEM microstructural observations suggest no change in deformation mechanism of each phase when in the composites, compared to when in a single-phase aggregate, the En deformed mainly by dislocation creep while the Fo deformed by dislocation-accommodated diffusion creep for our grain sizes and experimental conditions. Comparisons between the measured composite strengths and various theoretical models indicate that none of the existing theoretical models can give a precise predication over the entire VFo range from 0 to 1. However, the theoretical models based on weak-phase supported structures (WPS) yield a good prediction for the flow strengths of the composites with VFo<0.4, while those based on strong-phase supported structures (SPS) are better for the composites with VFo>0.6. No model gives a good prediction for the bulk strength of two-phase composites in the transitional regime ( VFo=0.4-0.6). Applications of the WPS- and SPS-based models in the transitional regime result in under- and over-estimations for the composite flow strength, respectively. Thus, the effect of rock microstructure should be taken into consideration in modeling the bulk flow strengths of the crust and upper mantle using laboratory-determined flow laws of single-phase aggregates.
NASA Astrophysics Data System (ADS)
Zolotov, Mikhail Yu.
2012-08-01
Solids of nearly solar composition have interacted with aqueous fluids on carbonaceous asteroids, icy moons, and trans-neptunian objects. These processes altered mineralogy of accreted materials together with compositions of aqueous and gaseous phases. We evaluated chemistry of aqueous solutions coexisted with CI-type chondritic solids through calculations of chemical equilibria in closed water-rock-gas systems at different compositions of initial fluids, water/rock mass ratios (0.1-1000), temperatures (<350 °C), and pressures (<2 kbars). The calculations show that fluid compositions are mainly affected by solubilities of solids, the speciation of chlorine in initial water-rock mixtures, and the occurrence of Na-bearing secondary minerals such as saponite. The major species in modeled alkaline solutions are Na+, Cl-, CO32-,HCO3-, K+, OH-, H2, and CO2. Aqueous species of Mg, Fe, Ca, Mn, Al, Ni, Cr, S, and P are not abundant in these fluids owing to low solubility of corresponding solids. Typical NaCl type alkaline fluids coexist with saponite-bearing mineralogy that usually present in aqueously altered chondrites. A common occurrence of these fluids is consistent with the composition of grains emitted from Enceladus. Na-rich fluids with abundant CO32-,HCO3-, and OH- anions coexist with secondary mineralogy depleted in Na. The Na2CO3 and NaHCO3 type fluids could form via accretion of cometary ices. NaOH type fluids form in reduced environments and may locally occur on parent bodies of CR carbonaceous chondrites. Supposed melting of accreted HCl-bearing ices leads to early acidic fluids enriched in Mg, Fe and other metals, consistent with signs of low-pH alteration in chondrites. Neutralization of these solutions leads to alkaline Na-rich fluids. Sulfate species have negligible concentrations in closed systems, which remain reduced, especially at elevated pressures created by forming H2 gas. Hydrogen, CO2, and H2O dominate in the gaseous phase, though the abundance of methane cannot be fairly estimated.
Cai, ChuanYang; Yu, ShuangYu; Liu, Yu; Tao, Shu; Liu, WenXin
2018-04-01
Polybrominated diphenyl ether (PBDE) pollution in E-waste recycling areas has garnered great concern by scientists, the government and the public. In the current study, two typical kinds of E-wastes (printed wiring boards and plastic casings of household or office appliances) were selected to investigate the emission behaviors of individual PBDEs during the pyrolysis process. Emission factors (EFs), compositional profile, particle size distribution and gas-particle partitioning of PBDEs were explored. The mean EF values of the total PBDEs were determined at 8.1 ± 4.6 μg/g and 10.4 ± 11.3 μg/g for printed wiring boards and plastic casings, respectively. Significantly positive correlations were observed between EFs and original addition contents of PBDEs. BDE209 was the most abundant in the E-waste materials, while lowly brominated and highly brominated components (excluding BDE209) were predominant in the exhaust fumes. The distribution of total PBDEs on different particle sizes was characterized by a concentration of finer particles with an aerodynamic diameter between 0.4 μm and 2.1 μm and followed by less than 0.4 μm. Similarly, the distribution of individual species was dominated by finer particles. Most of the freshly emitted PBDEs (via pyrolysis) were liable to exist in the particulate phase with respect to the gaseous phase, particularly for finer particles. In addition, a linear relationship between the partitioning coefficient (K P ) and the subcooled liquid vapor pressure (P L 0 ) of the different components indicated non-equilibrium gas-particle partitioning during the pyrolysis process and suggested that absorption by particulate organic carbon, rather than surface adsorption, governed gas-particle partitioning. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study of non-stoichiometric BaSrTiFeO3 oxide dedicated to semiconductor gas sensors
NASA Astrophysics Data System (ADS)
Fasquelle, D.; Verbrugghe, N.; Deputier, S.
2016-11-01
Developing instrumentation systems compatible with the European RoHS directive (restriction of hazardous substances) to monitor our environment is of great interest for our society. Our research therefore aims at developing innovating integrated systems of detection dedicated to the characterization of various environmental exposures. These systems, which integrate new gas sensors containing lead-free oxides, are dedicated to the detection of flammable and toxic gases. We have firstly chosen to study semiconductor gas sensors implemented with lead-free oxides in view to develop RoHS devices. Therefore thick films deposited by spin-coating and screen-printing have been chosen for their robustness, ease to realize and ease to finally obtain cost-effective sensors. As crystalline defects and ionic vacancies are of great interest for gas detection, we have decided to study a non-stoichiometric composition of the BaSrTiFeO3 sensible oxide. Nonstoichiometric BaSrTiFeO3 lead-free oxide thick films were deposited by screen-printing on polycrystalline AFO3 substrates covered by a layer of Ag-Pd acting as bottom electrode. The physical characterizations have revealed a crystalline structure mainly composed of BaTiO3 pseudo-cubic phase and Ba4Ti12O27 monoclinic phase for the powder, and a porous microstructure for the thick films. When compared to a BSTF thick film with a stoichiometric composition, a notable increase in the BSTF dielectric constant value was observed when taking into account of a similar microstructure and grain size. The loss tangent mean value varies more softly for the non-stoichiometric BaSrTiFeO3 films than for the perovskite BSTF film as tanδ decreases from 0.45 to 0.04 when the frequency increases from 100 Hz to 1 MHz.
2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, A.
2014-05-08
Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas datamore » were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard deviation of the average vapor space temperature during each steady state ranged from 2 to 6°C; however, those of the measured off-gas data were much larger due to the inherent cold cap instabilities in the slurry-fed melters. In order to predict the off-gas composition at the sampling location downstream of the film cooler, the measured feed composition was charge-reconciled and input into the DWPF melter off-gas flammability model, which was then run under the conditions for each of the six Phase 1 steady states. In doing so, it was necessary to perform an overall heat/mass balance calculation from the melter to the Off-Gas Condensate Tank (OGCT) in order to estimate the rate of air inleakage as well as the true gas temperature in the CEF vapor space (T{sub gas}) during each steady state by taking into account the effects of thermal radiation on the measured temperature (T{sub tw}). The results of Phase 1 data analysis and subsequent model runs showed that the predicted concentrations of H{sub 2} and CO by the DWPF model correctly trended and further bounded the respective measured data in the CEF off-gas by over predicting the TOC-to-H{sub 2} and TOC-to-CO conversion ratios by a factor of 2 to 5; an exception was the 7X over prediction of the latter at T{sub gas} = 371°C but the impact of CO on the off-gas flammability potential is only minor compared to that of H{sub 2}. More importantly, the seemingly-excessive over prediction of the TOC-to-H{sub 2} conversion by a factor of 4 or higher at T{sub gas} < ~350°C was attributed to the conservative antifoam decomposition scheme added recently to the model and therefore is considered a modeling issue and not a design issue. At T{sub gas} > ~350°C, the predicted TOC-to-H{sub 2} conversions were closer to but still higher than the measured data by a factor of 2, which may be regarded as adequate from the safety margin standpoint. The heat/mass balance calculations also showed that the correlation between T{sub tw} and T{sub gas} in the CEF vapor space was close to that of the ½ scale SGM, whose data were taken as directly applicable to the DWPF melter and thus used to set all the parameters of the original model. Based on these results of the CEF Phase 1 off-gas and thermal data analyses, it is concluded that: (1) The thermal characteristics of the CEF vapor space are prototypic thanks to its prototypic design; and (2) The CEF off-gas data are scalable in terms of predicting the flammability potential of the DWPF melter off-gas. These results also show that the existing DWPF safety controls on the TOC and antifoam as a function of nitrate are conservative by the same order of magnitude shown by the Phase 1 data at T{sub gas} < ~350°C, since they were set at T{sub gas} = 294°C, which falls into the region of excessive conservatism for the current DWPF model in terms of predicting the TOC-to-H{sub 2} conversion. In order to remedy the overly-conservative antifoam decomposition scheme used in the current DWPF model, the data from two recent tests will be analyzed in detail in order to gain additional insights into the antifoam decomposition chemistry in the cold cap. The first test was run in a temperature-programmed furnace using both normal and spiked feeds with fresh antifoam under inert and slightly oxidizing vapor space conditions. Phase 2 of the CEF test was run with the baseline nitric-glycolic acid flowsheet feeds that contained the “processed antifoam” and those spiked with fresh antifoam in order to study the effects of antifoam concentration as well as processing history on its decomposition chemistry under actual melter conditions. The goal is to develop an improved antifoam decomposition model from the analysis of these test data and incorporate it into a new multistage cold cap model to be developed concurrently for the nitric-glycolic acid flowsheet feeds. These activities will be documented in the Phase 2 report. Finally, it is recommended that some of the conservatism in the existing DWPF safety controls be removed by improving the existing measured-vs.-true gas temperature correlation used in the melter vapor space combustion calculations. The basis for this recommendation comes from the fact that the existing correlation was developed by linearly extrapolating the SGM data taken over a relatively narrow temperature range down to the safety basis minimum of 460°C, thereby under predicting the true gas temperature considerably, as documented in this report. Specifically, the task of improving the current temperature correlation will involve; (1) performing a similar heat/mass balance analysis used in this study on actual DWPF data, (2) validating the measured-vs.-true gas temperature correlation for the CEF developed in this study against the DWPF melter heat/mass balance results, and (3) making adjustments to the CEF correlation, if necessary, before incorporating it into the DWPF safety basis calculations. The steps described here can be completed with relatively minimum efforts.« less
Global distribution of secondary organic aerosol particle phase state
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.
2016-12-01
Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.
Thermochemistry of tantalum-wall cooling system with lithium and sodium working fluids
NASA Technical Reports Server (NTRS)
Tower, L. K.
1972-01-01
Plots are presented which show the distribution of oxygen between liquid lithium and tantalum or niobium, and between liquid sodium and tantalum at elevated temperatures. Additional plots showing the composition of the gas phase above the solutions of oxygen and alkali metal are presented. The use of the plots is illustrated by an example tantalum heat pipe filled with lithium.
A Novel Inlet System for On-line Chemical Analysis of Semi-Volatile Submicron Particulate Matter
NASA Astrophysics Data System (ADS)
Wisthaler, A.; Eichler, P.; Müller, M.
2015-12-01
Semi-volatile organic molecules bound to particles are difficult to measure, especially if they are reactive in nature. Any technique based on aerosol collection onto a substrate generates sampling artifacts due to surface reactions and ad- and desorption of semi-volatile analytes. On-line sampling without sample pre-collection, as for example implemented in the AMS, has greatly reduced many sampling artifacts. AMS measurements of organics do, however, suffer from the drawback that molecular-level information is, in most cases, lost during hard ionization events. As a consequence, only little speciated and thus mechanistically informative data on organic matter is obtained. PTR-ToF-MS is a well-established on-line measurement technique for gas-phase organics. Soft ionization via gas-phase hydronium ions preserves, to a large extent, molecular-level information and thus allows identifying organic compounds at an elemental composition level. We have recently developed a particle inlet system for PTR-ToF-MS instruments (doi:10.5194/amt-8-1353-2015). The CHARON ("Chemical Analysis of Aerosol On-line") inlet consists of a gas-phase denuder, an aerodynamic lens and a thermodesorption unit. In its latest version, it includes a heatable tube upstream of the denuder to form a thermodenuder. Over the last year, the CHARON PTR-ToF-MS system has been successfully used in a series of measurement campaigns to characterize i) POA emitted from a marine diesel engine, ii) SOA generated from the photo-oxidation of toluene, iii) SOA generated from the photo-oxidation of selected amines, iv) ambient aerosol in two major European cities and v) SOA generated from the photo-oxidation of biogenic VOCs. These measurements have demonstrated that the CHARON PTR-ToF-MS system i) generates on-line and real-time elemental composition information of semi-volatile organics in submicron particles (both POA and SOA), ii) detects 80-100 % of the organic mass as measured by the AMS and iii) generates volatility information of semi-volatile organics at an elemental composition level. Selected application examples will be shown.
Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; ...
2015-08-20
This paper presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Typically only photolysis of smaller organic molecules (e.g., formaldehyde) for which explicit data exist is included in chemistry–climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C 12 and C 16 n-alkane reactions with OH at low and high NO x. Simulations are conducted formore » typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after 4 days of chemical aging under those conditions (equivalent to 8 days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields, i.e., ~15 % (low NO x) to ~45 % (high NO x) for α-pinene, ~15 % for toluene, ~25 % for C 12 n-alkane, and ~10 % for C 16 n-alkane. The small effect of gas-phase photolysis on low-volatility n-alkanes such as C 16 n-alkane is due to the rapid partitioning of early-generation products to the particle phase, where they are protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass is increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an empirically estimated SOA photolysis rate of J SOA = 4 × 10 −4 J NO2. Modeling results indicate that this photolytic loss rate would decrease SOA mass by 40–60 % for most species after 10 days of equivalent atmospheric aging at mid-latitudes in the summer. It should be noted that in our simulations we do not consider in-particle or aqueous-phase reactions which could modify the chemical composition of the particle and thus the quantity of photolabile species. The atmospheric implications of our results are significant for both the SOA global distribution and lifetime. GEOS-Chem global model results suggest that particle-phase photolytic reactions could be an important loss process for SOA in the atmosphere, removing aerosols from the troposphere on timescales of less than 7 days that are comparable to wet deposition.« less
Impact of Compound Hydrate Dynamics on Phase Boundary Changes
NASA Astrophysics Data System (ADS)
Osegovic, J. P.; Max, M. D.
2006-12-01
Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed systems include pipeline blockages and natural hydrate concentrations associated with upwelling fluids in marine sediments. 3) In open systems, mass can either flow into or out of a system. In such situations compound hydrate will form or decompose to re-establish chemical equilibrium. This is accomplished by 1) loading/consuming a preferred hydrate former to/from the surroundings, 2) lowering/raising the temperature of the system, and 3) increasing the local pressure. Examples of this type of system include hydrate produced for low pressure transport, depressurized or superheated hydrate settings (pipeline remediation or energy recovery), or in an industrial process where formation of compound hydrates may be used to separate and concentrate gases from a mixture. The relationship between composition and the phase boundary is as important as pressure and temperature effects. Composition is less significant for simple hydrates where the hydrate behaves as a one-component mineral, but for compound hydrate, feedback between pressure, temperature, and composition can result in complex system behavior.
Preparation of γ-Al2O3 films by laser chemical vapor deposition
NASA Astrophysics Data System (ADS)
Gao, Ming; Ito, Akihiko; Goto, Takashi
2015-06-01
γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.
From polariton condensates to highly photonic quantum degenerate states of bosonic matter
Aßmann, Marc; Tempel, Jean-Sebastian; Veit, Franziska; Bayer, Manfred; Rahimi-Iman, Arash; Löffler, Andreas; Höfling, Sven; Reitzenstein, Stephan; Worschech, Lukas; Forchel, Alfred
2011-01-01
Bose–Einstein condensation (BEC) is a thermodynamic phase transition of an interacting Bose gas. Its key signatures are remarkable quantum effects like superfluidity and a phonon-like Bogoliubov excitation spectrum, which have been verified for atomic BECs. In the solid state, BEC of exciton–polaritons has been reported. Polaritons are strongly coupled light-matter quasiparticles in semiconductor microcavities and composite bosons. However, they are subject to dephasing and decay and need external pumping to reach a steady state. Accordingly the polariton BEC is a nonequilibrium process of a degenerate polariton gas in self-equilibrium, but out of equilibrium with the baths it is coupled to and therefore deviates from the thermodynamic phase transition seen in atomic BECs. Here we show that key signatures of BEC can even be observed without fulfilling the self-equilibrium condition in a highly photonic quantum degenerate nonequilibrium system. PMID:21245353
Molecular complexes in close and far away
Klemperer, William; Vaida, Veronica
2006-01-01
In this review, gas-phase chemistry of interstellar media and some planetary atmospheres is extended to include molecular complexes. Although the composition, density, and temperature of the environments discussed are very different, molecular complexes have recently been considered as potential contributors to chemistry. The complexes reviewed include strongly bound aggregates of molecules with ions, intermediate-strength hydrogen bonded complexes (primarily hydrates), and weakly bonded van der Waals molecules. In low-density, low-temperature environments characteristic of giant molecular clouds, molecular synthesis, known to involve gas-phase ion-molecule reactions and chemistry at the surface of dust and ice grains is extended here to involve molecular ionic clusters. At the high density and high temperatures found on planetary atmospheres, molecular complexes contribute to both atmospheric chemistry and climate. Using the observational, laboratory, and theoretical database, the role of molecular complexes in close and far away is discussed. PMID:16740667
Composition of LHB Comets and Their Influence on the Early Earth Atmosphere Composition
NASA Technical Reports Server (NTRS)
Tornow, C.; Kupper, S.; Ilgner, M.; Kuehrt, E.; Motschmann, U.
2011-01-01
Two main processes were responsible for the composition of this atmosphere: chemical evolution of the volatile fraction of the accretion material forming the planet and the delivery of gasses to the planetary surface by impactors during the late heavy bombardment (LHB). The amount and composition of the volatile fraction influences the outgassing of the Earth mantle during the last planetary formation period. A very weakened form of outgassing activity can still be observed today by examining the composition of volcanic gasses. An enlightenment of the second process is based on the sparse records of the LHB impactors resulting from the composition of meteorites, observed cometary comas, and the impact material found on the Moon. However, for an assessment of the influence of the outgassing on the one hand and the LHB event on the other, one has to supplement the observations with numerical simulations of the formation of volatiles and their incorporation into the accretion material which is the precursors of planetary matter, comets and asteroids. These simulations are performed with a combined hydrodynamic-chemical model of the solar nebula (SN). We calculate the chemical composition of the gas and dust phase of the SN. From these data, we draw conclusions on the upper limits of the water content and the amount of carbon and nitrogen rich volatiles incorporated later into the accretion material. Knowing these limits we determine the portion of major gas compounds delivered during the LHB and compare it with the related quantities of the outgassed species.
NASA Technical Reports Server (NTRS)
Lew, H. G.
1972-01-01
An analytical study of the theory of ignition and burning of a plastic material immersed in an atmosphere of a space cabin which may be subjected to gravity force changes is considered. The hazardous condition in a space cabin environment where the changes of gravity may effect the combustion process is evaluated. The model considered the analysis of the coupled gas and solid phases and is based on the premise that material heating leads to the formation of pyrolysis gases from the decomposed solid which then react with the ambient oxidizer to further the combustion process. Moreover, free convection plays a dominant role in transporting these hot gases to the virgin material. A time-dependent study of the coupled gas-solid model as required for ignition processes with emphasis on the surface energy interchange of the gas and solid phases has been made. Detailed distribution of species composition and temperature patterns provide a spatial and time map of the evolving gases from the material combustion.
Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review.
Zhou, Huan; Lawrence, Joseph G; Bhaduri, Sarit B
2012-07-01
For several decades, composites made of polylactic acid-calcium phosphates (PLA-CaP) and polylactic acid-co-glycolic acid-calcium phosphates (PLGA-CaP) have seen widespread uses in orthopedic applications. This paper reviews the fabrication aspects of these composites, following the ubiquitous materials science approach by studying "processing-structure-property" correlations. Various fabrication processes such as microencapsulation, phase separation, electrospinning, supercritical gas foaming, etc., are reviewed, with specific examples of their applications in fabricating these composites. The effect of the incorporation of CaP materials on the mechanical and biological performance of PLA/PLGA is addressed. In addition, this paper describes the state of the art on challenges and innovations concerning CaP dispersion, incorporation of biomolecules/stem cells and long-term degradation of the composites. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Evaporative Mass Transfer Behavior of a Complex Immiscible Liquid
McColl, Colleen M.; Johnson, Gwynn R.; Brusseau, Mark L.
2010-01-01
A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult’s law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium. PMID:18614196
Evaporative mass transfer behavior of a complex immiscible liquid.
McColl, Colleen M; Johnson, Gwynn R; Brusseau, Mark L
2008-09-01
A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult's law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium.
Microstructures of Hibonite From an ALH A77307 (CO3.0) CAI: Evidence for Evaporative Loss of Calcium
NASA Technical Reports Server (NTRS)
Han, Jangmi; Brearley, Adrian J.; Keller, Lindsay P.
2014-01-01
Hibonite is a comparatively rare, primary phase found in some CAIs from different chondrite groups and is also common in Wark-Lovering rims [1]. Hibonite is predicted to be one of the earliest refractory phases to form by equilibrium condensation from a cooling gas of solar composition [2] and, therefore, can be a potential recorder of very early solar system processes. In this study, we describe the microstructures of hibonite from one CAI in ALH A77307 (CO3.0) using FIB/TEM techniques in order to reconstruct its formational history.
Formation of Silicate Grains in Circumstellar Environments: Experiment, Theory and Observations
NASA Technical Reports Server (NTRS)
Castleman, A., Jr.; Reber, A.; Clayborne, P.; Reveles, J.; Khanna, S.; Ali, A.
2006-01-01
Amongst chemical reactions (1) in the molecular universe (2), condensation reaction is probably the most poorly understood. The condensation of a solid from its components in the gas phase occurs in many parts of our galaxy such as stellar mass outflows, the terrestrial region of protoplanetary disks and in primordial solar nebula (3). But how does the transition occur from molecules to intermediate clusters to macroscopic grains? The major focus of the present work is the identification of chemical condensation reaction pathways that lead to the formation of stoichiometry, composition and crystallinity of cosmic silicates from vapor phase species.
CORRELATIONS BETWEEN COMPOSITIONS AND ORBITS ESTABLISHED BY THE GIANT IMPACT ERA OF PLANET FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I.; Lee, Eve J.; Chiang, Eugene, E-mail: rdawson@psu.edu
The giant impact phase of terrestrial planet formation establishes connections between super-Earths’ orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N -body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surfacemore » density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings, larger eccentricities, and larger mutual inclinations. A combination of both populations can reproduce the observed distributions of spacings, period ratios, transiting planet multiplicities, and transit duration ratios exhibited by Kepler super-Earths. The two populations, both formed in situ, also help to explain observed trends of eccentricity versus planet size, and bulk density versus method of mass measurement (radial velocities versus transit timing variations). Simplifications made in this study—including the limited time span of the simulations, and the approximate treatments of gas dynamical friction and gas depletion history—should be improved on in future work to enable a detailed quantitative comparison to the observations.« less
Miettinen, Hanna; Kietäväinen, Riikka; Sohlberg, Elina; Numminen, Mikko; Ahonen, Lasse; Itävaara, Merja
2015-01-01
Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 104 cells mL−1) in water. The water for nucleic acid analysis went through high decompression (60–130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill holes. No dramatic differences in gas compositions were observed between different gas sampling methods tested. For simple characterization of gas composition the most convenient way to collect samples is from free flowing fluid. However, compared to a pressurized method a relative decrease in the least soluble gases may appear. PMID:26579109
Analysis and comparison of biomass pyrolysis/gasification condensates: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.C.
1986-06-01
This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longermore » term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.« less
Revised Depletions and New Constraints on Interstellar Dust Composition
NASA Technical Reports Server (NTRS)
Snow, Theodore P.; Witt, Adolf N.
1996-01-01
We have reviewed the literature on composition of young stars, both hot and cool, as well as older solar-type stars. We find that all these classes of stars have lower abundances of the heavy elements (specifically C, N, O, Mg, Si, and Fe) than the sun. Therefore studies of interstellar depletions in which the solar composition is used as the reference standard are probably in error, tending to overestimate the total quantities of these elements, hence the depletions. We have revised the depletion estimates, using stellar abundances as the reference standard and making use of recent IS gas-phase abundance measurements. As a result of our revised depletions, we can place new and stringent constraints on several published models for the interstellar dust.
Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils.
Bouabidi, Wafa; Hanana, Mohsen; Gargouri, Samia; Amri, Ismail; Fezzani, Tarek; Ksontini, Mustapha; Jamoussi, Bassem; Hamrouni, Lamia
2015-01-01
The chemical composition, and phytotoxic and antifungal activities of the essential oils isolated by using hydrodistillation from the aerial parts of Tunisian rue were evaluated. Significant variations were observed among harvest periods. The analysis of the chemical composition by gas chromatography/mass spectrometry showed that 2-undecanone (33.4-49.8%), 2-heptanol acetate (13.5-15.4%) and α-pinene (9.8-11.9%) were the main components. The antifungal ability of rue essential oils was tested by using disc agar diffusion against ten plant pathogenic fungi. A high antifungal activity was observed for the essential oil isolated at flowering developmental phase. Furthermore, rue essential oils showed high level of herbicidal activity against several weeds.
Tsai, Ching-Wei; Tsai, Chieh; Ruaan, Ruoh-Chyu; Hu, Chien-Chieh; Lee, Kueir-Rarn
2013-06-26
Interfacial polymerization of four aqueous phase monomers, diethylenetriamine (DETA), m-phenylenediamine (mPD), melamine (Mela), and piperazine (PIP), and two organic phase monomers, trimethyl chloride (TMC) and cyanuric chloride (CC), produce a thin-film composite membrane of polymerized polyamide layer capable of O2/N2 separation. To achieve maximum efficiency in gas permeance and O2/N2 permselectivity, the concentrations of monomers, time of interfacial polymerization, number of reactive groups in monomers, and the structure of monomers need to be optimized. By controlling the aqueous/organic monomer ratio between 1.9 and 2.7, we were able to obtain a uniformly interfacial polymerized layer. To achieve a highly cross-linked layer, three reactive groups in both the aqueous and organic phase monomers are required; however, if the monomers were arranged in a planar structure, the likelihood of structural defects also increased. On the contrary, linear polymers are less likely to result in structural defects, and can also produce polymer layers with moderate O2/N2 selectivity. To minimize structural defects while maximizing O2/N2 selectivity, the planar monomer, TMC, containing 3 reactive groups, was reacted with the semirigid monomer, PIP, containing 2 reactive groups to produce a membrane with an adequate gas permeance of 7.72 × 10(-6) cm(3) (STP) s(-1) cm(-2) cm Hg(-1) and a high O2/N2 selectivity of 10.43, allowing us to exceed the upper-bound limit of conventional thin-film composite membranes.
Developing a predictive model for the chemical composition of soot nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Violi, Angela; Michelsen, Hope; Hansen, Nils
In order to provide the scientific foundation to enable technology breakthroughs in transportation fuel, it is important to develop a combustion modeling capability to optimize the operation and design of evolving fuels in advanced engines for transportation applications. The goal of this proposal is to develop a validated predictive model to describe the chemical composition of soot nanoparticles in premixed and diffusion flames. Atomistic studies in conjunction with state-of-the-art experiments are the distinguishing characteristics of this unique interdisciplinary effort. The modeling effort has been conducted at the University of Michigan by Prof. A. Violi. The experimental work has entailed amore » series of studies using different techniques to analyze gas-phase soot precursor chemistry and soot particle production in premixed and diffusion flames. Measurements have provided spatial distributions of polycyclic aromatic hydrocarbons and other gas-phase species and size and composition of incipient soot nanoparticles for comparison with model results. The experimental team includes Dr. N. Hansen and H. Michelsen at Sandia National Labs' Combustion Research Facility, and Dr. K. Wilson as collaborator at Lawrence Berkeley National Lab's Advanced Light Source. Our results show that the chemical and physical properties of nanoparticles affect the coagulation behavior in soot formation, and our results on an experimentally validated, predictive model for the chemical composition of soot nanoparticles will not only enhance our understanding of soot formation since but will also allow the prediction of particle size distributions under combustion conditions. These results provide a novel description of soot formation based on physical and chemical properties of the particles for use in the next generation of soot models and an enhanced capability for facilitating the design of alternative fuels and the engines they will power.« less
Thermostable ferroelectric capacitors based on graded films of barium strontium titanate
NASA Astrophysics Data System (ADS)
Tumarkin, A. V.; Razumov, S. V.; Volpyas, V. A.; Gagarin, A. G.; Odinets, A. A.; Zlygostov, M. V.; Sapego, E. N.
2017-10-01
The influence of the pressure of working gas during the ion-plasma sputtering on properties of deposited ferroelectric barium strontium titanate coatings has been experimentally studied. Variations in the of pressure of the working gas during deposition allows the component composition of the deposited layer to be changed, which leads to the diffusion of the phase transition and the improvement of temperature stability of properties of ferroelectric film. The gradation of layers has an impact on the temperature of the dielectric permittivity maximum, the shape of the dependence of the capacity on temperature, and the capacitance-voltage characteristics of the capacitor structures.
Solvent free tin oxide nanoparticle for gas sensing application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjan, Pranay, E-mail: pranjan@iitp.ac.in; Thakur, Ajay D.; Centre for Energy and Environment, Indian Institute of Technology Patna, Patliputra, Patna 800013 India
2016-05-06
A new modified technique of synthesizing tin oxide nanoparticles with crystallite size of 2 nm to 6 nm has been developed. Surface area of the nanoparticle has been increased as we approached towards the Debye length. Such a techniques for approaching the Debye length is expected to bring remarkable changes in the properties of resistive based gas sensors. The technique used here is less toxic, economical and has high yield. Phase purity, size, shape and composition has been investigated using x-ray diffraction, micro Raman, scanning electron microscopy and energy dispersive x ray spectroscopy. While surface area has been calculated through Brunaur-Emmett-Teller (BET).
Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.
2010-01-01
Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hodzic, A.; Madronich, S.; Kasibhatla, P. S.; Tyndall, G.; Aumont, B.; Jimenez, J. L.; Lee-Taylor, J.; Orlando, J.
2015-03-01
This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOA). Typically only photolysis of smaller organic molecules (e.g. formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low- and high-NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after four days of chemical aging under those conditions (equivalent to eight days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields i.e ~15% (low-NOx) to ~45% (high-NOx) for α-pinene, ~15% for toluene, ~25% for C12-alkane, and ~10% for C16-alkane. The small effect on low volatility n-alkanes such as C16-alkane is due to the rapid partitioning of early-generation products to the particle phase where they are assumed to be protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass seems increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas-phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an estimated SOA photolysis rate of JSOA=4 x 10-4JNO2. Modeling results indicate that this photolytic loss rate would decrease SOA mass by 40-60% for most species after ten days of equivalent atmospheric aging at mid-latitudes in the summer. It should be noted that in our simulations we do not consider in-particle or aqueous-phase reactions which could modify the chemical composition of the particle, and thus the amount of photolabile species. The atmospheric implications of our results are significant for both the SOA global distribution and lifetime. GEOS-Chem global model results suggest that particle-phase photolytic reactions could be an important loss process for SOA in the atmosphere, removing aerosols from the troposphere on timescales (less than 7 days) that are comparable to wet deposition.
Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y-H.; Jaspers, I.; Jeffries, H. E.
2013-01-01
This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells) – even if the gas-phase pollutants are not considered likely to partition to the condensed phase: the VOC-modified-PM showed significantly more damage and inflammation to lung cells than did the original PM. Because gases and PM are transported and deposited differently within the atmosphere and the lungs, these results have significant consequences. For example, current US policies for research and regulation of PM do not recognize this “effect modification” phenomena (NAS, 2004). These results present an unambiguous demonstration that – even in these simple mixtures – physical and thermal interactions alone can cause a modification of the distribution of species among the phases of airborne pollution mixtures and can result in a non-toxic phase becoming toxic due to atmospheric thermal processes only. Subsequent work extends the simple results reported here to systems with photochemical transformations of complex urban mixtures and to systems with diesel exhaust produced by different fuels. PMID:23457430
Local Dynamics of Chemical Kinetics at Different Phases of Nitriding Process
NASA Astrophysics Data System (ADS)
Özdemir, İ. Bedii; Akar, Firat
2015-08-01
The local dynamics of chemical kinetics at different phases of the nitriding process have been studied. The calculations are performed under the conditions where the temperature and composition data are provided experimentally from an in-service furnace. Results are presented in temporal variations of gas concentrations and the nitrogen coverage on the surface. It is shown that if it is available in the furnace, the adsorption of the N2 gas can seemingly start at temperatures as low as 200 °C. However, at such low temperatures, as the diffusion into the material is very unlikely, this results in the surface poisoning. It becomes clear that, contrary to common knowledge, the nitriding heat treatment with ammonia as a nitrogen-providing medium is possible at temperatures like 400 °C. Under these conditions, however, the presence of excess amounts of product gas N2 in the furnace atmosphere suppresses the forward kinetics in the nitriding process. It seems that the best operating point in the nitriding heat treatment is achieved with a mixture of 6% N2. When the major nitriding species NH3 is substituted by N2 and the N2 fraction increases above 30%, the rate of the forward reaction decreases drastically, so that there is no point to continue the furnace operation any further. Hence, during the initial heating phase, the N2 gas must be purged from the furnace to keep its fraction less than 30% before the furnace reaches the temperature where the reaction starts.
NASA Astrophysics Data System (ADS)
Bhattu, D.; Stefenelli, G.; Zotter, P.; Zhou, J.; Nussbaumer, T.; Bertrand, A.; Marchand, N.; Termine-Roussel, B.; Baltensperger, U.; Slowik, J.; Prevot, A. S.; El-Haddad, I.; Dommen, J.
2016-12-01
Current legislation limits the emission of particulate matter, but does not regulate the precursors potentially forming secondary organic aerosol (SOA). Recent literature has shown that only 22 non-traditional SOA precursors from residential wood combustion explains 84-116% of the observed SOA mass whereas traditional precursors in the models account for only 3-27% of the SOA mass (Bruns et al., 2016). Investigation of gas phase emissions from wood combustion and their SOA formation potential have largely focused on single combustion devices with limited operating conditions. As, both primary emissions and SOA formation is a strong function of device type, load, fuel and operating conditions, we have performed a detailed chamber study investigating the gas-phase precursors from beech wood using three combustion devices namely a pellet boiler (combustion conditions: optimum, lack and excess of oxygen), an industrial wood chip grate boiler (30% and 100% power), and a log wood stove (varying fuel load and moisture content) using a potential aerosol mass reactor (PAM) with varying OH exposure. The short residence time in the reactor allowed a time resolved picture of SOA production potential and reduced wall losses. The main aim of this study is to characterize the primary and aged gaseous emissions and investigate their SOA formation potential depending on their mass yield, molecular structures, functional groups and OH reactivity in order to ascertain the contribution of residential wood burning in total carbonaceous OA budget. The physical and chemical effects of different OA aging conditions were monitored using an SMPS, an Aethalometer, an HR-ToF-AMS, as well as a PTR-ToF-MS and other gas monitors. In pellet boiler, significant SOA mass enhancement is observed in excess oxygen conditions compared to optimum and oxygen deprived conditions. Highest gas phase emissions from wood stove are observed at cold start (start of each burn cycle) and lowest in burn out phase (end of each burn cycle). Despite of the comparable total gas phase emissions, the compositional space of wood stove emissions is largely occupied by SOA precursors compared to pellet boiler. Finally we will determine effective SOA mass yield of the speciated and unspeciated precursors and assess the extent to which SOA mass closure can be achieved.
Simulation of Turbulent Combustion Fields of Shock-Dispersed Aluminum Using the AMR Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Bell, J B; Beckner, V E
2006-11-02
We present a Model for simulating experiments of combustion in Shock-Dispersed-Fuel (SDF) explosions. The SDF charge consisted of a 0.5-g spherical PETN booster, surrounded by 1-g of fuel powder (flake Aluminum). Detonation of the booster charge creates a high-temperature, high-pressure source (PETN detonation products gases) that both disperses the fuel and heats it. Combustion ensues when the fuel mixes with air. The gas phase is governed by the gas-dynamic conservation laws, while the particle phase obeys the continuum mechanics laws for heterogeneous media. The two phases exchange mass, momentum and energy according to inter-phase interaction terms. The kinetics model usedmore » an empirical particle burn relation. The thermodynamic model considers the air, fuel and booster products to be of frozen composition, while the Al combustion products are assumed to be in equilibrium. The thermodynamic states were calculated by the Cheetah code; resulting state points were fit with analytic functions suitable for numerical simulations. Numerical simulations of combustion of an Aluminum SDF charge in a 6.4-liter chamber were performed. Computed pressure histories agree with measurements.« less
27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders
NASA Astrophysics Data System (ADS)
Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.
2018-02-01
The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.
Trial wave functions for a composite Fermi liquid on a torus
NASA Astrophysics Data System (ADS)
Fremling, M.; Moran, N.; Slingerland, J. K.; Simon, S. H.
2018-01-01
We study the two-dimensional electron gas in a magnetic field at filling fraction ν =1/2 . At this filling the system is in a gapless state which can be interpreted as a Fermi liquid of composite fermions. We construct trial wave functions for the system on a torus, based on this idea, and numerically compare these to exact wave functions for small systems found by exact diagonalization. We find that the trial wave functions give an excellent description of the ground state of the system, as well as its charged excitations, in all momentum sectors. We analyze the dispersion of the composite fermions and the Berry phase associated with dragging a single fermion around the Fermi surface and comment on the implications of our results for the current debate on whether composite fermions are Dirac fermions.
A two-phase restricted equilibrium model for combustion of metalized solid propellants
NASA Technical Reports Server (NTRS)
Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.
1992-01-01
An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.
Chemical and isotopic composition of secondary organic aerosol generated by α-pinene ozonolysis
NASA Astrophysics Data System (ADS)
Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.; Holzinger, Rupert; Rosenørn, Thomas; Sperlich, Peter; Julien, Maxime; Remaud, Gerald S.; Bilde, Merete; Röckmann, Thomas; Johnson, Matthew S.
2017-05-01
Secondary organic aerosol (SOA) plays a central role in air pollution and climate. However, the description of the sources and mechanisms leading to SOA is elusive despite decades of research. While stable isotope analysis is increasingly used to constrain sources of ambient aerosol, in many cases it is difficult to apply because neither the isotopic composition of aerosol precursors nor the fractionation of aerosol forming processes is well characterised. In this paper, SOA formation from ozonolysis of α-pinene - an important precursor and perhaps the best-known model system used in laboratory studies - was investigated using position-dependent and average determinations of 13C in α-pinene and advanced analysis of reaction products using thermal-desorption proton-transfer-reaction mass spectrometry (PTR-MS). The total carbon (TC) isotopic composition δ13C of the initial α-pinene was measured, and the δ13C of the specific carbon atom sites was determined using position-specific isotope analysis (PSIA). The PSIA analysis showed variations at individual positions from -6.9 to +10. 5 ‰ relative to the bulk composition. SOA was formed from α-pinene and ozone in a constant-flow chamber under dark, dry, and low-NOx conditions, with OH scavengers and in the absence of seed particles. The excess of ozone and long residence time in the flow chamber ensured that virtually all α-pinene had reacted. Product SOA was collected on two sequential quartz filters. The filters were analysed offline by heating them stepwise from 100 to 400 °C to desorb organic compounds that were (i) detected using PTR-MS for chemical analysis and to determine the O : C ratio, and (ii) converted to CO2 for 13C analysis. More than 400 ions in the mass range 39-800 Da were detected from the desorbed material and quantified using a PTR-MS. The largest amount desorbed at 150 °C. The O : C ratio of material from the front filter increased from 0.18 to 0.25 as the desorption temperature was raised from 100 to 250 °C. At temperatures above 250 °C, the O : C ratio of thermally desorbed material, presumably from oligomeric precursors, was constant. The observation of a number of components that occurred across the full range of desorption temperatures suggests that they are generated by thermal decomposition of oligomers. The isotopic composition of SOA was more or less independent of desorption temperature above 100 °C. TC analysis showed that SOA was enriched in 13C by 0.6-1.2 ‰ relative to the initial α-pinene. According to mass balance, gas-phase products will be depleted relative to the initial α-pinene. Accordingly, organic material on the back filters, which contain adsorbed gas-phase compounds, is depleted in 13C in TC by 0.7 ‰ relative to the initial α-pinene, and by 1.3 ‰ compared to SOA collected on the front filter. The observed difference in 13C between the gas and particle phases may arise from isotope-dependent changes in the branching ratios in the α-pinene + O3 reaction. Alternatively, some gas-phase products involve carbon atoms from highly enriched and depleted sites, as shown in the PSIA analysis, giving a non-kinetic origin to the observed fractionations. In either case, the present study suggests that the site-specific distribution of 13C in the source material itself governs the abundance of 13C in SOA.
Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle
2015-03-19
Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.
Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle
2015-01-01
Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4·7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures. PMID:25788158
Gas hydrate characterization from a 3D seismic dataset in the deepwater eastern Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Daniel; Haneberg, William C.
Seismic stratigraphic features are delineated using principal component analysis of the band limited data at potential gas hydrate sands, and compared and calibrated with spectral decomposition thickness to constrain thickness in the absence of well control. Layers in the abyssal fan sediments are thinner than can be resolved with 50 Hz seismic and thus comprise composite thin-bed reflections. Amplitude vs frequency analysis are used to indicate gas and gas hydrate reflections. Synthetic seismic wedge models show that with 50Hz seismic data, a 40% saturation of a Plio Pleistocene GoM sand in the hydrate stability zone with no subjacent gas canmore » produce a phase change (negative to positive) with a strong correlation between amplitude and hydrate saturation. The synthetic seismic response is more complicated if the gas hydrate filled sediments overlie gassy sediments. Hydrate (or gas) saturation in thin beds enhances the amplitude response and can be used to estimate saturation. Gas hydrate saturation from rock physics, amplitude, and frequency analysis is compared to saturation derived from inversion at several interpreted gas hydrate accumulations in the eastern Gulf of Mexico.« less
Hydrogen absorption of Pd/ZrO2 composites prepared from Zr65Pd35 and Zr60Pd35Pt5 amorphous alloys
NASA Astrophysics Data System (ADS)
Ozawa, Masakuni; Katsuragawa, Naoya; Hattori, Masatomo; Yogo, Toshinobu; Yamamura, Shin-ichi
2018-01-01
Metal-dispersed composites were derived from amorphous Zr65Pd35 and Zr65Pd30Pt5 alloys and their hydrogen absorption behavior was studied. X-ray diffractograms and scanning electron micrographs indicated that mixtures containing ZrO2, the metallic phase of Pd, and PdO were formed for both amorphous alloys heat-treated in air. In the composites, micron-sized Pd-based metal precipitates were embedded in a ZrO2 matrix after heat treatment at 800 °C in air. The hydrogen temperature-programmed reduction was applied to study the reactivity of hydrogen gas with the oxidized Zr65Pd35 and Zr65Pd30Pt5 materials. Rapid hydrogen absorption and release were observed on the composite derived from the amorphous alloy below 100 °C. The hydrogen pressure-concentration isotherm showed that the absorbed amount of hydrogen in materials depended on the formation of the Pd or Pt-doped Pd phase and its large interface area to the matrix in the nanocomposites. The results indicate the importance of the composite structure for the fabrication of a new type of hydrogen storage material prepared from amorphous alloys.
Dias, Adriana Neves; Simão, Vanessa; Merib, Josias; Carasek, Eduardo
2013-04-15
A new fiber for solid-phase microextraction (SPME) was prepared employing cork as a coating. The morphology and composition of the cork fiber was evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The proposed fiber was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples by gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS). A central composite design was used for optimization of the variables involved in the extraction of PAHs from water samples. The optimal extraction conditions were extraction time and temperature of 60 min and 80°C, respectively. The detection and quantification limits were 0.03 and 0.1 μg L(-1), respectively. The recovery values were between 70.2 and 103.2% and the RSD was ≤15.7 (n=3). The linear range was 0.1-10 μg L(-1) with r≥0.96 and the fiber-to-fiber reproducibility showed RSD≤18.6% (n=5). The efficiency of the cork fiber was compared with commercially available fibers and good results were achieved, demonstrating the applicability and great potential of cork as a coating for SPME. Copyright © 2013 Elsevier B.V. All rights reserved.
Pena-Pereira, Francisco; Marcinkowski, Lukasz; Kloskowski, Adam; Namieśnik, Jacek
2014-12-02
In this work, hybrid silica-based materials with immobilized ionic liquids (ILs) were prepared by sol-gel technology and evaluated as solid-phase microextraction (SPME) fiber coatings. High loadings of the IL 1-methyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide ([C4MIM][TFSI]) were confined within the hybrid network. Coatings composition and morphology were evaluated using scanning electron microscopy and energy dispersive X-ray spectrometry. The obtained ionogel SPME fibers exhibited high extractability for aromatic volatile compounds, yielding good sensitivity and precision when combined with a gas chromatograph with barrier ionization discharge (GC-BID) detection. A central composite design was used for assessing the effect of experimental parameters on the extraction process. Under optimized conditions, the proposed ionogel SPME fiber coatings enabled the achievement of excellent enrichment factors (up to 7400). The limits of detection (LODs) were found in the range 0.03-1.27 μg L(-1), whereas the repeatability and fiber-to-fiber reproducibility were 5.6% and 12.0% on average, respectively. Water samples were analyzed by the proposed methodology, showing recovery values in the range of 88.7-113.9%. The results obtained in this work suggest that ionogels can be promising coating materials for future applications of SPME and related sample preparation techniques.
Cody, D; Naydenova, I
2017-12-01
The suitability of holographic structures fabricated in zeolite nanoparticle-polymer composite materials for gas sensing applications has been investigated. Theoretical modeling of the sensor response (i.e., change in hologram readout due to a change in refractive index modulation or thickness as a result of gas adsorption) of different sensor designs was carried out using Raman-Nath theory and Kogelnik's coupled wave theory. The influence of a range of parameters on the sensor response of holographically recorded surface and volume photonic grating structures has been studied, namely the phase difference between the diffracted and probe beam introduced by the grating, grating geometry, thickness, spatial frequency, reconstruction wavelength, and zeolite nanoparticle refractive index. From this, the optimum fabrication conditions for both surface and volume holographic gas sensor designs have been identified. Here, in part I, results from theoretical modeling of the influence of design on the sensor response of holographically inscribed surface relief structures for gas sensing applications is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weise, David; Johnson, Timothy J.; Reardon, James
Management of smoke from prescribed fires requires knowledge of fuel quantity and the amount and composition of the smoke produced by the fire to minimize adverse impacts on human health. A five-year study produced new emissions information for more than 100 trace gases and particulate matter in smoke for fuel types found in the southern United States of America using state-of-the-art instrumentation in both laboratory and field experiments. Emission factors for flaming, smoldering, and residual smoldering were developed. Agreement between laboratory and field-derived emission factors was generally good in most cases. Reference spectra of over 50 wildland fire gas-phase smokemore » components were added to a publicly-available database to support identification via infrared spectroscopy. Fuel loading for the field experiments was similar to previously measured fuels. This article summarizes the results of a five-year study to better understand the composition of smoke during all phases of burning for such forests.« less
Xia, Hanxue; Attygalle, Athula B
2017-12-01
The role of water vapor in transforming the thermodynamically preferred species of protonated benzocaine to the less favored protomer was investigated using helium-plasma ionization (HePI) in conjunction with ion-mobility mass spectrometry (IM-MS). The IM arrival-time distribution (ATD) recorded from a neat benzocaine sample desorbed to the gas phase by a stream of dry nitrogen and ionized by HePI showed essentially one peak for the O-protonated species. However, when water vapor was introduced to the enclosed ion source, within a span of about 150 ms the ATD profile changed completely to one dominated by the N-protonated species. Under spray-based ionization conditions, the nature and composition of the solvents have been postulated to play a decisive role in defining the manifested protomer ratios. In reality, the solvent vapors present in the ion source (particularly the ambient humidity) indirectly dictate the gas-phase ratio of the protomers. Evidently, the gas-phase protomer ratio established at the confinement of the ions is readjusted by the ion-activation that takes place during the transmission of ions to the vacuum. Although it has been repeatedly stated that ions can retain a "memory" of their solution structures because they can be kinetically trapped, and thereby represent their solution-based stabilities, we show that the initial airborne ions can undergo significant transformations in the transit through the intermediate vacuum zones between the ion source and the mass detector. In this context, we demonstrate that the kinetically trapped N-protomer of benzocaine can be untrapped by reducing the humidity of the enclosed ion source. Graphical Abstract ᅟ.
Gas-phase advanced oxidation for effective, efficient in situ control of pollution.
Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka
2014-01-01
In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.
NASA Astrophysics Data System (ADS)
Xia, Hanxue; Attygalle, Athula B.
2017-12-01
The role of water vapor in transforming the thermodynamically preferred species of protonated benzocaine to the less favored protomer was investigated using helium-plasma ionization (HePI) in conjunction with ion-mobility mass spectrometry (IM-MS). The IM arrival-time distribution (ATD) recorded from a neat benzocaine sample desorbed to the gas phase by a stream of dry nitrogen and ionized by HePI showed essentially one peak for the O-protonated species. However, when water vapor was introduced to the enclosed ion source, within a span of about 150 ms the ATD profile changed completely to one dominated by the N-protonated species. Under spray-based ionization conditions, the nature and composition of the solvents have been postulated to play a decisive role in defining the manifested protomer ratios. In reality, the solvent vapors present in the ion source (particularly the ambient humidity) indirectly dictate the gas-phase ratio of the protomers. Evidently, the gas-phase protomer ratio established at the confinement of the ions is readjusted by the ion-activation that takes place during the transmission of ions to the vacuum. Although it has been repeatedly stated that ions can retain a "memory" of their solution structures because they can be kinetically trapped, and thereby represent their solution-based stabilities, we show that the initial airborne ions can undergo significant transformations in the transit through the intermediate vacuum zones between the ion source and the mass detector. In this context, we demonstrate that the kinetically trapped N-protomer of benzocaine can be untrapped by reducing the humidity of the enclosed ion source. [Figure not available: see fulltext.
Kinetics of Reduction of CaO-FeO x -MgO-PbO-SiO2 Slags by CO-CO2 Gas Mixtures
NASA Astrophysics Data System (ADS)
Jahanshahi, Sharif; Wright, Steven
2017-08-01
Kinetics of the reaction of lead slags (PbO-CaO-SiO2-FeO x -MgO) with CO-CO2 gas mixtures was studied by monitoring the changes in the slag composition when a stream of CO-CO2 gas mixture was blown on the surface of thin layers of slags (3 to 10 mm) at temperatures in the range of 1453 K to 1593 K (1180 °C to 1320 °C). These measurements were carried out under conditions where mass transfer in the gas phase was not the rate-limiting step and the reduction rates were insensitive to factors affecting mass transfer in the slag phase. The results show simultaneous reduction of PbO and Fe2O3 in the slag. The measured specific rate of oxygen removal from the melts varied from about 1 × 10-6 to 4 × 10-5 mol O cm-2 s-1 and was strongly dependent on the slag chemistry and its oxidation state, partial pressure of CO in the reaction gas mixture, and temperature. The deduced apparent first-order rate constant increased with increasing iron oxide content, oxidation state of the slag, and temperature. The results indicate that under the employed experimental conditions, the rate of formation of CO2 at the gas-slag interface is likely to be the rate-limiting step.
NASA Astrophysics Data System (ADS)
Garcia-Fresnillo, L.; Shemet, V.; Chyrkin, A.; de Haart, L. G. J.; Quadakkers, W. J.
2014-12-01
In the present study the long-term behaviour of two ferritic steels, Crofer 22 APU and Crofer 22H, in contact with a Ni-mesh during exposure in simulated anode gas, Ar-4%H2-2%H2O, at 700 and 800 °C for exposure times up to 3000 h was investigated. Ni diffusion from the Ni-mesh into the steel resulted in the formation of an austenitic zone whereas diffusion of iron and chromium from the steel into the Ni-mesh resulted in the formation of chromia base oxides in the Ni-mesh. Depending on the chemical composition of the steel, the temperature and the exposure time, interdiffusion processes between ferritic steel and Ni-mesh also resulted in σ-phase formation at the austenite-ferrite interface and in Laves-phase dissolution in the austenitic zone. The extent and morphology of the σ-phase formation are discussed on the basis of thermodynamic considerations, including reaction paths in the ternary alloy system Fe-Ni-Cr.
Pathways through equilibrated states with coexisting phases for gas hydrate formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malolepsza, Edyta; Keyes, Tom
Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less
Pathways through equilibrated states with coexisting phases for gas hydrate formation
Malolepsza, Edyta; Keyes, Tom
2015-12-01
Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less
Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy
Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; ...
2016-11-01
Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less
Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.
Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less
NASA Technical Reports Server (NTRS)
Raju, M. S.
1998-01-01
The state of the art in multidimensional combustor modeling as evidenced by the level of sophistication employed in terms of modeling and numerical accuracy considerations, is also dictated by the available computer memory and turnaround times afforded by present-day computers. With the aim of advancing the current multi-dimensional computational tools used in the design of advanced technology combustors, a solution procedure is developed that combines the novelty of the coupled CFD/spray/scalar Monte Carlo PDF (Probability Density Function) computations on unstructured grids with the ability to run on parallel architectures. In this approach, the mean gas-phase velocity and turbulence fields are determined from a standard turbulence model, the joint composition of species and enthalpy from the solution of a modeled PDF transport equation, and a Lagrangian-based dilute spray model is used for the liquid-phase representation. The gas-turbine combustor flows are often characterized by a complex interaction between various physical processes associated with the interaction between the liquid and gas phases, droplet vaporization, turbulent mixing, heat release associated with chemical kinetics, radiative heat transfer associated with highly absorbing and radiating species, among others. The rate controlling processes often interact with each other at various disparate time 1 and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and liquid phase evaporation in many practical combustion devices.
Oxidation of Methionine Residues in Polypeptide Ions via Gas-Phase Ion/Ion Chemistry
Pilo, Alice L.; McLuckey, Scott A.
2014-01-01
The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach to varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M+H+O]+), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side-chain. In the case of methionine containing peptides, the [M+H+O]+ product is observed at a much greater abundance than the proton transfer product (viz., [M+H]+). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to ‘label’ methionine residues in polypeptides in the gas-phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications. PMID:24671696
Effect of gas release in hot molding on flexural strength of composite friction brake
NASA Astrophysics Data System (ADS)
Rusdja, Andy Permana; Surojo, Eko; Muhayat, Nurul; Raharjo, Wijang Wisnu
2018-02-01
Composite friction brake is a vital part of braking system which serves to reduce the speed of vehicle. To fulfill the requirement of brake performance, composite friction brake must have friction and mechanical characteristic as required. The characteristics of composite friction brake are affected by brake material formulation and manufacturing parameter. In the beginning of hot molding, intermittent hot pressing was carried out to release the gases that consist of ammonia gas and water vapor. In composite friction brake, phenolic resin containing hexamethylenetetramine (HMTA) is often used as a binder. During hot molding, the reaction of phenolic resin and HMTA forms ammonia gas. Hot molding also generates water vapor because raw materials absorb moisture from environment when they are placed in storage. The gas release in hot molding is supposed affecting mechanical properties because it avoid entrapped gas in composite, so that this research investigated effect of gas release on flexural strength. Manufacturing of composite specimen was carried out as follow: mixing of raw materials, cold molding, and hot molding. In this research, duration of intermittent hot pressing and number of gas release were varied. The flexural strength of specimen was measured using three point bending test. The results showed that flexural strength specimens that were manufactured without gas release, using 4 times gas release with intermittent hot pressing for 5 and 10 seconds were not remarkably different. Conversely, hot molding using 4 times gas release with intermittent hot pressing for 15 seconds decreased flexural strength of composite. Hot molding using 2, 4, and 8 times gas release with intermittent hot pressing for 10 seconds also had no effect on increasing flexural strength. Increasing of flexural strength of composite was obtained only by using 6 times gas release with intermittent hot pressing for 10 seconds.
Method for designing gas tag compositions
Gross, Kenny C.
1995-01-01
For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.
NASA Astrophysics Data System (ADS)
La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia
2014-05-01
Volcanoes exhibit a wide range of eruption styles, from relatively slow effusive eruptions, generating lava flows and lava domes, to explosive eruptions, in which very large volumes of fragmented magma and volcanic gas are ejected high into the atmosphere. During an eruption, much information regarding the magma ascent dynamics can be gathered: melt and exsolved gas composition, crystal content, mass flow rate and ballistic velocities, to name just a few. Due to the lack of direct observations of the conduit itself, mathematical models for magma ascent provide invaluable tools for a better comprehension of the system. The complexity of the multiphase multicomponent gas-magma-solid system is reflected in the corresponding mathematical model; a set of non-linear hyperbolic partial differential and constitutive equations, which describe the physical system, has to be formulated and solved. The standard approach to derive governing equations for two-phase flow is based on averaging procedures, which leads to a system of governing equations in the form of mass, momentum and energy balance laws for each phase coupled with algebraic and differential source terms which represent phase interactions. For this work, we used the model presented by de' Michieli Vitturi et al. (EGU General Assembly Conference Abstracts, 2013), where a different approach based on the theory of thermodynamically compatible systems has been adopted to write the governing multiphase equations for two-phase compressible flow (with two velocities and two pressures) in the form of a conservative hyperbolic system of partial differential equations, coupled with non-differential source terms. Here, in order to better describe the multicomponent nature of the system, we extended the model adding several transport equations to the system for different crystal components and different gas species, and implementing appropriate equations of state. The constitutive equations of the model are chosen to reproduce both effusive and explosive eruptive activities at Stromboli volcano. Three different crystal components (olivine, pyroxene and feldspar) and two different gas species (water and carbon dioxide) are taken into account. The equilibrium profiles of crystallization as function of pressure, temperature and water content are modeled using the numerical codes AlphaMELTS and DAKOTA. The equilibrium of dissolved gas content, instead, is obtained using a non-linear fitting of data computed using VolatileCALC. With these data, we simulate numerically the lava effusion that occurred at Stromboli between 27 February and 2 April 2007, and find good agreement with the observed data (vesicularity, exsolved gas composition, crystal content and mass flow rate) at the vent. We find that the model is highly sensitive to input magma temperature, going from effusive to explosive eruption with temperature changes by just 20 °C. We thoroughly investigated through a sensitivity analysis the control of the temperature of magma chamber and of the radius of the conduit on the mass flow rate, obtaining also a set of admissible temperatures and conduit radii that produce results in agreement with the real observations.
Pramann, Axel; Rienitz, Olaf
2016-06-07
A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.
Container and method for absorbing and reducing hydrogen concentration
Wicks, George G.; Lee, Myung W.; Heung, Leung K.
2001-01-01
A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.
Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks
Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy; ...
2018-02-07
The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less
Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy
The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less
Preliminary results seen with Rosetta/ROSINA: early cometary activity of 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Gasc, Sebastien; Altwegg, Kathrin; Jäckel, Annette; Rubin, Martin; Tzou, Chia-Yu; Wurz, Peter; Fiethe, Björn; Korth, Axel; Rème, Henri
2014-11-01
On 1 August 2014, the ROSETTA spacecraft approached the comet 67P/Churyumov-Gerasimenko (67P/CG) close enough to start its detailed characterisation. In this phase, the distance between Rosetta and 67P/CG is below 1’000 km, at a heliocentric distance of less than 3.6 AU. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) [1] measures the composition of 67P/CG’s atmosphere and ionosphere, and additionally derives the bulk velocity of gas. ROSINA consists of the COmetary Pressure Sensor (COPS) and two mass spectrometers for the analysis of neutral gas and cometary ions in the coma of the comet: the Double Focusing Mass Spectrometer (DFMS) and the Reflectron Time Of Flight mass spectrometer (RTOF). Since beginning of August, the ROSINA sensors are continuously monitoring the density and chemical composition of the coma of 67P/CG. The goal of this work is not only to determine the abundance of major species like CO2, CO, and H2O, but also to analyse the development of the composition as a function of the heliocentric distance. We will present the first mass spectra of RTOF as well as the total density and the molecular composition measurements obtained at 67P/CG.
High Performance Graphene Oxide Based Rubber Composites
Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li
2013-01-01
In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435
High performance graphene oxide based rubber composites.
Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W; Zhang, Liqun; Liang, Yongri; Liu, Li
2013-01-01
In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications.
Laboratory Investigation of Trace Gas Emissions from Biomass Burning on DoD Bases
NASA Astrophysics Data System (ADS)
Burling, I. R.; Yokelson, R. J.; Griffith, D. W.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Johnson, T. J.
2009-12-01
Vegetation representing fuels commonly managed with prescribed fires was collected from five DoD bases and burned under controlled conditions at the USFS Firelab in Missoula, MT. The smoke emissions were measured with a large suite of state-of-the-art instrumentation. Seventy-seven fires were conducted and the smoke composition data will improve DoD land managers’ ability to assess the impact of prescribed fires on local air quality. A key instrument used in the measurement of the gas phase species in smoke was an open-path FTIR (OP-FTIR) spectrometer, built and operated by the Universities of Montana and Wollongong. The OP-FTIR has to date detected and quantified 20 gas phase species - CO2, CO, H2O, N2O, NO2, NO, HONO, NH3, HCl, SO2, CH4, CH3OH, HCHO, HCOOH, C2H2, C2H4, CH3COOH, HCN, propylene and furan. The spectra were analyzed using a non-linear least squares fitting routine that included reference spectra recently acquired at the Pacific Northwest National Laboratories. Preliminary results from the OP-FTIR analysis are reported here. Of particular interest, gas-phase nitrous acid (HONO) was detected simultaneously by the OP-FTIR and negative-ion proton-transfer chemical ionization spectrometer (NI-PT-CIMS), with preliminary fire-integrated molar emission ratios (relative to NOx) ranging from approximately 0.03 to 0.20, depending on the vegetation type. HONO is an important precursor in the production of OH, the primary oxidizing species in the atmosphere. There existed little previous data documenting HONO emissions from either wild or prescribed fires. The non-methane organic emissions were dominated by oxygenated species, which can be further oxidized and thus involved in secondary aerosol formation. Elevated amounts of gas-phase HCl were also detected in the smoke, with the amounts varying depending on location and vegetation type.
Model of Mixing Layer With Multicomponent Evaporating Drops
NASA Technical Reports Server (NTRS)
Bellan, Josette; Le Clercq, Patrick
2004-01-01
A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The study is motivated by the fact that typical real petroleum fuels contain hundreds of chemical species. Previously, for the sake of computational efficiency, spray studies were performed using either models based on a single representative species or models based on surrogate fuels of at most 15 species. The present multicomponent model makes it possible to perform more realistic simulations by accounting for hundreds of chemical species in a computationally efficient manner. The model is used to perform Direct Numerical Simulations in continuing studies directed toward understanding the behavior of liquid petroleum fuel sprays. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and the drops, respectively. This representation is consistent with the expected volumetrically small loading of the drops in gas (of the order of 10 3), although the mass loading can be substantial because of the high ratio (of the order of 103) between the densities of liquid and gas. The drops are treated as point sources of mass, momentum, and energy; this representation is consistent with the drop size being smaller than the Kolmogorov scale. Unsteady drag, added-mass effects, Basset history forces, and collisions between the drops are neglected, and the gas is assumed calorically perfect. The model incorporates the concept of continuous thermodynamics, according to which the chemical composition of a fuel is described probabilistically, by use of a distribution function. Distribution functions generally depend on many parameters. However, for mixtures of homologous species, the distribution can be approximated with acceptable accuracy as a sole function of the molecular weight. The mixing layer is initially laden with drops in its lower stream, and the drops are colder than the gas. Drop evaporation leads to a change in the gas-phase composition, which, like the composition of the drops, is described in a probabilistic manner
OH-initiated Aging of Biomass Burning Aerosol during FIREX
NASA Astrophysics Data System (ADS)
Lim, C. Y.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Coggon, M.; Koss, A.; Sekimoto, K.; De Gouw, J. A.; Warneke, C.
2017-12-01
Biomass burning emissions represent a major source of fine particulate matter to the atmosphere, and this source will likely become increasingly important in the future due to changes in the Earth's climate. Understanding the effects that increased fire emissions have on both air quality and climate requires understanding the composition of the particles emitted, since chemical and physical composition directly impact important particle properties such as absorptivity, toxicity, and cloud condensation nuclei activity. However, the composition of biomass burning particles in the atmosphere is dynamic, as the particles are subject to the condensation of low-volatility vapors and reaction with oxidants such as the hydroxyl radical (OH) during transport. Here we present a series of laboratory chamber experiments on the OH-initiated aging of biomass burning aerosol performed at the Fire Sciences Laboratory in Missoula, MT as part of the Fire Influences on Regional and Global Environments Experiment (FIREX) campaign. We describe the evolution of biomass burning aerosol produced from a variety of fuels operating the chamber in both particle-only and gas + particle mode, focusing on changes to the organic composition. In particle-only mode, gas-phase biomass burning emissions are removed before oxidation to focus on heterogeneous oxidation, while gas + particle mode includes both heterogeneous oxidation and condensation of oxidized volatile organic compounds onto the particles (secondary organic aerosol formation). Variability in fuels and burning conditions lead to differences in aerosol loading and secondary aerosol production, but in all cases aging results in a significant and rapid increases in the carbon oxidation state of the particles.
The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs
NASA Astrophysics Data System (ADS)
Hoag, Katherine J.; Collett, Jeffrey L., Jr.; Pandis, Spyros N.
Drop size-resolved measurements of fog chemistry in California's San Joaquin Valley during the 1995 Integrated Monitoring Study reveal that fog composition varies with drop size. Small fog drops were less alkaline and typically contained higher major ion (nitrate, sulfate, ammonium) concentrations than large drops. Small drops often contained higher concentrations of Fe and Mn than large drops while H 2O 2 concentrations exhibited no strong drop size dependence. Simulation of an extended fog episode in Fresno, California revealed the capability of a drop size-resolved fog chemistry model to reproduce the measured (based on two drop size categories) drop size dependence of several key species. The model was also able to satisfactorily reproduce measured species-dependent deposition rates (ammonium>sulfate>nitrate) resulting from fog drop sedimentation. Both the model simulation and direct analysis of size-resolved fog composition observations and measured gas-phase oxidant concentrations indicate the importance of ozone as an aqueous-phase S(IV) oxidant in these high pH fogs. Due to the nonlinear dependence of the rate law for the ozone pathway on the hydrogen ion concentration, use of the average fog drop composition can lead to significant underprediction of aqueous phase sulfate production rates in these chemically heterogeneous fogs.
Zhao, Shen; Li, Yuanyuan; Liu, Deyu; ...
2017-08-07
In this paper we describe a multimodal exploration of the atomic structure and chemical state of silica-supported palladium nanocluster catalysts during the hydrogenation of ethylene in operando conditions that variously transform the metallic phases between hydride and carbide speciations. The work exploits a microreactor that allows combined multiprobe investigations by high-resolution transmission electron microscopy (HR-TEM), X-ray absorption fine structure (XAFS), and microbeam IR (μ-IR) analyses on the catalyst under operando conditions. The work specifically explores the reaction processes that mediate the interconversion of hydride and carbide phases of the Pd clusters in consequence to changes made in the composition ofmore » the gas-phase reactant feeds, their stability against coarsening, the reversibility of structural/compositional transformations, and the role that oligomeric/waxy byproducts (here forming under hydrogen-limited reactant compositions) might play in modifying activity. The results provide new insights into structural features of the chemistry/mechanisms of Pd catalysis during the selective hydrogenation of acetylene in ethylene—a process simplified here in the use of binary ethylene/hydrogen mixtures. Finally, these explorations, performed in operando conditions, provide new understandings of structure–activity relationships for Pd catalysis in regimes that actively transmute important attributes of electronic and atomic structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shen; Li, Yuanyuan; Liu, Deyu
In this paper we describe a multimodal exploration of the atomic structure and chemical state of silica-supported palladium nanocluster catalysts during the hydrogenation of ethylene in operando conditions that variously transform the metallic phases between hydride and carbide speciations. The work exploits a microreactor that allows combined multiprobe investigations by high-resolution transmission electron microscopy (HR-TEM), X-ray absorption fine structure (XAFS), and microbeam IR (μ-IR) analyses on the catalyst under operando conditions. The work specifically explores the reaction processes that mediate the interconversion of hydride and carbide phases of the Pd clusters in consequence to changes made in the composition ofmore » the gas-phase reactant feeds, their stability against coarsening, the reversibility of structural/compositional transformations, and the role that oligomeric/waxy byproducts (here forming under hydrogen-limited reactant compositions) might play in modifying activity. The results provide new insights into structural features of the chemistry/mechanisms of Pd catalysis during the selective hydrogenation of acetylene in ethylene—a process simplified here in the use of binary ethylene/hydrogen mixtures. Finally, these explorations, performed in operando conditions, provide new understandings of structure–activity relationships for Pd catalysis in regimes that actively transmute important attributes of electronic and atomic structures.« less
Temporal and Spatial Aspects of Gas Release During the 2010 Apparition of Comet 103P/Hartley-2
NASA Technical Reports Server (NTRS)
Mumma, M. J.; Bonev, B. P.; Villanueva, G. L.; Paganini, L.; DiSanti, M. A.; Gibb, E. L.; Keane, J. V.; Meech, K. J.; Blake, G. A.; Ellis, R. S.;
2011-01-01
We report measurements of eight primary volatiles (H2O, HCN, CH4, C2H6, CH3OH, C2H2, H2CO, and NH3) and two product species (OH and NH2) in comet lO3P/Hartley-2 using high dispersion infrared spectroscopy. We quantified the long- and short-term behavior of volatile release over a three-month interval that encompassed the comet's close approach to Earth, its perihelion passage, and flyby of the comet by the Deep Impact spacecraft during the EPOXI mission. We present production rates for individual species, their mixing ratios relative to water, and their spatial distributions in the coma on multiple dates. The production rates for water, ethane, HCN, and methanol vary in a manner consistent with independent measures of nucleus rotation, but mixing ratios for HCN, C2H6, & CH3OH are independent of rotational phase. Our results demonstrate that the ensemble average composition of gas released from the nucleus is well defined, and relatively constant over the three-month interval (September 18 through December 1,7). If individual vents vary in composition, enough diverse vents must be active simultaneously to approximate (in sum) the bulk composition of the nucleus. The released primary volatiles exhibit diverse spatial properties which favor the presence of separate polar and apolar ice phases in the nucleus, establish dust and gas release from icy clumps, and from the nucleus, and provide insights into the driver for the cyanogen (CN) polar jet. The spatial distributions of C2H6 & HCN along the near-polar jet (UT 19.5 October) and nearly orthogonal to it (UT 22.5 October) are discussed relative to the origin of CN. The ortho-para ratio (OPR) of water was 2.85 +/- 0.20; the lower bound (2.65) defines T(sub spin) > 32 K. These values are consistent with results returned from ISO in 1997 .
The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.
1997-01-01
Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different density are produced at or ahead of the propagating combustion front settling of the higher density phase will occur resulting in a non-uniform product microstructure and properties.
Temperature anomalies of shock and isentropic waves of quark-hadron phase transition
NASA Astrophysics Data System (ADS)
Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.
2018-01-01
In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.
Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I
2012-04-01
The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunting, Bruce G; Farrell, John T
2006-01-01
The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCImore » combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.« less
Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass
NASA Astrophysics Data System (ADS)
Karandashova, N. S.; Goltsman, B. M.; Yatsenko, E. A.
2017-11-01
It is recommended to use high-quality thermal insulation materials to increase the energy efficiency of buildings. One of the best thermal insulation materials is foam glass - durable, porous material that is resistant to almost any effect of substance. Glass foaming is a complex process depending on the foaming mode and the initial mixture composition. This paper discusses the influence of all components of the mixture - glass powder, foaming agent, enveloping material and water - on the foam glass structure. It was determined that glass powder is the basis of the future material. A foaming agent forms a gas phase in the process of thermal decomposition. This aforementioned gas foams the viscous glass mass. The unreacted residue thus changes a colour of the material. The enveloping agent slows the foaming agent decomposition preventing its premature burning out and, in addition, helps to accelerate the sintering of glass particles. The introduction of water reduces the viscosity of the foaming mixture making it evenly distributed and also promotes the formation of water gas that additionally foams the glass mass. The optimal composition for producing the foam glass with the density of 150 kg/m3 is defined according to the results of the research.
Formation of MgO-B{sub 4}C composite via a thermite-based combustion reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.L.; Munir, Z.A.; Holt, J.B.
1995-03-01
The combustion synthesis of MgO-B{sub 4}C composites was investigated by coupling a highly exothermic Mg-B{sub 2}O{sub 3} thermite reaction with a weakly exothermic B{sub 4}C formation reaction. Unlike the case of using Al as the reducing agent, the interaction between Mg and B{sub 2}O{sub 3} depends on the surrounding inert gas pressure due to the high vapor pressure of Mg. The interaction changes from one involving predominantly gaseous Mg and liquid B{sub 2}O{sub 3} to one involving liquid Mg and liquid B{sub 2}O{sub 3} as the pressure increases. At low inert gas pressure, the initiation temperature is found to bemore » just below the melting point of Mg (650 C). As the inert gas pressure increases, the vaporization loss of reactants is reduced, and this in turn increases the combustion temperature, which promotes greater grain growth of the product phases, MgO and B{sub 4}C. The particle size of B{sub 4}C increased from about 0.2 to 5 {mu}m as the pressure changed from 1 to 30 atm.« less
Method for Predicting Hypergolic Mixture Flammability Limits
2017-02-01
liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition and the interactions...of what happens in the liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition...and the interactions of all these phases. The ignition happens in the gas -phase but products formed here and there (in the liquid phase or at
NASA Astrophysics Data System (ADS)
Knighton, W. B.; Floerchinger, C. R.; Wormhoult, J.; Massoli, P.; Fortner, E.; Brooks, B.; Roscioli, J. R.; Bon, D.; Herndon, S. C.
2014-12-01
Volatile organic compounds (VOCs) play an important role in local and regional air quality. A large source of VOCs comes from the oil and gas industry and the Denver-Julesburg Basin (D-J Basin) has seen a sharp increase in production in recent years primarily due to advances in horizontal drilling techniques. To help curb emissions with extraction and production of natural gas and its associated oil, emission control devices are required for facilities emitting over 6 tons of hydrocarbons per year. Within the ozone non-attainment area, which encompasses Denver and much of the front range, enclosed combustion devices (enclosed flares) are required to reduce hydrocarbon emissions by at least 95%. While certification tests indicate that these enclosed combustor devices provide high destruction removal efficiencies, there is considerable interest in knowing how well they perform in the field. As part of Front Range Air Pollution and Photochemistry Experiment (FRAPPE) project conducted during the Summer of 2014, the Aerodyne Mobile Laboratory (AML) surveyed oil and gas operations within the Wattenberg gas field and the surrounding D-J Basin. The AML deployed a full suite of gas and particle phase instrumentation providing a comprehensive set of on-line, real-time measurements for the major natural gas components (methane and ethane) and their combustion products (CO2, CO, NOx) using a variety of spectroscopic techniques. Additional gas phase organic gas emissions were made using a proton transfer reaction mass spectrometer (PTR-MS). Particle number and composition were determined using a condensation particle counter and an Aerodyne Aerosol Mass Spectrometer (AMS). A summary of the number of enclosed combustor devices measured and their observed combustion efficiencies will be presented.
Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven
2014-06-03
An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.
CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Hu
A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less
NASA Technical Reports Server (NTRS)
Marchese, Anthony J.; Dryer, Fredrick L.; Choi, Mun Y.
1994-01-01
In order to develop an extensive envelope of test conditions for NASA's space-based Droplet Combustion Experiment (DCE) as well those droplet experiments which can be performed using a drop tower, the transient vaporization and combustion of methanol and n-heptane droplets were simulated using a recently developed fully time-dependent, spherically symmetric droplet combustion model. The transient vaporization of methanol and n-heptane was modeled to characterize the instantaneous gas phase composition surrounding the droplet prior to the introduction of an ignition source. The results for methanol/air showed that the entire gas phase surrounding a 2 mm methanol droplet deployed in zero-g .quickly falls outside the lean flammability limit. The gas phase surrounding an identically-sized n-heptane droplet, on the other hand, remains flammable. The combustion of methanol was then modeled considering a detailed gas phase chemical kinetic mechanism (168 steps, 26 species) and the effect of the dissolution of flame-generated water into the liquid droplet. These results were used to determine the critical ignition diameter required to achieve quasi-steady droplet combustion in a given oxidizing environment. For droplet diameters greater than the critical ignition diameter, the model predicted a finite diameter at which the flame would extinguish. These extinction diameters were found to vary significantly with initial droplet diameter. This phenomenon appears to be unique to the transient heat transfer, mass transfer and chemical kinetics of the system and thus has not been reported elsewhere to date. The extinction diameter was also shown to vary significantly with the liquid phase Lewis number since the amount of water present in the droplet at extinction is largely governed by the rate at which water is transported into the droplet via mass diffusion. Finally, the numerical results for n-heptane combustion were obtained using both 2 step and 96 step semi-emperical chemical kinetic mechanisms. Neither mechanism exhibited the variation of extinction diameter with initial diameter.
The half-filled Landau level: The case for Dirac composite fermions
NASA Astrophysics Data System (ADS)
Geraedts, Scott D.; Zaletel, Michael P.; Mong, Roger S. K.; Metlitski, Max A.; Vishwanath, Ashvin; Motrunich, Olexei I.
2016-04-01
In a two-dimensional electron gas under a strong magnetic field, correlations generate emergent excitations distinct from electrons. It has been predicted that “composite fermions”—bound states of an electron with two magnetic flux quanta—can experience zero net magnetic field and form a Fermi sea. Using infinite-cylinder density matrix renormalization group numerical simulations, we verify the existence of this exotic Fermi sea, but find that the phase exhibits particle-hole symmetry. This is self-consistent only if composite fermions are massless Dirac particles, similar to the surface of a topological insulator. Exploiting this analogy, we observe the suppression of 2kF backscattering, a characteristic of Dirac particles. Thus, the phenomenology of Dirac fermions is also relevant to two-dimensional electron gases in the quantum Hall regime.
The influence of CO adsorption on the surface composition of cobalt/palladium alloys
NASA Astrophysics Data System (ADS)
Murdoch, A.; Trant, A. G.; Gustafson, J.; Jones, T. E.; Noakes, T. C. Q.; Bailey, P.; Baddeley, C. J.
2016-04-01
Segregation induced by the adsorption of gas phase species can strongly influence the composition of bimetallic surfaces and can therefore play an important role in influencing heterogeneous catalytic reactions. The addition of palladium to cobalt catalysts has been shown to promote Fischer Tropsch catalysis. We investigate the adsorption of CO onto bimetallic CoPd surfaces on Pd{111} using a combination of reflection absorption infrared spectroscopy and medium energy ion scattering. The vibrational frequency of adsorbed CO provides crucial information on the adsorption sites adopted by CO and medium energy ion scattering probes the surface composition before and after CO exposure. We show that cobalt segregation is induced by CO adsorption and rationalise these observations in terms of the strength of adsorption of CO in various surface adsorption sites.
Direct mass spectrometry approaches to characterize polyphenol composition of complex samples.
Fulcrand, Hélène; Mané, Carine; Preys, Sébastien; Mazerolles, Gérard; Bouchut, Claire; Mazauric, Jean-Paul; Souquet, Jean-Marc; Meudec, Emmanuelle; Li, Yan; Cole, Richard B; Cheynier, Véronique
2008-12-01
Lower molecular weight polyphenols including proanthocyanidin oligomers can be analyzed after HPLC separation on either reversed-phase or normal phase columns. However, these techniques are time consuming and can have poor resolution as polymer chain length and structural diversity increase. The detection of higher molecular weight compounds, as well as the determination of molecular weight distributions, remain major challenges in polyphenol analysis. Approaches based on direct mass spectrometry (MS) analysis that are proposed to help overcome these problems are reviewed. Thus, direct flow injection electrospray ionization mass spectrometry analysis can be used to establish polyphenol fingerprints of complex extracts such as in wine. This technique enabled discrimination of samples on the basis of their phenolic (i.e. anthocyanin, phenolic acid and flavan-3-ol) compositions, but larger oligomers and polymers were poorly detectable. Detection of higher molecular weight proanthocyanidins was also restricted with matrix-assisted laser desorption ionization (MALDI) MS, suggesting that they are difficult to desorb as gas-phase ions. The mass distribution of polymeric fractions could, however, be determined by analyzing the mass distributions of bovine serum albumin/proanthocyanidin complexes using MALDI-TOF-MS.