Science.gov

Sample records for gas plasma sterilization

  1. Space hardware compatibility tests with hydrogen peroxide gas plasma sterilization

    NASA Astrophysics Data System (ADS)

    Faye, Delphine; Aguila, Alexandre; Debus, Andre; Remaury, Stephanie; Nabarra, Pascale; Darbord, Jacques C.; Soufflet, Caroline; Destrez, Philippe; Coll, Patrice; Coscia, David

    The exploration of the Solar System shall comply with planetary protection requirements handled presently by the Committee of Space Research (COSPAR). The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual contamination carried by return samples or by space systems. For project teams, avoiding the biological contamination of other Solar System bodies such as Mars imposes to perform unusual tasks at technical and operational constraints point of view. The main are the reduction of bioburden on space hardware, the sterile integration of landers, the control of the biological cleanliness and the limitation of crash probability. In order to reduce the bioburden on spacecraft, the use of qualified sterilization processes may be envisaged. Since 1992 now, with the Mars96 mission, one of the most often used is the Sterrad(R) process working with hydrogen peroxide gas plasma. In the view of future Mars exploration programs, after tests performed in the frame of previous missions, a new test campaign has been performed on thermal coatings and miscellaneous materials coming from an experiment in order to assess the compatibility of space hardware and material with this sterilization process.

  2. Investigation of Sterilization Effect by various Gas Plasmas and Electron Microscopic Observation of Bacteria

    NASA Astrophysics Data System (ADS)

    Sasaki, Yota; Takamatsu, Toshihiro; Uehara, Kodai; Oshita, Takaya; Miyahara, Hidekazu; Okino, Akitoshi; Ikeda, Keiko; Matsumura, Yuriko; Iwasawa, Atsuo; Kohno, Masahiro

    2014-10-01

    Atmospheric non-thermal plasmas have attracted attention as a new sterilization method. It is considered that factor of plasma sterilization are mainly reactive oxygen species (ROS). However, the sterilization mechanism hasn't been investigated in detail because conventional plasma sources have a limitation in usable gas species and lack variety of ROS. So we developed multi-gas plasma jet which can generate various gas plasmas. In this study, investigation of sterilization effect by various gas plasmas and electron microscopic observation of bacteria were performed. Oxygen, nitrogen, carbon dioxide, argon and air were used as plasma gas. To investigate gas-species dependence of sterilization effect, S.aureus was treated. As a result, nitrogen plasma and carbon dioxide plasma were effective for sterilization. To investigate sterilization mechanism, the surface of S.aureus was observed by scanning electron microscope. As a result, dimples were observed on the surface after irradiation of nitrogen plasma, but no change observed in the case of carbon dioxide plasma. These results suggest that bactericidal mechanism of nitrogen and carbon dioxide plasma should be different. In the presentation, Measurement result of ROS will be reported.

  3. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  4. Assessment of the efficacy of a low temperature hydrogen peroxide gas plasma sterilization system.

    PubMed

    Kyi, M S; Holton, J; Ridgway, G L

    1995-12-01

    The STERRAD 100 sterilization system (Johnson & Johnson Medical Ltd) uses low temperature hydrogen peroxide gas plasma for sterilization of heat labile equipment. The efficacy of the machine was tested by contaminating a standard set of instruments with different organisms and using a filtration method to assess recovery of organisms from the wash fluids of instruments post-sterilization. Experiments were performed under clean (the organism only) and dirty (organism mixed with egg protein) conditions. A parallel study conducted using a 3M STERIVAC ethylene oxide sterilizer could not be completed owing to closure of the ethylene oxide plant. For sterilization of instruments with long and narrow lumens, hydrogen peroxide adaptors are necessary. The STERRAD 100 sterilizer can achieve effective sterilization of heat labile instruments with a reduction of 6 log10 cfu/mL of organisms tested. This method has the advantages over ethylene oxide sterilization of safety, ease of maintenance and no requirement for aeration time.

  5. Sterilization of Bacillus subtilis Spores Using an Atmospheric Plasma Jet with Argon and Oxygen Mixture Gas

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Cheng, Cheng; Fang, Shidong; Xie, Hongbing; Lan, Yan; Ni, Guohua; Meng, Yuedong; Luo, Jiarong; Wang, Xiangke

    2012-03-01

    To determine an efficient sterilization mechanism, Bacillus subtilis spore samples were exposed to an atmospheric plasma jet. By using argon/oxygen mixture gas, the decimal reduction value was reduced from 60 s (using argon gas) to 10 s. More dramatically, after 5 min treatment, the colony-forming unit (CFU) was reduced by six orders. To understand the underlying mechanism of the efficient sterilization by plasma, the contributions from heat, UV radiation, charged particles, ozone, and reactive oxygen radicals were distinguished in this work, showing that charged particles and ozone were the main killing factors. The shape changes of the spores were also discussed.

  6. Plasma Sterilization Technology for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Fraser, S. J.; Olson, R. L.; Leavens, W. M.

    1975-01-01

    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.

  7. Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization.

    PubMed

    Lerouge, S; Wertheimer, M R; Marchand, R; Tabrizian, M; Yahia, L

    2000-07-01

    The aim of this work was to investigate possible mechanisms of sterilization by low-temperature gas plasma: spore destruction by plasma is compared with etching of synthetic polymers. Bacillus subtilis spores were inoculated at the bottom of glass vials and subjected to different plasma gas compositions (O(2), O(2)/Ar, O(2)/H(2), CO(2), and O(2)/CF(4)), all known to etch polymers. O(2)/CF(4) plasma exhibited much higher efficacy than all other gases or gas mixtures tested, with a more than 5 log decrease in 7.5 min, compared with a 2 log decrease with pure oxygen. Examination by scanning electron microscopy showed that spores were significantly etched after 30 min of plasma exposure, but not completely. We speculate about their etch resistance compared with that of synthetic polymers on the basis of their morphology and complex coating structure. In contrast to so-called in-house plasma, sterilization by Sterrad(R) tended to increase the observed spores' size; chemical modification (oxidation), rather than etching, is believed to be the sterilization mechanism of Sterrad(R).

  8. Sterilization mechanism of nitrogen gas plasma: induction of secondary structural change in protein.

    PubMed

    Sakudo, Akikazu; Higa, Masato; Maeda, Kojiro; Shimizu, Naohiro; Imanishi, Yuichiro; Shintani, Hideharu

    2013-07-01

    The mechanism of action on biomolecules of N₂ gas plasma, a novel sterilization technique, remains unclear. Here, the effect of N₂ gas plasma on protein structure was investigated. BSA, which was used as the model protein, was exposed to N₂ gas plasma generated by short-time high voltage pulses from a static induction thyristor power supply. N₂ gas plasma-treated BSA at 1.5 kilo pulses per second showed evidence of degradation and modification when assessed by Coomassie brilliant blue staining and ultraviolet spectroscopy at 280 nm. Fourier transform infrared spectroscopy analysis was used to determine the protein's secondary structure. When the amide I region was analyzed in the infrared spectra according to curve fitting and Fourier self-deconvolution, N₂ gas plasma-treated BSA showed increased α-helix and decreased β-turn content. Because heating decreased α-helix and increased β-sheet content, the structural changes induced by N₂ gas plasma-treatment of BSA were not caused by high temperatures. Thus, the present results suggest that conformational changes induced by N₂ gas plasma are mediated by mechanisms distinct from heat denaturation.

  9. Experimental study on a new sterilization process using plasma source ion implantation with N2 gas

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Tanaka, T.; Watanabe, S.; Takagi, T.; Shinohara, M.; Fujii, S.

    2003-07-01

    Plasma source ion implantation (PSII) with negative high voltage pulses has been applied to the sterilization process as a technique suitable for sterilization of three-dimensional work pieces. Pulsed high negative voltage (0-10 μs pulse width, 900 pulses/s, -9 to -16 kV) was applied to the electrode in this process at a gas pressure of 2-7 Pa of N2. This process has been found to be capable of generating glow discharge plasma around a stainless electrode, on which quartz glass samples with biological materials are placed. We found that the PSII process reduced the numbers of active Bacillus pumilus cells using N2 gas plasma generated by pulsed dc voltages. The number of bacteria survivors was reduced by 105×with 5-10 min exposure. The state of cells on quartz glass was observed by scanning electron microscopy with and without exposure. We found that the ion energy is the most important processing parameter. The technique is demonstrated to be an effective means of low-temperature surface sterilization, with very little damage to the target.

  10. Ethylene Oxide and Hydrogen Peroxide Gas Plasma Sterilization: Precautionary Practices in U.S. Hospitals

    PubMed Central

    Boiano, James M.; Steege, Andrea L.

    2015-01-01

    Objective Evaluate precautionary practices and extent of use of ethylene oxide (EtO) and hydrogen peroxide gas plasma (HPGP) sterilization systems, including use of single chamber EtO units. Design Modular, web-based survey. Participants Members of professional practice organizations who reported using EtO or HPGP in the past week to sterilize medical instruments and supplies. Participating organizations invited members via email which included a hyperlink to the survey. Methods Descriptive analyses were conducted including simple frequencies and prevalences. Results A total of 428 respondents completed the module on chemical sterilants. Because most respondents worked in hospitals (87%, n=373) analysis focused on these workers. Most used HPGP sterilizers (84%, n=373), 38% used EtO sterilizers, with 22% using both. Nearly all respondents using EtO operated single chamber units (94%, n=120); most of them reported that the units employed single use cartridges (83%, n=115). Examples of where engineering and administrative controls were lacking for EtO include: operational local exhaust ventilation (7%; n=114); continuous air monitoring (6%; n=113); safe handling training (6%; n=142); and standard operating procedures (4%; n=142). Examples of practices which may increase HPGP exposure risk included lack of standard operating procedures (9%; n=311) and safe handling training (8%; n=312). Conclusions Use of precautionary practices was good but not universal. EtO use appears to have diminished in favor of HPGP which affords higher throughput and minimal regulatory constraints. Separate EtO sterilization and aeration units were still being used nearly one year after U.S. EPA prohibited their use. PMID:26594097

  11. Costs of low-temperature plasma sterilization compared with other sterilization methods.

    PubMed

    Adler, S; Scherrer, M; Daschner, F D

    1998-10-01

    Plasma sterilization is a new technique for decontaminating thermolabile products without the severe drawbacks associated with gas sterilization methods (residues, environment compatibility). The actual costs, per sterilization unit, of three sterilization techniques--plasma, ethylene oxide and formaldehyde--were compared. As plasma sterilization is an alternative to steam sterilization for sterilizing thermostable but easily corroding products or electronic instruments, costs for steam sterilization were calculated and compared as well. If one considers only the cost of the sterilization procedure itself, without taking into account the time-saving element of plasma sterilization, then ethylene oxide sterilization proves to be the most expensive procedure, followed by plasma sterilization; sterilization with formaldehyde was the least expensive. Inclusion of the time required to sterilize an instruments, however, altered the relative costs of the three methods. Because plasma sterilization takes less time to perform than either ethylene oxide or formaldehyde sterilization, fewer instruments need be procured. In order to measure and compare the time-saving advantage that plasma sterilization affords, five groups of instruments were assembled and the total cost of sterilizing an instrument of each group was calculated. The five groups included (1) disposable, (2) electronic, (3) endoscopic, (4) sharp and (5) standard instruments. In all cases, ethylene oxide sterilization was the most expensive method. Formaldehyde sterilization was, in four out of five cases, more expensive than plasma sterilization. Steam sterilization proved to be the cheapest method of sterilizing a laparoscopic set, even when costs due to damage inflicted on the optical instruments were calculated. In the case of a vitrectome, however, plasma sterilization costs were nearly the same as steam sterilization when the lower rate of damage by plasma sterilization was taken into account.

  12. The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization

    NASA Astrophysics Data System (ADS)

    Du, Chang Ming; Wang, Jing; Zhang, Lu; Xia Li, Hong; Liu, Hui; Xiong, Ya

    2012-01-01

    Gliding arc discharge has been investigated in recent years as an innovative physicochemical technique for contaminated water treatment at atmospheric pressure and ambient temperature. In this study we tested a gas-liquid gliding arc discharge reactor, the bacterial suspension of which was treated circularly. When the bacterial suspension was passed through the electrodes and circulated at defined flow rates, almost 100% of the bacteria were killed in less than 3.0 min. Experimental results showed that it is possible to achieve an abatement of 7.0 decimal logarithm units within only 30 s. Circulation flow rates and types of feeding gas caused a certain impact on bacteria inactivation, but the influences are not obvious. So, under the promise of sterilization effect, industrial applications can select their appropriate operating conditions. All inactivation curves presented the same three-phase profile showing an apparent sterilization effect. Analysis of the scanning electron microscope images of bacterial cells supports the speculation that the gas-liquid gliding arc discharge plasma is acting under various mechanisms driven essentially by oxidation and the effect of electric field. These results enhance the possibility of applying gas-liquid gliding arc discharge decontamination systems to disinfect bacterial-contaminated water. Furthermore, correlational research indicates the potential applications of this technology in rapid sterilization of medical devices, spacecraft and food.

  13. Characteristics of surface-wave plasma with air-simulated N2 O2 gas mixture for low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Nonaka, H.; Zhou, H. Y.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2007-02-01

    Sterilization experiments using low-pressure air discharge plasma sustained by the 2.45 GHz surface-wave have been carried out. Geobacillus stearothermoplilus spores having a population of 3.0 × 106 were sterilized for only 3 min using air-simulated N2-O2 mixture gas discharge plasma, faster than the cases of pure O2 or pure N2 discharge plasmas. From the SEM analysis of plasma-irradiated spores and optical emission spectroscopy measurements of the plasmas, it has been found that the possible sterilization mechanisms of air-simulated plasma are the chemical etching effect due to the oxygen radicals and UV emission from the N2 molecules and NO radicals in the wavelength range 200-400 nm. Experiment suggested that UV emission in the wavelength range less than 200 nm might not be significant in the sterilization. The UV intensity at 237.0 nm originated from the NO γ system (A 2Σ+ → X 2Π) in N2-O2 plasma as a function of the O2 percentage added to N2-O2 mixture gas has been investigated. It achieved its maximum value when the O2 percentage was roughly 10-20%. This result suggests that air can be used as a discharge gas for sterilization, and indeed we have confirmed a rapid sterilization with the actual air discharge at a sample temperature of less than 65 °C.

  14. Plasma Sterilization Experiments

    DTIC Science & Technology

    2008-12-14

    aliquot of the S . epidermidis culture was withdrawn and used as the common source. The concentration of the common source was measured with each...sterilizer. Sterilization was checked by exposing vials containing solutions of 1E6 cfu/mL S . epidermidis to various sterilization procedures. For...Organogenesis) and were suspended over an isotonic saline solution to keep the skin samples from drying out. 2.00±0.05uL of the S . epidermidis source

  15. Sterilization effects of atmospheric cold plasma brush

    NASA Astrophysics Data System (ADS)

    Yu, Q. S.; Huang, C.; Hsieh, F.-H.; Huff, H.; Duan, Yixiang

    2006-01-01

    This study investigated the sterilization effects of a brush-shaped plasma created at one atmospheric pressure. A population of 1.0×104-1.0×105 Escherichia coli or Micrococcus luteus bacteria was seeded in filter paper media and then subjected to Ar and/or Ar +O2 plasmas. A complete kill of the Micrococcus luteus required about 3 min argon plasma exposures. With oxygen addition into the argon plasma gas streams, a complete kill of the bacteria needed only less than 1 min plasma exposure for Micrococcus luteus and about 2 min exposure for Escherichia coli. The plasma treatment effects on the different bacteria cell structures were examined using scanning electron microscopy.

  16. Sterilization effects of atmospheric cold plasma brush

    SciTech Connect

    Yu, Q.S.; Huang, C.; Hsieh, F.-H.; Huff, H.; Duan Yixiang

    2006-01-02

    This study investigated the sterilization effects of a brush-shaped plasma created at one atmospheric pressure. A population of 1.0x10{sup 4}-1.0x10{sup 5} Escherichia coli or Micrococcus luteus bacteria was seeded in filter paper media and then subjected to Ar and/or Ar+O{sub 2} plasmas. A complete kill of the Micrococcus luteus required about 3 min argon plasma exposures. With oxygen addition into the argon plasma gas streams, a complete kill of the bacteria needed only less than 1 min plasma exposure for Micrococcus luteus and about 2 min exposure for Escherichia coli. The plasma treatment effects on the different bacteria cell structures were examined using scanning electron microscopy.

  17. Plasma sterilization using the RF glow discharge

    NASA Astrophysics Data System (ADS)

    Yang, Liqing; Chen, Jierong; Gao, Junling; Guo, Yafei

    2009-08-01

    In the present work, glow discharge oxygen plasma was used to sterilize the Pseudomonas aeruginosa on the polyethylene terephthalate (PET) sheets. In a self-designed plasma reaction equipment, active species (electron, ion, radical, UV light, etc.) were separated effectively, and the discharge area, afterglow area and remote area were plotted out in the plasma field. Before and after plasma treatment the cell morphology was studied by scanning electron microscopy (SEM). The results showed that after treatment of 30 s the germicidal effect is 4.26, 3. 84, 2.61, respectively in the three areas on the following conditions: discharge power was 40 W and gas flux was 20 cm 3/min. SEM results revealed the cell morphology before and after plasma treatment. The walls or cell membrane cracking was testified by determining the content of protein using coomassie light blue technique. The results from electron spin resonance spectroscopy (ESR) and double Langmuir electron probe showed that electron, ion and oxygen free radical played important roles in sterilization in the discharge area, but only oxygen radicals acted to sterilize the bacteria in the afterglow area and the remote area.

  18. Plasma Sterilization: New Epoch in Medical Textiles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Arun, N.; Vigneswaran, C.

    2015-04-01

    Clothing is perceived to be second skin to the human body since it is in close contact with the human skin most of the times. In hospitals, use of textile materials in different forms and sterilization of these materials is an essential requirement for preventing spread of germs. The need for appropriate disinfection and sterilization techniques is of paramount importance. There has been a continuous demand for novel sterilization techniques appropriate for use on various textile materials as the existing sterilization techniques suffer from various technical and economical drawbacks. Plasma sterilization is the alternative method, which is friendlier and more effective on the wide spectrum of prokaryotic and eukaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Plasma exposure can kill micro-organisms on a surface in addition to removing adsorbed monolayer of surface contaminants. Advantages of plasma surface treatment are removal of contaminants from the surface, change in the surface energy and sterilization of the surface. Plasma sterilization aims to kill and/or remove all micro-organisms which may cause infection of humans or animals, or which can cause spoilage of foods or other goods. This review paper emphasizes necessity for sterilization, essentials of sterilization, mechanism of plasma sterilization and the parameters influencing it.

  19. Characteristics of Surface Sterilization using ECR Plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2015-09-01

    Plasma sterilization techniques have superior characteristics such as a short treatment times, non-toxicity and low thermal damages on the sterilized materials. In plasma sterilization, microorganisms can be sterilized by active radicals, energetic charged particles, and vacuum UV radiation. The influence of each factor depends on the plasma operating parameters. Microwave discharges under the electron cyclotron resonance (ECR) condition produce higher electron temperature and density plasma as compared with other plasma generation techniques. In the present study, characteristics of surface sterilization using ECR plasma have been investigated.The experiment was performed in the vacuum chamber which contains a magnet holder. A pair of rectangular Sm-Co permanent magnets is aligned parallel to each other within the magnet holder. The region of the magnetic field for ECR exists near the magnet holder surface. When the microwave is introduced into the vacuum chamber, a ECR plasma is produced around surface of the magnet holder. High energy electrons and oxygen radicals were observed at ECR zone by electric probe method and optical spectroscopic method. Biological indicators (B.I.) having spore of 106 was sterilized in 2min for oxygen discharge. The temperature of the B.I. installation position was about 55°. The sterilization was achieved by the effect of oxygen radicals and high energy electrons.

  20. Sterilization Effect of Wet Oxygen Plasma in the Bubbling Method.

    PubMed

    Tamazawa, Kaoru; Shintani, Hideharu; Tamazawa, Yoshinori; Shimauchi, Hidetoshi

    2015-01-01

    A new low-temperature sterilization method to replace the ethylene oxide gas sterilization is needed. Strong bactericidal effects of OH and O2H radicals are well known. The purpose of this study was to evaluate the sterilization effect of wet oxygen ("O2+H2O") plasma in the bubbling method, confirming the effect of humidity. Sterility assurance was confirmed by using a biological indicator (Geobacillus stearothermophilus ATCC7953, Namsa, USA). One hundred and eight samples (10(5) spores/carrier) were divided into three groups of 36 in each for treatment with a different type of gas (O2, O2+H2O, Air+H2O). Plasma processing was conducted using a plasma ashing apparatus (13.56 MHz, PACK-3(®), Y. A. C., Japan) under various gas pressures (13, 25, 50 Pa) and gas flows (50, 100, 200 sccm). Fixed plasma treatment parameters were power at 150 W, temperature of 60 ℃, treatment time of 10 min. The samples after treatment were incubated in trypticase soy broth at 58 ℃ for 72 h. The negative culture rate in the "O2+H2O" group was significantly (Mantel-Haenszel procedure, p<0.001) higher than in the other gas groups. It is suggested that the significant sterilization effect of the "O2+H2O" group depends on the bubbling method which is the method of introducing vapor into the chamber. The bubbling method seems able to generate OH and O2H radicals in a stable way.

  1. Observation of Effectiveness of Clinical Sterilization by CASP-80A Low-Temperature Plasma Sterilizer

    NASA Astrophysics Data System (ADS)

    Li, Si; Zhang, Yangde; Liu, Weidong

    2006-09-01

    The influence on the effectiveness of sterilization by low-temperature plasma sterilizer CASP-80A was investigated so as to provide a theoretical basis for reducing medical costs and achieving ideal sterilization effectiveness. To conduct the on-site simulation test, a clinical material sterilization test and a test of the influence of organic substance were conducted, the former by using the representative of Bacillus Stearothermophilus, preparing the bacteria-contaminated carrier through polytetrafluoroethylene (PTFE) simulated hose endoscopes, and the latter by using calf serum as the influence factor of the organic substance. The results show that the CASP-80A low-temperature plasma sterilizer could achieve effective sterilization by either the short-cycle or the long-cycle sterilization method depending on different materials, apparatus, and extent of contamination. The organic substances could influence the effectiveness of sterilization by the low-temperature plasma (H2O2) sterilizer.

  2. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  3. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  4. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  5. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  6. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  7. Atmospheric-pressure plasma decontamination/sterilization chamber

    SciTech Connect

    Herrmann, Hans W.; Selwyn, Gary S.

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  8. Sterilization of Fusarium oxysporum by treatment of non-thermalequilibrium plasma in nutrient solution

    NASA Astrophysics Data System (ADS)

    Yasui, Shinji; Seki, Satoshi; Yoshida, Ryohei; Shoji, Kazuhiro; Terazoe, Hitoshi

    2016-01-01

    Fusarium wilt of spinach due to F. oxysporum infection is one of the most destructive root diseases in hydroponics in factories using the nutrient film technique. We investigated new technologies for the sterilization of microconidia of F. oxysporum by using a non-thermalequilibrium plasma treatment method in nutrient solution. Specifically, we investigated the sterilization capabilities of five types of gas (air, O2, N2, He, and Ar) used for plasma generation. The highest sterilization capability was achieved by using O2 plasma. However, ozone, which causes growth inhibition, was then generated and released into the atmosphere. The sterilization capability was lower when N2 or air plasma was used in the nutrient solution. It was confirmed that sterilization can be achieved by plasma treatment using inert gases that do not generate ozone; therefore, we determined that Ar plasma is the most preferable. In addition, we investigated the sterilization capabilities of other factors associated with Ar plasma generation, without direct plasma treatment. However, none of these other factors, which included Ar bubbling, pH reduction, increased temperature, hydrogen peroxide concentration, and UV radiation, could completely reproduce the results of direct plasma treatment. We assume that radicals such as O or OH may contribute significantly to the sterilization of microconidia of F. oxysporum in a nutrient solution.

  9. Sterilization of soybean powder with plasma treatment in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Iwami, R.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Nakayama, A.; Nakagawa, K.

    2013-10-01

    Sterilization of foods has been performed by conventional methods such as heat, steam and chemical solutions. However, these sterilization techniques could cause damages to the food material. It is considered that plasma sterilization at atmospheric pressure is one of the promising alternative methods because of the low temperature process. In our previous study, the inactivation of Bacillus atrophaeusspores by a dielectric barrier discharge (DBD) plasma produced in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The results showed that the inactivation of Bacillus atrophaeusspores was found to be dependent strongly on the humidity. In the present study, the plasma treatment technique in humid air is applied to sterilization of soybean powder. Effects of plasma sterilization were successfully confirmed by a colony counting method. It was found that the sterilization efficiency was increased by using the humid air as the discharge gas. In the conference, an improvement of the plasma treatment system to enhance the sterilization efficiency will be shown.

  10. A double inductively coupled plasma for sterilization of medical devices

    NASA Astrophysics Data System (ADS)

    Halfmann, H.; Bibinov, N.; Wunderlich, J.; Awakowicz, P.

    2007-07-01

    A double inductively coupled low pressure plasma for sterilization of bio-medical materials is introduced. It is developed for homogeneous treatment of three-dimensional objects. The short treatment times and low temperatures allow the sterilization of heat sensitive materials like ultra-high-molecular-weight-polyethylene or polyvinyl chloride. Using a non-toxic atmosphere reduces the total process time in comparision with common methods. Langmuir probe measurements are presented to show the difference between ICP- and CCP-mode discharges, the spatial homogeneity and the influence on the sterilization efficiency. To know more about the sterilization mechanisms optical emission is measured and correlated with sterilization results.

  11. Sterilization using a microwave-induced argon plasma system at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Park, Bong Joo; Lee, D. H.; Park, J.-C.; Lee, I.-S.; Lee, K.-Y.; Hyun, S. O.; Chun, M.-S.; Chung, K.-H.

    2003-11-01

    The use of microwave plasma for sterilization is relatively new. The advantages of this method are the relatively low temperature, time-savings and its nontoxic nature, in contrast to traditional methods such as heat and gas treatment, and radiation. This study investigated the sterilization effects of microwave-induced argon plasma at atmospheric pressure on materials contaminated with various microorganisms, such as bacteria and fungi. A low-cost and reliable 2.45 GHz, waveguide-based applicator was designed to generate microwave plasma at atmospheric pressure. This system consisted of a 1 kW magnetron power supply, a WR-284 copper waveguide, an applicator including a tuning section, and a nozzle section. Six bacterial and fungal strains were used for the sterilization test. The results showed that regardless of the strain, all the bacteria used in this study were fully sterilized within 20 seconds and all the fungi were sterilized within 1 second. These results show that this sterilization method is easy to use, requires significantly less time than the other traditional methods and established plasma sterilization methods, and it is nontoxic. It can be used in the field of sterilization in medical and dental clinics as well as in laboratory settings.

  12. Sterilization Performance and Material Compatibility of Sterilizer for Dental Instruments using RF Oxygen Plasma

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuhiro; Liu, Zhen; Hayashi, Nobuya; Goto, Masaaki

    2015-09-01

    The sterilization performance and material compatibility of low-pressure RF plasma sterilization method for dental instruments were investigated. RF electrode used in this experiment has been optimized for sterilization of dental instruments. The vial-type biological indicator (BI) simulating tiny space of dental instrument was used for evaluation of the sterilization performance. The pressure in the stainless chamber was fixed at 60 Pa. Sterilization of BI was achieved in shortest time 40 min at 80 W, and the sterilization effect was confirmed using three BIs. Light emission spectra of oxygen plasma indicated that production of atomic oxygen and excited oxygen molecule are maximum at pressure of 20 Pa and 200 Pa, respectively. Sterilization results of BIs indicated that successful rate increases with the oxygen pressure towards 200 Pa. Therefore, the excited oxygen molecule is deduced to be a major factor of the sterilization of BI. Surface morphology of dental instruments such as diamond bar was evaluated using scanning electron microscope (SEM). The deterioration of fine crystals of diamond bar has not observed after the plasma irradiation for 120 min with RF input power was 60W and pressure was 200 Pa.

  13. The efficacy of low temperature plasma (LTP) sterilization, a new sterilization technique.

    PubMed

    Höller, C; Martiny, H; Christiansen, B; Rüden, H; Gundermann, K O

    1993-07-01

    The efficacy of low temperature plasma (LTP) sterilization, a newly developed sterilization procedure was tested. Following experiments were carried out: Determination of the most resistant test organism, influence of 10% and 20% defibrinated sheep blood or varying salt concentrations on the efficacy of the sterilization process, influence of the carrier position in the sterilization chamber and in the sterilization pouches, influence of a loaded sterilization chamber, comparative efficacy of EO and LTP, steel carriers with a blood burden of 0%, 5% and 10%, comparative efficacy of EO and LTP, strip carriers in endoscopes, blood burden 0% and 10%, with and without adaptors, evaluation of two bioindicator models. B. pumilus was the test spore that overall seemed to be most resistant to the sterilization procedure. Supplementation of the test suspension with blood or saline crystals resulted in significantly reduced efficacy and has to be avoided in practical operation. The fully loaded sterilization chamber or the position of germ carriers on the shelves had no negative influence on the effectivity of the sterilization process. There were no significant differences between EO and LTP, the blood burden not exceeding 5%. 10% blood burden resulted in a significantly weaker action of LTP. For sterilization of long lumens adaptors containing hydrogen peroxide are necessary. An appropriate bioindicator tube model is introduced.

  14. Sterilization Efficiency of Spore forming Bacteria in Powdery Food by Atmospheric Pressure Plasmas Sterilizer

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Tanaka, Masashi; Kikuchi, Yusuke

    2015-09-01

    To provide food sterilization method capable of killing highly heat resistant spore forming bacteria, we have studied effects of plasma treatment method at atmospheric pressure in order to develop a new high speed plasma sterilization apparatus with a low cost and a high efficiency. It is also difficult even for the plasma treatment to sterilize powdery food including spices such as soybean, basil and turmeric. This paper describes that an introduction of mechanical rotation of a treatment space increases the efficiency so that perfect inactivation of spore forming bacteria in these materials by a short treatment time has been demonstrated in our experiments. We also will discuss the sterilization mechanism by dielectric barrier discharge.

  15. Fundamental aspects in the plasma surface interaction during plasma sterilization

    NASA Astrophysics Data System (ADS)

    von Keudell, A.

    2008-07-01

    The inactivation of bacteria in oxygen or hydrogen containing low pressure plasmas is investigated by mimicking the plasma exposure with a dedicated beam experiment employing argon ions, oxygen molecules/atoms and hydrogen atoms . Thereby, fundamental inactivation mechanisms can be revealed. It is shown that the impact of O atoms or H atoms has no effect on the viability of bacterial spores and that no etching of the spore coat occurs up to an O and H atom fluence of 3.5 x 10^19 cm^-2. The impact of argon ions with an energy of 200 eV does not cause significant erosion for fluences up to 1.15 x 10^18 cm^-2. However, the combined impact of argon ions and oxygen molecules/atoms or H atoms causes significant etching of the spores and significant inactivation. This is explained by the process of chemical sputtering, where an ion induced defect at the surface of the spore reacts with either the incident bi-radical O_2 or with an incident O atom or H atom. This leads to the formation of CO, CO_2 and H_2O and thus to erosion. This beam results are compared to a broad sterilization campaign using an ICP reactor in a European round robin experiment BIODECON. Strategies for optimizing the plasma sterilization processes will be presented.

  16. Material Compatibility of Medical Sterilizer Using Oxygen Plasma

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroshi; Ono, Reoto; Hayashi, Nobuya; Hanada, Yasushi; Noda, Minoru; Goto, Masaaki

    2015-09-01

    Material compatibility of oxygen plasma sterilizer is investigated comparing with hydrogen peroxide (H2O2) sterilizers and a gaseous H2O2 sterilizer. Organic materials such as ABS, PE, PP, and PET are used as sample materials, and are irradiated by active oxygen species produced in oxygen plasma. After plasma irradiation, surface of the sample materials is observed using a scanning electron microscope and FTIR spectroscopy. Strengths of the organic materials are evaluated by the tension test. Also, H2O2 plasma sterilizer and a gaseous H2O2 sterilizer those are commercially available are utilized to compare the material compatibility, especially organic compounds. The ABS resin becomes slightly soft after irradiation by both plasmas and gaseous H2O2. Also, PET material becomes soften by each sterilization treatment. Decrease of peak heights of CH around 1200 and 1730 cm-1 and increase of that of OH at 3300 cm-1 in FTIR spectra indicates the oxidation of ABS resin by both plasma and gaseous H2O2. In the case of PET material, treatment by the plasma has not modified chemical composition but changed the crystal structure. The gaseous H2O2 is completely friendly for the PET material.

  17. Study on the role of active radicals on plasma sterilization inside small diameter flexible polymeric tubes

    NASA Astrophysics Data System (ADS)

    Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro

    2015-09-01

    Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).

  18. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  19. Simultaneous Sterilization With Surface Modification Of Plastic Bottle By Plasma-Based Ion Implantation

    NASA Astrophysics Data System (ADS)

    Sakudo, N.; Ikenaga, N.; Ikeda, F.; Nakayama, Y.; Kishi, Y.; Yajima, Z.

    2011-01-01

    Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will be simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.

  20. Simultaneous Sterilization With Surface Modification Of Plastic Bottle By Plasma-Based Ion Implantation

    SciTech Connect

    Sakudo, N.; Ikenaga, N.; Ikeda, F.; Nakayama, Y.; Kishi, Y.; Yajima, Z.

    2011-01-07

    Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will be simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.

  1. High-speed sterilization technique using dielectric barrier discharge plasmas in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Miyamae, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma produced by an ac voltage application of 1 kHz in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where the air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of Bacillus atrophaeus spores was found to be dependent strongly on the humidity, and was completed within 15 min at a relative humidity of 90 % and a temperature of 30 C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. It is considered that reactive species such as hydroxyl radicals that are effective for the inactivation of Bacillus atrophaeus spores could be produced by the DBD plasma in the humid air. Repetitive micro-pulsed discharge plasmas in the humid air will be applied for the sterilization experiment to enhance the sterilization efficiency.

  2. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  3. Permeation barrier coating and plasma sterilization of PET bottles and foils

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Deilmann, Michael; Bibinov, Nikita; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) offer various advantages over glass or metal containers. Beside this they only offer poor barrier properties against gas permeation. Therefore, the shelf-live of packaged food is reduced. Additionally, common sterilization methods like heat, hydrogen peroxide or peracetic acid may not be applicable due to reduced heat or chemical resistance of the plastic packaging material. For the plasma sterilization and permeation barrier coating of PET bottles and foils, a microwave driven low pressure plasma reactor is developed based on a modified Plasmaline antenna. The dependencies of important plasma parameters, such as gas mixture, process pressure, power and pulse conditions on oxygen permeation through packaging foil are investigated. A residual permeation as low as J = 1.0 ±0.3 cm^3m-2day-1bar-1 for 60 nm thick silicon oxide (SiOx) coated PET foils is achieved. To discuss this residual permeation, coating defects are visualized by capacitively coupled atomic oxygen plasma etching of coated substrate. A defect density of 3000 mm-2 is revealed responsible for permeation. For plasma sterilization, optimized plasma parameters based on fundamental research of plasma sterilization mechanisms permit short treatment times of a few seconds.

  4. Effect of ozone on sterilization of Penicillium digitatum using non-equilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Ohta, Takayuki; Iseki, Sachiko; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2008-10-01

    Methyl bromide has been sprayed to the crops for protecting from insects and virus, but has high ozone depletion potential. Thus, the development of substitute-technology has been strongly required. We have investigated a plasma sterilization for spores of Penicillium digitatum, which causes green mold disease of the crops, using non-equilibrium atmospheric pressure plasma. The sterilization was caused by UV light, ozone, O and OH radicals. In this study, ozone density was measured and the effect to sterilization was discussed. The plasma was generated at an alternative current of 6kV and Ar gas flow rate of 3L/min. In order to investigate the sterilization mechanism of ozone, the absolute density of ozone was measured using ultraviolet absorption spectroscopy and was from 2 to 8 ppm. The sterilization by this plasma was larger than that by the ozonizer (03:600ppm). It is confirmed that the effect of ozone to the sterilization of Penicillium digitatum would be small.

  5. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    NASA Technical Reports Server (NTRS)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  6. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-01

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  7. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    SciTech Connect

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-25

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  8. Rapid Sterilization of Escherichia coli by Solution Plasma Process

    NASA Astrophysics Data System (ADS)

    Andreeva, Nina; Ishizaki, Takahiro; Baroch, Pavel; Saito, Nagahiro

    2012-12-01

    Solution plasma (SP), which is a discharge in the liquid phase, has the potential for rapid sterilization of water without chemical agents. The discharge showed a strong sterilization performance against Escherichia coli bacteria. The decimal value (D value) of the reduction time for E. coli by this system with an electrode distance of 1.0 mm was estimated to be approximately 1.0 min. Our discharge system in the liquid phase caused no physical damage to the E. coli and only a small increase in the temperature of the aqueous solution. The UV light generated by the discharge was an important factor in the sterilization of E. coli.

  9. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  10. A Compact Plasma Flow-Bubbler for Decomposition of Organic compounds and Sterilization

    NASA Astrophysics Data System (ADS)

    Yoshiki, Hiroyuki; Ishikawa, Fukuto; Igarashi, Yu; Sugawara, Tetuya

    2015-09-01

    Recently, Plasma production in and in contact with liquid has attracted much attention because of their applications to degradation of organic compounds, sterilization, water purification. UV, electron, ion and radical flows originated from a plasma and also shock wave induce physical and chemical reaction in a liquid, for example oxidation-reduction, electrolysis and reactive species production in a water. In particular, various reactive oxygen/nitrogen species generated at the plasma-liquid interface play an important role in oxidation and degradation of organic pollutants and bacteria. We have proposed the mild water treatment by ejecting the atmospheric-pressure μ plasma (AP μP) flow into a water using a microbubble aerator or a porous ceramics bubbler. In this study, a compact plasma flow-bubbler made up of a μplasma source and a porous ceramics has been developed for the applications of water purification and sterilization. AP μP is generated between a thin metal pipe electrode and a GND plate by a pulsed high voltage, so that the O2 μ plasma can be obtained without adding He and Ar gases. Plasma flow is ejected into the water through a porous ceramics. Decolorization of an indigo carmine solution strongly depended on O2 flow rate. Chemical probe method using terephthalic acid revealed that OH radicals are produced by the O2 plasma gas bubbling. The inactivation for E. coli, Bacillus subtilis was attained by the O2 plasma gas bubbling.

  11. Lipid extracted freeze-dried bank bone sterilized with low temperature plasma.

    PubMed

    Shimizu, K; Yano, H; Nakamura, E; Kaku, N

    2001-01-01

    Ethylene oxide gas (EOG) is widely used for sterilization of freeze-dried bone. Recently EOG is regulated for clinical use because of cytotoxicity and environmental pollution concerns. Low Temperature Plasma Sterilization (LTPS) has no toxicity and mutagenicity working with a hydrogen peroxide gas plasma at 45 degrees centigrade. We have now used this method experimentally and clinically to sterilize freeze-dried bone. Cortical bone with a thickness of 5 mm and cancellous bone with a 10 mm cubic size were prepared, washed, defatted, dehydrated by freeze drying and finally sterilized by LTPS. As a Microbiological test, defatted freeze-dried bone was contaminated with B. subtilis, and after then the contaminated bone was treated with LTPS and the bacteria was proven inactive. Mechanical testing on rabbit cortical bone was investigated by compression testing using a mechanical testing machine. No differences between EOG treated and LTPS treated bone were found. From December 1996, 52 patients who had small and middle bone defects were treated with defatted, freeze-dried and LTPS sterilized bone. Clinical result was good. No deep infections, no transmission of virus infections or severe graft absorption were noted. The LTPS bank bone is safe and useful to reconstruction to small bone defects.

  12. A Novel Sterilization Method Using Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Xi-lu; Akira, Mizuno; Shijin, Katsura

    1998-01-01

    Pulsed discharge plasma(PDP) has been used to kill bacteria and the curves of the survival rate of bacteria against treatment time are obtained. Irreversible structural change in the cell membrane is caused by PDP and the cell is thus killed. The sterilization mechanism is analyzed.

  13. [Sterilizing effect of atmospheric pressure plasma jet on microbes].

    PubMed

    Wu, Xu-Qin; Wang, Shou-guo; Han, Li; Zhao, Ling-li; Chang, Xiao; Chen, Geng; Suo, Ji-jiang; Xing, Yu-bin; Chen, Shi-ping

    2005-04-01

    To study the sterilizing effect and mechanism of APPJ on microbes preliminarily, three representative bacteria, Staphylococcus aureus, Escherichia coli, Bacillus subtilis var. niger were treated by two kinds of plasma, DBD (dielectric barrier discharge) and APPJ. The survival curves of different microbes were compared and analyzed; Furthermore, the morphological change to cell walls and cell membranes were studied by scanning electric microscope. These results demonstrated that in the beginning phase the sterilizing effect of two kinds of plasmas on three microorganisms was stronger than in the later phase, and APPJ was more effective than DBD (D value of DBD on Bacillus subtilis var. niger was 70 s, whereas APPJ's was 4 s, much more efficient). Meanwhile, the gross morphological damage of E. coli cells under SEM after APPJ treatment was observed. These gave the obvious evidence that APPJ can destroy the microbes very efficiently, and more likely through the damage of cell walls and membranes of microbes treated by APPJ.

  14. Sterilization.

    PubMed

    Peterson, Herbert B

    2008-01-01

    Worldwide, sterilization (tubal sterilization and vasectomy) is used by more people than any other method of contraception. All techniques of tubal sterilization in widespread use in the United States have low risks of surgical complications. Although tubal sterilization is highly effective, the risk of pregnancy varies by age and method of occlusion. Pregnancies can occur many years after the procedure, and when they do, the risk of ectopic gestation is high. There is now strong evidence against the existence of a post-tubal ligation syndrome of menstrual abnormalities. Although women who have undergone tubal sterilization are more likely than other women to undergo hysterectomy subsequently, there is no known biologic basis for this relationship. Although sterilization is intended to be permanent, expressions of regret and requests for reversal are not uncommon and are much more likely to occur among women sterilized at young ages. Tubal sterilization has little or no effect on sexual function for most women. Vasectomy is less likely than tubal sterilization to result in serious complications. Minor complications, however, are not uncommon. Vasectomy does not increase the risk of heart disease, and available evidence argues against an increase in the risk of prostate cancer, testicular cancer, or overall mortality. Whether a postvasectomy pain syndrome exists remains controversial. Although the long-term effectiveness of vasectomy is less well-studied than that for tubal sterilization, it seems likely to be at least as effective. Intrauterine devices and progestin implants are long-acting, highly effective alternatives to sterilization.

  15. Long-distance oxygen plasma sterilization: Effects and mechanisms

    NASA Astrophysics Data System (ADS)

    Liu, Hongxia; Chen, Jierong; Yang, Liqing; Zhou, Yuan

    2008-01-01

    The distribution of electrons, ions and oxygen radicals in long-distance oxygen plasma and the germicidal effect (GE) of Escherichia coli on the surface of medical poly(tetrafluoroethylene) (PTFE) film were studied. The quantity of protein leakage and the production of lipid peroxide in bacterial suspension as well as the state of DNA were measured after sterilization to analyse the inactivation mechanisms. The results showed that the concentration of electrons and ions decreased rapidly with increasing the distance from the center of induction coil, which approximated to 0 at 30 cm, whereas the concentration of oxygen radicals reduced slowly, i.e. decreased 30% within 40 cm. GE value reached 3.42 in the active discharge zone (0 cm) and exceeded 3.32 within 40 cm when plasma treatment parameters were set as follows: plasma rf power at 100 W, treatment time at 60 s and oxygen flux at 40 cm 3/min. Fast etching action on cell membrane by electrons, ions and attacking polyunsaturation fatty acid (PUFA) in cell membrane by oxygen radicals are primary reasons of oxygen plasma sterilization in the active discharge and the afterglow zone, respectively. The GE of UV radiation in long-distance oxygen plasma is feebleness.

  16. Plasma-based ion implantation sterilization technique and ion energy estimation

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Watanabe, S.; Shibahara, K.; Yokoyama, S.; Takagi, T.

    2005-07-01

    Plasma-based ion implantation (PBII) is applied as a sterilization technique for three-dimensional work pieces. In the sterilization process, a pulsed negative high voltage (5 μs pulse width, 300 pulses/s,-800 V to -13 kV) is applied to the electrode (workpiece) under N2 at a gas pressure of 2.4 Pa. The resultant self-ignited plasma is shown to successfully reduce the number of active Bacillus pumilus cells by 105 times after 5 min of processing. The nitrogen ion energy is estimated using a simple method based on secondary ion mass spectroscopy analysis of the vertical distribution of nitrogen in PBII-treated Si.

  17. Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.

    PubMed

    Mastanaiah, Navya; Johnson, Judith A; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥ 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥ 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4) and 20 °C-49 °C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves.

  18. Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma

    PubMed Central

    Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  19. The role of chemical sputtering during plasma sterilization of Bacillus atrophaeus

    NASA Astrophysics Data System (ADS)

    Opretzka, J.; Benedikt, J.; Awakowicz, P.; Wunderlich, J.; von Keudell, A.

    2007-05-01

    The inactivation of bacteria by plasma discharges offers the unique benefits of short treatment times, minimal damage to the objects being sterilized and minimal use of hazardous chemicals. Plasmas produce reactive fluxes of ions, atoms and UV photons from any given precursor gas and are expected to be a viable method for such sterilization applications. The plasma based inactivation of harmful biological systems is, however, not yet widely used, because any validation is hampered by the limited knowledge about the interaction mechanisms at the interface between a plasma and a biological system. By using quantified beams of hydrogen atoms, argon ions and UV photons, the treatment of bacteria in a typical argon-hydrogen plasma is mimicked in a very controlled manner. As an example the inactivation of endospores of Bacillus atrophaeus is studied. It is shown that the impact of H atoms alone causes no inactivation of bacteria. Instead, the simultaneous impact of atoms and low energy ions causes a perforation of the endosporic shell. The same process occurs during plasma treatment and explains the efficient inactivation of bacteria.

  20. Sterilization.

    PubMed

    Rioux, M H

    1979-05-01

    The history of sterilization in North America has included enactment of laws in 37 U. S. states and 2 Canadian provinces allowing the procedure to be performed to eliminate undesirable, genetically-transmitted traits. These eugenic laws applied to any of the following categories of persons: mentally regarded, mentally ill, epileptic, criminal, alcoholic, or poor people. Pressure from geneticists, lawyers, and others concerned with the implications of such laws, led to their repeal in many places. Noneugenic and nontherapeutic sterilization is today a recognized medical practice. Legally, such procedures must meet the following criteria: 1) informed consent; 2) individual benefit; and 3) performance with reasonable care and skill. If these criteria are met, doctors are protected from legal liability. The most legal, social, and ethical ambiguities arise in cases where nontherapeutic sterilization is performed on individuals unable to give consent, e.g., minors or mentally handicapped persons.

  1. Evaluation of Penicillium digitatum sterilization using non-equilibrium atmospheric pressure plasma by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Hiraoka, Takehiro; Ebizuka, Noboru; Takeda, Keigo; Ohta, Takayuki; Kondo, Hiroki; Ishikawa, Kenji; Kawase, Kodo; Ito, Masafumi; Sekine, Makoto; Hori, Masaru

    2011-10-01

    Recently, the plasma sterilization has attracted much attention as a new sterilization technique that takes the place of spraying agricultural chemicals. The conventional methods for sterilization evaluation, was demanded to culture the samples for several days after plasma treatment. Then, we focused on Terahertz time-domain spectroscopy (THz-TDS). At the THz region, vibrational modes of biological molecules and fingerprint spectra of biologically-relevant molecules were also observed. In this study, our purpose was measurement of the fingerprint spectrum of the Penicillium digitatum (PD) spore and establishment of sterilization method by THz-TDS. The sample was 40mg/ml PD spore suspensions which dropped on cover glass. The atmospheric pressure plasma generated under the conditions which Ar gas flow was 3slm, and alternating voltage of 6kV was applied. The samples were exposed the plasma from 10mm distance for 10 minutes. We could obtain the fingerprint spectrum of the PD spore from 0.5 to 0.9THz. This result indicated the possibility of in-situ evaluation for PD sterilization using THz-TDS.

  2. Estimation of Nitrogen Ion Energy in Sterilization Technology by Plasma Based Ion Implantation

    NASA Astrophysics Data System (ADS)

    Kondou, Youhei; Nakashima, Takeru; Tanaka, Takeshi; Takagi, Toshinori; Watanabe, Satoshi; Ohkura, Kensaku; Shibahara, Kentaro; Yokoyama, Shin

    Plasma based ion implantation (PBII) with negative voltage pulses to the test specimen has been applied to the sterilization process as a technique suitable for three-dimensional work pieces. Pulsed high negative voltage (5 μs pulse width, 300 pulses/s, -800 V to -15 kV) was applied to the electrode in this process at a gas pressure of 2.4 Pa of N2. We found that the PBII process, in which N2 gas self-ignitted plasma generated by only pulsed voltages is used, reduces the number of active Bacillus pumilus cell. The number of bacteria survivors was reduced by 10-5 x with 5 min exposure. Since the ion energy is the most important processing parameter, a simple method to estimate the nitrogen ion energy from distribution of nitrogen atoms in Si implanted by PBII was developed. The implanted ion energy is discussed from the SIMS in depth profiles.

  3. Chlorine Dioxide Gas Sterilization under Square-Wave Conditions

    PubMed Central

    Jeng, David K.; Woodworth, Archie G.

    1990-01-01

    Experiments were designed to study chlorine dioxide (CD) gas sterilization under square-wave conditions. By using controlled humidity, gas concentration, and temperature at atmospheric pressure, standard biological indicators (BIs) and spore disks of environmental isolates were exposed to CD gas. The sporicidal activity of CD gas was found to be concentration dependent. Prehumidification enhanced the CD activity. The D values (time required for 90% inactivation) of Bacillus subtilis subsp. niger ATCC 9372 BIs were estimated to be 1.5, 2.5, and 4.2 min when exposed to CD concentrations of 30, 15, and 7 mg/liter, respectively, at 23°C and ambient (20 to 40%) relative humidity (RH). Survivor tailings were observed. Prehumidification of BIs to 70 to 75% RH in an environmental chamber for 30 min resulted in a D value of 1.6 min after exposure to a concentration of 6 to 7 mg of CD per liter at 23°C and eliminated survivor tailing. Prolonging prehumidification at 70 to 75% RH for up to 16 h did not further improve the inactivation rate. Prehumidification by ultrasonic nebulization was found to be more effective than prehumidification in the environmental chamber, improving the D value to 0.55 min at a CD concentration of 6 to 7 mg/liter. Based on the current observations, CD gas is estimated, on a molar concentration basis, to be 1,075 times more potent than ethylene oxide as a sterilant at 30°C. A comparative study showed B. subtilis var. niger BIs were more resistant than other types of BIs and most of the tested bacterial spores of environmental isolates. PMID:16348127

  4. Power Efficient Plasma Technique for Rapid Water Sterilization

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2015-11-01

    Water especially good quality drinking water is a dwindling resource for significant segments of the world population. The BBC quoted this article (http://www.ft.com/cms/s/2/8e42bdc8-0838-11e4-9afc-00144feab7de.html) for a claim that water shortage is a bigger problem than climate change. One option for increasing the water supply is to recycle waste and polluted water by inexpensive, environmentally friendly methods. First steps involve filtrations while the last step is water disinfection. Presently disinfection is done chemically and/or UV radiation. Some chemicals cannot be used in large quantity due to residual toxicity, while UV disinfection systems consume a great deal electricity. Plasmas in water are very attractive for water sterilization due to UV radiation, ozone, etc. generation inside the water volume. Commercially available devices like NK-03 Blue Ballast System are used aboard ships for water purification. But, presently utilized plasmas: glow, pulsed arcs are not power efficient. Vortex stabilized plasmas, which are power efficient, can even degrade medications (antibiotics) advancing the state-of-the-art by orders of magnitude, especially when combined with electron beams. Disinfection scheme will be presented. Work supported by Contract No. DE-AC02-98CH1-886 with the US DOE.

  5. Inactivation of microorganisms and endotoxins by low temperature nitrogen gas plasma exposure.

    PubMed

    Shintani, Hideharu; Shimizu, Naohiro; Imanishi, Yuichiro; Sekiya, Takayuki; Tamazawa, Kahoru; Taniguchi, Akira; Kido, Nobuo

    2007-12-01

    The plasma of several different gases has shown a sporicidal activity. From these gases, nitrogen gas was most difficult to produce atomic nitrogen radicals. However, these radicals have a high energy, indicating that nitrogen gas plasma could be used to sterilize microorganisms and inactivate endotoxins. The sterilization mechanism of nitrogen gas plasma is the synergistic effect of a high rising-up voltage pulse, UV irradiation and atomic nitrogen radicals. Thus, the target cells were damaged by degradation, which resulted in death. The biological indicator (BI) used in this study was Geobacillus stearothermophilus ATCC 7953 at a population of 1 x 10(6) CFU/sheet. Sterility assurance was confirmed by using the BI. Moreover, endotoxins were successfully inactivated. More than 5 log reduction of endotoxins could be attained with 30 minutes of nitrogen gas plasma exposure. Material functionality influenced by nitrogen gas plasma presented a satisfactory result. No deterioration of polymers could be observed by nitrogen gas plasma exposure.

  6. The Effect of Air Plasma on Sterilization of Escherichia coli in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Hu, Miao; Guo, Yun

    2012-08-01

    In this work, a Dielectric Barrier Discharge (DBD) air plasma was used to sterilize Escherichia coli (E. coli) on the surface of medical Polyethylene Terephthalate (PET) film. The leakage of cellular DNA and protein by optical absorbance measurement at 260 nm and 280 nm, together with transmission electron microscopy (TEM) about cell morphology were performed after sterilization to analyse inactivation mechanisms. The results indicated that the DBD air plasma was very effective in E. coli sterilization. The plasma germicidal efficiency depended on the plasma treatment time, the air-gap distance, and the applied voltage. Within 5 min of plasma treatment, the germicidal efficiency against E. coli could reach 99.99%. An etching action on cell membranes by electrons, ions and radicals is the primary mechanism for DBD air plasma sterilization, which leads to the effusion of cellular contents (DNA and protein) and bacterial death.

  7. Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohu; Hong, Feng; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-05-01

    An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 106 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N2+ and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria.

  8. Sterilization characteristics of dental instruments using oxygen plasma produced by narrow gap RF discharge

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuhiro; Liu, Zhen; Goto, Masaaki; Hayashi, Nobuya

    2016-07-01

    Sterilization characteristics and material compatibility of low-pressure RF oxygen plasma sterilization method for dental instruments are investigated. Regarding the characteristics of the plasma sterilizer for dental instruments, it is small and can rapidly sterilize owing to a narrow gap discharge. Sterilization of vial-type biological indicators is achieved for the shortest treatment period of 40 min at an RF power of 80 W at a temperature of 70 °C. At a temperature lower than 60 °C, a sterilization period of 90 min is required using a water-cooled electrode. No surface modifications of dental instruments such as chemical composition and deterioration of fine crystals of a diamond bar were observed under a scanning electron microscope.

  9. Application of a Dense Gas Technique for Sterilizing Soft Biomaterials

    PubMed Central

    Karajanagi, Sandeep S.; Yoganathan, Roshan; Mammucari, Raffaella; Park, Hyoungshin; Cox, Julian; Zeitels, Steven M.; Langer, Robert; Foster, Neil R.

    2017-01-01

    Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility assurance levels (SAL), may compromise their physicochemical properties and biocompatibility. New methods that effectively sterilize soft biomaterials without compromising their properties are therefore required. In this report, a dense-carbon dioxide (CO2)-based technique was used to sterilize soft polyethylene glycol (PEG)-based hydrogels while retaining their structure and physicochemical properties. Conventional sterilization methods such as gamma irradiation and steam sterilization severely compromised the structure of the hydrogels. PEG hydrogels with high water content and low elastic shear modulus (a measure of stiffness) were deliberately inoculated with bacteria and spores and then subjected to dense CO2. The dense CO2-based methods effectively sterilized the hydrogels achieving a SAL of 10−7 without compromising the viscoelastic properties, pH, water-content, and structure of the gels. Furthermore, dense CO2-treated gels were biocompatible and non-toxic when implanted subcutaneously in ferrets. The application of novel dense CO2-based methods to sterilize soft biomaterials has implications in developing safe sterilization methods for soft biomedical implants such as dermal fillers and viscosupplements. PMID:21337339

  10. Destruction of Bacterial Biofilms Using Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Abramzon, Nina

    2005-03-01

    Biofilms are bacterial communities embedded in an exopolysaccharidic matrix with a complex architectural structure. Bacteria in biofilms show different properties from those in free life thus, conventional methods of killing bacteria are often ineffective with biofilms. The use of plasmas potentially offers an alternative to conventional sterilization methods since plasmas contain a mixture of charged particles, chemically reactive species, and UV radiation. 4 and 7 day-old biofilms were produced using two bacterial species: Rhizobium gallicum and Chromobacterium violaceum. Gas discharge plasma was produced by using an AtomfloTM reactor (Surfx Technologies) and bacterial biofilms were exposed to it for different periods of time. Our results show that a 10-minute plasma treatment was able to kill 100% of the cells in most cases. Optical emission spectroscopy was used to study plasma composition which is then correlated with the effectiveness of killing. These results indicate the potentiality of plasma as an alternative sterilization method. Supported by CSuperb.

  11. Effects of Environmental Humidity and Temperature on Sterilization Efficiency of Dielectric Barrier Discharge Plasmas in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yusuke; Miyamae, Masanori; Nagata, Masayoshi; Fukumoto, Naoyuki

    2011-01-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma in atmospheric humid air was investigated in order to develop a low-temperature, low-cost, and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of B. atrophaeus spores was found to be dependent strongly on humidity, and was completed within 15 min at a relative humidity of 90% and a temperature of 30 °C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. The inactivation rates depend on not only relative humidity but also temperature, so that water content in air could determine the generation of reactive species such as hydroxyl radicals that are effective for the inactivation of B. atrophaeus spores.

  12. Inductively-Coupled RF Powered O2 Plasma as a Sterilization Source

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Mogul, R.; Khare, B.; Chan, S. L.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Low-temperature or cold plasmas have been shown to be effective for the sterilization of sensitive medical devices and electronic equipment. Low-temperature plasma sterilization procedures possess certain advantages over other protocols such as ethylene oxide, gamma radiation, and heat due to the use of inexpensive reagents, the insignificant environmental impacts and the low energy requirements. In addition, plasmas may also be more efficacious in the removal of robust microorganisms due to their higher chemical reactivity. Together, these attributes render cold plasma sterilization as ideal for the surface decontamination requirements for NASA Planetary Protection. Hence, the work described in this study involves the construction, characterization, and application of an inductively-coupled, RF powered oxygen (O2) plasma.

  13. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments

    PubMed Central

    Sung, Su-Jin; Huh, Jung-Bo; Yun, Mi-Jung; Chang, Brian Myung W.; Jeong, Chang-Mo

    2013-01-01

    PURPOSE Autoclaves and UV sterilizers have been commonly used to prevent cross-infections between dental patients and dental instruments or materials contaminated by saliva and blood. To develop a dental sterilizer which can sterilize most materials, such as metals, rubbers, and plastics, the sterilization effect of an atmospheric pressure non-thermal air plasma device was evaluated. MATERIALS AND METHODS After inoculating E. coli and B. subtilis the diamond burs and polyvinyl siloxane materials were sterilized by exposing them to the plasma for different lengths of time (30, 60, 90, 120, 180 and, 240 seconds). The diamond burs and polyvinyl siloxane materials were immersed in PBS solutions, cultured on agar plates and quantified by counting the colony forming units. The data were analyzed using one-way ANOVA and significance was assessed by the LSD post hoc test (α=0.05). RESULTS The device was effective in killing E. coli contained in the plasma device compared with the UV sterilizer. The atmospheric pressure non-thermal air plasma device contributed greatly to the sterilization of diamond burs and polyvinyl siloxane materials inoculated with E. coli and B. subtilis. Diamond burs and polyvinyl siloxane materials inoculated with E. coli was effective after 60 and 90 seconds. The diamond burs and polyvinyl siloxane materials inoculated with B. subtilis was effective after 120 and 180 seconds. CONCLUSION The atmospheric pressure non-thermal air plasma device was effective in killing both E. coli and B. subtilis, and was more effective in killing E. coli than the UV sterilizer. PMID:23508991

  14. Confirmation of the sterilization effect using a high concentration of ozone gas for the bio-clean room.

    PubMed

    Iwamura, Takuji; Nagano, Katsunori; Nogami, Toshihiro; Matsuki, Noritomo; Kosaka, Noriyoshi; Shintani, Hideharu; Katoh, Miyoshi

    2013-01-01

    A high-level aseptic environment must be maintained in bio-cleanrooms used for the manufacture of sterile products. In the past, formaldehyde gas was most commonly used to sterilize bio-cleanrooms, but due to strict residual limitations there has been a need to develop a less toxic alternative choice. The authors have developed a revolutionary new sterilization system using a high concentration of ozone gas and used this system to sterilize an actual bio-cleanroom. This system integrates the ozone gas generator with the air conditioning system by proper control. The design specifications for the system included an ozone gas concentration of 200 ppm or more, relative humidity of 80% or more, and a sterilizing time of 120 min. Blow vents and suction ports were placed to ensure a uniform airflow which would extend through the entire room during ozone gas sterilization. Tests regarding long-term material exposure to ozone gas were conducted when the system was introduced to distinguish usable and unusable materials. In an actually constructed cleanroom, simulations were used to predict the evenness of the diffusion of ozone gas concentration and relative humidity during ozone gas sterilization, and measurements of the actual indoor ozone gas concentration, temperature and relative humidity during sterilization revealed that the ozone concentration and relative humidity needed for sterilization had been achieved generally throughout the entire environment. In addition, the CT value (mg/m(3) (=ppm) × min) , derived by multiplying the ozone gas concentration during ozone gas sterilization by the sterilization time, was equal to or greater than the target value of 24 × 10(3) (ppm·min) . When the results of sterilization in a cleanroom were confirmed using a biological indicator (BI) , negative results were obtained at all measurement points, demonstrating that sterilization was being performed effectively in the actual factory at which the ozone gas sterilization system

  15. Battling Bacterial Biofilms with Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Zelaya, Anna; Vandervoort, Kurt; Brelles-Mariño, Graciela

    Most studies dealing with growth and physiology of bacteria have been carried out using free-living cells. However, most bacteria live in communities referred to as biofilms where cooperative interactions among their members make conventional methods of controlling microbial growth often ineffective. The use of gas discharge plasmas represents an alternative to traditional decontamination/sterilization methods. We studied biofilms using two organisms, Chromobacterium violaceum and Pseudomonas aeruginosa. With the first organism we demonstrated almost complete loss of cell culturability after a 5-min plasma treatment. However, additional determinations showed that non-culturable cells were still alive after short exposure times. We have recently reported the effect of plasma on P. aeruginosa biofilms grown on borosilicate coupons. In this paper, we present results for plasma treatments of 1-, 3-, and 7-day old P. aeruginosa biofilms grown on polycarbonate or stainless-steel coupons. Results indicate nearly 100% of ­biofilm inactivation after 5 min of exposure with similar inactivation kinetics for 1-, 3-, and 7-day-old biofilms, and for both materials used. The inactivation kinetics is similar for both organisms, suggesting that the method is useful regardless of the type of biofilm. AFM images show changes in biofilm structure for various plasma exposure times.

  16. Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds

    PubMed Central

    de Jesus Andreoli Pinto, Terezinha; Bou-Chacra, Nadia Araci; Galante, Raquel; de Araújo, Gabriel Lima Barros; do Nascimento Pedrosa, Tatiana; Maria-Engler, Silvya Stuchi

    2016-01-01

    The use of electrospun nanofibers for tissue engineering and regenerative medicine applications is a growing trend as they provide improved support for cell proliferation and survival due, in part, to their morphology mimicking that of the extracellular matrix. Sterilization is a critical step in the fabrication process of implantable biomaterial scaffolds for clinical use, but many of the existing methods used to date can negatively affect scaffold properties and performance. Poly(lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer for 3D scaffolds and can be significantly affected by current sterilization techniques. The aim of this study was to investigate pulsed ozone gas as an alternative method for sterilizing PLGA nanofibers. The morphology, mechanical properties, physicochemical properties, and response of cells to PLGA nanofiber scaffolds were assessed following different degrees of ozone gas sterilization. This treatment killed Geobacillus stearothermophilus spores, the most common biological indicator used for validation of sterilization processes. In addition, the method preserved all of the characteristics of nonsterilized PLGA nanofibers at all degrees of sterilization tested. These findings suggest that ozone gas can be applied as an alternative method for sterilizing electrospun PLGA nanofiber scaffolds without detrimental effects. PMID:26757850

  17. Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds.

    PubMed

    Rediguieri, Carolina Fracalossi; Pinto, Terezinha de Jesus Andreoli; Bou-Chacra, Nadia Araci; Galante, Raquel; de Araújo, Gabriel Lima Barros; Pedrosa, Tatiana do Nascimento; Maria-Engler, Silvya Stuchi; De Bank, Paul A

    2016-04-01

    The use of electrospun nanofibers for tissue engineering and regenerative medicine applications is a growing trend as they provide improved support for cell proliferation and survival due, in part, to their morphology mimicking that of the extracellular matrix. Sterilization is a critical step in the fabrication process of implantable biomaterial scaffolds for clinical use, but many of the existing methods used to date can negatively affect scaffold properties and performance. Poly(lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer for 3D scaffolds and can be significantly affected by current sterilization techniques. The aim of this study was to investigate pulsed ozone gas as an alternative method for sterilizing PLGA nanofibers. The morphology, mechanical properties, physicochemical properties, and response of cells to PLGA nanofiber scaffolds were assessed following different degrees of ozone gas sterilization. This treatment killed Geobacillus stearothermophilus spores, the most common biological indicator used for validation of sterilization processes. In addition, the method preserved all of the characteristics of nonsterilized PLGA nanofibers at all degrees of sterilization tested. These findings suggest that ozone gas can be applied as an alternative method for sterilizing electrospun PLGA nanofiber scaffolds without detrimental effects.

  18. Sterilization mechanism for Escherichia coli by plasma flow at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sato, Takehiko; Miyahara, Takashi; Doi, Akiko; Ochiai, Shiroh; Urayama, Takuya; Nakatani, Tatsuyuki

    2006-08-01

    A mechanism for sterilizing Escherichia coli by a flowing postdischarge and UV radiation of argon plasma at atmospheric pressure was investigated by analyzing the surviving cells and the potassium leakage of cytoplasmic material and by morphological observation. Inactivation of E. coli results from the destruction of the cytoplasmic membrane and the outer membrane under plasma exposure and the destruction of nucleic acids by exposure to ultraviolet radiation from the plasma source.

  19. Sterilization mechanism for Escherichia coli by plasma flow at atmospheric pressure

    SciTech Connect

    Sato, Takehiko; Miyahara, Takashi; Doi, Akiko; Ochiai, Shiroh; Urayama, Takuya; Nakatani, Tatsuyuki

    2006-08-14

    A mechanism for sterilizing Escherichia coli by a flowing postdischarge and UV radiation of argon plasma at atmospheric pressure was investigated by analyzing the surviving cells and the potassium leakage of cytoplasmic material and by morphological observation. Inactivation of E. coli results from the destruction of the cytoplasmic membrane and the outer membrane under plasma exposure and the destruction of nucleic acids by exposure to ultraviolet radiation from the plasma source.

  20. Analysis of Sterilization Effect of Atmospheric Pressure Pulsed Plasma

    SciTech Connect

    Ekem, N.; Akan, T.; Pat, S.; Akgun, Y.; Kiremitci, A.; Musa, G.

    2007-04-23

    We have developed a new technology, the High Voltage Atmospheric Pressure Pulsed Plasma (HVAPPP), for bacteria killing. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria.

  1. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores

    NASA Astrophysics Data System (ADS)

    Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe

    2007-09-01

    A nonequilibrium Ar /O2 plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar /O2 plasma jet at an exposure distance of 0.5-1.5cm ranges from 5 to 57s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.

  2. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores

    SciTech Connect

    Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe

    2007-09-15

    A nonequilibrium Ar/O{sub 2} plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56 MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar/O{sub 2} plasma jet at an exposure distance of 0.5-1.5 cm ranges from 5 to 57 s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.

  3. Sterilization of Materials with a One Atmosphere Uniform Glow Discharge Plasma.*

    NASA Astrophysics Data System (ADS)

    Ku, Yongmin; Brickman, C.; Tosh, K.; Kelly-Wintenberg, K.; Montie, T. C.; Tsai, P.; Wadsworth, L.; Roth, J. Reece

    1996-11-01

    The relatively recent development of the One Atmosphere Uniform Glow Discharge Plasma sterilization technique at the UTK Plasma Science Laboratory has produced initial results which indicate that the technique may have commercial potential. We have shown that active species in a OAUGDP can be applied to the sterilization of fabrics, films, solid materials, and microbiological culture media. With a OAUGDP, we can eliminate the vacuum system which enforces batch processing and requires a continuous input of electrical power. With a OAUGDP, the exposure time is as little as 15 seconds. Sterilization of microorganisms with a kill ratio of 10E6 or higher, can be achieved with minimal unwanted byproducts and at less expense, compared to such conventional sterilization methods as autoclaving, ethylene oxide, or low pressure plasma treatment. This paper discusses the sterilization mechanisms of this new technique, and compares its advantages and disadvantages with other widely used techniques. ^1 Department of Microbiology, UTK ^2 UTK Textiles and Nonwovens Development Center (TANDEC) Research supported in part by the UTK Textiles and Nonwovens Development Center and UTK Center for Materials Processing.

  4. Application of bipolar gas discharge for water sterilization from S.aureus and E-coli

    NASA Astrophysics Data System (ADS)

    Taran, Anatoliy; Okhrimovskyy, Andriy; Komozynskyi, Petro; Kyslytsyn, Oleksandr; Taran, Svitlana; Filimonova, Nataliya; Lesnoy, Viktor; Oranska, Daria

    2016-09-01

    Recently, water treatment by gas discharge above the surface of the liquid has attracted a lot of attention. In most cases, however, the unipolar power source is used. Bipolar pulses of high voltage and current can increases degree of water sterilization from organic compounds, both chemical and bacterial since non equilibrium atmospheric plasma contains not only electrons but also positive and negative ions as well as an excited molecules or atoms and active radicals. Heavy charged particles of both signs, accelerated by bipolar electric field, can easily destroy chemical and biological contaminants in water. To evaluate this phenomenon, high voltage bipolar pulse generator was used. The amplitude of the pulse voltage was approaching value of 200 kV at the discharge ignition. The repetition time was varied from 1 to 14 milliseconds. Current pulse had a shape of a superposition of bipolar pulses with decaying amplitude. Liquid surface was used as a cathode or anode.Two types of contaminants, S.aureus and E.coli, with was 1 . 5 ×108 CFU/mL were treated by bipolar high voltage pulse discharge. After 30 minutes of exposition, no contaminants were observed within the water.

  5. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    NASA Astrophysics Data System (ADS)

    Gans, T.; Osiac, M.; O'Connell, D.; Kadetov, V. A.; Czarnetzki, U.; Schwarz-Selinger, T.; Halfmann, H.; Awakowicz, P.

    2005-05-01

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

  6. Impact of Chlorine Dioxide Gas Sterilization on Nosocomial Organism Viability in a Hospital Room

    PubMed Central

    Lowe, John J.; Gibbs, Shawn G.; Iwen, Peter C.; Smith, Philip W.; Hewlett, Angela L.

    2013-01-01

    To evaluate the ability of ClO2 to decontaminate pathogens known to cause healthcare-associated infections in a hospital room strains of Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Mycobacterium smegmatis, and Staphylococcus aureus were spot placed in duplicate pairs at 10 sites throughout a hospital room and then exposed to ClO2 gas. Organisms were collected and evaluated for reduction in colony forming units following gas exposure. Six sterilization cycles with varied gas concentrations, exposure limits, and relative humidity levels were conducted. Reductions in viable organisms achieved ranged from 7 to 10-log reductions. Two sterilization cycles failed to produce complete inactivation of organisms placed in a bathroom with the door closed. Reductions of organisms in the bathroom ranged from 6-log to 10-log reductions. Gas leakage between hospital floors did not occur; however, some minor gas leakage from the door of hospital room was measured which was subsequently sealed to prevent further leakage. Novel technologies for disinfection of hospital rooms require validation and safety testing in clinical environments. Gaseous ClO2 is effective for sterilizing environmental contamination in a hospital room. Concentrations of ClO2 up to 385 ppm were safely maintained in a hospital room with enhanced environmental controls. PMID:23792697

  7. Sterilization of Fungus in Water by Pulsed Power Gas Discharge Reactor Spraying Water Droplets for Water Treatment

    NASA Astrophysics Data System (ADS)

    Saito, Tsukasa; Handa, Taiki; Minamitani, Yasushi

    We study sterilization of bacteria in water using pulsed streamer discharge of gas phase. This method enhances efficiency of water treatment by spraying pretreatment water in a streamer discharge area. In this paper, yeast was sterilized because we assumed a case that fungus like mold existed in wastewater. As a result, colony forming units decreased rapidly for 2 minutes of the processing time, and all yeast sterilized by 45 minutes of the processing time.

  8. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest.

    PubMed

    Klämpfl, Tobias G; Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E; Schmidt, Hans-Ulrich

    2012-08-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log(10) CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D(23)(°)(C) values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma.

  9. Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest

    PubMed Central

    Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L.; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E.; Schmidt, Hans-Ulrich

    2012-01-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log10 CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D23°C values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068

  10. Gas Plasma Surface Chemistry for Biological Assays.

    PubMed

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development.

  11. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    SciTech Connect

    Wang Dacheng; Zhao Di; Feng Kecheng; Zhang Xianhui; Liu Dongping; Yang Size

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilization process.

  12. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Kylián, O.; Rauscher, H.; Hasiwa, M.; Gilliland, D.

    2009-11-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  13. Diagnostics and active species formation in an atmospheric pressure helium sterilization plasma source

    NASA Astrophysics Data System (ADS)

    Simon, A.; Anghel, S. D.; Papiu, M.; Dinu, O.

    2009-01-01

    Systematic spectroscopic studies and diagnostics of an atmospheric pressure radiofrequency (13.56 MHz) He plasma is presented. The discharge is an intrinsic part of the resonant circuit of the radiofrequency oscillator and was obtained using a monoelectrode type torch, at various gas flow-rates (0.1-6.0 l/min) and power levels (0-2 W). As function of He flow-rate and power the discharge has three developing stages: point-like plasma, spherical plasma and ellipsoidal plasma. The emission spectra of the plasma were recorded and investigated as function of developing stages, flow-rates and plasma power. The most important atomic and molecular components were identified and their evolution was studied as function of He flow-rate and plasma power towards understanding basic mechanisms occurring in this type of plasma. The characteristic temperatures (vibrational Tvibr, rotational Trot and excitation Texc) and the electron number density (ne) were determined.

  14. Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma.

    PubMed

    Khamsen, Natthaporn; Onwimol, Damrongvudhi; Teerakawanich, Nithiphat; Dechanupaprittha, Sanchai; Kanokbannakorn, Weerawoot; Hongesombut, Komsan; Srisonphan, Siwapon

    2016-08-03

    We designed a system to produce atmospheric hybrid cold-discharge plasma (HCP) based on microcorona discharge on a single dielectric barrier and applied it to inactivate microorganisms that commonly attach the rice seed husk. The cold-plasma treatment modified the surface of the rice seeds, resulting in accelerated germination and enhanced water imbibition. The treatment can operate under air-based ambient conditions without the need for a vacuum. The cold-plasma treatment completely inactivated pathogenic fungi and other microorganisms, enhancing the germination percentage and seedling quality. The final germination percentage of the treated rice seeds was ∼98%, whereas that of the nontreated seeds was ∼90%. Microcorona discharge on a single dielectric barrier provides a nonaggressive cold plasma that can be applied to organic materials without causing thermal and electrical damage. The hybrid nonthermal plasma is cost effective and consumes relatively little power, making it suitable for the surface sterilization and disinfection of organic and biological materials with large-scale compatibility.

  15. Sterilization and Mechanism of Microorganisms on A4 Paper by Dielectric Barrier Discharges Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Xianghong, Jia; Jun, Wan; Jinhua, Yang; Feng, Xu; Shouguo, Wang

    2009-10-01

    This study investigated the microorganisms' sterilization and mechanism by a DBD plasma device at atmospheric pressure. The device including a transfer system and two roller-electrodes is driven by sine-wave high voltages at frequencies of 15 kHz. Normal A4 papers were used to study the effects of the sterilization on their surfaces by analyzing the number of the living bacteria cells. The state of Escherichia coil's DNA were also measured by agarose gel electrophoresis after sterilization to analyze the inactivation mechanisms. Experimental results indicated that microorganisms on the surface of A4 Papers almost were destroyed while the papers went through the device and there was no any damage of the paper during the process. The main reason engendered bacteria death was due to the double chains of the DNA broken by the plasma.

  16. Gas-discharge plasma sources for nonlocal plasma technology

    SciTech Connect

    Demidov, V. I.; DeJoseph, C. A. Jr.; Simonov, V. Ya.

    2007-11-12

    Nonlocal plasma technology is based on the effect of self-trapping of fast electrons in the plasma volume [V. I. Demidov, C. A. DeJoseph, Jr., and A. A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2006)]. This effect can be achieved by changing the ratio of fast electron flux to ion flux incident on the plasma boundaries. This in turn leads to a significant change in plasma properties and therefore can be useful for technological applications. A gas-discharge device which demonstrates control of the plasma properties by this method is described.

  17. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    PubMed

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.

  18. Development of a new atmospheric pressure cold plasma jet generator and application in sterilization

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Liu, Peng; Xu, Lei; Zhang, Li-Ye; Zhan, Ru-Juan; Zhang, Wen-Rui

    2006-07-01

    This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground, the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30°C. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0×1016cm-3 which is acquired by using the ultraviolet absorption spectroscopy.

  19. Sterilization of beehive material with a double inductively coupled low pressure plasma

    NASA Astrophysics Data System (ADS)

    Priehn, M.; Denis, B.; Aumeier, P.; Kirchner, W. H.; Awakowicz, P.; Leichert, L. I.

    2016-09-01

    American Foulbrood is a severe, notifiable disease of the honey bee. It is caused by infection of bee larvae with spores of the gram-positive bacterium Paenibacillus larvae. Spores of this organism are found in high numbers in an infected hive and are highly resistant to physical and chemical inactivation methods. The procedures to rehabilitate affected apiaries often result in the destruction of beehive material. In this study we assess the suitability of a double inductively coupled low pressure plasma as a non-destructive, yet effective alternative inactivation method for bacterial spores of the model organism Bacillus subtilis on beehive material. Plasma treatment was able to effectively remove spores from wax, which, under protocols currently established in veterinary practice, normally is destroyed by ignition or autoclaved for sterilization. Spores were removed from wooden surfaces with efficacies significantly higher than methods currently used in veterinary practice, such as scorching by flame treatment. In addition, we were able to non-destructively remove spores from the highly delicate honeycomb wax structures, potentially making treatment of beehive material with double inductively coupled low pressure plasma part of a fast and reliable method to rehabilitate infected bee colonies with the potential to re-use honeycombs.

  20. Low-temperature sterilization alternatives in the 1990s

    SciTech Connect

    Schneider, P. . Surgical Div.)

    1994-01-01

    Vapor phase hydrogen peroxide, gas plasma, ozone, and peracetic acids have been commercialized as alternative technologies for low-temperature sterilization. None are viewed as a total replacement for ethylene oxide for on-site sterilization of reusable, heat-sensitive medical materials in healthcare facilities.

  1. EDITORIAL: Gas plasmas in biology and medicine

    NASA Astrophysics Data System (ADS)

    Stoffels, Eva

    2006-08-01

    and its attendant complications, such as inflammation and scarring. Another substantial research direction makes use of the bactericidal properties of the plasma. The number of findings on plasma inactivation of bacteria and spores is growing; plasma sterilization has already achieved some commercial success. In future, bacteriostatic properties of cold plasmas will even facilitate non-contact disinfection of human tissues. At this moment, one cannot explicitly list all the medical procedures in which cold plasmas will be involved. My personal intuition predicts widespread use of plasma treatment in dentistry and dermatology, but surely more applications will emerge in the course of this multi-disciplinary research. In fact, some plasma techniques, such as coagulation and coblation, are already used in clinical practice—this is another image of plasma science, which is so far unfamiliar to plasma physicists. Therefore, this particular topic forms a perfect platform for contacts between physicists and medical experts. Our colleagues from the medical scientific community will continue giving us feedback, suggestions or even orders. Biomedical plasmas should not become an isolated research area—we must grow together with medical research, listen to criticism, and eventually serve the physicians. Only then will this new field grow, flourish and bear fruit. All the above-mentioned topics meet in this issue of Journal of Physics D: Applied Physics, comprising the most significant examples of modern biomedical plasma research. Browsing through the contributions, the reader can trace back the progress in this field: from fundamental physical (numerical) studies, through phenomenology and physics of new discharges, studies on plasma-surface modification, bacterial inactivation tests, fundamental cell biological investigations, to final in vivo applications. One may ask why this selection has found its place in a purely physical journal—many contributions are concerned

  2. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.

    PubMed

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald

    2013-09-01

    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements.

  3. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  4. Bacterial inactivation using a low-temperature atmospheric plasma brush sustained with argon gas.

    PubMed

    Yu, Q S; Huang, C; Hsieh, F-H; Huff, H; Duan, Yixiang

    2007-01-01

    This study investigated the bacterial inactivation/sterilization effects of a new atmospheric plasma source, which is a brush-shaped argon glow discharge created under 1 atm pressure. Such an atmospheric plasma brush requires extremely low power of less than 20 W to operate; and therefore is essentially a low-temperature discharge as confirmed by gas-phase temperature measurements. Two bacteria, Escherichia coli (E. coli) and Micrococcus luteus (M. luteus), seeded in various media were subjected to plasma treatment and their survivability was examined. It was found that such argon atmospheric plasma brush is very effective in destruction of the bacteria cells. With nutrient broth and standard methods agar as supporting media, a cell reduction in a level of 6 orders of magnitude was observed for E. coli within 3-4 min plasma treatment. A similar level of cell reduction was also observed for M. luteus in the two media with 2 or 3 min plasma treatment. The plasma treatment effects on the bacteria cell structures were also examined using scanning electron microscopy and the cell structure damages due to the plasma exposure were observed on both bacteria. The possible sterilization mechanism of the argon plasmas is also discussed in this article.

  5. Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans

    PubMed Central

    Schirmack, Janosch; Fiebrandt, Marcel; Stapelmann, Katharina; Schulze-Makuch, Dirk

    2016-01-01

    We used Ar plasma-sterilization at a temperature below 80 °C to examine its effects on the viability of microorganisms when intermixed with tested soil. Due to a relatively low temperature, this method is not thought to affect the properties of a soil, particularly its organic component, to a significant degree. The method has previously been shown to work well on spacecraft parts. The selected microorganism for this test was Deinococcus radiodurans R1, which is known for its remarkable resistance to radiation effects. Our results showed a reduction in microbial counts after applying a low temperature plasma, but not to a degree suitable for a sterilization of the soil. Even an increase of the treatment duration from 1.5 to 45 min did not achieve satisfying results, but only resulted in in a mean cell reduction rate of 75% compared to the untreated control samples. PMID:27240407

  6. Cold atmospheric pressure gas plasma enhances the wear performance of ultra-high molecular weight polyethylene.

    PubMed

    Perni, Stefano; Kong, Michael G; Prokopovich, Polina

    2012-03-01

    Ultra-high molecular weight polyethylene (UHMWPE) is frequently employed in joint replacements because of its high biocompatibility; however, this material does not exhibit particularly strong wear performance, thus potentially reducing the longevity of such devices. Numerous techniques have been investigated to increase the resistance to wear of UHMWPE, but they are all based on expensive machinery and require a high level of safety precautions. Cold atmospheric pressure gas plasma treatment is an inexpensive process that has been used as a surface modification method and as a sterilization technique. We demonstrate for the first time that a helium/oxygen cold atmospheric pressure gas plasma can be used to enhance the wear performance of UHMWPE without affecting the cytocompatibility of the material. The exposure to a cold atmospheric pressure gas plasma results in a greater level of crosslinking of the polyethylene chains. As a consequence of the higher crosslinking, the material stiffness of the treated surface is increased.

  7. Postpartum Sterilization

    MedlinePlus

    f AQ FREQUENTLY ASKED QUESTIONS FAQ052 CONTRACEPTION Postpartum Sterilization • What is sterilization? • What is postpartum sterilization? • How is postpartum sterilization performed? • What kind of anesthesia is used for postpartum sterilization? • How ...

  8. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  9. Choosing a low-temperature sterilization technology.

    PubMed

    1999-11-01

    Low-temperature sterilization technologies are used instead of steam for sterilizing heat-sensitive or moisture-intolerant surgical equipment and supplies. In this Guidance Article, we describe several common alternatives, but we focus specifically on the two that have generated the most interest in recent years: ethylene oxide (EtO) and gas plasma sterilization. Ethylene oxide has been used as a low-temperature sterilization technology since the 1950s. Although EtO can be used safely, exposure to this gas is known to be a health hazard, and the emissions from certain EtO sterilizers are known to pollute the atmosphere. For these reasons, the use of EtO is regulated--more strictly in some regions than in others--and many healthcare facilities have decided to investigate alternative technologies. Gas plasma sterilization emerged in the 1990s as one promising alternative. This method appears to pose fewer health and environmental risks, and it offers faster turnaround times. However, this technology also has some limitations. We describe the advantages and disadvantages of both methods, along with the factors to consider when selecting from among these alternatives, in this Guidance Article.

  10. Supersonic gas injector for plasma fueling

    SciTech Connect

    Soukhanovskii, V A; Kugel, H W; Kaita, R; Roquemore, A L; Bell, M; Blanchard, W; Bush, C; Gernhardt, R; Gettelfinger, G; Gray, T; Majeski, R; Menard, J; Provost, T; Sichta, P; Raman, R

    2005-09-30

    A supersonic gas injector (SGI) has been developed for fueling and diagnostic applications on the National Spherical Torus Experiment (NSTX). It is comprised of a graphite converging-diverging Laval nozzle and a commercial piezoelectric gas valve mounted on a movable probe at a low field side midplane port location. Also mounted on the probe is a diagnostic package: a Langmuir probe, two thermocouples and five pickup coils for measuring toroidal, radial, vertical magnetic field components and magnetic fluctuations at the location of the SGI tip. The SGI flow rate is up to 4 x 10{sup 21} particles/s, comparable to conventional NSTX gas injectors. The nozzle operates in a pulsed regime at room temperature and a reservoir gas pressure up to 0.33 MPa. The deuterium jet Mach number of about 4, and the divergence half-angle of 5{sup o}-25{sup o} have been measured in laboratory experiments simulating NSTX environment. In initial NSTX experiments reliable operation of the SGI and all mounted diagnostics at distances 1-20 cm from the plasma separatrix has been demonstrated. The SGI has been used for fueling of ohmic and 2-4 MW NBI heated L- and H-mode plasmas. Fueling efficiency in the range 0.1-0.3 has been obtained from the plasma electron inventory analysis.

  11. Molecular mechanism of plasma sterilization in solution with the reduced pH method: importance of permeation of HOO radicals into the cell membrane

    NASA Astrophysics Data System (ADS)

    Takai, Eisuke; Ikawa, Satoshi; Kitano, Katsuhisa; Kuwabara, Junpei; Shiraki, Kentaro

    2013-07-01

    Sterilization of certain infected areas of the human body surface is necessary for dental and surgical therapies. Because the blood is filled with body fluid, sterilization in solution is essential. In vitro solution sterilization has been successively carried out using a combination of low-temperature atmospheric-pressure plasma and the reduced pH method, where the solution is sufficiently acidic. Here, we show the molecular mechanism of such plasma sterilization in solution based on microbiology. Three kinds of bacteria were inactivated by plasma treatment under various pH conditions. The theoretical and experimental models revealed that the sterilization was characterized by the concentration of hydroperoxy radicals (HOO·), which were dependent on the pH value. Bacterial inactivation rates were proportional to the HOO· concentrations calculated by the theoretical model. To evaluate the penetration of radicals into the cell membrane, a bacterial model using dye-included micelles was used. Decolouration rates of the model were also in proportion with the calculated HOO· concentrations. These results indicate that the key species for plasma sterilization were hydroperoxy radicals. More importantly, the high permeation of hydroperoxy radicals into the cell membrane plays a key role for efficient bactericidal inactivation using the reduced pH method.

  12. Bacterial inactivation/sterilization by argon plasma treatment on contaminated titanium implant surfaces:In vitro study

    PubMed Central

    Annunziata, Marco; Donnarumma, Giovanna; Caputo, Pina; Nastri, Livia; Guida, Luigi

    2016-01-01

    Background Surface treatment by argon plasma is widely used as the last step of the manufacturing process of titanium implant fixtures before their sterilization by gamma rays. The possibility of using such a technology in the daily clinical practice is particularly fascinating. The aim of the present study was to assess the effects of the argon plasma treatment on different titanium implant surfaces previously exposed In vitro to bacterial contamination. Material and Methods Sterile c.p. titanium implant discs with turned (T, Sa: 0.8 µm ), sandblasted/acid-etched (SAE, Sa: 1.3 µm) and titanium plasma sprayed (TPS, Sa: 3.0µm) surface were used in this study. A strain of Aggregatibacter actinomycetemcomitans ATCC3718 was grown at 37°C under anaerobic conditions for 24 h and then transferred on six discs for each of the three surface types. After 24 hours, a half of the contaminated discs (control group) were directly used to evaluate the colony forming units (CFUs). The other half of the contaminated discs (test group) were treated in an argon plasma chamber for 12 minutes at room temperature prior to be analyzed for CFU counting. All assays were performed using triplicate samples of each material in 3 different experiments. Results When the CFU counting was carried out on control discs, a total of 1.50x106±1.4x105, 1.55x106±7.07x104 and 3.15x106±2.12x105 CFU was respectively assessed for T, SAE and TPS discs, without statistically significant differences among the three surfaces. On the contrary, any trace of bacterial contamination was assessed for titanium discs treated in the argon plasma chamber prior to be analyzed, irrespectively to the implant surface tested. Conclusions Within the limit of this study, reported data suggested that the argon plasma technology could be efficiently used to decontaminate/sterilize previously infected titanium implant surfaces. Key words:Argon plasma, titanium implant surface, Aggregatibacter actinomycetemcomitans. PMID

  13. Endotoxin removal by radio frequency gas plasma (glow discharge)

    NASA Astrophysics Data System (ADS)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to < 0.5 EU/ml in sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR

  14. Fundamentals of gas phase plasmas for treatment of human tissue.

    PubMed

    Kushner, Mark J; Babaeva, Natalia Yu

    2011-01-01

    The use of gas phase plasmas for treating human tissue is at the intersection of two disciplines - plasma physics and engineering, and medicine. In this paper, a primer will be provided for the medical practitioner on the fundamentals of generating gas phase plasmas at atmospheric pressure in air for the treatment of human tissue. The mechanisms for gas phase plasmas interacting with tissue and biological fluids will also be discussed using results from computer modeling.

  15. Plasma processes in inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters, particularly with large diameters, have continued to be of interest for space propulsion applications. Two plasma processes are treated in this study: electron diffusion across magnetic fields and double ion production in inert-gas thrusters. A model is developed to describe electron diffusion across a magnetic field that is driven by both density and potential gradients, with Bohm diffusion used to predict the diffusion rate. This model has applications to conduction across magnetic fields inside a discharge chamber, as well as through a magnetic baffle region used to isolate a hollow cathode from the main chamber. A theory for double ion production is presented, which is not as complete as the electron diffusion theory described, but it should be a useful tool for predicting double ion sputter erosion. Correlations are developed that may be used, without experimental data, to predict double ion densities for the design of new and especially larger ion thrusters.

  16. Influence of flowing helium gas on plasma plume formation in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Konda, Kohmei; Ogura, Kazuo

    2015-05-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and a foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. The helium gas flowing out of quartz tube mixes with air, and the flow channel is composed of the regions of flowing helium gas and air. The plasma plume length is equivalent to the reachable distance of flowing helium gas. Although the amount of helium gas on the flow channel increases by increasing the inner diameter of quartz tube at the same gas flow velocity, the plasma plume length peaks at around 8 m/s of gas flow velocity, which is the result that a flow of helium gas is balanced with the amount of gas. The plasma plume is formed at the boundary region where the flow of helium gas is kept to the wall of the air.

  17. Dusty Plasma Structures in Gas Mixtures

    SciTech Connect

    Popova, D. V.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    The possibility of attainment of large Mach numbers is analyzed for the case of heavy ions drifting in a light gas. Under conditions of typical experiments with dust structures in plasmas, the use of the mixture of light and heavy gases is shown to make it possible to suppress the ion heating in the electric field and to form supersonic flows characterized by large Mach numbers. The drift of krypton ions in helium is considered as an example. Experiments with dc glow discharge at 1-10% of Kr show that the transition to the discharge in mixture leads to increase of interaction anisotropy and reinforcement of coupling of dust particles in the direction of ion drift. On the other hand, under certain conditions the phenomenon of abnormal 'heating' of dust particles was observed when the particles can obtain high kinetic energy which is several orders of magnitude higher than typical.

  18. On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    NASA Astrophysics Data System (ADS)

    Nardon, E.; Fil, A.; Chauveau, P.; Tamain, P.; Guirlet, R.; Koslowski, H. R.; Lehnen, M.; Reux, C.; Saint-Laurent, F.; Contributors, JET

    2017-01-01

    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013).

  19. Reactive species profile in an atmospheric pressure plasma jet ignited in He and He/O2 mixture - implications for surface sterilization

    NASA Astrophysics Data System (ADS)

    Arjunan, Krishna Priya; Jones, Brendan; Ptasinska, Sylwia

    2015-09-01

    The enhanced chemistry and low temperature of cold atmospheric plasma (CAP) makes it a promising alternative to conventional sterilization techniques. Of the various configurations used for generating cold plasma, atmospheric pressure plasma jets (APPJs) are particularly interesting for biomedical applications since they can be used for targeted treatment of intricate geometries such as catheters due to their small dimensions. The present study shows the efficacy of an APPJ ignited in helium or He/O2 mixture in inactivating Escherichia coli (E.coli) bacterium on agar plate. To study the dependence of helium flow rate and sample distance on the inactivation area, E.coli spread on agar was treated for 10 min at various combinations of helium flow rates and sample distances from the nozzle. A ring-shaped inactivation area was observed in samples treated close to the jet nozzle. Addition of O2 significantly increased the inactivation area. The ring shaped inactivation area observed with only helium feed gas vanished with oxygen addition. The optical emission spectra of the core and jet region of the APPJ in helium and He/O2 were obtained. The profile of H2 O2 , NO2 -, NO2 - and O2 reaching the sample were determined using test strips arranged in a 3 × 3 array. A ring-shaped profile was observed for these species in samples treated close to the nozzle with helium APPJ, while no ring-shaped profile was observed with O2 addition. Addition of O2 increased O2 levels, and was detected up to 3 cm in the radial direction.

  20. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  1. Inert-Gas Diffuser For Plasma Or Arc Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.

    1994-01-01

    Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.

  2. Sterilization/disinfection of medical devices using plasma: the flowing afterglow of the reduced-pressure N2-O2 discharge as the inactivating medium

    NASA Astrophysics Data System (ADS)

    Moisan, Michel; Boudam, Karim; Carignan, Denis; Kéroack, Danielle; Levif, Pierre; Barbeau, Jean; Séguin, Jacynthe; Kutasi, Kinga; Elmoualij, Benaïssa; Thellin, Olivier; Zorzi, Willy

    2013-07-01

    Potential sterilization/disinfection of medical devices (MDs) is investigated using a specific plasma process developed at the Université de Montréal over the last decade. The inactivating medium of the microorganisms is the flowing afterglow of a reduced-pressure N2-O2 discharge, which provides, as the main biocidal agent, photons over a broad ultraviolet (UV) wavelength range. The flowing afterglow is considered less damaging to MDs than the discharge itself. Working at gas pressures in the 400—700 Pa range (a few torr) ensures, through species diffusion, the uniform filling of large volume chambers with the species outflowing from the discharge, possibly allowing batch processing within them. As a rule, bacterial endospores are used as bio-indicators (BI) to validate sterilization processes. Under the present operating conditions, Bacillus atrophaeus is found to be the most resistant one and is therefore utilized as BI. The current paper reviews the main experimental results concerning the operation and characterization of this sterilizer/disinfector, updating and completing some of our previously published papers. It uses modeling results as guidelines, which are particularly useful when the corresponding experimental data are not (yet) available, hopefully leading to more insight into this plasma afterglow system. The species flowing out of the N2-O2 discharge can be divided into two groups, depending on the time elapsed after they left the discharge zone as they move toward the chamber, namely the early afterglow and the late afterglow. The early flowing afterglow from a pure N2 discharge (also called pink afterglow) is known to be comprised of N2+ and N4+ ions. In the present N2-O2 mixture discharge, NO+ ions are additionally generated, with a lifetime that extends over a longer period than that of the nitrogen molecular ions. We shall suppose that the disappearance of the NO+ ions marks the end of the early afterglow regime, thereby stressing our intent

  3. FAST TRACK COMMUNICATION: On the application of inductively coupled plasma discharges sustained in Ar/O2/N2 ternary mixture for sterilization and decontamination of medical instruments

    NASA Astrophysics Data System (ADS)

    Stapelmann, K.; Kylián, O.; Denis, B.; Rossi, F.

    2008-10-01

    Non-equilibrium low pressure-plasma discharges are extensively studied for their high potential in the field of sterilization and decontamination of medical devices. This increased interest in plasma discharges arises from, among other reasons, their capability not only to inactivate bacterial spores but also to eliminate, destroy or remove pathogenic biomolecules and thus to provide a one-step process assuring safety of treated instruments. However, recent studies have shown that optimal conditions leading to inactivation of spores and physical removal of pathogens differ significantly—the efficiency of spores sterilization is above all dependent on the UV radiation intensity, whereas high etching rates are connected with the presence of the etching agent, typically atomic oxygen. The aim of this contribution is to discuss and demonstrate the feasibility of Ar/N2/O2 low-pressure inductively coupled plasma discharges as an option to provide intense UV radiation while maintaining the high etching rates of biomolecules.

  4. Design of experiments on a DC Steady State Atmospheric Pressure Plasma Sterilizer

    NASA Astrophysics Data System (ADS)

    Alexeff, Igor; Balasundaram, Arun; Sawheny, Rapinder

    2009-11-01

    Our Resistive Barrier Discharge has been demonstrated to be successful on E. coli, Pseudomonas fluorescens (5RL), spores and bacteriophages. It has been tested successfully in sterilizing pagers at the St. Jude Research Hospital in Memphis, TN. In this recent work, we evaluate three primary factors in the atmospheric pressure resistive barrier discharge, hydrogen peroxide, charged ions and air (oxygen). The experiment used was Analysis of Variance (ANOVA) and regression analysis. The tests used 144 Petri Dishes and the bacteria used were E. coli. The hydrogen peroxide was used as a replacement for the water conductor on the resistive barrier discharge electrode. The charged ions were removed by a double charged wire mesh between the discharge and the Petri Dish. The air was displaced by a slow flow of nitrogen into the experimental area. The basic conclusions are that air, and charged ions are both extremely effective in killing bacteria. In addition, air and charged ions together strongly enhance each other. Hydrogen peroxide in our experiments did not enhance the kill rate.

  5. The Use of Liquid Isopropyl Alcohol and Hydrogen Peroxide Gas Plasma to Biologically Decontaminate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    Bonner, J. K.; Tudryn, Carissa D.; Choi, Sun J.; Eulogio, Sebastian E.; Roberts, Timothy J.; Tudryn, Carissa D.

    2006-01-01

    Legitimate concern exists regarding sending spacecraft and their associated hardware to solar system bodies where they could possibly contaminate the body's surface with terrestrial microorganisms. The NASA approved guidelines for sterilization as set forth in NPG 8020.12C, which is consistent with the biological contamination control objectives of the Committee on Space Research (COSPAR), recommends subjecting the spacecraft and its associated hardware to dry heat-a dry heat regimen that could potentially employ a temperature of 110(deg)C for up to 200 hours. Such a temperature exposure could prove detrimental to the spacecraft electronics. The stimulated growth of intermetallic compounds (IMCs) in metallic interconnects and/or thermal degradation of organic materials composing much of the hardware could take place over a prolonged temperature regimen. Such detrimental phenomena would almost certainly compromise the integrity and reliability of the electronics. Investigation of sterilization procedures in the medical field suggests that hydrogen peroxide (H202) gas plasma (HPGP) technology can effectively function as an alternative to heat sterilization, especially for heat-sensitive items. Treatment with isopropyl alcohol (IPA) in liquid form prior to exposure of the hardware to HPGP should also prove beneficial. Although IPA is not a sterilant, it is frequently used as a disinfectant because of its bactericidal properties. The use of IPA in electronics cleaning is widely recognized and has been utilized for many years with no adverse affects reported. In addition, IPA is the principal ingredient of the test fluid used in ionic contamination testers to assess the amount of ionic contamination found on the surfaces of printed wiring assemblies. This paper will set forth experimental data confirming the feasibility of the IPA/H202 approach to reach acceptable microbial reduction (MR) levels of spacecraft electronic hardware. In addition, a proposed process flow in

  6. Is gas-discharge plasma a new solution to the old problem of biofilm inactivation?

    PubMed

    Joaquin, Jonathan C; Kwan, Calvin; Abramzon, Nina; Vandervoort, Kurt; Brelles-Mariño, Graciela

    2009-03-01

    Conventional disinfection and sterilization methods are often ineffective with biofilms, which are ubiquitous, hard-to-destroy microbial communities embedded in a matrix mostly composed of exopolysaccharides. The use of gas-discharge plasmas represents an alternative method, since plasmas contain a mixture of charged particles, chemically reactive species and UV radiation, whose decontamination potential for free-living, planktonic micro-organisms is well established. In this study, biofilms were produced using Chromobacterium violaceum, a Gram-negative bacterium present in soil and water and used in this study as a model organism. Biofilms were subjected to an atmospheric pressure plasma jet for different exposure times. Our results show that 99.6 % of culturable cells are inactivated after a 5 min treatment. The survivor curve shows double-slope kinetics with a rapid initial decline in c.f.u. ml(-1) followed by a much slower decline with D values that are longer than those for the inactivation of planktonic organisms, suggesting a more complex inactivation mechanism for biofilms. DNA and ATP determinations together with atomic force microscopy and fluorescence microscopy show that non-culturable cells are still alive after short plasma exposure times. These results indicate the potential of plasma for biofilm inactivation and suggest that cells go through a sequential set of physiological and morphological changes before inactivation.

  7. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  8. Pulse plasma carburizing and high pressure gas quenching -- Industrial applications

    SciTech Connect

    Preisser, F.; Schnatbaum, F.

    1995-12-31

    Pulse plasma carburizing with high pressure gas quenching up to 20 bar is the newly developed case hardening process now available in production size equipment. The first part of results demonstrates the tremendous potential of high pressure gas quenching for successful hardening of case hardening steels. The second part opens a window to glance at the pulse plasma carburizing of complex shaped parts. Both processes improve economical data and performance of carburizing processes.

  9. Transition of RF internal antenna plasma by gas control

    SciTech Connect

    Hamajima, Takafumi; Yamauchi, Toshihiko; Kobayashi, Seiji; Hiruta, Toshihito; Kanno, Yoshinori

    2012-07-11

    The transition between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) was investigated with the internal radio frequency (RF) multi-turn antenna. The transition between them showed the hysteresis curve. The radiation power and the period of the self-pulse mode became small in proportion to the gas pressure. It was found that the ICP transition occurred by decreasing the gas pressure from 400 Pa.

  10. Plasma induced by resonance enhanced multiphoton ionization in inert gas

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2007-12-15

    We present a detailed model for the evolution of resonance enhanced multiphoton ionization (REMPI) produced plasma during and after the ionizing laser pulse in inert gas (argon, as an example) at arbitrary pressures. Our theory includes the complete process of the REMPI plasma generation and losses, together with the changing gas thermodynamic parameters. The model shows that the plasma expansion follows a classical ambipolar diffusion and that gas heating results in a weak shock or acoustic wave. The gas becomes involved in the motion not only from the pressure gradient due to the heating, but also from the momentum transfer from the charged particles to gas atoms. The time dependence of the total number of electrons computed in theory matches closely with the results of coherent microwave scattering experiments.

  11. Discharge effects on gas flow dynamics in a plasma jet

    NASA Astrophysics Data System (ADS)

    Xian, Yu Bin; Hasnain Qaisrani, M.; Yue, Yuan Fu; Lu, Xin Pei

    2016-10-01

    Plasma is used as a flow visualization method to display the gas flow of a plasma jet. Using this method, it is found that a discharge in a plasma jet promotes the transition of the gas flow to turbulence. A discharge at intermediate frequency (˜6 kHz in this paper) has a stronger influence on the gas flow than that at lower or higher frequencies. Also, a higher discharge voltage enhances the transition of the gas flow to turbulence. Analysis reveals that pressure modulation induced both by the periodically directed movement of ionized helium and Ohmic heating on the gas flow plays an important role in inducing the transition of the helium flow regime. In addition, since the modulations induced by the high- and low-frequency discharges are determined by the frequency-selective effect, only intermediate-frequency (˜6 kHz) discharges effectively cause the helium flow transition from the laminar to the turbulent flow. Moreover, a discharge with a higher applied voltage makes a stronger impact on the helium flow because it generates stronger modulations. These conclusions are useful in designing cold plasma jets and plasma torches. Moreover, the relationship between the discharge parameters and the gas flow dynamics is a useful reference on active flow control with plasma actuators.

  12. Atmospheric Electrodeless Microwave Plasma-torch for Gas Decomposition

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Hong, Y. C.; Uhm, H. S.

    2001-10-01

    Increasing environmental awareness and regulation have motivated research into new method to remediate toxins from atmospheric pressure gas streams. Plasma remediation was identified as a promising technology treating contaminated gas streams and air. Plasma remediation of toxic gas streams from mobile emitting sources (i. e., Nox, Sox, soot emission from diesel truck engines) and cleaning processes (i.e., global warming gases) require inexpensive, compact, and reliable systems which efficiently and selectively convert the toxic gas to benign or more treatable products. Environmental clean-up and energy efficiency enhancement utilize plasma generated from air at the atmospheric pressure. Electrodes of the arc plasma torches oxidize very quickly due to the oxygen molecules in air. That is why the conventional thermal plasma torch can not be used in environmental applications. In order to solve this difficult problem, we developed a thermal plasma source operating without electrodes. One of electrodeless torches is the microwave plasma which can produce plasmas in large quantities. We can generate plasma at the atmospheric pressure by making use of magnetrons in microwave-ovens. Most of the magnetrons are operated at the frequency of 2.45GHz. Typical magnetron power of home-microwave oven is about 1kW. Electromagnetic waves from magnetron propagate through a waveguide. Plasma is generated under resonant condition, by initiation of an auxiliary ignition system. The plasma is stabilized by vortex stabilization. The eventual application of this research is in air pollution control. Perfluorocarbon Compounds(PFCs), , , and any other global warming gases from etching and cleaning processes have very long lifetime and high global warming potential. We will conduct an experiment to eliminate global warming gases. FT-IR and QMS will be used to analyze and identify by-products after plasma treatment.

  13. The effect of working gas impurities on plasma jets

    SciTech Connect

    Liu, X. Y.; He, M. B.; Liu, D. W.

    2015-04-15

    Air intrusion reduced the purity of working gas inside the tube for plasma jet, and thereby, affected the discharge dynamics. In this paper, the effect of using working gas with different purity level (helium purity 99.99999%, 99.99%, 99.9%, and 99%) on photoionization and the chemical reactivity of plasma jet were studied using a 2 dimensional plasma jet model. Photoionization of air species acted as a source of pre-ionization in front of the ionization region, which facilitated the transition from localized discharge to streamers inside the tube. The density of reactive species inside the tube was found to increase with the concentration of working gas impurities. For the highest purity helium (99.99999%), despite a low photoionization rate and the distance between the photoionization region and ionization region inside the tube, by increasing the applied voltage and decreasing the distance between the electrode and nozzle, plasma jets were formed.

  14. Emission spectroscopic study on gas-gas interactions in glow discharge plasmas using several binary gas mixtures.

    PubMed

    Wagatsuma, Kazuaki

    2010-01-01

    Emission spectra of constituent gas species from glow discharge plasmas using argon-helium, krypton-helium, argon-krypton, and krypton-argon gas mixtures were analyzed to elucidate collisional energy transfer between these gas species occurring in the plasma. In the argon-helium mixed gas plasma, the enhancement or quenching of particular Ar II lines was observed when helium was added to an argon-matrix glow discharge plasma, meaning that a redistribution in the population among the excited levels could be induced through argon-helium collisions. On the other hand, the krypton-helium plasma showed little change in the emission intensities of Kr II lines when helium was added to a krypton-matrix glow discharge plasma, meaning that energy exchanges between krypton and helium excited species occur inactively. These phenomena are principally because the excitation energy as well as the spin multiplicity between collision partners follow both the energy resonance conditions and the spin conservation rule in collisions of the second kind in the argon-helium system, but not in the krypton-helium system. In the argon-krypton and krypton-argon mixed gas plasmas, significant intensity changes of particular Ar II or Kr II lines could not be found; therefore, there were no dominant channels for energy exchanges between argon and krypton species in the mixed gas plasmas.

  15. Microwave Plasma Sources for Gas Processing

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2008-03-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented.

  16. Microwave Plasma Sources for Gas Processing

    SciTech Connect

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2008-03-19

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented.

  17. Sterilization System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Cox Sterile Products, Inc.'s Rapid Heat Transfer Sterilizer employs a heat exchange process that induces rapid air movement; the air becomes the heat transfer medium, maintaining a uniform temperature of 375 degrees Fahrenheit. It features pushbutton controls for three timing cycles for different instrument loads, a six-minute cycle for standard unpackaged instruments, eight minutes for certain specialized dental/medical instruments and 12 minutes for packaged instruments which can then be stored in a drawer in sterile condition. System will stay at 375 degrees all day. Continuous operation is not expensive because of the sterilizer's very low power requirements.

  18. Sterilization of space hardware.

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  19. Effect of surface roughness and sterilization on bacterial adherence to ultra-high molecular weight polyethylene.

    PubMed

    Kinnari, T J; Esteban, J; Zamora, N; Fernandez, R; López-Santos, C; Yubero, F; Mariscal, D; Puertolas, J A; Gomez-Barrena, E

    2010-07-01

    Sterilization with ethylene oxide (EO) and gas plasma (GP) are well-known methods applied to ultra-high molecular weight polyethylene (UHMWPE) surfaces in the belief that they prevent major material changes caused by gamma irradiation. However, the influence of these surface sterilization methods on bacterial adherence to UHMWPE is unknown. UHMWPE samples with various degrees of roughness (0.3, 0.8 and 2.0 μm) were sterilized with either GP or EO. The variations in hydrophobicity, surface free energy and surface functional groups were investigated before and after sterilization. Sterilized samples were incubated with either Staphylococcus aureus or Staphylococcus epidermidis in order to study bacterial adherence to these materials. Fewer bacteria adhered to UHMWPE after sterilization with EO than after sterilization with GP, especially to the smoothest surfaces. No changes in chemical composition of the UHMWPE surface due to sterilization were observed using X-ray photoemission spectroscopy analysis. The decreased bacterial adherence to UHMWPE found at the smoothest surfaces after sterilization with EO was not directly related to changes in chemical composition. Increased bacterial adherence to rougher surfaces was associated with increased polar surface energy of EO-sterilized surfaces.

  20. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-06

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity. 2 figs.

  1. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, Lal A.

    1999-01-01

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity.

  2. Carbon dioxide as working gas for laboratory plasmas

    NASA Technical Reports Server (NTRS)

    Kist, R.

    1976-01-01

    Measurements with a RF probe, retarding potential analyzer and mass spectrometer in a laboratory plasma tank were performed using the gases CO2, N2, A and He in order to compare their properties as working gases for laboratory plasma production. The overall result of that CO2 leads to higher plasma densities at lower neutral-gas pressures as well as to a larger Maxwellian component of the electron population, while the electron temperature is lower than that when N2, A and He are used.

  3. SIMPLODE: An Imploding Gas Puff Plasma Model. I. Neon.

    DTIC Science & Technology

    2014-09-26

    recent experimental results obtained on GAMBLE II. In addition, the influence of the Plasma Erosion Opening Switch on the K-shell yield is...LTE radiation physics model and is ideal for use with the gas puff experiments at NRL on the GAMBLE II facility. Recently the GAMBLE II pulse power...facility has been upgraded to accomodate gas puff loads. This modification enhances GAMBLE II’s versatility by expanding the types of material loads that

  4. Modeling of neutral gas dynamics in high-density plasmas

    NASA Astrophysics Data System (ADS)

    Canupp, Patrick Wellington

    This thesis describes a physical model of chemically reactive neutral gas flow and discusses numerical solutions of this model for the flow in an inductively coupled plasma etch reactor. To obtain these solutions, this research develops an efficient, implicit numerical method. As a result of the enhanced numerical stability of the scheme, large time steps advance the solution from initial conditions to a final steady state in fewer iterations and with less computational expense than simpler explicit methods. This method would incorporate suitably as a module in currently existing large scale plasma simulation tools. In order to demonstrate the accuracy of the numerical technique, this thesis presents results from two simulations of flows that possess theoretical solutions. The first case is the inviscid flow of a gas through a converging nozzle. A comparison of the numerical solution to isentropic flow theory shows that the numerical technique capably captures the essential flow features of this environment. The second case is the Couette flow of a gas between two parallel plates. The simulation results compare well with the exact solution for this flow. After establishing the accuracy of the numerical technique, this thesis discusses results for the flow of chemically reactive gases in a chlorine plasma etch reactor. This research examines the influence of the plasma on the neutral gas and the dynamics exhibited by the neutral gas in the reactor. This research finds that the neutral gas temperature strongly depends on the rate at which inelastic, electron-impact dissociation reactions occur and on atomic chlorine wall recombination rates. Additionally, the neutral gas Aow in the reactor includes a significant mass flux of etch product from the wafer surface. Resolution of these effects is useful for neutral gas simulation. Finally, this thesis demonstrates that continuum fluid models provide reasonable accuracy for these low pressure reactor flows due to the fact

  5. Kinetics in Gas Mixtures for Problem of Plasma Assisted Combustion

    DTIC Science & Technology

    2010-05-01

    exothermal chemical hydrocarbon oxidation process, and (iii) subsequent thermal ignition. The role of gas temperature increase in the experiments on...the nonequilibrium plasma, (ii) chemical reactions of hydrocarbon oxidation with participa- tion of O atoms and gas heating due to net exothermal ...autoignition) the ignition delay de- pends upon the rate of the dissociation reaction which is endothermic . Generally the induction delay time is greatly

  6. Partial microwave-assisted wet digestion of animal tissue using a baby-bottle sterilizer for analyte determination by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Matos, Wladiana O.; Menezes, Eveline A.; Gonzalez, Mário H.; Costa, Letícia M.; Trevizan, Lilian C.; Nogueira, Ana Rita A.

    2009-06-01

    A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 µL. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2 4-1 fractional factorial design: 650 W microwave power, 7 min digestion time, 50 µL nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.

  7. Combined Gas-Liquid Plasma Source for Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Burakov, V. S.; Kiris, V. V.; Nevar, A. A.; Nedelko, M. I.; Tarasenko, N. V.

    2016-09-01

    A gas-liquid plasma source for the synthesis of colloidal nanoparticles by spark erosion of the electrode material was developed and allowed the particle synthesis regime to be varied over a wide range. The source parameters were analyzed in detail for the electrical discharge conditions in water. The temperature, particle concentration, and pressure in the discharge plasma were estimated based on spectroscopic analysis of the plasma. It was found that the plasma parameters did not change signifi cantly if the condenser capacitance was increased from 5 to 20 nF. Purging the electrode gap with argon reduced substantially the pressure and particle concentration. Signifi cant amounts of water decomposition products in addition to electrode elements were found in the plasma in all discharge regimes. This favored the synthesis of oxide nanoparticles.

  8. Complementary optical diagnostics of noble gas plasmas

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Stewart, R. S.

    2001-10-01

    In this talk we will discuss our theoretical modeling and application of an array of four complementary optical diagnostic techniques for low-temperature plasmas. These are cw laser collisionally induced fluorescence (LCIF), cw optogalvanic effect (OGE), optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS). We will briefly present an overview of our investigation of neon positive column plasmas for reduced axial electrical fields ranging from 3x10-17 Vcm^2 to 2x10-16 Vcm^2 (3-20 Td), detailing our determination of five sets of important collisional rate coefficients involving the fifteen lowest levels, the ^1S0 ground state and the 1s and 2p excited states (in Paschen notation), hence information on several energy regions of the electron distribution function (EDF). The discussion will be extended to show the new results obtained from analysis of the argon positive column over similar reduced fields. Future work includes application of our multi-diagnostic technique to move complex systems, including the addition of molecules for EDF determination.

  9. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  10. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  11. Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2016-05-01

    Several anomalies recorded in short-baseline neutrino experiments suggest the possibility that the standard 3-flavor framework may be incomplete and point towards a manifestation of new physics. Light sterile neutrinos provide a credible solution to these puzzling results. Here, we present a concise review of the status of the neutrino oscillations within the 3+1 scheme, the minimal extension of the standard 3-flavor framework endowed with one sterile neutrino species. We emphasize the potential role of LBL experiments in the searches of CP violation related to sterile neutrinos and their complementarity with the SBL experiments.

  12. Gas phase plasma impact on phenolic compounds in pomegranate juice.

    PubMed

    Herceg, Zoran; Kovačević, Danijela Bursać; Kljusurić, Jasenka Gajdoš; Jambrak, Anet Režek; Zorić, Zoran; Dragović-Uzelac, Verica

    2016-01-01

    The aim of the study was to evaluate the effect of gas phase plasma on phenolic compounds in pomegranate juice. The potential of near infrared reflectance spectroscopy combined with partial least squares for monitoring the stability of phenolic compounds during plasma treatment was explored, too. Experiments are designed to investigate the effect of plasma operating conditions (treatment time 3, 5, 7 min; sample volume 3, 4, 5 cm(3); gas flow 0.75, 1, 1.25 dm(3) min(-1)) on phenolic compounds and compared to pasteurized and untreated pomegranate juice. Pasteurization and plasma treatment resulted in total phenolic content increasing by 29.55% and 33.03%, respectively. Principal component analysis and sensitivity analysis outputted the optimal treatment design with plasma that could match the pasteurized sample concerning the phenolic stability (5 min/4 cm(3)/0.75 dm(3) min(-1)). Obtained results demonstrate the potential of near infrared reflectance spectroscopy that can be successfully used to evaluate the quality of pomegranate juice upon plasma treatment considering the phenolic compounds.

  13. Mathematical model of gas plasma applied to chronic wounds

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Liu, X. Y.; Liu, D. W.; Lu, X. P.; Zhang, Y. T.

    2013-11-01

    Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model. The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.

  14. Mathematical model of gas plasma applied to chronic wounds

    SciTech Connect

    Wang, J. G.; Liu, X. Y.; Liu, D. W.; Lu, X. P.; Zhang, Y. T.

    2013-11-15

    Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model. The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.

  15. Laser plasma emission of small particles in different gas atmospheres

    NASA Astrophysics Data System (ADS)

    Andreev, Alexander A.; Ueda, Toshitsugu; Wakamatsu, Muneaki

    2002-06-01

    The problem of laser pulse interaction with small solid particles in a gas atmosphere when detecting its parameters is a serous one in industrial and environmental applications. Previous investigations have shown the possibility of using the laser induced breakdown method. This method is very sensitive, but for a particle size of less than 0.1 micrometers the damage threshold of the solid target is very close to the breakdown point of pure gas. At breakdown, a small volume of dense hot plasma emits radiation by which the size and material of particles can be detected. We used an analytical model, simulation code and experiments to analyze this radiation and found that the emitted intensity varied with laser, gas and particle parameters. The increased dependence of SSP plasma emission rate on initial particle volume permits this method to be used for measuring small particle size by using emitted line spectrum at the late time stage.

  16. Nanoscale topographic changes on sterilized glass surfaces affect cell adhesion and spreading.

    PubMed

    Wittenburg, Gretel; Lauer, Günter; Oswald, Steffen; Labudde, Dirk; Franz, Clemens M

    2014-08-01

    Producing sterile glass surfaces is of great importance for a wide range of laboratory and medical applications, including in vitro cell culture and tissue engineering. However, sterilization may change the surface properties of glass and thereby affect its use for medical applications, for instance as a substrate for culturing cells. To investigate potential effects of sterilization on glass surface topography, borosilicate glass coverslips were left untreated or subjected to several common sterilization procedures, including low-temperature plasma gas, gamma irradiation and steam. Imaging by atomic force microscopy demonstrated that the surface of untreated borosilicate coverslips features a complex landscape of microislands ranging from 1000 to 3000 nm in diameter and 1 to 3 nm in height. Steam treatment completely removes these microislands, producing a nanosmooth glass surface. In contrast, plasma treatment partially degrades the microisland structure, while gamma irradiation has no effect on microisland topography. To test for possible effects of the nanotopographic structures on cell adhesion, human gingival fibroblasts were seeded on untreated or sterilized glass surfaces. Analyzing fibroblast adhesion 3, 6, and 24 h after cell seeding revealed significant differences in cell attachment and spreading depending on the sterilization method applied. Furthermore, single-cell force spectroscopy revealed a connection between the nanotopographic landscape of glass and the formation of cellular adhesion forces, indicating that fibroblasts generally adhere weakly to nanosmooth but strongly to nanorough glass surfaces. Nanotopographic changes induced by different sterilization methods may therefore need to be considered when preparing sterile glass surfaces for cell culture or biomedical applications.

  17. Sterilization of Bacillus atrophaeus using OH radicals supplied by vacuum ultraviolet method

    NASA Astrophysics Data System (ADS)

    Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Ono, Ryo; Yasuda, Hachiro; Mizuno, Akira

    2015-09-01

    Sterilization by cold plasma has widely been performed. It is well known that reactive oxygen species (ROS) has a potential of sterilization. However, it is not clear which ROS is effective on sterilization because a lot of types of ROS are produced in plasma. In this study, sterilization effect of OH radicals by vacuum ultraviolet (VUV) method was investigated. This method utilizes photodissociation reaction to produce ROS so it can produce ROS selectively. Wet and dry helium with and without 1% O2 gas was used to demonstrate sterilization effect of OH radicals. Gases were flowed in a quartz tube (inner diameter 2 mm, outer diameter 4 mm) at a flow rate of 1.5 L/min. The produced ROS flowed out of the quartz tube nozzle. A Xe2 excimer lamp emitting 172 +/- 7 nm VUV light was placed parallel to the quartz tube with a distance of 8 mm. The distance between the lower end of the lamp and the nozzle of quartz tube was changed from 3 to 15 cm. As a target of sterilization, Bacillus atrophaeus (ATCC 9372) was used. The density of OH radicals was measured using laser-induced fluorescence (LIF). As a result, sterilization using VUV method was verified. This result showed that OH radicals sterilized the bacteria.

  18. Positron transport: The plasma-gas interface

    SciTech Connect

    Marler, J. P.; Petrovic, Z. Lj.; Bankovic, A.; Dujko, S.; Suvakov, M.; Malovic, G.; Buckman, S. J.

    2009-05-15

    Motivated by an increasing number of applications, new techniques in the analysis of electron transport have been developed over the past 30 years or so, but similar methods had yet to be applied to positrons. Recently, an in-depth look at positron transport in pure argon gas has been performed using a recently established comprehensive set of cross sections and well-established Monte Carlo simulations. The key novelty as compared to electron transport is the effect of positronium formation which changes the number of particles and has a strong energy dependence. This coupled with spatial separation by energy of the positron swarm leads to counterintuitive behavior of some of the transport coefficients. Finally new results in how the presence of an applied magnetic field affects the transport coefficients are presented.

  19. Round-robin evaluation of a solid-phase microextraction-gas chromatographic method for reliable determination of trace level ethylene oxide in sterilized medical devices.

    PubMed

    Harper, Thomas; Cushinotto, Lisa; Blaszko, Nancy; Arinaga, Julie; Davis, Frank; Cummins, Calvin; DiCicco, Michael

    2008-02-01

    Medical devices that are sterilized with ethylene oxide (EtO) retain small quantities of EtO residuals, which may cause negative systemic and local irritating effects, and must be accurately quantified to ensure non-toxicity. The goal of this round-robin study is to investigate the capability of a novel solid-phase microextraction-gas chromatographic (SPME-GC) method for trace-level EtO residuals analysis: three independent laboratories conducted a guided experiment using this SPME-GC method, in assessing method performance, ruggedness and the feasibility of SPME fibers. These were satisfactory across the independent laboratories, at the 0.05-5.00 ppm EtO range. This method was then successfully applied to analyze EtO residuals in several sterilized/aerated medical devices of various polymeric composition, reliably detecting and quantifying the trace levels of EtO residuals present ( approximately 0.05 ppm EtO). SPME is a feasible alternative for quantifying trace-level EtO residuals in sterilized medical devices, thereby lowering the limit of quantification (LOQ) by as much as two to three orders of magnitude over the current GC methodology of direct liquid injection.

  20. Closed cycle MHD generator with nonuniform gas-plasma flow driving recombinated plasma clots

    SciTech Connect

    Slavin, V.S.; Danilov, V.V.; Sokolov, V.S.

    1996-12-31

    A new concept of a closed cycle MHD generator without alkali seed has been suggested. The essence of it is the phenomenon of frozen conductivity for recombined plasma which appears for noble gas at T{sub e} > 4,000 K. At the inlet of the MHD channel in supersonic flow of noble gas (He or Ar) the plasma clots with electron density about 10{sup 15} cm{sup {minus}3} are formed by pulsed intense electron beam with energy about 300 keV. Gas flow drives these clots in a cross magnetic field along the MHD channel which has electrodes connected with the load by Faraday scheme. The gas flow pushes plasma layers and produces electric power at the expense of enthalpy extraction. The numerical simulation has shown that a supersonic gas flow, containing about 4 plasma layers in the MHD channel simultaneously, is braked without shock waves creation. This type of the MHD generator can provide more than 30% enthalpy extraction ratio and about 80% isentropic efficiency. The advantages of the new concept are the following: (a) possibility of working at higher pressure and lower temperature, (b) operation with alkali seed.

  1. Fast Gas Replacement in Plasma Process Chamber by Improving Gas Flow Pattern

    NASA Astrophysics Data System (ADS)

    Morishita, Sadaharu; Goto, Tetsuya; Akutsu, Isao; Ohyama, Kenji; Ito, Takashi; Ohmi, Tadahiro

    2009-01-01

    The precise and high-speed alteration of various gas species is important for realizing precise and well-controlled multiprocesses in a single plasma process chamber with high throughput. The gas replacement times in the replacement of N2 by Ar and that of H2 by Ar are measured in a microwave excited high-density and low electron-temperature plasma process chamber at various working pressures and gas flow rates, incorporating a new gas flow control system, which can avoid overshoot of the gas pressure in the chamber immediately after the valve operation, and a gradational lead screw booster pump, which can maintain excellent pumping capability for various gas species including lightweight gases such as H2 in a wide pressure region from 10-1 to 104 Pa. Furthermore, to control the gas flow pattern in the chamber, upper ceramic shower plates, which have thousands of very fine gas injection holes (numbers of 1200 and 2400) formed with optimized allocation on the plates, are adopted, while the conventional gas supply method in the microwave-excited plasma chamber uses many holes only opened at the sidewall of the chamber (gas ring). It has been confirmed that, in the replacement of N2 by Ar, a short replacement time of approximately 1 s in the cases of 133 and 13.3 Pa and approximately 3 s in the case of 4 Pa can be achieved when the upper shower plate has 2400 holes, while a replacement time longer than approximately 10 s is required for all pressure cases where the gas ring is used. In addition, thanks to the excellent pumping capability of the gradational lead screw booster pump for lightweight gases, it has also been confirmed that the replacement time of H2 by Ar is almost the same as that of N2 by Ar.

  2. The effect of sterilization on silk fibroin biomaterial properties.

    PubMed

    Rnjak-Kovacina, Jelena; DesRochers, Teresa M; Burke, Kelly A; Kaplan, David L

    2015-06-01

    The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges are described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, γ radiation, dry heat, exposure to ethylene oxide, or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution, and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, γ irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding.

  3. The effect of sterilization on silk fibroin biomaterial properties

    PubMed Central

    Rnjak-Kovacina, Jelena; DesRochers, Teresa M; Burke, Kelly A; Kaplan, David L

    2015-01-01

    The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges is described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, gamma radiation, dry heat, exposure to ethylene oxide or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, gamma irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding. PMID:25761231

  4. Plasma spray gun having gas vortex producing nozzle

    SciTech Connect

    Smyth, R.T.; Zatorski, R.A.

    1985-03-19

    A plasma flame spray gun suitable for being constructed physically smaller than comparable power prior art plasma flame spray guns. The gun includes a nozzle having a tapering portion on the inlet side thereof. A cathode with a flat tip is positioned to at least partially extend into the tapering portion of the nozzle. A gas distribution ring is located around the cathode for creating a vortex around the cathode tip. This causes the arc formed between the tip and the nozzle to have a root which spins around the perimeter of the nozzle tip resulting in less wear and, therefore, extended part life.

  5. Wavelength scaling of terahertz radiation in plasma gas targets

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Huang, Suxia; Zhang, Cunlin; Zhang, Liangliang

    2016-11-01

    In our experiments, terahertz radiation via two-color generated laser plasma gas targets is studied using nitrogen and the noble gases (helium, neon, argon, krypton, and xenon) as the generation media. Carried out at the infrared beam of the advanced laser light source, we studied the effects of different pump wavelengths (between 1200 nm and 1600 nm) on THz generation. Terahertz pulse energy is measured as functions of input pulse energy, gas species, gas pressure. The experimental results show that the terahertz pulse energy approach a maximum value of 0.0578 μJ per pulse in xenon gas when the input 1600 nm pulse energy is 0.4 mJ per pulse.

  6. Gas flow driven by thermal creep in dusty plasma.

    PubMed

    Flanagan, T M; Goree, J

    2009-10-01

    Thermal creep flow (TCF) is a flow of gas driven by a temperature gradient along a solid boundary. Here, TCF is demonstrated experimentally in a dusty plasma. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. The design of the experiment allows isolating the effect of TCF. A stirring motion of the dust particle suspension is observed. By eliminating all other explanations for this motion, we conclude that TCF at the boundary couples by drag to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result provides an experimental verification, for the field of fluid mechanics, that TCF in the slip-flow regime causes steady-state gas flow in a confined volume.

  7. Plasma physics issues in gas discharge laser development

    SciTech Connect

    Garscadden, A. ); Kushner, M.J.; Eden, J.G. . Dept. of Electrical and Computer Engineering)

    1991-12-01

    In this paper an account is given of the interplay between partially ionized plasma physics and the development of gas discharge lasers. Gas discharge excitation has provided a wide array of laser devices extending from the soft X-ray region to the far infrared. The scaling of gas discharge lasers in power and energy also covers many orders of magnitude. The particular features of three regimes are discussed: short wavelength lasers (deep UV to soft X-ray); visible and near UV lasers; and infrared molecular gas lasers. The current status (Fall 1990) of these areas is reviewed, and an assessment is made of future research topics that are perceived to be important.

  8. Rapid determination of nevirapine in human plasma by gas chromatography.

    PubMed

    Langmann, Peter; Schirmer, Diana; Väth, Thomas; Desch, Steffen; Zilly, Michael; Klinker, Hartwig

    2002-02-05

    A sensitive and rapid gas chromatographic method has been developed to determine the levels of the HIV-1 non-nucleoside reverse transcriptase inhibitor nevirapine in human plasma. Quantitative recovery following liquid-liquid-extraction with diethylether from 500 microl of human plasma was achieved. Subsequently, the assay was performed with a CP-Sil 5CB capillary column, 15 m x 0.32 mm x 1.0 microm film thickness with a nitrogen-phosphorous-detector (NPD), Helium 5.0 was used as carrier gas with a constant inlet pressure of 7 p.s.i. Linear standard curves were obtained for concentrations ranging from 10 to 20 000 ng/ml. The calculated intra- and inter-day coefficients of variation were below 8%.

  9. Plasma quench technology for natural gas conversion applications

    SciTech Connect

    Detering, B.A.; Kong, P.C.; Thomas, C.P.

    1995-07-01

    This paper describes the experimental demonstration of a process for direct conversion of methane to acetylene in a thermal plasma. The process utilizes a thermal plasma to dissociate methane and form an equilibrium mixture of acetylene followed by a supersonic expansion of the hot gas to preserve the produced acetylene in high yield. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogen which persists throughout the expansion process. The presence of atomic hydrogen shifts the equilibrium composition by inhibiting complete pyrolysis of methane and acetylene to solid carbon. This process has the potential to reduce the cost of producing acetylene from natural gas. Acetylene and hydrogen produced by this process could be used directly as industrial gases, building blocks for synthesis of industrial chemicals, or oligomerized to long chain liquid hydrocarbons for use as fuels. This process produces hydrogen and ultrafine carbon black in addition to acetylene.

  10. Laser-plasma interactions in large gas-filled hohlraums

    SciTech Connect

    Turner, R.E.; Powers, L.V.; Berger, R.L.

    1996-06-01

    Indirect-drive targets planned for the National Ignition Facility (NIF) laser consist of spherical fuel capsules enclosed in cylindrical Au hohlraums. Laser beams, arranged in cylindrical rings, heat the inside of the Au wall to produce x rays that in turn heat and implode the capsule to produce fusion conditions in the fuel. Detailed calculations show that adequate implosion symmetry can be maintained by filling the hohlraum interior with low-density, low-Z gases. The plasma produced from the heated gas provides sufficient pressure to keep the radiating Au surface from expanding excessively. As the laser heats this gas, the gas becomes a relatively uniform plasma with small gradients in velocity and density. Such long-scale-length plasmas can be ideal mediums for stimulated Brillouin Scattering (SBS). SBS can reflect a large fraction of the incident laser light before it is absorbed by the hohlraum; therefore, it is undesirable in an inertial confinement fusion target. To examine the importance of SBS in NIF targets, the authors used Nova to measure SBS from hohlraums with plasma conditions similar to those predicted for high-gain NIF targets. The plasmas differ from the more familiar exploding foil or solid targets as follows: they are hot (3 keV); they have high electron densities (n{sub e}=10{sup 21}cm{sup {minus}3}); and they are nearly stationary, confined within an Au cylinder, and uniform over large distances (>2 mm). These hohlraums have <3% peak SBS backscatter for an interaction beam with intensities of 1-4 x 10{sup 15} W/cm{sup 2}, a laser wavelength of 0.351{micro}m, f/4 or f/8 focusing optics, and a variety of beam smoothing implementations. Based on these conditions the authors conclude that SBS does not appear to be a problem for NIF targets.

  11. Mobility in a strongly coupled dusty plasma with gas

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, J.

    2014-04-01

    The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.

  12. Mobility in a strongly coupled dusty plasma with gas.

    PubMed

    Liu, Bin; Goree, J

    2014-04-01

    The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.

  13. Ultra-Intense Laser Pulse Propagation in Gas and Plasma

    SciTech Connect

    Antonsen, T. M.

    2004-10-26

    It is proposed here to continue their program in the development of theories and models capable of describing the varied phenomena expected to influence the propagation of ultra-intense, ultra-short laser pulses with particular emphasis on guided propagation. This program builds upon expertise already developed over the years through collaborations with the NSF funded experimental effort lead by Professor Howard Milchberg here at Maryland, and in addition the research group at the Ecole Polytechnique in France. As in the past, close coupling between theory and experiment will continue. The main effort of the proposed research will center on the development of computational models and analytic theories of intense laser pulse propagation and guiding structures. In particular, they will use their simulation code WAKE to study propagation in plasma channels, in dielectric capillaries and in gases where self focusing is important. At present this code simulates the two-dimensional propagation (radial coordinate, axial coordinate and time) of short pulses in gas/plasma media. The plasma is treated either as an ensemble of particles which respond to the ponderomotive force of the laser and the self consistent electric and magnetic fields created in the wake of pulse or as a fluid. the plasma particle motion is treated kinetically and relativistically allowing for study of intense pulses that result in complete cavitation of the plasma. The gas is treated as a nonlinear medium with rate equations describing the various stages of ionization. A number of important physics issues will be addressed during the program. These include (1) studies of propagation in plasma channels, (2) investigation of plasma channel nonuniformities caused by parametric excitation of channel modes, (3) propagation in dielectric capillaries including harmonic generation and ionization scattering, (4) self guided propagation in gas, (5) studies of the ionization scattering instability recently

  14. Temporally resolved plasma spectroscopy for analyzing natural gas components

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Tsumaki, Naomasa; Ito, Tsuyohito

    2016-09-01

    Temporally resolved plasma spectroscopy has been carried out in two different hydrocarbon gas mixtures (CH4/Ar and C2H6/Ar) to explore the possibility of a new gas sensor using plasma emission spectral analysis. In this experiment, a nanosecond-pulsed plasma discharge was applied to observe optical emissions representing the initial molecular structure. It is found that a CH emission intensity in CH4/Ar is higher than that in C2H6/Ar. On the other hand, C2 intensities are almost the same degree between CH4/Ar and C2H6/Ar. This finding indicates that the emission intensity ratio of CH to C2 might be an effective index for a gas analysis. In addition, a time for the highest emission intensities of CH and C2 is several nanoseconds later than that of Ar. This result suggests that spectra from the initial molecular structure may be observed at the early stage of the discharge before molecules are fully dissociated, and this is currently in progress.

  15. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  16. Sterile connector.

    PubMed

    Tenczar, F J

    1976-01-01

    Fabrication of a sterile connector for joining a supply source to an independent delivery location through a contaminated environment requires four design steps: 1) alignment of connector housings; 2) exclusion of the contaminated environment; 3) sterilization of the excluded region; and 4) penetration within the sterilized area followed by coupling of the protected internal conduits. Protective covers for connectors now in use may be modified to provide penetrable terminal barrier membranes that can be joined to exclude the environment. An adhesive containing an antimicrobiologic agent would set the stage for a controlled mechanical penetration of the decontaminated fused barriers. In another design concept, plastic barrier membranes without preliminary adhesions are simultaneously fused, sterilized, and penetrated by a nichrome wire heated to approximately 288 C. A system can be designed that is compatible, at the option of the user, with either of these methods. The more economical mechanical approach could then be used for parenteral fluid therapy while the nichrome wire technique would be reserved for more complex processing methods (frozen erythrocytes) or when storage of the resulting component is a factor.

  17. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  18. Calculation of Ion Energy Distribution Functions at the Inner Surface of a Pet Bottle During Sterilization Processes

    NASA Astrophysics Data System (ADS)

    Szeremley, Daniel; Steves, Simon; Brinkmann, Ralf Peter; Awakowicz, Peter; Kushner, Mark J.; Mussenbrock, Thomas

    2012-10-01

    Due to a growing demand for bottles made of polyethylene terephthalate (PET) fast and efficient sterilization processes as well as barrier coating to decrease gas permeation are required. Plasma sterilization is an alternative way of sterilizing PET without using toxic ingredients (e.g. hydrogen peroxide or peracetic acid). To allow investigations in the field of plasma sterilization of PET bottles, a microwave plasma reactor has been developed. A coaxial waveguide combined with a gas-inlet, a modified plasmaline, is used for both coupling the microwave power and injecting the gas mixture into the bottle. One key parameter in the context of plasma treatment of bottles is the ion energy distribution function (IEDF) at the inner surface of the bottle. Additional it is possible to apply a DC bias potential to a metal cage which is placed around the bottle. Numerical results for IEDFs performed by means of the Hybrid Plasma Equipment Model (HPEM) are presented. Plasmas with relevant gas mixtures (Ar and ArO2) at different pressures and input powers are examined. The numerical results are compared with experimentally obtained data and show very good agreement.

  19. Sterilization of Exopolysaccharides Produced by Deep-Sea Bacteria: Impact on Their Stability and Degradation

    PubMed Central

    Rederstorff, Emilie; Fatimi, Ahmed; Sinquin, Corinne; Ratiskol, Jacqueline; Merceron, Christophe; Vinatier, Claire; Weiss, Pierre; Colliec-Jouault, Sylvia

    2011-01-01

    Polysaccharides are highly heat-sensitive macromolecules, so high temperature treatments are greatly destructive and cause considerable damage, such as a great decrease in both viscosity and molecular weight of the polymer. The technical feasibility of the production of exopolysaccharides by deep-sea bacteria Vibrio diabolicus and Alteromonas infernus was previously demonstrated using a bioproduct manufacturing process. The objective of this study was to determine which sterilization method, other than heat sterilization, was the most appropriate for these marine exopolysaccharides and was in accordance with bioprocess engineering requirements. Chemical sterilization using low-temperature ethylene oxide and a mixture of ionized gases (plasmas) was compared to the sterilization methods using gamma and beta radiations. The changes to both the physical and chemical properties of the sterilized exopolysaccharides were analyzed. The use of ethylene oxide can be recommended for the sterilization of polysaccharides as a weak effect on both rheological and structural properties was observed. This low-temperature gas sterilizing process is very efficient, giving a good Sterility Assurance Level (SAL), and is also well suited to large-scale compound manufacturing in the pharmaceutical industry. PMID:21566796

  20. Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Javid, Amjed; Kumar, Manish; Han, Jeon Geon

    2017-01-01

    Electrically-conductive nanocrystalline carbon films, having non-toxic and non-immunogenic characteristics, are promising candidates for reusable medical devices. Here, the pure and N- doped nanocrystalline carbon films are deposited by the assistance of inductively coupled plasma (ICP) in an unbalanced facing target pulsed-DC magnetron sputtering process. Through the optical emission spectroscopy study, the role of ICP assistance and N-doping on the reactive components/radicals during the synthesis is presented. The N-doping enhances the three fold bonding configurations by increasing the ionization and energies of the plasma species. Whereas, the ICP addition increases the plasma density to control the deposition rate and film structure. As a result, sputtering-throughput (deposition rate: 31-55 nm/min), electrical resistivity (4-72 Ωcm) and water contact angle (45.12°-54°) are significantly tailored. Electric transport study across the surface microchannel confirms the superiority of N-doped carbon films for sterilization stability over the undoped carbon films.

  1. System for sterilizing objects. [cleaning space vehicle systems

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (Inventor)

    1981-01-01

    A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.

  2. High Power Light Gas Helicon Plasma Source For VASMIR

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  3. Modeling and Data Needs of Atmospheric Pressure Gas Plasma and Biomaterial Interaction

    NASA Astrophysics Data System (ADS)

    Sakiyama, Yukinori; Graves, David B.

    2009-05-01

    Non-thermal atmospheric pressure plasmas have received considerable attention recently. One promising application of non-thermal plasma devices appears to be biomaterial and biomedical treatment. Various biological and medical effects of non-thermal plasmas have been observed by a variety of investigators, including bacteria sterilization, cell apoptosis, and blood coagulation, among others. The mechanisms of the plasma-biomaterial interaction are however only poorly understood. A central scientific challenge is therefore how to answer the question: "What plasma-generated agents are responsible for the observed biological effects?" Our modeling efforts are motivated by this question. In this paper, we review our modeling results of the plasma needle discharge. Then, we address data needs for further modeling and understanding of plasma-biomaterial interaction

  4. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  5. On the different regimes of gas heating in air plasmas

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2015-10-01

    Simulations of the gas temperature in air (N2-20%O2) plasma discharges are presented for different values of the reduced electric field, E/N g, electron density n e, pressure and tube radius. This study is based on the solutions to the time-dependent gas thermal balance in a cylindrical geometry coupled to the electron, vibrational and chemical kinetics, for E/{{N}\\text{g}}=50 and 100 Td (1 Td = 10-17 V cm2), 109  ⩽  n e  ⩽  1011 cm-3, pressure in the range 1-20 Torr, and also considering different tube radius, 0.5, 1 and 1.5 cm. The competing role of different gas heating mechanisms is discussed in detail within the time range 0.01-100 ms. For times below 1 ms, gas heating occurs from O2 dissociation by electron impact through pre-dissociative excited states, e + O2  →  e + \\text{O}2*   →  e + 2O(3P) and …  →  e + O(3P) + O(1D), as well as through the quenching of N2 electronically excited states by O2. For longer times, simulation results show that gas heating comes from processes N(4S) + NO(X)  →  N2(X, v ~ 3) + O, N2(A) + O  →  NO(X) + N(2D), V-T N2-O collisions and the recombination of oxygen atoms at the wall. Depending on the given E/N g and n e values, each one of these processes can be an important gas-heating channel. The contribution of V-T N2-O exchanges to gas heating is important in the analysis of the gas temperature for different pressures and values of the tube radius. A global picture of these effects is given by the study of the fraction of the discharge power spent on gas heating, which is always ~15%. The values for the fractional power transferred to gas heating from vibrational and electronic excitation are also presented and discussed.

  6. New Horizons: Gas and Plasma in the Pluto System

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Gladstone, Randy; Summers, Michael; Bagenal, Fran; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly; Moore, Jeffrey M.; Grundy, William M.; New Horizons Atmospheres Science Theme Team, New Horizons Particles and Plasma Science Theme Team

    2016-10-01

    NASA's New Horizons mission gave us information about gas and plasma in the Pluto system from Pluto's surface up to a distance of ~200,000 km beyond Pluto. This review will give an overview of our current theories and observations of the near-surface atmospheric structure; the properties, production and settling of Pluto's ubiquitous haze; the minor atmospheric species and atmospheric chemistry; the energetics and high-altitude thermal structure; the escape rate and the pickup of methane ions; the effect of methane impacting Charon; and Pluto's heavy-ion tail. Details are given in other presentations at this conference.This work was supported by NASA's New Horizons project.

  7. Supersonic gas jets for laser-plasma experiments.

    PubMed

    Schmid, K; Veisz, L

    2012-05-01

    We present an in-depth analysis of De Laval nozzles, which are ideal for gas jet generation in a wide variety of experiments. Scaling behavior of parameters especially relevant to laser-plasma experiments as jet collimation, sharpness of the jet edges and Mach number of the resulting jet is studied and several scaling laws are given. Special attention is paid to the problem of the generation of microscopic supersonic jets with diameters as small as 150 μm. In this regime, boundary layers dominate the flow formation and have to be included in the analysis.

  8. Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea

    2016-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  10. Modeling of gas ionization and plasma flow in ablative pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue

    2016-12-01

    A one-dimensional model to study the gas ionization and plasma flow in ablative pulsed plasma thrusters(APPTs) is established in this paper. The discharge process of the APPT used in the LES-6 satellite is simulated to validate the model. The simulation results for the impulse bit and propellant utilization give values of 29.05 μN s and 9.56%, respectively, which are in good agreement with experimental results. To test the new ionization sub-model, the discharge process of a particular APPT, XPPT-1, is simulated, and a numerical result for the propellant utilization of 62.8% is obtained, which also agrees well with experiment. The gas ionization simulation results indicate that an APPT with a lower average propellant ablation rate and higher average electric field intensity between electrodes should have higher propellant utilization. The plasma density distribution between the electrodes of APPTs can also be obtained using the new model, and the numerical results show that the plasma generation and flow are discontinuous, which is in good agreement with past experimental results of high-speed photography. This model provides a new tool with which to study the physical mechanisms of APPTs and a reference for the design of high-performance APPTs.

  11. Experimental and numerical studies of neutral gas depletion in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi

    The central theme of this dissertation is to explore the impact of neutral depletion and coupling between plasma and neutral gas in weakly ionized unmagnetized plasma. Since there have been few systematic studies of the mechanism which leads to non-uniform neutral distribution in processing plasmas, this work investigated the spatial profiles of neutral temperature and pressure experimentally, and the mechanism of resulting neutral depletion by simulation. The experimental work is comprised of neutral temperature measurements using high resolution atomic spectroscopy and molecular spectroscopy, and neutral pressure measurements considering thermal transpiration. When thermal transpiration effects are used to correct the gas pressure measurements, the total pressure remains constant regardless of the plasma condition. Since the neutral gas follows the ideal gas law, the neutral gas density profile is also obtained from the measured neutral gas temperature and the corrected pressure measurements. The results show that neutral gas temperature rises close to ˜ 900 [K], and the neutral gas density at the center of plasma chamber has a significant (factor of 2-4x) decrease in the presence of a plasma discharge. In numerical work, neutral and ion transport phenomena were simulated by a hybrid-type direct simulation Monte Carlo (DSMC) method of one dimensional (1D) electrostatic plasma to identify the mechanism of the neutral gas density depletion in Ar/N2 mixtures. The simulation reveals that the neutral depletion is the result of the interplay between plasma and neutral gas, and a parametric study indicates that neutral depletion occurs mainly due to gas heating and pressure balance for the typical condition of plasma processing. In high density plasma sources (Te ≈ 2-5 eV, ne ≈ 1011-1012 cm-3) where the plasma pressure becomes comparable to neutral pressure, total pressure (neutral pressure and plasma pressure) is conserved before and after the discharge. Therefore

  12. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    SciTech Connect

    Pollack, Brian R.

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 μm in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  13. Laser ablated copper plasmas in liquid and gas ambient

    SciTech Connect

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  14. Gas-injection experiments on a dense plasma focus

    SciTech Connect

    Barnouin, O.; Javedani, J.; Del Medico, S.; Miley, G.H.; Bromley, B.

    1994-12-31

    Rockford Technology Associates, Inc. (RTA) has been doing experiments on the Dense Plasma focus (DPF) device at the Fusion Studies Laboratory of the University of Illinois. This DPF consists of four racks of five 2-{mu}F capacitors whose charge is switched onto the inner electrode of a plasma focus by four Trigatron spark gaps. The stored energy is 12.5 kJ at 25 kV. The bank is usually discharged in a static fill of H{sub 2} at {approx} 6 torr. Preliminary experiments aimed at exploring the potential of the DPF device as a magnetoplasmadynamic (MPD) thruster and as an x-ray source for lithography have investigated various alternative ways of injecting gas between the electrodes. One of those approaches consists of injecting gas from the tip of the inner electrode at a steady rate. In this operation, the DPF chamber pressure was held constant by running the vacuum pump at full throttle. This operation simulated simultaneous pulsed injection at the base insulator and electrode tip. Hydrogen was fed through a 1/16th-inch hole at a flow rate of {approx} 90 cm/s. Pulsing was then performed at 23 kV, and the corresponding variations of the current were observed using a Rogowski coil. It is found that the plasma collapses into a pinch at the same time as in conventional experiments using a static fill. The singularity in the current waveform is slightly smaller with tip injection, but its size and shape are easily reproducible. Further details and comparison of this operation with conventional pulsing will be presented.

  15. System and method of applying energetic ions for sterilization

    DOEpatents

    Schmidt, John A.

    2003-12-23

    A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and across the cold plasma, is provided.

  16. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Boundary instability of an erosion laser plasma expanding into a background gas

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Kanevskiĭ, M. F.; Sebrant, A. Yu

    1993-12-01

    The stability of the contact region in the system consisting of an erosion plasma and a gas has been determined experimentally under conditions such that the length of the applied laser pulse is longer than the rise time of the instability, and the expansion of the erosion plume is accompanied by breakdown of the background gas. The evolution of perturbations of the plasma front following the introduction of initial perturbations with a fixed spatial period has been studied. It is possible to model the injection of plasma bunches into a low-pressure gas by studying the dynamics of the vaporization at moderate laser-light intensities, characteristic of technological applications.

  17. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Winter, Jörn; Bösel, André; Reuter, Stephan; Weltmann, Klaus-Dieter

    2016-02-01

    A novel approach combining experimental and numerical methods for the study of reaction mechanisms in a cold atmospheric \\text{Ar} plasma jet is introduced. The jet is operated with a shielding gas device that produces a gas curtain of defined composition around the plasma plume. The shielding gas composition is varied from pure {{\\text{N}}2} to pure {{\\text{O}}2} . The density of metastable argon \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) in the plasma plume was quantified using laser atom absorption spectroscopy. The density of long-living reactive oxygen and nitrogen species (RONS), namely {{\\text{O}}3} , \\text{N}{{\\text{O}}2} , \\text{NO} , {{\\text{N}}2}\\text{O} , {{\\text{N}}2}{{\\text{O}}5} and {{\\text{H}}2}{{\\text{O}}2} , was quantified in the downstream region of the jet in a multipass cell using Fourier-transform infrared spectroscopy (FTIR). The jet produces a turbulent flow field and features guided streamers propagating at several \\text{km}~{{\\text{s}}-1} that follow the chaotic argon flow pattern, yielding a plasma plume with steep spatial gradients and a time dependence on the \\text{ns} scale while the downstream chemistry unfolds within several seconds. The fast and highly localized electron impact reactions in the guided streamer head and the slower gas phase reactions of neutrals occurring in the plasma plume and experimental apparatus are therefore represented in two separate kinetic models. The first electron impact reaction kinetics model is correlated to the LAAS measurements and shows that in the guided streamer head primary reactive oxygen and nitrogen species are dominantly generated from \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) . The second neutral species plug-flow model hence uses an \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) source term as sole energy input and yields good agreement with the RONS measured by FTIR spectroscopy.

  18. Synergistic Effects in Sonochemical Sterilization

    PubMed Central

    Boucher, Raymond M. G.; Pisano, Michael A.; Tortora, George; Sawicki, Edward

    1967-01-01

    The synergistic effects observed during the sterilization of Bacillus subtilis var. niger ATCC 9372 by the combined action of ethylene or propylene oxide with high-intensity airborne sound waves (34.8 kc/sec) were investigated. It has been shown that the number of surviving spores deposited on paper strips decreases exponentially with the sound intensity at sample level. Reductions of the order of one-third of the time required for standard propylene oxide sterilization have been observed by using the combined action of sound waves with gaseous sterilization. At the present time, maximal synergistic effects seem to be achieved for the following experimental conditions: propylene oxide concentration, 500 to 1,000 mg/liter; acoustic intensity, 161 to 162 db; contact time, 80 min; temperature, 60 C; and relative humidity, 40%. The basic mechanism involved in sonochemical sterilization seems to be more of a physical (accelerated gas diffusion) than a chemical nature. PMID:4965941

  19. Plasma formation using a capillary discharge in water and its application to the sterilization of E. coli

    NASA Astrophysics Data System (ADS)

    Hong, Yong Cheol; Park, Hyun Jae; Lee, Bong Ju; Kang, Won-Seok; Uhm, Han Sup

    2010-05-01

    An underwater electrical discharge in a narrow dielectric capillary provides the details of the evolution of microbubbles to plasma as formed by a tungsten electrode inserted in the capillary. An increase in the applied voltage forms microbubbles after water fills the capillary. A further increase in the voltage generates a surface discharge through the boundary of the bubble, elongating the bubble shape, and eventually forming plasma by electrical breakdown. This produces atomic oxygen, atomic hydrogen, and hydroxyl radicals from dissociation of water vapor. Also, a bactericidal test in normal saline solution showed that more than 99.6% of the bacterial cells were killed within 8 s, resulting from chlorine-containing species, in particular hypochlorous acid as a major bactericidal agent.

  20. Plasma-gas interactions studies in a hybrid plume plasma rocket

    NASA Technical Reports Server (NTRS)

    Chang, F. R.; Krueger, W. A.; Yang, T. F.; Fisher, J. L.

    1985-01-01

    Plasma-gas interaction was investigated and the basic mechanisms for energy and particle transport. The solution approach assumes cylindrical geometry and includes a multiplicity of atomic reactions, and the presence of a strong magnetic field is described. The principal reactions are electron and ion impact ionization, and charge exchange between hot ions and cold neutrals. Radial particle and energy transport is mainly by diffusion. A modified Bohm diffusion model for plasma in the core of the plume, and classical neutral particle diffusion in the cooler regions of the flow are presented. Neutrals are allowed to free stream in the low density regions, where the collision mean-free-path becomes comparable, or even larger than the characteristic dimensions of the system.

  1. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Huang, Jun; Du, Ning; Liu, Xiao-Di; Wang, Xing-Quan; Lv, Guo-Hua; Zhang, Guo-Ping; Guo, Li-Hong; Yang, Si-Ze

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O2 plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O2 plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O2 (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  2. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    SciTech Connect

    Chen Wei; Huang Jun; Wang Xingquan; Lv Guohua; Zhang Guoping; Du Ning; Liu Xiaodi; Guo Lihong; Yang Size

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O{sub 2} plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O{sub 2} plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O{sub 2} (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  3. Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-06-26

    It is shown, by simulation and theory, that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by √[ω(p)(2)+ω(c)(2)/4]+ω(c)/2, where ω(p) is the plasma frequency and ω(c) is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high-B-field cases, the radiation strength is proportional to ω(p)(2)/ω(c). The B field provides a tunability in the radiation frequency, spectrum width, and field strength.

  4. High Power Light Gas Helicon Plasma Source for VASIMR

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  5. Initial experiments of RF gas plasma source for heavy ionfusion

    SciTech Connect

    Ahle, L.; Hall, R.; Molvik, A.W.; Chacon-Golcher, E.; Kwan, J.W.; Leung, K.N.; Reijonen, J.

    2002-05-22

    The Source Injector Program for the US Heavy Ion Fusion Virtual National Laboratory is currently exploring the feasibility of using RF gas plasma sources for a HIF driver. This source technology is presently the leading candidate for the multiple aperture concept, in which bright millimeter size beamlets are extracted and accelerated electrostatically up to 1 MeV before the beamlets are allowed to merge and form 1 A beams. Initial experiments have successfully demonstrated simultaneously high current density, {approx} 100 mA/cm{sup 2} and fast turn on, {approx} 1 {micro}s. These experiments were also used to explore operating ranges for pressure and RF power. Results from these experiments are presented as well as progress and plans for the next set of experiments for these sources.

  6. Positron transport and thermalization - the plasma-gas interface

    NASA Astrophysics Data System (ADS)

    Marler, Joan

    2008-11-01

    Low energy positrons are now used in many fields including atomic physics, material science and medicine [1]. Plasma physics is providing new tools for this research, including Penning-Malmberg buffer-gas traps to accumulate positrons and the use of rotating electric fields (the ``rotating wall'' technique) to compress positrons radially and create tailored beams [1]. These devices (now available commercially), which rely in key instances on positron-neutral interactions, are a convenient way to create plasmas and beams for a variety of applications. A deeper understanding of the relevant cooling and loss mechanisms is required to take full advantage of this technology. This talk focuses on a recent study of positrons in such a tenuous gaseous environment in the presence of an applied electric field [2]. Energy-resolved collision cross sections and a Monte Carlo code modified to include positrionium (Ps) formation are used to obtain transport coefficients and the thermalization and Ps-formation rates. A markedly different type of negative differential conductivity is observed (i.e., not seen in electron systems), due to the non-conservative nature of the Ps-formation process. It is particularly prominent in gases with large, highly energy dependent Ps-formation cross sections. The relevance of these calculations to other positron applications will also be discussed, including a currently planned study of positrons in gaseous water. It is hoped that these calculations will inspire a new generation of positron transport experiments.*Work done in collaboration with Z.Lj. Petrovi'c, A. Bankovi'c, M. Suvakov, G. Malovi'c, S. Dujko, S.J. Buckman. 1. C. M. Surko and R. G. Greaves, Phys. Plasmas 11, 2333-2348 (2004).2. A. Bankovi'c, J. P. Marler, M. Suvakov, G. Malovi'c, and Z. Lj. Petrovi'c, Nucl. Instrum. and Meth. in Phys. Res. B 266, 462-465 (2008).

  7. Improved Back-Side Purge-Gas Chambers For Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Ezell, Kenneth G.; Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved chambers for inert-gas purging of back sides of workpieces during plasma arc welding in keyhole (full-penetration) mode based on concept of directing flows of inert gases toward, and concentrating them on, hot weld zones. Tapered chamber concentrates flow of inert gas on plasma arc plume and surrounding metal.

  8. An enhancement of plasma density by neutral gas injection observed in SEPAC Spacelab-1 experiment

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Kubota, S.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.; Williamson, P. R.

    1985-01-01

    An enhancement of plasma density observed during a neutral gas injection in Space Experiments with Particle Accelerators by the Space Shuttle/Spacelab-1 is presented. When a plume of nitrogen gas was injected from the orbiter into space, a large amount of plasma was detected by an onboard plasma probe. The observed density often increased beyond the background plasma density and was strongly dependent on the attitude of the orbiter with respect to the velocity vector. This effect has been explained by a collisional interaction between the injected gas molecules and the ionospheric ions relatively drifting at the orbital speed.

  9. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  10. Electron ranaway and ion-ion plasma formation in afterglow low-pressure plasma of oxygen-containing gas mixtures

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Kosykh, Nikolay; Gutsev, Sergey

    2012-10-01

    Experimental investigation of temporal evolution of charged plasma species in afterglow plasma of oxygen-containing mixtures have been investigated. The probe VAC and the time dependence of the saturation positive and negative particles currents to a probe in a fixed bias voltage were performed. The decay of afterglow low-pressure electronegative gas plasmas take place in two distinct stages (the electron-ion stage, and the ion-ion stage) as it was shown in [1] for pure oxygen. In the first stage, the negative ions are locked within a discharge volume and plasma is depleted of electrons and positive ions. The electron density decay is faster, than exponential, and practically all electrons leave plasma volume during finite time followed by the ion--ion (electron-free) plasma formation. The decay of the ion-ion plasma depends on the presence of detachment. With a large content of electronegative gas (oxygen) in a mixture, when there is a ``detachment particles,'' a small fraction of the electrons appearing as a result of the detachment continue to hold all negative ions in the discharge volume. In this case, the densities of all charged plasma components decay according to the same exponential law with a characteristic detachment time. At a low oxygen content in the gas mixture there is no detachment and plasma decays by an ion--ion ambipolar diffusion mechanism.[4pt][1]. S.A.Gutsev, A.A.Kudryavtsev, V.A.Romanenko. Tech.Phys. 40, 1131, (1995).

  11. Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices.

    PubMed

    Junkar, Ita; Kulkarni, Mukta; Drašler, Barbara; Rugelj, Neža; Mazare, Anca; Flašker, Ajda; Drobne, Damjana; Humpolíček, Petr; Resnik, Matic; Schmuki, Patrik; Mozetič, Miran; Iglič, Aleš

    2016-06-01

    Sterilization is the final surface treatment procedure of all implantable devices and is one of the key factors which have to be considered before implementation. Since different sterilization procedures for all implantable devices influence mechanical properties as well as biological response, the influence of different sterilization techniques on titanium nanotubes was studied. Commonly used sterilization techniques such as autoclaving, ultra-violet light sterilization, hydrogen peroxide plasma sterilization as well as the not so frequently used gaseous oxygen plasma sterilization were used. Three different nanotube diameters; 15 nm, 50 nm and 100 nm were employed to study the effects of various sterilization techniques. It was observed that autoclave sterilization resulted in destruction of nanotubular features on all three studied nanotube diameters, while UV-light and both kinds of plasma sterilization did not cause any significant morphological changes on the surfaces. Differences between the sterilization techniques employed influenced cytocompatibility, especially in the case of nanotubes with 100 nm diameter.

  12. Atomic Force Microscope Investigations of Biofilm-Forming Bacterial Cells Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Renshaw, Andrew; Abramzon, Nina; Brelles-Marino, Graciela

    2009-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). After 5 min. plasma treatment, 90% of cells were inactivated, that is, transformed to non-culturable cells. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  13. Gas dynamic theory of flight of fast electron flux in plasma

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.

    The one-dimensional flight of a fast electron flux in plasma is investigated taking into account generation and absorption of plasma waves. The transition from the kinetic description to the gas dynamics is made. The closed set of gas dynamic equations for electrons and plasmons is derived and an automodel solution is obtained in the case of instantaneous injection. This solution represents the beam-plasma formation on natural oscillations in the system electrons+plasmons is considered.

  14. Hybrid Particle-Continuum Methods for Nonequilibrium Gas and Plasma Flows

    DTIC Science & Technology

    2010-07-01

    boundary layers, and by rarefied flow conditions. Another form of nonequilibrium concerns different species in the gas or plasma having very different...Methods for Nonequilibrium Gas and Plasma Flows 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Iain D. Boyd (University of Michigan) 5d...Symposium on Rarefied Gas Dynamics, Monterey, CA, 10-15 July 2010. 14. ABSTRACT Two different hybrid particle-continuum methods are described for

  15. Plasma channel created by ionization of gas by a surface wave

    SciTech Connect

    Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M. Rukhadze, A. A.; Tikhonevich, O. V.

    2015-09-15

    Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.

  16. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  17. Synergistic sterilization effect of microwave-excited nonthermal Ar plasma, H2O2, H2O and TiO2, and a global modeling of the interactions

    NASA Astrophysics Data System (ADS)

    Lee, H. Wk; Lee, H. W.; Kang, S. K.; Y Kim, H.; Won, I. H.; Jeon, S. M.; Lee, J. K.

    2013-10-01

    A microwave-excited atmospheric-pressure plasma jet (uAPPJ) exhibited a synergistic sterilization effect when combined with hydrogen peroxide (H2O2), distilled water (DW) and titanium dioxide (TiO2) photocatalysis. The sterilization efficacy of H2O2-uAPPJ increased as the H2O2 concentration increased. The addition of TiO2 also remarkably increased the sterilization efficacy. To find the main factor for the sterilization effect, optical emission spectra and the degradation rate of a methylene blue solution were measured. Numerical analysis, a newly developed global modeling, was also conducted to discover the mechanisms. Both experimental measurements and global modeling results suggested that combinations of H2O2, DW and TiO2 increased the generation of hydroxyl radicals (·OH), which are known to be strong bactericidal agents. It was revealed that charged species, especially electrons, have a dominant role in the increase of ·OH.

  18. A study of gas flow pattern, undercutting and torch modification in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Hou, Haihui Ron

    1994-01-01

    A study on the plasma and shield gas flow patterns in variable polarity plasma arc (VPPA) welding was undertaken by shadowgraph techniques. Visualization of gas flow under different welding conditions was obtained. Undercutting is often present with aluminum welds. The effects of torch alignment, shield gas flow rate and gas contamination on undercutting were investigated and suggestions made to minimize the defect. A modified shield cup for the welding torch was fabricated which consumes much less shield gas while maintaining the weld quality. The current torch was modified with a trailer flow for Al-Li welding, in which hot cracking is a critical problem. The modification shows improved weldablility on these alloys.

  19. Measurements of Plasma Expansion due to Background Gas in the Electron Diffusion Gauge Experiment

    SciTech Connect

    Kyle A. Morrison; Stephen F. Paul; Ronald C. Davidson

    2003-08-11

    The expansion of pure electron plasmas due to collisions with background neutral gas atoms in the Electron Diffusion Gauge (EDG) experiment device is observed. Measurements of plasma expansion with the new, phosphor-screen density diagnostic suggest that the expansion rates measured previously were observed during the plasma's relaxation to quasi-thermal-equilibrium, making it even more remarkable that they scale classically with pressure. Measurements of the on-axis, parallel plasma temperature evolution support the conclusion.

  20. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Modeling of gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Smirnov, Boris M.

    2009-06-01

    The condition for the self-maintenance of a gas discharge plasma (GDP) is derived from its ionization balance expressed in the Townsend form and may be used as a definition of a gas discharge plasma in its simplest form. The simple example of a gas discharge plasma in the positive column of a cylindrical discharge tube allows demonstrating a wide variety of possible GDP regimes, revealing a contradiction between simple models used to explain gas discharge regimes and the large number of real processes responsible for the self-maintenance of GDP. The variety of GDP processes also results in a stepwise change of plasma parameters and developing some instabilities as the voltage or discharge current is varied. As a consequence, new forms and new applications of gas discharge arise as technology progresses.

  1. Gas ionization induced by a high speed plasma injection in space

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.

    1986-01-01

    Gas ionization induced by a fast plasma injection has been observed with the Space Experiments with Particle Accelerators (SEPAC) Experiment on Spacelab-1. When an impulsive high-density plasma was injected from the orbiter, waves near the lower-hybrid frequency were enhanced, and the surrounding gas drifting with the orbiter was ionized for several tens of milliseconds after the plasma injection. The long-duration gas ionization was observed only when the plasma flux incoming to the orbiter cargo bay and the orbital velocity perpendicular to the magnetic field were relatively large. This effect has been explained by the concept of critical velocity ionization (CVI) for the gas drifting with the orbiter, although the gas velocity perpendicular to the magnetic field was less than the Alfven critical velocity.

  2. Role of neutral gas in scrape-off layer tokamak plasma

    SciTech Connect

    Bisai, N.; Jha, R.; Kaw, P. K.

    2015-02-15

    Neutral gas in scrape-off layer of tokamak plasma plays an important role as it can modify the plasma turbulence. In order to investigate this, we have derived a simple two-dimensional (2D) model that consists of electron continuity, quasi-neutrality, and neutral gas continuity equations using neutral gas ionization and charge exchange processes. Simple 1D profile analysis predicts neutral penetration depth into the plasma. Growth rate obtained from the linear theory has been presented. The 2D model equations have been solved numerically. It is found that the neutral gas reduces plasma fluctuations and shifts spectrum of the turbulence towards lower frequency side. The neutral gas fluctuation levels have been presented. The numerical results have been compared with Aditya tokamak experiments.

  3. Laser wakefield signatures: from gas plasma to nanomaterials

    NASA Astrophysics Data System (ADS)

    Farinella, Deano; Zhang, Xiaomei; Shin, Youngmin; Tajima, Toshiki

    2016-10-01

    The signatures of laser wakefields have become increasingly important in recent years due to the invention of a novel laser compression technique that may enable the creation of single cycle x-ray pulses. This x-ray driver may be able to utilize solid density targets to create acceleration gradients of up to TeV/cm. On the other hand, Laser Wakefield Acceleration (LWFA) has been identified as a potential mechanism for the generation of Extreme High Energy Cosmic Rays (EHECR) in Active Galactic Nuclei (AGN). Though these disparate density regimes may include different physics, by investigating scalings of the ratio ncr/ne we are able to survey a wide range of parameters to gain insight into particle acceleration and photon emission properties. The scaling of electron acceleration and photon radiation from wakefields as a function of the parameter ncr/ne has been studied. Further, acceleration gradient as well as other scalings were investigated in solid density channels and compared to gas plasma. Funded in part by the Norman Rostoker Fund.

  4. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    NASA Astrophysics Data System (ADS)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  5. An argon-nitrogen-hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2014-09-01

    Multivariate optimization of an argon-nitrogen-hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being - 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N2 in the outer plasma gas, and 0.50% v/v H2 to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO+ and Ar2+ as well as oxide levels by over an order of magnitude. On the other hand, the background from NO+ and ArN+ increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization.

  6. Atomic Force Microscope Investigations of Bacterial Biofilms Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Zelaya, Anna; Brelles-Marino, Graciela

    2012-02-01

    We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve biofilm communities, where bacteria grow embedded in an exopolysaccharide matrix, and cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Through AFM images and micromechanical measurements we observed bacterial morphological damage and reduced AFM tip-sample surface adhesion following plasma treatment.

  7. Rare Gas Metastable Atom Density in Diluted O2 RF Plasmas

    NASA Astrophysics Data System (ADS)

    Kitajima, Takeshi; Takahashi, Kei; Nakano, Toshiki; Makabe, Toshiaki

    Rare gas diluted O2 plasmas are gaining interests for application to high quality SiO2 film formation. The density of rare gas metastable atoms and O atom in rare gas diluted O2 radio frequency (RF) capacitively coupled plasma (CCP) was measured by optical absorption spectroscopy (OAS). Decreases of rare gas metastable densities due to addition of O2 indicate efficient O atom production by rare gas metastables via collisional quenching. Krypton metastable had highest density among four rare gas species for fixed RF power. The decrease of Ar metastable density due to O2 addition showed quantitative agreement with reported quenching rate coefficient. Detailed discussion on different gas pressures illustrates reduced O2 fraction is the key for selective production of O atoms through rare gas metastables.

  8. Uranium plasma emission at gas-core reaction conditions

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.

    1976-01-01

    The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.

  9. Effect of Deuterium Gas Puff On The Edge Plasma In NSTX

    SciTech Connect

    Zweben, S. J.

    2014-02-20

    This paper describes a detailed examination of the effects of a relatively small pulsed deuterium gas puff on the edge plasma and edge turbulence in NSTX. This gas puff caused little or no change in the line-averaged plasma density or total stored energy, or in the edge density and electron temperature up to the time of the peak of the gas puff. The radial profile of the Dα light emission and the edge turbulence within this gas puff did not vary significantly over its rise and fall, implying that these gas puffs did not significantly perturb the local edge plasma or edge turbulence. These measurements are compared with modeling by DEGAS 2, UEDGE, and with simplified estimates for the expected effects of this gas puff.

  10. Crucial roles of reactive chemical species in modification of respiratory syncytial virus by nitrogen gas plasma.

    PubMed

    Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro; Murakami, Tomoyuki

    2017-05-01

    The exact mechanisms by which nanoparticles, especially those composed of soft materials, are modified by gas plasma remain unclear. Here, we used respiratory syncytial virus (RSV), which has a diameter of 80-350nm, as a model system to identify important factors for gas plasma modification of nanoparticles composed of soft materials. Nitrogen gas plasma, generated by applying a short high-voltage pulse using a static induction (SI) thyristor power supply produced reactive chemical species (RCS) and caused virus inactivation. The plasma treatment altered the viral genomic RNA, while treatment with a relatively low concentration of hydrogen peroxide, which is a neutral chemical species among RCS, effectively inactivated the virus. Furthermore, a zero dimensional kinetic global model of the reaction scheme during gas plasma generation identified the production of various RCS, including neutral chemical species. Our findings suggest the nitrogen gas plasma generates RCS, including neutral species that damage the viral genomic RNA, leading to virus inactivation. Thus, RCS generated by gas plasma appears to be crucial for virus inactivation, suggesting this may constitute an important factor in terms of the efficient modification of nanoparticles composed of soft materials.

  11. Optimization of a novel headspace-solid-phase microextraction-gas chromatographic method by means of a Doehlert uniform shell design for the analysis of trace level ethylene oxide residuals in sterilized medical devices.

    PubMed

    DiCicco, Michael P; Lang, Bridget; Harper, Thomas I

    2009-06-01

    Medical devices sterilized by ethylene oxide (EtO) retain trace quantities of EtO residuals, which may irritate patients' tissue. Reliably quantifying trace level EtO residuals in small medical devices requires an extremely sensitive analytical method. In this research, a Doehlert uniform shell design was utilized in obtaining a response surface to optimize a novel headspace-solid-phase microextraction-gas chromatographic (HS-SPME-GC) method developed for analyzing trace levels of EtO residuals in sterilized medical devices, by evaluating sterilized, polymer-coated, drug-eluting cardiovascular stents. The effects of four independent experimental variables (HS-SPME desorption time, extraction temperature, GC inlet temperature and extraction time) on GC peak area response of EtO were investigated simultaneously and the most influential experimental variables determined were extraction temperature and GC inlet temperature, with the fitted model showing no evidence of lack-of-fit. The optimized HS-SPME-GC method demonstrated overall good linearity/linear range, accuracy, repeatability, reproducibility, absolute recovery and high sensitivity. This novel method was successfully applied to analysis of trace levels of EtO residuals in sterilized/aerated cardiovascular stents of various lengths and internal diameter, where, upon heating, trace EtO residuals fully volatilized into HS for extraction, thereby nullifying matrix effects. As an alternative, this novel HS-SPME-GC method can offer higher sensitivity compared with conventional headspace analyzer-based sampling.

  12. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  13. Space-time evolution of ejected plasma for the triggering of gas switch

    NASA Astrophysics Data System (ADS)

    Liu, Shanhong; Liu, Xuandong; Shen, Xi; Feng, Lei; Tie, Weihao; Zhang, Qiaogen

    2016-06-01

    Ejected plasma has been widely applied to the discharge process of gas spark switches as a trigger technology, and the development process of ejected plasma has a direct and important effect on the discharge characteristics of gas switches. In this paper, both the injection characteristics and space-time evolution of ejected plasma for the triggering of gas spark switch with different stored energies, pulse polarities, and pressures are studied. The discharge characteristics and breakdown process of a gas switch ignited by ejected plasma under different working coefficients are also discussed briefly. The results show that stored energy has significant influence on the characteristics of ejected plasma. With the increase of stored energy, the propulsion mode of ejected plasma in the axial direction transforms from "plasmoid" to "plasma flow," and the distribution of the ejected plasma goes through "cloud," "core-cloud," and "branch" in sequence. The velocity of ejected plasma under negative pulse polarity is obviously higher than that under positive pulse polarity, especially at the very beginning time. The radial dimensions of ejected plasma under two kinds of pulse polarities follow the similar varying pattern over time, which increase first and then decrease, assuming an inverted "U"-shaped curve. With the increase of pressure, the velocity of ejected plasma significantly decreases and the "branch" channels droop earlier. Applying the ejected plasma to the triggering of a gas switch, the switch can be triggered reliably in a much wide working coefficient range of 10%-90%. With the increase of working coefficient, the breakdown process of the switch translates from slow working mode to fast working mode, and the delay time reduces from tens of μs to hundreds of ns.

  14. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    SciTech Connect

    Ciocarlan, C.; Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-09-15

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup −3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

  15. Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics

    NASA Astrophysics Data System (ADS)

    Atif, Hussain; Xun, Gao; Qi, Li; Zuoqiang, Hao; Jingquan, Lin

    2017-01-01

    In this work, we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography. A particular emphasis was given to the plume dynamics (shape, size) with the combined effects of ambient gas pressures and an external magnetic field. Free expansion, sharpening effect, and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures. Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes, such as plume splitting, elliptical geometry changes, radial expansion, and plume confinement. Furthermore, the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures.

  16. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    SciTech Connect

    Kaneko, T.

    2009-05-15

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

  17. Generation of terahertz radiation by focusing femtosecond bichromatic laser pulses in a gas or plasma

    SciTech Connect

    Chizhov, P A; Volkov, Roman V; Bukin, V V; Ushakov, A A; Garnov, Sergei V; Savel'ev-Trofimov, Andrei B

    2013-04-30

    The generation of terahertz radiation by focusing two-frequency femtosecond laser pulses is studied. Focusing is carried out both in an undisturbed gas and in a pre-formed plasma. The energy of the terahertz radiation pulses is shown to reduce significantly in the case of focusing in a plasma. (extreme light fields and their applications)

  18. [Complications of tubal sterilization].

    PubMed

    Schreiner, W E

    1986-05-01

    In Europe and the US, tubal sterilization by laparoscopy has become the most widely used technique for female sterilization. The overall rate of intra- and postoperative complications differs between 0.145% and 0.85% in the numerous studies which have been done. This means 1 severe complication in 120-700 laparoscopic sterilizations. The lethality of tubal sterilization by laparoscopy lies between 3-10 deaths/100,000 interventions. The so-called "post-tubal ligation syndrome" is a rare complication. The overall pregnancy rate after tubal sterilization is 3-10/1000 women. The rate of ectopic pregnancy is very high and varies between 13.6% and 90%. Only 5% of the sterilized women show dissatisfaction. Several factors are relevant with regard to psychological sequelae and must be considered before tubal sterilization can be performed. 1 of the most important is the individual comprehensive counselling of the female or the couple prior to the sterilization.

  19. [Comparative study on the gas temperature of a plasma jet at atmospheric pressure].

    PubMed

    Jia, Peng-Ying; Li, Xue-Chen; Yuan, Ning

    2011-08-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce jet plasma in flowing work gas (argon mixed with trace nitrogen) at atmospheric pressure. The relation between the plasma length and the gas flow rate was obtained by taking the images of the jet plasma. A high-resolution optical spectrometer was used to collect the optical emission spectrum. The emission spectra of the first negative band of N(2+) (B2 Sigma(u+)-->Chi2 Sigma(g+), 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The gas temperature was investigated by this optical method and results show that the gas temperature increases with increasing the applied voltage. For comparison, a thermometer was used to measure the temperature of the gas emitted from the jet. The results also show that the gas temperature increases with increasing the applied voltage. The gas temperatures obtained by the two methods are consistent. The difference was analyzed.

  20. Gas Temperature Determination in Argon-Helium Plasma at Atmospheric Pressure using van der Waals Broadening

    SciTech Connect

    Munoz, Jose; Yubero, Cristina; Calzada, Maria Dolores; Dimitrijevic, Milan S.

    2008-10-22

    The use of the van der Waals broadening of Ar atomic lines to determine the gas temperature in Ar-He plasmas, taking into account both argon and helium atoms as perturbers, has been analyzed. The values of the gas temperature inferred from this broadening have been compared with those obtained from the spectra of the OH molecular species in the discharge.

  1. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T. Ohba, T.; Uchida, T.; Yoshida, Y.; Minezaki, H.; Ishihara, S.; Racz, R.; Biri, S.; Kato, Y.

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  2. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  3. On anomalous temporal evolution of gas pressure in inductively coupled plasma

    SciTech Connect

    Seo, B. H.; Chang, H. Y.; You, S. J.; Kim, J. H.; Seong, D. J.

    2013-04-01

    The temporal measurement of gas pressure in inductive coupled plasma revealed that there is an interesting anomalous evolution of gas pressure in the early stage of plasma ignition and extinction: a sudden gas pressure change and its relaxation of which time scales are about a few seconds and a few tens of second, respectively, were observed after plasma ignition and extinction. This phenomenon can be understood as a combined result between the neutral heating effect induced by plasma and the pressure relaxation effect for new gas temperature. The temporal measurement of gas temperature by laser Rayleigh scattering and the time dependant calculations for the neutral heating and pressure relaxation are in good agreement with our experimental results. This result and physics behind are expected to provide a new operational perspective of the recent plasma processes of which time is very short, such as a plasma enhanced atomic layer deposition/etching, a soft etch for disposal of residual by-products on wafer, and light oxidation process in semiconductor manufacturing.

  4. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua.

    PubMed

    Noriega, Estefanía; Shama, Gilbert; Laca, Adriana; Díaz, Mario; Kong, Michael G

    2011-10-01

    Gas plasmas generated at atmospheric pressure and ambient temperatures offer a possible decontamination method for poultry products. The efficacy of cold atmospheric gas plasmas for decontaminating chicken skin and muscle inoculated with Listeria innocua was examined. Optimization of operating conditions for maximal bacterial inactivation was first achieved using membrane filters on which L. innocua had been deposited. Higher values of AC voltage, excitation frequency and the presence of oxygen in the carrier gas resulted in the greatest inactivation efficiency, and this was confirmed with further studies on chicken muscle and skin. Under optimal conditions, a 10 s treatment gave > 3 log reductions of L. innocua on membrane filters, an 8 min treatment gave 1 log reduction on skin, and a 4 min treatment gave > 3 log reductions on muscle. These results show that the efficacy of gas plasma treatment is greatly affected by surface topography. Scanning electron microscopy (SEM) images of chicken muscle and skin revealed surface features wherein bacteria could effectively be protected from the chemical species generated within the gas plasma. The developments in gas plasma technology necessary for its commercial application to foods are discussed.

  5. Modification of plasma flows with gas puff in the scrape-off layer of ADITYA tokamak

    SciTech Connect

    Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V.

    2013-06-15

    The parallel Mach numbers are measured at three locations in the scrape-off layer (SOL) plasma of ADITYA tokamak by using Mach probes. The flow pattern is constructed from these measurements and the modification of flow pattern is observed by introducing a small puff of working gas. In the normal discharge, there is an indication of shell structure in the SOL plasma flows, which is removed during the gas puff. The plasma parameters, particle flux and Reynolds stress are also measured in the normal discharge and in the discharge with gas puff. It is observed that Reynolds stress and Mach number are coupled in the near SOL region and decoupled in the far SOL region. The coupling in the near SOL region gets washed away during the gas puff.

  6. Fiber Bragg grating-based temperature sensor for neutral gas in capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Zigeng; Han, Daoman; Zhang, Xinpu; Liu, Yongxin; Peng, Wei; Wang, Younian

    2016-11-01

    A fiber Bragg grating (FBG) has been utilized in capacitively coupled plasmas (CCP) for thermometry of neutral gas. We studied the effects of high frequency and low frequency power on radial distribution of neutral gas temperature. The result shows that the neutral gas temperature increases with increasing high frequency power. However, the presence of low frequency power will decrease the neutral gas temperature. Particularly, we eliminated the effect of ion bombardment on temperature measurement by studying axial distribution near plasma-sheath boundary. With features of immune to electromagnetic interference, high precision, and spatial resolving power, the FBG is a commendable candidate for CCP or other radio-frequency plasmas thermometry in both laboratory and industry.

  7. Synergistic catalytic removal NOX and the mechanism of plasma and hydrocarbon gas

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Sha, Xiang-ling; Zhang, Lei; He, Hui-bin; Ma, Zhen-hua; Wang, Long-wei; Wang, Yu-xin; She, Li-xia

    2016-07-01

    This paper using a method of catalytic adsorption combined with dielectric barrier discharge plasma which added to hydrocarbon gases. The different background gases, different dielectric properties and different pore sizes of the hydrolysis coke on the denitrification performance was studied. The effect of the coaction of plasma and the different properties of the removal of NO in flue gas was investigated, and the catalytic mechanism of the synergistic effect of plasma and hydrocarbon gas was discussed. The results shown that: The denitrification rate was significantly affected by plasma power and the initial concentration of NO; the reaction was restrained by the presence of oxygen and greatly promoted by the hydrocarbon gases. The permittivity of the catalyst has a great influence on the activity and the porous structure of the catalyst can obviously promote the reaction when the low temperature plasma combined with hydrocarbon gases.

  8. Polishing of Optical Media by Dielectric Barrier Discharge Inert Gas Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Gerhard, C.; Weihs, T.; Luca, A.; Wieneke, S.; Viöl, W.

    2013-12-01

    In this paper, surface smoothing of optical glasses, glass ceramic and sapphire using a low-power dielectric barrier discharge inert gas plasma at atmospheric pressure is presented. For this low temperature treatment method, no vacuum devices or chemicals are required. It is shown that by such plasma treatment the micro roughness and waviness of the investigated polished surfaces were significantly decreased, resulting in a decrease in surface scattering. Further, plasma polishing of lapped fused silica is introduced. Based on simulation results, a plasma physical process is suggested to be the underlying mechanism for initialising the observed smoothing effect.

  9. Study Of The Gas Balance By Injection Of Hydrocarbons Into The Plasma Simulator PSI 2

    SciTech Connect

    Bohmeyer, Werner; Markin, Andrey; Koch, Bernd; Fussmann, Gerd; Krenz, Gordon

    2006-01-15

    The stationary plasma of the plasma generator PSI 2 is used to study the gas balance of hydrocarbons and hydro-gen by means of mass spectrometers. For this purpose H2, acetylene and ethylene are injected into argon and hydrogen plasmas. It is found that hydrogenation of the hydrocarbon layers is strongly influenced by the hydrocarbon species injected previously. Furthermore, time constants of more than 1000 s for achieving stationary conditions are identified in some cases. The H/C ratio of the hydrocarbon layers is found to vary from about 1 to 1.4 for argon and hydrogen plasmas, respectively.

  10. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOEpatents

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  11. The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Liping

    2016-04-01

    The instability of terahertz (THz) plasma waves in two-dimensional (2D) quantum electron gas in a nanometer field effect transistor (FET) with asymmetrical boundary conditions has been investigated. We analyze THz plasma waves of two parts of the 2D quantum electron gas: gated and ungated regions. The results show that the radiation frequency and the increment (radiation power) in 2D ungated quantum electron gas are much higher than that in 2D gated quantum electron gas. The quantum effects always enhance the radiation power and enlarge the region of instability in both cases. This allows us to conclude that 2D quantum electron gas in the transistor channel is important for the emission and detection process and both gated and ungated parts take part in that process. supported by National Natural Science Foundation of China (No. 10975114)

  12. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    PubMed

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  13. Sterilization of E. coli bacterium with an atmospheric pressure surface barrier discharge

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhang, Rui; Liu, Peng; Ding, Li-Li; Zhan, Ru-Juan

    2004-06-01

    The atmospheric pressure surface barrier discharge (APSBD) in air has been used in killing Escherichia coli (E. coli). There is almost no bacterial colony in the sample after treatment by discharge plasma for 2 min. A diagnostic technique based on mass spectrum has been applied to the discharge gas and the mechanism of killing is discussed. Ozone and monatomic oxide are considered to be the major antimicrobial active species. There is almost no harmful by-product. The experiment proves that APSBD plasma is a very simple, effective and innocuous tool for sterilization.

  14. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    NASA Astrophysics Data System (ADS)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  15. Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells

    NASA Astrophysics Data System (ADS)

    Winter, J.; Wende, K.; Masur, K.; Iseni, S.; Dünnbier, M.; Hammer, M. U.; Tresp, H.; Weltmann, K.-D.; Reuter, S.

    2013-07-01

    In this study, the effect of feed gas humidity on the reactive component generation of an atmospheric-pressure argon plasma jet and its effect on human skin cells are investigated. Feed gas humidity is identified as one key parameter that strongly influences stability and reproducibility of plasma medical studies. The plasma jet is investigated by absorption spectroscopy in the ultraviolet and infrared spectral region for its ozone production depending on the humidity concentration in the feed gas. By optical emission spectroscopy the dependence of present excited plasma species such as hydroxyl radicals, molecular nitrogen, argon and atomic oxygen on the feed gas humidity is investigated. As an interface layer between the plasma jet effluent and the biological cell, a buffer solution is treated and the hydrogen peroxide (H2O2) production is studied with two independent colorimetric assays as a function of humidity admixture to the feed gas. Ultimately, the effect of varying feed gas humidity on the cell viability of indirect plasma treated adherent HaCAT cells is investigated. The highest viability is found for the driest feed gas condition. Furthermore, this work shows answers for the relevance of unwanted—or intended—feed gas humidity in plasma medical experiments and their comparatively large relevance with respect to ambient humidity. The findings will lead to more reproducible experiments in the field of plasma medicine.

  16. Three-dimensional modeling of the neutral gas depletion effect in a helicon discharge plasma

    NASA Astrophysics Data System (ADS)

    Kollasch, Jeffrey; Schmitz, Oliver; Norval, Ryan; Reiter, Detlev; Sovinec, Carl

    2016-10-01

    Helicon discharges provide an attractive radio-frequency driven regime for plasma, but neutral-particle dynamics present a challenge to extending performance. A neutral gas depletion effect occurs when neutrals in the plasma core are not replenished at a sufficient rate to sustain a higher plasma density. The Monte Carlo neutral particle tracking code EIRENE was setup for the MARIA helicon experiment at UW Madison to study its neutral particle dynamics. Prescribed plasma temperature and density profiles similar to those in the MARIA device are used in EIRENE to investigate the main causes of the neutral gas depletion effect. The most dominant plasma-neutral interactions are included so far, namely electron impact ionization of neutrals, charge exchange interactions of neutrals with plasma ions, and recycling at the wall. Parameter scans show how the neutral depletion effect depends on parameters such as Knudsen number, plasma density and temperature, and gas-surface interaction accommodation coefficients. Results are compared to similar analytic studies in the low Knudsen number limit. Plans to incorporate a similar Monte Carlo neutral model into a larger helicon modeling framework are discussed. This work is funded by the NSF CAREER Award PHY-1455210.

  17. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization

    PubMed Central

    Kaneko, Toshiro; Sasaki, Shota; Takashima, Keisuke; Kanzaki, Makoto

    2017-01-01

    Gas-liquid interfacial atmospheric-pressure plasma jets (GLI-APPJ) are used medically for plasma-induced cell-membrane permeabilization. In an attempt to identify the dominant factors induced by GLI-APPJ responsible for enhancing cell-membrane permeability, the concentration and distribution of plasma-produced reactive species in the gas and liquid phase regions are measured. These reactive species are classified in terms of their life-span: long-lived (e.g., H2O2), short-lived (e.g., O2•−), and extremely-short-lived (e.g., •OH). The concentration of plasma-produced •OHaq in the liquid phase region decreases with an increase in solution thickness (<1 mm), and plasma-induced cell-membrane permeabilization is found to decay markedly as the thickness of the solution increases. Furthermore, the horizontally center-localized distribution of •OHaq, resulting from the center-peaked distribution of •OH in the gas phase region, corresponds with the distribution of the permeabilized cells upon APPJ irradiation, whereas the overall plasma-produced oxidizing species such as H2O2aq in solution exhibit a doughnut-shaped horizontal distribution. These results suggest that •OHaq is likely one of the dominant factors responsible for plasma-induced cell-membrane permeabilization. PMID:28163376

  18. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Khattak, N. A. D.; Ahmad, Zahoor; Zakaullah, M.; Murtaza, G.

    2008-04-01

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field Bz (in magnitudes), if the switching time for the additional current is properly synchronized.

  19. Mechanisms of gas precipitation in plasma-exposed tungsten

    SciTech Connect

    R. D. Kolasinski; D. F. Cowgill; D. C. Donovan; M. Shimada

    2012-05-01

    Precipitation in subsurface bubbles is a key process that governs how hydrogen isotopes migrate through and become trapped within plasma-exposed tungsten. We describe a continuum-scale model of hydrogen diffusion in plasma-exposed materials that includes the effects of precipitation. The model can account for bubble expansion via dislocation loop punching, using an accurate equation of state to determine the internal pressure. This information is used to predict amount of hydrogen trapped by bubbles, as well as the conditions where the bubbles become saturated. In an effort to validate the underlying assumptions, we compare our results with published positron annihilation and thermal desorption spectroscopy data, as well as our own measurements using the tritium plasma experiment (TPE).

  20. Magnetically controlled deposition of metals using gas plasma. Final report

    SciTech Connect

    1998-04-02

    This is the first phase of a project that has the objective to develop a method of spraying materials on a substrate in a controlled manner to eliminate the waste and hazardous material generation inherent in present plating processes. The project is considering plasma spraying of metal on a substrate using magneto-hydrodynamics to control the plasma/metal stream. The process being developed is considering the use of commercially available plasma torches to generate the plasma/metal stream. The plasma stream is collimated, and directed using magnetic forces to the extent required for precise control of the deposition material. The project will be completed in phases. Phase one of the project, the subject of this grant, is the development of an analytical model that can be used to determine the feasibility of the process and to design a laboratory scale demonstration unit. The contracted time is complete, and the research is still continuing. This report provides the results obtained to date. As the model and calculations are completed those results will also be provided. This report contains the results of the computer code that have been completed to date. Results from a ASMEE Benchmark problem, flow over a backward step with heat transfer, Couette flow with magnetic forces, free jet flow are presented along with several other check calculations that are representative of the cases that were calculated in the course of the development process. The final cases that define a velocity field in the exit of a plasma spray torch with and without a magnetic field are in process. A separate program (SPRAY) has been developed that can track the plating material to the substrate and describe the distribution of the material on the substrate. When the jet calculations are complete SPRAY will be used to compare the distribution of material on the substrate with and without the effect of the magnetic focus.

  1. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  2. A soliton gas model for astrophysical magnetized plasma turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Sheerin, J. P.

    1982-06-01

    Plasma turbulence is considered as an ensemble of solitons. The derivation of the Alfven soliton by Spangler and Sheering (1981) is reviewed, and expressions are derived for the magnetic irregularity spectrum and the relationship between the magnetic and density irregularity power spectra. A derived expression also provides the answer to the question of the correlation between magnetic field and density enhancements. The properties of the turbulence model are compared with observations of plasma turbulence in the solar wind, and are found to reasonably account for them.

  3. N 2 gas plasma inactivates influenza virus by inducing changes in viral surface morphology, protein, and genomic RNA.

    PubMed

    Sakudo, Akikazu; Shimizu, Naohiro; Imanishi, Yuichiro; Ikuta, Kazuyoshi

    2013-01-01

    We have recently treated with N2 gas plasma and achieved inactivation of bacteria. However, the effect of N2 gas plasma on viruses remains unclear. With the aim of developing this technique, we analyzed the virucidal effect of N2 gas plasma on influenza virus and its influence on the viral components. We treated influenza virus particles with inert N2 gas plasma (1.5 kpps; kilo pulses per second) produced by a short high-voltage pulse generated from a static induction thyristor power supply. A bioassay using chicken embryonated eggs demonstrated that N2 gas plasma inactivated influenza virus in allantoic fluid within 5 min. Immunochromatography, enzyme-linked immunosorbent assay, and Coomassie brilliant blue staining showed that N2 gas plasma treatment of influenza A and B viruses in nasal aspirates and allantoic fluids as well as purified influenza A and B viruses induced degradation of viral proteins including nucleoprotein. Analysis using the polymerase chain reaction suggested that N2 gas plasma treatment induced changes in the viral RNA genome. Scanning electron microscopy analysis showed that aggregation and fusion of influenza viruses were induced by N2 gas plasma treatment. We believe these biochemical changes may contribute to the inactivation of influenza viruses by N2 gas plasma.

  4. N2 Gas Plasma Inactivates Influenza Virus by Inducing Changes in Viral Surface Morphology, Protein, and Genomic RNA

    PubMed Central

    Shimizu, Naohiro; Imanishi, Yuichiro

    2013-01-01

    We have recently treated with N2 gas plasma and achieved inactivation of bacteria. However, the effect of N2 gas plasma on viruses remains unclear. With the aim of developing this technique, we analyzed the virucidal effect of N2 gas plasma on influenza virus and its influence on the viral components. We treated influenza virus particles with inert N2 gas plasma (1.5 kpps; kilo pulses per second) produced by a short high-voltage pulse generated from a static induction thyristor power supply. A bioassay using chicken embryonated eggs demonstrated that N2 gas plasma inactivated influenza virus in allantoic fluid within 5 min. Immunochromatography, enzyme-linked immunosorbent assay, and Coomassie brilliant blue staining showed that N2 gas plasma treatment of influenza A and B viruses in nasal aspirates and allantoic fluids as well as purified influenza A and B viruses induced degradation of viral proteins including nucleoprotein. Analysis using the polymerase chain reaction suggested that N2 gas plasma treatment induced changes in the viral RNA genome. Scanning electron microscopy analysis showed that aggregation and fusion of influenza viruses were induced by N2 gas plasma treatment. We believe these biochemical changes may contribute to the inactivation of influenza viruses by N2 gas plasma. PMID:24195077

  5. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  6. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi Hoong

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  7. Stability of polyphenols in chokeberry juice treated with gas phase plasma.

    PubMed

    Bursać Kovačević, Danijela; Gajdoš Kljusurić, Jasenka; Putnik, Predrag; Vukušić, Tomislava; Herceg, Zoran; Dragović-Uzelac, Verica

    2016-12-01

    Chokeberry juice was subjected to cold atmospheric gas phase plasma and changes in hydroxycinnamic acids, flavonols and anthocyanins were monitored. Plasma treatments were carried out under different treatment times and juice volumes under constant gas flow (0.75dm(3)min(-1)). The results were compared against control (untreated) and pasteurized chokeberry juice (80°C/2min). During pasteurization, the most unstable were hydroxycinnamic acids with losses of up to 59%, while flavonols and anthocyanins increased by 5% and 9%, respectively. On the contrary, plasma treated chokeberry juice showed higher concentrations of hydroxycinnamic acids and 23% loss of anthocyanins in comparison to untreated juice. In order to obtain the optimal cold plasma treatment parameters principal component and sensitivity analysis were used. Such parameters can be potentially used for pasteurization in terms of phenolic stability of chokeberry juice. Optimal treatment was at 4.1min and sample volume of 3cm(3).

  8. Note: Design and investigation of a multichannel plasma-jet triggered gas switch.

    PubMed

    Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong

    2014-07-01

    We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.

  9. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    SciTech Connect

    Eck, H. J. N. van; Koppers, W. R.; Rooij, G. J. van; Goedheer, W. J.; Cardozo, N. J. Lopes; Kleyn, A. W.; Engeln, R.; Schram, D. C.

    2009-03-15

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial magnetic field. In this way, the neutrals are prevented to reach the target region. The neutral flux to the target must be lower than the plasma flux to enable ITER relevant plasma-surface interaction (PSI) studies. It is therefore essential to control the neutral gas dynamics. The DSMC method was used to model the expansion of a hot gas in a low pressure vessel where a small discrepancy in shock position was found between the simulations and a well-established empirical formula. Two stage differential pumping was modeled and applied in the linear plasma devices Pilot-PSI and PLEXIS. In Pilot-PSI a factor of 4.5 pressure reduction for H{sub 2} has been demonstrated. Both simulations and experiments showed that the optimum skimmer position depends on the position of the shock and therefore shifts for different gas parameters. The shape of the skimmer has to be designed such that it has a minimum impact on the shock structure. A too large angle between the skimmer and the forward direction of the gas flow leads to an influence on the expansion structure. A pressure increase in front of the skimmer is formed and the flow of the plasma beam becomes obstructed. It has been shown that a skimmer with an angle around 53 deg. gives the best performance. The use of skimmers is implemented in the design of the large linear plasma generator Magnum-PSI. Here, a three stage differentially pumped vacuum system is used to reach low enough neutral pressures near the target, opening a door to PSI research in the ITER relevant regime.

  10. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  11. Disinfection of Staphylococcus Aureus by pulsed non-thermal atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Mirpour, Shahriar; Ghoranneviss, Mahmood; Shahgoli, Farhad

    2011-10-01

    The aim of this paper was to study the effect of low-temperature atmospheric plasma jet on non-pathogenic bacteria's colonies. In this regard, Germicidal effect of time and distance of ICP He and He/N2 plasma jet on Staphylococcus Aureus were reported. The gas discharges were generated by a 40 KHz high voltage power supply which led to the inductively coupled plasma. The results showed that He/N2 enhance the sterilization time in comparison of He plasma. To the best of our knowledge this is the first study which has compared the effect of sterilization of ICP Helium and Helium-Nitrogen plasma in listed conditions. Also, the distance dependence showed that the germicidal effect was not linear the distance of electrode and sample. The protein leakage test and SEM of bacteria morphology confirmed the sterilization effect of non-thermal atmospheric pressure plasma jet.

  12. Formation of a Multi-Charged Plasma in the Directed Gas Flow

    NASA Astrophysics Data System (ADS)

    Abramov, I. S.; Gospodchikov, E. D.; Shalashov, A. G.

    2016-05-01

    We consider a gas-dynamic model describing the formation of a plasma with multiply ionized ions under the conditions of resonant heating of the electron component. Based on the isothermal approximation, possible regimes of the plasma flow are classified, the influence of the geometric divergence of the flow on the formation of the ion charge distribution is studied, and optimal regimes for the achievement of the maximum ion charge are identified. The model can be used for optimization and interpretation of modern experiments on generation of the extreme ultraviolet radiation due to the excitation of lines of multiply ionized atoms in a gas flow heated by strong millimeter or submillimeter waves.

  13. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria

    NASA Astrophysics Data System (ADS)

    Goree, J.; Liu, Bin; Drake, David

    2006-08-01

    The role of gas flow and transport mechanisms are studied for a small low-power impinging jet of weakly-ionized helium at atmospheric pressure. This plasma needle produces a non-thermal glow discharge plasma that kills bacteria. A culture of Streptococcus mutans (S. mutans) was plated onto the surface of agar, and spots on this surface were then treated with plasma. Afterwards, the sample was incubated and then imaged. These images, which serve as a biological diagnostic for characterizing the plasma, show a distinctive spatial pattern for killing that depends on the gas flow rate. As the flow is increased, the killing pattern varies from a solid circle to a ring. Images of the glow reveal that the spatial distribution of energetic electrons corresponds to the observed killing pattern. This suggests that a bactericidal species is generated in the gas phase by energetic electrons less than a millimetre from the sample surface. Mixing of air into the helium plasma is required to generate the observed O and OH radicals in the flowing plasma. Hydrodynamic processes involved in this mixing are buoyancy, diffusion and turbulence.

  14. Gas-Liquid Interfacial Non-Equilibrium Plasmas for Structure Controlled Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro

    2013-10-01

    Plasmas generated in liquid or in contact with liquid have attracted much attention as a novel reactive field in the nano-bio material creation because the brand-new chemical and biological reactions are yielded at the gas-liquid interface, which are induced by the physical actions of the non-equilibrium plasmas. In this study, first, size- and structure-controlled gold nanoparticles (AuNPs) covered with DNA are synthesized using a pulse-driven gas-liquid interfacial discharge plasma (GLIDP) for the application to next-generation drug delivery systems. The size and assembly of the AuNPs are found to be easily controlled by changing the plasma parameters and DNA concentration in the liquid. On the other hand, the mono-dispersed, small-sized, and interval-controlled AuNPs are synthesized by using the carbon nanotubes (CNTs) as a template, where the CNTs are functionalized by the ion and radical irradiation in non-equilibrium plasmas. These new materials are now widely applied to the solar cell, optical devices, and so on. Second, highly-ordered periodic structures of the AuNPs are formed by transcribing the periodic plasma structure to the surface of the liquid, where the spatially selective synthesis of the AuNPs is realized. This phenomenon is well explained by the reduction and oxidation effects of the radicals which are generated by the non-equilibrium plasma irradiation to the liquid and resultant dissociation of the liquid. In addition, it is attempted to form nano- or micro-scale periodic structures of the AuNPs based on the self-organizing behavior of turbulent plasmas generated by the nonlinear development of plasma fluctuations at the gas-liquid interface.

  15. Collision of an Arched Plasma-Filled Flux Rope with a Target Cloud of Initially Neutral Gas

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Bellan, Paul M.

    2015-11-01

    The Caltech solar loop experiment apparatus had been used to create an arched plasma-filled flux rope that expands to collide with a pre-injected initially-neutral gas. We investigated such a situation in two regimes: (i) plasma made by heavy gas impacting a much lighter neutral gas cloud and (ii) a light-gas plasma impacting much heavier neutral gas. The neutral gas became ionized immediately upon impact. In regime (i), multiple shock layers were formed in the target cloud; these magnetized collisionless shocks are relevant to solar physics as such shocks develop ahead of Coronal Mass Ejections and occur in Co-rotating Interaction Regions. In regime (ii), plasma expansion was inhibited. In both cases, fast camera images, magnetic probe measurements, and spectroscopy data will be reported. The analysis of plasma and shock expansion, as well as associated density and temperature changes, will be presented.

  16. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  17. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  18. DCT-TCI: Real Gas Characterization of Plasma Flow Control - An Integrated Approach

    DTIC Science & Technology

    2011-12-23

    code) 23-12-2011 Final 1 June 2009 - 30 November 2011 DCT- TCI : Real Gas Characterization of Plasma Flow Control-An Integrated Approach FA9550-09-1...Geometry, Multi-Barrier Plasma Actuators, Stereo PIV Experiment, MIG Plasma Kinetic Simulation U U U U 18 Dr. S Roy 352-392-9823 Reset 1 DCT- TCI ...chamber shown in FIG. 6a. The floor of the chamber is connected to a single axis manual traverse (Velmex A1503P40-S1.5), which allows the floor to

  19. [Study on Spectral Characteristics of Micro Plasma Channels of Different Gas-Gap in Dielectric Barrier Discharge].

    PubMed

    Gao, Ye-nan; Dong, Li-fang; Liu, Ying

    2015-10-01

    By optical emission spectrum, we report on the first investigation on the plasma parameters of micro plasma channels which are generated in two gas-gaps with different thickness in a triple-layer dielectric barrier discharge system. Different from the micro plasma channels formed in traditional two-layer dielectric barrier discharge, micro plasma channels formed in the triple-layer dielectric barrier discharge system reflect a unique discharge characteristic. From the pattern images taken by an ordinary camera, it shows that micro plasma channels generated in two discharge gas-gaps discharge with different sizes and light intensities. The micro plasma channels in wide gas-gap are much bigger than those in narrow gas-gap, and their light intensities are obvious stronger. By collecting the emission spectra of N2 second positive band (C3∏u --> B3∏g ) and calculating the relative intensity ratio method of N2 molecular ion line at 391.4 and the N2 molecular line at 394.1, the molecular vibration temperature and the average electron energy of micro plasma channels in two gas-gaps as functions of Argon concentration and applied voltage are investigated, respectively. It is found that the molecular vibration temperature and the average electron energy of micro plasma channels in wide gas-gap are lower than those in narrow gas-gap, and they both decrease with the increasing of the Argon concentration. As the applied voltage increases, micro plasma channels in wide gas-gap vary in a small range on the above two plasma investigations, while those in narrow gas-gap vary obviously. It indicates that micro plasma channels in narrow gas-gap are more sensitive to the applied voltage and they have a wider variation range of electric field than those in wide gas-gap.

  20. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Gounder, J. D.; Kutne, P.; Meier, W.

    2012-08-01

    The ability of laser induced breakdown spectroscopy (LIBS) technique for on line simultaneous measurement of elemental concentrations has led to its application in a wide number of processes. The simplicity of the technique allows its application to harsh environments such as present in boilers, furnaces and gasifiers. This paper presents the design of a probe using a custom optic which transforms a round beam into a ring (Donut) beam, which is used for forming a plasma in an atmosphere of nitrogen at high pressure (20 bar) and temperature (200 °C). The LIBS experiments were performed using a high pressure cell to characterize and test the effectiveness of the donut beam transmitted through the LIBS probe and collect plasma signal in back scatter mode. The first tests used the second harmonic of a Nd:YAG laser, pulse width 7 ns, to form a plasma in nitrogen gas at five different pressures (1, 5, 10, 15 and 20 bar) and three different gas temperatures (25, 100 and 200 °C). The uniqueness of this probe is the custom made optic used for reshaping the round laser beam into a ring (Donut) shaped laser beam, which is fed into the probe and focused to form a plasma at the measurement point. The plasma signal is collected and collimated using the laser focusing lens and is reflected from the laser beam axis onto an achromatic lens by a high reflection mirror mounted in the center section of the donut laser beam. The effect of gas pressure and temperature on N(I) lines in the high pressure cell experiment shows that the line intensity decreases with pressure and increases with temperature. Mean plasma temperature was calculated using the ratios of N(I) line intensities ranging from 7400 K to 8900 K at 1 bar and 2400 K to 3200 K at 20 bar for the three different gas temperatures. The results show that as a proof of principle the donut beam optics in combination with the LIBS probe can be used for performing extensive LIBS measurements in well controlled laboratory

  1. Emerging applications of low temperature gas plasmas in the food industry.

    PubMed

    Shaw, Alex; Shama, Gilbert; Iza, Felipe

    2015-06-16

    The global burden of foodborne disease due to the presence of contaminating micro-organisms remains high, despite some notable examples of their successful reduction in some instances. Globally, the number of species of micro-organisms responsible for foodborne diseases has increased over the past decades and as a result of the continued centralization of the food processing industry, outbreaks now have far reaching consequences. Gas plasmas offer a broad range of microbicidal capabilities that could be exploited in the food industry and against which microbial resistance would be unlikely to occur. In addition to reducing the incidence of disease by acting on the micro-organisms responsible for food spoilage, gas plasmas could also play a role in increasing the shelf-life of perishable foods and thereby reduce food wastage with positive financial and environmental implications. Treatment need not be confined to the food itself but could include food processing equipment and also the environment in which commercial food processing occurs. Moreover, gas plasmas could also be used to bring about the degradation of undesirable chemical compounds, such as allergens, toxins, and pesticide residues, often encountered on foods and food-processing equipment. The literature on the application of gas plasmas to food treatment is beginning to reveal an appreciation that attention needs also to be paid to ensuring that the key quality attributes of foods are not significantly impaired as a result of treatment. A greater understanding of both the mechanisms by which micro-organisms and chemical compounds are inactivated, and of the plasma species responsible for this is forming. This is significant, as this knowledge can then be used to design plasma systems with tailored compositions that will achieve maximum efficacy. Better understanding of the underlying interactions will also enable the design and implementation of control strategies capable of minimizing variations in

  2. Dynamics of Imploding Neon Gas Puff Plasmas. I.

    DTIC Science & Technology

    2014-09-26

    DISTRIBUTION /AVAILABILITY OF REPORT 2b OECLASSIFICATION IDOWNGRADING SCHEDULE Approved for public release; distribution unlimited. 4 PERFORMING...29 Accesz ion Por NTIS G-RA&I DTIL .: Dtj LAb l i - I _ q 4 .5Fenn a-.-. DYNAMICS OF IMPLODING NEON GAS...state was assumed, viz. 2 T1 2 P = (CT -- pu2 - Ci) , ( 4 ) where eI is the potential energy due to ionization and excitation. (A non-ideal equation of

  3. A parallel hybrid numerical algorithm for simulating gas flow and gas discharge of an atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lin, K.-M.; Hu, M.-H.; Hung, C.-T.; Wu, J.-S.; Hwang, F.-N.; Chen, Y.-S.; Cheng, G.

    2012-12-01

    Development of a hybrid numerical algorithm which couples weakly with the gas flow model (GFM) and the plasma fluid model (PFM) for simulating an atmospheric-pressure plasma jet (APPJ) and its acceleration by two approaches is presented. The weak coupling between gas flow and discharge is introduced by transferring between the results obtained from the steady-state solution of the GFM and cycle-averaged solution of the PFM respectively. Approaches of reducing the overall runtime include parallel computing of the GFM and the PFM solvers, and employing a temporal multi-scale method (TMSM) for PFM. Parallel computing of both solvers is realized using the domain decomposition method with the message passing interface (MPI) on distributed-memory machines. The TMSM considers only chemical reactions by ignoring the transport terms when integrating temporally the continuity equations of heavy species at each time step, and then the transport terms are restored only at an interval of time marching steps. The total reduction of runtime is 47% by applying the TMSM to the APPJ example presented in this study. Application of the proposed hybrid algorithm is demonstrated by simulating a parallel-plate helium APPJ impinging onto a substrate, which the cycle-averaged properties of the 200th cycle are presented. The distribution patterns of species densities are strongly correlated by the background gas flow pattern, which shows that consideration of gas flow in APPJ simulations is critical.

  4. Study of Gas and Plasma Conditions in the High Isp VASIMR Thruster

    NASA Astrophysics Data System (ADS)

    Batishchev, O.; Molvig, K.

    2002-01-01

    Internal electrode-free VASIMR thruster [1-3] consists of three major sections: plasma production, plasma heating, and plasma exhaust. In our previous works [6-10] we have performed an extensive study of plasma dynamics in the plasma source. We have developed several models of helicon plasma discharge utilizing hydrogen (deuterium) gas, and analyzed its performance in the experimental set-up [4-5]. In the present work we are trying to expand and apply existing models to the helium gas propellant case. Though the specific impulse is somewhat lower with heavier helium atoms, but unlike hydrogenic species helium doesn't form molecules, and therefore shows less radiative losses. We extend 0-D plasma-chemistry, 1-D mixed-collisional and kinetic gas flow models [11] to characterize gas/plasma composition and condition in the helium helicon discharge. Recent experiments suggest that there is a strong dependence of both VASIMR 1st and 2nd stage performance on the magnetic field mirror ratio in the VX-10 experimental configuration. We study effects of the plasma particles trapping in a strong magnetic field and their acceleration by the combination of the mirror force and ambipolar potential for the typical VASIMR experiment conditions. We also discuss possibility for plasma instabilities and comment on the micro-scale plasma transport in the VASIMR thruster. [1] Chang Díaz F.R., "Research Status of The Variable Specific Impulse Magnetoplasma Rocket", Proc. 39th Annual Meeting of the Division of Plasma Physics (Pittsburgh, PA, 1997), Bulletin of APS, 42 (1997) 2057. [2] Chang Díaz, F. R., Squire, J. P., Carter, M., et al., `'Recent Progress on the VASIMR'', Proc. 41th Annual Meeting of the Division of Plasma Physics (Seattle, WA, 1999), Bulletin of APS, 44 (1999) 99. [3] Chang Díaz, F. R., Squire, J. P., Ilin, A. V., et al. "The Development of the VASIMR Engine", Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA99), Sept. 13

  5. Simulation of beam-induced plasma in gas-filled rf cavities

    NASA Astrophysics Data System (ADS)

    Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; Freemire, Ben

    2017-03-01

    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion and ion-ion recombination and electron attachment to dopant molecules, have been studied. Through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. The experimentally validated code space is capable of predictive simulations of muon cooling devices.

  6. Nitrogen Gas Plasma Generated by a Static Induction Thyristor as a Pulsed Power Supply Inactivates Adenovirus

    PubMed Central

    Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro

    2016-01-01

    Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second), exhibited a virucidal effect against adenoviruses. Viral titer was reduced by one log within 0.94 min. Results from detection of viral capsid proteins, hexon and penton, by Western blotting and immunochromatography were unaffected by the plasma treatment. In contrast, analysis using the polymerase chain reaction suggested that plasma treatment damages the viral genomic DNA. Reactive chemical products (hydrogen peroxide, nitrate, and nitrite), ultraviolet light (UV-A) and slight temperature elevations were observed during the operation of the gas plasma device. Viral titer versus intensity of each potential virucidal factor were used to identify the primary mechanism of disinfection of adenovirus. Although exposure to equivalent levels of UV-A or heat treatment did not inactivate adenovirus, treatment with a relatively low concentration of hydrogen peroxide efficiently inactivated the virus. Our results suggest the nitrogen gas plasma generates reactive chemical products that inactivate adenovirus by damaging the viral genomic DNA. PMID:27322066

  7. Fundamental limits on gas-phase chemical reduction of NOx in a plasma

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Vogtlin, G.E.

    1997-12-31

    In the plasma, the electrons do not react directly with the NOx molecules. The electrons collide mainly with the background gas molecules like N{sub 2}, O{sub 2} and H{sub 2}O. Electron impact on these molecules result partly in dissociation reactions that produce reactive species like N, O and OH. The NOx in the engine exhaust gas initially consist mostly of NO. The ground state nitrogen atom, N, is the only species that could lead to the chemical reduction of NO to N{sub 2}. The O radical oxidizes NO to NO{sub 2} leaving the same amount of NOx. The OH radical converts NO{sub 2} to nitric acid. Acid products in the plasma can easily get adsorbed on surfaces in the plasma reactor and in the pipes. When undetected, the absence of these oxidation products can often be mistaken for chemical reduction of NOx. In this paper the authors will examine the gas-phase chemical reduction of NOx. They will show that under the best conditions, the plasma can chemically reduce 1.6 grams of NOx per brake-horsepower-hour [g(NOx)/bhp-hr] when 5% of the engine output energy is delivered to the plasma.

  8. Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction.

    PubMed

    Dorranian, Davoud; Starodubtsev, Mikhail; Kawakami, Hiromichi; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2003-08-01

    Using a gas-jet flow, via the interaction between an ultrashort high-intensity laser pulse and plasma in the presence of a perpendicular external dc magnetic field, the short pulse radiation from a magnetized plasma wakefield has been observed. Different nozzles are used in order to generate different densities and gas profiles. The neutral density of the gas-jet flow measured with a Mach-Zehnder interferometer is found to be proportional to back pressure of the gas jet in the range of 1 to 8 atm. Strength of the applied dc magnetic field varies from 0 to 8 kG at the interaction region. The frequency of the emitted radiation with the pulse width of 200 ps (detection limit) is in the millimeter wave range. Polarization and spatial distributions of the experimental data are measured to be in good agreement with the theory based on the V(p)xB radiation scheme, where V(p) is the phase velocity of the electron plasma wave and B is the steady magnetic field intensity. Characteristics of the radiation are extensively studied as a function of plasma density and magnetic field strength. These experiments should contribute to the development of a new kind of millimeter wavelength radiation source that is tunable in frequency, pulse duration, and intensity.

  9. [Determination of cyclohexanone concentration in the plasma separator by gas chromatography].

    PubMed

    Huang, Min-Ju; Yan, Lin; He, Yan-Ying; Lin, Wei-Cong

    2009-09-01

    This essay is to determine the cyclohexanone concentration of the plasma separator. The compound was introduced into the GC analytical system by the carrier gas. The determination was performed by the measurement of their peak area and by the external standard method.

  10. Bright nitriding of Cr-Mo-steels in plasma and gas

    SciTech Connect

    Larisch, B.; Spies, H.J.; Hoeck, K.

    1995-12-31

    Although the reduction of the white layer in special gas atmospheres directly after nitriding and bright nitriding were reported a long time ago, the white layer is mostly removed by mechanical or chemical means in industrial practice. The main reason for this is poor process control. However, new requirements such as the duplex treatment (nitriding + hardcoating), demand a more detailed examination of bright nitriding. Today, new possibilities exist for process control in gas nitriding by solid electrolyte sensors. Steel grades 17CrMoV10 and 31CrMoV9 were bright nitrided in gas and plasma. In contrast to the above experiments, in the two-step technology no white layer forms in the first step (20min) at a higher nitriding potential. By this, the formation of a soft surface layer (of iron) can be avoided. Limits of this technology--for instance in the depth of the formed nitrided case--are discussed. Reasons for the often discussed faster nitriding in plasma are explained on the basis of the experimental results. The influence of ion bombardment in plasma nitriding on the activation of the surface and the nitriding results is discussed in comparison to gas nitriding. In this context the advantages of plasma nitriding--with respect to higher chromium alloyed steels (>5%Cr), which tend to passivation--are shown.

  11. Gas plasmas treatment of cathodes to improve Li/So2 cell performance

    NASA Astrophysics Data System (ADS)

    Bibder, Michael; Mammone, Robert J.; Thurston, Edward P.; Reddy, Thomas B.

    1993-12-01

    Overall performance after storage at 71 C of spirally wound, hermetically sealed, Li/SO2 squat 'D' sized cells discharged at 3 A at -29 C can be improved by exposing the porous carbon cathodes to a room temperature, low pressure gas plasma prior to cell assembly.

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Percolation upon expansion of nanosecond-pulse-produced laser plasma into a gas

    NASA Astrophysics Data System (ADS)

    Kask, Nikolai E.; Michurin, Sergei V.; Fedorov, Gennadii M.

    2005-01-01

    Spectral studies of a plasma expanding into the ambient gas upon ablation of various targets by nanosecond laser pulses of moderate intensities are performed. It is found that the dependences of the intensities of spectral lines on the pressure of the buffer gas and the target composition have a threshold character typical of percolation. It is ascertained that a three-dimensional percolation occurs in plasma, and its threshold is determined by the atomic density of the metal component contained in the target. It is shown that percolation clusters, existing at temperatures higher than the boiling temperature of the target material, affect the plasma absorption ability, temperature, and spectral continuum of plasma emission.

  13. Influence of reactive oxygen species on the sterilization of microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...

  14. Investigation of a Gas Jet-Produced Hollow Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, N; Blumenfeld, I.; Hogan, M.J.; Siemann, R.H.; Walz, D.R.; Davidson, A.W.; Huang, C.; /UCLA

    2009-05-21

    The effect of ion motion and the need for practical positron propagation in a plasma wakefield accelerator (PWFA) have incited interest in hollow plasma channels. These channels are typically assumed to be cylindrically symmetric; however, a different geometry might be easier to achieve. The introduction of an obstruction into the outlet of a high Mach number gas jet can produce two parallel slabs of gas separated by a density depression. Here, there is a detailed simulation study of the density depression created in such a system. This investigation reveals that the density depression is insufficient at the desired plasma density. However, insights from the simulations suggest another avenue for the creation of the hollow slab geometry.

  15. Method for forming synthesis gas using a plasma-catalyzed fuel reformer

    DOEpatents

    Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele

    2015-04-28

    A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.

  16. Absorption of the laser radiation by the laser plasma with gas microjet targets

    NASA Astrophysics Data System (ADS)

    Borisevichus, D. A.; Zabrodskii, V. V.; Kalmykov, S. G.; Sasin, M. E.; Seisyan, R. P.

    2017-01-01

    An upper limit of absorption of the laser radiation in the plasma produced in a gas jet Xe target with the average density of (3-6) × 1018 cm-3 and the effective diameter of 0.7 mm is found. It is equal to ≈50% and remains constant under any variation in this range of densities. This result contradicts both theoretical assessments that have predicted virtually complete absorption and results of earlier experiments with the laser spark in an unlimited stationary Xe gas with the same density, where the upper limit of absorption was close to 100%. An analysis shows that nonlinearity of absorption and plasma nonequilibrium lead to the reduction of the absorption coefficient that, along with the limited size of plasma, can explain the experimental results.

  17. Tailoring the properties of asymmetric cellulose acetate membranes by gas plasma etching.

    PubMed

    Olde Riekerink, M B; Engbers, G H M; Wessling, M; Feijen, J

    2002-01-15

    Cellulose triacetate (CTA) ultrafilters and cellulose acetate blend (CAB) desalination membranes were treated with a radiofrequency gas plasma (tetrafluoromethane (CF(4)) or carbon dioxide (CO(2)), 47-49 W, 0.04-0.08 mbar). Treatment times were varied between 15 s and 120 min. The plasma-treated top layer of the membranes was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements to obtain information about surface structure, chemistry, and wettability, respectively. The membrane properties (e.g., permeability, selectivity, fouling) were studied by waterflux measurements, molecular weight cutoff measurements, and fouling experiments with bovine serum albumin. CO(2) plasma treatment resulted in gradual etching of the membrane's dense top layer. Permeation and selectivity changed significantly for treatment times of 0-15 min for CTA and 5-60 min for CAB membranes. Moreover, CTA membranes were hydrophilized during CO(2) plasma treatment whereas CF(4) plasma treatment led to hydrophobic surfaces due to strong fluorination of the top layer. This study shows that gas plasma etching can tailor the properties of asymmetric cellulose acetate membranes by simultaneously modifying the chemistry and structure of the top layer. The low fouling properties of CTA membranes were thereby largely maintained.

  18. NH3/O2 mixed gas plasmas alter the interaction of blood components with stainless steel.

    PubMed

    Chen, Meng; Zamora, Paul O; Peña, Louis; Som, Prantika; Osaki, Shigemasa

    2003-12-01

    Stainless steel treated with a mixed gas plasma of NH(3) plus O(2) had chemical and biologic characteristics distinct from untreated stainless steel or stainless steel treated with NH(3) or O(2) plasmas used separately. NH(3)/O(2) plasmas deposited nitrogen as both -CN (organic) and -NO (nitrate, nitrite)--materials not found on untreated stainless steel--and the contact angle changed from 44 degrees to 23 degrees. Treatment of stainless steel (and titanium) resulted in surfaces with enhanced resistance to platelet and leukocyte attachment. A gas plasma of N(2)O/O(2) also was found to reduce platelet and leukocyte attachment, suggesting that these properties may be common to surfaces coated with oxynitrites (nitrides). Upon subcutaneous implantation, no inflammation, hemolysis, or untoward thrombosis was noted in the tissue surrounding the wafers treated with the NH(3)/O(2) plasmas, although the cellular density was considerably reduced by 2 weeks after implant. Collectively, the results suggest that NH(3)/O(2) plasmas impart a unique character to stainless steel that may be useful in the construction of medical devices.

  19. Extreme ultraviolet emission from laser-induced plasma relevance to neutral gas environment simulation in LEO

    NASA Astrophysics Data System (ADS)

    Tagawa, Masahito; Kimoto, Yugo; Yokota, Kumiko; Ohira, Junki; Watanabe, Daiki; Nishimura, Hiroaki

    The reaction mechanism of atomic oxygen (AO) in low Earth orbit (LEO) with spacecraft materials has been studied by ground-based experiments using laser-detonation hyperthermal beam source, which enables to accelerate the electrically neutral AO up to 8 km/s. However, the beam conditions in the laser-detonation sources could not fully duplicate the AO environment in space. The difference in beam condition including side products leads to the different material responses. The light emission from the laser-induced oxygen plasma may affect the erosion of ultraviolet (UV)-sensitive materials. However, the light emission could also be used as a diagnostic tool to understand the molecular processes in plasma. In this presentation, extreme ultraviolet (EUV) emission from the laser-induced plasma during AO test was evaluated by the flat field EUV spectrometer. Many emission lines between 25-40 nm originated from OII and OIII were observed from the laser-induced oxygen plasma. This result suggested multiple-charged O ions are generated in the laser-induced plasma. Promotion of oxygen dissociation effect by adding Ar in the target gas was explained by the energy transfer processes from Ar to O2 in the plasma. From the viewpoint of reducing the side products in the AO exposure tests, a method to reduce the EUV emission will also be investigated. These results could be used for establishing more accurate ground-based natural gas simulations on the space environmental effect of materials.

  20. Removal of H2S from gas stream using combined plasma photolysis technique at atmospheric pressure.

    PubMed

    Huang, Li; Xia, Lanyan; Ge, Xiaoxue; Jing, Hengye; Dong, Wenbo; Hou, Huiqi

    2012-06-01

    In this paper, H(2)S in gas stream was successfully decomposed at atmospheric pressure by dielectric barrier discharge plasma and VUV-UV radiation from a combined plasma photolysis reactor (CDBD). In comparison with DBD, CDBD enhanced H(2)S removal efficiency significantly at the same applied voltage, inlet H(2)S concentration and gas residence time. H(2)S removal efficiency was determined as a function of Kr pressure, applied voltage, inlet H(2)S concentration, and gas residence time. H(2)S removal efficiency could reach as high as 93% at inlet H(2)S concentration of 27.1 mg m(-3), residence time of 0.4 s, and applied voltage of 7.5 kV. The main products were discerned as H(2)O and SO(4)(2-) based on FTIR and IC analysis.

  1. Gas-filled targets for large scalelength plasma interaction experiments on Nova

    SciTech Connect

    Powers, L.V.; Berger, R.L.; Munro, D.H.

    1994-11-01

    Stimulated Brillouin backscatter from large scale length gas-filled targets has been measured on Nova. These targets were designed to approximate conditions in indirect drive ignition target designs in underdense plasma electron density (n{sub e}{approximately}10{sup 21}/cm{sup 3}), temperature (T{sub e}>3 keV), and gradient scale lengths (L{sub n}{approximately} mm, L{sub v}>6 mm) as well as calculated gain for stimulated Brillouin scattering (SBS). The targets used in these experiments were gas-filled balloons with polyimide walls (gasbags) and gas-filled hohlraums. Detailed characterization using x-ray imaging and x-ray and optical spectroscopy verifies that the calculated plasma conditions are achieved. Time-resolved SBS backscatter from these targets is <3% for conditions similar to ignition target designs.

  2. Finger evolution of a gas bubble driven by atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Shiu, Jia-Hau; Chu, Hong-Yu

    2016-12-01

    We report the generation and evolution of a finger-shaped bubble in liquid by dielectric discharge setup. The spherical gas bubble is deformed into a finger-shaped bubble after the ignition of plasma. The presence of the filamentary discharge in the bubble not only provides the local heating to the bubble, it also changes the distribution of the electric field in the bubble and the bubble mutually provides the pathway to the discharge. The reduced surface tension on the liquid-gas interface due to the rise of temperature by plasma heating and the nonuniform electric field caused by the presence of filamentary discharge might induce the concave-shaped bubble. We also observe the formation of the quasi-two-dimensional bubble, which is generated from the bubble and attached on one side of the electrodes. It is found that the discharge induces the growth of the periodic fluctuations in the thin layer of gas.

  3. [Sterilization and eugenics].

    PubMed

    Shasha, Shaul M

    2011-04-01

    The term "eugenics" was coined by Francis Galton in 1883 and was defined as the science of the improvement of the human race by better breeding. "Positive eugenics" referred to methods of encouraging the "most fit" to reproduce more often, while "negative eugenics" was related to ways of discouraging or preventing the "less fit" from reproducing by birth control and sterilization. Many western countries adopted eugenics programs including Britain, Canada, Norway, Australia, Switzerland and others. In Sweden more then 62,000 "unfits" were forcibly sterilized. Many states in the U.S.A. had adopted marriage laws with eugenics criteria including forced sterilization. Approximately 64,000 individuals were sterilized. Eugenics considerations also lay behind the adoption of the Immigration Restriction Act of 1924. The Largest plan on eugenics was adopted by the Nazi regime in Germany. Hundreds of thousands of people, who were viewed as being "unfit", were forcibly sterilized by different methods: Surgical sterilization or castration with severe complications and high mortality rates. X-ray irradiation. The method was suggested by Brack, and tested by Schuman using prisoners in Block No. 10 in Auschwitz and Birkenau. Experiments were also performed by Brack on prisoners using the "window method". "Klauberg method"--injection of irritating materials into the uterus. Experiments were conducted using the plant Caladium Seguinum which was believed to have sterilization and castration properties.

  4. A reference protocol for comparing the biocidal properties of gas plasma generating devices

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Seri, P.; Borghi, C. A.; Shama, G.; Iza, F.

    2015-12-01

    Growing interest in the use of non-thermal, atmospheric pressure gas plasmas for decontamination purposes has resulted in a multiplicity of plasma-generating devices. There is currently no universally approved method of comparing the biocidal performance of such devices and in the work described here spores of the Gram positive bacterium Bacillus subtilis (ATCC 6633) are proposed as a suitable reference biological agent. In order to achieve consistency in the form in which the biological agent in question is presented to the plasma, a polycarbonate membrane loaded with a monolayer of spores is proposed. The advantages of the proposed protocol are evaluated by comparing inactivation tests in which an alternative microorganism (methicillin resistant Staphylococcus aureus—MRSA) and the widely-used sample preparation technique of directly pipetting cell suspensions onto membranes are employed. In all cases, inactivation tests with either UV irradiation or plasma exposure were more reproducible when the proposed protocol was followed.

  5. Characterization and gas temperature measurements of a waveguide-based microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Hammond, Peter J.

    Research to characterize a microwave plasma torch was initiated at Penn State University. Microwave power input into the device initiates and sustains plasma in an argon gas jet issuing from a copper nozzle into the ambient atmosphere. Protruding through a rectangular waveguide, the nozzle acts to enhance the local electric field when microwaves are excited in the waveguide. The plasma resembles a small flame, approximately 2--4 cm in length and less than 1 cm in total diameter. The primary research interests which have driven experimental design and characterization of the torch include (1) increasing plasma jet control via improved impedance matching; (2) reducing the erosion of the nozzle tips; and (3) determining the viability of applying the Penn State Microwave Plasma Torch (PSMPT) to the cutting and melting of materials via gas temperature measurements. Literature on the similar microwave torches---particularly, those of the single-electrode plasma (SEP) type---was reviewed. Several design issues were encountered during early testing with the torch. Impedance matching and nozzle erosion presented the most significant obstacles. Poor impedance matching was overcome most effectively with an automatic tuner that could determine a match quickly. Nozzle erosion is not often addressed in the literature on SEPs. However, significant erosion was a limiting factor in early tests with the torch. More recent testing reveals that erosion can be mitigated by addition of a secondary flow of argon around the primary nozzle gas flow. Gas temperature in the plasma was deduced via OH rotational temperature measurements. Molecular nitrogen spectral interference with the OH spectra required fitting both the OH and N2 second positive system in the region of 305--318 nm. The results of this testing indicate an OH rotational temperature---and assumed gas temperature---between 2700--3400 K. These results indicate that the torch should prove useful in cutting and heat

  6. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  7. Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Xin, Qing; Zhang, Yi; Wu, Kaibin

    2013-12-01

    In this study, we report on the degradation of microcystin-LR (MC-LR) by gas-liquid interfacial discharge plasma. The influences of operation parameters such as average input voltage, electrode distance and gas flow rate are investigated. Experimental results indicate that the input voltage and gas flow rate have positive influences on MC-LR degradation, while the electrode distance has a negative one. After 6 min discharge with 25 kV average input voltage and 60 L/h air aeration, the degradation rate of MC-LR achieves 75.3%. H2O2 and O3 generated by discharge both in distilled water and MC-LR solution are measured. Moreover, an emission spectroscopy is used as an indicator of the processes that take place on the gas-liquid boundary and inside plasma. Varied types of radicals (O, ·OH, CO, O3, etc.) are proved to be present in the gas phase during gas-liquid interfacial discharge.

  8. Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing

    SciTech Connect

    Cheng, Qijin Zhang, Fengyan; Yan, Wei; Randeniya, Lakshman; Ostrikov, Kostya

    2014-03-28

    Phase-selective synthesis of copper oxide nanowires is warranted by several applications, yet it remains challenging because of the narrow windows of the suitable temperature and precursor gas composition in thermal processes. Here, we report on the room-temperature synthesis of small-diameter, large-area, uniform, and phase-pure Cu{sub 2}O nanowires by exposing copper films to a custom-designed low-pressure, thermally non-equilibrium, high-density (typically, the electron number density is in the range of 10{sup 11}–10{sup 13} cm{sup −3}) inductively coupled plasmas. The mechanism of the plasma-enabled phase selectivity is proposed. The gas sensors based on the synthesized Cu{sub 2}O nanowires feature fast response and recovery for the low-temperature (∼140 °C) detection of methane gas in comparison with polycrystalline Cu{sub 2}O thin film-based gas sensors. Specifically, at a methane concentration of 4%, the response and the recovery times of the Cu{sub 2}O nanowire-based gas sensors are 125 and 147 s, respectively. The Cu{sub 2}O nanowire-based gas sensors have a potential for applications in the environmental monitoring, chemical industry, mining industry, and several other emerging areas.

  9. Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Stanishevsky, Andrei V.; Walock, Michael J.; Catledge, Shane A.

    2015-12-01

    Detonation nanodiamonds (DND), with low hydrogen content, were exposed to microwave plasma generated in pure H2, N2, and O2 gases and their mixtures, and investigated using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Raman, and X-ray photoelectron spectroscopies. Considerable alteration of the DND surface was observed under the plasma conditions for all used gases, but the diamond structure of the DND particle core was preserved in most cases. The stabilizing effect of H2 in H2/N2 and H2/O2 binary gas plasmas on the DND structure and the temperature-dependent formation of various CNHx surface groups in N2 and H2/N2 plasmas were observed and discussed for the first time. DND surface oxidation and etching were the main effects of O2 plasma, whereas the N2 plasma led to DND surfaces rich in amide groups below 1073 K and nitrile groups at higher temperatures. Noticeable graphitization of the DND core structure was detected only in N2 plasma when the substrate temperature was above 1103 K.

  10. In situ measurements of plasma properties during gas-condensation of Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Koten, M. A.; Voeller, S. A.; Patterson, M. M.; Shield, J. E.

    2016-03-01

    Since the mean, standard deviation, and modality of nanoparticle size distributions can vary greatly between similar input conditions (e.g., power and gas flow rate), plasma diagnostics were carried out in situ using a double-sided, planar Langmuir probe to determine the effect the plasma has on the heating of clusters and their final size distributions. The formation of Cu nanoparticles was analyzed using cluster-plasma physics, which relates the processes of condensation and evaporation to internal plasma properties (e.g., electron temperature and density). Monitoring these plasma properties while depositing Cu nanoparticles with different size distributions revealed a negative correlation between average particle size and electron temperature. Furthermore, the modality of the size distributions also correlated with the modality of the electron energy distributions. It was found that the maximum cluster temperature reached during plasma heating and the material's evaporation point regulates the growth process inside the plasma. In the case of Cu, size distributions with average sizes of 8.2, 17.3, and 24.9 nm in diameter were monitored with the Langmuir probe, and from the measurements made, the cluster temperatures for each deposition were calculated to be 1028, 1009, and 863 K. These values are then compared with the onset evaporation temperature of particles of this size, which was estimated to be 1059, 1068, and 1071 K. Thus, when the cluster temperature is too close to the evaporation temperature, less particle growth occurs, resulting in the formation of smaller particles.

  11. Gas phase microreaction: nanomaterials synthesis via plasma exposure of liquid droplets

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Mahony, Charles; Kelsey, Colin; Hamilton, Neil; Askari, Sadegh; Macias-Montero, Manuel; Diver, Declan; Mariotti, Davide

    2015-09-01

    Plasma-liquid interactions are complex but offer considerable scope for use in nanomaterials synthesis. The introduction of individual picolitre micro-droplets into a steady-state low temperature plasma at atmospheric pressure, offers opportunities for enhanced scope and control of plasma-liquid chemistry and material properties. The gas-phase micro-reactor is similar in concept to liquid bubble microfluidics currently under intense research but with enhanced opportunities for scale-up. For nanomaterials and quantum dot synthesis, the addition of a liquid phase within the plasma expands considerably the scope for core-shell and alloy formation. The synthesis and encapsulation within a liquid droplet allows continuous delivery of nanoparticles to remote sites for plasma medicine, device fabrication or surface coating. We have synthesized Au nanoparticles in flight using AuHCl4 droplets with plasma flight times <0.1 ms. Also, Ag nanoparticles have been synthesized downstream via the delivery of plasma exposed water droplets onto AgNO3 laden substrates. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  12. Fabrication and testing of gas-filled targets for large-scale plasma experiments on nova

    SciTech Connect

    Stone, G.F.; Rivers, C.J.; Spragge, M.R.; Wallace, R.J.

    1996-06-01

    The proposed next-generation ICF facility, the National Ignition Facility (NIF) is designed to produce energy gain from x-ray heated {open_quotes}indirect-drive{close_quotes} fuel capsules. For indirect-drive targets, laser light heats the inside of the Au hohlraum wall and produces x rays which in turn heat and implode the capsule to produce fusion conditions in the fuel. Unlike Nova targets, in NIF-scale targets laser light will propagate through several millimeters of gas, producing a plasma, before impinging upon the Au hohlraum wall. The purpose of the gas-produced plasma is to provide sufficient pressure to keep the radiating Au surface from expanding excessively into the hohlraum cavity. Excessive expansion of the Au wall interacts with the laser pulse and degrades the drive symmetry of the capsule implosion. The authors have begun an experimental campaign on the Nova laser to study the effect of hohlraum gas on both laser-plasma interaction and implosion symmetry. In their current NIF target design, the calculated plasma electron temperature is T{sub e} {approx} 3 keV and the electron density is N{sub e} {approx} 10{sup 21}cm{sup {minus}3}.

  13. Investigation of a Light Gas Helicon Plasma Source for the VASIMR Space Propulsion System

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Jacobson, V. T.; Glover, T. W.; Baity, F. W.; Carter, M. D.; Goulding, R. H.; Bengtson, R. D.; Bering, E. A., III

    2003-01-01

    An efficient plasma source producing a high-density (approx.10(exp 19/cu m) light gas (e.g. H, D, or He) flowing plasma with a high degree of ionization is a critical component of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept. We are developing an antenna to apply ICRF power near the fundamental ion cyclotron resonance to further accelerate the plasma ions to velocities appropriate for space propulsion applications. The high degree of ionization and a low vacuum background pressure are important to eliminate the problem of radial losses due to charge exchange. We have performed parametric (e.g. gas flow, power (0.5 - 3 kW), magnetic field , frequency (25 and 50 MHz)) studies of a helicon operating with gas (H2 D2, He, N2 and Ar) injected at one end with a high magnetic mirror downstream of the antenna. We have explored operation with a cusp and a mirror field upstream. Plasma flows into a low background vacuum (<10(exp -4) torr) at velocities higher than the ion sound speed. High densities (approx. 10(exp 19/cu m) have been achieved at the location where ICRF will be applied, just downstream of the magnetic mirror.

  14. Investigation of a Light Gas Helicon Plasma Source for the VASIMR Space Propulsion System

    NASA Astrophysics Data System (ADS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Jacobson, Verlin T.; Glover, Tim W.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.; Bengtson, Roger D.; Bering, Edgar A.

    2003-12-01

    An efficient plasma source producing a high-density (˜1019 m-3) light gas (e.g. H, D, or He) flowing plasma with a high degree of ionization is a critical component of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept. The high degree of ionization and a low neutral background pressure are important to eliminate the problem of radial loss and axial drag due to charge exchange. We have performed parametric (e.g. gas flow, power (0.5 - 3 kW), and magnetic field studies of a helicon operating with gas (D2 or He) injected at one end, with a high magnetic mirror downstream of the antenna. The downstream mirror field has little effect on the exhaust flux up to a mirror ratio of 10. We have explored operation with a cusp and a mirror field upstream. The application of a cusp increases the plasma flux in the exhaust by a factor of two. Plasma flows into a large (5 m3) vacuum (< 10-4 torr) chamber at velocities higher than the ion sound speed. High densities (˜ 1019 m-3) have been achieved at the location where ICRF will be applied, just downstream of the magnetic mirror.

  15. Intense microwave pulse propagation through gas breakdown plasmas in a waveguide

    SciTech Connect

    Byrne, D.P.

    1986-10-08

    High-power microwave pulse-compression techniques are used to generate 2.856 GHz pulses which are propagated in a TE/sub 10/ mode through a gas filled section of waveguide, where the pulses interact with self-generated gas-breakdown plasmas. Pulse envelopes transmitted through the plasmas, with duration varying from 2 ns to greater than 1 ..mu..s, and peak powers of a few kW to nearly 100 MW, are measured as a function of incident pulse and gas pressure for air, nitrogen, and helium. In addition, the spatial and temporal development of the optical radiation emitted by the breakdown plasmas are measured. For transmitted pulse durations greater than or equal to 100 ns, good agreement is found with both theory and existing measurements. For transmitted pulse duration as short as 2 ns (less than 10 rf cycles), a two-dimensional model is used in which the electrons in the plasma are treated as a fluid whose interactions with the microwave pulse are governed by a self-consistent set of fluid equations and Maxwell's equations for the electromagnetic field. The predictions of this model for air are compared with the experimental results over a pressure range of 0.8 torr to 300 torr. Good agreement is obtained above about 1 torr pressure, demonstrating that microwave pulse propagation above the breakdown threshold can be accurately modeled on this time scale. 63 refs., 44 figs., 2 tabs.

  16. Xenon Additives Detection in Helium Micro-Plasma Gas Analytical Sensor

    NASA Astrophysics Data System (ADS)

    Tsyganov, Alexander; Kudryavtsev, Anatoliy; Mustafaev, Alexander

    2012-10-01

    Electron energy spectra of Xe atoms at He filled micro-plasma afterglow gas analyzer were observed using Collisional Electron Spectroscopy (CES) method [1]. According to CES, diffusion path confinement for characteristic electrons makes it possible to measure electrons energy distribution function (EEDF) at a high (up to atmospheric) gas pressure. Simple geometry micro-plasma CES sensor consists of two plane parallel electrodes detector and microprocessor-based acquisition system providing current-voltage curve measurement in the afterglow of the plasma discharge. Electron energy spectra are deduced as 2-nd derivative of the measured current-voltage curve to select characteristic peaks of the species to be detected. Said derivatives were obtained by the smoothing-differentiating procedure using spline least-squares approximation of a current-voltage curve. Experimental results on CES electron energy spectra at 10-40 Torr in pure He and in admixture with 0.3% Xe are discussed. It demonstrates a prototype of the new miniature micro-plasma sensors for industry, safety and healthcare applications. [1]. A.A.Kudryavtsev, A.B.Tsyganov. US Patent 7,309,992. Gas analysis method and ionization detector for carrying out said method, issued December 18, 2007.

  17. Mechanisms of disruptions caused by noble gas injection into tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Morozov, D. Kh.; Yurchenko, E. I.; Lukash, V. E.; Baronova, E. O.; Pozdnyakov, Yu. I.; Rozhansky, V. A.; Senichenkov, I. Yu.; Veselova, I. Yu.; Schneider, R.

    2005-08-01

    Noble gas injection for disruption mitigation in DIII-D is simulated. The simulation of the first two stages of the disruption is performed: the first one is the neutral gas jet penetration through the background plasmas, and the second one is the instability growth. In order to simulate the first stage, the MHD pellet code LLP with improved radiation model for noble gas is used. Plasma cooling at this stage is provided by the energy exchange with the jet. The opacity effects in radiation losses are found to be important in the energy balance calculations. The magnetic surfaces in contact with the jet are cooled significantly; however, the temperature as well as the electric conductivity, remains high. The cooling front propagates towards the plasma centre. It has been shown that the cooling front is accompanied by strongly localized 'shark fin-like' perturbation in toroidal current density profile. The simplified cylindrical model shows that the cooling front is able to produce the internal kink-like mode with growth rate significantly higher than the tearing mode. The unstable kink perturbation obtained is non-resonant for any magnetic surface, both inside the plasma column, and in the vacuum space outside the separatrix. The mode disturbs mainly the core region. The growth time of the 'shark fin-like' mode is higher than the Alfven time by a factor of 10-100 for DIII-D parameters.

  18. Effect of sheath gas in atmospheric-pressure plasma jet for potato sprouting suppression

    NASA Astrophysics Data System (ADS)

    Nishiyama, S.; Monma, M.; Sasaki, K.

    2016-09-01

    Recently, low-temperature atmospheric-pressure plasma jets (APPJs) attract much interest for medical and agricultural applications. We try to apply APPJs for the suppression of potato sprouting in the long-term storage. In this study, we investigated the effect of sheath gas in APPJ on the suppression efficiency of the potato sprouting. Our APPJ was composed of an insulated thin wire electrode, a glass tube, a grounded electrode which was wound on the glass tube, and a sheath gas nozzle which was attached at the end of the glass tube. The wire electrode was connected to a rectangular-waveform power supply at a frequency of 3 kHz and a voltage of +/- 7 kV. Helium was fed through the glass tube, while we tested dry nitrogen, humid nitrogen, and oxygen as the sheath gas. Eyes of potatoes were irradiated by APPJ for 60 seconds. The sprouting probability was evaluated at two weeks after the plasma irradiation. The sprouting probability was 28% when we employed no sheath gases, whereas an improved probability of 10% was obtained when we applied dry nitrogen as the sheath gas. Optical emission spectroscopy was carried out to diagnose the plasma jet. It was suggested that reactive species originated from nitrogen worked for the efficient suppression of the potato sprouting.

  19. Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials.

    PubMed

    Traba, Christian; Chen, Long; Liang, Jun F

    2013-03-20

    The antibacterial activity of gas discharge plasma has been studied for quiet some time. However, high biofilm inactivation activity of plasma was only recently reported. Studies indicate that the etching effect associated with plasmas generated represent an undesired effect, which may cause live bacteria relocation and thus contamination spreading. Meanwhile, the strong etching effects from these high power plasmas may also alter the surface chemistry and affect the biocompatibility of biomaterials. In this study, we examined the efficiency and effectiveness of low power gas discharge plasma for biofilm inactivation and removal. Among the three tested gases, oxygen, nitrogen, and argon, discharge oxygen demonstrated the best anti-biofilm activity because of its excellent ability in killing bacteria in biofilms and mild etching effects. Low power discharge oxygen completely killed and then removed the dead bacteria from attached surface but had negligible effects on the biocompatibility of materials. DNA left on the regenerated surface after removal of biofilms did not have any negative impact on tissue cell growth. On the contrary, dramatically increased growth was found for these cells seeded on regenerated surfaces. These results demonstrate the potential applications of low power discharge oxygen in biofilm treatments of biomaterials and indwelling device decontaminations.

  20. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    SciTech Connect

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2014-04-15

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed.

  1. High-field plasma acceleration in a high-ionization-potential gas

    SciTech Connect

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.

  2. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGES

    Corde, S.; Adli, E.; Allen, J. M.; ...

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  3. High-field plasma acceleration in a high-ionization-potential gas

    PubMed Central

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m−1, over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  4. Female Sterilization (Tubal Ligation)

    MedlinePlus

    ... when you want to have it done. Some women are sterilized right after they have a baby or an abortion, ... videos on Youtube © 1998-2017 | Center for Young Women's Health, Boston Children's Hospital. All rights reserved.

  5. Sterilization by Laparoscopy

    MedlinePlus

    ... sleep-like state to prevent pain during surgery. Human Immunodeficiency Virus (HIV): A virus that attacks certain cells of the body’s immune system and causes acquired immunodeficiency syndrome (AIDS). Hysteroscopic Sterilization: ...

  6. Ozone-mist spray sterilization for pest control in agricultural management

    NASA Astrophysics Data System (ADS)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  7. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  8. Gas reservoir and a method to supply gas to plasma tubes

    DOEpatents

    Stautner, Ernst Wolfgang; Michael, Joseph Darryl

    2017-01-31

    A reservoir for storing and supplying a portion of a reservoir gas into a gas-filled tube is presented. The reservoir includes a first vessel having a thermally conductive surface, a meshed vessel having a lid, and placed inside the first vessel to form a cavity between the meshed vessel and the first vessel, at least one tray placed inside the meshed vessel to divide an inner space of the meshed vessel into a plurality of compartments, a sorbent material placed inside the plurality of compartments in the meshed vessel, a temperature control device positioned such that a first portion of the temperature control device is in physical contact with at least a portion of the thermally conductive surface, and a change in the temperature of the temperature control device changes the temperature of the sorbent material, wherein the reservoir gas is retained by the sorbent material at the storage temperature.

  9. Auditing radiation sterilization facilities

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  10. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.

  11. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    NASA Astrophysics Data System (ADS)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-01

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ˜15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  12. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    SciTech Connect

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  13. Hysteroscopic Tubal Sterilization

    PubMed Central

    McMartin, K

    2013-01-01

    Background Hysteroscopic tubal sterilization is a minimally invasive alternative to laparoscopic tubal ligation for women who want permanent contraception. The procedures involves non-surgical placement of permanent microinserts into both fallopian tubes. Patients must use alternative contraception for at least 3 months postprocedure until tubal occlusion is confirmed. Compared to tubal ligation, potential advantages of the hysteroscopic procedure are that it can be performed in 10 minutes in an office setting without the use of general or even local anesthesia. Objective The objective of this analysis was to determine the effectiveness and safety of hysteroscopic tubal sterilization compared with tubal ligation for permanent female sterilization. Data Sources A standard systematic literature search was conducted for studies published from January 1, 2008, until December 11, 2012. Review Methods Observational studies, randomized controlled trials (RCTs), systematic reviews and meta-analyses with 1 month or more of follow-up were examined. Outcomes included failure/pregnancy rates, adverse events, and patient satisfaction. Results No RCTs were identified. Two systematic reviews covered 22 observational studies of hysteroscopic sterilization. Only 1 (N = 93) of these 22 studies compared hysteroscopic sterilization to laparoscopic tubal ligation. Two other noncomparative case series not included in the systematic reviews were also identified. In the absence of comparative studies, data on tubal ligation were derived for this analysis from the CREST study, a large, multicentre, prospective, noncomparative observational study in the United States (GRADE low). Overall, hysteroscopic sterilization is associated with lower pregnancy rates and lower complication rates compared to tubal ligation. No deaths have been reported for hysteroscopic sterilization. Limitations A lack of long-term follow-up for hysteroscopic sterilization and a paucity of studies that directly

  14. Direct protein introduction into plant cells using a multi-gas plasma jet.

    PubMed

    Yanagawa, Yuki; Kawano, Hiroaki; Kobayashi, Tomohiro; Miyahara, Hidekazu; Okino, Akitoshi; Mitsuhara, Ichiro

    2017-01-01

    Protein introduction into cells is more difficult in plants than in mammalian cells, although it was reported that protein introduction was successful in shoot apical meristem and leaves only together with a cell-penetrating peptide. In this study, we tried to introduce superfolder green fluorescent protein (sGFP)-fused to adenylate cyclase as a reporter protein without a cell-penetrating peptide into the cells of tobacco leaves by treatment with atmospheric non-thermal plasmas. For this purpose, CO2 or N2 plasma was generated using a multi-gas plasma jet. Confocal microscopy indicated that sGFP signals were observed inside of leaf cells after treatment with CO2 or N2 plasma without substantial damage. In addition, the amount of cyclic adenosine monophosphate (cAMP) formed by the catalytic enzyme adenylate cyclase, which requires cellular calmodulin for its activity, was significantly increased in leaves treated with CO2 or N2 plasma, also indicating the introduction of sGFP-fused adenylate cyclase into the cells. These results suggested that treatment with CO2 or N2 plasma could be a useful technique for protein introduction into plant tissues.

  15. Direct protein introduction into plant cells using a multi-gas plasma jet

    PubMed Central

    Yanagawa, Yuki; Kawano, Hiroaki; Kobayashi, Tomohiro; Miyahara, Hidekazu; Okino, Akitoshi; Mitsuhara, Ichiro

    2017-01-01

    Protein introduction into cells is more difficult in plants than in mammalian cells, although it was reported that protein introduction was successful in shoot apical meristem and leaves only together with a cell-penetrating peptide. In this study, we tried to introduce superfolder green fluorescent protein (sGFP)-fused to adenylate cyclase as a reporter protein without a cell-penetrating peptide into the cells of tobacco leaves by treatment with atmospheric non-thermal plasmas. For this purpose, CO2 or N2 plasma was generated using a multi-gas plasma jet. Confocal microscopy indicated that sGFP signals were observed inside of leaf cells after treatment with CO2 or N2 plasma without substantial damage. In addition, the amount of cyclic adenosine monophosphate (cAMP) formed by the catalytic enzyme adenylate cyclase, which requires cellular calmodulin for its activity, was significantly increased in leaves treated with CO2 or N2 plasma, also indicating the introduction of sGFP-fused adenylate cyclase into the cells. These results suggested that treatment with CO2 or N2 plasma could be a useful technique for protein introduction into plant tissues. PMID:28182666

  16. Reforming of biogas to synthesis gas by a rotating arc plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chung, Woo-Jae; Park, Hyun-Woo; Liu, Jing-Lin; Park, Dong-Wha

    2015-09-01

    In order to produce synthesis gas, reforming of biogas composed with 60 percent for CH4 and 40 percent for CO2 was performed by a novel rotating arc plasma process. The effect of O2/CH4 ratio on the conversion, syngas composition and energy cost was investigated to evaluate the performance of proposed system compared with conventional gliding arc plasma process. When the O2/CH4 ratio was increased from 0.4 to 0.9, the conversions of CH4 and O2 increased up to 97.5 percent and 98.8 percent, respectively, while CO2 conversion was almost constant to be 38.6 percent. This is due to more enhance the partial oxidation of CH4 to CO and H2 than that of dry reforming by increasing the O2/CH4 ratio. In this work, energy cost of 32 kJ/mol was achieved with high syngas composition of 71 percent using pure O2 as oxidant reactant. These are lower than those of different arc plasma processes (energy cost of 122 - 1870 kJ/mol) such as spark, spark-shade and gliding arc plasma. Because, this rotating arc plasma can remain in a long arc length and a large volume of plasma with constant arc length mode.

  17. Optical shaping of gas targets for laser-plasma ion sources

    NASA Astrophysics Data System (ADS)

    Dover, N. P.; Cook, N.; Tresca, O.; Ettlinger, O.; Maharjan, C.; Polyanskiy, M. N.; Shkolnikov, P.; Pogorelsky, I.; Najmudin, Z.

    2016-02-01

    We report on the experimental demonstration of a technique to generate steep density gradients in gas-jet targets of interest to laser-plasma ion acceleration. By using an intentional low-energy prepulse, we generated a hydrodynamic blast wave in the gas to shape the target prior to the arrival of an intense CO2 λ≈ 10m drive pulse. This technique has been recently shown to facilitate the generation of ion beams by shockwave acceleration (Tresca et al., Phys. Rev. Lett., vol. 115 (9), 2015, 094802). Here, we discuss and introduce a model to understand the generation of these blast waves and discuss in depth the experimental realisation of the technique, supported by hydrodynamics simulations. With appropriate prepulse energy and timing, this blast wave can generate steepened density gradients as short as &ap 20μm (1/e), opening up new possibilities for laser-plasma studies with near-critical gaseous targets.

  18. Stratification of the plasma column in transverse nanosecond gas discharges with a hollow cathode

    NASA Astrophysics Data System (ADS)

    Ashurbekov, N. A.; Iminov, K. O.

    2015-10-01

    Electric and optical characteristics and the structure of spatial distribution of optical radiation from a transverse nanosecond discharge with a hollow cathode in inert gases are systematically studied experimentally. It is found that for moderate working gas pressures in nanosecond discharges with extended electrodes, a periodic plasma structure appears in the form of standing strata. The strata formation boundaries and the critical values of the discharge voltage and current are determined from the gas pressure in helium, neon, and argon under experimental conditions. It is found that the most probable mechanisms of strata formation are the direct ionization of atoms by an electron impact and electron drift in an electric field. The smearing of the plasma structure upon an increase in the voltage applied to electrodes is explained by the emergence of accelerated electrons in the discharge gap.

  19. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  20. Computational modelling of discharges within the impulse plasma deposition accelerator with a gas valve

    NASA Astrophysics Data System (ADS)

    Rabiński, Marek; Choduń, Rafał; Nowakowska-Langier, Katarzyna; Zdunek, Krzysztof

    2014-05-01

    The paper presents computational studies of working medium dynamics during the impulse plasma deposition (IPD) process when the electric discharge in an interelectrode region is initiated by a gas introduced through a fast-acting valve. During the computational simulations the influence of different discharge parameters on the plasma dynamics was studied. The optimization of the device includes the calculation of the current sheath movement and the sensibility analysis of its dynamics to geometrical and operational parameters. It was found that gas injection can be considered as a useful tool in optimization of the coatings obtained with the IPD technique. Computer simulation results indicate the direction of changes in the development and application of the analysed surface engineering method.

  1. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    PubMed

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  2. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    PubMed Central

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  3. Precise and high-speed control of partial pressures of multiple gas species in plasma process chamber using pulse-controlled gas injection

    SciTech Connect

    Morishita, Sadaharu; Goto, Tetsuya; Nagase, Masaaki; Ohmi, Tadahiro

    2009-05-15

    Multiprocesses in a single plasma process chamber with high throughput require precise, sequential, high-speed alteration of partial pressures of multiple gas species. A conventional gas-distribution system cannot realize this because the system seriously overshoots gas pressure immediately following valve operation. Furthermore, chamber volume and conductance of gas piping between the system and chamber should both be considered because they delay the stabilizing time of gas pressure. Therefore, the authors proposed a new gas-distribution system without overshoot by controlling gas flow rate based on pressure measurement, as well as a method of pulse-controlled gas injection immediately following valve operation. Time variation of measured partial pressure agrees well with a calculation based on an equivalent-circuit model that represents the chamber and gas piping between the system and chamber. Using pulse-controlled gas injection, the stabilizing time can be reduced drastically to 0.6 s for HBr added to pure Ar plasma, and 0.7 s for O{sub 2} added to Ar/HBr plasma; without the pulse control, the stabilizing times are 3 and 7 s, respectively. In the O{sub 2} addition case, rapid stabilization can be achieved during the period of line/space pattern etching of poly-Si on a thin SiO{sub 2} film. This occurs without anomalous etching of the underlying SiO{sub 2} film or the Si substrate near the sidewall, thus obtaining a wide process margin with high throughput.

  4. Effect of Zr on microstructure of metallic glass coatings prepared by gas tunnel type plasma spraying.

    PubMed

    Kobayashi, A; Kuroda, T; Kimura, H; Inoue, A

    2012-06-01

    Metallic glass is one of the most attractive advanced materials, and many researchers have conducted various developmental research works. Metallic glass is expected to be used as a functional material because of its excellent physical and chemical functions such as high strength and high corrosion resistance. However, the application for small size parts has been carried out only in some industrial fields. In order to widen the industrial application fields, a composite material is preferred for the cost performance. In the coating processes of metallic glass with the conventional deposition techniques, there is a difficulty to form thick coatings due to their low deposition rate. Thermal spraying method is one of the potential candidates to produce metallic glass composites. Metallic glass coatings can be applied to the longer parts and therefore the application field can be widened. The gas tunnel plasma spraying is one of the most important technologies for high quality ceramic coating and synthesizing functional materials. As the gas tunnel type plasma jet is superior to the properties of other conventional type plasma jets, this plasma has great possibilities for various applications in thermal processing. In this study, the gas tunnel type plasma spraying was used to form the metallic glass coatings on the stainless-steel substrate. The microstructure and surface morphology of the metallic glass coatings were examined using Fe-based metallic glass powder and Zr-based metallic glass powder as coating material. For the mechanical properties the Vickers hardness was measured on the cross section of both the coatings and the difference between the powders was compared.

  5. Intense terahertz-pulse generation by four-wave mixing process in induced gas plasma

    NASA Astrophysics Data System (ADS)

    Wicharn, S.; Buranasiri, P.

    2015-08-01

    In this article, we have numerically investigated an intense terahertz (THz) pulses generation in gaseous plasma based on the third-order nonlinear effect, four-wave mixing rectification (FWMR). We have proposed that the fundamental fields and second-harmonic field of ultra-short pulse lasers are combined and focused into a very small gas chamber to induce a gaseous plasma, which intense THz pulse is produced. To understand the THz generation process, the first-order multiple-scale perturbation method (MSPM) has been utilized to derive a set of nonlinear coupled-mode equations for interacting fields such as two fundamental fields, a second-harmonic field, and a THz field. Then, we have simulate the intense THz-pulse generation by using split step-beam propagation method (SS-BPM) and calculated output THz intensities. Finally, the output THz intensities generated from induced air, nitrogen, and argon plasma have been compared.

  6. Effects of gas pressure on 60/13.56 MHz dual-frequency capacitively coupled plasmas

    SciTech Connect

    Yuan, Q. H.; Yin, G. Q.; Xin, Y.; Ning, Z. Y.

    2011-05-15

    The electron energy probability functions (EEPFs) were measured with increasing gas pressure in 60/13.56 MHz dual-frequency capacitively coupled plasma (DF-CCP) using compensated Langmiur electrostatic probe. The transition pressure of heating mode from collisionless to collisional heating in 60/13.56 MHz DF-CCP is found to be significantly lower than that in 13.56 MHz single-frequency CCP. As the pressure increases, the EEPFs change from bi-Maxwellian to Druyvesteyn type which is similar with that in 60 MHz single-frequency CCP. The pressure dependence of electron densities, effective electron temperatures, floating potentials, and plasma potentials in 60/13.56 MHz DF-CCP were measured and were compared with that in 60 MHz single-frequency CCP. The pressure dependence of these plasma parameters in 60/13.56 MHz DF-CCP is similar with that in 60 MHz single-frequency CCP.

  7. Antimicrobial outcomes in plasma medicine

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2015-03-01

    Plasma is referred to as the fourth state of matter and is frequently generated in the environment of a strong electric field. The result consists of highly reactive species--ions, electrons, reactive atoms and molecules, and UV radiation. Plasma Medicine unites a number of fields, including Physics, Plasma Chemistry, Cell Biology, Biochemistry, and Medicine. The treatment modality utilizes Cold Atmospheric Plasma (CAP), which is able to sterilize and treat microbes in a nonthermal manner. These gas-based plasma systems operate at close to room temperature and atmospheric pressure, making them very practical for a range of potential treatments and are highly portable for clinical use throughout the health care system. The hypothesis is that gas based plasma kills bacteria, fungus, and viruses but spares mammalian cells. This paper will review systematic work which shows examples of systems and performance in regards to antimicrobial effects and the sparing of mammalian cells. The mechanism of action will be discussed, as well as dosing for the treatment of microbial targets, including sterilization processes, another important healthcare need. In addition, commercial systems will be overviewed and compared, along with evidence-based, patient results. The range of treatments cover wound treatment and biofilms, as well as antimicrobial treatment, with little chance for resistance and tolerance, as in drug regimens. Current clinical studies include applications in dentistry, food treatment, cancer treatment, wound treatment for bacteria and biofilms, and systems to combat health care related infections.

  8. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (< 10 mTorr) radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (< 1 kW), the molecular hydrogen temperature was observed to be linearly proportional to the pressure while the atomic hydrogen temperature was inversely proportional. Both temperatures were observed to rise linearly with input power. For high power operation (5-20 kW), the molecular temperature was found to rise with both power and pressure up to a maximum of approximately 1200 K. Spatially resolved measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  9. Emission and afterglow properties of an expanding RF plasma with nonuniform neutral gas density

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2016-08-01

    We describe some notable aspects of the light emission and afterglow properties in pulsed, high-density ( 1018-1020 m-3 ) argon inductively coupled discharges initiated following fast gas injection. The plasma was created in a long, narrow discharge tube and then expanded downstream of the radiofrequency (RF) antenna into a large chamber. Fast camera images of the expanding plasma revealed a multi-phase time-dependent emission pattern that did not follow the ion density distribution. Dramatic differences in visible brightness were observed between discharges with and without an externally applied magnetic field. These phenomena were studied by tracking excited state populations using passive emission spectroscopy and are discussed in terms of the distinction between ionizing and recombining phase plasmas. Additionally, a method is presented for inferring the unknown neutral gas pressure in the discharge tube from the time-dependent visible and infrared emission measured by a simple photodiode placed near the antenna. In magnetized discharges created with fast gas injection, the downstream ion density rose by Δni˜1018 m-3 in the first ˜100 μs after the RF power was turned off. The conditions conducive to this afterglow density rise are investigated in detail, and the effect is tentatively attributed to pooling ionization.

  10. Dynamics of turbulent front at the correlation between atmospheric pressure plasma jet & gas flow field

    NASA Astrophysics Data System (ADS)

    Ghasemi, Maede; Xu, Haitao; Pei, Xuekai; Lu, Xinpei

    2016-09-01

    Among variety of plasma applications, there is significant interest recently in the use of plasma as an actuator in flow control for aerodynamic applications in which the correlation between atmospheric pressure plasma jet (APPJ) and gas flow field is a crucial role. In this contribution, dynamic characterizations of the turbulent flow field in APPj are investigated by focusing on the effect of different parameters of APPJ, such as applied voltage, pulse repetition frequency, gas flow rate, and time duration of the pulse We utilized Schlieren photography and photomultiplier tubes (PMT) as a signal triggering of an intensified charge coupled device (ICCD) and also a high speed camera to examine the formation of the turbulent front and its dynamics. The results reveal that the turbulent front will appear earlier and closer to the tube nozzle by increasing the gas flow rate and applied voltage amplitude. It is found that the pulse time duration and repetition frequency cannot change the dynamics and formation of the turbulent front. Further investigation demonstrated that every pulse can excite one turbulent front which is created in a specific position in a laminar region and propagates downstream and the effect of increasing frequency results in the increasing of the number of turbulent front and expansion of their region of formation.

  11. Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma

    SciTech Connect

    Zener Sukra Lie; Koo Hendrik Kurniawan; May On Tjia; Rinda, Hedwig; Suliyanti, Maria Margaretha; Syahrun Nur Abdulmadjid; Nasrullah Idris; Alion Mangasi Marpaung; Marincan Pardede; Jobiliong, Eric; Muliadi Ramli; Heri Suyanto; Fukumoto, Kenichi; Kagawa, Kiichiro

    2013-02-07

    A time-resolved orthogonal double pulse laser-induced breakdown spectroscopy (LIBS) with helium surrounding gas is developed for the explicit demonstration of time mismatch between the passage of fast moving impurity hydrogen atoms and the formation of thermal shock wave plasma generated by the relatively slow moving major host atoms of much greater masses ablated from the same sample. Although this so-called 'mismatching effect' has been consistently shown to be responsible for the gas pressure induced intensity diminution of hydrogen emission in a number of LIBS measurements using different ambient gases, its explicit demonstration has yet to be reported. The previously reported helium assisted excitation process has made possible the use of surrounding helium gas in our experimental set-up for showing that the ablated hydrogen atoms indeed move faster than the simultaneously ablated much heavier major host atoms as signaled by the earlier H emission in the helium plasma generated by a separate laser prior to the laser ablation. This conclusion is further substantiated by the observed dominant distribution of H atoms in the forward cone-shaped target plasma.

  12. Charge transfer reactions at interfaces between neutral gas and plasma: Dynamical effects and X-ray emission

    NASA Astrophysics Data System (ADS)

    Provornikova, E.; Izmodenov, V. V.; Lallement, R.

    2012-04-01

    Charge-transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge-transfer with respect to the dynamics and the structure of neutral gas-plasma interfaces. We consider the following phenomena: (1) the heliospheric interface - region where the solar wind plasma interacts with the partly-ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so-called ``Local Bubble". In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two-component model of the cloud-plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud-plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X-ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X-ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge-transfer X-ray emission from the neutral cloud-plasma interface may be comparable to the diffuse thermal X-ray emission from the million degree gas cavity itself.

  13. Ethanol vapor above skin: determination by a gas sensor instrument and relationship with plasma concentration.

    PubMed

    Giles, H G; Meggiorini, S; Renaud, G E; Thiessen, J J; Vidins, E I; Compton, K V; Saldivia, V; Orrego, H; Israel, Y

    1987-06-01

    Studies with a new instrument show that blood ethanol concentrations in rats and humans can be estimated by measurement of ethanol vapor above the skin. After intravenous bolus administration of ethanol (1 g/kg) to rats a novel device based on the Figaro sensor was placed above the animal's abdomen. Plasma and skin vapor ethanol concentrations, analyzed by gas chromatography and sensor, respectively, declined in parallel (r = 0.96). In healthy human subjects, plasma and skin vapor concentrations, measured on the palm, also declined in parallel after intravenous ethanol infusion (1 hr, 0.5 g/kg), r = 0.99. In 10 alcoholic liver disease outpatients attending clinic in whom plasma ethanol concentrations ranged from 32-304 mg/dl, the correlation of plasma ethanol determined directly by gas chromatography and indirectly by skin vapor analysis was slope = 0.93, intercept = 1.8, r = 0.94. In controlled studies, skin vapor measurements are comparable with breathalyzer determinations; they may be performed in situations where breathalyzer measurements are inconvenient or where continuous monitoring is desirable.

  14. Quenching Plasma Waves in Two Dimensional Electron Gas by a Femtosecond Laser Pulse

    NASA Astrophysics Data System (ADS)

    Shur, Michael; Rudin, Sergey; Greg Rupper Collaboration; Andrey Muraviev Collaboration

    Plasmonic detectors of terahertz (THz) radiation using the plasma wave excitation in 2D electron gas are capable of detecting ultra short THz pulses. To study the plasma wave propagation and decay, we used femtosecond laser pulses to quench the plasma waves excited by a short THz pulse. The femtosecond laser pulse generates a large concentration of the electron-hole pairs effectively shorting the 2D electron gas channel and dramatically increasing the channel conductance. Immediately after the application of the femtosecond laser pulse, the equivalent circuit of the device reduces to the source and drain contact resistances connected by a short. The total response charge is equal to the integral of the current induced by the THz pulse from the moment of the THz pulse application to the moment of the femtosecond laser pulse application. This current is determined by the plasma wave rectification. Registering the charge as a function of the time delay between the THz and laser pulses allowed us to follow the plasmonic wave decay. We observed the decaying oscillations in a sample with a partially gated channel. The decay depends on the gate bias and reflects the interplay between the gated and ungated plasmons in the device channel. Army Research Office.

  15. Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets

    NASA Astrophysics Data System (ADS)

    Kranzusch, Sebastian; Peth, Christian; Mann, Klaus

    2003-02-01

    At Laser-Laboratorium Göttingen laser-plasma sources were tested, which are going to be used for characterization of optical components and sensoric devices in the wavelength region from 11 to 13 nm. In all cases extreme ultraviolet (EUV) radiation is generated by focusing a Q-switched Nd:YAG laser into a pulsed gas puff target. By the use of xenon or oxygen as target gas, broadband as well as narrowband EUV radiation is obtained, respectively. Different types of valves and nozzles were tested in order to optimize the emitted radiation with respect to maximum EUV intensities, small source diameters, and positional stability. The investigation of these crucial source parameters was performed with specially designed EUV pinhole cameras, utilizing evaluation algorithms developed for standardized laser beam characterization. In addition, a rotatable pinhole camera was developed which allows both spatially and angular resolved monitoring of the soft x-ray emission characteristics. With the help of this camera a strong angular dependence of the EUV intensity was found. The data were compared with fluorescence measurements for visualization of the target gas jet. The experimental observations can be explained by reabsorption of the generated EUV radiation in the surrounding target gas, as supported by semiempirical model calculations based on the attenuation in the three-dimensional gas density according to Lambert-Beer's law. As a consequence of the presented investigations, an optimization of the EUV source with respect to intensity, plasma shape, and angular dependence is achieved, resulting in a spherical plasma of 200 μm diameter and a 50% increase of the EUV pulse energy.

  16. Pulsed electromagnetic gas acceleration. [magnetohydrodynamics, plasma power sources and plasma propulsion

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with various cathodes and anodes in a high power, quasi-steady magnetoplasmadynamic (MPD) are discussed. The magnitude of the current at the onset of voltage fluctuations is shown to be an increasing function of cathode area and a weaker decreasing function of anode area. Tests with a fluted cathode indicated that the fluctuations originate in the plasma adjacent to the cathode rather than at the cathode surface. Measurements of radiative output from an optical cavity aligned to examine the current-carrying portion of a two-dimensional, 56 kA magnetoplasmadynamic discharge reveal no lasing in that region, consistent with calculations of electron excitation and resonance radiation trapping. A voltage-swept double probe technique allows single-shot determination of electron temperature and electron number density in the recombining MPD exhaust flow. Current distributions within the cavity of MPD hollow cathodes for various static prefills with no injected mass flow are examined.

  17. Closed cycle MHD generator with nonuniform gas-plasma flow driving recombinated plasma clots formed by high-energy electron beams

    SciTech Connect

    Danilov, V.V.; Laptev, S.S.; Slavin, V.S.

    1996-12-31

    A new concept of a closed cycle MHD generator without alkali seed has been suggested. The essence of it is the use of the high-energy electron beams technology for a nonuniform gas-plasma flow in MHD channel creation. At the inlet of MHD channel in supersonic flow of noble gas (He) the plasma clots with a density about 10{sup 15} cm{sup {minus}3} are formed by pulsed intense electron beams with energy about 100 keV. Gas flow drives these clots in a cross magnetic field along the MHD channel which has electrodes connected with a load by Faraday`s scheme. Because the nonuniform gas-plasma flow has not the conductivity in the Hall`s EMF direction a Faraday`s current can flow only through the narrow plasma layers. The energy dissipation and Joule`s heating in MHD channel support the nonequilibrium conductivity in these plasma layers. a gas flow pushes current layers and produces electric power at the expense of enthalpy extraction. The key element is a question of plasma layers stability in MHD channel. The most dangerous instability is the overheating instability. it is shown that taking into account the phenomenon of frozen conductivity for recombinated plasma which appears for noble gas at T{sub e} > 4,000 K the regime with {partial_derivative}{sigma}/{partial_derivative}T{sub e} < 0 can be realized. Due to the fulfillment of this condition the overheating instability is effectively suppressed. The numerical simulation has shown that a supersonic gas flow, containing about 4 current layers in MHD channel simultaneously, is braked without shock waves creation. Current layers provide no less than 30% enthalpy extraction and about 80% isentropic efficiency.

  18. Evolution of a vortex in gas-discharge plasma with allowance for gas compressibility

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, V. S.; Mustafaev, A. S.

    2016-09-01

    The dynamics of a vortex tube in a compressible medium with the Rayleigh energy release mechanism has been considered theoretically. The analytic theory of this phenomenon is constructed and various approximations have been considered. The range of applicability conditions for the vortex formation theory has been extended substantially. It has been shown based on the model of a plasma as a Rayleigh medium that, for a certain relative orientation of the vortex axis and the electric field vector at an air pressure of tens of Torr, a vortex tube in the glow discharge plasma is destroyed over time intervals on the order of hundredths of a second. It has been found that allowance for the compressibility leads to an increase in the rate of vortex destruction. For this medium, the time dependences of the tangential velocity in a vortex tube have been calculated for various initial parameters. The similarity rules for the given phenomena and the universal dependence of the vortex tube dynamics have been obtained.

  19. The sterile inflammatory response.

    PubMed

    Rock, Kenneth L; Latz, Eicke; Ontiveros, Fernando; Kono, Hajime

    2010-01-01

    The acute inflammatory response is a double-edged sword. On the one hand, it plays a key role in initial host defense, particularly against many infections. On the other hand, its aim is imprecise, and as a consequence, when it is drawn into battle, it can cause collateral damage in tissues. In situations where the inciting stimulus is sterile, the cost-benefit ratio may be high; because of this, sterile inflammation underlies the pathogenesis of a number of diseases. Although there have been major advances in our understanding of how microbes trigger inflammation, much less has been learned about this process in sterile situations. This review focuses on a subset of the many sterile stimuli that can induce inflammation-specifically dead cells and a variety of irritant particles, including crystals, minerals, and protein aggregates. Although this subset of stimuli is structurally very diverse and might appear to be unrelated, there is accumulating evidence that the innate immune system may recognize them in similar ways and stimulate the sterile inflammatory response via common pathways. Here we review established and emerging data about these responses.

  20. 3D printing of gas jet nozzles for laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V.

    2016-07-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée.

  1. Plasma properties of driver gas following interplanetary shocks observed by ISEE-3

    NASA Technical Reports Server (NTRS)

    Zwickl, R. D.; Ashbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Smith, E. J.

    1982-01-01

    Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied. The characteristic properties of driver gas following interplanetary shocks was determined. Of 54 shocks observed from August 1978 to February 1980, nine contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of nine of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies.

  2. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.

  3. Analysis of a gas-liquid film plasma reactor for organic compound oxidation.

    PubMed

    Hsieh, Kevin; Wang, Huijuan; Locke, Bruce R

    2016-11-05

    A pulsed electrical discharge plasma formed in a tubular reactor with flowing argon carrier gas and a liquid water film was analyzed using methylene blue as a liquid phase hydroxyl radical scavenger and simultaneous measurements of hydrogen peroxide formation. The effects of liquid flow rate, liquid conductivity, concentration of dye, and the addition of ferrous ion on dye decoloration and degradation were determined. Higher liquid flow rates and concentrations of dye resulted in less decoloration percentages and hydrogen peroxide formation due to initial liquid conductivity effects and lower residence times in the reactor. The highest decoloration energy yield of dye found in these studies was 5.2g/kWh when using the higher liquid flow rate and adding the catalyst. The non-homogeneous nature of the plasma discharge favors the production of hydrogen peroxide in the plasma-liquid interface over the chemical oxidation of the organic in the bulk liquid phase and post-plasma reactions with the Fenton catalyst lead to complete utilization of the plasma-formed hydrogen peroxide.

  4. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  5. Simultaneous Determination of Cyanide and Thiocyanate in Plasma by Chemical Ionization Gas Chromatography Mass-Spectrometry (CI-GC-MS)

    DTIC Science & Technology

    2012-09-04

    ORIGINAL PAPER Simultaneous determination of cyanide and thiocyanate in plasma by chemical ionization gas chromatography mass-spectrometry (CI-GC-MS...chemical ioniza- tion gas chromatography-mass spectrometry was developed for the simultaneous determination of cyanide and thiocya- nate in plasma...Sample preparation for this analysis required essentially one-step by combining the reaction of cyanide and thiocyanate with pentafluorobenzyl bromide

  6. Study of Plasma Treatment of Produced Water from Oil and Gas Exploration

    NASA Astrophysics Data System (ADS)

    Wright, Kamau

    Unconventional gas and hydraulic fracturing is helping to increase natural gas production, which is widely viewed in the U.S. as a key asset to bolstering a clean and energy-independent future. Safe and economical management and treatment of water produced during such processes remain of key importance. With the increase of hydrocarbon production and national shale gas production expected to increase threefold and account for nearly half of all natural gas produced by 2035, advanced water treatment and management processes must be investigated, to ensure water conservation and associated economic prudence. The state of the art of produced water treatment technologies is described including the efficacy of plasma to modulate the contents of such aqueous solutions, meeting target parameters and potentially enabling the operation of other treatment technologies. Among other effects, progress is presented on the enhancement of an arc-in-water system to remove bicarbonate ions and prevent the mineral fouling ability of water which causes formation of CaCO3 in heat exchangers and distillation units. Qualitative and quantitative treatment targets of produced water treatment are discussed. Experimental work is conducted to test theories and identify and reproduce favorable effects useful to treating wastewaters. Plasma arc-in-water systems demonstrated capability of producing bicarbonate-depleted wastewaters, with experiments with gas-field produced waters indicating that generation of H+ ions plays a greater role in bicarbonate ion removal than local heating. Tests showed abatement of bicarbonate ions from a range of 684--778 mg/L down to zero. Subsequent scaling/fouling tests with waters ranging from 0 to 500 mg/L bicarbonate ions, in the presence of high calcium ion concentrations, showed that scale thickness, as well as mass on a 1-kW heating element was an order of magnitude less for process water containing 100 mg/L bicarbonate ions compared to process water with 500

  7. Karlson ozone sterilizer. Final report

    SciTech Connect

    Karlson, E.

    1984-05-07

    The authors have a functional sterilization system employing ozone as a sterilization agent. This final report covers the work that led to the first medical sterilizer using ozone as the sterilizing agent. The specifications and the final design were set by hospital operating room personnel and public safety standards. Work on kill tests using bacteria, viruses and fungi determined the necessary time and concentration of ozone necessary for sterilization. These data were used in the Karlson Ozone Sterilizer to determine the length of the steps of the operating cycle and the concentration of ozone to be used. 27 references.

  8. Control of reactive oxygen and nitrogen species production in liquid by nonthermal plasma jet with controlled surrounding gas

    NASA Astrophysics Data System (ADS)

    Ito, Taiki; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Setsuhara, Yuichi

    2017-01-01

    We present the development of a low-frequency nonthermal plasma-jet system, where the surrounding-gas condition of the plasma jet is precisely controlled in open air. By restricting the mixing of the ambient air into the plasma jet, the plasma jet can be selectively changed from a N2 main discharge to an O2 main discharge even in open air. In the plasma-jet system with the controlled surrounding gas, the production of reactive oxygen and nitrogen species is successfully controlled in deionized water: the concentration ratio of NO2 - to H2O2 is tuned from 0 to 0.18, and a high NO2 - concentration ratio is obtained at a N2 gas ratio of 0.80 relative to the total N2/O2 gas mixture in the main discharge gas. We also find that the NO2 - concentration is much higher in the plasma-activated medium than in the plasma-activated deionized water, which is mainly explained by the contribution of amino acids to NO2 - generation in the medium.

  9. The Neutral Gas Desorption and Breakdown on a Metal-Dielectric Junction Immersed in a Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    New results are presented of an experimental study and theoretical analysis of arcing on metal-dielectric junctions immersed in a low-density plasma. Two samples of conventional solar arrays have been used to investigate the effects of arcing within a wide range of neutral gas pressures, ion currents, and electron number densities. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, intensities of spectral lines, and so on). Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are trip le-junctions, even though some arcs were initiated in gaps between cells. The effect of surface conditioning (decrease of arc rate due to outgassing) was clearly demonstrated. Moreover, a considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. The analysis of optical spectra (240-800 nm) reveals intense narrow atomic lines (Ag, H) and wide molecular bands (OH, CH, SiH, SiN) that confirm a complicated mechanism of arc plasma generation. The rate of plasma contamination due to arcing was measured by employing a mass-spectrometer. These measurements provided quite reliable data for the development of a theoretical model of plasma contamination, In conclusion, the arc threshold was increased to above 350 V (from 190 V) by keeping a sample in vacuum (20 micronTorr) for seven days. The results obtained are important for the understanding of the arc inception mechanism, which is absolutely essential for progress toward the design of high voltage solar arrays for space applications.

  10. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    SciTech Connect

    Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X.; Ostrikov, K.

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

  11. Sterile neutrinos in the early universe

    SciTech Connect

    Malaney, R.A. ); Fuller, G.M. . Dept. of Physics)

    1990-11-14

    We discuss the role played by right-handed sterile neutrinos in the early universe. We show how well known {sup 4}He constraint on the number of relativistic degrees of freedom at early times limits the equilibration of the right handed neutrino sea with the background plasma. We discuss how this allows interesting constraints to be placed on neutrino properties. In particular, a new limit on the Dirac mass of the neutrino is presented. 12 refs.

  12. The magnetic field application for the gas discharge plasma control in processes of surface coating and modification

    NASA Astrophysics Data System (ADS)

    Asadullin, T. Ya; Galeev, I. G.

    2017-01-01

    In this paper the method of magnetic field application to control the gas discharge plasma effect on the various surfaces in processes of surface coating and modification is considered. The magnetic field directed perpendicular to the direction of electric current in the gas discharge plasma channel is capable to reject this plasma channel due to action of Lorentz force on the moving electrically charged particles [1,2]. The three-dimensional spatial structure of magnetic field is created by system of necessary quantity of the magnets located perpendicular to the direction of course of electric current in the gas-discharge plasma channel. The formation of necessary spatial distribution of magnetic field makes possible to obtain a required distribution of plasma parameters near the processed surfaces. This way of the plasma channel parameters spatial distribution management is the most suitable for application in processes of plasma impact on a surface of irregular shape and in cases when the selective impact of plasma on a part of a surface of a product is required. It is necessary to apply automated computer management of the process parameters [3] to the most effective plasma impact.

  13. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  14. Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan

    2015-09-01

    A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)

  15. Biological Sterilization of Returned Mars Samples

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Albert, F. G.; Combie, J.; Bodnar, R. J.; Hamilton, V. E.; Jolliff, B. L.; Kuebler, K.; Wang, A.; Lindstrom, D. J.; Morris, P. A.

    1999-01-01

    Martian rock and soil, collected by robotic spacecraft, will be returned to terrestrial laboratories early in the next century. Current plans call for the samples to be immediately placed into biological containment and tested for signs of present or past life and biological hazards. It is recommended that "Controlled distribution of unsterilized materials from Mars should occur only if rigorous analyses determine that the materials do not constitute a biological hazard. If any portion of the sample is removed from containment prior to completion of these analyses it should first be sterilized." While sterilization of Mars samples may not be required, an acceptable method must be available before the samples are returned to Earth. The sterilization method should be capable of destroying a wide range of organisms with minimal effects on the geologic samples. A variety of biological sterilization techniques and materials are currently in use, including dry heat, high pressure steam, gases, plasmas and ionizing radiation. Gamma radiation is routinely used to inactivate viruses and destroy bacteria in medical research. Many commercial sterilizers use Co-60 , which emits gamma photons of 1.17 and 1.33 MeV. Absorbed doses of approximately 1 Mrad (10(exp 8) ergs/g) destroy most bacteria. This study investigates the effects of lethal doses of Co-60 gamma radiation on materials similar to those anticipated to be returned from Mars. The goals are to determine the gamma dose required to kill microorganisms in rock and soil samples and to determine the effects of gamma sterilization on the samples' isotopic, chemical and physical properties. Additional information is contained in the original extended abstract.

  16. The study of gas species on THz generation from laser-induced air plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Ji; Zhang, LiangLiang; Wu, YiJian; Wu, Tong; Yuan, Hui; Zhang, CunLin; Zhao, YueJin

    2015-08-01

    Intense Terahertz waves generated from air-induced plasma and serving as broadband THz source provide a promising broadband source for innovative technology. Terahertz generation in selected gases has attracted more and more researchers' interests in recent years. In this research, the THz emission from different atoms is described, such as nitrogen, argon and helium in Michelson. The THz radiation is detected by a Golay Cell equipped with a 6-mm-diameter diamond-inputting window. It can be seen in the first time that when the pump power lies at a stable level, the THz generation created by the femtosecond laser focusing on the nitrogen is higher than which focusing on the helium, and lower than that produced in the argon gas environment. We believe that the THz intensity is Ar > N > Ne because of its atomic mass, which is Ar > N > Ne as well. It is clear that the Gas molecular decides the release of free electrons ionized from ultra short femtosecond laser through the electronic dynamic analysis. The higher the gas mass is, the stronger the terahertz emission will be. We further explore the THz emission at the different laser power levels, and the experimental results can be commendably quadratic fitted. It can be inferred that THz emission under different gas medium environment still complies with the law of four-wave mixing (FWM) process and has nothing to do with the gas environment: the radiation energy is proportional to the quadratic of incident laser power.

  17. In vitro bactericidal efficacy of atmospheric-pressure plasma jet on titanium-based implant infected with Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Park, Young-Ouk; Lee, Chang-Min; Kim, Myung-Sun; Jung, Sang-Chul; Yang, Seong-Won; Kook, Min-Suk; Kim, Byung-Hoon

    2017-01-01

    Staphylococcus aureus is a representative of gram-positive bacteria that causes skin infection, respiratory diseases, and burned tissue infections. The aim of this study was to evaluate the sterilizing efficiency of an atmospheric-pressure plasma jet (APPJ) on S. aureus adhered on a titanium surface. During the APPJ sterilization, the plasma gases used were Ar, Ar+N2, and Ar+O2. With increasing APPJ treatment time, the viability of S. aureus decreased. The addition of O2 gas to Ar gas resulted in a higher sterilizing efficiency than the addition of other groups. Plasma exposure induced bacterial oxidative stress, and it was confirmed that the cell membrane was seriously damaged by the production of reactive oxygen species. Our finding suggests that the APPJ is an effective tool for clinical antimicrobial therapy.

  18. Controlling the Neutron Yield from a Small Dense Plasma Focus using Deuterium-Inert Gas Mixtures

    SciTech Connect

    Bures, B. L.; Krishnan, M.; Eshaq, Y.

    2009-01-21

    The dense plasma focus (DPF) is a well known source of neutrons when operating with deuterium. The DPF is demonstrated to scale from 10{sup 4} n/pulse at 40 kA to >10{sup 12} n/pulse at 2 MA by non-linear current scaling as described in [1], which is itself based on the simple yet elegant model developed by Lee [2]. In addition to the peak current, the gas pressure controls the neutron yield. Recent published results suggest that mixing 1-5% mass fractions of Krypton increase the neutron yield per pulse by more than 10x. In this paper we present results obtained by mixing deuterium with Helium, Neon and Argon in a 500 J dense plasma focus operating at 140 kA with a 600 ns rise time. The mass density was held constant in these experiments at the optimum (pure) deuterium mass density for producing neutrons. A typical neutron yield for a pure deuterium gas charge is 2x10{sup 6}{+-}15% n/pulse. Neutron yields in excess of 10{sup 7}{+-}10% n/pulse were observed with low mass fractions of inert gas. Time integrated optical images of the pinch, soft x-ray measurements and optical emission spectroscopy where used to examine the pinch in addition to the neutron yield monitor and the fast scintillation detector. Work supported by Domestic Nuclear Detection Office under contract HSHQDC-08-C-00020.

  19. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  20. Radiation sterilization of ketoprofen

    NASA Astrophysics Data System (ADS)

    Katušin-Ražem, Branka; Hamitouche, Katia; Maltar-Strmečki, Nadica; Kos, Karmen; Pucić, Irina; Britvić-Budicin, Smiljana; Ražem, Dušan

    2005-06-01

    Radiation sterilization of ketoprofen (KP) dry powder was investigated by selected physico-chemical methods. High-performance liquid chromatography, ultraviolet spectrophotometry, infrared spectrophotometry, differential scanning calorimetry, X-ray diffraction and electron spin resonance spectroscopy did not show any significant degradation at sterilization dose 25 kGy. To determine the nature, extent and direction of radiation-induced changes, KP was irradiated to extremely high doses, much higher than necessary to achieve sterility. The irradiated KP did not show any difference of XRD patterns up to 200 kGy; with DSC and IR some changes were detected only above 1000 and 2000 kGy, respectively; HPLC has shown about 5% destruction at 2000 kGy. Acetyl benzophenon (AcBph) was generated by irradiation with G(AcBph)=(1.6±0.1)×10 -8 mol J -1. Ames test has shown no mutagenicity of KP irradiated with 3000 kGy or of the oily mixure of radiolytic products isolated from it. Solid KP has proven to be very stable on irradiation, and irradiation has been found to be a suitable method for its sterilization.

  1. Sterilization surgery - making a decision

    MedlinePlus

    ... medlineplus.gov/ency/article/002138.htm Sterilization surgery - making a decision To use the sharing features on this page, ... about all the options available to you before making the decision to have a sterilization procedure. Alternative Names Deciding ...

  2. Lightest sterile neutrino abundance within the νMSM

    NASA Astrophysics Data System (ADS)

    Asaka, Takehiko; Shaposhnikov, Mikhail; Laine, Mikko

    2007-01-01

    We determine the abundance of the lightest (dark matter) sterile neutrinos created in the Early Universe due to active-sterile neutrino transitions from the thermal plasma. Our starting point is the field-theoretic formula for the sterile neutrino production rate, derived in our previous work [JHEP 06(2006)053], which allows to systematically incorporate all relevant effects, and also to analyse various hadronic uncertainties. Our numerical results differ moderately from previous computations in the literature, and lead to an absolute upper bound on the mixing angles of the dark matter sterile neutrino. Comparing this bound with existing astrophysical X-ray constraints, we find that the Dodelson-Widrow scenario, which proposes sterile neutrinos generated by active-sterile neutrino transitions to be the sole source of dark matter, is only possible for sterile neutrino masses lighter than 3.5 keV (6 keV if all hadronic uncertainties are pushed in one direction and the most stringent X-ray bounds are relaxed by a factor of two). This upper bound may conflict with a lower bound from structure formation, but a definitive conclusion necessitates numerical simulations with the non-equilibrium momentum distribution function that we derive. If other production mechanisms are also operative, no upper bound on the sterile neutrino mass can be established.

  3. Structure and properties of commercially pure titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu F.; Akhmadeev, Yu H.; Lopatin, I. V.; Petrikova, E. A.; Krysina, V.; Koval, N. N.

    2015-11-01

    The paper analyzes the surface structure and properties of commercially pure VT1-0 titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator. The analysis demonstrates that the friction coefficient of the nitrided material decreases more than four times and its wear resistance and microhardness increases more than eight and three times, respectively. The physical mechanisms responsible for the enhancement of strength and tribological properties of the material are discussed.

  4. Isolation and derivatization of plasma taurine for stable isotope analysis by gas chromatography-mass spectrometry

    SciTech Connect

    Irving, C.S.; Klein, P.D.

    1980-09-01

    A method for the isolation and derivatization of plasma taurine is described that allows stable isotope determinations of taurine to be made by gas chromatography-mass spectrometry. The isolation procedure can be applied to 0.1 ml of plasma; the recovery of plasma taurine was 70 to 80%. For gc separation, taurine was converted to its dimethylaminomethylene methyl ester derivative which could not be detected by hydrogen flame ionization, but could be monitored readily by NH/sub 3/ chemical ionization mass spectrometry. The derivatization reaction occurred partially on-column and required optimization of injection conditions. Using stable isotope ratiometry multiple ion detection, (M + 2 + H)/sup +//(M + H)/sup +/ ion ratio of natural abundance taurine was determined with a standard deviation of less than +-0.07% of the ratio. The (1,2-/sup 13/C)taurine/taurine mole ratios of standard mixtures could be accurately determined to 0.001. This stable isotope gc-ms method is suitable for studying the plasma kinetics of (1,2-/sup 13/C)taurine in infants who are at risk with respect to taurine depletion.

  5. Modifications in Structural, Electrical, Electronic and Mechanical Properties of Titanium Thin Films under different Gas Plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Omveer; Dahiya, Raj P.; Malik, Hitendra K.

    2015-09-01

    In the recent past, Titanium thin films can be grown over different substrates such as silicon, glass and quartz by using versatile deposition techniques DC, RF sputtering, electronic beam and thermal evaporation etc. The grown films are then exposed in different gas environments for individual application. It has been found that Titanium nitride exhibits good chemical stability, mechanical and electrical properties. To investigate these properties in titanium nitride thin films, we have developed a new approach hot cathode arc discharge plasma system. By using this technique, we can measure plasma and nitriding parameters independently. In the present work, we have investigated gases mixture (Nitrogen, Argon and Hydrogen) effect on the structural, mechanical, electrical and electronic properties in plasma system. We have used 100% N2, 50% N2 + 50% Ar and 50% N2 + 50% H2 gases ratio for plasma nitriding. Structural and electronic structure properties are measured from X-ray diffractions (XRD) and X-ray photoelectron spectroscopy (XPS) respectively. The surface morphology of these films were measured using Atomic Force Microscopy (AFM) and the nano-indentation mode is used to find out the hardness of the samples. Government of India.

  6. Thermal Phenomena in Gas Confinement Dielectric Tube of the VASIMR Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Berisford, Dan; Bengtson, R.; Raja, L.; Squire, J.; Cassidy, L.; Chauncery, J.; McCaskill, G.

    2007-11-01

    A quartz dielectric tube provides gas confinement in the helicon discharge of the VASIMR (Variable Specific Impulse Magnetoplasma Rocket) experiment. Despite highly aligned magnetic field lines to confine the plasma in the discharge, significant thermal heating of the dielectric tube occurs. We perform infrared camera imaging studies of heating of the tube with varying operational parameters of the experiment. Results show decreased heating of the tube as the plasma becomes more highly magnetized and less collisional. The data follows a trend that is well represented by a Bohm transport of ions perpendicular to the magnetic field lines suggesting that ion impact on the tube rather than radiation is the primary heating mechanism. Highly localized heating is also observed directly under the antenna in regions where the coils lie closest to the tube surface. This phenomenon is attributed to capacitive coupling effects that accelerate ions under the antenna coils, increasing the local energy flux to the tube surface.

  7. Determination of ibogaine in plasma by gas chromatography--chemical ionization mass spectrometry.

    PubMed

    Ley, F R; Jeffcoat, A R; Thomas, B F

    1996-02-02

    Ibogaine is naturally occurring indole alkaloid that is currently being considered as a treatment medication for drug dependence. Although there have been a variety of investigations regarding the mechanisms of action and pharmacology of ibogaine, relatively little has been reported regarding quantitative methods. Because of the paucity of analytical methodologies, studies involving the pharmacokinetics and metabolism of ibogaine have also been limited. A method is described for the determination of ibogaine levels in plasma by gas chromatography -- methane chemical ionization mass spectrometry. [13C2H3]Ibogaine was synthesized and used as an internal standard to control for recovery during sample preparation. The assay requires one ml of plasma and is shown to be a selective and sensitive means of ibogaine quantitation.

  8. Gas Diffusion Barriers Prepared by Spatial Atmospheric Pressure Plasma Enhanced ALD.

    PubMed

    Hoffmann, Lukas; Theirich, Detlef; Pack, Sven; Kocak, Firat; Schlamm, Daniel; Hasselmann, Tim; Fahl, Henry; Räupke, André; Gargouri, Hassan; Riedl, Thomas

    2017-02-01

    In this work, we report on aluminum oxide (Al2O3) gas permeation barriers prepared by spatial ALD (SALD) at atmospheric pressure. We compare the growth characteristics and layer properties using trimethylaluminum (TMA) in combination with an Ar/O2 remote atmospheric pressure plasma for different substrate velocities and different temperatures. The resulting Al2O3 films show ultralow water vapor transmission rates (WVTR) on the order of 10(-6) gm(-2)d(-1). In notable contrast, plasma based layers already show good barrier properties at low deposition temperatures (75 °C), while water based processes require a growth temperature above 100 °C to achieve equally low WVTRs. The activation energy for the water permeation mechanism was determined to be 62 kJ/mol.

  9. Instabilities in uranium plasma and the gas-core nuclear rocket engine

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1972-01-01

    The nonlinear evolution of unstable sound waves in a uranium plasma has been calculated using a multiple time-scale asymptotic expansion scheme. The fluid equations used include the fission power density, radiation diffusion, and the effects of the changing degree of ionization of the uranium atoms. The nonlinear growth of unstable waves is shown to be limited by mode coupling to shorter wavelength waves which are damped by radiation diffusion. This mechanism limits the wave pressure fluctuations to values of order delta P/P approximates 0.00001 in the plasma of a typical gas-core nuclear rocket engine. The instability is thus not expected to present a control problem for this engine.

  10. Surface Decontamination of Simulated Chemical Warfare Agents Using a Nonequilibrium Plasma with Off-Gas Monitoring

    SciTech Connect

    Moeller, Trevor M.; Alexander, M. Lizabeth; Engelhard, Mark H.; Gaspar, Dan J.; Luna, Maria L.; Irving, Patricia M.

    2002-08-01

    InnovaTek is developing a surface decontamination technology that utilizes active species generated in a nonequilibrium corona plasma. The plasma technology was tested against DMMP, a simulant for the chemical agent Sarin. GC-MS analysis showed that a greater than four log10 destruction of the DMMP on an aluminum surface was achieved in a 10 minute treatment. An ion-trap mass spectrometer was utilized to collect time-resolved data on the treatment off-gases. These data indicate that only non-toxic fragments of the broken down DMMP molecule were present in the gas phase. The technology is being further refined to develop a product that will not only decontaminate surfaces but will also sense when decontamination is complete

  11. Gas density structure of supersonic flows impinged on by thin blades for laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Mao, H.-S.; Swanson, K. K.; Tsai, H.-E.; Barber, S. K.; Steinke, S.; van Tilborg, J.; Geddes, C. G. R.; Leemans, W. P.

    2017-03-01

    Density transition injection is an effective technique for controllably loading electrons into a trapped phase for laser-plasma accelerators. One common technique to achieve this fluid phenomenon is to impinge a thin blade on the plume of a supersonic nozzle. 2-D simulations show that the density transition accessible to a transverse laser is produced by a rapid re-expansion of the high pressure region behind the initial bow shock, and not by the bow shock produced by the blade, as is commonly thought. This pressure mismatched re-expansion generates compression waves that could coalesce into shock-fronts as they interact with the surrounding ambient gas. This has consequences when interpreting the electron injection mechanism. In the simulations presented here, the fluid dynamics of a supersonic nozzle impinged on by a thin, flat object is explored, along with the implications for electron beam injectors in laser-plasma accelerators.

  12. Emission spectroscopy of CW CO2 laser-sustained argon plasma - Effects of gas-flow speed

    NASA Astrophysics Data System (ADS)

    Chen, Xiangli; Mazumder, Jyotirmoy

    1989-12-01

    The effect of elevated gas-flow speed on the laser-sustained argon plasmas (LSPs) formed in laser-gas interaction was examined for the purpose of investigating the applicability of LSPs to laser-supported rocket propulsion. The electron temperature distribution, obtained from the 415.8-nm Ar line-to-continuum intensity ratio, was used to calculate the fraction of laser power absorbed by the plasma and the amount of radiation lost. Laser powers were 2.5 and 5 kW with an f/7 lens focusing scheme, and gas-flow speeds of 2-10 m/sec. It was found that as much as 86 percent of incident laser energy can be absorbed by the plasma, and 41 to 62 of the laser energy can still be retained as the gas thermal energy, which is a significant increase over the previously reported results for lower-flow speed and smaller focusing f number.

  13. Metal-Assisted Laser-Induced Gas Plasma for the Direct Analysis of Powder Using Pulse CO2 Laser

    NASA Astrophysics Data System (ADS)

    Khumaeni, A.; Lie, Z. S.; Kurniawan, K. H.; Kagawa, K.

    2017-01-01

    Analysis of powder samples available in small quantities has been carried out using metal-assisted gas plasma by utilizing a transversely excited atmospheric (TEA) CO2 laser. The powder was homogeneously mixed with Si grease, and the mixed powder was painted on a metal subtarget. When a TEA CO2 laser was directly focused on the metal subtarget at atmospheric pressure of He gas, a high-temperature He gas plasma was induced. It is assumed that the powder particles were vaporized to be effectively atomized and excited in the gas plasma region. This method has been employed in the rapid analyses of elements in organic and inorganic powder samples present in small quantities. Detection of trace elements of Cr and Pb has been successfully made by using the supplement powder and loam soil, respectively. The detection limits of Pb in loam soil were approximately 20 mg/kg.

  14. Plasma-sprayed zirconia gas path seal technology: A state-of-the-art review

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1979-01-01

    The benefits derived from application of ceramic materials to high pressure turbine gas path seal components are described and the developmental backgrounds of various approaches are reviewed. The most fully developed approaches are those employing plasma sprayed zirconium oxide as the ceramic material. Prevention of cracking and spalling of the zirconium oxide under cyclic thermal shock conditions imposed by the engine operating cycle is the most immediate problem to be solved before implementation is undertaken. Three promising approaches to improving cyclic thermal shock resistance are described and comparative rig performance of each are reviewed. Advanced concepts showing potential for performance improvements are described.

  15. Production of ultra clean gas-atomized powder by the plasma heated tundish technique

    SciTech Connect

    Tingskog, T.A.; Andersson, V.

    1996-12-31

    The paper describes the improvements in cleanliness for different types of gas atomized powders produced by holding the melt in a Plasma Heated Tundish (PHT) before atomization. The cleanliness is measured on Hot Isostatically Pressed (HIP) or extruded samples. Significant improvements in slag levels and material properties have been achieved. On extruded powder metallurgy stainless steel and nickel alloy tubes, the rejection rate in ultra-sonic testing was reduced drastically. Tool steels and high speed steels have greatly improved ductility and bend strength.

  16. Determination of fluoxetine and norfluoxetine in plasma by gas chromatography with electron-capture detection

    SciTech Connect

    Nash, J.F.; Bopp, R.J.; Carmichael, R.H.; Farid, K.Z.; Lemberger, L.

    1982-10-01

    This gas-chromatographic method for assay of fluoxetine and norfluoxetine in human plasma involves extraction of the drugs and use of a /sup 63/Ni electron-capture detector. The linear range of detection is 25 to 800 micrograms/L for each drug. Overall precision (CV) in the concentration range of 10 to 100 micrograms/L for both drugs was approximately 10%. Accuracy (relative error) in the same concentration range was approximately +10%. None of the commonly prescribed antidepressants or tranquilizers that we tested interfere with the assay.

  17. Ion Species and Charge States of Vacuum Arc Plasma with Gas Feed and Longitudinal Magnetic Field

    SciTech Connect

    Oks, Efim; Anders, Andre

    2010-06-23

    The evolution of copper ion species and charge state distributions is measured for a long vacuum arc discharge plasma operated in the presence of a longitudinal magnetic field of several 10 mT and working gas (Ar). It was found that changing the cathode-anode distance within 20 cm as well as increasing the gas pressure did not affect the arc burning voltage and power dissipation by much. In contrast, burning voltage and power dissipation were greatly increased as the magnetic field was increased. The longer the discharge gap the greater was the fraction of gaseous ions and the lower the fraction of metal ions, while the mean ion charge state was reduced. It is argued that the results are affected by charge exchange collisions and electron impact ionization.

  18. High pressure laser plasma studies. [energy pathways in He-Ar gas mixtures at low pressure

    NASA Technical Reports Server (NTRS)

    Wells, W. E.

    1980-01-01

    The operation of a nuclear pumped laser, operating at a wavelength of 1.79 micron m on the 3d(1/2-4p(3/2) transition in argon with helium-3 as the majority gas is discussed. The energy pathways in He-Ar gas were investigated by observing the effects of varying partial pressures on the emissions of levels lying above the 4p level in argon during a pulsed afterglow. An attempt is made to determine the population mechanisms of the 3d level in pure argon by observing emission from the same transition in a high pressure plasma excited by a high energy electron beam. Both collisional radiative and dissociative recombination are discussed.

  19. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  20. The effects of sterilization, processing and aging on the structure and morphology of medical-grade ultrahigh molecular weight polyethylene for use in total joint replacements

    NASA Astrophysics Data System (ADS)

    Goldman, Marni

    A pilot study was performed which examined the effects of gamma radiation sterilization after five years aging in air on the structure of ultrahigh molecular weight polyethylene (UHMWPE) for total joint replacements. A sterilized tibial component and a nonsterile block of polymer which had come from the same compression molded batch of material were characterized by differential scanning calorimetry (DSC), density gradient column (DGC), small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). Increases in crystallinity and density were observed for the sterilized component after five years aging in air. A thickening of the lamellae as well as an increase in their tortuosity was seen in the sterilized material. Oxygen uptake occurred in the irradiated specimens. Results indicated that chain scission was the dominant response to gamma irradiation sterilization and aging in air for five years. Material from four different processing conditions was sterilized by: gamma irradiation, electron beam irradiation, ethylene oxide gas, plasma, or not sterilized as a control. Groups were divided into aging environments: air, hyaluronic acid and hydrogen peroxide. Characterization by DSC, DGC, TEM, SAXS and FTIR was performed periodically over a period of one and a half years. Processing conditions had the least effect on the structure and morphology of UHMWPE. Initial increases in oxygen uptake were higher for those materials with higher nascent crystallinities. Trends observed for all materials as a function of sterilization, aging environment and time were similar. Sterilization method and subsequent aging time were the most important factor in examining the structure of UHMWPE. Ethylene oxide gas and plasma did not appear to alter the polymer. Both forms of irradiation resulted in the most changes with time augmenting some effects. Results indicated chain scission dominated in response to radiation and

  1. Exploring the plasma chemistry in microwave chemical vapor deposition of diamond from C/H/O gas mixtures.

    PubMed

    Kelly, Mark W; Richley, James C; Western, Colin M; Ashfold, Michael N R; Mankelevich, Yuri A

    2012-09-27

    Microwave (MW)-activated CH(4)/CO(2)/H(2) gas mixtures operating under conditions relevant to diamond chemical vapor deposition (i.e., X(C/Σ) = X(elem)(C)/(X(elem)(C) + X(elem)(O)) ≈ 0.5, H(2) mole fraction = 0.3, pressure, p = 150 Torr, and input power, P = 1 kW) have been explored in detail by a combination of spatially resolved absorption measurements (of CH, C(2)(a), and OH radicals and H(n = 2) atoms) within the hot plasma region and companion 2-dimensional modeling of the plasma. CO and H(2) are identified as the dominant species in the plasma core. The lower thermal conductivity of such a mixture (cf. the H(2)-rich plasmas used in most diamond chemical vapor deposition) accounts for the finding that CH(4)/CO(2)/H(2) plasmas can yield similar maximal gas temperatures and diamond growth rates at lower input powers than traditional CH(4)/H(2) plasmas. The plasma chemistry and composition is seen to switch upon changing from oxygen-rich (X(C/Σ) < 0.5) to carbon-rich (X(C/Σ) > 0.5) source gas mixtures and, by comparing CH(4)/CO(2)/H(2) (X(C/Σ) = 0.5) and CO/H(2) plasmas, to be sensitive to the choice of source gas (by virtue of the different prevailing gas activation mechanisms), in contrast to C/H process gas mixtures. CH(3) radicals are identified as the most abundant C(1)H(x) [x = 0-3] species near the growing diamond surface within the process window for successful diamond growth (X(C/Σ) ≈ 0.5-0.54) identified by Bachmann et al. (Diamond Relat. Mater.1991, 1, 1). This, and the findings of similar maximal gas temperatures (T(gas) ~2800-3000 K) and H atom mole fractions (X(H)~5-10%) to those found in MW-activated C/H plasmas, points to the prevalence of similar CH(3) radical based diamond growth mechanisms in both C/H and C/H/O plasmas.

  2. Collision Experiment of an Arched Plasma-Filled Flux Rope and a Target Cloud of Initially Neutral Gas

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Bellan, Paul; Li, Hui; Li, Shengtai

    2016-10-01

    Shocks occur in the co-rotating interaction regions just beyond the solar corona, in the corona during CME events, and when the solar wind impacts Earth's magnetosphere. The Caltech solar loop experiment investigates shock physics by creating an arched plasma-filled flux rope that expands to collide with a pre-injected, initially-neutral gas. We focus the investigation on the situation of a heavy-gas plasma (Argon) impacting a much lighter neutral gas cloud (Hydrogen). The neutral gas target cloud ionizes immediately upon being impacted and plasma-induced shock waves propagate in the target cloud away from the impact region. Analysis of data from magnetic probes, Langmuir probes, a fast camera, and spectroscopic measurements will be presented. The measurements suggest that a thin, compressed, ionized layer of hydrogen is formed just downstream of the Argon plasma loop and that thin, supersonic shocks form further downstream and propagate obliquely away from the plasma loop. Numerical simulation of an ideal MHD plasma is underway to enable comparison of the measurements with the predictions of MHD theory.

  3. Sterilization of Medical Instruments

    DTIC Science & Technology

    2007-05-06

    possible use with medical instruments and skin catheters. To address this challenge, MicroStructure Technologies (MicroST) is developing an...Project: DARPA - Sterilization of Medical Instruments Contract: # FA9550-06-C-0054 Principal Investigator: Joseph Birmingham Report: FINAL Report 1...as medical instruments and skin catheters. To address this challenge, MicroStructure Technologies (MicroST) is proposing a compact, low maintenance

  4. Optical shaping of gas targets for laser–plasma ion sources

    DOE PAGES

    Dover, N. P.; Cook, N.; Tresca, O.; ...

    2016-02-09

    In this paper, we report on the experimental demonstration of a technique to generate steep density gradients in gas-jet targets of interest to laser–plasma ion acceleration. By using an intentional low-energy prepulse, we generated a hydrodynamic blast wave in the gas to shape the target prior to the arrival of an intense COmore » $$_{2}$$($${\\it\\lambda}\\approx 10~{\\rm\\mu}\\text{m}$$) drive pulse. This technique has been recently shown to facilitate the generation of ion beams by shockwave acceleration (Trescaet al.,Phys. Rev. Lett., vol. 115 (9), 2015, 094802). Here, we discuss and introduce a model to understand the generation of these blast waves and discuss in depth the experimental realisation of the technique, supported by hydrodynamics simulations. With appropriate prepulse energy and timing, this blast wave can generate steepened density gradients as short as$$l\\approx 20~{\\rm\\mu}\\text{m}$$($1/e$), opening up new possibilities for laser–plasma studies with near-critical gaseous targets.« less

  5. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1977-01-01

    The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.

  6. Thermal behavior of bovine serum albumin after exposure to barrier discharge helium plasma jet

    NASA Astrophysics Data System (ADS)

    Jijie, R.; Pohoata, V.; Topala, I.

    2012-10-01

    Non-thermal plasma jets at atmospheric pressure are useful tools nowadays in plasma medicine. Various applications are tested such as cauterization, coagulation, wound healing, natural and artificial surfaces decontamination, and sterilization. In order to know more about the effects of gas plasma on biological supramolecules, we exposed protein powders to a barrier discharge helium plasma jet. Then, spectroscopic investigations were carried out in order to obtain information on protein secondary, tertiary, and quaternary structures. We obtained a reduction of the protein alpha-helix content after the plasma exposure and a different behavior, for both thermal denaturation/renaturation kinetics and thermal aggregation process.

  7. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.

    PubMed

    Castro, Hernán Ariel; Luca, Vittorio; Banchi, Hugo Luis

    2017-03-23

    Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including (14)C, (60)Co, (90)Sr, (129)I, and (137)Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power

  8. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed.

  9. Plasma-weld pool interaction in tungsten inert-gas configuration

    NASA Astrophysics Data System (ADS)

    Mougenot, J.; Gonzalez, J.-J.; Freton, P.; Masquère, M.

    2013-04-01

    A three-dimensional (3D) transient model of a transferred argon arc in interaction with an anode material is presented and the results discussed. The model based on a finite volume method is developed using the open software @Saturne distributed by Electricité de France. The 3D model includes the characterization of the plasma gas and of the work piece with a current continuity resolution in the whole domain. Transport and thermodynamic properties are dependent on the local temperature and on the vapours emitted by the eroded material due to the heat flux transferred by the plasma. Drag force, Marangoni force, Laplace and gravity forces are taken into account on the weld pool description. The plasma and the weld pool characteristics are presented and compared with experimental and theoretical results from the literature. For a distance between the two electrodes of d = 5 mm and an applied current intensity of I = 200 A, the vapour concentration is weak. The influence of the parameters used in the Marangoni formulation is highlighted. Finally, in agreement with some authors, we show with this global transient 3D model that it is not necessary to include the voltage drop in the energy balance.

  10. Gas Temperature Measurements of Fluctuating Coal - MHD Plasmas Using Modified Line Reversal.

    NASA Astrophysics Data System (ADS)

    Winkleman, Bradley Carl

    The technique of modified line reversal is investigated and developed to allow accurate measurements on fluctuating coal fired magnetohydrodynamic plasmas and flows. Generalized modified line reversal equations applicable to any geometry and optical system are developed and presented. The generalized equations are specialized to the two most common optical systems, focussed and collimated, employed for modified line reversal measurements. Approximations introduced by specializing to the specific optical systems are investigated. Vignetting of the optical system images is shown to introduce large biases in the temperature measurement for certain optical configurations commonly applied. It is shown that symmetric optical systems are unacceptable for line reversal measurements. The errors introduced by non-simultaneous measurement of the required line reversal parameters due to rapidly fluctuating plasma characteristics are characterized. Line reversal signal and temperature measurements made on a coal fired MHD plasma are used to quantify the error in the temperature measurement due to non-simultaneous sampling of the measured line reversal parameters. A simple modified line reversal system based on interference filters and photodiodes that employs spatial separation to obtain the required line reversal parameters is described. Gas temperatures measured with devices using both the spatial and temporal separation techniques are compared. Modified line reversal temperature measurements are compared to theoretically predicted temperatures as well as CARS and high velocity thermocouple temperature measurements.

  11. Comparative Studies of Perfluorocarbon Alternative Gas Plasmas for Contact Hole Etch

    NASA Astrophysics Data System (ADS)

    Nakamura, Shingo; Itano, Mitsushi; Aoyama, Hirokazu; Shibahara, Kentaro; Yokoyama, Shin; Hirose, Masataka

    2003-09-01

    Saturated perfluorocarbons (PFCs) such as CF4, C2F6, C3F8 and c-C4F8 are used as dry-etch gases in the semiconductor industry. They have a significant greenhouse effect. Unsaturated fluorocarbons can be alternated with these PFCs because of their easy decomposition in the atmosphere. The authors have diagnosed the plasmas generated from straight-chain unsaturated gases such as C3F6, C4F6, C4F8 and C5F8 in an inductively coupled plasma reactor and have compared their etch properties. It was found that high selectivity has been obtained in a C4F6 or C5F8 plasma without mixing any specific gases. Fine contact holes of approximately 100 nm in diameter also have been obtained using C4F6 or C5F8 with or without adding Ar or O2. These good etch properties of C4F6 and C5F8 have been achieved as a consequence of the appropriate balance between the lower density of fluorocarbon polymers and the dominant etching species CF+ with lower etching efficiency. It can be concluded that C4F6 and C5F8 can be used as PFC replacements for the dry-etch gas.

  12. Convenient headspace gas chromatographic determination of azide in blood and plasma.

    PubMed

    Meatherall, Robert; Palatnick, Wes

    2009-10-01

    Azide in human blood and plasma samples was derivatized with propionic anhydride in a headspace vial without prior sample preparation. The reaction proceeds quickly at room temperature to form propionyl azide. A portion of the headspace was assayed by gas chromatography with a nitrogen-phosphorus detector. In the heated injector of the gas chromatograph, the propionyl azide undergoes thermal rearrangement, forming ethyl isocyanate, which is subsequently chromatographed and detected. Propionitrile was used as the internal standard. The method is linear to at least 20 microg/mL. Limit of quantitation was 0.04 microg/mL, and the within-run coefficient of variation was 5.6% at 1 microg/mL. There was no interference from cyanide. A fatality report in which blood and plasma azide concentrations from a 59-year-old man were monitored for 24 h following the ingestion of an unknown amount of sodium azide is presented. The patient became critically ill after his self-inflicted sodium azide ingestion. He was intubated and treated with vasopressors and aggressive supportive care, including extracorporeal membrane oxygenation therapy, in the intensive care facility but died from neurological brain damage secondary to anoxia. On admission, 1.4 h after ingestion, his azide level was 5.6 microg/mL (blood); shortly thereafter, it had risen to 13.7 microg/mL (plasma) and, subsequently, was projected to have been eliminated by 16.7 h. No azide was detected in the postmortem blood and vitreous humor.

  13. Hysteroscopic Tubal Sterilization

    PubMed Central

    2013-01-01

    Background Hysteroscopic sterilization is a minimally invasive alternative to laparoscopic tubal ligation for women who want permanent contraception. In contrast to the laparoscopic technique, a hysteroscope is used to pass permanent microinserts through the cervix and place them in the fallopian tubes. This procedure does not require local or general anesthesia and can be performed in an office setting. Objectives The objective of this analysis was to determine, based on published literature, the cost-effectiveness of hysteroscopic tubal sterilization (HS) compared with laparoscopic tubal ligation (LS) for permanent female sterilization. Data Sources A systematic literature search was conducted for studies published between January 1, 2008, and December 11, 2012. Review Methods Potentially relevant studies were identified based on the title and abstract. Cost-utility analyses (studies that report outcomes in terms of costs and quality-adjusted life-years) were prioritized for inclusion. When not available, cost-effectiveness, cost-benefit, and cost-consequence analyses were considered. Costing studies were considered in the absence of all other analyses. Results A total of 33 abstracts were identified. Three cost analyses were included. A retrospective chart review from Canada found that HS was $111 less costly than LS; a prospective activity-based cost management study from Italy reported that it was €337 less costly than LS; and the results of an American decision model showed that HS was $1,178 less costly than LS. Limitations All studies had limited applicability to the Ontario health care system due to differences in setting, resource use, and costs. Conclusions Three cost analyses found that, although the HS procedure was more expensive due to the cost of the microinserts, HS was less costly than LS overall due to the shorter recovery time required. Plain Language Summary Hysteroscopic sterilization is a minimally invasive alternative to conventional tubal

  14. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Wang, Shicong; Wendt, Amy E.; Culver, Cody; Radovanov, Svetlana; Persing, Harold

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  15. Removal of gas-phase ammonia and hydrogen sulfide using photocatalysis, nonthermal plasma, and combined plasma and photocatalysis at pilot scale.

    PubMed

    Maxime, Guillerm; Amine, Assadi Aymen; Abdelkrim, Bouzaza; Dominique, Wolbert

    2014-11-01

    This study focuses on the removal of gas-phase ammonia (NH3) and hydrogen sulfide (H2S) in a continuous reactor. Photocatalysis and surface dielectric barrier discharge (SDBD) plasma are studied separately and combined. Though the removal of volatile organic compounds by coupling plasma and photocatalysis has been reported on a number of studies in laboratory scale, this is as far as we know the first time that it is used to remove inorganic malodorous pollutants. While each separate process is able to degrade ammonia and hydrogen sulfide, a synergetic effect appears when they are combined at a pilot scale, leading to removal capacity higher than the sum of each separate process. The removal capacity is higher when the gas circulates at a higher flow rate and when pollutant concentration is higher. The presence of water vapor in the gas is detrimental to the efficiency of the process. Operating conditions also influence the production of nitrogen oxides and ozone.

  16. Persistent Effectivity of Gas Plasma-Treated, Long Time-Stored Liquid on Epithelial Cell Adhesion Capacity and Membrane Morphology

    PubMed Central

    Hoentsch, Maxi; Bussiahn, René; Rebl, Henrike; Bergemann, Claudia; Eggert, Martin; Frank, Marcus; von Woedtke, Thomas; Nebe, Barbara

    2014-01-01

    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first time-dependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics. PMID:25170906

  17. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-01

    In this study, a bipolar nanosecond pulse with 20 ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390 K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency.

  18. Investigations of Biofilm-Forming Bacterial Cells by Atomic Force Microscopy Prior to and Following Treatment from Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, K. G.; Joaquin, J. C.; Kwan, C.; Bray, J. D.; Torrico, R.; Abramzon, N.; Brelles-Marino, G.

    2007-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Rhizobium gallicum and Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). In addition, cell wall elasticity was studied by measuring force distance curves as the AFM tip was pressed into the cell surface. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  19. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    SciTech Connect

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-19

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  20. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    DOE PAGES

    Lu, Ganhua; Huebner, Kyle L.; Ocola, Leonidas E.; ...

    2006-01-01

    Minimore » aturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology and defects, energy dispersive X-ray (EDX) spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS) for surface composition. Nonagglomerated rutile tin oxide ( SnO 2 ) nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.« less

  1. Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe

    NASA Astrophysics Data System (ADS)

    Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.

    2014-08-01

    A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.

  2. Plasma properties of driver gas following interplanetary shocks observed by ISEE-3

    SciTech Connect

    Zwickl, R.D.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; Smith, E.J.

    1982-01-01

    Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied to determine the characteristic properties of driver gas following interplanetary shocks. Of 54 shocks observed from August 1978 to February 1980, 9 contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of 9 of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bi-directional flow of suprathermal solar wind electrons at higher energies (>137 eV).

  3. Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas

    SciTech Connect

    Ekedahl, A.; Petrzilka, V.; Baranov, Y.; Goniche, M.; Jacquet, P.; Klepper, C Christopher; Mailloux, J.

    2012-01-01

    Reliable coupling of the lower hybrid current drive (LHCD) to H-mode plasmas in JET is made feasible through a dedicated gas injection system, located at the outer wall and magnetically connected to the antenna (Pericoli Ridolfini et al 2004 Plasma Phys. Control. Fusion 46 349, Ekedahl et al 2005 Nucl. Fusion 45 351, Ekedahl et al 2009 Plasma Phys. Control. Fusion 51 044001). An experiment was carried out in JET in order to investigate whether a gas injection from the top of the torus, as is foreseen for the main gas injection in ITER, could also provide good coupling of the LH waves if magnetically connected to the antenna. The results show that a top gas injection was not efficient for providing a reliable LHCD power injection, in spite of being magnetically connected and in spite of using almost twice the amount of gas flow compared with the dedicated outer mid-plane gas puffing system. A dedicated gas injection system, set in the outer wall and magnetically connected to the LHCD antenna, is therefore recommended in order to provide the reliable coupling conditions for an LHCD antenna in ITER.

  4. PLASMA GENERATOR

    DOEpatents

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  5. Investigation of methods for sterilization of potting compounds and mated surfaces

    NASA Technical Reports Server (NTRS)

    Tulius, J. J.; Daley, D. J.; Phillips, G. B.

    1972-01-01

    The feasibility of using formaldehyde-liberating synthetic resins or polymers for the sterilization of potting compounds, mated and occluded areas, and spacecraft surfaces was demonstrated. The detailed study of interrelated parameters of formaldehyde gas sterilization revealed that efficient cycle conditions can be developed for the sterilization of spacecraft components. It was determined that certain parameters were more important than others in the development of cycles for specific applications. The use of formaldehyde gas for the sterilization of spacecraft components provides NASA with a highly efficient method which is inexpensive, reproducible, easily quantitated, materials compatible, operationally simple, generally non-hazardous and not thermally destructive.

  6. Analysis of processes in DC arc plasma torches for spraying that use air as plasma forming gas

    NASA Astrophysics Data System (ADS)

    Frolov, V.; Ivanov, D.; Toropchin, A.

    2014-11-01

    Developed in Saint Petersburg State Polytechnical University technological processes of air-plasma spraying of wear-resistant, regenerating, hardening and decorative coatings used in number of industrial areas are described. The article contains examples of applications of air plasma spraying of coatings as well as results of mathematical modelling of processes in air plasma torches for spraying.

  7. Experimental study of gliding arc plasma channel motion: buoyancy and gas flow phenomena under normal and hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Potočňáková, Lucia; Šperka, Jiří; Zikán, Petr; van Loon, Jack J. W. A.; Beckers, Job; Kudrle, Vít

    2017-04-01

    The details of plasma channel motion are investigated by frame-by-frame image analysis of high speed recording of a gliding arc. The gliding arc is operated in several noble gases at various flow rates, voltages and artificial gravity levels. Several peculiarities in evolution of individual glides are observed, described and discussed, such as accelerating motion of plasma channel or shortcutting events of various kinds. Statistics of averaged parameters are significantly different for buoyancy and gas drag dominated regimes, which is put into relation with differing flow patterns for hypergravity and high gas flow.

  8. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  9. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing

    NASA Astrophysics Data System (ADS)

    Pransilp, Porntapin; Pruettiphap, Meshaya; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat; Kiatkamjornwong, Suda

    2016-02-01

    Surface properties of cotton fabric were modified by three types of gas plasma pretreatment, namely, oxygen (O2), nitrogen (N2) and sulfur hexafluoride (SF6), to improve ink absorption of water-based pigmented inkjet inks and color reproduction of the treated surfaces. Effects of gas plasma exposure parameters of power, exposure time and gas pressure on surface physical and chemical properties of the treated fabrics were investigated. XPS (X-ray photoelectron spectroscopy) was used to identify changes in functional groups on the fabric surface while AFM (atomic force microscopy) and SEM (scanning electron microscopy) were used to reveal surface topography of the fabric. Color spectroscopic technique was used to investigate changes in color strength caused by different absorptions of the printed fabrics. The O2 plasma treatments produced new functional groups, sbnd Osbnd Csbnd O/Cdbnd O and Osbnd Cdbnd O while N2 plasma treatments produced additionally new functional groups, Csbnd N and Odbnd Csbnd NH, onto the fabric surface which increased hydrophilic properties and surface energy of the fabric. For cotton fabric treated with SF6 plasma, the fluorine functionalization was additionally found on the surface. Color strength values (K/S) increased when compared with those of the untreated fabrics. SF6 plasma-treated fabrics were hydrophobic and caused less ink absorption. Fabric surface roughness caused by plasma etching increased fabric surface areas, captured more ink, and enhanced a larger ink color gamut and ink adhesion. Cotton fabrics exhibited higher ink adhesion and wider color gamut after the O2 plasma treatment comparing with those after N2 plasma treatment.

  10. An international overview of sterilization.

    PubMed

    Dourlen-Rollier, A M

    1977-05-01

    Sterilization, both male and female, for family planning purposes developed very rapidly, beginning in Puerto Rico and Japan between 1940 and 1950 and continuing in India and Pakistan on a large scale after the mid-1950s. The legal status of voluntary sterilization around the world is confused, but recent developments show a trend toward liberalization of the laws. Certain countries still consider sterilization punishable under the criminal law, but there is a gap between the law and the practice. Certain countries have made the issue of consent relevant under the law. Certain other governments are studying the question of sterilization officially. Countries with heavy population pressures are employing incentives to encourage sterilization and others, specifically European countries, have legally authorized sterilization. The procedure is becoming increasingly accepted.

  11. Effects of sterilization on the Tekscan digital pressure sensor.

    PubMed

    Agins, Howard J; Harder, Valerie S; Lautenschlager, Eugene P; Kudrna, James C

    2003-11-01

    Investigations into the effects of sterilization on a new biomechanical pressure sensor are necessary before contemplating in vivo use. Ten, designated Experimental, "K-Scan" digital pressure sensor arrays were sterilized with ethylene oxide gas (EtO), and their ability to accurately and reproducibly measure an applied load of 2225 N (500 lb) was assessed. Simultaneously, 10 un-sterilized sensor arrays, designated Control, were assessed. Each array was loaded 10 times inside a two-dimensional curved surface, and all arrays exhibited high reproducibility (coefficients of variation<2.0%). Following sterilization, the Experimental sensors showed a 22.2% average decrease in recorded force, a statistically significant difference from the pre-sterile data (p<0.002). However, when the Experimental sensors were re-calibrated post-sterilization, they showed only a 0.1% average decrease in recorded force, not a statistically significant difference (p>0.05, beta<0.05). Following 1-week storage, trial 2 data of the Control sensors showed a less dramatic yet significant 3.4% average decrease in recorded force when compared to trial 1 data (p<0.02). Control trial 2, once re-calibrated, showed a 0.5% average decrease in recorded force, not a statistically significant difference (p>0.05, beta<0.05). Results suggest that, following EtO sterilization, accurate and reproducible pressure measurements can be obtained from K-Scan sensors when calibration is performed at time of use.

  12. Low Temperature Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.

  13. Sterile neutrinos: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2017-01-01

    In this talk I will critically review some of the anomalies which in combination could point to the existence of a eV-scale sterile neutrino. Each of these anomalies is well below the 5 sigma level individually and may have explanations besides sterile neutrinos. At the same time each anomaly requires a separate explanation if it is not caused by a sterile neutrino. To further complicate the gpicture, some data sets are in mutual disagreement.

  14. Post-tubal sterilization syndrome.

    PubMed

    Lethbridge, D J

    1992-01-01

    This article presents a review of the literature on post-tubal sterilization syndrome. Although studies have shortcomings they suggest the majority of women undergoing tubal sterilization do not experience changes in menstrual patterns after the procedure, but a minority do. Suggestions are made for further research, conducted from a nursing perspective. Implications for practice are suggested, given the tentative information on post-tubal sterilization syndrome.

  15. Sterilization in the United States

    PubMed Central

    Bartz, Deborah; Greenberg, James A

    2008-01-01

    Unintended pregnancies are expensive for patients and for society in terms of medical costs, the cost of caring for more children, and the cost to personal and professional goals. Sterilization is the most common contraceptive method utilized by couples in the United States. Given technological advances over the past few decades, male and female surgical sterilization has become a safe, convenient, easy, and highly effective birth control method for the long term. This article reviews current male and female sterilization options. PMID:18701927

  16. High-Fidelity Real Gas Model for RF Excited Plasma Flow Control - A Three Dimensional Analysis With Air Chemistry

    DTIC Science & Technology

    2008-05-31

    code for mitigating inert gas flow separation using rf-driven dielectric barrier discharge. In this effort we: (l) develop multi-dimensional first...such detailed plasma kinetics based effort has not been reported before. During the development of this project we have worked in close collaboration... develop multi-dimensional first principles based N2/GŖair chemistry models for the non-equilibrium real gas discharge, and (2) implement it in a finite

  17. X-ray imaging of uniform large scale-length plasmas created from gas-filled targets on Nova

    SciTech Connect

    Kalantar, D.H.; MacGowan, B.J.; Bernat, T.P.

    1994-05-01

    We report on the production and characterization of large scale-length plasmas created by illuminating gas-filled thin-walled balloon-like targets using the Nova laser. The targets consisted of a 4--5000 {angstrom} skin surrounding 1 atm of neopentane which when ionized becomes a plasma with 10{sup 21} electrons/cm{sup 3}. Results are presented from x-ray imaging used to evaluate the uniformity of the plasma. The most uniform plasmas were produced by illuminating the target with large converging beams that overlapped to cover most of the surface of the gasbag. An alternate focus geometry using small beam spots resulted in a less uniform plasma with low density holes in it.

  18. Using a magnetized plasma jet colliding with a heavy gas cloud to investigate MIF adiabatic heating and compression mechanisms

    NASA Astrophysics Data System (ADS)

    Bellan, Paul; Wongwaitayakornkul, Pakorn; Chai, Kil-Byoung; Greig, Amelia; Li, Hui

    2015-11-01

    Magnetized inertial fusion (MIF) is based on having an imploding liner adiabatically compress a magnetized plasma to the density and temperature required for thermonuclear fusion. The goal of the Caltech research program is to determine the scaling of the temperature and density increase when an actual experimental plasma is adiabatically compressed. The plasma parameters will be more modest than a fusion-grade configuration, but in compensation, the shot repetition rate will be much higher and the experiments will be non-destructive. The non-destructive feature results from having a high-speed magnetized plasma jet impact a localized heavy gas. From the point of view of an observer in the frame of the magnetized plasma jet, it will look as if the heavy gas is impacting and compressing the magnetized plasma and so, except for some geometrical differences, the configuration is equivalent to a liner impacting and compressing a stationary magnetized plasma. The experiment will be modeled by 3D numerical MHD and PIC codes. (as of approximately September 15).

  19. Antibacterial efficacy of a novel plasma reactor without an applied gas flow against methicillin resistant Staphylococcus aureus on diverse surfaces.

    PubMed

    Edelblute, C M; Malik, M A; Heller, L C

    2016-12-01

    The use of nonthermal plasma in the clinic has gained recent interest, as the need for alternative or supplementary strategies are necessary for preventing multi-drug resistant infections. The purpose of this study was to evaluate the antibacterial efficacy of a novel plasma reactor based on a high current version of sliding discharge and operated by nanosecond voltage pulses without an applied gas flow. This modification is advantageous for both portability and convenience. Bacterial inactivation was determined within a chamber by direct quantification of colony Jing units. Plasma exposure significantly inhibited the growth of Escherichia coli and Staphylococcus epidermidis following a 1-min application (p<0.001). S. epidermidis was more susceptible to the plasma after a 5-min exposure compared to E. coli. Temperature and pH measurements taken immediately before and after plasma exposure determined neither heat nor pH changes play a role in bacterial inactivation. Because of the notable effect on S. epidermidis, the effect of plasma exposure on several isolates and strains of the related opportunistic pathogen Staphylococcus aureus was quantified. While S. aureus isolates and strains were efficiently inactivated on an agar surface, subsequent testing on other clinically relevant surfaces demonstrated that the inactivation level, although significant, was reduced. This reduction appeared to depend on both the surface texture and the surface moisture content. These findings suggest this novel plasma source lacking an applied gas flow has potential application for surface bacterial decontamination.

  20. Kinetic temperature of dust particle motion in gas-discharge plasma.

    PubMed

    Norman, G E; Timofeev, A V

    2011-11-01

    A system of equations describing motion of dust particles in gas discharge plasma is formulated. This system is developed for a monolayer of dust particles with an account of dust particle charge fluctuations and features of the discharge near-electrode layer. Molecular dynamics simulation of the dust particles system is performed. A mechanism of dust particle average kinetic energy increase is suggested on the basis of theoretical analysis of the simulation results. It is shown that heating of dust particles' vertical motion is initiated by forced oscillations caused by the dust particles' charge fluctuations. The process of energy transfer from vertical to horizontal motion is based on the phenomenon of the parametric resonance. The combination of parametric and forced resonances explains the abnormally high values of the dust particles' kinetic energy. Estimates of frequency, amplitude, and kinetic energy of dust particles are close to the experimental values.

  1. Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition

    SciTech Connect

    Hoffmann, Lukas Theirich, Detlef; Hasselmann, Tim; Räupke, André; Schlamm, Daniel; Riedl, Thomas

    2016-01-15

    This paper reports on aluminum oxide (Al{sub 2}O{sub 3}) thin film gas permeation barriers fabricated by atmospheric pressure atomic layer deposition (APPALD) using trimethylaluminum and an Ar/O{sub 2} plasma at moderate temperatures of 80 °C in a flow reactor. The authors demonstrate the ALD growth characteristics of Al{sub 2}O{sub 3} films on silicon and indium tin oxide coated polyethylene terephthalate. The properties of the APPALD-grown layers (refractive index, density, etc.) are compared to that deposited by conventional thermal ALD at low pressures. The films films deposited at atmospheric pressure show water vapor transmission rates as low as 5 × 10{sup −5} gm{sup −2}d{sup −1}.

  2. Gas-to-Particle Conversion in Surface Discharge Nonthermal Plasmas and Its Implications for Atmospheric Chemistry

    PubMed Central

    Kim, Hyun-Ha; Ogata, Atsushi

    2011-01-01

    This paper presents some experimental data on gas-to-particle conversion of benzene using nonthermal plasma (NTP) technology and discusses the possibility of its technical application in atmospheric chemistry. Aerosol measurement using a differential mobility analyzer (DMA) revealed that the parts of benzene molecules were converted into a nanometer-sized aerosol. Aerosol formation was found to be highly related with the missing part in carbon balance. Scanning electron microscopy analysis showed that the aerosols formed in synthetic humid air are the collection of nanoparticles. The carbonyl band (C=O) was found to be an important chemical constituent in the aerosol. The potential of the NTP as an accelerated test tool in studying secondary organic aerosol (SOA) formation from VOCs will be also addressed. PMID:22163781

  3. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.; Hyland, J. F.

    1979-01-01

    Development of the plasma sprayed graded, layered ZrO2/CoCrAlY seal system for gas turbine engine blade tip seal application up to 1589 K (2400 F) surface temperature was continued. Methods of improvement of the cyclic thermal shock resistance of the sprayed zirconia seal system were investigated. The most promising method, reduction of the ceramic thickness and metallic substrate stiffness were selected based upon potential and feasibility. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capacity of the geometry changes to reduce operating stresses in the sprayed structure; and (2) define the abradability, erosion, thermal shock and physical property characteristic for the sprayed ceramic seal system. Thermal stress analysis was performed and correlated with thermal shock test results.

  4. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  5. Gas-dynamic model and experimental study of the plasma properties in the Earth's magnetosheath

    NASA Astrophysics Data System (ADS)

    Dobreva, Polya; Zastenker, Georgy; Kartalev, Monio; Borodkova, Natalia

    2016-07-01

    This paper uses numerical self-consistent model to investigate the boundaries and structures in the Earth's magnetosheath. The model is developed to represent the interaction between the regions of the magnetosheath and magnetosphere. In the magnetosheath, the gas-dynamic approach is used for the description of the solar wind flow. The magnetosphere module is based on the modified Tsyganenko magnetic field model, where the magnetopause currents are calculated self-consistently. The magnetosheath boundaries are determined from the boundary conditions. WIND and ACE data are used as a solar wind monitor. The model calculations are compared with real satellite measurements of the boundary positions. The plasma parameters behavior in the magnetosheath is also discussed.

  6. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    SciTech Connect

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-06-19

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

  7. Optical shaping of gas targets for laser–plasma ion sources

    SciTech Connect

    Dover, N. P.; Cook, N.; Tresca, O.; Ettlinger, O.; Maharjan, C.; Polyanskiy, M. N.; Shkolnikov, P.; Pogorelsky, I.; Najmudin, Z.

    2016-02-09

    In this paper, we report on the experimental demonstration of a technique to generate steep density gradients in gas-jet targets of interest to laser–plasma ion acceleration. By using an intentional low-energy prepulse, we generated a hydrodynamic blast wave in the gas to shape the target prior to the arrival of an intense CO$_{2}$(${\\it\\lambda}\\approx 10~{\\rm\\mu}\\text{m}$) drive pulse. This technique has been recently shown to facilitate the generation of ion beams by shockwave acceleration (Trescaet al.,Phys. Rev. Lett., vol. 115 (9), 2015, 094802). Here, we discuss and introduce a model to understand the generation of these blast waves and discuss in depth the experimental realisation of the technique, supported by hydrodynamics simulations. With appropriate prepulse energy and timing, this blast wave can generate steepened density gradients as short as$l\\approx 20~{\\rm\\mu}\\text{m}$($1/e$), opening up new possibilities for laser–plasma studies with near-critical gaseous targets.

  8. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    SciTech Connect

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  9. A sterilization system using ultraviolet photochemical reactions based on nitrous oxide and oxygen gases.

    PubMed

    Ohnishi, Yasutaka; Matsumoto, Hiroyuki; Iwamori, Satoru

    2016-03-01

    Active oxygen species (AOS) generated under ultraviolet (UV) lamps can be applied for various industrial processes owing to extremely strong oxidative abilities. We have already reported on an application of the AOS for a sterilization process of microorganisms. Here, a sterilization method using active oxygen generated under ultraviolet (UV) lamps introducing nitrous oxide (N2O) and oxygen gases into a vacuum chamber was investigated. Nitrogen dioxide (NO2) gas was readily produced from N2O by UV photochemical reactions under the low-pressure mercury lamp and then used to sterilize medical devices. We compared the ability of the N2O gas to sterilize Geobacillus stearothermophilus spores with those of conventional methods. Successful sterilization of spores on various biological indicators was achieved within 60 min, not only in sterilization bags but also in a lumen device.

  10. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Intense charge exchange of laser-plasma ions with the atoms of a pulsed gas jet

    NASA Astrophysics Data System (ADS)

    Antonov, V. M.; Boyarintsev, Y. L.; Melekhov, A. V.; Posukh, V. G.; Ponomarenko, A. G.; Shaikhislamov, I. F.

    2007-09-01

    The results of experiments on the interaction of a laser plasma with a pulsed gas jet are presented. The charge exchange of ions with neutral particles was realised for the first time under controllable conditions for a density of the reagents of no less than 1016 cm-3. The resonance pumping of the C3+ ion level with n=3 was observed by spectral methods. The structure of the region of intense charge exchange was determined from plasma photographs. The data obtained suggest that experiments on soft X-ray lasing at a C5+ ion transition are promising.

  11. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOEpatents

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  12. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology.

    PubMed

    Fernández, A; Noriega, E; Thompson, A

    2013-02-01

    Cold atmospheric gas plasma treatment (CAP) is an alternative approach for the decontamination of fresh and minimally processed food. In this study, the effects of growth phase, growth temperature and chemical treatment regime on the inactivation of Salmonella enterica serovar Typhimurium (S. Typhimurium) by Nitrogen CAP were examined. Furthermore, the efficacy of CAP treatment for decontaminating lettuce and strawberry surfaces and potato tissue inoculated with S. Typhimurium was evaluated. It was found that the rate of inactivation of S. Typhimurium was independent of the growth phase, growth temperature and chemical treatment regime. Under optimal conditions, a 2 min treatment resulted in a 2.71 log-reduction of S. Typhimurium viability on membrane filters whereas a 15 min treatment was necessary to achieve 2.72, 1.76 and 0.94 log-reductions of viability on lettuce, strawberry and potato, respectively. We suggest that the differing efficiency of CAP treatment on the inactivation of S. Typhimurium on these different types of fresh foods is a consequence of their surface features. Scanning electron microscopy of the surface structures of contaminated samples of lettuce, strawberry and potato revealed topographical features whereby S. Typhimurium cells could be protected from the active species generated by plasma.

  13. Adhesive forces and surface properties of cold gas plasma treated UHMWPE.

    PubMed

    Preedy, Emily Callard; Brousseau, Emmanuel; Evans, Sam L; Perni, Stefano; Prokopovich, Polina

    2014-10-20

    Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., Acta Biomater. 8(3) (2012) 1357). In this work, interactions between CAP treated UHMWPE and spherical borosilicate sphere (representing model material for bone) were considered employing AFM technique. Adhesive forces increased, in the presence of PBS, after treatment with helium and helium/oxygen cold gas plasmas. Furthermore, a more hydrophilic surface of UHMWPE was observed after both treatments, determined through a reduction of up to a third in the contact angles of water. On the other hand, the asperity density also decreased by half, yet the asperity height had a three-fold decrease. This work shows that CAP treatment can be a very effective technique at enhancing the adhesion between bone and UHMWPE implant material as aided by the increased adhesion forces. Moreover, the hydrophilicity of the CAP treated UHMWPE can lead to proteins and cells adhesion to the surface of the implant stimulating osseointegration process.

  14. Coulomb Crystallization of Charged Microspheres Levitated in a Gas Discharge Plasma

    NASA Technical Reports Server (NTRS)

    Goree, John

    1998-01-01

    The technical topic of the project was the experimental observation of Coulomb crystallization of charged microspheres levitated in a gas discharge plasma. This suspension, sometimes termed a dusty plasma, is closely analogous to a colloidal suspension, except that it has a much faster time response, is more optically thin, and has no buoyancy forces to suspend the particles. The particles are levitated by electric fields. Through their collective Coulomb repulsions, the particles arrange themselves in a lattice with a crystalline symmetry, which undergoes an order-disorder phase transition analogous to melting when the effective temperature of the system is increased. Due to gravitational sedimentation, the particles form a thin layer in the laboratory, so that the experimental system is nearly 2D, whereas in future microgravity experiments they are expected to fill a larger volume and behave like a 3D solid or liquid. The particles are imaged using a video camera by illuminating them with a sheet of laser light. Because the suspension is optically thin, this imaging method will work as well in a 3D microgravity experiment as it does in a 2D laboratory system.

  15. Neutral Gas Temperature Estimates in an Inductively Coupled CF4 Plasma by Fitting Diatomic Emission Spectra

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.

    2001-01-01

    This work examines the accuracy of plasma neutral temperature estimates by fitting the rotational band envelope of different diatomic species in emission. Experiments are performed in an inductively coupled CF4 plasma generated in a Gaseous Electronics Conference reference cell. Visible and ultraviolet emission spectra are collected at a power of 300 W (approximately 0.7 W/cc) and pressure of 30 mtorr. The emission bands of several molecules (CF, CN, C2, CO, and SiF) are fit simultaneously for rotational and vibrational temperatures and compared. Four different rotational temperatures are obtained: 1250 K for CF and CN, 1600 K for CO, 1800 K for C2, and 2300 K for SiF. The vibrational temperatures obtained vary from 1750-5950 K, with the higher vibrational temperatures generally corresponding to the lower rotational temperatures. These results suggest that the different species have achieved different degrees of equilibration between the rotational and vibrational modes and may not be equilibrated with the translational temperatures. The different temperatures are also related to the likelihood that the species are produced by ion bombardment of the surface, with etch products like SiF, CO, and C2 having higher temperatures than species expected to have formed in the gas phase.

  16. Detection of water molecules in inert gas based plasma by the ratios of atomic spectral lines

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.

    2017-01-01

    A new approach is considered to detect the water leaks in inert plasma-forming gas present in the reactor chamber. It is made up of the intensity ratio of D α and H α spectral lines in combination with O, Ar and Xe lines intensity. The concentrations of H2O, O, H and D particles have been measured with high sensitivity. At the D2 admixture pressure {{p}{{\\text{D}\\text{2}}}}   =  0.025 mbar, we used the acquisition time of 10 s to measure the rate of water molecules injected from the outside, Γ0  =  1.4 · 10-9 mbar · m3 · s-1, and the incoming water molecules to plasma, Γ  =  5 ·10-11 mbar · m3 · s-1. The scaling proves that at small D2 admixtures (10-4 mbar), the leaks with the rates Γ0  ≈  6 · 10-12 mbar · m3 · s-1 and Γ  ≈  2 · 10-13 mbar · m3 · s-1 can be detected and measured. The difference between Γ0 and Γ values is due to the high degree of H2O dissociation, which can be up to 97-98%.

  17. Quantification of busulfan in plasma by gas chromatography-mass spectrometry following derivatization with tetrafluorothiophenol.

    PubMed

    Quernin, M H; Poonkuzhali, B; Montes, C; Krishnamoorthy, R; Dennison, D; Srivastava, A; Vilmer, E; Chandy, M; Jacqz-Aigrain, E

    1998-05-08

    A specific and highly sensitive method has been developed for the determination of busulfan in plasma by gas chromatography-mass spectrometry using a deuterium-labeled busulfan (busulfan-d8) as internal standard. Plasma containing busulfan and busulfan-d8 were extracted with ethyl acetate and derivatized with 2,3,5,6-tetrafluorothiophenol prior to the monitoring of specific ions. The limit of quantification of the assay was 20 ng/ml and the calibration curve was linear over the range of 10 to 2000 ng/ml of derivatized busulfan. This method was in good agreement with the GC-MS assay using derivatization with sodium iodide and measuring diiodobutane. In addition, a pharmacokinetic study of busulfan was conducted in six children. The apparent oral clearance was 5.7+/-1.9 ml/kg/min and the volume of distribution was 1.0+/-0.4 l/kg and were similar to those previously reported in pediatric patients.

  18. Adhesive forces and surface properties of cold gas plasma treated UHMWPE

    PubMed Central

    Preedy, Emily Callard; Brousseau, Emmanuel; Evans, Sam L.; Perni, Stefano; Prokopovich, Polina

    2014-01-01

    Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., Acta Biomater. 8(3) (2012) 1357). In this work, interactions between CAP treated UHMWPE and spherical borosilicate sphere (representing model material for bone) were considered employing AFM technique. Adhesive forces increased, in the presence of PBS, after treatment with helium and helium/oxygen cold gas plasmas. Furthermore, a more hydrophilic surface of UHMWPE was observed after both treatments, determined through a reduction of up to a third in the contact angles of water. On the other hand, the asperity density also decreased by half, yet the asperity height had a three-fold decrease. This work shows that CAP treatment can be a very effective technique at enhancing the adhesion between bone and UHMWPE implant material as aided by the increased adhesion forces. Moreover, the hydrophilicity of the CAP treated UHMWPE can lead to proteins and cells adhesion to the surface of the implant stimulating osseointegration process. PMID:25431523

  19. Development of a plasma sprayed ceramic gas path seal for high pressure turbine application

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1978-01-01

    Development of the plasma sprayed graded, layered ZRO2/CoCrAlY seal system for gas turbine engine blade tip seal applications up to 1589 K (2400 F) surface temperature was continued. The effect of changing ZRO2/CoCrAlY ratios in the intermediate layers on thermal stresses was evaluated analytically with the goal of identifying the materials combinations which would minimize thermal stresses in the seal system. Three methods of inducing compressive residual stresses in the sprayed seal materials to offset tensile thermal stresses were analyzed. The most promising method, thermal prestraining, was selected based upon potential, feasibility and complexity considerations. The plasma spray equipment was modified to heat, control and monitor the substrate temperature during spraying. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capability of the thermal prestrain method to develop compressive residual stresses in the sprayed structure and (2) define the effect of spraying on a heated substate on abradability, erosion and thermal shock characteristics of the seal system. Thermal stress analysis, including residual stresses and material properties variations, was performed and correlated with thermal shock test results. Seal system performance was assessed and recommendations for further development were made.

  20. Plasma-assisted cleanup of flue gas. Technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Dhali, S.K.

    1994-06-01

    The authors have conclusively demonstrated that plasma chemistry alone is sufficient to convert SO{sub 2} to H{sub 2}SO{sub 4}, the plasma being produced by a dielectric-barrier discharge. They get nearly 80% removal of SO{sub 2} in a flue gas containing 775 ppm (parts per million) of SO{sub 2} and 99% for SO{sub 2} in concentrations of 300 ppm. A significant achievement during this period is the progress the authors have made with the wetting of the glass by the acid. They are using a simple and cheap method of coating the glass with Teflon (PTFE 30) to provide a hydrophobic surface. These films show chemical inertness to nearly all chemical and solvents and have low friction and antistick surfaces. The following important conclusions can be drawn from the results: (1) The percentage removal does not show saturation with the applied voltage. (2) The removal efficiency at an inlet temperature of 300 C is almost similar to 25 C at high voltages. (3) With longer electrodes the efficiency of removal increases. These results suggest that removal efficiency can be improved further by increasing the voltage and electrode length. The authors are yet to exploit the full range of parameters available. Therefore, it is likely that they will get much improved performance from the system.

  1. Electron sterilization validation techniques using the controlled depth of sterilization process

    NASA Astrophysics Data System (ADS)

    Cleghorn, Denise A.; Nablo, Sam V.

    Many pharmaceutical products, especially parenteral drugs, cannot be sterilized with gamma rays or high energy electrons due to the concomitant product degradation. most of these products are filled under aseptic conditions so that for qualification as a sterile product, techniques are often required only for treatment of the container surfaces and package interior. Gas sterilization (ETO) is often used for this purpose but is beset with difficulties known to the reader, especially for critical "contact" products such as in the ophthalmic field. In view of the well-controlled electron energy spectrum available in modern electron processors, it is practical to deliver sterilizing doses over depths considerably less than those defining the thickness of blister-pack constructions or pharmaceutical containers. Because bremsstrahlung and x-ray production are minimized at these low electron energies and in these low Z materials, very high electron: penetrating x-ray dose ratios are possible for the application of the technique. Some of these data illustrating package: parenteral ratios of 10 5:1 have been reported (Rangwalla et al, 1985; Aaronson and Nablo, 1988). Standard techniques have been developed for the validation of the process and are reported here. Thin film dosimetric techniques have been developed utilizing radiochromic film in the 10-60 g/m 2 range for determining the surface dose distribution in occluded surface areas where direct electron illumination is not possible. Procedures for validation of the process using dried spore inoculum on the product as well as in good geometry are employed to determine the process lethality and its dependence on product surface geometry. Applications of the process to labile pharmaceuticals in glass and polystyrene syringes are reviewed. It has been applied to the sterilization of commercial sterile products since 1987, and the advantages and the natural limitations of the technique are discussed.

  2. Reaction chemistry and optimization of plasma remediation of NxOy from gas streams

    NASA Astrophysics Data System (ADS)

    Gentile, Ann C.; Kushner, Mark J.

    1995-08-01

    Increasing environmental awareness and regulatory pressure have motivated investigations into energy efficient methods to remove oxides of nitrogen (NxOy) from gas streams resulting from the combustion of fossil fuels. Plasma remediation of NxOy is potentially an efficient removal technique due to the relative ease of generating reactants by electron-impact processes. Previous works have investigated the use of electron-beam, corona, and dielectric barrier discharge (DBD) generated plasmas for this purpose. In those works, reduction (N+NO→N2+O) and oxidation (NO2+OH→HNO3) reactions were identified as major removal channels. A computational study of the plasma remediation of NxOy from humid air using repetitively pulsed DBDs is reported. The dominant reaction pathways are discussed and scaling laws are proposed to optimize the energy efficiency of removal. Three reaction periods are identified: the current pulse (during which electron-impact processes generate radicals), the postpulse remediative period (during which NxOy is removed), and the interpulse period (during which the densities of various nitrogen oxides are reapportioned with little net removal). The lifetimes of reactants (OH and O3 in particular) determine the length of these periods and hence the optimum repetition frequency. Optimum repetition rates are typically less than hundreds of Hz. It is also found that a larger number of current pulses producing less energy deposition per pulse results in a higher removal efficiency due to reduced competition from radical-radical reactions which deplete the reactants. The production of unwanted species (e.g., O3 and N2O) can be minimized by reducing or terminating power deposition when the densities NO and NO2 have been reduced to ppm levels. The energy efficiency of remediation generally increases with increasing water content by removing NOx through the oxidation channel, although at the price of producing an acidic end product.

  3. Computational fluid dynamics analysis of cold plasma carrier gas injected into a fluid using level set method.

    PubMed

    Shahmohammadi Beni, Mehrdad; Yu, K N

    2015-12-14

    A promising application of plasma medicine is to treat living cells and tissues with cold plasma. In cold plasmas, the fraction of neutrals dominates, so the carrier gas could be considered the main component. In many realistic situations, the treated cells are covered by a fluid. The present paper developed models to determine the temperature of the fluid at the positions of the treated cells. Specifically, the authors developed a three-phase-interaction model which was coupled with heat transfer to examine the injection of the helium carrier gas into water and to investigate both the fluid dynamics and heat transfer output variables, such as temperature, in three phases, i.e., air, helium gas, and water. Our objective was to develop a model to perform complete fluid dynamics and heat transfer computations to determine the temperature at the surface of living cells. Different velocities and plasma temperatures were also investigated using finite element method, and the model was built using the comsol multiphysics software. Using the current model to simulate plasma injection into such systems, the authors were able to investigate the temperature distributions in the domain, as well as the surface and bottom boundary of the medium in which cells were cultured. The temperature variations were computed at small time intervals to analyze the temperature increase in cell targets that could be highly temperature sensisitve. Furthermore, the authors were able to investigate the volume of the plasma plume and its effects on the average temperature of the medium layer/domain. Variables such as temperature and velocity at the cell layer could be computed, and the variations due to different plume sizes could be determined. The current models would be very useful for future design of plasma medicine devices and procedures involving cold plasmas.

  4. A Field-Reversed Configuration Plasma Translated into a Neutral Gas Atmosphere

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Ando, Hirotoshi; Arai, Mamiko; Katayama, Seri; Takahashi, Toshiki

    2014-10-01

    A field-reversed configuration (FRC) is a compact toroid dominantly with poloidal magnetic field. Because of its simply-connected configuration, an FRC can be translated axially along a gradient of guide magnetic field, and trapped in a confinement region with quasi-static external magnetic field. FRC translation experiments have been performed several facilities. Translation speed of those translated FRCs is comparable with super-Alfvenic speed of approximately 200 km/s. In this experiments, FRC translation has been performed on the FAT (FRC Amplification via Translation) facility. Achieved translation speed in the case of translation into a confinement chamber maintained as the vacuum state is in the range from 130 to 210 km/s. On the other hand, FRC translation into a statically filled deuterium gas atmosphere has also been performed. In the case of translation into filled neutral gas, FRC translation speed is approximately 80 km/s and the separatrix volume has extremely expanded compared with the case of a vacuum state. The phenomenon suggests the presence of regeneration process of translation kinetic energy back into the internal plasma energy during the translation process. This work was partially supported by ``Nihon University Symbolic Project.'' The authors gratefully acknowledge contributions from Nac Image Technology Inc. on the fast camera measurements.

  5. Effects of a GPI deuterium gas puff on the edge plasma in NSTX

    NASA Astrophysics Data System (ADS)

    Zweben, S. J.; Bell, R. E.; Davis, W. M.; Saye, S. M.; Kubota, S.; Maingi, R.; Munsat, T.; Leblanc, B. P.; Maqueda, R. J.; Sechrest, Y.; Smith, D. R.; Stotler, D. P.; Soukhanovskii, V. A.

    2013-10-01

    Deuterium neutral gas puffs near the outer midplane of NSTX have been routinely used for the gas puff imaging (GPI) diagnostic to measure edge turbulence. These puffs can inject up to 3.5 × 1020 D atoms over 100 msec from a manifold at the outer wall, with a maximum influx of 1022 atoms/sec after 20 msec. The 3D shape and absolute brightness of the D-alpha emission cloud from this puff have previously been modeled using DEGAS 2. The effects of the GPI puff on the edge plasma are now evaluated using Thomson scattering and other edge diagnostics of NSTX. The time evolution of the radial profile of D-alpha emission from the GPI cloud itself can be used to infer local changes in density and/or temperature. These results will be compared with models for the expected density and temperature perturbations, including parallel and perpendicular transport, drifts, rotation, and energy loss from radiation and charge exchange. The edge turbulence seen by GPI does not change significantly vs. time during the GPI puff, and other measurements of edge turbulence will be evaluated across the time of this puff.

  6. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization

    NASA Astrophysics Data System (ADS)

    Li, Guihua; Jing, Chenrui; Zeng, Bin; Xie, Hongqiang; Yao, Jinping; Chu, Wei; Ni, Jielei; Zhang, Haisu; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-03-01

    Recently, Yao et al. demonstrated the creation of coherent emissions in nitrogen gas with two-color (800 nm + 400 nm) ultrafast laser pulses [J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, and Z. Xu, New J. Phys. 15, 023046 (2013), 10.1088/1367-2630/15/2/023046]. Based on this two-color scheme, here we report on systematic investigation of temporal characteristics of the radiation emitted at 391 nm [N2+: B2Σu+(ν =0) -X2Σg+(ν =0)] by experimentally examining its temporal profiles with the increase of the plasma channel induced by the intense 800-nm femtosecond laser pulses at a nitrogen-gas pressure of ˜25 mbar. We reveal unexpected temporal profiles of the coherent emissions, which show significant superradiance signatures owing to the cooperation of an ensemble of excited N2+ molecules that are coherently radiating in phase. Our findings shed more light on the mechanisms behind the coherent laserlike emissions induced by strong-field ionization of molecules.

  7. Replicating magneto-inertial fusion compression by colliding a magnetized plasma jet with a heavy gas cloud

    NASA Astrophysics Data System (ADS)

    Greig, Amelia; Bellan, Paul; Li, Hui

    2016-10-01

    The Caltech plasma jet experiment is arranged to have a neutral gas cloud in the path of a magnetized plasma jet. When a hydrogen jet collides with an argon gas cloud, the jet is compressed as argon is much heavier than hydrogen. The compression is equivalent to the Magnetized Inertial Fusion situation of a heavy liner compressing a low-density, magnetized plasma, providing an inexpensive analog for non-destructive studies of the plasma compression physics. The strategy is to measure density, magnetic field and temperature in and around the compression region over a range of parameters both with and without the neutral gas cloud in the path of the jet, with the ultimate goal of determining an equation of state characterizing the observed behavior. Initial density and magnetic field measurements have been made and temperature measurements are about to begin. To complement the experimental measurements, 3D numerical MHD simulation is being performed based on a code used previously to model the magnetized plasma jet experiment. In addition, plans are underway to do modeling using a hybrid code.

  8. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition [and] Student Edition [and] Student Workbook. Second Edition.

    ERIC Educational Resources Information Center

    Harper, Eddie; Knapp, John

    This packet of instructional materials for a gas tungsten arc welding (GTAW) and plasma arc cutting course is comprised of a teacher edition, student edition, and student workbook. The teacher edition consists of introductory pages and teacher pages. Introductory pages include training and competency profile, state duty/task crosswalk,…

  9. Electron self-injection due to a plasma density downramp and gas ionization in a plasma wakefield accelerator in the blowout regime

    NASA Astrophysics Data System (ADS)

    Yi, S. A.; D'Avignon, E. C.; Khudik, V.; Shvets, G.

    2010-11-01

    We study self-injection into a plasma wakefield accelerator (PWFA) in the blowout regime analytically and through particle-in-cell (PIC) simulations. We propose a new injection mechanism into a plasma wakefield accelerator, where growth of the blowout region is enabled through a slow decrease in background plasma density along the direction of propagation. Deepening of the potential well due to this growth causes a reduction of electron Hamiltonian in the co-moving frame. This reduction depends on the shape of the blowout region, its growth rate, and impact parameter of the electron. When the reduction is greater than mc^2 [1,2], the electron becomes trapped inside the bubble. We demonstrate this effect using analytic expressions for the bubble potentials [3], and estimate plasma density gradients, and beam charge and size required for injection. We also apply the injection criterion to electron trapping through gas ionization. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945. [1] S. Kalmykov, S.A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009). [2] S.A. Yi, V. Khudik, S. Kalmykov, and G. Shvets, Plasma Phys. Contr. Fus., in press. [3] W. Lu, C. Huang, M. Zhou, M. Tzoufras et al., Phys. Plasmas 13, 056709 (2006).

  10. The behavior of runaway current in massive gas injection fast shutdown plasmas in J-TEXT

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Huang, D. W.; Luo, Y. H.; Tang, Y.; Dong, Y. B.; Zeng, L.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Wang, X. H.; Jian, X.; Li, J. C.; Zhang, X. Q.; Rao, B.; Yan, W.; Ma, T. K.; Hu, Q. M.; Yang, Z. J.; Gao, L.; Ding, Y. H.; Wang, Z. J.; Zhang, M.; Zhuang, G.; Pan, Y.; Jiang, Z. H.; J-TEXT Team

    2016-11-01

    Runaway currents following disruptions have an important effect on the first wall in current tokamaks and will be more severe in next generation tokamaks. The behavior of runaway currents in massive gas injection (MGI) induced disruptions have been investigated in the J-TEXT tokamak. The cold front induced by the gas jet penetrates helically along field lines, preferentially toward the high field side and stops at a location near the q  =  2 surface before the disruption. When the cold front reaches the q  =  2 surface it initiates magnetohydrodynamic activities and results in disruption. It is found that the MGI of He or Ne results in runaway free shutdown in a large range of gas injections. Mixture injection of He and Ar (90% He and 10%Ar) consistently results in runaway free shutdown. A moderate amount of Ar injection could produce significant runaway current. The maximum runaway energy in the runaway plateau is estimated using a simplified model which neglects the drag forces and other energy loss mechanisms. The maximum runaway energy increases with decreasing runaway current. Imaging of the runaway beam using a soft x-ray array during the runaway current plateau indicates that the runaway beam is located in the center of the plasma. Resonant magnetic perturbation (RMP) is applied to reduce the runaway current successfully during the disruption phase in a small scale tokamak, J-TEXT. When the runaway current builds up, the application of RMP cannot decouple the runaway beam due to the lower sensitivity of the energetic runaway electrons to the magnetic perturbation.

  11. Negative Ion Crystal Formation in Nonequilibrium Dusty Plasma at a Gas Evacuation from Technological Devices for Vacuum Support

    NASA Astrophysics Data System (ADS)

    Azarenkov, Nikolai A.; Egorov, Alexei M.; Maslov, Vasyl I.; Onishchenko, Ivan N.; Frolova, Darya Yu.

    2002-11-01

    Plasma crystal formation (or so called ion crystal formation) are investigated now intensively (see, for example, [1-5]). In particular, the formation of the plasma crystals has been observed in experiments at providing of nonequilibrium state. If in equilibrium dusty plasma there was no plasma crystal but at providing of nonequilibrium state at a gas evacuation from devices for vacuum support in a dusty plasma in experiment an ion crystal has been formed. In this case at gas evacuation the plasma flow has been appeared due to gradient of the pressure. The flow excites the perturbations of large amplitudes. The generalised equation is derived for the spatial distribution of field of any amplitude. It is shown that these perturbations of large amplitude lead to spatial ordering of heavy negative ions. It is shown that the crystal is almost motionless, because heavy negative ions are trapped by chain of perturbations formed due to instability development on generalised dusty-ion-acoustic mode with velocity equal almost zero. 1.H.M.Thomas, G.E. Morfill. Nature. 379 (1996) 806. 2.R.K.Varma, P.K.Shukla. Physica Scripta. 51 (1995) 522. 3.M.Nambu, S.V.Vladimirov, P.K.Shukla. Phys. Lett. A. 203 (1995) 40. 4.A.Melzer, A.Piel et al. Proc. Int. Top. Conf. on Plasma Physics. Trieste. Italy. 2000. 5.V.E.Fortov, A.P.Nefedov et al. Proc. Int. Conf. on Plasma Physics. Trieste. Italy. 2000. 6.D.A.Law, B.M.Annaratone, J.E.Allen et al. Dust Particle Interaction in RF Plasma Sheaths.

  12. Sterilization of Extracted Human Teeth.

    ERIC Educational Resources Information Center

    Pantera, Eugene A., Jr.; Schuster, George S.

    1990-01-01

    At present, there is no specific recommendation for sterilization of extracted human teeth used in dental technique courses. The purpose of this study was to determine whether autoclaving would be effective in the sterilization of extracted teeth without compromising the characteristics that make their use in clinical simulations desirable. (MLW)

  13. Plasma metabolomic profiling of dairy cows affected with ketosis using gas chromatography/mass spectrometry

    PubMed Central

    2013-01-01

    Background Ketosis is an important problem for dairy cows` production performance. However, it is still little known about plasma metabolomics details of dairy ketosis. Results A gas chromatography/mass spectrometry (GC/MS) technique was used to investigate plasma metabolic differences in cows that had clinical ketosis (CK, n=22), subclinical ketosis (SK, n=32), or were clinically normal controls (NC, n=22). The endogenous plasma metabolome was measured by chemical derivatization followed by GC/MS, which led to the detection of 267 variables. A two-sample t-test of 30, 32, and 13 metabolites showed statistically significant differences between SK and NC, CK and NC, and CK and SK, respectively. Orthogonal signal correction-partial least-square discriminant analysis (OPLS-DA) revealed that the metabolic patterns of both CK and SK were mostly similar, with the exception of a few differences. The development of CK and SK involved disturbances in many metabolic pathways, mainly including fatty acid metabolism, amino acid metabolism, glycolysis, gluconeogenesis, and the pentose phosphate pathway. A diagnostic model arbitrary two groups was constructed using OPLS-DA and receiver–operator characteristic curves (ROC). Multivariate statistical diagnostics yielded the 19 potential biomarkers for SK and NC, 31 for CK and NC, and 8 for CK and SK with area under the curve (AUC) values. Our results showed the potential biomarkers from CK, SK, and NC, including carbohydrates, fatty acids, amino acids, even sitosterol and vitamin E isomers, etc. 2-piperidinecarboxylic acid and cis-9-hexadecenoic acid were closely associated with metabolic perturbations in ketosis as Glc, BHBA and NEFA for dealing with metabolic disturbances of ketosis in clinical practice. However, further research is needed to explain changes of 2,3,4-trihydroxybutyric acid, 3,4-dihydroxybutyric acid, α-aminobutyric acid, methylmalonic acid, sitosterol and α-tocopherol in CK and SK, and to reveal differences

  14. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-10-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  15. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    PubMed

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-10-16

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  16. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  17. Plasma-chemical treatment of hydrogen sulfide in natural gas processing. Final report, May 1991--December 1992

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.

    1993-05-01

    A new process for the treatment of hydrogen sulfide waste that uses microwave plasma-chemical technology has been under development in Russia and the United States. Whereas the present waste-treatment technology, at best, only recovers sulfur, this novel process recovers both hydrogen and sulfur by dissociating hydrogen sulfide in a plasma by means of a microwave or radio-frequency reactor. A research project has been undertaken to determine the suitability of the plasma process in natural gas processing applications. The experiments tested acid-gas compositions with 30--65% carbon dioxide, 0--7% water, and 0--0.2% of a standard mixture of pipeline gas. The balance gas in all cases was hydrogen sulfide. The reactor pressure for the experiments was 50 torr, and the microwave power was 1.0 kW. Conversions of hydrogen sulfide ranged from 80 to 100%, while 35--50% of the carbon dioxide was converted to carbon monoxide. This conversion of carbon dioxide resulted in a loss of hydrogen production and an energy loss from a hydrogen sulfide waste-treatment perspective. Tests of a direct natural gas treatment concept showed that hydrocarbon losses were unacceptably high; consequently, the concept would not be economically viable.

  18. Modeling and simulation of plasma gas flow driven by a single nanosecond-pulsed dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Xu, S. Y.; Cai, J. S.; Li, J.

    2016-10-01

    A simplified (7 species and 9 processes) plasma kinetic model is proposed to investigate the mechanism of the plasma aerodynamic actuation driven by nanosecond-pulsed dielectric barrier discharge (NS-DBD). The governing equations include conservation equations for each species, the Poisson equation for the electric potential, and Navier-Stokes equations for the gas dynamic flow. Numerical simulations of plasma discharge and flow actuation on NS-DBD plasma actuators have been carried out. Key discharge characteristics and the responses of the quiescent air were reproduced and compared to those obtained in experiments and numerical simulations. Results demonstrate that the reduced plasma kinetic model is able to capture the dominant species and reactions to predict the actuation in complicated hydrodynamics. For the one-dimensional planar and two-dimensional symmetric NS-DBD, the forming of the sheath collapse is mainly due to the charge accumulation and secondary emission from the grounded electrode. Rapid species number density rise and electric field drop occur at the edge of the plasma sheath, where the space charge density gradient peaks. For the aerodynamic actuation with typical asymmetry electrodes, discharge characteristics have a core area on the right edge of the upper electrode, where the value can be much higher. The formation and propagation of the compression waves generated through rapid heating have also been performed and compared to those measured in a recent experiment. Energy release leads to gas expansion and forms a cylindrical shock wave, centering at the upper electrode tip with low gas acceleration. For the present single pulsed 12 kV case, the mean temperature of gas heating reaches about 575 K at 1 μs and decreases to about 460 K at 10 μs.

  19. Electrolytic silver ion cell sterilizes water supply

    NASA Technical Reports Server (NTRS)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  20. Conditional sterility in plants

    DOEpatents

    Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  1. [Principles of antisepsis, disinfection and sterilization].

    PubMed

    Hernández-Navarrete, María-Jesús; Celorrio-Pascual, José-Miguel; Lapresta Moros, Carlos; Solano Bernad, Victor-Manuel

    2014-12-01

    This article aims to provide a brief review of the main concepts on which the prevention and control of infection are based. Antisepsis comprises a set of techniques aimed at the total sterilization, or at most, disinfection, removing germs that contaminate an environment. Both procedures must be preceded by an environmental cleanup in the location in which they intend to be applied. The disinfection is carried out using biocides or germicides. Antimicrobial chemicals, that have mechanisms of action and resistances very similar to antibiotics, are generating concern due to the possibility of crossing genetic information that aggravates the problem of bacterial resistance. Most biocides can act as antiseptics, and applied to skin tissue, or disinfectants on inanimate materials. The spectrum of action of germicides depends on the product itself and external controllable factors: temperature, concentration, exposure time, etc. Sterilization techniques are primarily physical, by exposing the material to steam, or sterilizing gas, using autoclaves. Major advances are the use of low temperatures with shorter exposure times, in parallel with technological advances in instrumentation in order to avoid high temperatures and high use rotations due to workload.

  2. [Plasma technology for biomedical material applications].

    PubMed

    Liu, Z; Li, X

    2000-03-01

    In this paper is introduced the plasma technology for the applications of several species biomaterial such as ophthalmological material, drug delivery system, tissue culture material, blood anticoagulant material as well as plasma surface clearing and plasma sterilization, and so on.

  3. Quantitation of N,N,N',N'-tetrakis (2-hydroxypropyl)-ethylenediamine in plasma by gas chromatography.

    PubMed

    Dunphy, M J; Smith, D J

    1989-03-24

    A wide-bore capillary gas chromatographic method with nitrogen-selective thermionic detection is described for the quantitative analysis of N,N,N',N'-tetrakis (2-hydroxypropyl)ethylenediamine (Quadrol) in plasma. N,N,N',N'-tetrakis (2-hydroxybutyl)ethylenediamine is used as an internal standard. Rat or human plasma samples (0.5 ml) are mixed with internal standard, adjusted to alkaline pH and subjected to a single extraction with dichloromethane. Quadrol recovery from plasma typically exceeds 90%. The method is linear over the range 1.0-50 micrograms/ml. The working detection limit is 0.5 microgram/ml and the analysis time is under 7 min. The procedure has been used to obtain plasma concentration versus time data for the evaluation of Quadrol pharmacokinetics in rats.

  4. Application of capillary gas chromatography to the study of hydrolysis of the nerve agent VX in rat plasma.

    PubMed

    Bonierbale, E; Debordes, L; Coppet, L

    1997-01-24

    We present here a gas chromatography technique allowing the detection and quantification of VX [O-ethyl S-(2-diisopropylaminoethyl)methylphosphonothiolate] as well as its P-S bond hydrolysis product diisopropylaminoethanethiol directly from spiked rat plasma. This technique was applied to study VX hydrolysis in rat plasma. We observed that 53 +/- 4% of 374 microM VX disappeared from spiked plasma after 2 h. VX disappearance was mainly related to enzymatic cleavage of the P-S bond (Km = 2.5 mM and Vmax = 13.3 nmol min-1 ml-1 of rat plasma). The activity was totally inhibited by 1 mM Hg2+ and was also inhibited by metal chelators.

  5. Simulation for Large-Area, Inductively-Coupled Plasma Systems Using an Ar/Cl2 Gas Mixture.

    PubMed

    Oh, Seon-Geun; Lee, Young-Jun; Jeon, Jae-Hong; Kim, Young-Jin; Seo, Jong-Hyun; Choe, Hee-Hwan

    2015-11-01

    As research and development of high-performance devices are becoming increasingly important in the flat panel display industry, new structures and processes are essential to improve the performance of the TFT backplane. Also, high-density plasma systems are needed for new device fabrications. Chlorine-based, inductively-coupled plasma systems are widely used for highly-selective, anisotropic etching of polysilicon layers. In this paper, a plasma simulation for a large-area ICP system (8th glass size and 9 planar antenna set) was conducted using Ar/Cl2 gas. Transport models and Maxwell Equations were applied to calculate the plasma parameters such as electron density, electron temperature and electric potential. In addition, the spatial distribution of ions such as Ar+, Cl2+, Cl-, Cl+ were investigated respectively.

  6. Limitations of extended gas delivery tubes used for fuelling mitigated plasma disruptions, and a unique injection concept for prompt gas delivery

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Wu, W.

    2011-07-01

    Modelling high-pressure gas flows through long extended delivery tubes used for massive particle fuelling of tokamaks during a major disruptive instability or a preemptive fast plasma shutdown is presented using analytical theory and simulation. For steady-state flows, expressions were derived and compared with experiments for the transition diameter and inlet Mach number of a straight tube (pipe) attached to a 'nozzle-like' inlet valve, such that increases in pipe diameter have no effect on the flow rate (valve-limited flow), and decreases below the transition diameter cause decreasing flow rates (friction-limited flow). Analytical expressions for the exit outflow rate and other gas dynamic variables during the initial unsteady gas flow buildup were developed from the classical 1D centred expansion wave problem and compared with 2D axisymmetric FLUENT simulations with wall friction, and good agreement was found for sufficiently high-conductance pipes. The intrinsic time delay before steady-state outflow is reached can seriously limit plasma density increases during the disruption, as the disruption time scale is similar to the delay time or 'rise time' of the outflow at the exit plane. Thus, conditions required for strong collisional dissipation of destructive runaway electron currents can be compromised. A unique gas injection scheme 'burst membrane gas injection' is also presented in which a steady-state outflow at the exit plane can be established promptly once the membrane bursts. It is shown that the theoretically ideal rise time of the gas at the exit plane will be zero if the membrane had an instantaneous opening time, therefore the true rise time will be limited only by the rupture time of a real bursting disc. The duration of the initial steady-state gas delivery phase can be matched to the relevant disruption time scales (or runaway formation time) by simply adjusting the tube length.

  7. Charge state distribution studies of pure and oxygen mixed krypton ECR plasma - signature of isotope anomaly and gas mixing effect.

    PubMed

    Kumar, Pravin; Mal, Kedar; Rodrigues, G

    2016-11-01

    We report the charge state distributions of the pure, 25% and 50% oxygen mixed krypton plasma to shed more light on the understanding of the gas mixing and the isotope anomaly [A. G. Drentje, Rev. Sci. Instrum. 63 (1992) 2875 and Y Kawai, D Meyer, A Nadzeyka, U Wolters and K Wiesemann, Plasma Sources Sci. Technol. 10 (2001) 451] in the electron cyclotron resonance (ECR) plasmas. The krypton plasma was produced using a 10 GHz all-permanent-magnet ECR ion source. The intensities of the highly abundant four isotopes, viz. (82) Kr (~11.58%), (83) Kr (~11.49%), (84) Kr (~57%) and (86) Kr (17.3%) up to ~ +14 charge state have been measured by extracting the ions from the plasma and analysing them in the mass and the energy using a large acceptance analyzer-cum-switching dipole magnet. The influence of the oxygen gas mixing on the isotopic krypton ion intensities is clearly evidenced beyond +9 charge state. With and without oxygen mixing, the charge state distribution of the krypton ECR plasma shows the isotope anomaly with unusual trends. The anomaly in the intensities of the isotopes having quite closer natural abundance, viz. (82) Kr, (86) Kr and (83) Kr, (86) Kr is prominent, whereas the intensity ratio of (86) Kr to (84) Kr shows a weak signature of it. The isotope anomaly tends to disappear with increasing oxygen mixing in the plasma. The observed trends in the intensities of the krypton isotopes do not follow the prediction of linear Landau wave damping in the plasma. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Prepulse-induced shock waves in the gas jet target of a laser plasma EUV radiation source

    NASA Astrophysics Data System (ADS)

    Garbaruk, A. V.; Gritskevich, M. S.; Kalmykov, S. G.; Mozharov, A. M.; Sasin, M. E.

    2017-01-01

    In experiments with a laser-plasma EUV-radiation source, the main IR Nd:YAG laser pulse was preceded by that of a UV KrF excimer laser. Dramatic modulations of EUV plasma emissivity have been observed at long interpulse times, from hundreds of nanoseconds up to microseconds. To discover the nature of these prepulse-produced long-living perturbations of the target, a fluid dynamics numerical simulation of the Xe gas jet has been carried out. The prepulse has been found to generate a quasi-spherical shock wave with a thin dense front layer and a vast rarefied inside area. In the course of time, the front expands and simultaneously drifts downstream along with the gas. Depending on the interpulse time, the IR laser beam either intersects the dense layer or propagates within the rarefied gas cavity whereby the above-mentioned variations in the plasma emission can be explained. The possibilities of making use of the discovered phenomena to enhance the observed EUV plasma brightness are discussed.

  9. Pain Associated With Hysteroscopic Sterilization

    PubMed Central

    Levy, Jenna; Childers, Meredith E.

    2007-01-01

    Background and Objectives: The safety and efficacy of female hysteroscopic sterilization using the Essure system has been well documented. Given the marked differences in the execution of hysteroscopic and laparoscopic sterilization, the objective of this study was to assess the experience of pain postprocedure between the 2. Secondary end-points included postoperative pain medication, time to return to normal activities, postprocedure bleeding, and patient satisfaction. Methods: Twenty cases each of laparoscopic sterilization (LS) and hysteroscopic sterilization (HS) were performed. Patients were surveyed regarding their experience of pain immediately postoperatively, 1 week, and 4 weeks post-procedure. Results: The average pain score immediately postprocedure was significantly lower among HS patients than among LS patients (t=−8.17, P<.0001). One-week post-procedure, none of the patients in the HS group reported any pain, while the average pain score among the LS patients was 2.65 (t =−9.67, P<.0001). Four weeks post-procedure, women in the HS group continued to report no pain, 35% of the LS group continued to report some pain (t=−3.04, P=.004). Conclusions: Hysteroscopic sterilization offers a minimally invasive, less painful, equally efficacious modality for sterilization than laparoscopic sterilization and should be available to all women seeking permanent birth control. PMID:17651558

  10. Magnetically Insulation Ion Diode with a Gas-Breakdown Plasma Anode

    DTIC Science & Technology

    1987-06-01

    upon the dielectric 6surface are also believed to play a major role in the anode plasma formation process Such " surface flashover anodes" have several...total ion output (both number of ions and energy) achieved on LONGSHOT with a surface flashover anode. By appropriately timing the anode plasma ...been several earlier attempts to provide an anode plasma ion source which overcomes the disadvantages of surface flashover plasmas , such as the plasma

  11. A rapid analysis of plasma/serum ethylene and propylene glycol by headspace gas chromatography.

    PubMed

    Ehlers, Alexandra; Morris, Cory; Krasowski, Matthew D

    2013-12-01

    A rapid headspace-gas chromatography (HS-GC) method was developed for the analysis of ethylene glycol and propylene glycol in plasma and serum specimens using 1,3-propanediol as the internal standard. The method employed a single-step derivitization using phenylboronic acid, was linear to 200 mg/dL and had a lower limit of quantitation of 1 mg/dL suitable for clinical analyses. The analytical method described allows for laboratories with HS-GC instrumentation to analyze ethanol, methanol, isopropanol, ethylene glycol, and propylene glycol on a single instrument with rapid switch-over from alcohols to glycols analysis. In addition to the novel HS-GC method, a retrospective analysis of patient specimens containing ethylene glycol and propylene glycol was also described. A total of 36 patients ingested ethylene glycol, including 3 patients who presented with two separate admissions for ethylene glycol toxicity. Laboratory studies on presentation to hospital for these patients showed both osmolal and anion gap in 13 patients, osmolal but not anion gap in 13 patients, anion but not osmolal gap in 8 patients, and 1 patient with neither an osmolal nor anion gap. Acidosis on arterial blood gas was present in 13 cases. Only one fatality was seen; this was a patient with initial serum ethylene glycol concentration of 1282 mg/dL who died on third day of hospitalization. Propylene glycol was common in patients being managed for toxic ingestions, and was often attributed to iatrogenic administration of propylene glycol-containing medications such as activated charcoal and intravenous lorazepam. In six patients, propylene glycol contributed to an abnormally high osmolal gap. The common presence of propylene glycol in hospitalized patients emphasizes the importance of being able to identify both ethylene glycol and propylene glycol by chromatographic methods.

  12. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment

    PubMed Central

    Hertwig, Christian; Steins, Veronika; Reineke, Kai; Rademacher, Antje; Klocke, Michael; Rauh, Cornelia; Schlüter, Oliver

    2015-01-01

    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores. PMID:26300855

  13. Impact of localized gas injection on ICRF coupling and SOL parameters in JET-ILW H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Lerche, E.; Goniche, M.; Jacquet, P.; Van Eester, D.; Bobkov, V.; Colas, L.; Czarnecka, A.; Brezinsek, S.; Brix, M.; Crombe, K.; Graham, M.; Groth, M.; Monakhov, I.; Mathurin, T.; Matthews, G.; Meneses, L.; Noble, C.; Petrzilka, V.; Rimini, F.; Shaw, A.

    2015-08-01

    Recent JET-ILW [1,2] experiments reiterated the importance of tuning the plasma fuelling in order to optimize ion cyclotron resonance frequency (ICRF) heating in high power H-mode discharges. By fuelling the plasma from gas injection modules (GIMs) located in the mid-plane and on the top of the machine instead of adopting the more standardly used divertor GIMs, a considerable increase of the ICRF antenna coupling resistances was achieved with moderate gas injection rates (<1.5 × 1022 e/s). This effect is explained by an increase of the scrape-off-layer density in front of the antennas when mid-plane and top fuelling is used. By distributing the gas injection to optimize the coupling of all ICRF antenna arrays simultaneously, a substantial increase in the ICRF power capability and reliability was attained. Although similar core/pedestal plasma properties were observed for the different injection cases, the experiments indicate that the RF-induced impurity sources are reduced when switching from divertor to main chamber gas injection.

  14. Interactions Between Small Arrays of Atmospheric Pressure Micro-Plasma Jets: Gas Dynamic, Radiation and Electrostatic Interactions

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia

    2013-09-01

    Atmospheric pressure plasma jets are widely used devices for biomedical applications. A typical plasma jet consists of a tube through which noble gas or its mixture with a molecular gas flows. The noble gas creates a channel into the ambient air which is eventually dispersed by interdiffusion with the air. Plasma plumes are formed by the propagation of ionization waves (IWs) through the tubes and then through the noble gas phase channel. The IW typically propagates until the mole fraction of the ambient air in the channel increases above a critical values which requires a larger E/N to propagate the IW. By grouping several jets together to form an array of jets, one can in principle increase the area treated by the plume. If the jets are sufficiently far apart, the IWs and resulting plasma plumes are independent. As the spacing between the jets decreases, the plasma jets begin to mutually interact. In this talk, we discuss results from a computational investigation of small arrays of He/O2 micro-plasma jets propagating into ambient air. The model used in this work, nonPDPSIM, is a plasma hydrodynamics model in which continuity, momentum and energy equations are solved for charged and neutral species with solution of Poisson's equation for the electric potential. Navier-Stokes equations are solved for the gas dynamics and radiation transport is addressed using a propagator method. We found that as the spacing between the jets decreases, the He channels from the individual jets tend to merge. The IWs from each channel also merge into regions having the highest He mole fraction and so lowest E/N to sustain the IW. The proximity of the IWs enable other forms of interaction. If the IWs are of the same polarity, electrostatic forces can warp the paths of the IWs. If in sufficient proximity, the photoionization from one IW can influence its neighbors. The synchronization of the voltage pulses of adjacent IWs can also influence its neighbors. With synchronized pulses

  15. Determination of cocaine and cocaethylene in plasma by solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Alvarez, Iván; Bermejo, Ana María; Tabernero, María Jesús; Fernández, Purificación; López, Patricia

    2007-01-01

    The present paper describes a method for the simultaneous determination of cocaine and cocaethylene in plasma. It was based in the extraction of the analytes by solid-phase microextraction (SPME), and gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify the analytes in selected ion monitoring (SIM) mode. The method showed to be very simple, rapid and sensitive. The method was validated for the two compounds, including linearity (range 25-1000 ng/mL) and the main precision parameters. It was applied to ten plasma samples from cocaine and alcohol users, obtaining positive results in all cases.

  16. A detailed postprocess analysis of an argon gas puff Z-pinch plasma using SPEC2D

    NASA Astrophysics Data System (ADS)

    Chong, Y. K.; Kammash, T.; Davis, J.

    1997-05-01

    A postprocess analysis of a single time frame hydrodynamic profile from the PRISM two-dimensional MHD simulation of an argon gas puff Z-pinch plasma experiment on Double-Eagle generator at Physics Internationals, Co. is presented. In addition, spatially resolved emission spectra and filtered (K- and L-shell radiation) x-ray pinhole images, generated using the SPEC2D code, are examined toward the understanding of the emission characteristics of the hot spots and the formation of the Rayleigh-Taylor instability in the plasma.

  17. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    NASA Astrophysics Data System (ADS)

    Grishkov, A. A.; Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.; Shklyaev, V. A.

    2016-07-01

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  18. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture

    NASA Astrophysics Data System (ADS)

    Boudam, M. K.; Moisan, M.; Saoudi, B.; Popovici, C.; Gherardi, N.; Massines, F.

    2006-08-01

    This paper comprises two main parts: a review of the literature on atmospheric-pressure discharges used for micro-organism inactivation, focused on the inactivation mechanisms, and a presentation of our research results showing, in particular, that UV photons can be the dominant species in the inactivation process. The possibility of achieving spore inactivation through UV radiation using an atmospheric-pressure discharge or its flowing afterglow is the object of a continuing controversy. In fact, the review of the literature that we present shows that a majority of researchers have come to the conclusion that, at atmospheric pressure, chemically reactive species such as free radicals, metastable atoms and molecules always control the inactivation process, while UV photons play only a minor role or no role at all. In contrast, only a few articles suggest or claim that UV photons coming from atmospheric-pressure discharges can, in some cases, inactivate micro-organisms, but the experimental data presented and the supporting arguments brought forward in that respect are relatively incomplete. Using a dielectric-barrier discharge operated at atmospheric pressure in an N2-N2O mixture, we present, for the first time, experiments where micro-organisms are subjected to plasma conditions such that, on the one hand, UV radiation is strong or, on the other hand, there is no UV radiation, the two different situations being obtained with the same experimental arrangement, including the same gas mixture, N2-N2O. To achieve maximum UV radiation, the concentration of the oxidant molecule (N2O) added to N2 needs to be tuned carefully, resulting then in the fastest inactivation rate. The concentration range of the oxidant molecule in the mixture for which the UV intensity is significant is extremely narrow, a fact that possibly explains why such a mode of plasma sterilization was not readily observed. The survival curves obtained under dominant UV radiation conditions are, as we

  19. Influence of dust-particle concentration on gas-discharge plasma

    SciTech Connect

    Sukhinin, G. I.; Fedoseev, A. V.

    2010-01-15

    A self-consistent kinetic model of a low-pressure dc glow discharge with dust particles based on Boltzmann equation for the electron energy distribution function is presented. The ions and electrons production in ionizing processes as well as their recombination on the dust-particle surface and on the discharge tube wall were taken into account. The influence of dust-particle concentration N{sub d} on gas discharge and dust particles parameters was investigated. It is shown that the increase of N{sub d} leads to the increase of an averaged electric field and ion density, and to the decrease of a dust-particle charge and electron density in the dusty cloud. The results were obtained in a wide region of different discharge and dusty plasma parameters: dust particles density 10{sup 2}-10{sup 8} cm{sup -3}, discharge current density 10{sup -1}-10{sup 1} mA/cm{sup 2}, and dust particles radius 1, 2, and 5 mum. The scaling laws for dust-particle surface potential and electric filed dependencies on dust-particle density, particle radius and discharge currents were revealed. It is shown that the absorption of electrons and ions on the dust particles surface does not lead to the electron energy distribution function depletion due to a self-consistent adjustment of dust particles and discharge parameters.

  20. Inactivation of Acanthamoeba spp. and Other Ocular Pathogens by Application of Cold Atmospheric Gas Plasma

    PubMed Central

    Shama, Gilbert; Andrew, Peter W.

    2016-01-01

    Currently there are estimated to be approximately 3.7 million contact lens wearers in the United Kingdom and 39.2 million in North America. Contact lens wear is a major risk factor for developing an infection of the cornea known as keratitis due to poor lens hygiene practices. While there is an international standard for testing disinfection methods against bacteria and fungi (ISO 14729), no such guidelines exist for the protozoan Acanthamoeba, which causes a potentially blinding keratitis most commonly seen in contact lens wearers, and as a result, many commercially available disinfecting solutions show incomplete disinfection after 6 and 24 h of exposure. Challenge test assays based on international standard ISO 14729 were used to determine the antimicrobial activity of cold atmospheric gas plasma (CAP) against Pseudomonas aeruginosa, Candida albicans, and trophozoites and cysts of Acanthamoeba polyphaga and Acanthamoeba castellanii. P. aeruginosa and C. albicans were completely inactivated in 0.5 min and 2 min, respectively, and trophozoites of A. polyphaga and A. castellanii were completely inactivated in 1 min and 2 min, respectively. Furthermore, for the highly resistant cyst stage of both species, complete inactivation was achieved after 4 min of exposure to CAP. This study demonstrates that the CAP technology is highly effective against bacterial, fungal, and protozoan pathogens. The further development of this technology has enormous potential, as this approach is able to deliver the complete inactivation of ocular pathogens in minutes, in contrast to commercial multipurpose disinfecting solutions that require a minimum of 6 h. PMID:26994079