Sample records for gas poor transition

  1. Gas turbine combustor transition

    DOEpatents

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  2. Gas turbine combustor transition

    DOEpatents

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  3. New places and phases of CO-poor/CI-rich molecular gas in the Universe

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; Bisbas, Thomas G.; Zhang, Zhiyu

    2018-04-01

    In this work we extend the work on the recently discovered role of Cosmic Rays (CRs) in regulating the average CO/H_2 abundance ratio in molecular clouds (and thus their CO line visibility) in starburst galaxies, and find that it can lead to a CO-poor/CI-rich H_2 gas phase even in environments with Galactic or in only modestly enhanced CR backgrounds expected in ordinary star-forming galaxies. Furthermore, the same CR-driven astro-chemistry raises the possibility of a widespread phase transition of molecular gas towards a CO-poor/CI-rich phase in: a) molecular gas outflows found in star-forming galaxies, b) active galactic nuclei (AGNs), and c) near synchrotron-emitting radio jets and the radio-loud cores of powerful radio galaxies. For main sequence galaxies we find that CRs can render some of their molecular gas mass CO-invisible, compounding the effects of low metallicities. Imaging the two fine structure lines of atomic carbon with resolution high enough to search beyond the CI/CO-bright line regions associated with central starbursts can reveal such a CO-poor/CI-rich molecular gas phase, provided that relative brightness sensitivity levels of Tb(CI 1 - 0)/Tb(CO J = 1 - 0) ˜0.15 are reached. The capability to search for such gas in the Galaxy is now at hand with the new high-frequency survey telescope HEAT deployed in Antarctica and future ones to be deployed in Dome A. ALMA can search for such gas in star-forming spiral disks, galactic molecular gas outflows and the CR-intense galactic and circumgalactic gas-rich environments of radio-loud objects.

  4. Demonstration and evaluation of gas turbine transit buses

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Gas Turbine Transit Bus Demonstration Program was designed to demonstrate and evaluate the operation of gas turbine engines in transit coaches in revenue service compared with diesel powered coaches. The main objective of the program was to accelerate development and commercialization of automotive gas turbines. The benefits from the installation of this engine in a transit coach were expected to be reduced weight, cleaner exhaust emissions, lower noise levels, reduced engine vibration and maintenance requirements, improved reliability and vehicle performance, greater engine braking capability, and superior cold weather starting. Four RTS-II advanced design transit coaches were converted to gas turbine power using engines and transmissions. Development, acceptance, performance and systems tests were performed on the coaches prior to the revenue service demonstration.

  5. Transit Greenhouse Gas Management Compendium

    DOT National Transportation Integrated Search

    2011-01-12

    This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...

  6. Detonation velocity in poorly mixed gas mixtures

    NASA Astrophysics Data System (ADS)

    Prokhorov, E. S.

    2017-10-01

    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  7. Marriage or dissolution? Union transitions among poor cohabiting women.

    PubMed

    Lichter, Daniel T; Qian, Zhenchao; Mellott, Leanna M

    2006-05-01

    The objective of this paper is to identify the incentives and barriers to marriage among cohabiting women, especially disadvantaged mothers who are targets of welfare reform. We use the newly released cohabitation data from the National Longitudinal Survey of Youth (1979-2000), which tracks the partners of cohabiting women across survey waves. Our results support several conclusions. First, cohabiting unions are short-lived--about one-half end within one year, and over 90% end by the fifth year. Unlike most previous research, our results show that most cohabiting unions end by dissolution of the relationship rather than by marriage. Second, transitions to marriage are especially unlikely among poor women; less than one-third marry within five years. Cohabitation among poor women is more likely than that among nonpoor women to be a long-term alternative or substitute for traditional marriage. Third, our multinomial analysis of transitions from cohabitation into marriage or dissolution highlights the salience of economically disadvantaged family backgrounds, cohabitation and fertility histories, women's economic resources, and partner characteristics. These results are interpreted in a policy environment that increasingly views marriage as an economic panacea for low-income women and their children.

  8. The role of molecular gas in galaxy transition in compact groups

    NASA Astrophysics Data System (ADS)

    Lisenfeld, U.; Alatalo, K.; Zucker, C.; Appleton, P. N.; Gallagher, S.; Guillard, P.; Johnson, K.

    2017-11-01

    Compact groups (CGs) provide an environment in which interactions between galaxies and with the intra-group medium enable and accelerate galaxy transitions from actively star forming to quiescent. Galaxies in transition from active to quiescent can be selected, by their infrared (IR) colors, as canyon or infrared transition zone (IRTZ) galaxies. We used a sample of CG galaxies with IR data from the Wide Field Infrared Survey Explorer (WISE) allowing us to calculate the stellar mass and star formation rate (SFR) for each galaxy. Furthermore, we present new CO(1-0) data for 27 galaxies and collect data from the literature to calculate the molecular gas mass for a total sample of 130 galaxies. This data set allows us to study the difference in the molecular gas fraction (Mmol/M∗) and star formation efficiency (SFE = SFR/Mmol) between active, quiescent, and transitioning (I.e., canyon and IRTZ) galaxies. We find that transitioning galaxies have a mean molecular gas fraction and a mean SFE that are significantly lower than those of actively star-forming galaxies. The molecular gas fraction is higher than that of quiescent galaxies, whereas the SFE is similar. These results indicate that the transition from actively star-forming to quiescent in CG galaxies goes along with a loss of molecular gas, possibly due to tidal forces exerted from the neighboring galaxies or a decrease in the gas density. In addition, the remaining molecular gas loses its ability to form stars efficiently, possibly owing to turbulence perturbing the gas,as seen in other, well-studied examples such as Stephan's Quintet and HCG 57. Thus, the amount and properties of molecular gas play a crucial role in the environmentally driven transition of galaxies from actively star forming to quiescent. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A110

  9. Gas flow through rough microchannels in the transition flow regime.

    PubMed

    Deng, Zilong; Chen, Yongping; Shao, Chenxi

    2016-01-01

    A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height.

  10. CAUSES OF POOR SEALANT PERFORMANCE IN SOIL-GAS- RESISTANT FOUNDATIONS

    EPA Science Inventory

    The paper discusses causes of poor sealant performance in soil-gas-resistant foundations. ealants for radon-resistant foundation construction must seal the gap between concrete sections. odern sealants have such low permeability that seal performance depends only on the permeabil...

  11. Physical conditions of the molecular gas in metal-poor galaxies

    NASA Astrophysics Data System (ADS)

    Hunt, L. K.; Weiß, A.; Henkel, C.; Combes, F.; García-Burillo, S.; Casasola, V.; Caselli, P.; Lundgren, A.; Maiolino, R.; Menten, K. M.; Testi, L.

    2017-10-01

    Studying the molecular component of the interstellar medium (ISM) in metal-poor galaxies has been challenging because of the faintness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metallicities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z/Z⊙ 0.3), two detections of 13CO isotopologues and atomic carbon, [Ci](1-0) and an upper limit for HCN(1-0) are also reported. After correcting to a common beam size, we compared 12CO(2-1)/12CO(1-0) (R21) and 12CO(3-2)/12CO(1-0) (R31) line ratios of our sample with galaxies from the literature and find that only NGC 1140 shows extreme values (R21 R31 2). Fitting physical models to the 12CO and 13CO emission in NGC 1140 suggests that the molecular gas is cool (kinetic temperature Tkin ≲ 20 K), dense (H2 volume density nH2 ≳ 106 cm-3), with moderate CO column density (NCO 1016 cm-2) and low filling factor. Surprisingly, the [12CO]/[13CO] abundance ratio in NGC 1140 is very low ( 8-20), lower even than the value of 24 found in the Galactic Center. The young age of the starburst in NGC 1140 precludes 13CO enrichment from evolved intermediate-mass stars; instead we attribute the low ratio to charge-exchange reactions and fractionation, because of the enhanced efficiency of these processes in cool gas at moderate column densities. Fitting physical models to 12CO and [Ci](1-0) emission in NGC 1140 gives an unusually low [12CO]/[12C] abundance ratio, suggesting that in this galaxy atomic carbon is at least 10 times more abundant than 12CO. Based on observations carried out with the IRAM 30 m and the Atacama Pathfinder Experiment (APEX). IRAM is supported by the INSU/CNRS (France), MPG (Germany), and IGN (Spain), and APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.

  12. Compressed Natural Gas Safety in Transit Operations

    DOT National Transportation Integrated Search

    1995-09-14

    This report examines the safety issues relating to the use of Compressed Natural Gas (CNG) in transit service. The safety issues were determined by on-site surveys performed by Battelle of Columbus, Ohio and Science Applications International Corpora...

  13. Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks

    DOT National Transportation Integrated Search

    2016-05-01

    Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...

  14. A pressure-amplifying framework material with negative gas adsorption transitions.

    PubMed

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M; Zander, Stefan; Pillai, Renjith S; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-21

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  15. Transit investments for greenhouse gas and energy reduction program : second assessment report.

    DOT National Transportation Integrated Search

    2014-08-01

    This report is the second assessment of the U.S. Department of Transportation, Federal Transit Administrations Transit Investments for : Greenhouse Gas and Energy Reduction (TIGGER) Program. The TIGGER Program provides capital funds to transit age...

  16. Herschel evidence for disk flattening or gas depletion in transitional disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keane, J. T.; Pascucci, I.; Espaillat, C.

    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission, with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [O I] 63.18 μm for 21 transitional disks. Our survey complements the larger Herschel GASPS program ({sup G}as in Protoplanetary Systems{sup )} by quadrupling the number of transitional disks observed with PACS in this wavelength. [O I] 63.18 μm traces material in the outer regions ofmore » the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [O I] 63.18 μm line luminosities ∼2 times fainter than their full disk counterparts. We self-consistently determine various stellar properties (e.g., bolometric luminosity, FUV excess, etc.) and disk properties (e.g., disk dust mass, etc.) that could influence the [O I] 63.18 μm line luminosity, and we find no correlations that can explain the lower [O I] 63.18 μm line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.« less

  17. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    USGS Publications Warehouse

    Lewan, M.D.; Kotarba, M.J.; Wieclaw, D.; Piestrzynski, A.

    2008-01-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977–984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  18. Semiphenomenological model for gas-liquid phase transitions.

    PubMed

    Benilov, E S; Benilov, M S

    2016-03-01

    We examine a rarefied gas with inter-molecular attraction. It is argued that the attraction force amplifies random density fluctuations by pulling molecules from lower-density regions into high-density regions and thus may give rise to an instability. To describe this effect, we use a kinetic equation where the attraction force is taken into account in a way similar to how electromagnetic forces in plasma are treated in the Vlasov model. It is demonstrated that the instability occurs when the temperature T is lower than a certain threshold value T(s) depending on the gas density. It is further shown that, even if T is only marginally lower than T(s), the instability generates clusters with density much higher than that of the gas. These results suggest that the instability should be interpreted as a gas-liquid phase transition, with T(s) being the temperature of saturated vapor and the high-density clusters representing liquid droplets.

  19. Toward the renewables - A natural gas/solar energy transition strategy

    NASA Technical Reports Server (NTRS)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The inevitability of an energy transition from today's non-renewable fossil base toward a renewable energy base is considered from the viewpoint of the need for a national transition strategy. Then, one such strategy is offered. Its technological building blocks are described in terms of both energy use and energy supply. The strategy itself is then sketched at four points in its implementation; (1) initiation, (2) early transition, (3) late transition, and (4) completion. The transition is assumed to evolve from a heavily natural gas-dependent energy economy. It then proceeds through its transition toward a balanced, hybrid energy system consisting of both centralized and dispersed energy supply technologies supplying hydrogen and electricity from solar energy. Related institutional, environmental and economic factors are examined briefly.

  20. Stretch-collapse transition of polyelectrolyte brushes in a poor solvent

    NASA Astrophysics Data System (ADS)

    von Goeler, F.; Muthukumar, M.

    1996-12-01

    This paper describes the behavior of charged, polymer brushes in electrolyte solutions of varying solvent quality. The brush height, d, dependence on the chain length, L (=Nl, where l is the Kuhn length), the grafting density σ, and solvent conditions is determined. We consider a monomer-monomer potential consisting of three components: (1) a long-ranged, screened Coulombic component of strength v¯/l (l is the Kuhn length) and range κ-1; (2) a short-ranged, two-body component of strength w¯l; and (3) a short-ranged, three-body component of strength ūl3. In particular, we examine the transition from a stretched state to a collapsed state in a poor solvent (w¯<0) as the solvent quality is decreased. Using dimensional analysis, Monte Carlo methods, and a variational technique, a first order transition is observed as predicted by the scaling arguments of Ross et al. and Borisov et al. for high charge/grafting densities. Using a variational procedure, we derive an analytical expression for the brush size and determine, quantitatively, the critical conditions for a first order transition in terms of key dimensionless variables, vN5/2, κlN1/2, wN3/2, and uN2 (where v=2πσl2v¯, w=σl2w¯, and u=σ2l4ū).

  1. Transit investments for greenhouse gas and energy reduction program : first assessment report.

    DOT National Transportation Integrated Search

    2012-07-01

    The purpose of this report is to provide an overview and preliminary analysis of the U.S. Department of Transportation, Federal Transit Administrations TIGGER Program. TIGGER, which stands for Transit Investments for Greenhouse Gas and Energy Redu...

  2. Transition from magma dominant to magma poor rifting along the Nova Scotia Continental Margin

    NASA Astrophysics Data System (ADS)

    Lau, K. H.; Louden, K. E.; Nedimović, M. R.; Whitehead, M.; Farkas, A.; Watremez, L.; Dehler, S. A.

    2011-12-01

    Passive margins have been characterized as magma-dominant (volcanic) or magma-poor (non-volcanic). However, the conditions under which margins might switch states are not well understood as they typically have been studied as end member examples in isolation to each other. The Nova Scotia (NS) continental margin, however, offers an opportunity to study the nature of such a transition between the magma-dominant US East Coast margin to the south and the magma-poor Newfoundland margin to the north within a single rift segment. This transition is evidenced by a clear along-strike reduction in features characteristic of syn-rift volcanism from south-to-north along the NS margin, such as the weakening of the East Coast Magnetic Anomaly (ECMA) and the coincident disappearance of seaward dipping reflector sequences (SDRS) on multichannel seismic (MCS) reflection profiles. Results from recent industry MCS profiles along and across the margin suggest a potentially narrow magma-dominant to magma-poor along-strike transition between the southern and the central NS margin. Such a transition is broadly consistent with results of several widely-spaced, across-strike ocean bottom seismometer (OBS) wide-angle profiles. In the southern region, the crustal structure exhibits a narrow (~120-km wide) ocean-continent transition (OCT) with a high velocity (7.2 km/s) lower crust, interpreted as a gabbro-rich underplated melt, beneath the SDRS and the ECMA, similar to crustal models across the US East Coast. In contrast, profiles across the central and northern margin contain a much wider OCT (150-200-km wide) underlain by a low velocity mantle layer (7.3-7.9 km/s), interpreted as partially serpentinized olivine, which is similar to the magma-poor Newfoundland margin to the north. However, the central-to-northern OBS profiles also exhibit significant variations within the OCT and the along-strike continuity of these OCT structures is not yet clear. In November 2010, we acquired, in the

  3. Ab initio theory of noble gas atoms in bcc transition metals.

    PubMed

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  4. Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source

    NASA Astrophysics Data System (ADS)

    Peter, Tilo; Polonskyi, Oleksandr; Gojdka, Björn; Mohammad Ahadi, Amir; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz

    2012-12-01

    We quantitatively assessed the influence of reactive gases on the formation processes of transition metal clusters in a gas aggregation cluster source. A cluster source based on a 2 in. magnetron is used to study the production rate of titanium and cobalt clusters. Argon served as working gas for the DC magnetron discharge, and a small amount of reactive gas (oxygen and nitrogen) is added to promote reactive cluster formation. We found that the cluster production rate depends strongly on the reactive gas concentration for very small amounts of reactive gas (less than 0.1% of total working gas), and no cluster formation takes place in the absence of reactive species. The influence of discharge power, reactive gas concentration, and working gas pressure are investigated using a quartz micro balance in a time resolved manner. The strong influence of reactive gas is explained by a more efficient formation of nucleation seeds for metal-oxide or nitride than for pure metal.

  5. Transitional Gas Jet Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  6. Thermal transistor utilizing gas-liquid transition.

    PubMed

    Komatsu, Teruhisa S; Ito, Nobuyasu

    2011-01-01

    We propose a simple thermal transistor, a device to control heat current. In order to effectively change the current, we utilize the gas-liquid transition of the heat-conducting medium (fluid) because the gas region can act as a good thermal insulator. The three terminals of the transistor are located at both ends and the center of the system, and are put into contact with distinct heat baths. The key idea is a special arrangement of the three terminals. The temperature at one end (the gate temperature) is used as an input signal to control the heat current between the center (source, hot) and another end (drain, cold). Simulating the nanoscale systems of this transistor, control of heat current is demonstrated. The heat current is effectively cut off when the gate temperature is cold and it flows normally when it is hot. By using an extended version of this transistor, we also simulate a primitive application for an inverter.

  7. Biographies of Exclusion: Poor Work and Poor Transitions

    ERIC Educational Resources Information Center

    Shildrick, Tracy; MacDonald, Robert

    2007-01-01

    The usefulness of the concept of transition has been hotly contested in Anglophone youth studies over the past decade. A variety of criticisms have been ranged against it, including that it: presumes the continuing predominance of linear, obvious, mainstream pathways to adulthood; excludes wider youth questions in focusing narrowly on educational…

  8. Radial inflow gas turbine engine with advanced transition duct

    DOEpatents

    Wiebe, David J

    2015-03-17

    A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).

  9. Tradeoffs between costs and greenhouse gas emissions in the design of urban transit systems

    NASA Astrophysics Data System (ADS)

    Griswold, Julia B.; Madanat, Samer; Horvath, Arpad

    2013-12-01

    Recent investments in the transit sector to address greenhouse gas emissions have concentrated on purchasing efficient replacement vehicles and inducing mode shift from the private automobile. There has been little focus on the potential of network and operational improvements, such as changes in headways, route spacing, and stop spacing, to reduce transit emissions. Most models of transit system design consider user and agency cost while ignoring emissions and the potential environmental benefit of operational improvements. We use a model to evaluate the user and agency costs as well as greenhouse gas benefit of design and operational improvements to transit systems. We examine how the operational characteristics of urban transit systems affect both costs and greenhouse gas emissions. The research identifies the Pareto frontier for designing an idealized transit network. Modes considered include bus, bus rapid transit (BRT), light rail transit (LRT), and metro (heavy) rail, with cost and emissions parameters appropriate for the United States. Passenger demand follows a many-to-many travel pattern with uniformly distributed origins and destinations. The approaches described could be used to optimize the network design of existing bus service or help to select a mode and design attributes for a new transit system. The results show that BRT provides the lowest cost but not the lowest emissions for our large city scenarios. Bus and LRT systems have low costs and the lowest emissions for our small city scenarios. Relatively large reductions in emissions from the cost-optimal system can be achieved with only minor increases in user travel time.

  10. Gas holdup and flow regime transition in spider-sparger bubble column: effect of liquid phase properties

    NASA Astrophysics Data System (ADS)

    Besagni, G.; Inzoli, F.; De Guido, G.; Pellegrini, L. A.

    2017-01-01

    This paper discusses the effects of the liquid velocity and the liquid phase properties on the gas holdup and the flow regime transition in a large-diameter and large-scale counter-current two-phase bubble column. In particular, we compared and analysed the experimental data obtained in our previous experimental studies. The bubble column is 5.3 m in height, has an inner diameter of 0.24 m, it was operated with gas superficial velocities in the range of 0.004-0.20 m/s and, in the counter-current mode, the liquid was recirculated up to a superficial velocity of -0.09 m/s. Air was used as the dispersed phase and various fluids (tap water, aqueous solutions of sodium chloride, ethanol and monoethylene glycol) were employed as liquid phases. The experimental dataset consist in gas holdup measurements and was used to investigate the global fluid dynamics and the flow regime transition between the homogeneous flow regime and the transition flow regime. We found that the liquid velocity and the liquid phase properties significantly affect the gas holdup and the flow regime transition. In this respect, a possible relationship (based on the lift force) between the flow regime transition and the gas holdup was proposed.

  11. Comparison of the optical responses of O-poor and O-rich thermochromic VOX films during semiconductor-to-metal transition

    NASA Astrophysics Data System (ADS)

    Luo, Zhenfei; Wu, Zhiming; Wang, Tao; Xu, Xiangdong; Li, Weizhi; Li, Wei; Jiang, Yadong

    2012-09-01

    O-poor and O-rich thermochromic vanadium oxide (VOX) nanostructured thin films were prepared by applying reactive direct current magnetron sputtering and post-annealing in oxygen ambient. UV-visible spectrophotometer and spectroscopic ellipsometry were used to investigate the optical properties of films. It was found that, when the O-poor VOX thin film underwent semiconductor-to-metal transition, the values of optical conductivity and extinction coefficient in the visible region increased due to the existence of occupied band-gap states. This noticeable feature, however, was not observed for the O-rich film, which showed a similar optical behavior with the stoichiometric crystalline VO2 films reported in the literatures. Moreover, the O-poor VOX film exhibits consistent variations of transmission values in the visible/near-infrared region when it undergoes semiconductor-to-metal transition.

  12. Clean air program : liquefied natural gas safety in transit operations

    DOT National Transportation Integrated Search

    1996-03-31

    The report examines the safety issues relating to the use of Liquefied Natural Gas (LNG) in transit service. The safety issues were determined by on-site surveys performed by Battelle of Columbus, Ohio, and Science Applications International Corp. (S...

  13. Cooling air recycling for gas turbine transition duct end frame and related method

    DOEpatents

    Cromer, Robert Harold; Bechtel, William Theodore; Sutcu, Maz

    2002-01-01

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  14. Lactulose breath test gas production in childhood IBS is associated with intestinal transit and bowel movement frequency

    USDA-ARS?s Scientific Manuscript database

    In adults with irritable bowel syndrome (IBS), bacterial gas production (colonic fermentation) is related to both symptom generation and intestinal transit. Whether gas production affects symptom generation, psychosocial distress, or intestinal transit in childhood IBS is unknown. Children (ages 7-1...

  15. Polarization of the light from the 3P(1)-2S(1) transition in proton beam excited helium. Ph.D. Thesis; [target gas pressure effects

    NASA Technical Reports Server (NTRS)

    Weinhous, M. S.

    1973-01-01

    Measurements of the polarization of the light from the 3 1p-2 1s transition in proton beam excited Helium have shown both a proton beam energy and Helium target gas pressure dependence. Results for the linear polarization fraction range from +2.6% at 100 keV proton energy to -5.5% at 450 keV. The zero crossover occurs at approximately 225 keV. This is in good agreement with other experimental work in the field, but in poor agreement with theoretical predictions. Measurements at He target gas pressures as low as .01 mtorr show that the linear polarization fraction is still pressure dependent at .01 mtorr.

  16. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a...

  17. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a...

  18. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a...

  19. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a...

  20. Two-component Gaussian core model: Strong-coupling limit, Bjerrum pairs, and gas-liquid phase transition.

    PubMed

    Frydel, Derek; Levin, Yan

    2018-01-14

    In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.

  1. Two-component Gaussian core model: Strong-coupling limit, Bjerrum pairs, and gas-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Frydel, Derek; Levin, Yan

    2018-01-01

    In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.

  2. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  3. The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhang, Zhong-kai; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng

    2018-03-01

    Considering the gas pressure and radio frequency power change, the mode transition of E↔H were investigated in inductively coupled plasmas. It can be found that the transition power has almost the same trend decreasing with gas pressure, whether it is in H mode or E mode. However, the transition density increases slowly with gas pressure from E to H mode. The transition points of E to H mode can be understood by the propagation of electromagnetic wave in the plasma, while the H to E should be illustrated by the electric field strength. Moreover, the electron density, increasing with the pressure and power, can be attributed to the multiple ionization, which changes the energy loss per electron-ion pair created. In addition, the optical emission characteristics in E and H mode is also shown. The line ratio of I750.4 and I811.5, taken as a proxy of the density of metastable state atoms, was used to illustrate the hysteresis. The 750.4 nm line intensity, which has almost the same trend with the 811.5 nm line intensity in H mode, both of them increases with power but decreases with gas pressure. The line ratio of 811.5/750.4 has a different change rule in E mode and H mode, and at the transition point of H to E, it can be one significant factor that results in the hysteresis as the gas pressure change. And compared with the 811.5 nm intensity, it seems like a similar change rule with RF power in E mode. Moreover, some emitted lines with lower rate constants don't turn up in E mode, while can be seen in H mode because the excited state atom density increasing with the electron density.

  4. Deflagration-to-Detonation Transition Control by Nanosecond Gas Discharges

    DTIC Science & Technology

    2008-04-07

    Report 3. DATES COVERED (From – To) 1 April 2007 - 18 August 09 4. TITLE AND SUBTITLE Deflagration-To- Detonation Transition Control By Nanosecond...SUPPLEMENTARY NOTES 14. ABSTRACT During the current project, an extensive experimental study of detonation initiation by high{voltage...nanosecond gas discharges has been performed in a smooth detonation tube with different discharge chambers and various discharge cell numbers. The chambers

  5. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel

    2016-04-01

    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized

  6. Developing a Natural Gas-Powered Bus Rapid Transit Service. A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, George

    2015-11-01

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largestmore » rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.« less

  7. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, G.

    2015-11-03

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largestmore » rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.« less

  8. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy.

    PubMed

    Edalati, Kaveh; Horita, Zenji; Valiev, Ruslan Z

    2018-04-30

    Recent developments of nanostructured materials with grain sizes in the nanometer to submicrometer range have provided ground for numerous functional properties and new applications. However, in terms of mechanical properties, bulk nanostructured materials typically show poor ductility despite their high strength, which limits their use for structural applications. The present article shows that the poor ductility of nanostructured alloys can be changed to room-temperature superplastisity by a transition in the deformation mechanism from dislocation activity to grain-boundary sliding. We report the first observation of room-temperature superplasticity (over 400% tensile elongations) in a nanostructured Al alloy by enhanced grain-boundary sliding. The room-temperature grain-boundary sliding and superplasticity was realized by engineering the Zn segregation along the Al/Al boundaries through severe plastic deformation. This work introduces a new boundary-based strategy to improve the mechanical properties of nanostructured materials for structural applications, where high deformability is a requirement.

  9. The CO Transition from Diffuse Molecular Gas to Dense Clouds

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, Steven

    2017-06-01

    The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.

  10. Design Guidelines for Bus Transit Systems Using Liquefied Petroleum Gas (LPG) as an Alternative Fuel.

    DOT National Transportation Integrated Search

    1996-09-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Petroleum Gas (LPG), Compressed Natural Gas (CNG), and Methanol/Ethanol, are already being used in buses. At present, there do not exist co...

  11. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Kubizňák, David; Mann, Robert B.; Sherkatghanad, Zeinab

    2014-02-01

    We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ≪ 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.

  12. Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez Almeida, J.; Morales-Luis, A. B.; Muñoz-Tuñón, C.

    2014-03-01

    We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show ≅0.5 dex metallicity decrements in inner regions with enhanced star formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sánchez Almeida et al., and was interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications. (1) It proves that galaxies other than the local tadpoles present the samemore » unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one-tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star formation activity in the local universe. We argue that the star formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, is naturally interpreted as side effects of pristine gas infall. Alternatives to the metal-poor gas accretion are examined as well.« less

  13. Structural and phase transitions of one and two polymer mushrooms in poor solvent

    NASA Astrophysics Data System (ADS)

    Yang, Delian; Wang, Qiang

    2014-05-01

    Using the recently proposed fast lattice Monte Carlo (FLMC) simulations and the corresponding lattice self-consistent field (LSCF) calculations based on the same model system, where multiple occupancy of lattice sites is allowed [Q. Wang, Soft Matter 5, 4564 (2009); Q. Wang, Soft Matter 5, 6206 (2010)], we studied the coil-globule transition (CGT) of one-mushroom systems and the fused-separated transition (FST) of two-mushroom systems, where a polymer mushroom is formed by a group of n homopolymer chains each of N segments end-grafted at the same point onto a flat substrate and immersed in a poor solvent. With our soft potential that allows complete particle overlapping, LSCF theory neglecting the system fluctuations/correlations becomes exact in the limit of n → ∞, and FLMC results approach LSCF predictions with increasing n. Using LSCF calculations, we systematically constructed the phase diagrams of one- and two-mushroom systems. A second-order symmetric-asymmetric transition (SAT) was found in the globule state of one-mushroom systems, where the rotational symmetry around the substrate normal passing through the grafting point is broken in each individual configuration but preserved by the degeneracy of different orientations of these asymmetric configurations. Three different states were also found in two-mushroom systems: separated coils, separated globules, and fused globule. We further studied the coupling between FST in two-mushroom systems and CGT and SAT of each mushroom. Finally, direct comparisons between our simulation and theoretical results, without any parameter-fitting, unambiguously and quantitatively revealed the fluctuation/correlation effects on these phase transitions.

  14. Ab initio theory of noble gas atoms in bcc transition metals

    DOE PAGES

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; ...

    2018-01-01

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe).

  15. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for

  16. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE PAGES

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2017-04-04

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for

  17. Transition metal catalysis in the generation of petroleum and natural gas. Progress report, [1992--1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mango, F.

    1993-08-01

    A new hypothesis is introduced for the generation of petroleum and natural gas. The transition metals, activated under the reducing conditions of diagenesis, are proposed as catalysts in the generation of light hydrocarbons. The objective of this proposal is to test that hypothesis. Transition metals (Ni, V, Ti, Co, Fe), in kerogen, porphyrins, and as pure compounds, will be tested under catagenic conditions for catalytic activity in the conversion of normal paraffins and hydrogen into light hydrocarbons. If the hypothesis is correct, kerogenous transition metals should become catalytically active under the reducing conditions of diagenesis and catalyze the conversion ofmore » paraffins into the light hydrocarbons seen in petroleum. Moreover, the C{sub 1}-C{sub 4} hydrocarbons generated catalytically should be similar in molecular and isotopic compositions to natural gas.« less

  18. Effects of guar gum, ispaghula and microcrystalline cellulose on abdominal symptoms, gastric emptying, orocaecal transit time and gas production in healthy volunteers.

    PubMed

    Bianchi, M; Capurso, L

    2002-09-01

    Dietary fibres are carbohydrates that resist hydrolysis by human intestinal enzymes but are fermented by colonic microflora. Soluble dietary fibres are fermented by anaerobic bacteria with production of gases, short chain fatty acids and other metabolic products believed to cause symptoms such as bloating, abdominal distension, flatulence. Insoluble fibres are only partially fermented, serving almost exclusively as bulking agents that result in shorter transit time and increased faecal mass. To evaluate effect of a supplementation of a single 5 g dose of dietary fibre to a solid meal on gastric emptying, orocaecal transit time, gas production and symptom genesis, in healthy volunteers. Three different dietary fibres were tested, two soluble (guar gum and ispaghula] and one insoluble (microcrystalline cellulose). After a 24-hour low fibre diet, 10 healthy subjects had a standard meal consisting of white bread and one 70 g egg the yolk of which was mixed with 100 mg of 13C octanoic acid and fried. Breath samples were collected for 13CO2 measurements with a mass spectrophotometer and excretion curve (Tlag, T1/2) evaluation. Further breath samples were collected and analysed with a gas chromatograph for the evaluation of H2 and CH4 production and orocaecal transit time. Each evaluation was repeated adding to standard meal, diluted in 300 ml tap water, respectively: a single 5 g dose of microcrystalline cellulose, guar gum or ispaghula. Subjects were asked to report all symptoms experienced from time of meal ingestion over 24 hours, evaluating the intensity. Dietary fibres did not significantly change gastric emptying (Tlag, T1/2) and orocaecal transit time of standard meal. Subjects experienced more symptoms when meals were supplemented with guar gum (p=0.009 vs standard meal) and ispaghula (p=0.048 vs standard meal). There was a poor, but significant, correlation between gas production and symptoms (r=0. 38, p=0. 01). Addition of different dietary fibres to a solid

  19. Clean Air Program : Design Guidelines for Bus Transit Systems Using Liquefied Natural Gas (LNG) as an Alternative Fuel

    DOT National Transportation Integrated Search

    1997-03-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Natural Gas (LNG), Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LPG), and Methanol/Ethanol, are already being used. At present, t...

  20. Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, R.; Horne, D. B.

    2010-09-01

    This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

  1. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas... ahead and one mile astern, and 500 yards on each side of any liquefied natural gas carrier (LNGC) vessel...

  2. Efimov-driven phase transitions of the unitary Bose gas.

    PubMed

    Piatecki, Swann; Krauth, Werner

    2014-03-20

    Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.

  3. The role of gas phase reactions in the deflagration-to-detonation transition of high energy propellants

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.; Derr, R. L.

    1980-01-01

    The inadequacies of the two commonly used assumptions are shown, along with the need for considering gas phase reactions. Kinetic parameters that describe the gas phase reactions for several ingredients are provided, and the first steps in convective combustion leading to deflagration to detonation transition are described.

  4. Transition metal catalysis in the generation of petroleum and natural gas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalyticallymore » robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process: The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.« less

  5. Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Y.; Institute of Physics, University of Tsukuba, Ibaraki 305; Griffin, A.

    2003-03-01

    We investigate strong-coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasiboson that can give rise to an additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy 2{nu} of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a crossover from a BCS state to a Bose-Einstein condensate (BEC) of the Nozieres and Schmitt-Rink kind, in which the BCS-type superfluid phasemore » transition continuously changes into the BEC type as the threshold energy is decreased. In this paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the local-density approximation. We also give results for both weak and strong coupling to the Feshbach resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density profile at the superfluid phase-transition temperature T{sub c}, reflecting the change of the dominant particles going from Fermi atoms to composite bosons. In the BEC regime, these composite bosons are shown to first appear well above T{sub c}. We also discuss the 'phase diagram' above T{sub c} as a function of the tunable threshold energy 2{nu}. We introduce a characteristic temperature T*(2{nu}) describing the effective crossover in the normal phase from a Fermi gas of atoms to a gas of stable molecules.« less

  6. Mid-section of a can-annular gas turbine engine with a cooling system for the transition

    DOEpatents

    Wiebe, David J.; Rodriguez, Jose L.

    2015-12-08

    A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.

  7. RR-MR transition of a Type V shock interaction in inviscid double-wedge flow with high-temperature gas effects

    NASA Astrophysics Data System (ADS)

    Xiong, W.; Li, J.; Zhu, Y.; Luo, X.

    2018-07-01

    The transition between regular reflection (RR) and Mach reflection (MR) of a Type V shock-shock interaction on a double-wedge geometry with non-equilibrium high-temperature gas effects is investigated theoretically and numerically. A modified shock polar method that involves thermochemical non-equilibrium processes is applied to calculate the theoretical critical angles of transition based on the detachment criterion and the von Neumann criterion. Two-dimensional inviscid numerical simulations are performed correspondingly to reveal the interactive wave patterns, the transition processes, and the critical transition angles. The theoretical and numerical results of the critical transition angles are compared, which shows evident disagreement, indicating that the transition mechanism between RR and MR of a Type V shock interaction is beyond the admissible scope of the classical theory. Numerical results show that the collisions of triple points of the Type V interaction cause the transition instead. Compared with the frozen counterpart, it is found that the high-temperature gas effects lead to a larger critical transition angle and a larger hysteresis interval.

  8. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Carrier Transits and Anchorage Operations, Boston, Massachusetts. (a) Definitions. As used in this section...

  9. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Carrier Transits and Anchorage Operations, Boston, Massachusetts. (a) Definitions. As used in this section...

  10. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Carrier Transits and Anchorage Operations, Boston, Massachusetts. (a) Definitions. As used in this section...

  11. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Carrier Transits and Anchorage Operations, Boston, Massachusetts. (a) Definitions. As used in this section...

  12. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W. (b...

  13. Imaging the Elusive H-poor Gas in the High adf Planetary Nebula NGC 6778

    NASA Astrophysics Data System (ADS)

    García-Rojas, Jorge; Corradi, Romano L. M.; Monteiro, Hektor; Jones, David; Rodríguez-Gil, Pablo; Cabrera-Lavers, Antonio

    2016-06-01

    We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O II λ4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O II ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O III] λ5007 Å collisionally excited line (CEL) or the bright Hα recombination line. From monochromatic emission line maps taken with VIMOS at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O III] λ4363 line resembles that of the O II ORLs but differs from nebular [O III] λ5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O II emission and the differences with the [O III] and H I emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.

  14. Phase transitions in mixed gas hydrates: experimental observations versus calculated data.

    PubMed

    Schicks, Judith M; Naumann, Rudolf; Erzinger, Jörg; Hester, Keith C; Koh, Carolyn A; Sloan, E Dendy

    2006-06-15

    This paper presents the phase behavior of multicomponent gas hydrate systems formed from primarily methane with small amounts of ethane and propane. Experimental conditions were typically in a pressure range between 1 and 6 MPa, and the temperature range was between 260 and 290 K. These multicomponent systems have been investigated using a variety of techniques including microscopic observations, Raman spectroscopy, and X-ray diffraction. These techniques, used in combination, allowed for measurement of the hydrate structure and composition, while observing the morphology of the hydrate crystals measured. The hydrate formed immediately below the three-phase line (V-L --> V-L-H) and contained crystals that were both light and dark in appearance. The light crystals, which visually were a single solid phase, showed a spectroscopic indication for the presence of occluded free gas in the hydrate. In contrast, the dark crystals were measured to be structure II (sII) without the presence of these occluded phases. Along with hydrate measurements near the decomposition line, an unexpected transformation process was visually observed at P-T-conditions in the stability field of the hydrates. Larger crystallites transformed into a foamy solid upon cooling over this transition line (between 5 and 10 K below the decomposition temperature). Below the transition line, a mixture of sI and sII was detected. This is the first time that these multicomponent systems have been investigated at these pressure and temperature conditions using both visual and spectroscopic techniques. These techniques enabled us to observe and measure the unexpected transformation process showing coexistence of different gas hydrate phases.

  15. Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells

    NASA Astrophysics Data System (ADS)

    Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel

    2018-01-01

    We study the exciton gas-liquid transition in GaAs /AlGaAs coupled quantum wells. Below a critical temperature, TC=4.8 K , and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T ≲1.1 K , similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1 ≲T <4.8 K . Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T

  16. Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells.

    PubMed

    Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel

    2018-01-26

    We study the exciton gas-liquid transition in GaAs/AlGaAs coupled quantum wells. Below a critical temperature, T_{C}=4.8  K, and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T≲1.1  K, similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1≲T<4.8  K. Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T

  17. IMAGING THE ELUSIVE H-POOR GAS IN THE HIGH adf PLANETARY NEBULA NGC 6778

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Rojas, Jorge; Corradi, Romano L. M.; Jones, David

    We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O ii λ 4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O ii ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O iii] λ 5007 Å collisionally excited line (CEL) or the bright H α recombination line. From monochromatic emission line maps taken with VIMOSmore » at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O iii] λ 4363 line resembles that of the O ii ORLs but differs from nebular [O iii] λ 5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O ii emission and the differences with the [O iii] and H i emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.« less

  18. Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.

  19. The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

    1995-01-01

    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

  20. Meta-Analysis of Microarray Data Identifies GAS6 Expression as an Independent Predictor of Poor Survival in Ovarian Cancer

    PubMed Central

    Tse, Brian; Jacob, Francis; Caduff, Rosmarie; Fink, Daniel; Goldstein, Darlene R.; Heinzelmann-Schwarz, Viola

    2013-01-01

    Seeking new biomarkers for epithelial ovarian cancer, the fifth most common cause of death from all cancers in women and the leading cause of death from gynaecological malignancies, we performed a meta-analysis of three independent studies and compared the results in regard to clinicopathological parameters. This analysis revealed that GAS6 was highly expressed in ovarian cancer and therefore was selected as our candidate of choice. GAS6 encodes a secreted protein involved in physiological processes including cell proliferation, chemotaxis, and cell survival. We performed immunohistochemistry on various ovarian cancer tissues and found that GAS6 expression was elevated in tumour tissue samples compared to healthy control samples (P < 0.0001). In addition, GAS6 expression was also higher in tumours from patients with residual disease compared to those without. Our data propose GAS6 as an independent predictor of poor survival, suggesting GAS6, both on the mRNA and on the protein level, as a potential biomarker for ovarian cancer. In clinical practice, the staining of a tumour biopsy for GAS6 may be useful to assess cancer prognosis and/or to monitor disease progression. PMID:23878800

  1. THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, K.; France, K.; McJunkin, M.

    2015-10-10

    Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emissionmore » in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.« less

  2. Aerophagia and Intestinal Gas.

    PubMed

    Quigley, Eamonn M. M.

    2002-08-01

    Aerophagia refers to a rather rare disorder that may occur in both children and adults that features repetitive air swallowing and belching and that may result in abdominal distention. There are few, if any, controlled studies to guide therapy, which remains largely supportive but may include behavioral therapy and psychotherapy. Bloating, distention, and other gas-related symptoms are common in functional gastrointestinal disorders, including the irritable bowel syndrome; their pathophysiology remains, for the most part, poorly understood. Two separate phenomena need to be distinguished in these disorders: gas production and gas perception. Thus, whereas gas production, which relates most closely to flatus emissions, is probably within the normal range in most patients with irritable bowel syndrome, gas transport or transit through the gut may be impaired and may lead to the retention of gas within segments of the gut. Visceral hypersensitivity, a common phenomenon in all functional disorders, may exacerbate the sensation of distention and contribute to other "gas-related" symptoms. Few controlled studies have addressed any of these issues. Although, on an empiric basis, dietary therapy may be partially effective in some situations, there is at present no data to support the use of any form of pharmacologic, endoscopic, or surgical therapy for any of these symptoms.

  3. Realization of a multipath ultrasonic gas flowmeter based on transit-time technique.

    PubMed

    Chen, Qiang; Li, Weihua; Wu, Jiangtao

    2014-01-01

    A microcomputer-based ultrasonic gas flowmeter with transit-time method is presented. Modules of the flowmeter are designed systematically, including the acoustic path arrangement, ultrasound emission and reception module, transit-time measurement module, the software and so on. Four 200 kHz transducers forming two acoustic paths are used to send and receive ultrasound simultaneously. The synchronization of the transducers can eliminate the influence caused by the inherent switch time in simple chord flowmeter. The distribution of the acoustic paths on the mechanical apparatus follows the Tailored integration, which could reduce the inherent error by 2-3% compared with the Gaussian integration commonly used in the ultrasonic flowmeter now. This work also develops timing modules to determine the flight time of the acoustic signal. The timing mechanism is different from the traditional method. The timing circuit here adopts high capability chip TDC-GP2, with the typical resolution of 50 ps. The software of Labview is used to receive data from the circuit and calculate the gas flow value. Finally, the two paths flowmeter has been calibrated and validated on the test facilities for air flow in Shaanxi Institute of Measurement & Testing. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Physical understanding of gas-liquid annular flow and its transition to dispersed droplets

    NASA Astrophysics Data System (ADS)

    Kumar, Parmod; Das, Arup Kumar; Mitra, Sushanta K.

    2016-07-01

    Transformation from annular to droplet flow is investigated for co-current, upward gas-liquid flow through a cylindrical tube using grid based volume of fluid framework. Three transitional routes, namely, orificing, rolling, and undercutting are observed for flow transformation at different range of relative velocities between the fluids. Physics behind these three exclusive phenomena is described using circulation patterns of gaseous phase in the vicinity of a liquid film which subsequently sheds drop leading towards transition. Orifice amplitude is found to grow exponentially towards the core whereas it propagates in axial direction in a parabolic path. Efforts have been made to fit the sinusoidal profile of wave structure with the numerical interface contour at early stages of orificing. Domination of gas inertia over liquid flow has been studied in detail at the later stages to understand the asymmetric shape of orifice, leading towards lamella formation and droplet generation. Away from comparative velocities, circulations in the dominant phase dislodge the drop by forming either a ligament (rolling) or a bag (undercut) like protrusion in liquid. Study of velocity patterns in the plane of droplet dislodge reveals the underlying physics behind the disintegration and its dynamics at the later stages. Using numerical phase distributions, rejoining of dislodged droplet with liquid film as post-rolling consequences has been also proposed. A flow pattern map showing the transitional boundaries based on the physical mechanism is constructed for air-water combination.

  5. Boundary-Layer Transition on a Slender Cone in Hypervelocity Flow with Real Gas Effects

    NASA Astrophysics Data System (ADS)

    Jewell, Joseph Stephen

    The laminar to turbulent transition process in boundary layer flows in thermochemical nonequilibrium at high enthalpy is measured and characterized. Experiments are performed in the T5 Hypervelocity Reflected Shock Tunnel at Caltech, using a 1 m length 5-degree half angle axisymmetric cone instrumented with 80 fast-response annular thermocouples, complemented by boundary layer stability computations using the STABL software suite. A new mixing tank is added to the shock tube fill apparatus for premixed freestream gas experiments, and a new cleaning procedure results in more consistent transition measurements. Transition location is nondimensionalized using a scaling with the boundary layer thickness, which is correlated with the acoustic properties of the boundary layer, and compared with parabolized stability equation (PSE) analysis. In these nondimensionalized terms, transition delay with increasing CO2 concentration is observed: tests in 100% and 50% CO2, by mass, transition up to 25% and 15% later, respectively, than air experiments. These results are consistent with previous work indicating that CO2 molecules at elevated temperatures absorb acoustic instabilities in the MHz range, which is the expected frequency of the Mack second-mode instability at these conditions, and also consistent with predictions from PSE analysis. A strong unit Reynolds number effect is observed, which is believed to arise from tunnel noise. NTr for air from 5.4 to 13.2 is computed, substantially higher than previously reported for noisy facilities. Time- and spatially-resolved heat transfer traces are used to track the propagation of turbulent spots, and convection rates at 90%, 76%, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, centroid, and trailing edge of the spots. A model constructed with these spot propagation parameters is used to infer spot generation rates from measured transition onset to completion distance. Finally, a novel

  6. Polaron-to-Polaron Transitions in the Radio-Frequency Spectrum of a Quasi-Two-Dimensional Fermi Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ong, W.; Arakelyan, I.; Thomas, J. E.

    2012-06-01

    We measure radio-frequency spectra for a two-component mixture of a Li6 atomic Fermi gas in a quasi-two-dimensional regime with the Fermi energy comparable to the energy level spacing in the tightly confining potential. Near the Feshbach resonance, we find that the observed resonances do not correspond to transitions between confinement-induced dimers. The spectral shifts can be fit by assuming transitions between noninteracting polaron states in two dimensions.

  7. Electronic and magnetic properties of transition metal decorated monolayer GaS

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Fu; Liu, Li-Min; Zhao, Jijun

    2018-07-01

    Inducing controllable magnetism in two dimensional non-magnetic materials is very important for realizing dilute magnetic semiconductor. Using density functional theory, we have systematically investigated the effect of surface adsorption of various 3d transition metal (TM) atoms (Sc-Cu) on the electronic and magnetic properties of the monolayer GaS as representative of group-IIIA metal-monochalcogenide. We find that all adatoms favor the top site on the Ga atom. All the TM atoms, except for the Cr and Mn, can bond strongly to the GaS monolayer with sizable binding energies. Moreover, the TM decorated GaS monolayers exhibit interesting magnetic properties, which arise from the strong spin-dependent hybridization of the TM 3d orbitals with S 3p and Ga 4s orbitals. After examining the magnetic interaction between two same types of TM atoms, we find that most of them exhibit antiferromagnetic coupling, while Fe and Co atoms can form long-range ferromagnetism. Furthermore, we find that the electronic properties of metal decorated systems strongly rely on the type of TM adatom and the adsorption concentration. In particular, the spin-polarized semiconducting state can be realized in Fe doped system for a large range of doping concentrations. These findings indicate that the TM decorated GaS monolayers have potential device applications in next-generation electronics and spintronics.

  8. Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Natta, A.; Rosotti, G.; Benisty, M.; Ercolano, B.; Ricci, L.

    2014-08-01

    Context. Transitional disks are thought to be a late evolutionary stage of protoplanetary disks whose inner regions have been depleted of dust. The mechanism responsible for this depletion is still under debate. To constrain the various models it is mandatory to have a good understanding of the properties of the gas content in the inner part of the disk. Aims: Using X-Shooter broad band - UV to near-infrared - medium-resolution spectroscopy, we derive the stellar, accretion, and wind properties of a sample of 22 transitional disks. The analysis of these properties allows us to place strong constraints on the gas content in a region very close to the star (≲0.2 AU) that is not accessible with any other observational technique. Methods: We fitted the spectra with a self-consistent procedure to simultaneously derive spectral type, extinction, and accretion properties of the targets. From the continuum excess at near-infrared wavelength we distinguished whether our targets have dust free inner holes. By analyzing forbidden emission lines, we derived the wind properties of the targets. We then compared our findings with results for classical T Tauri stars. Results: The accretion rates and wind properties of 80% of the transitional disks in our sample, which is strongly biased toward stongly accreting objects, are comparable to those of classical T Tauri stars. Thus, there are (at least) some transitional disks with accretion properties compatible with those of classical T Tauri stars, irrespective of the size of the dust inner hole. Only in two cases are the mass accretion rates much lower, while the wind properties remain similar. We detected no strong trend of the mass accretion rates with the size of the dust-depleted cavity or with the presence of a dusty optically thick disk very close to the star. These results suggest that, close to the central star, there is a gas-rich inner disk with a density similar to that of classical T Tauri star disks. Conclusions: The

  9. Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Zhu, Chongqiang; Xiang, Xiang; Mao, Wuwei

    2015-06-01

    In previous studies of granular flow, it has been found that gravity plays a compacting role, causing convection and stratification by density. However, there is a lack of research and analysis of the characteristics of different particles' motion under normal gravity contrary to microgravity. In this paper, we conduct model experiments on sand flow using a model test system based on a drop tower under microgravity, within which the characteristics and development processes of granular flow under microgravity are captured by high-speed cameras. The configurations of granular flow are simulated using a modified MPS (moving particle simulation), which is a mesh-free, pure Lagrangian method. Moreover, liquid-gas-like phase transitions in the sand flow under microgravity, including the transitions to "escaped", "jumping", and "scattered" particles are highlighted, and their effects on the weakening of shear resistance, enhancement of fluidization, and changes in particle-wall and particle-particle contact mode are analyzed. This study could help explain the surface geology evolution of small solar bodies and elucidate the nature of granular interaction.

  10. Determination of gas & liquid two-phase flow regime transitions in wellbore annulus by virtual mass force coefficient when gas cut

    NASA Astrophysics Data System (ADS)

    Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi

    2017-10-01

    With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.

  11. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  12. Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure.

    PubMed

    Howard, Touché; Ferrara, Thomas W; Townsend-Small, Amy

    2015-07-01

    Quantification of leaks from natural gas (NG) infrastructure is a key step in reducing emissions of the greenhouse gas methane (CH4), particularly as NG becomes a larger component of domestic energy supply. The U.S. Environmental Protection Agency (EPA) requires measurement and reporting of emissions of CH4 from NG transmission, storage, and processing facilities, and the high-flow sampler (or high-volume sampler) is one of the tools approved for this by the EPA. The Bacharach Hi-Flow Sampler (BHFS) is the only commercially available high-flow instrument, and it is also used throughout the NG supply chain for directed inspection and maintenance, emission factor development, and greenhouse gas reduction programs. Here we document failure of the BHFS to transition from a catalytic oxidation sensor used to measure low NG (~5% or less) concentrations to a thermal conductivity sensor for higher concentrations (from ~5% to 100%), resulting in underestimation of NG emission rates. Our analysis includes both our own field testing and analysis of data from two other studies (Modrak et al., 2012; City of Fort Worth, 2011). Although this failure is not completely understood, and although we do not know if all BHFS models are similarly affected, sensor transition failure has been observed under one or more of these conditions: (1) Calibration is more than ~2 weeks old; (2) firmware is out of date; or (3) the composition of the NG source is less than ~91% CH4. The extent to which this issue has affected recent emission studies is uncertain, but the analysis presented here suggests that the problem could be widespread. Furthermore, it is critical that this problem be resolved before the onset of regulations on CH4 emissions from the oil and gas industry, as the BHFS is a popular instrument for these measurements. An instrument commonly used to measure leaks in natural gas infrastructure has a critical sensor transition failure issue that results in underestimation of leaks, with

  13. Liquid-gas phase transition in asymmetric nuclear matter at finite temperature

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi

    2010-03-01

    Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.

  14. K2-155: A Bright Metal-poor M Dwarf with Three Transiting Super-Earths

    NASA Astrophysics Data System (ADS)

    Hirano, Teruyuki; Dai, Fei; Livingston, John H.; Fujii, Yuka; Cochran, William D.; Endl, Michael; Gandolfi, Davide; Redfield, Seth; Winn, Joshua N.; Guenther, Eike W.; Prieto-Arranz, Jorge; Albrecht, Simon; Barragan, Oscar; Cabrera, Juan; Cauley, P. Wilson; Csizmadia, Szilard; Deeg, Hans; Eigmüller, Philipp; Erikson, Anders; Fridlund, Malcolm; Fukui, Akihiko; Grziwa, Sascha; Hatzes, Artie P.; Korth, Judith; Narita, Norio; Nespral, David; Niraula, Prajwal; Nowak, Grzegorz; Pätzold, Martin; Palle, Enric; Persson, Carina M.; Rauer, Heike; Ribas, Ignasi; Smith, Alexis M. S.; Van Eylen, Vincent

    2018-03-01

    We report on the discovery of three transiting super-Earths around K2-155 (EPIC 210897587), a relatively bright early M dwarf (V = 12.81 mag) observed during Campaign 13 of the NASA K2 mission. To characterize the system and validate the planet candidates, we conducted speckle imaging and high-dispersion optical spectroscopy, including radial velocity measurements. Based on the K2 light curve and the spectroscopic characterization of the host star, the planet sizes and orbital periods are {1.55}-0.17+0.20 {R}\\oplus and 6.34365 ± 0.00028 days for the inner planet; {1.95}-0.22+0.27 {R}\\oplus and 13.85402 ± 0.00088 days for the middle planet; and {1.64}-0.17+0.18 {R}\\oplus and 40.6835 ± 0.0031 days for the outer planet. The outer planet (K2-155d) is near the habitable zone, with an insolation 1.67 ± 0.38 times that of the Earth. The planet’s radius falls within the range between that of smaller rocky planets and larger gas-rich planets. To assess the habitability of this planet, we present a series of three-dimensional global climate simulations, assuming that K2-155d is tidally locked and has an Earth-like composition and atmosphere. We find that the planet can maintain a moderate surface temperature if the insolation proves to be smaller than ∼1.5 times that of the Earth. Doppler mass measurements, transit spectroscopy, and other follow-up observations should be rewarding, as K2-155 is one of the optically brightest M dwarfs known to harbor transiting planets.

  15. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Wang; X. Sun; H. Zhao

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do notmore » exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the

  16. ALMA CO(3-2) Observations of Star-forming Filaments in a Gas-poor Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Consiglio, S. Michelle; Turner, Jean L.; Beck, Sara; Meier, David S.; Silich, Sergiy; Zhao, Jun-Hui

    2017-11-01

    We report ALMA observations of 12CO(3-2) and 13CO(3-2) in the gas-poor dwarf galaxy NGC 5253. These 0.″3(5.5 pc) resolution images reveal small, dense molecular gas clouds that are located in kinematically distinct extended filaments. Some of the filaments appear to be falling into the galaxy and may be fueling its current star formation. The most intense CO(3-2) emission comes from the central ˜100 pc region centered on the luminous radio-infrared H II region known as the supernebula. The CO(3-2) clumps within the starburst region are anti-correlated with Hα on ˜5 pc scales, but are well-correlated with radio free-free emission. Cloud D1, which enshrouds the supernebula, has a high 12CO/13CO ratio, as does another cloud within the central 100 pc starburst region, possibly because the clouds are hot. CO(3-2) emission alone does not allow determination of cloud masses as molecular gas temperature and column density are degenerate at the observed brightness, unless combined with other lines such as 13CO.

  17. Transition and Damping of Collective Modes in a Trapped Fermi Gas between BCS and Unitary Limits near the Phase Transition

    PubMed Central

    Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli

    2015-01-01

    We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094

  18. Constraining the volatile fraction of planets from transit observations

    NASA Astrophysics Data System (ADS)

    Alibert, Y.

    2016-06-01

    Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of

  19. Individual and community factors associated with geographic clusters of poor HIV care retention and poor viral suppression

    PubMed Central

    Eberhart, Michael G.; Yehia, Baligh R.; Hillier, Amy; Voytek, Chelsea D.; Fiore, Danielle J.; Blank, Michael; Frank, Ian; Metzger, David S.; Brady, Kathleen A.

    2015-01-01

    Background Previous analyses identified specific geographic areas in Philadelphia (hotspots) associated with negative outcomes along the HIV care continuum. We examined individual and community factors associated with residing in these hotspots. Methods Retrospective cohort of 1,404 persons newly diagnosed with HIV in 2008–2009 followed for 24 months after linkage to care. Multivariable regression examined associations between individual (age, sex, race/ethnicity, HIV transmission risk, and insurance status) and community (economic deprivation, distance to care, access to public transit, and access to pharmacy services) factors and the outcomes: residence in a hotspot associated with poor retention in care and residence in a hotspot associated with poor viral suppression. Results 24.4% and 13.7% of persons resided in hotspots associated with poor retention and poor viral suppression, respectively. For persons residing in poor retention hotspots, 28.3% were retained in care compared to 40.4% of those residing outside hotspots (p<0.05). Similarly, for persons residing in poor viral suppression hotspots, 51.4% achieved viral suppression compared to 75.3% of those outside hotspots (p<.0.05). Factors significantly associated with residence in a poor retention hotspots included: female sex, lower economic deprivation, greater access to public transit, shorter distance to medical care, and longer distance to pharmacies. Factors significantly associated with residence in a poor viral suppression hotspots included; female sex, higher economic deprivation, and shorter distance to pharmacies. Conclusions Individual and community-level associations with geographic hotspots may inform both content and delivery strategies for interventions designed to improve retention in care and viral suppression. PMID:25867777

  20. Individual and community factors associated with geographic clusters of poor HIV care retention and poor viral suppression.

    PubMed

    Eberhart, Michael G; Yehia, Baligh R; Hillier, Amy; Voytek, Chelsea D; Fiore, Danielle J; Blank, Michael; Frank, Ian; Metzger, David S; Brady, Kathleen A

    2015-05-01

    Previous analyses identified specific geographic areas in Philadelphia (hotspots) associated with negative outcomes along the HIV care continuum. We examined individual and community factors associated with residing in these hotspots. Retrospective cohort of 1404 persons newly diagnosed with HIV in 2008-2009 followed for 24 months after linkage to care. Multivariable regression examined associations between individual (age, sex, race/ethnicity, HIV transmission risk, and insurance status) and community (economic deprivation, distance to care, access to public transit, and access to pharmacy services) factors and the outcomes: residence in a hotspot associated with poor retention-in-care and residence in a hotspot associated with poor viral suppression. In total, 24.4% and 13.7% of persons resided in hotspots associated with poor retention and poor viral suppression, respectively. For persons residing in poor retention hotspots, 28.3% were retained in care compared with 40.4% of those residing outside hotspots (P < 0.05). Similarly, for persons residing in poor viral suppression hotspots, 51.4% achieved viral suppression compared with 75.3% of those outside hotspots (P < 0.0.05). Factors significantly associated with residence in poor retention hotspots included female sex, lower economic deprivation, greater access to public transit, shorter distance to medical care, and longer distance to pharmacies. Factors significantly associated with residence in poor viral suppression hotspots included female sex, higher economic deprivation, and shorter distance to pharmacies. Individual and community-level associations with geographic hotspots may inform both content and delivery strategies for interventions designed to improve retention-in-care and viral suppression.

  1. Optical probing of the metal-to-insulator transition in a two-dimensional high-mobility electron gas

    NASA Astrophysics Data System (ADS)

    Dionigi, F.; Rossella, F.; Bellani, V.; Amado, M.; Diez, E.; Kowalik, K.; Biasiol, G.; Sorba, L.

    2011-06-01

    We study the quantum Hall liquid and the metal-insulator transition in a high-mobility two-dimensional electron gas, by means of photoluminescence and magnetotransport measurements. In the integer and fractional regime at ν>1/3, by analyzing the emission energy dispersion we probe the magneto-Coulomb screening and the hidden symmetry of the electron liquid. In the fractional regime above ν=1/3, the system undergoes metal-to-insulator transition, and in the insulating phase the dispersion becomes linear with evidence of an increased renormalized mass.

  2. Gas liquid flow at microgravity conditions - Flow patterns and their transitions

    NASA Technical Reports Server (NTRS)

    Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.

    1987-01-01

    The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.

  3. Detecting metal-poor gas accretion in the star-forming dwarf galaxies UM 461 and Mrk 600

    NASA Astrophysics Data System (ADS)

    Lagos, P.; Scott, T. C.; Nigoche-Netro, A.; Demarco, R.; Humphrey, A.; Papaderos, P.

    2018-06-01

    Using VIsible MultiObject Spectrograph (VIMOS)-integral field unit (IFU) observations, we study the interstellar medium (ISM) of two star-forming dwarf galaxies, UM 461 and Mrk 600. Our aim was to search for the existence of metallicity inhomogeneities that might arise from infall of nearly pristine gas feeding ongoing localized star formation. The IFU data allowed us to study the impact of external gas accretion on the chemical evolution as well as the ionized gas kinematics and morphologies of these galaxies. Both systems show signs of morphological distortions, including cometary-like morphologies. We analysed the spatial variation of 12 + log(O/H) abundances within both galaxies using the direct method (Te), the widely applied HII-CHI-mistry code, as well as by employing different standard calibrations. For UM 461, our results show that the ISM is fairly well mixed, at large scales; however, we find an off-centre and low-metallicity region with 12 + log(O/H) < 7.6 in the SW part of the brightest H II region, using the direct method. This result is consistent with the recent infall of a metal-poor H I cloud into the region now exhibiting the lowest metallicity, which also displays localized perturbed neutral and ionized gas kinematics. Mrk 600 in contrast, appears to be chemically homogeneous on both large and small scales. The intrinsic differences in the spatially resolved properties of the ISM in our analysed galaxies are consistent with these systems being at different evolutionary stages.

  4. Clean air program : design guidelines for bus transit systems using compressed natural gas as an alternative fuel

    DOT National Transportation Integrated Search

    1996-06-01

    This report documents design guidelines for the safe use of Compressed Natural Gas (CNG). The report is designed to provide guidance, information on safe industry practices, applicable national codes and standards, and reference data that transit age...

  5. Formaldehyde in Absorption: Tracing Molecular Gas in Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Dollhopf, Niklaus M.; Donovan Meyer, Jennifer

    2016-01-01

    Early-Type Galaxies (ETGs) have been long-classified as the red, ellipsoidal branch of the classic Hubble tuning fork diagram of galactic structure. In part with this classification, ETGs are thought to be molecular and atomic gas-poor with little to no recent star formation. However, recent efforts have questioned this ingrained classification. Most notably, the ATLAS3D survey of 260 ETGs within ~40 Mpc found 22% contain CO, a common tracer for molecular gas. The presence of cold molecular gas also implies the possibility for current star formation within these galaxies. Simulations do not accurately predict the recent observations and further studies are necessary to understand the mechanisms of ETGs.CO traces molecular gas starting at densities of ~102 cm-3, which makes it a good tracer of bulk molecular gas, but does little to constrain the possible locations of star formation within the cores of dense molecular gas clouds. Formaldehyde (H2CO) traces molecular gas on the order of ~104 cm-3, providing a further constraint on the location of star-forming gas, while being simple enough to possibly be abundant in gas-poor ETGs. In cold molecular clouds at or above ~104 cm-3 densities, the structure of formaldehyde enables a phenomenon in which rotational transitions have excitation temperatures driven below the temperature of the cosmic microwave background (CMB), ~2.7 K. Because the CMB radiates isotropically, formaldehyde can be observed in absorption, independent of distance, as a tracer of moderately-dense molecular clouds and star formation.This novel observation technique of formaldehyde was incorporated for observations of twelve CO-detected ETGs from the ATLAS3D sample, including NGC 4710 and PGC 8815, to investigate the presence of cold molecular gas, and possible star formation, in ETGs. We present images from the Very Large Array, used in its C-array configuration, of the J = 11,0 - 11,1 transition of formaldehyde towards these sources. We report our

  6. Sensitivity study of experimental measures for the nuclear liquid-gas phase transition in the statistical multifragmentation model

    NASA Astrophysics Data System (ADS)

    Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.

    2018-05-01

    The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.

  7. Factors associated with poor sleep during menopause: results from the Midlife Women's Health Study.

    PubMed

    Smith, Rebecca L; Flaws, Jodi A; Mahoney, Megan M

    2018-05-01

    Poor sleep is one of the most common problems reported during menopause, and is known to vary throughout the menopause transition. The objective of this study was to describe the dynamics of poor sleep among participants of the Midlife Women's Health Study and to identify risk factors associated with poor sleep during the menopausal transition. Annual responses to surveys that included questions about the frequency of sleep disturbances and insomnia were analyzed to determine the likelihood of persistent poor sleep throughout the menopausal transition and the correlation of responses to the different sleep-related questions, including frequency of restless sleep during the first year of the study. Responses to questions about a large number of potential risk factors were used to identify risk factors for poor sleep. Poor sleep in premenopause was not predictive of poor sleep in perimenopause, and poor sleep in perimenopause was not predictive of poor sleep in postmenopause. Frequencies of each of the measures of poor sleep were highly correlated. For all sleep outcomes, high frequency of depression was related to a high frequency of poor sleep. Vasomotor symptoms were also significantly related with a higher frequency of all poor sleep outcomes. A history of smoking was also associated with higher frequencies of insomnia and sleep disturbances. The risk factors identified for poor sleep, depression and vasomotor symptoms, were consistently associated with poor sleep throughout the menopausal transition. The likelihood of these risk factors changed from premenopause, through perimenopause, and into postmenopause, however, which could explain changes in sleep difficulties across the menopausal transition. Treatment of these risk factors should be considered when addressing sleep difficulties in menopausal women. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Gas6 induces cancer cell migration and epithelial–mesenchymal transition through upregulation of MAPK and Slug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yunhee; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon; Lee, Mira

    2013-04-26

    Highlights: •We investigated the molecular mechanisms underlying Gas6-mediated cancer cell migration. •Gas6 treatment and subsequent Axl activation induce cell migration and EMT via upregulation of Slug. •Slug expression mediated by Gas6 is mainly through c-Jun and ATF-2 in an ERK1/2 and JNK-dependent manner. •The Gas6/Axl-Slug axis may be exploited as a target for anti-cancer metastasis therapy. -- Abstract: Binding of Gas6 to Axl (Gas6/Axl axis) alters cellular functions, including migration, invasion, proliferation, and survival. However, the molecular mechanisms underlying Gas6-mediated cell migration remain poorly understood. In this study, we found that Gas6 induced the activation of JNK and ERK1/2 signalingmore » in cancer cells expressing Axl, resulting in the phosphorylation of activator protein-1 (AP-1) transcription factors c-Jun and ATF-2, and induction of Slug. Depletion of c-Jun or ATF-2 by siRNA attenuated the Gas6-induced expression of Slug. Slug expression was required for cell migration and E-cadherin reduction/vimentin induction induced by Gas6. These results suggest that Gas6 induced cell migration via Slug upregulation in JNK- and ERK1/2-dependent mechanisms. These data provide an important insight into the molecular mechanisms mediating Gas6-induced cell migration.« less

  9. Lactulose Breath Test Gas Production in Childhood IBS Is Associated With Intestinal Transit and Bowel Movement Frequency.

    PubMed

    Chumpitazi, Bruno P; Weidler, Erica M; Shulman, Robert J

    2017-04-01

    In adults with irritable bowel syndrome (IBS), bacterial gas production (colonic fermentation) is related to both symptom generation and intestinal transit. Whether gas production affects symptom generation, psychosocial distress, or intestinal transit in childhood IBS is unknown. Children (ages 7-17 years) with pediatric Rome III IBS completed validated psychosocial questionnaires and a 2-week daily diary capturing pain and stooling characteristics. Stool form determined IBS subtype. Subjects then completed a 3-hour lactulose breath test for measurement of total breath hydrogen and methane production. Carmine red was used to determine whole intestinal transit time. A total of 87 children (mean age 13 ± 2.6 [standard deviation] years) were enrolled, of whom 50 (57.5%) were girls. All children produced hydrogen and 51 (58.6%) produced methane. Hydrogen and methane production did not correlate with either abdominal pain frequency/severity or psychosocial distress. Hydrogen and methane production did not differ significantly by IBS subtype. Methane production correlated positively with whole intestinal transit time (r = 0.31, P < 0.005) and inversely with bowel movement frequency (r = -0.245, P < 0.05). Methane production (threshold 3 ppm) as a marker for identifying IBS-C had a sensitivity of 60% and specificity of 42.9%. Lactulose breath test total methane production may serve as a biomarker of whole intestinal transit time and bowel movement frequency in children with IBS. In children with IBS, lactulose breath test hydrogen and methane production did not, however, correlate with abdominal pain, IBS subtype, or psychosocial distress.

  10. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  11. Light Scattering in Exoplanet Transits

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Fortney, Jonathan J.

    2016-10-01

    Transit spectroscopy is currently the leading technique for studying exoplanet atmospheric composition, and has led to the detection of molecular species, clouds, and/or hazes for numerous worlds outside the Solar System. The field of exoplanet transit spectroscopy will be revolutionized with the anticipated launch of NASA's James Webb Space Telescope (JWST) in 2018. Over the course of the design five year mission for JWST, the observatory is expected to provide in-depth observations of many tens of transiting exoplanets, including some worlds in the poorly understood 2-4 Earth-mass regime. As the quality of transit spectrum observations continues to improve, so should models of exoplanet transits. Thus, certain processes initially thought to be of second-order importance should be revisited and possibly added to modeling tools. For example, atmospheric refraction, which was commonly omitted from early transit spectrum models, has recently been shown to be of critical importance in some terrestrial exoplanet transits. Beyond refraction, another process that has seen little study with regards to exoplanet transits is light multiple scattering. In most cases, scattering opacity in exoplanet transits has been treated as equivalent to absorption opacity. However, this equivalence cannot always hold, such as in the case of a strongly forward scattering, weakly absorbing aerosol. In this presentation, we outline a theory of exoplanet transit spectroscopy that spans the geometric limit (used in most modern models) to a fully multiple scattering approach. We discuss a new technique for improving model efficiency that effectively separates photon paths, which tend to vary slowly in wavelength, from photon absorption, which can vary rapidly in wavelength. Using this newly developed approach, we explore situations where cloud or haze scattering may be important to JWST observations of gas giants, and comment on the conditions necessary for scattering to become a major

  12. Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos

    2016-11-01

    The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.

  13. The use of inverse gas chromatography and gravimetric vapour sorption to study transitions in amorphous lactose.

    PubMed

    Ambarkhane, Ameet V; Pincott, Kim; Buckton, Graham

    2005-04-27

    The aim of this study was to measure the glass transition of amorphous lactose under well-controlled temperature and humidity, using inverse gas chromatography (IGC) and to relate these data to gravimetric vapour sorption experiments. Amorphous lactose (spray-dried) was exposed to a stepwise increment in the relative humidity (%RH) under isothermal conditions in an IGC. At the end of each conditioning step a decane injection was made, and the retention volumes were calculated using the maximum peak height (V(max)) method. The pressure drop across the column was recorded using the pressure transducers. These measurements were performed at various temperatures from 25 to 40 degrees C. The extent of water sorption at identical humidity (%RH) and temperature conditions was determined gravimetrically using dynamic vapour sorption (DVS). At each T, it was possible to determine: (1) a transition at low RH relating to the onset of mobility; (2) changes in retention volume relating to the point, where T(g) = T; (3) changes in pressure drop, which were related to the sample collapse. The rate and extent of water sorption was seen to alter at T(g) and also at a collapse point. Combinations of temperature and critical %RH (%cRH required to lower the dry glass transition temperature to the experimental temperature) obtained from IGC were comparable to those obtained from DVS. It was shown that at each T, the sample spontaneously crystallised, when T(g) was 32 degrees C below T. Inverse gas chromatograph can be used in this novel way to reveal the series of transitions that occur in amorphous materials.

  14. Conformation transitions of a single polyelectrolyte chain in a poor solvent: a replica-exchange lattice Monte-Carlo study.

    PubMed

    Wang, Lang; Wang, Zheng; Jiang, Run; Yin, Yuhua; Li, Baohui

    2017-03-15

    The thermodynamic behaviors of a strongly charged polyelectrolyte chain in a poor solvent are studied using replica-exchange Monte-Carlo simulations on a lattice model, focusing on the effects of finite chain length and the solvent quality on the chain conformation and conformation transitions. The neutralizing counterions and solvent molecules are considered explicitly. The thermodynamic quantities that vary continuously with temperature over a wide range are computed using the multiple histogram reweighting method. Our results suggest that the strength of the short-range hydrophobic interaction, the chain length, and the temperature of the system, characterized by ε, N, and T, respectively, are important parameters that control the conformations of a charged chain. When ε is moderate, the competition between the electrostatic energy and the short-range hydrophobic interaction leads to rich conformations and conformation transitions for a longer chain with a fixed length. Our results have unambiguously demonstrated the stability of the n-pearl-necklace structures, where n has a maximum value and decreases with decreasing temperature. The maximum n value increases with increasing chain length. Our results have also demonstrated the first-order nature of the conformation transitions between the m-pearl and the (m-1)-pearl necklaces. With the increase of ε, the transition temperature increases and the first-order feature becomes more pronounced. It is deduced that at the thermodynamic limit of infinitely long chain length, the conformational transitions between the m-pearl and the (m-1)-pearl necklaces may remain first order when ε > 0 and m = 2 or 3. Pearl-necklace conformations cannot be observed when either ε is too large or N is too small. To observe a pearl-necklace conformation, the T value needs to be carefully chosen for simulations performed at only a single temperature.

  15. Transition of a small-bipolaron gas to a Fröhlich polaron in a deformable lattice

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, Gayan Prasad; Muhid, Mohd Nazlan Mohd; Hamdan, Halimaton

    2018-04-01

    The electronic properties of guest Cs atoms in a deformable lattice are investigated at various densities n . Low values of n show optical absorptions of small bipolarons. At intermediate n values, new bands appear in the midinfrared (MIR) and high-frequency regions, which coexist with the small bipolaron bands. With a further increase in n , the small bipolaron bands become less discernible and subsequently disappear, resulting in the appearance of a Drude component superimposed on a MIR sideband suggesting a phase transition to a polaronic metal. In this itinerant phase, an approximately twofold mass enhancement is observed. This continuous transition of a gas of small bipolarons to a polaronic metal characterized by a Fröhlich polaron reveals an important part of the complex phase diagram of the metal-insulator transition in a deformable lattice.

  16. Development, Application, and Transition of Aerosol and Trace Gas Products Derived from Next-Generation Satellite Observations to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Naeger, Aaron; Zavodsky, Bradley; McGrath, Kevin; LaFontaine, Frank

    2016-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center has a history of successfully transitioning unique observations and research capabilities to the operational weather community to improve short-term forecasts. SPoRTstrives to bridge the gap between research and operations by maintaining interactive partnerships with end users to develop products that match specific forecast challenges, provide training, and assess the products in the operational environment. This presentation focuses on recent product development, application, and transition of aerosol and trace gas products to operations for specific forecasting applications. Recent activities relating to the SPoRT ozone products, aerosol optical depth composite product, sulfur dioxide, and aerosol index products are discussed.

  17. EFFECTS OF TRITIUM GAS EXPOSURE ON THE GLASS TRANSITION TEMPERATURE OF EPDM ELASTOMER AND ON THE CONDUCTIVITY OF POLYANILINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, E; Marie Kane, M

    2008-12-12

    Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types ofmore » polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.« less

  18. Mobility of Supercooled liquid Toluene, Ethylbenzene, and Benzene near their Glass Transition Temperatures Investigated using Inert Gas Permeation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg and as a result the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function ofmore » the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 K to 135 K. In this temperature range, diffusivities are found to vary across five orders of magnitude (~10-14 to 10-9 cm2/s). These data are compared to viscosity measurements and used to determine the low temperature fractional Stokes-Einstein exponent. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.« less

  19. Variational Transition State Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truhlar, Donald G.

    2016-09-29

    This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.

  20. Transition regime analytical solution to gas mass flow rate in a rectangular micro channel

    NASA Astrophysics Data System (ADS)

    Dadzie, S. Kokou; Dongari, Nishanth

    2012-11-01

    We present an analytical model predicting the experimentally observed gas mass flow rate in rectangular micro channels over slip and transition regimes without the use of any fitting parameter. Previously, Sone reported a class of pure continuum regime flows that requires terms of Burnett order in constitutive equations of shear stress to be predicted appropriately. The corrective terms to the conventional Navier-Stokes equation were named the ghost effect. We demonstrate in this paper similarity between Sone ghost effect model and newly so-called 'volume diffusion hydrodynamic model'. A generic analytical solution to gas mass flow rate in a rectangular micro channel is then obtained. It is shown that the volume diffusion hydrodynamics allows to accurately predict the gas mass flow rate up to Knudsen number of 5. This can be achieved without necessitating the use of adjustable parameters in boundary conditions or parametric scaling laws for constitutive relations. The present model predicts the non-linear variation of pressure profile along the axial direction and also captures the change in curvature with increase in rarefaction.

  1. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S., E-mail: gdoppmann@keck.hawaii.edu, E-mail: najita@noao.edu, E-mail: carr@nrl.navy.mil

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ∼10 Myr. Using high-resolution 4.7 μ m spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to themore » observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (i.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10{sup −20} to 10{sup −18} W m{sup −2}). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation.« less

  2. Breeding Super-Earths and Birthing Super-puffs in Transitional Disks

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene

    2016-02-01

    The riddle posed by super-Earths (1-4R⊕, 2-20M⊕) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ˜0.1-1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4-10R⊕, 2-6M⊕). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ˜1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  3. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustlymore » emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.« less

  4. CHANGE OF MAGNETIC FIELD-GAS ALIGNMENT AT THE GRAVITY-DRIVEN ALFVÉNIC TRANSITION IN MOLECULAR CLOUDS: IMPLICATIONS FOR DUST POLARIZATION OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun

    Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicularmore » to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.« less

  5. SOX5 predicts poor prognosis in lung adenocarcinoma and promotes tumor metastasis through epithelial-mesenchymal transition

    PubMed Central

    Chen, Xin; Fu, Yufei; Xu, Hongfei; Teng, Peng; Xie, Qiong; Zhang, Yiran; Yan, Caochong; Xu, Yiqiao; Li, Chunqi; Zhou, Jianying; Ni, Yiming; Li, Weidong

    2018-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) promotes lung cancer progression and metastasis, especially in lung adenocarcinoma. Sex determining region Y-box protein 5 (SOX5) is known to stimulate the progression of various cancers. Here, we used immunohistochemical analysis to reveal that SOX5 levels were increased in 90 lung adenocarcinoma patients. The high SOX5 expression in lung adenocarcinoma and non-tumor counterparts correlated with the patients’ poor prognosis. Inhibiting SOX5 expression attenuated metastasis and progression in lung cancer cells, while over-expressing SOX5 accelerated lung adenocarcinoma progression and metastasis via EMT. An in vivo zebrafish xenograft cancer model also showed SOX5 knockdown was followed by reduced lung cancer cell proliferation and metastasis. Our results indicate SOX5 promotes lung adenocarcinoma tumorigenicity and can be a novel diagnosis and prognosis marker of the disease. PMID:29541384

  6. Transition metal catalysis in the generation of petroleum and natural gas. Final report, September 1, 1992--October 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalyticallymore » robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process. The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.« less

  7. WASP-80b: a gas giant transiting a cool dwarf

    NASA Astrophysics Data System (ADS)

    Triaud, A. H. M. J.; Anderson, D. R.; Collier Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Udry, S.; West, R. G.; Wheatley, P. J.

    2013-03-01

    We report the discovery of a planet transiting the star WASP-80 (1SWASP J201240.26-020838.2; 2MASS J20124017-0208391; TYC 5165-481-1; BPM 80815; V = 11.9, K = 8.4). Our analysis shows this is a 0.55 ± 0.04 Mjup, 0.95 ± 0.03 Rjup gas giant on a circular 3.07 day orbit around a star with a spectral type between K7V and M0V. This system produces one of the largest transit depths so far reported, making it a worthwhile target for transmission spectroscopy. We find a large discrepancy between the vsini⋆ inferred from stellar line broadening and the observed amplitude of the Rossiter-McLaughlin effect. This can be understood either by an orbital plane nearly perpendicular to the stellar spin or by an additional, unaccounted for source of broadening. Using WASP-South photometric observations, from Sutherland (South Africa), confirmed with the 60 cm TRAPPIST robotic telescope, EulerCam, and the CORALIE spectrograph on the Swiss 1.2 m Euler Telescope, and HARPS on the ESO 3.6 m (Prog ID 089.C-0151), all three located at La Silla Observatory, Chile.Radial velocity and photometric data are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A80

  8. K2-111 b - a short period super-Earth transiting a metal poor, evolved old star

    NASA Astrophysics Data System (ADS)

    Fridlund, Malcolm; Gaidos, Eric; Barragán, Oscar; Persson, Carina M.; Gandolfi, Davide; Cabrera, Juan; Hirano, Teruyuki; Kuzuhara, Masayuki; Csizmadia, Sz.; Nowak, Grzegorz; Endl, Michael; Grziwa, Sascha; Korth, Judith; Pfaff, Jeremias; Bitsch, Bertram; Johansen, Anders; Mustill, Alexander J.; Davies, Melvyn B.; Deeg, Hans J.; Palle, Enric; Cochran, William D.; Eigmüller, Philipp; Erikson, Anders; Guenther, Eike; Hatzes, Artie P.; Kiilerich, Amanda; Kudo, Tomoyuki; MacQueen, Phillip; Narita, Norio; Nespral, David; Pätzold, Martin; Prieto-Arranz, Jorge; Rauer, Heike; Van Eylen, Vincent

    2017-07-01

    Context. From a light curve acquired through the K2 space mission, the star K2-111(EPIC 210894022) has been identified as possibly orbited by a transiting planet. Aims: Our aim is to confirm the planetary nature of the object and derive its fundamental parameters. Methods: We analyse the light curve variations during the planetary transit using packages developed specifically for exoplanetary transits. Reconnaissance spectroscopy and radial velocity observations have been obtained using three separate telescope and spectrograph combinations. The spectroscopic synthesis package SME has been used to derive the stellar photospheric parameters that were used as input to various stellar evolutionary tracks in order to derive the parameters of the system. The planetary transit was also validated to occur on the assumed host star through adaptive imaging and statistical analysis. Results: The star is found to be located in the background of the Hyades cluster at a distance at least 4 times further away from Earth than the cluster itself. The spectrum and the space velocities of K2-111 strongly suggest it to be a member of the thick disk population. The co-added high-resolution spectra show that that it is a metal poor ([Fe/H] = - 0.53 ± 0.05 dex) and α-rich somewhat evolved solar-like star of spectral type G3. We find Teff = 5730 ± 50 K, log g⋆ = 4.15 ± 0.1 cgs, and derive a radius of R⋆ = 1.3 ± 0.1 R⊙ and a mass of M⋆ = 0.88 ± 0.02 M⊙. The currently available radial velocity data confirms a super-Earth class planet with a mass of 8.6 ± 3.9 M⊕ and a radius of 1.9 ± 0.2 R⊕. A second more massive object with a period longer than about 120 days is indicated by a long-term radial velocity drift. Conclusions: The radial velocity detection together with the imaging confirms with a high level of significance that the transit signature is caused by a planet orbiting the star K2-111. This planet is also confirmed in the radial velocity data. A second more

  9. Optically thin core accretion: how planets get their gas in nearly gas-free discs

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene; Ferguson, Jason W.

    2018-05-01

    Models of core accretion assume that in the radiative zones of accreting gas envelopes, radiation diffuses. But super-Earths/sub-Neptunes (1-4 R⊕, 2-20 M⊕) point to formation conditions that are optically thin: their modest gas masses are accreted from short-lived and gas-poor nebulae reminiscent of the transparent cavities of transitional discs. Planetary atmospheres born in such environments can be optically thin to both incident starlight and internally generated thermal radiation. We construct time-dependent models of such atmospheres, showing that super-Earths/sub-Neptunes can accrete their ˜1 per cent-by-mass gas envelopes, and super-puffs/sub-Saturns their ˜20 per cent-by-mass envelopes, over a wide range of nebular depletion histories requiring no fine tuning. Although nascent atmospheres can exhibit stratospheric temperature inversions affected by atomic Fe and various oxides that absorb strongly at visible wavelengths, the rate of gas accretion remains controlled by the radiative-convective boundary (rcb) at much greater pressures. For dusty envelopes, the temperature at the rcb Trcb ≃ 2500 K is still set by H2 dissociation; for dust-depleted envelopes, Trcb tracks the temperature of the visible or thermal photosphere, whichever is deeper, out to at least ˜5 au. The rate of envelope growth remains largely unchanged between the old radiative diffusion models and the new optically thin models, reinforcing how robustly super-Earths form as part of the endgame chapter in disc evolution.

  10. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Wang; Xiaodong Sun; Benjamin Doup

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present workmore » aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.« less

  11. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides.

    PubMed

    Joshi, Nirav; Hayasaka, Takeshi; Liu, Yumeng; Liu, Huiliang; Oliveira, Osvaldo N; Lin, Liwei

    2018-03-10

    Room-temperature (RT) gas sensing is desirable for battery-powered or self-powered instrumentation that can monitor emissions associated with pollution and industrial processes. This review (with 171 references) discusses recent advances in three types of porous nanostructures that have shown remarkable potential for RT gas sensing. The first group comprises hierarchical oxide nanostructures (mainly oxides of Sn, Ni, Zn, W, In, La, Fe, Co). The second group comprises graphene and its derivatives (graphene, graphene oxides, reduced graphene oxides, and their composites with metal oxides and noble metals). The third group comprises 2D transition metal dichalcogenides (mainly sulfides of Mo, W, Sn, Ni, also in combination with metal oxides). They all have been found to enable RT sensing of gases such as NOx, NH 3 , H 2 , SO 2 , CO, and of vapors such as of acetone, formaldehyde or methanol. Attractive features also include high selectivity and sensitivity, long-term stability and affordable costs. Strengths and limitations of these materials are highlighted, and prospects with respect to the development of new materials to overcome existing limitations are discussed. Graphical Abstract The review summarizes the most significant progresses related to room temperature gas sensing by using hierarchical oxide nanostructures, graphene and its derivatives and 2D transition metal dichalcogenides, highlighting the peculiar gas sensing behavior with enhanced selectivity, sensitivity and long-term stability.

  12. Prediction of slug-to-annular flow pattern transition (STA) for reducing the risk of gas-lift instabilities and effective gas/liquid transport from low-pressure reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toma, P.R.; Vargas, E.; Kuru, E.

    Flow-pattern instabilities have frequently been observed in both conventional gas-lifting and unloading operations of water and oil in low-pressure gas and coalbed reservoirs. This paper identifies the slug-to-annular flow-pattern transition (STA) during upward gas/liquid transportation as a potential cause of flow instability in these operations. It is recommended that the slug-flow pattern be used mainly to minimize the pressure drop and gas compression work associated with gas-lifting large volumes of oil and water. Conversely, the annular flow pattern should be used during the unloading operation to produce gas with relatively small amounts of water and condensate. New and efficient artificialmore » lifting strategies are required to transport the liquid out of the depleted gas or coalbed reservoir level to the surface. This paper presents held data and laboratory measurements supporting the hypothesis that STA significantly contributes to flow instabilities and should therefore be avoided in upward gas/liquid transportation operations. Laboratory high-speed measurements of flow-pressure components under a broad range of gas-injection rates including STA have also been included to illustrate the onset of large STA-related flow-pressure oscillations. The latter body of data provides important insights into gas deliquification mechanisms and identifies potential solutions for improved gas-lifting and unloading procedures. A comparison of laboratory data with existing STA models was performed first. Selected models were then numerically tested in field situations. Effective field strategies for avoiding STA occurrence in marginal and new (offshore) field applications (i.e.. through the use of a slug or annular flow pattern regimen from the bottomhole to wellhead levels) are discussed.« less

  13. The Eastring gas pipeline in the context of the Central and Eastern European gas supply challenge

    NASA Astrophysics Data System (ADS)

    Mišík, Matúš; Nosko, Andrej

    2017-11-01

    Ever since the 2009 natural gas crisis, energy security has been a crucial priority for countries of Central and Eastern Europe. Escalating in 2014, the conflict between Ukraine and Russia further fuelled negative expectations about the future development of energy relations for the region predominantly supplied by Russia. As a response to the planned cessation of gas transit through the Brotherhood pipeline, which brings Russian gas to Europe via Ukraine and Slovakia, the Slovak transmission system operator Eustream proposed the Eastring pipeline. This Perspective analyses this proposal and argues that neither the perceived decrease in Slovak energy security nor the loss of economic rent from the international gas transit should be the main policy driver behind such a major infrastructure project. Although marketed as an answer to current Central and Eastern European gas supply security challenges, the Eastring pipeline is actually mainly focused on issues connected to the Slovak gas transit.

  14. Cold-gas experiments to study the flow separation characteristics of a dual-bell nozzle during its transition modes

    NASA Astrophysics Data System (ADS)

    Verma, S. B.; Stark, R.; Nuerenberger-Genin, C.; Haidn, O.

    2010-06-01

    An experimental investigation has been carried out to study the effect of test environment on transition characteristics and the flow unsteadiness associated with the transition modes of a dual-bell nozzle. Cold-gas tests using gaseous nitrogen were carried out in (i) a horizontal test-rig with nozzle exhausting into atmospheric conditions and, (ii) a high altitude simulation chamber with nozzle operation under self-evacuation mode. Transient tests indicate that increasing δP 0/ δt (the rate of stagnation chamber pressure change) reduces the amplitude of pressure fluctuations of the separation shock at the wall inflection point. This is preferable from the viewpoint of lowering the possible risk of any structural failure during the transition mode. Sea-level tests show 15-17% decrease in the transition nozzle pressure ratio (NPR) during subsequent tests in a single run primarily due to frost formation in the nozzle extension up to the wall inflection location. Frost reduces the wall inflection angle and hence, the transition NPR. However, tests inside the altitude chamber show nearly constant NPR value during subsequent runs primarily due to decrease in back temperature with decrease in back pressure that prevents any frost formation.

  15. Modelling Phase Transition Phenomena in Fluids

    DTIC Science & Technology

    2015-07-01

    Sublimation line r @@I Triple point ? Vapourisation liner @@I Critical point -Fusion line Solid Liquid Gas Figure 1: Schematic of a phase diagram means that the...velocity field can be set zero, and only the balance of energy constitutes the Stefan model. In contrast to this the liquid - gas phase transitions...defined by requiring that the phase-transition line is crossed in a direction from solid to liquid or from liquid to gas (vapour) phases. The term T∗ δs is

  16. Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    NASA Astrophysics Data System (ADS)

    Conduit, G. J.; Altman, E.

    2010-10-01

    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.

  17. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: On the gravitational-deceleration initiation of the phase transition of gas to a Bose condensate

    NASA Astrophysics Data System (ADS)

    Rivlin, L. A.

    2008-01-01

    A scenario of the experiment on the observation of the isothermal Bose condensation of cooled gas with increasing the concentration of atoms caused by the deceleration of a vertical atomic beam in the gravitational field resulting in a decrease in the phase transition critical temperature below the gas temperature is considered. Coherent phenomena accompanying the evolution of the Bose condensate during further beam deceleration are pointed out.

  18. Educational attainment in poor comprehenders

    PubMed Central

    Ricketts, Jessie; Sperring, Rachael; Nation, Kate

    2014-01-01

    To date, only one study has investigated educational attainment in poor (reading) comprehenders, providing evidence of poor performance on national UK school tests at age 11 years relative to peers (Cain and Oakhill, 2006). In the present study, we adopted a longitudinal approach, tracking attainment on such tests from 11 years to the end of compulsory schooling in the UK (age 16 years). We aimed to investigate the proposal that educational weaknesses (defined as poor performance on national assessments) might become more pronounced over time, as the curriculum places increasing demands on reading comprehension. Participants comprised 15 poor comprehenders and 15 controls; groups were matched for chronological age, nonverbal reasoning ability and decoding skill. Children were identified at age 9 years using standardized measures of nonverbal reasoning, decoding and reading comprehension. These measures, along with a measure of oral vocabulary knowledge, were repeated at age 11 years. Data on educational attainment were collected from all participants (n = 30) at age 11 and from a subgroup (n = 21) at 16 years. Compared to controls, educational attainment in poor comprehenders was lower at ages 11 and 16 years, an effect that was significant at 11 years. When poor comprehenders were compared to national performance levels, they showed significantly lower performance at both time points. Low educational attainment was not evident for all poor comprehenders. Nonetheless, our findings point to a link between reading comprehension difficulties in mid to late childhood and poor educational outcomes at ages 11 and 16 years. At these ages, pupils in the UK are making key transitions: they move from primary to secondary schools at 11, and out of compulsory schooling at 16. PMID:24904464

  19. Speech Perception Deficits in Poor Readers: A Reply to Denenberg's Critique.

    ERIC Educational Resources Information Center

    Studdert-Kennedy, Michael; Mody, Maria; Brady, Susan

    2000-01-01

    This rejoinder to a critique of the authors' research on speech perception deficits in poor readers answers the specific criticisms and reaffirms their conclusion that the difficulty some poor readers have with rapid /ba/-/da/ discrimination does not stem from difficulty in discriminating the rapid spectral transitions at stop-vowel syllable…

  20. Ultrabright multikilovolt x-ray source: saturated amplification on noble gas transition arrays from hollow atom states

    DOEpatents

    Rhodes, Charles K.; Boyer, Keith

    2004-02-17

    An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.

  1. Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model

    NASA Astrophysics Data System (ADS)

    Doup, Benjamin Casey

    Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32

  2. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S.

    2017-02-01

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ˜10 Myr. Using high-resolution 4.7 μm spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to the observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (I.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10-20 to 10-18 W m-2). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency’s scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. DISCOVERY OF A GAS-RICH COMPANION TO THE EXTREMELY METAL-POOR GALAXY DDO 68

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, John M.; Alfvin, Erik D.; Johnson, Megan

    2014-05-20

    We present H I spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only ∼3% Z {sub ☉}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during amore » gravitational interaction. Using archival H I spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (M{sub H} {sub I} = 2.8 × 10{sup 7} M {sub ☉}), recently star-forming (SFR{sub FUV} = 1.4 × 10{sup –3} M {sub ☉} yr{sup –1}, SFR{sub Hα} < 7 × 10{sup –5} M {sub ☉} yr{sup –1}) companion has the same systemic velocity as DDO 68 (V {sub sys} = 506 km s{sup –1}; D = 12.74 ± 0.27 Mpc) and is located at a projected distance of ∼42 kpc. New H I maps obtained with the 100 m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness H I gas forms a bridge between these objects.« less

  4. CXCR6 predicts poor prognosis in gastric cancer and promotes tumor metastasis through epithelial-mesenchymal transition.

    PubMed

    Jin, Jie-Jie; Dai, Fa-Xiang; Long, Zi-Wen; Cai, Hong; Liu, Xiao-Wen; Zhou, Ye; Hong, Qi; Dong, Qiong-Zhu; Wang, Ya-Nong; Huang, Hua

    2017-06-01

    Chemokines and their receptors have been confirmed to be involved in several types of cancer. However, little is known concerning the role of CXCL16 and its receptor CXCR6 in gastric cancer (GC) progression and metastasis. In the present study, expression of CXCL16 and CXCR6 in GC tumor and peritumoral tissues was detected by immunohistochemistry (IHC) in a cohort of 352 GC patients who underwent gastrectomy, and the correlation between CXCL16/CXCR6 expression and clinicopathological characteristics was further analyzed. To evaluate the function of CXCR6, we overexpressed and knocked down CXCR6 in GC cell lines. Results showed that expression of CXCR6, but not CXCL16, was significantly upregulated in GC tumor tissues, and was significantly correlated with lymph node and distant metastases, and advanced clinical stage in the GC patients. Survival analysis showed that large tumor size (>5 cm), elevated preoperative serum carcinoembryonic antigen (CEA) level, advanced TNM stage and high CXCR6 expression indicated worse overall survival (OS) and disease-free survival (DFS) in GC, and CXCR6 was an independent predictor for both OS and DFS in GC. In vitro experiments showed that CXCR6 overexpression induced cell migration and invasion ability, and promoted epithelial-mesenchymal transition of GC cells by upregulation of mesenchymal markers and inhibition of epithelial markers. In contrast, knockdown of CXCR6 in GC cells resulted in inhibition of cell proliferation, migration and invasion ability, and reversal of epithelial-mesenchymal transition (EMT) phenomenon. Our results demonstrated that CXCR6 is an independent prognostic factor for poor survival in GC patients, and may promote GC metastasis through EMT.

  5. The miR-506-Induced Epithelial-Mesenchymal Transition is Involved in Poor Prognosis for Patients with Gastric Cancer.

    PubMed

    Sakimura, Shotaro; Sugimachi, Keishi; Kurashige, Junji; Ueda, Masami; Hirata, Hidenari; Nambara, Sho; Komatsu, Hisateru; Saito, Tomoko; Takano, Yuki; Uchi, Ryutaro; Sakimura, Etsuko; Shinden, Yoshiaki; Iguchi, Tomohiro; Eguchi, Hidetoshi; Oba, Yugo; Hoka, Sumio; Mimori, Koshi

    2015-12-01

    MicroRNAs have roles in the regulation of the epithelial-mesenchymal transition (EMT). Findings have shown that miR-506 inhibits the expression of SNAI2 and that low expression of miR-506 is associated with poor prognoses in ovarian and breast cancers. This study investigated the role of miR-506 in survival and the EMT in patients with gastric cancer. In this study, miR-506 and SNAI2 mRNA levels were measured in 141 cases of gastric cancer by quantitative reverse transcription polymerase chain reaction, and the protein expressions of SNAI2 and E-cadherin in 39 cases were validated by immunohistochemical analysis. Next, the associations between their expression levels and clinicopathologic factors were evaluated. In addition, cell proliferation, migration, and luciferase activity of the 3' untranslated region (UTR) of SNAI2 were analyzed using pre-miR-506 precursor in two human gastric cancer cell lines. Low expression of miR-506 was significantly correlated with poor overall survival in both the univariate analysis (P = 0.016) and the multivariate analysis (P < 0.05). Low miR-506 expression was significantly correlated with high SNAI2 expression (P = 0.009) and poorly differentiated type (P = 0.015). In vitro, miR-506 suppressed SNAI2 expression by binding to its 3'UTR, resulting in increased expression of E-cadherin (P < 0.05), verified by immunohistochemical analysis. Pre-miR-506 transfected cells showed significantly suppressed cell proliferation and migration (P < 0.05) compared with the control cells. The EMT was directly suppressed by miR-506, and its low expression was an independent prognostic factor in gastric cancer patients. The data indicated that miR-506 may act as a tumor suppressor and could be a novel therapeutic agent.

  6. Gas and Bloating

    PubMed Central

    2006-01-01

    Gaseous symptoms including eructation, flatulence, and bloating occur as a consequence of excess gas production, altered gas transit, or abnormal perception of normal amounts of gas within the gastrointestinal tract. There are many causes of gas and bloating including aerophagia, luminal obstructive processes, carbohydrate intolerance syndromes, small intestinal bacterial overgrowth, diseases of gut motor activity, and functional bowel disorders including irritable bowel syndrome (IBS). Because of the prominence of gaseous complaints in IBS, recent investigations have focused on new insights into pathogenesis and novel therapies of bloating. The evaluation of the patient with unexplained gas and bloating relies on careful exclusion of organic disease with further characterization of the underlying condition with directed functional testing. Treatment of gaseous symptomatology should be targeted to pathophysiologic defects whenever possible. Available therapies include lifestyle alterations, dietary modifications, enzyme preparations, adsorbents and agents which reduce surface tension, treatments that alter gut flora, and drugs that modulate gut transit. PMID:28316536

  7. Exercise on-transition uncoupling of ventilatory, gas exchange and cardiac hemodynamic kinetics accompany pulmonary oxygen stores depletion to impact exercise intolerance in human heart failure.

    PubMed

    Van Iterson, E H; Smith, J R; Olson, T P

    2018-03-25

    In contrast to knowledge that heart failure (HF) patients demonstrate peak exercise uncoupling across ventilation, gas exchange and cardiac haemodynamics, whether this dyssynchrony follows that at the exercise on-transition is unclear. This study tested whether exercise on-transition temporal lag for ventilation relative to gas exchange and oxygen pulse (O 2 pulse) couples with effects from abnormal pulmonary gaseous oxygen store (O 2store ) contributions to V˙O 2 to interdependently precipitate persistently elevated ventilatory demand and low oxidative metabolic capacity in HF. Beat-to-beat HR and breath-to-breath ventilation and gas exchange were continuously acquired in HF (N = 9, ejection fraction = 30 ± 9%) and matched controls (N = 10) during square-wave ergometry at 60% V˙O 2peak (46 ± 14 vs 125 ± 54-W, P < .001). Temporal responses across V˙ E , V˙O 2 and O 2 pulse were assessed for the exercise on-transition using single exponential model Phase II on-kinetic time constants (τ = time to reach 63% steady-state rise). Breath-to-breath gas fractions and respiratory flows were used to determine O 2stores . HF vs controls: τ for V˙ E (137 ± 93 vs 74 ± 40-seconds, P = .03), V˙O 2 (60 ± 40 vs 23 ± 5-seconds, P = .03) and O 2 pulse (28 ± 18 vs 23 ± 15-seconds, P = .59). Within HF, τ for V˙ E differed from O 2 pulse (P < .02), but not V˙O 2 . Exercise V˙ E rise (workload indexed) differed in HF vs controls (545 ± 139 vs 309 ± 88-mL min -1 W -1 , P < .001). Exercise on-transition O 2store depletion in HF exceeded controls, generally persisting to end-exercise. These data suggest HF demonstrated exercise on-transition O 2store depletion (high O 2store contribution to V˙O 2 ) coupled with dyssynchronous V˙ E , V˙O 2 and O 2 pulse kinetics-not attributable to prolonged cardiac haemodynamics. Persistent high ventilatory demand and low oxidative metabolic capacity in HF may be precipitated by physiological uncoupling occurring within the exercise

  8. Alternative Fuels Data Center: Greater Portland Transit District Looks

    Science.gov Websites

    Forward with Natural GasA> Greater Portland Transit District Looks Forward with Natural Gas to , Maine, powers its transit vehicles with compressed natural gas. For information about this project Related Videos Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a

  9. Developing from child to adult: Risk factors for poor psychosocial outcome in adolescents and young adults with epilepsy.

    PubMed

    Geerlings, R P J; Aldenkamp, A P; Gottmer-Welschen, L M C; de With, P H N; Zinger, S; van Staa, A L; de Louw, A J A

    2015-10-01

    Childhood-onset epilepsy during the years of transition to adulthood may affect normal social, physical, and mental development, frequently leading to psychosocial and health-related problems in the long term. This study aimed to describe the main characteristics of patients in transition and to identify risk factors for poor psychosocial outcome in adolescents and young adults with epilepsy. Patients with epilepsy, 15-25years of age, who visited the Kempenhaeghe Epilepsy Transition Clinic from March 2012 to December 2014 were included (n=138). Predefined risk scores for medical, educational/occupational status, and independence/separation/identity were obtained, along with individual risk profile scores for poor psychosocial outcome. Multivariate linear regression analysis and discriminant analysis were used to identify variables associated with an increased risk of poor long-term psychosocial outcome. Demographic, epilepsy-related, and psychosocial variables associated with a high risk of poor long-term outcome were lower intelligence, higher seizure frequency, ongoing seizures, and an unsupportive and unstable family environment. Using the aforementioned factors in combination, we were able to correctly classify the majority (55.1%) of the patients regarding their risk of poor psychosocial outcome. Our analysis may allow early identification of patients at high risk of prevention, preferably at pretransition age. The combination of a chronic refractory epilepsy and an unstable family environment constitutes a higher risk of transition problems and poor outcome in adulthood. As a consequence, early interventions should be put into place to protect youth at risk of poor transition outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The slow collisional E×B ion drift characterized as the major instability mechanism of a poorly magnetized plasma column with an inward-directed radial electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierre, Thiéry

    2016-04-15

    The low-frequency instability of a cylindrical poorly magnetized plasma with an inward-directed radial electric field is studied changing the gas pressure and the ion cyclotron frequency. The unstable frequency always decreases when the gas pressure is increased indicating collisional effects. At a fixed pressure, the unstable frequency increases with the magnetic field when the B-field is low and decreases at larger magnetic field strength. We find that the transition between these two regimes is obtained when the ion cyclotron frequency equals the ion-neutrals collision frequency. This is in agreement with the theory of the slow-ion drift instability induced by themore » collisional slowing of the electric ion drift [A. Simon, Phys. Fluids 6, 382 (1963)].« less

  11. Investigating the Structural Compaction of Biomolecules Upon Transition to the Gas-Phase Using ESI-TWIMS-MS.

    PubMed

    Devine, Paul W A; Fisher, Henry C; Calabrese, Antonio N; Whelan, Fiona; Higazi, Daniel R; Potts, Jennifer R; Lowe, David C; Radford, Sheena E; Ashcroft, Alison E

    2017-09-01

    Collision cross-section (CCS) measurements obtained from ion mobility spectrometry-mass spectrometry (IMS-MS) analyses often provide useful information concerning a protein's size and shape and can be complemented by modeling procedures. However, there have been some concerns about the extent to which certain proteins maintain a native-like conformation during the gas-phase analysis, especially proteins with dynamic or extended regions. Here we have measured the CCSs of a range of biomolecules including non-globular proteins and RNAs of different sequence, size, and stability. Using traveling wave IMS-MS, we show that for the proteins studied, the measured CCS deviates significantly from predicted CCS values based upon currently available structures. The results presented indicate that these proteins collapse to different extents varying on their elongated structures upon transition into the gas-phase. Comparing two RNAs of similar mass but different solution structures, we show that these biomolecules may also be susceptible to gas-phase compaction. Together, the results suggest that caution is needed when predicting structural models based on CCS data for RNAs as well as proteins with non-globular folds. Graphical Abstract ᅟ.

  12. KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Ly{alpha} SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penprase, Bryan E.; Toro-Martinez, Irene; Beeler, Daniel J.

    2010-09-20

    We present the first results from a survey of SDSS quasars selected for strong H I damped Ly{alpha} (DLA) absorption with corresponding low equivalent width absorption from strong low-ion transitions (e.g., C II {lambda}1334 and Si II {lambda}1260). These metal-poor DLA candidates were selected from the SDSS fifth release quasar spectroscopic database, and comprise a large new sample for probing low-metallicity galaxies. Medium-resolution echellette spectra from the Keck Echellette Spectrograph and Imager spectrograph for an initial sample of 35 systems were obtained to explore the metal-poor tail of the DLA distribution and to investigate the nucleosynthetic patterns at these metallicities.more » We have estimated saturation corrections for the moderately underresolved spectra, and systems with very narrow Doppler parameters (b {<=} 5 km s{sup -1}) will likely have underestimated abundances. For those systems with Doppler parameters b > 5 km s{sup -1}, we have measured low-metallicity DLA gas with [X/H] <-2.4 for at least one of C, O, Si, or Fe. Assuming non-saturated components, we estimate that several DLA systems have [X/H] <-2.8, including five DLA systems with both low equivalent widths and low metallicity in transitions of both C II and O I. All of the measured DLA metallicities, however, exceed or are consistent with a metallicity of at least 1/1000 of solar, regardless of the effects of saturation in our spectra. Our results indicate that the metal-poor tail of galaxies at z {approx} 3 drops exponentially at [X/H] {approx}<-3. If the distribution of metallicity is Gaussian, the probability of identifying interstellar medium gas with lower abundance is extremely small, and our results suggest that DLA systems with [X/H] < -4.0 are extremely rare, and could comprise only 8 x 10{sup -7} of DLA systems. The relative abundances of species within these low-metallicity DLA systems are compared with stellar nucleosynthesis models, and are consistent with stars

  13. KELT-21b: A Hot Jupiter Transiting the Rapidly Rotating Metal-poor Late-A Primary of a Likely Hierarchical Triple System

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.; Rodriguez, Joseph E.; Zhou, George; Gonzales, Erica J.; Cargile, Phillip A.; Crepp, Justin R.; Penev, Kaloyan; Stassun, Keivan G.; Gaudi, B. Scott; Colón, Knicole D.; Stevens, Daniel J.; Strassmeier, Klaus G.; Ilyin, Ilya; Collins, Karen A.; Kielkopf, John F.; Oberst, Thomas E.; Maritch, Luke; Reed, Phillip A.; Gregorio, Joao; Bozza, Valerio; Calchi Novati, Sebastiano; D’Ago, Giuseppe; Scarpetta, Gaetano; Zambelli, Roberto; Latham, David W.; Bieryla, Allyson; Cochran, William D.; Endl, Michael; Tayar, Jamie; Serenelli, Aldo; Silva Aguirre, Victor; Clarke, Seth P.; Martinez, Maria; Spencer, Michelle; Trump, Jason; Joner, Michael D.; Bugg, Adam G.; Hintz, Eric G.; Stephens, Denise C.; Arredondo, Anicia; Benzaid, Anissa; Yazdi, Sormeh; McLeod, Kim K.; Jensen, Eric L. N.; Hancock, Daniel A.; Sorber, Rebecca L.; Kasper, David H.; Jang-Condell, Hannah; Beatty, Thomas G.; Carroll, Thorsten; Eastman, Jason; James, David; Kuhn, Rudolf B.; Labadie-Bartz, Jonathan; Lund, Michael B.; Mallonn, Matthias; Pepper, Joshua; Siverd, Robert J.; Yao, Xinyu; Cohen, David H.; Curtis, Ivan A.; DePoy, D. L.; Fulton, Benjamin J.; Penny, Matthew T.; Relles, Howard; Stockdale, Christopher; Tan, Thiam-Guan; Villanueva, Steven, Jr.

    2018-02-01

    We present the discovery of KELT-21b, a hot Jupiter transiting the V = 10.5 A8V star HD 332124. The planet has an orbital period of P = 3.6127647 ± 0.0000033 days and a radius of {1.586}-0.040+0.039 {R}{{J}}. We set an upper limit on the planetary mass of {M}P< 3.91 {M}{{J}} at 3σ confidence. We confirmed the planetary nature of the transiting companion using this mass limit and Doppler tomographic observations to verify that the companion transits HD 332124. These data also demonstrate that the planetary orbit is well-aligned with the stellar spin, with a sky-projected spin–orbit misalignment of λ =-{5.6}-1.9+1.7\\circ . The star has {T}{eff}={7598}-84+81 K, {M}* ={1.458}-0.028+0.029 {M}ȯ , {R}* =1.638 +/- 0.034 {R}ȯ , and v\\sin {I}* =146 km s‑1, the highest projected rotation velocity of any star known to host a transiting hot Jupiter. The star also appears to be somewhat metal poor and α-enhanced, with [{Fe}/{{H}}]=-{0.405}-0.033+0.032 and [α/Fe] = 0.145 ± 0.053 these abundances are unusual, but not extraordinary, for a young star with thin-disk kinematics like KELT-21. High-resolution imaging observations revealed the presence of a pair of stellar companions to KELT-21, located at a separation of 1.″2 and with a combined contrast of {{Δ }}{K}S=6.39+/- 0.06 with respect to the primary. Although these companions are most likely physically associated with KELT-21, we cannot confirm this with our current data. If associated, the candidate companions KELT-21 B and C would each have masses of ∼0.12 {M}ȯ , a projected mutual separation of ∼20 au, and a projected separation of ∼500 au from KELT-21. KELT-21b may be one of only a handful of known transiting planets in hierarchical triple stellar systems.

  14. Converging flow joint insert system at an intersection between adjacent transitions extending between a combustor and a turbine assembly in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebe, David J.; Carlson, Andrew; Stoker, Kyle C.

    A transition duct system for routing a gas flow in a combustion turbine engine is provided. The transition duct system includes one or more converging flow joint inserts forming a trailing edge at an intersection between adjacent transition ducts. The converging flow joint insert may be contained within a converging flow joint insert receiver and may be disconnected from the transition duct bodies by which the converging flow joint insert is positioned. Being disconnected eliminates stress formation within the converging flow joint insert, thereby enhancing the life of the insert. The converging flow joint insert may be removable such thatmore » the insert can be replaced once worn beyond design limits.« less

  15. Cosmic-rays, gas, and dust in nearby anticentre clouds. II. Interstellar phase transitions and the dark neutral medium

    NASA Astrophysics Data System (ADS)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2018-03-01

    Aim. H I 21-cm and 12CO 2.6-mm line emissions trace the atomic and molecular gas phases, respectively, but they miss most of the opaque H I and diffuse H2 present in the dark neutral medium (DNM) at the transition between the H I-bright and CO-bright regions. Jointly probing H I, CO, and DNM gas, we aim to constrain the threshold of the H I-H2 transition in visual extinction, AV, and in total hydrogen column densities, NHtot. We also aim to measure gas mass fractions in the different phases and to test their relation to cloud properties. Methods: We have used dust optical depth measurements at 353 GHz, γ-ray maps at GeV energies, and H I and CO line data to trace the gas column densities and map the DNM in nearby clouds toward the Galactic anticentre and Chamaeleon regions. We have selected a subset of 15 individual clouds, from diffuse to star-forming structures, in order to study the different phases across each cloud and to probe changes from cloud to cloud. Results: The atomic fraction of the total hydrogen column density is observed to decrease in the (0.6-1) × 1021 cm-2 range in NHtot (AV ≈ 0.4 mag) because of the formation of H2 molecules. The onset of detectable CO intensities varies by only a factor of 4 from cloud to cloud, between 0.6 × 1021 cm-2 and 2.5 × 1021 cm-2 in total gas column density. We observe larger H2 column densities than linearly inferred from the CO intensities at AV > 3 mag because of the large CO optical thickness; the additional H2 mass in this regime represents on average 20% of the CO-inferred molecular mass. In the DNM envelopes, we find that the fraction of diffuse CO-dark H2 in the molecular column densities decreases with increasing AV in a cloud. For a half molecular DNM, the fraction decreases from more than 80% at 0.4 mag to less than 20% beyond 2 mag. In mass, the DNM fraction varies with the cloud properties. Clouds with low peak CO intensities exhibit large CO-dark H2 fractions in molecular mass, in particular the

  16. Herschel HIFI GOT C+ Survey: CII, HI, and CO Emissions in a Sample of Transition Clouds and Star-Forming regions in the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Pineda, Jorge; Velusamy, Thangasamy; Langer, William D.; Goldsmith, Paul; Li, Di; Yorke, Harold

    The GOT C+ a HIFI Herschel Key Project, studies the diffuse ISM throughout the Galactic Plane, using C+ as cloud tracer. The C+ line at 1.9 THz traces a so-far poorly studied stage in ISM cloud evolution -the transitional clouds going from atomic HI to molecular H2. This transition cloud phase, which is difficult to observe in HI and CO alone, may be best characterized via CII emission or absorption. The C+ line is also an excellent tracer of the warm diffuse gas and the warm, dense gas in the Photon Dominated Regions (PDRs). We can, therefore, use the CII emission as a probe to understand the effects of star formation on their interstellar environment. We present our first results on the transition between dense and hot gas (traced by CII) and dense and cold gas (traced by 12CO and 13CO) along a few representative lines of sight in the inner Galaxy from longitude 325 degrees to 25 degrees, taken during the HIFI Priority Science Phase. Comparisons of the high spectral resolution ( 1 km/s) HIFI data on C+ with HI, 12CO, and 13CO spectra allow us to separate out the different ISM components along each line of sight. Our results provide detailed information about the transition of diffuse atomic to molecular gas clouds needed to understand star formation and the lifecycle of the interstellar gas. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP was supported under the NASA Postdoctoral Program at JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA, and is currently supported as a Caltech-JPL Postdoctoral associate.

  17. A Gas-poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Disk Size and Formation Timescale

    NASA Astrophysics Data System (ADS)

    Estrada, P. R.; Mosqueira, I.

    2003-05-01

    Mosqueira and Estrada (2003a) argue that following giant planet accretion a largely quiescent circumplanetary disk may form with most of the mass inside a radius located outside, but perhaps close to, the centrifugal radius rc = RH/48, where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, and extending as far as the irregular satellites at RH/5 due to the high specific angular momentum of parcels of gas accreted from distances several times RH during the final stages of planetary growth (Lubow et al. 1999). Provided that allowances are made for the capture of Triton from heliocentric orbit, this picture fits well with the primordial satellite systems of all four giant planets. Because strong gas turbulence would smooth out the gas surface density of the disk, this description can only apply if the turbulence subsides as planetary accretion ceases. Although the viability of a hydrodynamic shear instability in Keplerian disks that can sustain significant post-accretion turbulence and drive evolution of the gas disk is in serious doubt (see Mosqueira et al. this conference), the possibility has not yet been totally ruled out. This leads us to consider gas-poor scenarios that might produce a close-in regular satellite system. To this end, we re-examine the ideas of Safronov et al. (1986) to see whether a gas-free (or nearly gas-free) model can be made consistent with the extent of the regular satellites of the giant planets. In this model, planetesimals containing most of the mass of solids (Mizuno et al. 1978; Weidenschilling 1997) that are de-coupled from the gas and whose dynamics must be followed independently are collisionally captured and form a swarm of circumplanetary objects lasting for perhaps ˜ 106 years. While such a swarm might occupy a significant fraction of the Hill radius of the planet, the small net angular momentum of the swarm might lead to the formation of close-in prograde satellites as

  18. Theoretical study of metal noble-gas positive ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  19. Noble-transition metal nanoparticle breathing in a reactive gas atmosphere.

    PubMed

    Petkov, Valeri; Shan, Shiyao; Chupas, Peter; Yin, Jun; Yang, Lefu; Luo, Jin; Zhong, Chuan-Jian

    2013-08-21

    In situ high-energy X-ray diffraction coupled to atomic pair distribution function analysis is used to obtain fundamental insight into the effect of the reactive gas environment on the atomic-scale structure of metallic particles less than 10 nm in size. To substantiate our recent discovery we investigate a wide range of noble-transition metal nanoparticles and confirm that they expand and contract radially when treated in oxidizing (O2) and reducing (H2) atmospheres, respectively. The results are confirmed by supplementary XAFS experiments. Using computer simulations guided by the experimental diffraction data we quantify the effect in terms of both relative lattice strain and absolute atomic displacements. In particular, we show that the effect leads to a small percent of extra surface strain corresponding to several tenths of Ångström displacements of the atoms at the outmost layer of the particles. The effect then gradually decays to zero within 4 atomic layers inside the particles. We also show that, reminiscent of a breathing type structural transformation, the effect is reproducible and reversible. We argue that because of its significance and widespread occurrence the effect should be taken into account in nanoparticle research.

  20. HCO+ Detection of Dust-depleted Gas in the Inner Hole of the LkCa 15 Pre-transitional Disk

    NASA Astrophysics Data System (ADS)

    Drabek-Maunder, E.; Mohanty, S.; Greaves, J.; Kamp, I.; Meijerink, R.; Spaans, M.; Thi, W.-F.; Woitke, P.

    2016-12-01

    LkCa 15 is an extensively studied star in the Taurus region, known for its pre-transitional disk with a large inner cavity in the dust continuum and normal gas accretion rate. The most popular hypothesis to explain the LkCa 15 data invokes one or more planets to carve out the inner cavity, while gas continues to flow across the gap from the outer disk onto the central star. We present spatially unresolved HCO+ J=4\\to 3 observations of the LkCa 15 disk from the James Clerk Maxwell telescope (JCMT) and model the data with the ProDiMo code. We find that: (1) HCO+ line-wings are clearly detected, certifying the presence of gas in the cavity within ≲50 au of the star. (2) Reproducing the observed line-wing flux requires both a significant suppression of cavity dust (by a factor ≳104 compared to the interstellar medium (ISM)) and a substantial increase in the gas scale-height within the cavity (H 0/R 0 ˜ 0.6). An ISM dust-to-gas ratio (d:g = 10-2) yields too little line-wing flux, regardless of the scale-height or cavity gas geometry, while a smaller scale-height also under-predicts the flux even with a reduced d:g. (3) The cavity gas mass is consistent with the surface density profile of the outer disk extended inwards to the sublimation radius (corresponding to mass M d ˜ 0.03 M ⊙), and masses lower by a factor ≳10 appear to be ruled out.

  1. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  2. Gas Accretion and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge

    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.

  3. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    PubMed

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  4. First and second sound in a two-dimensional harmonically trapped Bose gas across the Berezinskii–Kosterlitz–Thouless transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xia-Ji, E-mail: xiajiliu@swin.edu.au; Hu, Hui, E-mail: hhu@swin.edu.au

    2014-12-15

    We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau’s two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii–Kosterlitz–Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to themore » universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. These predictions might be readily examined in current experimental setups for 2D dilute Bose gases with a sufficiently large number of atoms, where the finite-size effect due to harmonic traps is relatively weak.« less

  5. Constraining the Structure of the Transition Disk HD 135344B (SAO 206462) by Simultaneous Modeling of Multiwavelength Gas and Dust Observations

    NASA Technical Reports Server (NTRS)

    Carmona, A.; Pinte, C.; Thi, W. F.; Benisty, M.; Menard, F.; Grady, C.; Kamp, I.; Woitke, P.; Olofsson, J.; Roberge, A.; hide

    2014-01-01

    Context: Constraining the gas and dust disk structure of transition disks, particularly in the inner dust cavity, is a crucial step toward understanding the link between them and planet formation. HD 135344B is an accreting (pre-)transition disk that displays the CO 4.7 micrometer emission extending tens of AU inside its 30 AU dust cavity. Aims: We constrain HD 135344B's disk structure from multi-instrument gas and dust observations. Methods: We used the dust radiative transfer code MCFOST and the thermochemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 Micrometers, Herschel/PACS [O(sub I)] 63 Micrometers, Spitzer/IRS, and JCMT CO-12 J = 3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. Results: We found a disk model able to describe the current gas and dust observations simultaneously. This disk has the following structure. (1) To simultaneously reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 is less than R less than 0.2 AU). (2) The dust cavity (R is less than 30 AU) is filled with gas, the surface density of the gas inside the cavity must increase with radius to fit the CO ro-vibrational line profile, a small gap of a few AU in the gas distribution is compatible with current data, and a large gap of tens of AU in the gas does not appear likely. (4) The gas-to-dust ratio inside the cavity is >100 to account for the 870 Micrometers continuum upper limit and the CO P(10) line flux. (5) The gas-to-dust ratio in the outer disk (30 is less than R less than 200 AU) is less than 10 to simultaneously describe the [O(sub I)] 63 Micrometers line flux and the CO P(10) line profile. (6) In the outer disk, most of the gas and dust mass should be located in the midplane, and

  6. A Culture in Transition: Poor Reading and Writing Ability among Children in South African Townships.

    ERIC Educational Resources Information Center

    Pretorius, E.; Naude, H.

    2002-01-01

    This study examined factors contributing to poor literacy and numeracy development among black South African children ages 5.5 to 7 years. Findings pointed to a conglomerate of factors, namely inadequate visual-motor integration, poor visual analysis and synthesis, poor fine motor development, and inadequate exposure to mediated reading and…

  7. 76 FR 77302 - Federal Transit Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... reduce the energy consumption or greenhouse gas emissions of public transportation systems. The Clean... DEPARTMENT OF TRANSPORTATION Federal Transit Administration FY 2011 Discretionary Sustainability...: The U.S. Department of Transportation's (DOT) Federal Transit Administration (FTA) announces the...

  8. GOT C+ Survey of Transition Clouds in the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Velusamy, Thangasamy; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-05-01

    To understand star formation and the lifecycle of the interstellar gas we need detailed information about the transition of diffuse atomic to molecular clouds. The C+ line at 1.9 THz traces a so-far poorly studied stage in cloud evolution - the transitional clouds going from atomic HI to molecular H2 The transition cloud phase, which is difficult to observe in HI and CO alone, may be best characterized via CII emission or absorption. Here we present the first results on transition clouds along a few representative lines of sight in the inner Galaxy from longitude 325 degrees to 10 degrees, observed under the GOT C+ program, a HIFI Herschel Key Project to study the diffuse ISM. We can separate out the different ISM components along each line of sight by comparisons of the high spectral resolution ( 1 km/s) and high sensitivity (rms 0.1 K to 0.2 K) HIFI data on C+ with HI, 12CO, and 13CO spectra. These observations are being carried out with the Herschel Space Observatory. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is supported under the NASA Postdoctoral Program at JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA.

  9. E-H heating mode transition in inductive discharges with different antenna sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: flower4507@hanyang.ac.kr; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr

    The spatial distribution of plasma density and the transition power for capacitive (E) to inductive (H) mode transition are studied in planar type inductively coupled plasmas with different antenna sizes. The spatial plasma distribution has a relatively flat profile at a low gas pressure, while the plasma profile is affected by the antenna size at higher gas pressure. The transition power for the E to H mode transition is shown to be critically affected by the antenna size. When the discharge is sustained by a small one-turn antenna coil, the transition power has a minimum value at Ar gas ofmore » 20 mTorr. However, the minimum transition power is shown at a relatively high gas pressure (40–60 mTorr) in the case of a large one-turn antenna coil. This change in the transition power can be understood by the thermal transport of the energetic electrons with non-local kinetics to the chamber wall. This non-local kinetic effect indicates that the transition power can also increase even for a small antenna if the antenna is placed near the wall.« less

  10. Gas diffusion in and out of super-hydrophobic surface in transitional and turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Ling, Hangjian; Fu, Matthew; Hultmark, Marcus; Katz, Joseph

    2017-11-01

    The rate of gas diffusion in and out of a super-hydrophobic surface (SHS) located in boundary layers is investigated at varying Reynolds numbers and ambient pressures. The hierarchical SHS consists of nano-textured, 100 μm wide spanwise grooves. The boundary layers over the SHS under the Cassie-Baxter and Wenzel states as well as a smooth wall at same conditions are characterized by particle image velocimetry. The Reynolds number based on momentum thickness of the smooth wall, ReΘ0, ranges from 518 to 2088, covering transitional and turbulent boundary layer regimes. The mass diffusion rate is estimated by using microscopy to measure the time-evolution of plastron shape and volume. The data is used for calculating the Sherwood number based on smooth wall momentum thickness, ShΘ0. As expected, the diffusion rate increases linearly with the under- or super-saturation level, i.e., ShΘ0 is independent of ambient pressure. For the turbulent boundary layers, the data collapses onto ShΘ0 = 0.47ReΘ00.77 . For the transitional boundary layer, ShΘ0 is lower than the turbulent power law. When ShΘ0 is plotted against the friction Reynolds number (Reτ0) , both the transitional and turbulent boundary layer data collapse onto a single power law, ShΘ0 = 0.34Reτ00.913 . Results scaled based on Wenzel state momentum thickness show very similar trends. Sponsored by ONR.

  11. Is there a basin-centered gas accumulation in Cotton Valley Group Sandstones, Gulf Coast Basin, U.S.A.?

    USGS Publications Warehouse

    Bartberger, Charles E.; Dyman, Thaddeus S.; Condon, Steven M.

    2002-01-01

    high permeabilities and high gas-production rates without fracture stimulation indicate that fi elds in this trend are conventional. Within the tight massive-sandstone trend, permeability is suffi ciently low that gas-water transition zones are vertically extensive and gas-water contacts either have not been encountered or are poorly defi ned. With increasing depth through these transition zones, gas saturation decreases and water saturation increases until eventually gas saturations become suffi ciently low that, in terms of ultimate cumulative production, wells are noncommercial. Such progressive increase in water saturation with depth suggests that poorly defi ned gas-water contacts probably are present below the depth at which wells become noncommercial. The interpreted presence of gas-water contacts within the tight, Cotton Valley massive-sandstone trend suggests that gas accumulations in this trend, too, are conventional, and that a basin-centered gas accumulation does not exist within Cotton Valley sandstones in the northern Gulf Basin.

  12. Transition Planning for Foster Youth

    ERIC Educational Resources Information Center

    Geenen, Sarah J.; Powers, Laurie E.

    2006-01-01

    The study evaluated the IEPs/Individualized Transition Plans of 45 students who were in special education and foster care, and compared them to the plans of 45 students who were in special education only. Results indicate that the transition plans of foster youth with disabilities were poor in quality, both in absolute terms and in comparison to…

  13. Ovarian transitional cell carcinoma represents a poorly differentiated form of high-grade serous or endometrioid adenocarcinoma.

    PubMed

    Takeuchi, Tadahisa; Ohishi, Yoshihiro; Imamura, Hiroko; Aman, Murasaki; Shida, Kaai; Kobayashi, Hiroaki; Kato, Kiyoko; Oda, Yoshinao

    2013-07-01

    Ovarian transitional cell tumors include Brenner tumors (BTs) and transitional cell carcinoma (TCC; non-BTs) according to the most recent World Health Organization classification. However, it remains a matter of debate whether TCC represents a distinct entity or a morphologic variant of high-grade serous adenocarcinoma (HG-SC). The purpose of this study was to resolve the above question by clarifying the morphologic, immunohistochemical, and molecular features of TCC. We reviewed 488 cases of epithelial ovarian carcinomas and reclassified them on the basis of the most recent World Health Organization classification with the modifications proposed by Köbel and colleagues, and 35 cases of TCC were identified; 25 and 6 TCCs were admixed with HG-SC and endometrioid adenocarcinoma (EC), respectively, and the remaining 4 cases were pure TCC. TCC components were not observed in any clear cell carcinomas or mucinous adenocarcinomas. Only 2 cases of malignant BT were identified. In addition to TCCs, malignant BTs, and related adenocarcinomas, benign and borderline BTs were included in the following immunohistochemical and molecular analyses. Immunohistochemically, pure TCCs, TCCs admixed with HG-SC, and pure HG-SCs were characterized by frequent aberrant p53 expression (diffuse or null pattern) and WT1+/ER+/PR+/IMP2+ immunophenotype, whereas BTs, including benign, borderline, and malignant BTs, were characterized by lack of aberrant p53 expression and WT1-/ER-/PR-/IMP2- immunophenotype. In contrast to the BTs, pure ECs and TCCs admixed with EC showed an ER+/PR+ immunophenotype. Nearly all the tumors with a TP53 gene mutation by molecular analysis showed aberrant p53 staining patterns. In conclusion, TCC is not a distinct entity but a poorly differentiated form of serous or EC, as (1) most TCCs coexist with HG-SC (mostly) or EC (occasionally), and (2) the immunophenotype and molecular features are similar to those of HG-SC or EC but different from those of BTs.

  14. Carbon monoxide in an extremely metal-poor galaxy.

    PubMed

    Shi, Yong; Wang, Junzhi; Zhang, Zhi-Yu; Gao, Yu; Hao, Cai-Na; Xia, Xiao-Yang; Gu, Qiusheng

    2016-12-09

    Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formation of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies such as our Milky Way) remains unclear. Here we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value.

  15. Carbon monoxide in an extremely metal-poor galaxy

    PubMed Central

    Shi, Yong; Wang, Junzhi; Zhang, Zhi-Yu; Gao, Yu; Hao, Cai-Na; Xia, Xiao-Yang; Gu, Qiusheng

    2016-01-01

    Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formation of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies such as our Milky Way) remains unclear. Here we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value. PMID:27934880

  16. Relation of Parental Transitions to Boys' Adjustment Problems: I.A. Linear Hypothesis II. Mothers at Risk for Transitions and Unskilled Parenting.

    ERIC Educational Resources Information Center

    Capaldi, D. M.; Patterson, G. R.

    1991-01-01

    Examined the adjustment of boys from intact, single-mother, stepfather, and multiple-transition families. Boys who had experienced multiple transitions showed the poorest adjustment. The antisocial mother was most at risk for transitions and unskilled parenting practices, which in turn placed her son at risk for poor adjustment. (BC)

  17. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOEpatents

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  18. Prevalence and Nature of Late-Emerging Poor Readers.

    PubMed

    Catts, Hugh W; Compton, Donald; Tomblin, J Bruce; Bridges, Mindy Sittner

    2012-02-01

    Some children demonstrate adequate or better reading achievement in early school grades, but fall significantly behind their peers in later grades. These children are often referred to as late-emerging poor readers. In this study, we investigated the prevalence and heterogeneity of these poor readers. We also examined the early language and nonverbal cognitive abilities of late-emerging poor readers. Participants were 493 children who were a subsample from an epidemiological study of language impairments in school-age children. In kindergarten, children were administered a battery of language, early literacy, and nonverbal cognitive measures. Word reading and reading comprehension achievement was assessed in second, fourth, eighth, and tenth grades. Latent transition analysis was used to model changes in reading classification (good vs. poor reader) across grades. Population estimates revealed that 13.4% percent of children could be classified as late-emerging poor readers. These children could be divided into those with problems in comprehension alone (52%), word reading alone (36%), or both (12%). Further results indicated that late-emerging poor readers often had a history of language and/or nonverbal cognitive impairments in kindergarten. Subtypes of poor readers also differed significantly in their profiles of language, early literacy, and nonverbal cognitive abilities in kindergarten. Results are discussed in terms of causal factors and implications for early identification.

  19. A computer program for two-dimensional and axisymmetric nonreacting perfect gas and equilibrium chemically reacting laminar, transitional and-or turbulent boundary layer flows

    NASA Technical Reports Server (NTRS)

    Miner, E. W.; Anderson, E. C.; Lewis, C. H.

    1971-01-01

    A computer program is described in detail for laminar, transitional, and/or turbulent boundary-layer flows of non-reacting (perfect gas) and reacting gas mixtures in chemical equilibrium. An implicit finite difference scheme was developed for both two dimensional and axisymmetric flows over bodies, and in rocket nozzles and hypervelocity wind tunnel nozzles. The program, program subroutines, variables, and input and output data are described. Also included is the output from a sample calculation of fully developed turbulent, perfect gas flow over a flat plate. Input data coding forms and a FORTRAN source listing of the program are included. A method is discussed for obtaining thermodynamic and transport property data which are required to perform boundary-layer calculations for reacting gases in chemical equilibrium.

  20. Very metal-poor galaxies: ionized gas kinematics in nine objects

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.; Pustilnik, S. A.; Kniazev, A. Y.

    2010-07-01

    The study of ionized gas morphology and kinematics in nine extremely metal-deficient (XMD) galaxies with the scanning Fabry-Perot interferometer on the Special Astrophysical Observatory (SAO) 6-m telescope is presented. Some of these very rare objects (with currently known range of O/H of 7.12 < 12 + log(O/H) < 7.65, or ) are believed to be the best proxies of `young' low-mass galaxies in the high-redshift Universe. One of the main goals of this study is to look for possible evidence of star formation (SF) activity induced by external perturbations. Recent results from HI mapping of a small subsample of XMD star-forming galaxies provided confident evidence for the important role of interaction-induced SF. Our observations provide complementary or new information that the great majority of the studied XMD dwarfs have strongly disturbed gas morphology and kinematics or the presence of detached components. We approximate the observed velocity fields by simple models of a rotating tilted thin disc, which allows us the robust detection of non-circular gas motions. These data, in turn, indicate the important role of current/recent interactions and mergers in the observed enhanced SF. As a by-product of our observations, we obtained data for two Low Surface Brightness (LSB) dwarf galaxies: Anon J012544+075957 that is a companion of the merger system UGC 993, and SAO 0822+3545 which shows off-centre, asymmetric, low star formation rate star-forming regions, likely induced by the interaction with the companion XMD dwarf HS 0822+3542. Based on observations obtained with the Special Astrophysical Observatory RAS 6-m telescope. E-mail: moisav@gmail.com (AVM); sap@sao.ru (SAP); akniazev@saao.ac.za (AYK)

  1. Two-Equation Low-Reynolds-Number Turbulence Modeling of Transitional Boundary Layer Flows Characteristic of Gas Turbine Blades. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Schmidt, Rodney C.; Patankar, Suhas V.

    1988-01-01

    The use of low Reynolds number (LRN) forms of the k-epsilon turbulence model in predicting transitional boundary layer flow characteristic of gas turbine blades is developed. The research presented consists of: (1) an evaluation of two existing models; (2) the development of a modification to current LRN models; and (3) the extensive testing of the proposed model against experimental data. The prediction characteristics and capabilities of the Jones-Launder (1972) and Lam-Bremhorst (1981) LRN k-epsilon models are evaluated with respect to the prediction of transition on flat plates. Next, the mechanism by which the models simulate transition is considered and the need for additional constraints is discussed. Finally, the transition predictions of a new model are compared with a wide range of different experiments, including transitional flows with free-stream turbulence under conditions of flat plate constant velocity, flat plate constant acceleration, flat plate but strongly variable acceleration, and flow around turbine blade test cascades. In general, calculational procedure yields good agreement with most of the experiments.

  2. Criteria pollutant and greenhouse gas emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies.

    PubMed

    Yoon, Seungju; Collins, John; Thiruvengadam, Arvind; Gautam, Mridul; Herner, Jorn; Ayala, Alberto

    2013-08-01

    Engine and exhaust control technologies applied to compressed natural gas (CNG) transit buses have advanced from lean-burn, to lean-burn with oxidation catalyst (OxC), to stoichiometric combustion with three-way catalyst (TWC). With this technology advancement, regulated gaseous and particulate matter emissions have been significantly reduced. Two CNG transit buses equipped with stoichiometric combustion engines and TWCs were tested on a chassis dynamometer, and their emissions were measured. Emissions from the stoichiometric engines with TWCs were then compared to the emissions from lean-burn CNG transit buses tested in previous studies. Stoichiometric combustion with TWC was effective in reducing emissions of oxides of nitrogen (NO(x)), particulate matter (PM), and nonmethane hydrocarbon (NMHC) by 87% to 98% depending on pollutants and test cycles, compared to lean combustion. The high removal efficiencies exceeded the emission reduction required from the certification standards, especially for NO(x) and PM. While the certification standards require 95% and 90% reductions for NO(x) and PM, respectively, from the engine model years 1998-2003 to the engine model year 2007, the measured NO(x) and PM emissions show 96% and 95% reductions, respectively, from the lean-burn engines to the stoichiometric engines with TWC over the transient Urban Dynamometer Driving Schedule (UDDS) cycle. One drawback of stoichiometric combustion with TWC is that this technology produces higher carbon monoxide (CO) emissions than lean combustion. In regard to controlling CO emissions, lean combustion with OxC is more effective than stoichiometric combustion. Stoichiometric combustion with TWC produced higher greenhouse gas (GHG) emissions including carbon dioxide (CO2) and methane (CH4) than lean combustion during the UDDS cycle, but lower GHG emissions during the steady-state cruise cycle. Stoichiometric combustion with three-way catalyst is currently the best emission control technology

  3. Extremely metal-poor gas at a redshift of 7.

    PubMed

    Simcoe, Robert A; Sullivan, Peter W; Cooksey, Kathy L; Kao, Melodie M; Matejek, Michael S; Burgasser, Adam J

    2012-12-06

    In typical astrophysical environments, the abundance of heavy elements ranges from 0.001 to 2 times the solar value. Lower abundances have been seen in selected stars in the Milky Way's halo and in two quasar absorption systems at redshift z = 3 (ref. 4). These are widely interpreted as relics from the early Universe, when all gas possessed a primordial chemistry. Before now there have been no direct abundance measurements from the first billion years after the Big Bang, when the earliest stars began synthesizing elements. Here we report observations of hydrogen and heavy-element absorption in a spectrum of a quasar at z =  7.04, when the Universe was just 772 million years old (5.6 per cent of its present age). We detect a large column of neutral hydrogen but no corresponding metals (defined as elements heavier than helium), limiting the chemical abundance to less than 1/10,000 times the solar level if the gas is in a gravitationally bound proto-galaxy, or to less than 1/1,000 times the solar value if it is diffuse and unbound. If the absorption is truly intergalactic, it would imply that the Universe was neither ionized by starlight nor chemically enriched in this neighbourhood at z ≈ 7. If it is gravitationally bound, the inferred abundance is too low to promote efficient cooling, and the system would be a viable site to form the predicted but as yet unobserved massive population III stars.

  4. Probing Cosmic Gas Accretion with RESOLVE and ECO

    NASA Astrophysics Data System (ADS)

    Kannappan, Sheila; Eckert, Kathleen D.; Stark, David; Lagos, Claudia; Nasipak, Zachary; Moffett, Amanda J.; Baker, Ashley; Berlind, Andreas A.; Hoversten, Erik A.; Norris, Mark A.; RESOLVE Team

    2016-01-01

    We review results bearing on the existence, controlling factors, and mechanisms of cosmic gas accretion in the RESOLVE and ECO surveys. Volume-limited analysis of RESOLVE's complete census of HI-to-stellar mass ratios and star formation histories for ~1500 galaxies points to the necessity of an "open box" model of galaxy fueling, with the most gas-dominated galaxies doubling their stellar masses on ~Gyr timescales in a regime of rapid accretion. Transitions in gas richness and disk-building activity for isolated or central galaxies with halo masses near ~10^11.5 Msun and ~10^12 Msun plausibly correspond to the endpoints of a theoretically predicted transition in halo gas temperature that slows accretion across this range. The same mass range is associated with the initial grouping of isolated galaxies into common halos, where "isolated" is defined relative to the survey baryonic mass limits of >~10^9 Msun. Above 10^11.5 Msun, patterns in central vs. satellite gas richness as a function of group halo mass suggest that galaxy refueling is valved off from the inside out as the halo grows, with total quenching beyond the virial radius for halo masses >~10^13-13.5 Msun. Within the transition range from ~10^11.5-10^12 Msun, theoretical models predict >3 dex dispersion in ratios of uncooled halo gas to cold gas in galaxies (or more generally gas and stars). In RESOLVE and ECO, the baryonic mass function of galaxies in this transitional halo mass range displays signs of stripping or destruction of satellites, leading us to investigate a possible connection with halo gas heating using central galaxy color and group dynamics to probe group evolutionary state. Finally, we take a first look at how internal variations in metallicity, dynamics, and star formation constrain accretion mechanisms such as cold streams, induced extraplanar gas cooling, isotropic halo gas cooling, and gas-rich merging in different mass and environment regimes. The RESOLVE and ECO surveys have been

  5. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses.

    PubMed

    Hammond, Davyda; Jones, Steven; Lalor, Melinda

    2007-02-01

    Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (<10 years) over older models, but particle number reduction has not been verified in the research. Recent studies suggest that particle number is a more important factor than particle mass in determining health effects. In-vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.

  6. Deep Reductions in Greenhouse Gas Emissions from the California Transportation Sector: Dynamics in Vehicle Fleet and Energy Supply Transitions to Achieve 80% Reduction in Emissions from 1990 Levels by 2050

    NASA Astrophysics Data System (ADS)

    Leighty, Wayne Waterman

    California's "80in50" target for reducing greenhouse gas emissions to 80 percent below 1990 levels by the year 2050 is based on climate science rather than technical feasibility of mitigation. As such, it raises four fundamental questions: is this magnitude of reduction in greenhouse gas emissions possible, what energy system transitions over the next 40 years are necessary, can intermediate policy goals be met on the pathway toward 2050, and does the path of transition matter for the objective of climate change mitigation? Scenarios for meeting the 80in50 goal in the transportation sector are modelled. Specifically, earlier work defining low carbon transport scenarios for the year 2050 is refined by incorporating new information about biofuel supply. Then transition paths for meeting 80in50 scenarios are modelled for the light-duty vehicle sub-sector, with important implications for the timing of action, rate of change, and cumulative greenhouse gas emissions. One aspect of these transitions -- development in the California wind industry to supply low-carbon electricity for plug-in electric vehicles -- is examined in detail. In general, the range of feasible scenarios for meeting the 80in50 target is narrow enough that several common themes are apparent: electrification of light-duty vehicles must occur; continued improvements in vehicle efficiency must be applied to improving fuel economy; and energy carriers must de-carbonize to less than half of the carbon intensity of gasoline and diesel. Reaching the 80in50 goal will require broad success in travel demand reduction, fuel economy improvements and low-carbon fuel supply, since there is little opportunity to increase emission reductions in one area if we experience failure in another. Although six scenarios for meeting the 80in50 target are defined, only one also meets the intermediate target of reducing greenhouse gas emissions to 1990 levels by the year 2020. Furthermore, the transition path taken to reach any

  7. THE IMMIGRANT POOR AND THE RESIDUAL POOR.

    ERIC Educational Resources Information Center

    SEGALMAN, RALPH

    AN ANALYSIS OF THE LIVES OF THE POOR IN AMERICA WILL SHOW DIFFERENCES BETWEEN THE IMMIGRANT (AND REFUGEE) POOR AND THE RESIDUAL POOR (NEGROES, PUERTO RICANS, LATIN AMERICANS, INDIANS, AND OTHERS). THE IMMIGRANT POOR WERE ACCULTURATED AND ABSORBED INTO THE MAINSTREAM OF AMERICAN LIFE WITHIN THREE GENERATIONS, WHEREAS THE RESIDUAL POOR HAVE BEEN…

  8. Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Valensi, F.; Pellerin, S.; Castillon, Q.; Boutaghane, A.; Dzierzega, K.; Zielinska, S.; Pellerin, N.; Briand, F.

    2013-06-01

    The gas metal arc welding (GMAW) process is strongly influenced by the composition of the shielding gas. In particular, addition of CO2 increases the threshold current for the transition from unstable globular to more stable spray transfer mode. We report on the diagnostics—using optical emission spectroscopy—of a GMAW plasma in pure argon and in mixtures of argon, CO2 and N2 while operated in spray and globular transfer modes. The spatially resolved plasma parameters are obtained by applying the Abel transformation to laterally integrated emission data. The Stark widths of some iron lines are used to determine both electron density and temperature, and line intensities yield relative contents of neutral and ionized iron to argon. Our experimental results indicate a temperature drop on the arc axis in the case of spray arc transfer. This drop reduces with addition of N2 and disappears in globular transfer mode when CO2 is added. Despite the temperature increase, the electron density decreases with CO2 concentration. The highest concentration of iron is observed in the plasma column upper part (close to the anode) and for GMAW with CO2. Our results are compared with recently published works where the effect of non-homogeneous metal vapour concentration has been taken into account.

  9. Transition Models for Engineering Calculations

    NASA Technical Reports Server (NTRS)

    Fraser, C. J.

    2007-01-01

    While future theoretical and conceptual developments may promote a better understanding of the physical processes involved in the latter stages of boundary layer transition, the designers of rotodynamic machinery and other fluid dynamic devices need effective transition models now. This presentation will therefore center around the development of of some transition models which have been developed as design aids to improve the prediction codes used in the performance evaluation of gas turbine blading. All models are based on Narasimba's concentrated breakdown and spot growth.

  10. Converging flow joint insert system at an intersection between adjacent transitions extending between a combustor and a turbine assembly in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Robert T.

    A transition duct system (100) for routing a gas flow from a combustor (102) to the first stage (104) of a turbine section (106) in a combustion turbine engine (108), wherein the transition duct system (100) includes one or more converging flow joint inserts (120) forming a trailing edge (122) at an intersection (124) between adjacent transition ducts (126, 128) is disclosed. The transition duct system (100) may include a transition duct (126, 128) having an internal passage (130) extending between an inlet (132, 184) to an outlet (134, 186) and may expel gases into the first stage turbine (104)more » with a tangential component. The converging flow joint insert (120) may be contained within a converging flow joint insert receiver (136) and disconnected from the transition duct bodies (126, 128) by which the converging flow joint insert (120) is positioned. Being disconnected eliminates stress formation within the converging flow joint insert (120), thereby enhancing the life of the insert. The converging flow joint insert (120) may be removable such that the insert (120) can be replaced once worn beyond design limits.« less

  11. Cold Gas in High-z Galaxies: The CO Gas Excitation Ladder and the need for the ngVLA

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin M.; Champagne, Jaclyn; Narayanan, Desika; Davé, Romeel; Hung, Chao-Ling; Carilli, Chris; Murphy, Eric Joseph; Decarli, Roberto; Popping, Gergo; Riechers, Dominik A.; Somerville, Rachel; Walter, Fabian

    2018-01-01

    We will present updated results on a community study led to understand the observable molecular gas properties of high-z galaxies. This work uses a series of high-resolution, hydrodynamic, cosmological zoom-in simulations from MUFASA, the Despotic radiative transfer code that uses simultaneous thermal and statistical equilibrium in calculating molecular and atomic level populations, and a CASA simulator which generates mock ngVLA and ALMA observations. Our work reveals a stark contrast in gas characteristics (geometry and kinematics) as measured from low-J transitions of CO to high-J transitions, demonstrating the need for the ngVLA in probing the cold gas reservoir in the highest-redshift galaxies.

  12. Calorimetry of a Bose–Einstein-condensed photon gas

    PubMed Central

    Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan

    2016-01-01

    Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978

  13. Looking for transiting warm Jupiters - win some, lose some

    NASA Astrophysics Data System (ADS)

    Shporer, Avi; Zhou, George; Vanderburg, Andrew; Fulton, Benjamin; Bieryla, Allyson; Ciardi, David; Collins, Karen; Espinoza, Néstor; Isaacson, Howard; Morton, Timothy; Torres, Guillermo; Armstrong, James; Bayliss, Daniel; Bento, Joao; Berlind, Perry; Bouchy, Francois; Calkins, Mike; Cameron, Andrew; Cochran, William; Colon, Knicole; Crossfield, Ian; Dragomir, Diana; Esquerdo, Gil; Howard, Andrew; Howell, Steve; Kielkopf, John; Latham, David; Murgas, Felipe; Sefako, Ramotholo; Sinukoff, Evan; Siverd, Robert; Udry, Stephane; TECH

    2018-01-01

    We have initiated a project to discover transiting warm Jupiters - gas giant planets receiving stellar irradiation below 108 erg s-1 cm-2, corresponding to orbital periods beyond about 10 days around Sun-like stars, through follow-up of transiting candidates identified by K2 and other transit surveys. Our goals are to (1) investigate the inflated gas giants conundrum, (2) study the mystery of hot Jupiters orbital evolution, and (3) identify targets for extending exoplanet atmosphere and stellar obliquity studies beyond the hot Jupiters class. This project has so far resulted in the discovery of two new transiting warm Jupiters (K2-114b and K2-115b), and the identification of three statistically validated planets as low-mass stars.

  14. Differences in the Gas and Dust Distribution in the Transitional Disk of a Sun-like Young Star, PDS 70

    NASA Astrophysics Data System (ADS)

    Long, Zachary C.; Akiyama, Eiji; Sitko, Michael; Fernandes, Rachel B.; Assani, Korash; Grady, Carol A.; Cure, Michel; Danchi, William C.; Dong, Ruobing; Fukagawa, Misato; Hasegawa, Yasuhiro; Hashimoto, Jun; Henning, Thomas; Inutsuka, Shu-Ichiro; Kraus, Stefan; Kwon, Jungmi; Lisse, Carey M.; Baobabu Liu, Hauyu; Mayama, Satoshi; Muto, Takayuki; Nakagawa, Takao; Takami, Michihiro; Tamura, Motohide; Currie, Thayne; Wisniewski, John P.; Yang, Yi

    2018-05-01

    We present ALMA 0.87 mm continuum, HCO+ J = 4–3 emission line, and CO J = 3–2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.″42 ± 0.″05, an azimuthal gap in the HCO+ J = 4–3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We find that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work.

  15. Unregulated emissions from compressed natural gas (CNG) transit buses configured with and without oxidation catalyst.

    PubMed

    Okamoto, Robert A; Kado, Norman Y; Kuzmicky, Paul A; Ayala, Alberto; Kobayashi, Reiko

    2006-01-01

    The unregulated emissions from two in-use heavy-duty transit buses fueled by compressed natural gas (CNG) and equipped with oxidation catalyst (OxiCat) control were evaluated. We tested emissions from a transit bus powered by a 2001 Cummins Westport C Gas Plus 8.3-L engine (CWest), which meets the California Air Resources Board's (CARB) 2002 optional NOx standard (2.0 g/bhp-hr). In California, this engine is certified only with an OxiCat, so our study did not include emissions testing without it. We also tested a 2000 New Flyer 40-passenger low-floor bus powered by a Detroit Diesel series 50G engine (DDCs50G) that is currently certified in California without an OxiCat. The original equipment manufacturer (OEM) offers a "low-emission" package for this bus that includes an OxiCat for transit bus applications, thus, this configuration was also tested in this study. Previously, we reported that formaldehyde and other volatile organic emissions detected in the exhaust of the DDCs50G bus equipped with an OxiCat were significantly reduced relative to the same DDCs50G bus without OxiCat. In this paper, we examine othertoxic unregulated emissions of significance. The specific mutagenic activity of emission sample extracts was examined using the microsuspension assay. The total mutagenic activity of emissions (activity per mile) from the OxiCat-equipped DDC bus was generally lower than that from the DDC bus without the OxiCat. The CWest bus emission samples had mutagenic activity that was comparable to that of the OxiCat-equipped DDC bus. In general, polycyclic aromatic hydrocarbon (PAH) emissions were lower forthe OxiCat-equipped buses, with greater reductions observed for the volatile and semivolatile PAH emissions. Elemental carbon (EC) was detected in the exhaust from the all three bus configurations, and we found that the total carbon (TC) composition of particulate matter (PM) emissions was primarily organic carbon (OC). The amount of carbon emissions far exceeded the

  16. Microscopic origin of black hole reentrant phase transitions

    NASA Astrophysics Data System (ADS)

    Zangeneh, M. Kord; Dehyadegari, A.; Sheykhi, A.; Mann, R. B.

    2018-04-01

    Understanding the microscopic behavior of the black hole ingredients has been one of the important challenges in black hole physics during the past decades. In order to shed some light on the microscopic structure of black holes, in this paper, we explore a recently observed phenomenon for black holes namely reentrant phase transition, by employing the Ruppeiner geometry. Interestingly enough, we observe two properties for the phase behavior of small black holes that leads to reentrant phase transition. They are correlated and they are of the interaction type. For the range of pressure in which the system underlies reentrant phase transition, it transits from the large black holes phase to the small one which possesses higher correlation than the other ranges of pressures. On the other hand, the type of interaction between small black holes near the large/small transition line differs for usual and reentrant phase transitions. Indeed, for the usual case, the dominant interaction is repulsive whereas for the reentrant case we encounter an attractive interaction. We show that in the reentrant phase transition case, the small black holes behave like a bosonic gas whereas in the usual phase transition case, they behave like a quantum anyon gas.

  17. Effectively managing consumer fuel price driven transit demand.

    DOT National Transportation Integrated Search

    2013-05-01

    This study presents a literature review of transit demand elasticities with respect to gas prices, describes features of a transit service area population that may be more sensitive to fuel prices, identifies where stress points in the family of tran...

  18. Interpreting Gas Production Decline Curves By Combining Geometry and Topology

    NASA Astrophysics Data System (ADS)

    Ewing, R. P.; Hu, Q.

    2014-12-01

    Shale gas production forms an increasing fraction of domestic US energy supplies, but individual gas production wells show steep production declines. Better understanding of this production decline would allow better economic forecasting; better understanding of the reasons behind the decline would allow better production management. Yet despite these incentives, production declines curves remain poorly understood, and current analyses range from Arps' purely empirical equation to new sophisticated approaches requiring multiple unavailable parameters. Models often fail to capture salient features: for example, in log-log space many wells decline with an exponent markedly different from the -0.5 expected from diffusion, and often show a transition from one decline mode to another. We propose a new approach based on the assumption that the rate-limiting step is gas movement from the matrix to the induced fracture network. The matrix is represented as an assemblage of equivalent spheres (geometry), with low matrix pore connectivity (topology) that results in a distance-dependent accessible porosity profile given by percolation theory. The basic theory has just 2 parameters: the sphere size distribution (geometry), and the crossover distance (topology) that characterizes the porosity distribution. The theory is readily extended to include e.g. alternative geometries and bi-modal size distributions. Comparisons with historical data are promising.

  19. THE IONIZED GAS IN NEARBY GALAXIES AS TRACED BY THE [NII] 122 AND 205 μm TRANSITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Camus, R.; Bolatto, A.; Wolfire, M.

    2016-08-01

    The [N ii] 122 and 205 μ m transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ∼1 kpc, with observations of both [N ii] far-infrared lines. We measure [N ii] 122/205 line ratios in the ∼0.6–6 range, which corresponds to electron gas densities of n {sub e} ∼ 1–300 cm{sup −3}, with a median value of n {sub e} = 30 cm{sup −3}. Variations in the electron densitymore » within individual galaxies can be as high as a factor of ∼50, frequently with strong radial gradients. We find that n {sub e} increases as a function of infrared color, dust-weighted mean starlight intensity, and star-formation rate (SFR) surface density (Σ{sub SFR}). As the intensity of the [N ii] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the SFR. We derive relations between the [N ii] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [N ii] surface brightness and Σ{sub SFR} can be understood as a property of the n {sub e} distribution. For regions with n {sub e} close to or higher than the [N ii] line critical densities, the low-density limit [N ii]-based SFR calibration systematically underestimates the SFR because the [N ii] emission is collisionally quenched. Finally, we investigate the relation between [N ii] emission, SFR, and n {sub e} by comparing our observations to predictions from the MAPPINGS-III code.« less

  20. The X-ray emitting gas in poor clusters with central dominant galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, G. A.; Cioffi, D. F.; Canizares, C. R.

    1983-01-01

    The 12 clusters detected in the present study by the Einstein Observatory's X-ray imaging proportional counter show X-ray emission centered on the dominant galaxy in all cases. Comparison of the deduced distribution of binding mass with the light distribution of the central galaxies of four clusters indicates that the mass/luminosity ratio rises to over 200 solar masses/solar luminosity in the galaxy halos. These halos must therefore, like the clusters themselves, posses dark matter. The X-ray data clearly show that the dominant galaxies sit at the bottoms of the poor cluster gravitational potential wells, suggesting a similar origin for dominant galaxies in poor and rich clusters, perhaps through the merger and cannibalism of cluster galaxies. It is the luminosity of the distended cD envelope that reflects the relative wealth of the cluster environment.

  1. Lava Fountaining Discharge Regime driven by Slug-to-Churn Flow Transition. (Invited)

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; Pioli, L.; Marchetti, E.; Ulivieri, G.

    2013-12-01

    Lava fountaining episodes at Etna volcano appear characterized by the transition between Strombolian and Hawaiian end-member eruptive styles. There is no evidence for this transition in the seismic (i.e. seismic tremor) signal. However, infrasonic records provide unprecedented evidence on this flow transition. Each eruptive episode is characterized by distinctive common trend in the amplitude, waveform and frequency content of the infrasonic wavefield, which evidences the shift from discrete, and transient, strombolian to sustained, and oscillatory, lava fountain dynamics. Large scale experiments on the dynamics of two-phase flow of basaltic magmas show how the transition between different regimes mainly depends on gas volume flow, which in turn controls pressure distribution within the conduit and also magma vesicularity. In particular, while regular large bubble bursting is associated with slug flow regime, large amplitude and low frequency column oscillations are associated with churn flow. In large pipes, transition from slug to churn flow regime is independent on conduit diameter and it is reached at high superficial gas velocity. Lava fountaining episodes at Etna can be thus interpreted as induced by the transition from the slug (discrete strombolian) to churn flow (sustained lava fountain) regimes that is reflecting an increase in the gas discharge rate. Based on laboratory experiments, we calculate that transition between these two end-member explosive regimes at Etna occurs when gas superficial velocity is 76 m/s for near-the-vent stagnant magma conditions.

  2. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    NASA Technical Reports Server (NTRS)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  3. MoS2 synthesis by gas source MBE for transition metal dichalcogenides integration on large scale substrates

    NASA Astrophysics Data System (ADS)

    El Kazzi, S.; Mortelmans, W.; Nuytten, T.; Meersschaut, J.; Carolan, P.; Landeloos, L.; Conard, T.; Radu, I.; Heyns, M.; Merckling, C.

    2018-04-01

    We present in this paper the use of Gas Source Molecular Beam Epitaxy for the large-scale growth of transition metal dichalcogenides. Fiber-textured MoS2 co-deposited thin films (down to 1 MLs) are grown on commercially 200 mm wafer size templates where MX2 crystalline layers are achieved at temperatures ranging from RT to 550 °C. Raman Spectroscopy and photoluminescence measurements along with X-Ray Photoelectron Spectroscopy show that a low growth rate is essential for complete Mo sulfurization during MoS2 co-deposition. Finally, cross-section Transmission Electron Microscopy investigations are discussed to highlight the influence of SiO2 and Al2O3 used surfaces on MoS2 deposition.

  4. Greenhouse gas emissions from transit projects : programmatic assessment.

    DOT National Transportation Integrated Search

    2017-01-01

    The National Environmental Policy Act (NEPA) requires federal agencies to disclose and analyze the environmental effects of their proposed actions. The Federal Transit Administration (FTA) currently believes that assessing the effects of greenhouse g...

  5. Greenhouse gas emissions from transit projects : programmatic assessment

    DOT National Transportation Integrated Search

    2017-01-01

    The National Environmental Policy Act (NEPA) requires federal agencies to disclose and analyze the environmental effects of their proposed actions. The Federal Transit Administration (FTA) currently believes that assessing the effects of greenhouse g...

  6. Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition

    PubMed Central

    Landig, Renate; Brennecke, Ferdinand; Mottl, Rafael; Donner, Tobias; Esslinger, Tilman

    2015-01-01

    The dynamic structure factor is a central quantity describing the physics of quantum many-body systems, capturing structure and collective excitations of a material. In condensed matter, it can be measured via inelastic neutron scattering, which is an energy-resolving probe for the density fluctuations. In ultracold atoms, a similar approach could so far not be applied because of the diluteness of the system. Here we report on a direct, real-time and nondestructive measurement of the dynamic structure factor of a quantum gas exhibiting cavity-mediated long-range interactions. The technique relies on inelastic scattering of photons, stimulated by the enhanced vacuum field inside a high finesse optical cavity. We extract the density fluctuations, their energy and lifetime while the system undergoes a structural phase transition. We observe an occupation of the relevant quasi-particle mode on the level of a few excitations, and provide a theoretical description of this dissipative quantum many-body system. PMID:25944151

  7. Understanding the scaling of electron kinetics in the transition from collisional to collisionless conditions in microscale gas discharges

    NASA Astrophysics Data System (ADS)

    Tan, Xi; Go, David B.

    2018-02-01

    When gas discharge and plasma devices shrink to the microscale, the electrode distance in the device approaches the mean free path of electrons and they experience few collisions. As microscale gas discharge and plasma devices become more prevalent, the behavior of discharges at these collisionless and near-collisionless conditions need to be understood. In conditions where the characteristic length d is much greater than the mean free path λ (i.e., macroscopic conditions), electron energy distributions (EEDs) and rate coefficients scale with the reduced electric field E/p. However, when d is comparable with or much lower than λ, this E/p scaling breaks. In this work, particle-in-cell/Monte Carlo collision simulations are used to explore the behavior of the EED and subsequent reaction rate coefficients in microscale field emission-driven Townsend discharges for both an atomic (argon) and a molecular (hydrogen) gas. To understand the behavior, a pseudo-analytical model is developed for the spatially integrated EED and rate coefficients in the collisional to collisionless transition regime based on the weighted sum of a fully collisional, two-temperature Maxwellian EED and the ballistic EED. The theory helps clarify the relative contribution of ballistic electrons in these extreme conditions and can be used to more accurately predict when macroscopic E/p scaling fails at the microscale.

  8. Mastl overexpression is associated with epithelial to mesenchymal transition and predicts a poor clinical outcome in gastric cancer.

    PubMed

    Sun, Xian-Jun; Li, Yan-Liang; Wang, Long-Gang; Liu, Li-Qing; Ma, Heng; Hou, Wen-Hong; Yu, Jin-Ming

    2017-12-01

    Microtubule-associated serine/threonine kinase like (Mastl) is deregulated in a number of types of human malignancy and may be a kinase target for cancer treatment. The aim of the present study was to determine the Mastl expression in gastric cancer and to clarify its clinical and prognostic significance. Immunohistochemistry was performed on a cohort of 126 postoperative gastric cancer samples to detect the expression of Mastl and two epithelial to mesenchymal transition (EMT) markers, epithelial-cadherin and Vimentin. The χ 2 test, Kaplan-Meier estimator analysis and Cox's regression model were used to analyze the data. Upregulated Mastl protein expression was observed in the gastric cancer tissues compared with that in the adjacent non-cancerous gastric tissues. Increased Mastl expression was identified in 54/126 (42.9%) gastric cancer samples, and was significantly associated with lymph node metastasis, tumor relapse, EMT status and poor overall survival. Additional analysis demonstrated that the Mastl expression level stratified the patient outcome in stage III, but not stage II tumor subgroups. Cox's regression analysis revealed that increased Mastl expression was an independent prognostic factor for patients with gastric cancer. Mastl expression may be a valuable prognostic marker and a potential target for patients with gastric cancer.

  9. Process, outcome and experience of transition from child to adult mental healthcare: multiperspective study.

    PubMed

    Singh, Swaran P; Paul, Moli; Ford, Tamsin; Kramer, Tami; Weaver, Tim; McLaren, Susan; Hovish, Kimberly; Islam, Zoebia; Belling, Ruth; White, Sarah

    2010-10-01

    Many adolescents with mental health problems experience transition of care from child and adolescent mental health services (CAMHS) to adult mental health services (AMHS). As part of the TRACK study we evaluated the process, outcomes and user and carer experience of transition from CAMHS to AMHS. We identified a cohort of service users crossing the CAMHS/AMHS boundary over 1 year across six mental health trusts in England. We tracked their journey to determine predictors of optimal transition and conducted qualitative interviews with a subsample of users, their carers and clinicians on how transition was experienced. Of 154 individuals who crossed the transition boundary in 1 year, 90 were actual referrals (i.e. they made a transition to AMHS), and 64 were potential referrals (i.e. were either not referred to AMHS or not accepted by AMHS). Individuals with a history of severe mental illness, being on medication or having been admitted were more likely to make a transition than those with neurodevelopmental disorders, emotional/neurotic disorders and emerging personality disorder. Optimal transition, defined as adequate transition planning, good information transfer across teams, joint working between teams and continuity of care following transition, was experienced by less than 5% of those who made a transition. Following transition, most service users stayed engaged with AMHS and reported improvement in their mental health. For the vast majority of service users, transition from CAMHS to AMHS is poorly planned, poorly executed and poorly experienced. The transition process accentuates pre-existing barriers between CAMHS and AMHS.

  10. Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood.

    PubMed

    Liang, Xiaojun; Chernysh, Irina; Purohit, Prashant K; Weisel, John W

    2017-09-15

    Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials. The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due

  11. Inefficient star formation in extremely metal poor galaxies.

    PubMed

    Shi, Yong; Armus, Lee; Helou, George; Stierwalt, Sabrina; Gao, Yu; Wang, Junzhi; Zhang, Zhi-Yu; Gu, Qiusheng

    2014-10-16

    The first galaxies contain stars born out of gas with few or no 'metals' (that is, elements heavier than helium). The lack of metals is expected to inhibit efficient gas cooling and star formation, but this effect has yet to be observed in galaxies with an oxygen abundance (relative to hydrogen) below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon monoxide emission is unreliable as a tracer of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially resolved infrared observations of two galaxies with oxygen abundances below ten per cent of the solar value, and show that stars formed very inefficiently in seven star-forming clumps in these galaxies. The efficiencies are less than a tenth of those found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.

  12. Mobile Gas and Particulate Emission Studies of the New York City Transit Bus Fleet

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Canagaratna, M.; Herndon, S.; Shorter, J.; Zahniser, M.; Shi, Q.; Kolb, C.; Worsnop, D.; Jimenez, J.; Drewnick, F.; Demerjian, K.; Lanni, T.

    2001-12-01

    Emissions from both diesel and gasoline powered motor vehicles are a significant source of particulate (PM2.5) and trace gas pollution, especially in urban environments. Emission characterizations of motor vehicles can be performed using a dynamometer but these studies make fleet characterization impractical. Few studies have been performed which characterize emissions from in-use vehicles using a mobile sampling platform. This work describes application of new technology instrumentation for rapid (1-5 second) and real-time characterization of both gas and particulate emissions from in-use vehicles and is part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY). An aerosol mass spectrometer (AMS) and a tunable infrared laser differential absorption spectrometer (TILDAS) system were deployed on the Aerodyne Research mobile laboratory designed to "chase" target vehicles in and around the New York City area and measure their emissions under actual driving conditions. The AMS provides particle size and composition information for volatile and semi-volatile matter while the TILDAS system was configured to measure NO, NO2, CO, CH4, SO2 and formaldehyde. In addition to a GPS, an ELPI and a condensation particle counter, the mobile laboratory was also equipped with a CO2 monitor to allow emission ratios to be computed for the targeted vehicles. Emission ratios for both particulate and trace gases are reported for a representative fraction of the NYC Metropolitan Transit Authority (MTA) bus fleet in an effort to characterize new emission control technologies currently implemented by the NYC MTA.

  13. Low Gas Fractions Connect Compact Star-forming Galaxies to Their z ~ 2 Quiescent Descendants

    NASA Astrophysics Data System (ADS)

    Spilker, Justin S.; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.

    2016-11-01

    Early quiescent galaxies at z˜ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line toward three such compact, star-forming galaxies (SFGs) at z˜ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions ≳ 5 times lower and gas depletion timescales ≳ 10 times shorter than normal, extended massive SFGs at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100 Myr. These objects are among the most gas-poor objects observed at z\\gt 2, and are outliers from standard gas scaling relations, a result that remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, SFGs are in a rapid state of transition to quiescence in tandem with the buildup of the z˜ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.

  14. Mechanism of gas saturated oil viscosity anomaly near to phase transition point

    NASA Astrophysics Data System (ADS)

    Suleimanov, Baghir A.; Abbasov, Elkhan M.; Sisenbayeva, Marziya R.

    2017-01-01

    The article presents experimental studies of the phase behavior by the flash liberation test and of the viscosity of the live oil at different pressures. Unlike the typical studies at the pressure near the saturation pressure, the measurements were conducted at a relatively small pressure increment of 0.08-0.25 MPa. The viscosity anomaly was discovered experimentally near to the phase transition point in the range of the pressure levels P/Pb = 1-1.14 (Pb—bubble point pressure) and shows that it decreases about 70 times in comparison to the viscosity at the reservoir pressure. It was found that the bubble point pressure decreases significantly (up to 36%) with surfactant addition. Furthermore, the viscosity of the live oil at the surfactant concentration of 5 wt. % decreases almost 37 times in comparison to the viscosity at the reservoir pressure. The mechanism of observed effects was suggested based on the formation of the stable subcritical gas nuclei and associated slippage effect. The mechanism for the stabilization of the subcritical nuclei by the combined action of the surface and electrical forces, as well as the morphology of the formed nanobubbles, was considered. The model for determining the oil viscosity taking into account the slippage effect was suggested.

  15. Microbial keratitis secondary to unintended poor compliance with scleral gas-permeable contact lenses.

    PubMed

    Zimmerman, Aaron B; Marks, Amanda

    2014-01-01

    To report a case of neurotrophic keratitis in which scleral contact lenses improved vision from 20/100 to 20/20, however, due to poor lens care, an incident of microbial keratitis developed. A 64-year-old man with an ocular history of neurotrophic keratitis secondary to herpes simplex in each eye was successfully fit with scleral lenses. He subsequently developed microbial keratitis due to a number of risk factors. The lesion was culture negative, yet was very responsive to treatment with moxifloxacin. The lesion fully healed, and the patient did not suffer additional vision loss. This case demonstrates the ability of scleral lenses to correct visual impairments secondary to poor epithelial integrity and illustrates the importance of the practitioner providing detailed lens care instruction.

  16. Health system strategies supporting transition to adult care.

    PubMed

    Hepburn, Charlotte Moore; Cohen, Eyal; Bhawra, Jasmin; Weiser, Natalie; Hayeems, Robin Z; Guttmann, Astrid

    2015-06-01

    The transition from paediatric to adult care is associated with poor clinical outcomes, increased costs and low patient and family satisfaction. However, little is known about health system strategies to streamline and safeguard care for youth transitioning to adult services. Moreover, the needs of children and youth are often excluded from broader health system reform discussions, leaving this population especially vulnerable to system 'disintegration'. (1) To explore the international policy profile of paediatric-to-adult care transitions, and (2) to document policy objectives, initiatives and outcomes for jurisdictions publicly committed to addressing transition issues. An international policy scoping review of all publicly available government documents detailing transition-related strategies was completed using a web-based search. Our analysis included a comparable cohort of nine wealthy Organisation for Economic Co-operation and Development (OECD) jurisdictions with Beveridge-style healthcare systems (deemed those most likely to benefit from system-level transition strategies). Few jurisdictions address transition of care issues in either health or broader social policy documents. While many jurisdictions refer to standardised practice guidelines, a few report the intention to use powerful policy levers (including physician remuneration and non-physician investments) to facilitate the uptake of best practice. Most jurisdictions do not address the policy infrastructure required to support successful transitions, and rigorous evaluations of transition strategies are rare. Despite the well-documented risks and costs associated with a poor transition from paediatric to adult care, little policy attention has been paid to this issue. We recommend that healthcare providers engage health system planners in the design and evaluation of system-level, policy-sensitive transition strategies. Published by the BMJ Publishing Group Limited. For permission to use (where not

  17. Pressure Dependence of Gas-Phase Reaction Rates

    ERIC Educational Resources Information Center

    De Persis, Stephanie; Dollet, Alain; Teyssandier, Francis

    2004-01-01

    It is presented that only simple concepts, mainly taken from activated-complex or transition-state theory, are required to explain and analytically describe the influence of pressure on gas-phase reaction kinetics. The simplest kind of elementary gas-phase reaction is a unimolecular decomposition reaction.

  18. Modeling Gas and Gas Hydrate Accumulation in Marine Sediments Using a K-Nearest Neighbor Machine-Learning Technique

    NASA Astrophysics Data System (ADS)

    Wood, W. T.; Runyan, T. E.; Palmsten, M.; Dale, J.; Crawford, C.

    2016-12-01

    Natural Gas (primarily methane) and gas hydrate accumulations require certain bio-geochemical, as well as physical conditions, some of which are poorly sampled and/or poorly understood. We exploit recent advances in the prediction of seafloor porosity and heat flux via machine learning techniques (e.g. Random forests and Bayesian networks) to predict the occurrence of gas and subsequently gas hydrate in marine sediments. The prediction (actually guided interpolation) of key parameters we use in this study is a K-nearest neighbor technique. KNN requires only minimal pre-processing of the data and predictors, and requires minimal run-time input so the results are almost entirely data-driven. Specifically we use new estimates of sedimentation rate and sediment type, along with recently derived compaction modeling to estimate profiles of porosity and age. We combined the compaction with seafloor heat flux to estimate temperature with depth and geologic age, which, with estimates of organic carbon, and models of methanogenesis yield limits on the production of methane. Results include geospatial predictions of gas (and gas hydrate) accumulations, with quantitative estimates of uncertainty. The Generic Earth Modeling System (GEMS) we have developed to derive the machine learning estimates is modular and easily updated with new algorithms or data.

  19. Low Gas Fractions Connect Compact Star-Forming Galaxies to their z~2 Quiescent Descendants

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.

    2017-01-01

    Early quiescent galaxies at z ~ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. I will present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z ~ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions 5 times lower and gas depletion times 10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z > 2 and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition to quiescence in tandem with the build-up of the z ~ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass. I will conclude by discussing my ongoing efforts to characterize the gas and star forming properties of this unusual population of galaxies.

  20. Discovery of a Metal-Poor Little Cub

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-09-01

    The discovery of an extremely metal-poor star-forming galaxy in our local universe, dubbed Little Cub, is providing astronomers with front-row seats to the quenching of a near-pristine galaxy.SDSS image of NGC 3359 (left) and Little Cub (right), with overlying contours displaying the location of hydrogen gas. Little Cubs (also shown in the inset) stellar mass lies in the blue contour of the right-hand side. The outer white contours show the extended gas of the galaxy, likely dragged out as a tidal tail by Little Cubs interaction with NGC 3359. [Hsyu et al. 2017]The Hunt for Metal-Poor GalaxiesLow-metallicity, star-forming galaxies can show us the conditions under which the first stars formed. The galaxies with the lowest metallicities, however, also tend to be those with the lowest luminosities making them difficult to detect. Though we know that there should be many low-mass, low-luminosity, low-metallicity galaxies in the universe, weve detected very few of them nearby.In an effort to track down more of these metal-poor galaxies, a team of scientists led by Tiffany Hsyu (University of California Santa Cruz) searched through Sloan Digital Sky Survey data, looking for small galaxies with the correct photometric color to qualify a candidate blue compact dwarfs, a type of small, low-luminosity, star-forming galaxy that is often low-metallicity.Hsyu and collaborators identified more than 2,500 candidate blue compact dwarfs, and next set about obtaining follow-up spectroscopy for many of the candidates from the Keck and Lick Observatories. Though this project is still underway, around 100 new blue compact dwarfs have already been identified via the spectroscopy, including one of particular interest: the Little Cub.Little CubThis tiny star-forming galaxy gained its nickname from its location in the constellation Ursa Major. Little Cub is perhaps 50 or 60 million light-years away, and Hsyu and collaborators find it to be one of the lowest-metallicity star

  1. Restructuring Energy Industries: Lessons from Natural Gas

    EIA Publications

    1997-01-01

    For the past 20 years, the natural gas industry has been undergoing a restructuring similar to the transition now confronting the electric power industry. This article presents a summary of some of these gas industry experiences to provide a basis for some insights into energy industry restructuring.

  2. Role of stranded gas in increasing global gas supplies

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This report synthesizes the findings of three regional studies in order to evaluate, at the global scale, the contribution that stranded gas resources can make to global natural gas supplies. Stranded gas, as defined for this study, is natural gas in discovered conventional gas and oil fields that is currently not commercially producible for either physical or economic reasons. The regional studies evaluated the cost of bringing the large volumes of undeveloped gas in stranded gas fields to selected markets. In particular, stranded gas fields of selected Atlantic Basin countries, north Africa, Russia, and central Asia are screened to determine whether the volumes are sufficient to meet Europe’s increasing demand for gas imports. Stranded gas fields in Russia, central Asia, Southeast Asia, and Australia are also screened to estimate development, production, and transport costs and corresponding gas volumes that could be supplied to Asian markets in China, India, Japan, and South Korea. The data and cost analysis presented here suggest that for the European market and the markets examined in Asia, the development of stranded gas provides a way to meet projected gas import demands for the 2020-to-2040 period. Although this is a reconnaissance-type appraisal, it is based on volumes of gas that are associated with individual identified fields. Individual field data were carefully examined. Some fields were not evaluated because current technology was insufficient or it appeared the gas was likely to be held off the export market. Most of the evaluated stranded gas can be produced and delivered to markets at costs comparable to historical prices. Moreover, the associated volumes of gas are sufficient to provide an interim supply while additional technologies are developed to unlock gas diffused in shale and hydrates or while countries transition to making a greater use of renewable energy sources.

  3. Obseration of flow regime transition in CFB riser using an LDV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Paul C.; Mei, Joseph S.; Shadle, Lawrence J.

    2011-01-01

    The solids flow in a circulating fluidized bed (CFB) riser is often described to have a core-annular structure. For a given superficial gas velocity, at the initial introduction of solids into a riser a flow structure of dilute upflow regime exists. Continuing to increase the solids flow in the riser transitions the flow structure to the core-annular flow regime. However, with further increase of solids flow a condition is reached, depending on the superficial gas velocity, where all the solids across the riser cross section flow upwards, even those at the wall. When the solids flux, solids fraction and gasmore » velocity are relatively high, such a condition is described as the dense phase suspense upflow (DSU) regime. In this paper we report our observations of these flow regime transitions by using a laser Doppler velocimeter (LDV) to monitor the upward and downward particle flow velocities at and near the riser wall of the National Energy Technology Laboratory’s 30.4 centimeters diameter CFB cold flow model. The particles were high density polyethylene (PPE) spheres with a Sauter mean diameter of 861 micron and a density of 800 kg/m3. Three superficial gas velocities of 6.55 m/s, 10.67 m/s and 13.72 m/s were used in this study. For the case of superficial gas velocity 6.55 m/s, the experimental data show that the transition from dilute upflow to core-annular flow occurred when the solids flux was about 7 kg/m{sup 2}-s and the transition from core-annular flow to dense suspension upflow was about 147 kg/m{sup 2}-s. As the superficial gas velocity was increased to 10.67 m/s the corresponding flow regime transitions were at 34 kg/m{sup 2}-s and 205 kg/m{sup 2}-s, respectively. For the case of superficial gas velocity of 13.72 m/s the data showed no distinct transition of flow regimes. The particles were all upflow for the range of solids fluxes from 10 kg/m{sup 2}-s to 286 kg/m{sup 2}-s.« less

  4. Neutron-Capture Elements in Very Metal-Poor Halo Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.; Sneden, C.; Cowan, J. J.; Lawler, J. E.; Primas, F.; Beers, T. C.; Truran, J. W.

    2000-05-01

    Abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) in metal-poor stars can provide crucial information about the so-called ``third neutron-capture peak,'' and are critical to the radioactive-dating technique that uses unstable thorium and uranium as chronometers. As the relevant transitions occur in the UV and are inaccessable to ground-based telescopes, we have obtained high resolution (R ~= 30,000) UV spectra of 10 very metal-poor (--3.0 <= [Fe/H] <= --1.4) halo giants using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope. Using iterative spectrum synthesis techniques, we derive abundances for some of these heavy elements. We compare our abundances to those predicted for very metal-poor stars based on a scaled solar system rapid-process (production in rapid neutron-capture synthesis events, such as occurs during supernovae explosions). This research is supported by NASA STScI grant GO-08342 and NSF grants AST-9618364 to C.S. and AST-9618332 to J.J.C.

  5. Using Story to Help Student Understanding of Gas Behavior

    ERIC Educational Resources Information Center

    Wiebe, Rick; Stinner, Arthur

    2010-01-01

    Students tend to have a poor understanding of the concept of gas pressure. Usually, gas pressure is taught in terms of the various formulaic gas laws. The development of the concept of gas pressure according to the early Greeks did not include the concept of a vacuum. It was not for another 2000 years that Torricelli proposed that a vacuum can…

  6. Lean-rich axial stage combustion in a can-annular gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laster, Walter R.; Szedlacsek, Peter

    2016-06-14

    An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustionmore » in the gas turbine engine (10) is also presented.« less

  7. Liquid slip over gas nanofilms

    NASA Astrophysics Data System (ADS)

    Ramisetti, Srinivasa B.; Borg, Matthew K.; Lockerby, Duncan A.; Reese, Jason M.

    2017-08-01

    We propose the rarefied-gas-cushion model (r-GCM), as an extended version of the gas-cushion model (GCM), to estimate the apparent slip of water flowing over a gas layer trapped at a solid surface. Nanobubbles or gas nanofilms may manifest rarefied-gas effects and the r-GCM incorporates kinetic boundary conditions for the gas component in the slip Knudsen regime. These enable an apparent hydrodynamic slip length to be calculated given the gas thickness, the Knudsen number, and the bulk fluid viscosities. We assess the r-GCM through nonequilibrium molecular dynamics (NEMD) simulations of shear-driven liquid flow over an infinite gas nanofilm covering a solid surface, from the gas slip regime to the early transition regime, beyond which NEMD is computationally impractical. We find that, over the flow regimes examined, the r-GCM provides better predictions of the apparent liquid slip and retrieves both the GCM and the free-molecular behavior in the appropriate limits.

  8. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    NASA Technical Reports Server (NTRS)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a

  9. The extreme limit of the generalised Chaplygin gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piattella, Oliver F., E-mail: oliver.piattella@uninsubria.it

    2010-03-01

    Unified Dark Matter models describe Dark Matter and Dark Energy as a single entity which is, in the simplest case, embodied in a perfect barotropic fluid. It is a well-established fact that small adiabatic perturbations of Unified Dark Matter have an evolution characterised by oscillations and decay which provide predictions on the Cosmic Background Radiation anisotropies which are in poor agreement with observation. In this paper we investigate the generalised Chaplygin gas and we find that the Integrated Sachs-Wolfe effect excludes the model for 10{sup −3} < α < 350. We discuss the implications on the background evolution of themore » Universe if large values of α are considered. In this case, the Universe expansion mimics a matter-dominated phase abruptly followed by a de Sitter one at the transition redshift z{sub tr}. Thanks to an analysis of the type Ia supernovae Constitution set we are able to place z{sub tr} = 0.22.« less

  10. SCATTERING OF SLOW NEUTRONS FROM PROPANE GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strong, K.A.; Marshall, G.D.; Brugger, R.M.

    1962-02-01

    Measurements of the partial differential neutron scattering cross sections for room-temperature propane gas are reported. These measurements were made at incident energies of 0.0l01, 0.0254, 0.0736, and 0.102 ev at seven scattering angles between 16.3 and 84.7 deg using the Materials Testing Reactor phased chopper velocity selector. The data are convented to the scattering-law presentation and compared with three theoretical calculations: The ideal gas, using an effective mass obtained from an average of the mass tensors for the three types of H atoms in propane, gives poor agreement. The Krieger-Nelkin approximation, which includes the effect of zero-point vibrations, gives limitedmore » agreement for energy transfer less than 0.5 k/sub b/T at intermediate momentum transfers. At large momentum transfers where vibrational effects become important it underestimates the cross section. A modification of the Krieger- Nelkin theory that includes the effects of single-quantum transitions from the three lowest vibratlonal states gives better agreement. The discrepancies still present at large momentum and energy transfers are attributed to an uncertainty in the methylgroup barrier height for the three lowest energy modes, to the harmonlc oscillator approximation for these modes, and to the approximate molecular orientation averaging used in the calculation. (auth)« less

  11. Good urban transit: a conservative model

    DOT National Transportation Integrated Search

    2009-02-01

    For many years, transit advocates and city planners have argued that we need more and : better public transportation. Public transportation is not merely a service to the poor, something that enables people who have no car or do not drive to get arou...

  12. Long-term trends and a sustainability transition

    PubMed Central

    Kates, Robert W.; Parris, Thomas M.

    2003-01-01

    How do long-term global trends affect a transition to sustainability? We emphasize the “multitrend” nature of 10 classes of trends, which makes them complex, contradictory, and often poorly understood. Each class includes trends that make a sustainability transition more feasible as well as trends that make it more difficult. Taken in their entirety, they serve as a checklist for the consideration of global trends that impact place-based sustainability studies. PMID:12829798

  13. Draft greenhouse gas emissions from transit projects : programmatic assessment

    DOT National Transportation Integrated Search

    2016-11-01

    The National Environmental Policy Act (NEPA) requires federal agencies to disclose and analyze the environmental effects of their proposed actions. The Federal Transit Administration (FTA) currently believes that assessing the effects of greenhouse g...

  14. In-Use Fleet Evaluation of Fast-Charge Battery Electric Transit Buses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Kelly, Kenneth; Eudy

    2016-06-27

    With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2015, NREL launched an in-service evaluation of 12 battery electric buses (BEBs) compared to conventional compressed natural gas (CNG) buses operated by Foothill Transit in West Covina, California. The study aims to improve understanding of the overall usage and effectiveness of fast-charge BEBs and associated chargingmore » infrastructure in transit operation. To date, NREL researchers have analyzed more than 148,000 km of in-use operational data, including driving and charging events. Foothill Transit purchased the BEBs with grant funding from the Federal Transit Administration's Transit Investments for Greenhouse Gas and Energy Reduction Program.« less

  15. The viscous to brittle transition in eruptions of clay suspensions

    NASA Astrophysics Data System (ADS)

    Schmid, Diana; Scheu, Bettina; Wadsworth, Fabian B.; Kennedy, Ben; Jolly, Art; Dingwell, Donald B.

    2017-04-01

    The research is motivated by the early 2013 activity of White Island, New Zealand, which was characterized by frequent small phreatic activity through a fine grained mud rich shallow crater lake. Field observations demonstrate that the small eruptions were driven by bubble-burst events. Additionally, during the ongoing eruption, water vigorously evaporated, causing a shift in rheology of the crater lake liquid-solid suspension. Yet, the effect of water content on the eruptive behaviour of clay-bearing liquid suspensions is poorly understood. Here we investigate the influence of the solid to water ratio of the clay material erupted on the eruption characteristics. Kaolin was used as an analogue for the clay and was mixed with water in different proportions. We conducted experiments with different kaolin/water mixtures held at 120°C, in which they were decompressed from 2-4 bars to ambient conditions in a few milliseconds. During an experimental eruption, the velocity of the ejected material decreased, resulting in shifts in behaviour. Based on our experimental observations we established five different regimes that depend on the particle velocity relative to the gas velocity, and on the kaolin to water ratio of the mixture. In all experiments and for all kaolin to water ratios, regime 1 is one in which particles are ejected rapidly in an expanding high velocity gas jet. In the liquid-dominated system (low kaolin to water ratios), the jet phase evolves to the ejection of elongate fluidal structures (regime 2) and then to discrete droplets (regime 3) as the ejection velocity wanes. Contrastingly, in the solid-dominated system, the jet phase (regime 1) transitions to a mixed solid-fluid structures (regime 4) and then to individual angular ejecta (regime 5). On the basis of high speed image analysis, we establish a phase diagram separating these regimes based on kaolin/water mixing rations and the ejecta velocities observed. The dominant transition between fluidal and

  16. Poor sleep in relation to natural menopause: a population-based 14-year follow-up of midlife women.

    PubMed

    Freeman, Ellen W; Sammel, Mary D; Gross, Stephanie A; Pien, Grace W

    2015-07-01

    transition. Overall, poor sleep does not increase around the FMP and frequently occurs in the absence of hot flashes, indicating that sleep difficulties in the menopausal transition in generally healthy women are not simply associated with ovarian decline.

  17. Cutaneous metastasis of transitional cell bladder carcinoma: a rare presentation and literature review.

    PubMed

    Salemis, Nikolaos S; Gakis, Christos; Zografidis, Andreas; Gourgiotis, Stavros

    2011-01-01

    Cutaneous metastasis from transitional cell bladder carcinoma is a rare clinical entity associated with poor prognosis. We present a case of cutaneous metastasis arising from a transitional cell bladder carcinoma in a male patient who had undergone a radical cystectomy and bilateral ureterostomy 17 months previously. The cutaneous metastasis became evident 3 months before the manifestations of generalized recurrent disease. An awareness of this rare clinical entity and high index of suspicion is needed to rule out metastatic spread in patients with a previous history of transitional cell bladder carcinoma presenting with cutaneous nodules. Definitive diagnosis requires a histological confirmation, but prognosis is generally poor.

  18. Carbon-enhanced metal-poor stars: relics from the dark ages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Ryan J.; Madau, Piero, E-mail: rcooke@ucolick.org

    2014-08-20

    We use detailed nucleosynthesis calculations and a realistic prescription for the environment of the first stars to explore the first episodes of chemical enrichment that occurred during the dark ages. Based on these calculations, we propose a novel explanation for the increased prevalence of carbon-enhanced metal-poor (CEMP) stars with decreasing Fe abundance: the observed chemistry for the most metal-poor Galactic halo stars is the result of an intimate link between the explosions of the first stars and their host minihalo's ability to retain its gas. Specifically, high-energy supernovae produce a near solar ratio of C/Fe, but are effective in evacuatingmore » the gas from their host minihalo, thereby suppressing the formation of a second generation of stars. On the other hand, minihalos that host low-energy supernovae are able to retain their gas and form a second stellar generation, but, as a result, the second stars are born with a supersolar ratio of C/Fe. Our models are able to accurately reproduce the observed distributions of [C/Fe] and [Fe/H], as well as the fraction of CEMP stars relative to non-CEMP stars as a function of [Fe/H] without any free parameters. We propose that the present lack of chemical evidence for very massive stars (≳ 140 M {sub ☉}) that ended their lives as a highly energetic pair-instability supernova does not imply that such stars were rare or did not exist; the chemical products of these very massive first stars may have been evacuated from their host minihalos and were never incorporated into subsequent generations of stars. Finally, our models suggest that the most Fe-poor stars currently known may have seen the enrichment from a small multiple of metal-free stars, and need not have been exclusively enriched by a solitary first star. These calculations also add further support to the possibility that some of the surviving dwarf satellite galaxies of the Milky Way are the relics of the first galaxies.« less

  19. THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER 'SUPER-EARTHS'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Alex R.; Burrows, Adam S., E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu

    2012-09-10

    We present new calculations of transit spectra of super-Earths that allow for atmospheres with arbitrary proportions of common molecular species and haze. We test this method with generic spectra, reproducing the expected systematics and absorption features, then apply it to the nearby super-Earth GJ 1214b, which has produced conflicting observational data, leaving the questions of a hydrogen-rich versus hydrogen-poor atmosphere and the water content of the atmosphere ambiguous. We present representative transit spectra for a range of classes of atmosphere models for GJ 1214b. Our analysis supports a hydrogen-rich atmosphere with a cloud or haze layer, although a hydrogen-poor modelmore » with {approx}<10% water is not ruled out. Several classes of models are ruled out, however, including hydrogen-rich atmospheres with no haze, hydrogen-rich atmospheres with a haze of {approx}0.01 {mu}m tholin particles, and hydrogen-poor atmospheres with major sources of absorption other than water. We propose an observational test to distinguish hydrogen-rich from hydrogen-poor atmospheres. Finally, we provide a library of theoretical transit spectra for super-Earths with a broad range of parameters to facilitate future comparison with anticipated data.« less

  20. Warps and intra-cavity kinematics in transition disks

    NASA Astrophysics Data System (ADS)

    Casassus, S.

    2017-07-01

    The inferrence of radial gaps in the "transition disk" stage of protoplanetary disk evolution motivates questions on their origin, and possible link to planet formation. This talk presented recent observations of cavities in transition disks. Here we report on the aspects related to the observations of warps, and on the structure and kinematics of the residual gas inside TD cavities.

  1. Far-infrared Spectroscopy of Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.

    1984-01-01

    Research results of far-infrared spectroscopy with the Kuiper Airborne Observatory are discussed. Both high and intermediate resolution have been successfully employed in the detection of many new molecular and atomic lines including rotational transition of hydrides such as OH, H2O, NH3 and HCl; high J rotational transitions of CO; and the ground state fine structure transitions of atomic carbon, oxygen, singly ionized carbon and doubly ionized oxygen and nitrogen. These transitions have been used to study the physics and chemistry of clouds throughout the galaxy, in the galactic center region and in neighboring galaxies. This discussion is limited to spectroscopic studies of interstellar gas.

  2. Youth and administrator perspectives on transition in Kentucky's state agency schools.

    PubMed

    Marshall, Amy; Powell, Norman; Pierce, Doris; Nolan, Ronnie; Fehringer, Elaine

    2012-01-01

    Students, a large percentage with disabilities, are at high risk for poor post-secondary outcomes in state agency education programs. This mixed-methods study describes the understandings of student transitions in state agency education programs from the perspectives of youth and administrators. Results indicated that: transition is more narrowly defined within alternative education programs; key strengths of transition practice are present in nontraditional schools; and the coordination barriers within this fluid inter-agency transition system are most apparent in students' frequent inter-setting transitions between nontraditional and home schools.

  3. Study on optimum technological conditions of ore sintering flue gas desulfurization by using poor manganese

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Li, S. E.; Long, Z. G.; Wu, F. Z.; Cui, T. M.; Zhou, X. Z.

    2017-11-01

    Orthogonal experiments were conducted to study the effect of each single factor on the desulfurization rate and leaching rate of Mn2+ to obtain improved process parameters. The results showed that the use of pyrolusite flue gas and the process method of by-product MnSO4 can not only effectively remove the sulfur in the gas, thereby controlling environmental pollution, but can also recover sulfur.

  4. An experimental investigation of wall boundary layer transition Reynolds numbers in an expansion tube

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.

    1974-01-01

    Experimental measurements of boundary-layer transition in an expansion-tube test-gas flow are presented along with radial distributions of pitot pressure. An integral method for calculating constant Reynolds number lines for an expansion-tube flow is introduced. Comparison of experimental data and constant Reynolds number calculations has shown that for given conditions, wall boundary-layer transition occurs at a constant Reynolds number in an expansion-tube flow. Operating conditions in the expansion tube were chosen so that the effects of test-gas nonequilibrium on boundary-layer transition could be studied.

  5. Reducing transit bus emissions: Alternative fuels or traffic operations?

    NASA Astrophysics Data System (ADS)

    Alam, Ahsan; Hatzopoulou, Marianne

    2014-06-01

    In this study, we simulated the operations and greenhouse gas (GHG) emissions of transit buses along a busy corridor and quantified the effects of two different fuels (conventional diesel and compressed natural gas) as well as a set of driving conditions on emissions. Results indicate that compressed natural gas (CNG) reduces GHG emissions by 8-12% compared to conventional diesel, this reduction could increase to 16% with high levels of traffic congestion. However, the benefits of switching from conventional diesel to CNG are less apparent when the road network is uncongested. We also investigated the effects of bus operations on emissions by applying several strategies such as transit signal priority (TSP), queue jumper lanes, and relocation of bus stops. Results show that in congested conditions, TSP alone can reduce GHG emissions by 14% and when combined with improved technology; a reduction of 23% is achieved. The reduction benefits are even more apparent when other transit operational improvements are combined with TSP. Finally a sensitivity analysis was performed to investigate the effect of operational improvements on emissions under varying levels of network congestion. We observe that under “extreme congestion”, the benefits of TSP decrease.

  6. Transition Goals for Youth with Social, Emotional, and Behavioral Problems: Parent and Student Knowledge

    ERIC Educational Resources Information Center

    Harrison, Judith R.; State, Talida M.; Wills, Howard P.; Custer, Beth A.; Miller, Elaine

    2017-01-01

    Transition planning is a mandated component of individualized education plans (IEPs) designed to ensure successful transition to adult life for students with disabilities. Students with social, emotional, and behavioral (SEB) needs experience poor post-school outcomes, suggesting a need for more effective transition planning. This study evaluated…

  7. Kinematics of Extremely Metal-poor Galaxies: Evidence for Stellar Feedback

    NASA Astrophysics Data System (ADS)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Méndez-Abreu, J.

    2017-01-01

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s-1. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxy midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The Hα line wings show a number of faint emission features with amplitudes around a few per cent of the main Hα component, and wavelength shifts between 100 and 400 km s-1. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.

  8. After the Fall: The Dust and Gas in E+A Post-starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Smercina, A.; Smith, J. D. T.; Dale, D. A.; French, K. D.; Croxall, K. V.; Zhukovska, S.; Togi, A.; Bell, E. F.; Crocker, A. F.; Draine, B. T.; Jarrett, T. H.; Tremonti, C.; Yang, Yujin; Zabludoff, A. I.

    2018-03-01

    The traditional picture of post-starburst galaxies as dust- and gas-poor merger remnants, rapidly transitioning to quiescence, has been recently challenged. Unexpected detections of a significant interstellar medium (ISM) in many post-starburst galaxies raise important questions. Are they truly quiescent, and if so, what mechanisms inhibit further star formation? What processes dominate their ISM energetics? We present an infrared spectroscopic and photometric survey of 33 E+A post-starbursts selected by the Sloan Digital Sky Survey, aimed at resolving these questions. We find compact, warm dust reservoirs with high PAH abundances and total gas and dust masses significantly higher than expected from stellar recycling alone. Both polycyclic aromatic hydrocarbon (PAH)/total infrared (TIR) and dust-to-burst stellar mass ratios are seen to decrease with post-burst age, indicative of the accumulating effects of dust destruction and an incipient transition to hot, early-type ISM properties. Their infrared spectral properties are unique, with dominant PAH emission, very weak nebular lines, unusually strong H2 rotational emission, and deep [C II] deficits. There is substantial scatter among star formation rate (SFR) indicators, and both PAH and TIR luminosities provide overestimates. Even as potential upper limits, all tracers show that the SFR has typically experienced a decline of more than two orders of magnitude since the starburst and that the SFR is considerably lower than expected given both their stellar masses and molecular gas densities. These results paint a coherent picture of systems in which star formation was, indeed, rapidly truncated, but in which the ISM was not completely expelled, and is instead supported against collapse by latent or continued injection of turbulent or mechanical heating. The resulting aging burst populations provide a “high-soft” radiation field that seemingly dominates the E+A galaxies’ unusual ISM energetics.

  9. Valorization of Flue Gas by Combining Photocatalytic Gas Pretreatment with Microalgae Production.

    PubMed

    Eynde, Erik Van; Lenaerts, Britt; Tytgat, Tom; Blust, Ronny; Lenaerts, Silvia

    2016-03-01

    Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solublilty in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NOx in the cultivation broth. The absorbed NOx will form NO2(-) and NO3(-) that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%.

  10. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    PubMed

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  11. Buoyancy Effects on Flow Transition in Low-Density Inertial Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap S.; Agrawal, Ajay K.

    2005-01-01

    Effects of buoyancy on transition from laminar to turbulent flow are presented for momentum-dominated helium jet injected into ambient air. The buoyancy was varied in a 2.2-sec drop tower facility without affecting the remaining operating parameters. The jet flow in Earth gravity and microgravity was visualized using the rainbow schlieren deflectometry apparatus. Results show significant changes in the flow structure and transition behavior in the absence of buoyancy.

  12. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.

    PubMed

    Börzsönyi, Tamás; Ecke, Robert E

    2006-12-01

    We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.

  13. Bar quenching in gas-rich galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  14. Sandia and NJ TRANSIT Authority Developing Resilient Power Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanley, Charles J.; Ellis, Abraham

    2014-11-01

    Through the memorandum of understanding between the Depratment of Energy (DOE), the New Jersey Transit Authority (NJ Transit), and the New Jersey Board of Public Utilities, Sandia National Labs is assisting NJ Transit in developing NJ TransitGrid: an electric microgrid that will include a large-scale gas-fired generation facility and distributed energy resources (photovoltaics [PV], energy storage, electric vehicles, combined heat and power [CHP]) to supply reliable power during storms or other times of significant power failure. The NJ TransitGrid was awarded $410M from the Department of Transportation to develop a first-of-its-kind electric microgrid capable of supplying highly-reliable power.

  15. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.

    PubMed

    Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui

    2018-02-08

    The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.

  16. Gas solubility in hydrophobic confinement.

    PubMed

    Luzar, Alenka; Bratko, Dusan

    2005-12-01

    Measured forces between apolar surfaces in water have often been found to be sensitive to exposure to atmospheric gases despite low gas solubilities in bulk water. This raises questions as to how significant gas adsorption is in hydrophobic confinement, whether it is conducive to water depletion at such surfaces, and ultimately if it can facilitate the liquid-to-gas phase transition in the confinement. Open Ensemble molecular simulations have been used here to determine saturated concentrations of atmospheric gases in water-filled apolar confinements as a function of pore width at varied gas fugacities. For paraffin-like confinements of widths barely exceeding the mechanical instability threshold (spinodal) of the liquid-to-vapor transition of confined water (aqueous film thickness between three and four molecular diameters), mean gas concentrations in the pore were found to exceed the bulk values by a factor of approximately 30 or approximately 15 in cases of N2 and CO2, respectively. At ambient conditions, this does not result in visible changes in the water density profile next to the surfaces. Whereas the barrier to capillary evaporation has been found to decrease in the presence of dissolved gas (Leung, K.; Luzar, A.; and Bratko, D. Phys. Rev. Lett. 2003, 90, 065502), gas concentrations much higher than those observed at normal atmospheric conditions would be needed to produce noticeable changes in the kinetics of capillary evaporation. In simulations, dissolved gas concentrations corresponding to fugacities above approximately 40 bar for N2, or approximately 2 bar for CO2, were required to trigger expulsion of water from a hydrocarbon slit as narrow as 1.4 nm. For nanosized pore widths corresponding to the mechanical instability threshold or above, no significant coupling between adsorption layers at opposing confinement walls was observed. This finding explains the approximately linear increase in gas solubility with inverse confinement width and the

  17. Investigation of the transition of multicycle AC operation in ISTTOK under edge electrode biasing

    NASA Astrophysics Data System (ADS)

    Malaquias, A.; Henriques, R. B.; Silva, C.; Figueiredo, H.; Nedzelskiy, I. S.; Fernandes, H.; Sharma, R.; Plyusnin, V. V.

    2017-11-01

    In this paper we present recent results obtained on plasma edge electrode biasing during AC discharges. The goal is to obtain experimental evidence on a number of plasma parameters that can play a role during the AC transition on the repeatability and reproducibility of AC operation. The control of the plasma density in the quiescent phase is made just before the AC transition by means of positive edge biasing leading to a transitory improved of density (30%-40%). Gas puff experiments show that the increase of background gas pressure during discharge led to a better success of the AC transition. The experimental results indicate that the increase of density during the AC transition induced by edge biasing is followed by an electron temperature drop. The drop in electron temperature leads in most cases the formation of runaway electrons. It has been observed that the runaway population during discharge flattop depends on the interplay between gas content and plasma density and temperature. The results also confirm that the correct balance of external magnetic fields is crucial during the AC transition phase where drift electron currents are formed. The results from the heavy ion beam diagnostic show that the formation of plasma current during consecutive AC transitions is asymmetric. Numerical simulations indicate that for some particular conditions this result could be reproduced from assuming the presence of two counter-currents during AC transition.

  18. Can dead zones create structures like a transition disk?

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola; Flock, Mario; Ovelar, Maria de Juan; Birnstiel, Til

    2016-12-01

    Context. Regions of low ionisation where the activity of the magneto-rotational instability is suppressed, the so-called dead zones, have been suggested to explain gaps and asymmetries of transition disks. Dead zones are therefore a potential cause for the observational signatures of transition disks without requiring the presence of embedded planets. Aims: We investigate the gas and dust evolution simultaneously assuming simplified prescriptions for a dead zone and a magnetohydrodynamic (MHD) wind acting on the disk. We explore whether the resulting gas and dust distribution can create signatures similar to those observed in transition disks. Methods: We imposed a dead zone and/or an MHD wind in the radial evolution of gas and dust in protoplanetary disks. For the dust evolution, we included the transport, growth, and fragmentation of dust particles. To compare with observations, we produced synthetic images in scattered optical light and in thermal emission at mm wavelengths. Results: In all models with a dead zone, a bump in the gas surface density is produced that is able to efficiently trap large particles (≳ 1 mm) at the outer edge of the dead zone. The gas bump reaches an amplitude of a factor of 5, which can be enhanced by the presence of an MHD wind that removes mass from the inner disk. While our 1D simulations suggest that such a structure can be present only for 1 Myr, the structure may be maintained for a longer time when more realistic 2D/3D simulations are performed. In the synthetic images, gap-like low-emission regions are seen at scattered light and in thermal emission at mm wavelengths, as previously predicted in the case of planet-disk interaction. Conclusions: Main signatures of transition disks can be reproduced by assuming a dead zone in the disk, such as gap-like structure in scattered light and millimetre continuum emission, and a lower gas surface density within the dead zone. Previous studies showed that the Rossby wave instability can

  19. Assessing the greenhouse impact of natural gas

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.

    2012-06-01

    The global warming impact of substituting natural gas for coal and oil is currently in debate. We address this question here by comparing the reduction of greenhouse warming that would result from substituting gas for coal and some oil to the reduction which could be achieved by instead substituting zero carbon energy sources. We show that substitution of natural gas reduces global warming by 40% of that which could be attained by the substitution of zero carbon energy sources. At methane leakage rates that are ˜1% of production, which is similar to today's probable leakage rate of ˜1.5% of production, the 40% benefit is realized as gas substitution occurs. For short transitions the leakage rate must be more than 10 to 15% of production for gas substitution not to reduce warming, and for longer transitions the leakage must be much greater. But even if the leakage was so high that the substitution was not of immediate benefit, the 40%-of-zero-carbon benefit would be realized shortly after methane emissions ceased because methane is removed quickly from the atmosphere whereas CO2 is not. The benefits of substitution are unaffected by heat exchange to the ocean. CO2 emissions are the key to anthropogenic climate change, and substituting gas reduces them by 40% of that possible by conversion to zero carbon energy sources. Gas substitution also reduces the rate at which zero carbon energy sources must eventually be introduced.

  20. Gas Inside the 97 AU Cavity around the Transition Disk Sz 91

    NASA Astrophysics Data System (ADS)

    Canovas, H.; Schreiber, M. R.; Cáceres, C.; Ménard, F.; Pinte, C.; Mathews, G. S.; Cieza, L.; Casassus, S.; Hales, A.; Williams, J. P.; Román, P.; Hardy, A.

    2015-05-01

    We present ALMA (Cycle 0) band 6 and band 3 observations of the transition disk Sz 91. The disk inclination and position angle are determined to be i = 49.°5 ± 3.°5°and PA = 18.°2 ± 3.°5 and the dusty and gaseous disk are detected up to ˜220 and ˜400 AU from the star, respectively. Most importantly, our continuum observations indicate that the cavity size in the millimeter-sized dust distribution must be ˜97 AU in radius, the largest cavity observed around a T Tauri star. Our data clearly confirm the presence of 12CO (2-1) well inside the dust cavity. Based on these observational constraints we developed a disk model that simultaneously accounts for the 12CO and continuum observations (i.e., gaseous and dusty disk). According to our model, most of the millimeter emission comes from a ring located between 97 and 140 AU. We also find that the dust cavity is divided into an innermost region largely depleted of dust particles ranging from the dust sublimation radius up to 85 AU, and a second, moderately dust-depleted region, extending from 85 to 97 AU. The extremely large size of the dust cavity, the presence of gas and small dust particles within the cavity, and the accretion rate of Sz 91 are consistent with the formation of multiple (giant) planets.

  1. Low-frequency radio observations of poor clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; White, R. A.

    1981-01-01

    Observations have been made at the Clark Lake Radio Observatory of 16 poor clusters of galaxies at 34.3 MHz. Four of the poor clusters were detected at flux densities greater than 20 Jy. The spectra of the four detected clusters are all rather steep. Two of the detected clusters, AWM 4 and AWM 5, are also known to be X-ray sources. The possibility that the X-ray-emitting gas is heated by Coulomb interactions with the relativistic electrons responsible for the radio emission is investigated, and it is found that the observed X-ray luminosities can be accounted for if the electron energy spectrum extends to very low energies (gamma approximately 1-10). Collective plasma effects may increase the heating efficiency and eliminate the need to extrapolate the electron energy spectrum to such low values.

  2. NGTS-1b: a hot Jupiter transiting an M-dwarf

    NASA Astrophysics Data System (ADS)

    Bayliss, Daniel; Gillen, Edward; Eigmüller, Philipp; McCormac, James; Alexander, Richard D.; Armstrong, David J.; Booth, Rachel S.; Bouchy, François; Burleigh, Matthew R.; Cabrera, Juan; Casewell, Sarah L.; Chaushev, Alexander; Chazelas, Bruno; Csizmadia, Szilard; Erikson, Anders; Faedi, Francesca; Foxell, Emma; Gänsicke, Boris T.; Goad, Michael R.; Grange, Andrew; Günther, Maximilian N.; Hodgkin, Simon T.; Jackman, James; Jenkins, James S.; Lambert, Gregory; Louden, Tom; Metrailler, Lionel; Moyano, Maximiliano; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raddi, Roberto; Rauer, Heike; Raynard, Liam; Smith, Alexis M. S.; Soto, Maritza; Thompson, Andrew P. G.; Titz-Weider, Ruth; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-04-01

    We present the discovery of NGTS-1b, a hot Jupiter transiting an early M-dwarf host (Teff,* = 3916 ^{+71}_{-63} K) in a P = 2.647 d orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of 0.812 ^{+0.066}_{-0.075} MJ, making it the most massive planet ever discovered transiting an M-dwarf. The radius of the planet is 1.33 ^{+0.61}_{-0.33} RJ. Since the transit is grazing, we determine this radius by modelling the data and placing a prior on the density from the population of known gas giant planets. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar-type stars. The host star shows no signs of activity, and the kinematics hint at the star being from the thick disc population. With a deep (2.5 per cent) transit around a K = 11.9 host, NGTS-1b will be a strong candidate to probe giant planet composition around M-dwarfs via James Webb Space Telescope transmission spectroscopy.

  3. Transition to turbulence under low-pressure turbine conditions.

    PubMed

    Simon, T W; Kaszeta, R W

    2001-05-01

    In this paper, the topic of laminar to turbulent flow transition, as applied to the design of gas turbines, is discussed. Transition comes about when a flow becomes sufficiently unstable that the orderly vorticity structure of the laminar layer becomes randomly oriented. Vorticity with a streamwise component leads to rapid growth of eddies of a wide range of sizes and eventually to turbulent flow. Under "natural" transition, infinitesimal disturbances of selected frequencies grow. "Bypass transition" is a term coined to describe a similar process, but one driven by strong external disturbances. Transition proceeds so rapidly that the processes associated with "natural" transition seem to be "bypassed." Because the flow environment in the turbine is disturbed by wakes from upstream airfoils, eddies from combustor flows, jets from film cooling, separation zones on upstream airfoils and steps in the duct walls, transition is of the bypass mode. In this paper, we discuss work that has been done to characterize and model bypass transition, as applied to the turbine environment.

  4. Clean air program : design guidelines for bus transit systems using hydrogen as an alternative fuel

    DOT National Transportation Integrated Search

    1999-04-01

    Alternative fuels such as Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and alcohol fuels (methanol, and ethanol) are already being used in commercial vehicles and transit buses in revenue service. Hydrogen...

  5. Indirect Gas Species Monitoring Using Tunable Diode Lasers

    DOEpatents

    Von Drasek, William A.; Saucedo, Victor M.

    2005-02-22

    A method for indirect gas species monitoring based on measurements of selected gas species is disclosed. In situ absorption measurements of combustion species are used for process control and optimization. The gas species accessible by near or mid-IR techniques are limited to species that absorb in this spectral region. The absorption strength is selected to be strong enough for the required sensitivity and is selected to be isolated from neighboring absorption transitions. By coupling the gas measurement with a software sensor gas, species not accessible from the near or mid-IR absorption measurement can be predicted.

  6. Controls on gas transfer velocities in a large river

    EPA Science Inventory

    The emission of biogenic gases from large rivers can be an important component of regional greenhouse gas budgets. However, emission rate estimates are often poorly constrained due to uncertainties in the air-water gas exchange rate. We used the floating chamber method to estim...

  7. Behavior and dynamics of bubble breakup in gas pipeline leaks and accidental subsea oil well blowouts.

    PubMed

    Wang, Binbin; Socolofsky, Scott A; Lai, Chris C K; Adams, E Eric; Boufadel, Michel C

    2018-06-01

    Subsea oil well blowouts and pipeline leaks release oil and gas to the environment through vigorous jets. Predicting the breakup of the released fluids in oil droplets and gas bubbles is critical to predict the fate of petroleum compounds in the marine water column. To predict the gas bubble size in oil well blowouts and pipeline leaks, we observed and quantified the flow behavior and breakup process of gas for a wide range of orifice diameters and flow rates. Flow behavior at the orifice transitions from pulsing flow to continuous discharge as the jet crosses the sonic point. Breakup dynamics transition from laminar to turbulent at a critical value of the Weber number. Very strong pure gas jets and most gas/liquid co-flowing jets exhibit atomization breakup. Bubble sizes in the atomization regime scale with the jet-to-plume transition length scale and follow -3/5 power-law scaling for a mixture Weber number. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.

    PubMed

    Guo, Xuelian; Yu, Chao; Luo, Le; Wan, Huihua; Zhen, Ni; Xu, Tingliang; Tan, Jiongrui; Pan, Huitang; Zhang, Qixiang

    2017-02-23

    The floral transition plays a vital role in the life of ornamental plants. Despite progress in model plants, the molecular mechanisms of flowering regulation remain unknown in perennial plants. Rosa chinensis 'Old Blush' is a unique plant that can flower continuously year-round. In this study, gene expression profiles associated with the flowering transition were comprehensively analyzed during floral transition in the rose. According to the transcriptomic profiles, 85,663 unigenes and 1,637 differentially expressed genes (DEGs) were identified, among which 32 unigenes were involved in the circadian clock, sugar metabolism, hormone, and autonomous pathways. A hypothetical model for the regulation of floral transition was proposed in which the candidate genes function synergistically the floral transition process. Hormone contents and biosynthesis and metabolism genes fluctuated during the rose floral transition process. Gibberellins (GAs) inhibited rose floral transition, the content of GAs gradually decreased and GA2ox and SCL13 were upregulated from vegetative (VM) meristem to floral meristem (FM). Auxin plays an affirmative part in mediating floral transition, auxin content and auxin-related gene expression levels were gradually upregulated during the floral transition of the rose. However, ABA content and ABA signal genes were gradually downregulated, suggesting that ABA passively regulates the rose floral transition by participating in sugar signaling. Furthermore, sugar content and sugar metabolism genes increased during floral transition in the rose, which may be a further florigenic signal that activates floral transition. Additionally, FRI, FY, DRM1, ELIP, COP1, CO, and COL16 are involved in the circadian clock and autonomous pathway, respectively, and they play a positively activating role in regulating floral transition. Overall, physiological changes associated with genes involved in the circadian clock or autonomous pathway collectively regulated the

  9. The formation of co-orbital planets and their resulting transit signatures

    NASA Astrophysics Data System (ADS)

    Granados Contreras, Agueda Paula; Boley, Aaron

    2018-04-01

    Systems with Tightly-packed Inner Planets (STIPs) are metastable, exhibiting sudden transitions to an unstable state that can potentially lead to planet consolidation. When these systems are embedded in a gaseous disc, planet-disc interactions can significantly reduce the frequency of instabilities, and if they do occur, disc torques alter the dynamical outcomes. We ran a suite of N-body simulations of synthetic 6-planet STIPs using an independent implementation of IAS15 that includes a prescription for gaseous tidal damping. The algorithm is based on the results of disc simulations that self-consistently evolve gas and planets. Even for very compact configurations, the STIPS are resistant to instability when gas is present. However, instability can still occur, and in some cases, the combination of system instability and gaseous damping leads to the formation of co-orbiting planets that are stable even when gas damping is removed. While rare, such systems should be detectable in transit surveys, although the dynamics of the system can make the transit signature difficult to identify.

  10. PRIMORDIAL r-PROCESS DISPERSION IN METAL-POOR GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U., E-mail: iur@obs.carnegiescience.edu

    Heavy elements, those produced by neutron-capture reactions, have traditionally shown no star-to-star dispersion in all but a handful of metal-poor globular clusters (GCs). Recent detections of low [Pb/Eu] ratios or upper limits in several metal-poor GCs indicate that the heavy elements in these GCs were produced exclusively by an r-process. Re-examining GC heavy element abundances from the literature, we find unmistakable correlations between the [La/Fe] and [Eu/Fe] ratios in four metal-poor GCs (M5, M15, M92, and NGC 3201), only two of which were known previously. This indicates that the total r-process abundances vary from star to star (by factors ofmore » 2-6) relative to Fe within each GC. We also identify potential dispersion in two other GCs (M3 and M13). Several GCs (M12, M80, and NGC 6752) show no evidence of r-process dispersion. The r-process dispersion is not correlated with the well-known light element dispersion, indicating that it was present in the gas throughout the duration of star formation. The observations available at present suggest that star-to-star r-process dispersion within metal-poor GCs may be a common but not ubiquitous phenomenon that is neither predicted by nor accounted for in current models of GC formation and evolution.« less

  11. Poor Americans: How the Poor White Live.

    ERIC Educational Resources Information Center

    Pilisuk, Marc; Pilisuk, Phyllis

    Contents of this book include the following essays which originally appeared in "Transaction" magazine: (1) "Poor Americans: an introduction," Marc Pilisuk and Phyllis Pilisuk; (2) "How the white poor live," Marc Pilisuk and Phyllis Pilisuk; (3) "The culture of poverty," Oscar Lewis; (4) "Life in Appalachia--the case of Hugh McCaslin," Robert…

  12. Understanding topological phase transition in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, K. J.

    2016-03-01

    Despite considerable interest in layered transition metal dichalcogenides (TMDs), such as M X2 with M =(Mo ,W ) and X =(S ,Se ,Te ) , the physical origin of their topological nature is still poorly understood. In the conventional view of topological phase transition (TPT), the nontrivial topology of electron bands in TMDs is caused by the band inversion between metal d - and chalcogen p -orbital bands where the former is pulled down below the latter. Here, we show that, in TMDs, the TPT is entirely different from the conventional speculation. In particular, M S2 and M S e2 exhibits the opposite behavior of TPT such that the chalcogen p -orbital band moves down below the metal d -orbital band. More interestingly, in M T e2 , the band inversion occurs between the metal d -orbital bands. Our findings cast doubts on the common view of TPT and provide clear guidelines for understanding the topological nature in new topological materials to be discovered.

  13. Transition-matrix theory for two-photon ionization of rare-gas atoms and isoelectronic ions with application to argon

    NASA Astrophysics Data System (ADS)

    Starace, Anthony F.; Jiang, Tsin-Fu

    1987-08-01

    A transition-matrix theory for two-photon ionization processes in rare-gas atoms or isoelectronic ions is presented. Uncoupled ordinary differential equations are obtained for the radial functions needed to calculate the two-photon transition amplitude. The implications of these equations are discussed in detail. In particular, the role of correlations involving virtually excited electron pairs, which are known to be essential to the description of single-photon processes, is examined for multiphoton ionization processes. Additionally, electron scattering interactions between two electron-hole pairs are introduced into our transition amplitude in the boson approximation since these have been found important in two-photon ionization of xenon by L'Huillier and Wendin [J. Phys. B 20, L37 (1987)]. Application of our theory is made to two-photon ionization of the 3p subshell of argon below the one-photon ionization threshold. Our results are compared to previous calculations of McGuire [Phys. Rev. A 24, 835 (1981)], of Moccia, Rahman, and Rizzo [J. Phys. B 16, 2737 (1983)], and of Pindzola and Kelly [Phys. Rev. A 11, 1543 (1975)]. Results are presented for both circularly and linearly polarized photons. Among our findings are, firstly, that the electron scattering interactions, which have not been included in previous calculations for argon, produce a substantial reduction in the two-photon single-ionization cross section below the one-photon ionization threshold, which is in agreement with findings of L'Huillier and Wendin for xenon. Secondly, we find that de-excitation of virtually excited electron pairs by absorption of a photon is important for describing the interaction of the atom with the photon field, as in the case of single-photon ionization processes, but that further excitation of virtually excited electron pairs by the photon field has completely negligible effects, indicating a major simplification of the theory for higher-order absorption processes.

  14. KINEMATICS OF EXTREMELY METAL-POOR GALAXIES: EVIDENCE FOR STELLAR FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.

    2017-01-10

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s{sup −1}. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxymore » midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The H α line wings show a number of faint emission features with amplitudes around a few per cent of the main H α component, and wavelength shifts between 100 and 400 km s{sup −1}. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.« less

  15. The Shape of Extremely Metal-Poor Galaxies

    NASA Astrophysics Data System (ADS)

    Putko, Joseph; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Elmegreen, Bruce; Elmegreen, Debra

    2018-01-01

    This work is the first study on the 3D shape of starbursting extremely metal-poor galaxies (XMPs; a galaxy is said to be an XMP if its ionized gas-phase metallicity is less than 1/10 the solar value). A few hundred XMPs have been identified in the local universe primarily through mining the spectroscopic catalog of the Sloan Digital Sky Survey (SDSS), and follow-up observations have shown that metallicity drops significantly at the starburst (compared to the quiescent component of the galaxy). As the timescale for gas mixing is short, the metal-poor gas triggering the starburst must have been accreted recently. This is strong observational evidence for the cold flow accretion predicted by cosmological models of galaxy formation, and, in this respect, XMPs seem to be the best local analogs of the very first galaxies.The ellipsoidal shape of a class of galaxies can be inferred from the observed axial ratio (q) distribution (q = minor axis/major axis) of a large sample of randomly-oriented galaxies. Fitting ellipses to 200 XMPs using r-band SDSS images, we observe that the axial ratio distribution falls off at q < ~0.4 and q > ~0.8, and we determine that these falloffs are not due to biases in the data. The falloff at low axial ratio indicates that the XMPs are thick for their size, and the falloff at high axial ratio suggests the vast majority of XMPs are triaxial. We also observe that smaller XMPs are thicker in proportion to their size, and it is expected that for decreasing galaxy size the ratio of random to rotational motions increases, which correlates with increasing relative thickness. The XMPs are low-redshift dwarf galaxies dominated by dark matter, and our results are compatible with simulations that have shown dark matter halos to be triaxial, with triaxial stellar distributions for low-mass galaxies and with triaxiality increasing over time. We will offer precise constraints on the 3D shape of XMPs via Bayesian analysis of our observed axial ratio

  16. Detecting gas hydrate behavior in crude oil using NMR.

    PubMed

    Gao, Shuqiang; House, Waylon; Chapman, Walter G

    2006-04-06

    Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.

  17. Once in a blue moon: detection of `bluing' during debris transits in the white dwarf WD 1145+017

    NASA Astrophysics Data System (ADS)

    Hallakoun, N.; Xu, S.; Maoz, D.; Marsh, T. R.; Ivanov, V. D.; Dhillon, V. S.; Bours, M. C. P.; Parsons, S. G.; Kerry, P.; Sharma, S.; Su, K.; Rengaswamy, S.; Pravec, P.; Kušnirák, P.; Kučáková, H.; Armstrong, J. D.; Arnold, C.; Gerard, N.; Vanzi, L.

    2017-08-01

    The first transiting planetesimal orbiting a white dwarf was recently detected in K2 data of WD 1145+017 and has been followed up intensively. The multiple, long and variable transits suggest the transiting objects are dust clouds, probably produced by a disintegrating asteroid. In addition, the system contains circumstellar gas, evident by broad absorption lines, mostly in the u΄ band, and a dust disc, indicated by an infrared excess. Here we present the first detection of a change in colour of WD 1145+017 during transits, using simultaneous multiband fast-photometry ULTRACAM measurements over the u΄g΄r΄I΄ bands. The observations reveal what appears to be 'bluing' during transits; transits are deeper in the redder bands, with a u΄ - r΄ colour difference of up to ˜-0.05 mag. We explore various possible explanations for the bluing, including limb darkening or peculiar dust properties. 'Spectral' photometry obtained by integrating over bandpasses in the spectroscopic data in and out of transit, compared to the photometric data, shows that the observed colour difference is most likely the result of reduced circumstellar absorption in the spectrum during transits. This indicates that the transiting objects and the gas share the same line of sight and that the gas covers the white dwarf only partially, as would be expected if the gas, the transiting debris and the dust emitting the infrared excess are part of the same general disc structure (although possibly at different radii). In addition, we present the results of a week-long monitoring campaign of the system using a global network of telescopes.

  18. Marriage and its transition in Bangladesh.

    PubMed

    Ahmed, A U

    1986-01-01

    The author examines developments in marriage patterns in Bangladesh in light of social, cultural, and economic conditions. Previous literature on the subject is used to discuss Muslim marriage, Hindu marriage, child marriage, mate selection and social mobility, and the question of a marriage squeeze. "The analysis presents evidence that the society is experiencing a change in its family formation, mating process and family type. This transition is to some extent towards the characteristics of [the] Western World, but in a poor economy. Part of this transition is due to the effect of modernization and part due to increasing poverty." excerpt

  19. Development and Preliminary Evaluation of the Resident Coordinated-Transitional Care (RC-TraC) Program: A Sustainable Option for Transitional Care Education

    PubMed Central

    Chapman, E.; Eastman, A.; Gilmore-Bykovskyi, A.; Vogelman, B.; Kind, A. J.

    2016-01-01

    Older adults often face poor outcomes when transitioning from hospital to home. Although physicians play a key role in overseeing transitions, there is a lack of practice-based educational programs that prepare resident physicians to manage care transitions of older adults. An educational intervention to provide residents with real-life transitional care practice was therefore developed – Resident-coordinated Transitional Care (RC-TraC). RC-TraC adapted the evidence-based Coordinated-Transitional Care (C-TraC) nurse role for residents, providing opportunities to follow patients during the peri-hospital period without additional costs to the residency program. Between July 2010 and June 2013, thirty-one Internal Medicine residents participated in RC-TraC, caring for 721 patients. RC-TraC has been a sustainable, low-cost, practice-based education experience that is recognized as transitional care education by residents and continues in operation to this day. RC-TraC is a promising option for geriatric-based transitional care education of resident physicians and could also be adapted for non-physician learners. PMID:27749162

  20. TRANSITION DISK CHEMISTRY AND FUTURE PROSPECTS WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Bethell, Thomas J.

    2011-12-10

    We explore the chemical structure of a disk that contains a large central gap of R {approx} 45 AU, as is commonly seen in transitional disk systems. In our chemical model of a disk with a cleared inner void, the midplane becomes revealed to the central star so that it is directly irradiated. The midplane material at the truncation radius is permissive to reprocessed optical heating radiation, but opaque to the photodissociating ultraviolet, creating an environment abundant in gas-phase molecules. Thus the disk midplane, which would otherwise for a full disk be dominated by near complete heavy element freeze-out, shouldmore » become observable in molecular emission. If this prediction is correct this has exciting prospects for observations with the Atacama Large Millimeter/Submillimeter Array, as the inner transition region should thus be readily detected and resolved, especially using high-J rotational transitions excited in the high density midplane gas. Therefore, such observations will potentially provide us with a direct probe of the physics and chemistry at this actively evolving interface.« less

  1. Unintended greenhouse gas consequences of lowering level of service in urban transit systems

    NASA Astrophysics Data System (ADS)

    Griswold, Julia B.; Cheng, Han; Madanat, Samer; Horvath, Arpad

    2014-12-01

    Public transit is often touted as a ‘green’ transportation option and a way for users to reduce their environmental footprint by avoiding automobile emissions, but that may not be the case when systems run well below passenger capacity. In previous work, we explored an approach to optimizing the design and operations of transit systems for both costs and emissions, using continuum approximation models and assuming fixed demand. In this letter, we expand upon our previous work to explore how the level of service for users impacts emissions. We incorporate travel time elasticities into the optimization to account for demand shifts from transit to cars, resulting from increases in transit travel time. We find that emissions reductions are moderated, but not eliminated, for relatively inelastic users. We consider two scenarios: the first is where only the agency faces an emissions budget; the second is where the entire city faces an emissions budget. In the latter scenario, the emissions reductions resulting from reductions in transit level of service are mitigated as users switch to automobile.

  2. Serious simulation game development for energy transition education using integrated framework game design

    NASA Astrophysics Data System (ADS)

    Destyanto, A. R.; Putri, O. A.; Hidayatno, A.

    2017-11-01

    Due to the advantages that serious simulation game offered, many areas of studies, including energy, have used serious simulation games as their instruments. However, serious simulation games in the field of energy transition still have few attentions. In this study, serious simulation game is developed and tested as the activity of public education about energy transition which is a conversion from oil to natural gas program. The aim of the game development is to create understanding and awareness about the importance of energy transition for society in accelerating the process of energy transition in Indonesia since 1987 the energy transition program has not achieved the conversion target yet due to the lack of education about energy transition for society. Developed as a digital serious simulation game following the framework of integrated game design, the Transergy game has been tested to 15 users and then analysed. The result of verification and validation of the game shows that Transergy gives significance to the users for understanding and triggering the needs of oil to natural gas conversion.

  3. The Evolution of Gas in Protoplanetary Systems: The Herschel GASPS Open Time Key Programme

    NASA Technical Reports Server (NTRS)

    Roberge, A.; Dent, W.

    2010-01-01

    The Gas in Protoplanetary Systems (GASPS) Open Time Key Programme for the Herschel Space Observatory will be the first extensive, systematic survey of gas in circumstellar disks over the critical transition from gas-rich protoplanetary through to gas-poor debris. The brightest spectral lines from disks lie in the far-infrared and arise from radii spanning roughly 10 to 100 AU, where giant planets are expected to form. Herschel is uniquely able to observe this wavelength regime with the sensitivity to allow a large scale survey. We will execute a 2-phase study using the PACS instrument. Phase I is a spectroscopic survey about 250 young stars for fine structure emission lines of [CII] (at 157 microns) and [OI] (at 63 microns). In Phase II, the brightest sources will be followed up with additional PACS spectroscopy ([OI] at 145 microns and some rotational lines of water). We expect that the gas mass sensitivity will be more than an order of magnitude lower than that achieved by ISO and Spitzer or expected for SOFIA. We will also measure the dust continuum to an equivalent mass sensitivity. We will observe several nearby clusters with ages from 1 to 30 Myr, encompassing a wide range of disk masses and stellar luminosities. The sample covers disk evolution from protoplanetary disks through to young debris disks, i.e. the main epoch of planet formation. With this extensive dataset, the GASPS project will: 1) trace gas and dust in the planet formation region across a large multivariate parameter space, 2) provide the first definitive measurement of the gas dissipation timescale in disks, 3) elucidate the evolutionary link between protoplanetary and debris disks, 4) investigate water abundances in the planetforming regions of disks, and 5) provide a huge database of disk observations and models with long-lasting legacy value for follow-up studies.

  4. Living under a democracy: participation and its impact on the living conditions of the poor.

    PubMed

    Avritzer, Leonardo

    2010-01-01

    The Brazilian democratization took place between 1985 and 1988. In 1985, the authoritarian power holders transferred political power to civilians, and in 1988, a new democratic constitution was enacted, thus finalizing the transition. The end of the transition triggered processes of participation in different Brazilian cities, such as São Paulo, Belo Horizonte, Recife, and Rio de Janeiro. However, only in Porto Alegre could the political context in the postdemocratization period generate a process of reverting priorities, that is to say, of inverting the pattern of democratic participation and the pattern of public investment at the urban level. In this article, I show the social conditions of the poor in the city of Porto Alegre in 1985, explain the emergence of participatory budgeting in the city, and show how democracy made a difference in the living conditions of the urban poor in the city of Porto Alegre. In the second part of the article, I analyze the recent expansion of participatory budgeting in Brazil and its recent expansion to midsize cities. In the final part of the article, I show how new participatory institutions are being introduced at the federal level of government. Participation at the local and national levels is making a difference in the living conditions of the Brazilian poor.

  5. An increased rectal maximum tolerable volume and long anal canal are associated with poor short-term response to biofeedback therapy for patients with anismus with decreased bowel frequency and normal colonic transit time.

    PubMed

    Rhee, P L; Choi, M S; Kim, Y H; Son, H J; Kim, J J; Koh, K C; Paik, S W; Rhee, J C; Choi, K W

    2000-10-01

    Biofeedback is an effective therapy for a majority of patients with anismus. However, a significant proportion of patients still failed to respond to biofeedback, and little has been known about the factors that predict response to biofeedback. We evaluated the factors associated with poor response to biofeedback. Biofeedback therapy was offered to 45 patients with anismus with decreased bowel frequency (less than three times per week) and normal colonic transit time. Any differences in demographics, symptoms, and parameters of anorectal physiologic tests were sought between responders (in whom bowel frequency increased up to three times or more per week after biofeedback) and nonresponders (in whom bowel frequency remained less than three times per week). Thirty-one patients (68.9 percent) responded to biofeedback and 14 patients (31.1 percent) did not. Anal canal length was longer in nonresponders than in responders (4.53 +/- 0.5 vs. 4.08 +/- 0.56 cm; P = 0.02), and rectal maximum tolerable volume was larger in nonresponders than in responders. (361 +/- 87 vs. 302 +/- 69 ml; P = 0.02). Anal canal length and rectal maximum tolerable volume showed significant differences between responders and nonresponders on multivariate analysis (P = 0.027 and P = 0.034, respectively). This study showed that a long anal canal and increased rectal maximum tolerable volume are associated with poor short-term response to biofeedback for patients with anismus with decreased bowel frequency and normal colonic transit time.

  6. Poor Sleep in Relation to Natural Menopause: A Population-Based 14-Year Follow-up of Mid-Life Women

    PubMed Central

    Freeman, Ellen W.; Sammel, Mary D.; Gross, Stephanie A.; Pien, Grace W.

    2014-01-01

    poor sleep in the menopause transition. Overall, poor sleep did not increase around the FMP and frequently occurred in the absence of hot flashes, indicating that sleep difficulties in the menopause transition in generally healthy women were not simply associated with ovarian decline. PMID:25549066

  7. Amorphization of cobalt monoxide nanocrystals and related explosive gas sensing applications.

    PubMed

    Li, L H; Xiao, J; Yang, G W

    2015-10-16

    Amorphous nanomaterials have attracted attention due to their excellent performances, highly comparable to their crystalline counterparts. Sensor materials with amorphous phases are usually evaluated to be unsuitable for sensors because of poor performance. As a matter of fact, amorphous nanomaterials have rather unique sensor behaviors. Here, we report the amorphousization of cobalt monoxide (CoO) nanocrystals driven by a unique process involved in laser ablation in liquid (LAL). We also established that a fast and nonequilibrium process created by LAL results in the amorphousization of nanocrystals. The as-prepared amorphous CoO (a-CoO) nanoflakes possess a high aspect ratio, which showed good sensing of explosive gases. The fabricated gas sensor can detect CO and H2 at levels as low as 5 and 10 ppm, respectively, at 100 °C. The performance characteristics of this sensor, including high sensitivity, low working temperature, and low detection limit, are superior to those of sensors made with crystalline phase oxides. Meanwhile, a temperature-dependent p-n transition was observed in the sensor's response to CO, suggesting that the sensing properties can be tailored by changing the carrier type, thus tuning the selectivity of sensors to different gases. These findings demonstrate the potential applications of amorphous nanomaterials as gas sensor components.

  8. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  9. Do Middle-Class Students Perceive Poor Women and Poor Men Differently?

    ERIC Educational Resources Information Center

    Cozzarelli, Catherine; Tagler, Michael J.; Wilkinson, Anna V.

    2002-01-01

    Examined college students' attitudes and stereotypes regarding poor women, attributions for their poverty, and whether those thoughts and feelings differed from those about poor men. Attitudes and stereotypes were significantly more positive regarding poor women than poor men. Participants endorsed internal attributions for both women's and men's…

  10. The Lifshitz-Kosevich-Shoenberg theory of relativistic electronic gas in neutron stars

    NASA Astrophysics Data System (ADS)

    Wang, Zhaojun; Lü, Guoliang; Zhu, Chunhua

    2014-10-01

    Similar to the de Haas-van Alphen magnetic oscillatory in some normal metals when the Landau quantization is predominant, the magnetic oscillation can also occur in highly degenerate and relativistic electron gas in neutron stars. At large Landau quantum number (Landau quantum number r≥2), we generalize the Lifshitz-Kosevich-Shoenberg theory in non-relativistic electron gas to relativistic gas. At small Landau quantum number ( r<2), we expand the grand potential into Fourier series and get similar harmonic oscillatory formula of magnetization. These results indicate that magnetic phase transition similar as Condon transition observed in metals can appear in neutron stars when the differential susceptibility exceeds 1/4 π.

  11. Metabolic and immunological changes in transition dairy cows: A review

    PubMed Central

    Wankhade, Pratik Ramesh; Manimaran, A.; Kumaresan, A.; Jeyakumar, S.; Ramesha, K. P.; Sejian, V.; Rajendran, D.; Varghese, Minu Rachel

    2017-01-01

    Smooth transition from pregnancy to lactation is important for high productive and reproductive performance during later postpartum period in dairy animals. On the other hand, the poor transition often leads to huge economic loss to dairy farmers due to compromised production and reproduction. Therefore, understanding the causes and consequence of metabolic changes during the transition period is very important for postpartum health management. In this review, metabolic changes with reference to negative energy balance in transition cow and its effect on health and reproduction during the later postpartum period in dairy animals are discussed besides the role of metabolic inflammation in postpartum performance in dairy animals. PMID:29263601

  12. A study of cooling flows in poor clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.; Dillingham, Stephen

    1995-01-01

    We observed three poor clusters with central dominant galaxies (AWM 4, MKW 4, and MKW 3's) using the Position Sensitive Proportional Counter on the ROSAT X-ray satellite. The images reveal smooth, symmetrical X-ray emission filling the cluster with a sharp peak on each central galaxy. The cluster surface brightness profiles can be decomposed using superposed King models for the central galaxy and the intracluster medium. The King model parameters for the cluster portions are consistent with previous observations of these clusters. The newly measured King model parameters for the central galaxies are typical of the X-ray surface brightness distributions of isolated elliptical galaxies. Spatially resolved temperature measurements in annular rings throughout the clusters show a nearly isothermal profile. Temperatures are consistent with previously measured values, but are much better determined. There is no significant drop in temperature noted in the innermost bins where cooling flows are likely to be present, nor is any excess absorption by cold gas required. All cold gas columns are consistent with galactic foreground absorption. We derive mass profiles for the clusters assuming both isothermal temperature profiles and cooling flow models with constant mass flow rates. Our results are consistent with previous Einstein IPC observations by Kriss, Cioffi, & Canizares, but extend the mass profiles out to 1 Mpc in these poor clusters.

  13. Transition Processes from College to Career.

    ERIC Educational Resources Information Center

    Hettich, Paul

    The transition from college to career is one of the most challenging jobs an individual will experience. This is particularly true for students who have limited work experience. The fact that 50-80% of new college graduates leave their first job within three years may be due to poor career planning and problems inherent in the college-to-work…

  14. Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first- principles study

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Li, C. Y.; Liu, L. L.; Zhou, B.; Zhang, Q. K.; Chen, Z. Q.; Tang, Z.

    2016-09-01

    Adsorption of small gas molecules (O2, NO, NO2 and NH3) on transition-metal Cu atom embedded monolayer MoS2 was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS2 with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS2 embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS2 with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH3 molecule acts as electron donor after adsorption, which is different from the other gas molecules (O2, NO, and NO2). The results suggest that MoS2-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene.

  15. Enhanced electrodes for solid state gas sensors

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    2001-01-01

    A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.

  16. Longitudinal Stability and Predictors of Poor Oral Comprehenders and Poor Decoders

    PubMed Central

    Elwér, Åsa; Keenan, Janice M.; Olson, Richard K.; Byrne, Brian; Samuelsson, Stefan

    2012-01-01

    Two groups of 4th grade children were selected from a population sample (N= 926) to either be Poor Oral Comprehenders (poor oral comprehension but normal word decoding), or Poor Decoders (poor decoding but normal oral comprehension). By examining both groups in the same study with varied cognitive and literacy predictors, and examining them both retrospectively and prospectively, we could assess how distinctive and stable the predictors of each deficit are. Predictors were assessed retrospectively at preschool, at the end of kindergarten, 1st, and 2nd grades. Group effects were significant at all test occasions, including those for preschool vocabulary (worse in poor oral comprehenders) and rapid naming (RAN) (worse in poor decoders). Preschool RAN and Vocabulary prospectively predicted grade 4 group membership (77–79% correct classification) within the selected samples. Reselection in preschool of at-risk poor decoder and poor oral comprehender subgroups based on these variables led to significant but relatively weak prediction of subtype membership at grade 4. Implications of the predictive stability of our results for identification and intervention of these important subgroups are discussed. PMID:23528975

  17. Titan solar occultation observations reveal transit spectra of a hazy world.

    PubMed

    Robinson, Tyler D; Maltagliati, Luca; Marley, Mark S; Fortney, Jonathan J

    2014-06-24

    High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan's atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration's (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88-5 μm at a resolution of 12-18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan's haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1-10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA's James Webb Space Telescope.

  18. Numerical solution of the hypersonic viscous-shock-layer equations for laminar, transitional, and turbulent flows of a perfect gas over blunt axially symmetric bodies

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations applicable to hypersonic laminar, transitional, and turbulent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies are presented. The equations are solved by means of an implicit finite difference scheme, and the results are compared with a turbulent boundary layer analysis. The agreement between the two solution procedures is satisfactory for the region of flow where streamline swallowing effects are negligible. For the downstream regions, where streamline swallowing effects are present, the expected differences in the two solution procedures are evident.

  19. Bypass transition in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Vandervegt, J. J.

    1992-01-01

    Transition to turbulence in aerospace applications usually occurs in a strongly disturbed environment. For instance, the effects of free-stream turbulence, roughness and obstacles in the boundary layer strongly influence transition. Proper understanding of the mechanisms leading to transition is crucial in the design of aircraft wings and gas turbine blades, because lift, drag and heat transfer strongly depend on the state of the boundary layer, laminar or turbulent. Unfortunately, most of the transition research, both theoretical and experimental, has focused on natural transition. Many practical flows, however, defy any theoretical analysis and are extremely difficult to measure. Morkovin introduced in his review paper the concept of bypass transition as those forms of transition which bypass the known mechanisms of linear and non-linear transition theories and are currently not understood by experiments. In an effort to better understand the mechanisms leading to transition in a disturbed environment, experiments are conducted studying simpler cases, viz. the effects of free stream turbulence on transition on a flat plate. It turns out that these experiments are very difficult to conduct, because generation of free stream turbulence with sufficiently high fluctuation levels and reasonable homogeneity is non trivial. For a discussion see Morkovin. Serious problems also appear due to the fact that at high Reynolds numbers the boundary layers are very thin, especially in the nose region of the plate where the transition occurs, which makes the use of very small probes necessary. The effects of free-stream turbulence on transition are the subject of this research and are especially important in a gas turbine environment, where turbulence intensities are measured between 5 and 20 percent, Wang et al. Due to the fact that the Reynolds number for turbine blades is considerably lower than for aircraft wings, generally a larger portion of the blade will be in a laminar

  20. Solar-pumped gas laser development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1980-01-01

    A survey of gas properties through detailed kinetic models led to the identification of critical gas parameters for use in choosing appropriate gas combinations for solar pumped lasers. Broadband photoabsorption in the visible or near UV range is required to excite large volumes of gas and to insure good solar absorption efficiency. The photoexcitation density is independent of the absorption bandwidth. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than 10 A to insure lasing threshold over reasonable gain lengths. The system should show a high degree of chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. Although photoexcitation of electronic vibrational transitions is considered as a possible system if the emission bands sufficiently narrow, it appears that photodissociation into atomic metastables is more likely to result in a successful solar pumped laser system.

  1. The ATLAS3D project - XXVII. Cold gas and the colours and ages of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Young, Lisa M.; Scott, Nicholas; Serra, Paolo; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Weijmans, Anne-Marie

    2014-11-01

    We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ˜ 0.06 and H2 masses up to M(H2)/M* ˜ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ˜50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.

  2. Effects of Pop III to PopII transition on the lowest metallicity stars in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Yimiao; Keres, Dusan; FIRE Team

    2018-01-01

    We examine the effects of the enrichments from Population III (Pop III) stars on the formation and properties of the first generation of the Population II (Pop II) stars. Pop III stars begin to transition towards Pop II stars when the metals dispersed in Pop III supernovae pollute the nearby gas. However, details of this transition are still largely unknown. We use dwarf galaxy simulations from the Feedback In Realistic Environments (FIRE) project to identify the star-forming gas that is likely to be pre-enriched by Pop III supernovae and follow the stars that form in such gas. This pre-enrichment will leave the signature in the lowest metallicity stars that can be used to better constrain the details of the Pop III-to-Pop II transition.

  3. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  4. Physical mechanisms leading to two-dimensional gas content evolution within a volcanic conduit

    NASA Astrophysics Data System (ADS)

    Collombet, M.; Burgisser, A.; Chevalier, L. A. C.

    2017-12-01

    The eruption of viscous magma at the Earth's surface often gives rise to abrupt regime changes. The transition from the gentle effusion of a lava dome to brief but powerful explosions is a common regime change. This transition is often preceded by the sealing of the shallow part of the volcanic conduit and the accumulation of volatile-rich magma underneath, a situation that collects the energy to be brutally released during the subsequent explosion. While conduit sealing is well-documented, volatile accumulation has proven harder to characterize. In this study, we use a 2D conduit flow numerical model including gas loss within the magma and into the wallrock to follow the evolution of gas content during a regime transition. Using various initial porosity distributions, permeability laws and boundary conditions, we track the physical parameters that prevent or enhance gas escape from the magma. Our approach aims to identify the physical processes controlling eruptive transitions and to highlight the importance of using field data observations to constrain numerical models.

  5. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K. M.; Ida, S.; Ochiai, H.

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less

  6. Controls on gas transfer velocities in a large river

    NASA Astrophysics Data System (ADS)

    Beaulieu, Jake J.; Shuster, William D.; Rebholz, Jacob A.

    2012-06-01

    The emission of biogenic gases from large rivers can be an important component of regional greenhouse gas budgets. However, emission rate estimates are often poorly constrained due to uncertainties in the air-water gas exchange rate. We used the floating chamber method to estimate the gas transfer velocity (k) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in the Markland Pool of the Ohio River, a large tributary of the Mississippi River (U.S.A). We measured k every two weeks for a year at one site and at 15 additional sites distributed across the length of the pool during two summer surveys. We found that k was positively related to both water currents and wind speeds, with 46% of the gas transfer attributable to water currents at low wind speeds (e.g., 0.5 m s-1) and 11% at higher wind speeds (e.g., >2.0 m s-1). Gas transfer velocity was highly sensitive to wind, possibly because the direction of river flow was often directly opposed to the wind direction. Gas transfer velocity values derived for CH4 were consistently greater than those derived for CO2 when standardized to a Schmidt number of 600 (k600), possibly because the transfer of CH4, a poorly soluble gas, was enhanced by surfacing microbubbles. Additional research to determine the conditions that support microbubble enhanced gas transfer is merited.

  7. OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements

    NASA Astrophysics Data System (ADS)

    Pascucci, I.

    2010-07-01

    Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.

  8. A photoacoustic spectrometer for trace gas detection

    NASA Astrophysics Data System (ADS)

    Telles, E. M.; Bezerra, E.; Scalabrin, A.

    2005-06-01

    A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.

  9. Simple model for vibration-translation exchange at high temperatures: effects of multiquantum transitions on the relaxation of a N2 gas flow behind a shock.

    PubMed

    Aliat, A; Vedula, P; Josyula, E

    2011-02-01

    In this paper a simple model is proposed for computation of rate coefficients related to vibration-translation transitions based on the forced harmonic oscillator theory. This model, which is developed by considering a quadrature method, provides rate coefficients that are in very good agreement with those found in the literature for the high temperature regime (≳10,000 K). This model is implemented to study a one-dimensional nonequilibrium inviscid N(2) flow behind a plane shock by considering a state-to-state approach. While the effects of ionization and chemical reactions are neglected in our study, our results show that multiquantum transitions have a great influence on the relaxation of the macroscopic parameters of the gas flow behind the shock, especially on vibrational distributions of high levels. All vibrational states are influenced by multiquantum processes, but the effective number of transitions decreases inversely according to the vibrational quantum number. For the initial conditions considered in this study, excited electronic states are found to be weakly populated and can be neglected in modeling. Moreover, the computing time is considerably reduced with the model described in this paper compared to others found in the literature. ©2011 American Physical Society

  10. Transition metals in superheat melts

    NASA Technical Reports Server (NTRS)

    Jakes, Petr; Wolfbauer, Michael-Patrick

    1993-01-01

    A series of experiments with silicate melts doped with transition element oxides was carried out at atmospheric pressures of inert gas at temperatures exceeding liquidus. As predicted from the shape of fO2 buffer curves in T-fO2 diagrams the reducing conditions for a particular oxide-metal pair can be achieved through the T increase if the released oxygen is continuously removed. Experimental studies suggest that transition metals such as Cr or V behave as siderophile elements at temperatures exceeding liquidus temperatures if the system is not buffered by the presence of other oxide of more siderophile element. For example the presence of FeO prevents the reduction of Cr2O3. The sequence of decreasing siderophility of transition elements at superheat conditions (Mo, Ni, Fe, Cr) matches the decreasing degree of depletion of siderophile elements in mantle rocks as compared to chondrites.

  11. Genetic Algorithms and Nucleation in VIH-AIDS transition.

    NASA Astrophysics Data System (ADS)

    Barranon, Armando

    2003-03-01

    VIH to AIDS transition has been modeled via a genetic algorithm that uses boom-boom principle and where population evolution is simulated with a cellular automaton based on SIR model. VIH to AIDS transition is signed by nucleation of infected cells and low probability of infection are obtained for different mutation rates in agreement with clinical results. A power law is obtained with a critical exponent close to the critical exponent of cubic, spherical percolation, colossal magnetic resonance, Ising Model and liquid-gas phase transition in heavy ion collisions. Computations were carried out at UAM-A Supercomputing Lab and author acknowledges financial support from Division of CBI at UAM-A.

  12. Shale Gas: Development Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoback, Mark D.; Arent, Douglas J.

    2014-03-01

    The use of horizontal drilling and multistage hydraulic fracturing technologies has enabled the production of immense quantities of natural gas, to date principally in North America but increasingly in other countries around the world. The global availability of this resource creates both opportunities and challenges that need to be addressed in a timely and effective manner. There seems little question that rapid shale gas development, coupled with fuel switching from coal to natural gas for power generation, can have beneficial effects on air pollution, greenhouse gas emissions, and energy security in many countries. In this context, shale gas resources representmore » a critically important transition fuel on the path to a decarbonized energy future. For these benefits to be realized, however, it is imperative that shale gas resources be developed with effective environmental safeguards to reduce their impact on land use, water resources, air quality, and nearby communities.« less

  13. The Impact of a Potential Shale Gas Development in Germany and the United Kingdom on Pollutant and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Weger, L.; Cremonese, L.; Bartels, M. P.; Butler, T. M.

    2016-12-01

    Several European countries with domestic shale gas reserves are considering extracting this natural gas resource to complement their energy transition agenda. Natural gas, which produces lower CO2 emissions upon combustion compared to coal or oil, has the potential to serve as a bridge in the transition from fossil fuels to renewables. However, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact climate as well as local and regional air quality. In this study, we explore the impact of a potential shale gas development in Europe, specifically in Germany and the United Kingdom, on emissions of greenhouse gases and pollutants. In order to investigate the effect on emissions, we first estimate a range of wells drilled per year and production volume for the two countries under examination based on available geological information and on regional infrastructural and economic limitations. Subsequently we assign activity data and emissions factors to the well development, gas production and processing stages of shale gas generation to enable emissions quantification. We then define emissions scenarios to explore different storylines of potential shale gas development, including low emissions (high level of regulation), high emissions (low level of regulation) and middle emissions scenarios, which influence fleet make-up, emission factor and activity data choices for emissions quantification. The aim of this work is to highlight important variables and their ranges, to promote discussion and communication of potential impacts, and to construct possible visions for a future shale gas development in the two study countries. In a follow-up study, the impact of pollutant emissions from these scenarios on air quality will be explored using the Weather Research and Forecasting model with chemistry (WRF-Chem) model.

  14. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    USGS Publications Warehouse

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  15. Transition mixing study

    NASA Technical Reports Server (NTRS)

    Reynolds, R.; White, C.

    1986-01-01

    A computer model capable of analyzing the flow field in the transition liner of small gas turbine engines is developed. A FORTRAN code has been assembled from existing codes and physical submodels and used to predict the flow in several test geometries which contain characteristics similar to transition liners, and for which experimental data was available. Comparisons between the predictions and measurements indicate that the code produces qualitative results but that the turbulence models, both K-E and algebraic Reynolds Stress, underestimate the cross-stream diffusion. The code has also been used to perform a numerical experiment to examine the effect of a variety of parameters on the mixing process in transition liners. Comparisons illustrate that geometries with significant curvature show a drift of the jet trajectory toward the convex wall and weaker wake region vortices and decreased penetration for jets located on the convex wall of the liner, when compared to jets located on concave walls. Also shown were the approximate equivalency of angled slots and round holes and a technique by which jet mixing correlations developed for rectangular channels can be used for can geometries.

  16. Refraction in Exoplanet Transit Observations

    NASA Astrophysics Data System (ADS)

    Dalba, Paul

    2018-01-01

    Before an exoplanet transit, atmospheric refraction bends light into the line of sight of an observer. The refracted light forms a stellar mirage---a distorted secondary image of the host star---that causes flux increases before transit ingress and after transit egress. The extent of this flux increase provides clues as to the composition and structure of the exoplanetary atmosphere. Here, I model the stellar mirages produced by a comprehensive set of stellar, orbital, planetary, and atmospheric parameters. Refracted light offers unprecedented atmospheric characterization opportunities for cold, long-period gas giant exoplanets. At visible wavelengths, opacity from Rayleigh scattering presents a substantial challenge to detecting stellar mirages for most exoplanets with orbital distances less than 6 AU. Based on physical parameters, I derive a criterion that determines if refracted light will significantly influence observations of a specific exoplanetary system with application to the high-precision Kepler data set. I also investigate the potential for refracted light to identify non-transiting exoplanets and serve as a novel means of out-of-transit atmospheric characterization. The atmospheric lensing events produced by non-transiting exoplanets are more detectable than the corresponding flux increases for transiting exoplanets. Compared to visible light observations, those at red to near-infrared wavelengths are more likely to detect refracted light in an exoplanet atmosphere. With upcoming exoplanet discovery and characterization missions in mind, I consider science cases that are uniquely enabled by photometric and spectroscopic observations of refracted light in exoplanetary systems.

  17. Mount assembly for porous transition panel at annular combustor outlet

    NASA Technical Reports Server (NTRS)

    Sweeney, Ralph B. (Inventor); Verdouw, Albert J. (Inventor)

    1980-01-01

    A gas turbine engine combustor assembly of annular configuration has outer and inner walls made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween and each outer and inner wall including a transition panel of porous metal defining a combustor assembly outlet supported by a combustor mount assembly including a stiffener ring having a side undercut thereon fit over a transition panel end face; and wherein an annular weld joins the ring to the end face to transmit exhaust heat from the end face to the stiffener ring for dissipation from the combustor; a combustor pilot member is located in axially spaced, surrounding relationship to the end face and connector means support the stiffener ring in free floating relationship with the pilot member to compensate for both radial and axial thermal expansion of the transition panel; and said connector means includes a radial gap for maintaining a controlled flow of coolant from outside of the transition panel into cooling relationship with the stiffener ring and said weld to further cool the end face against excessive heat build-up therein during flow of hot gas exhaust through said outlet.

  18. Life Transitions and Mental Health in a National Cohort of Young Australian Women

    ERIC Educational Resources Information Center

    Lee, Christiana; Gramotnev, Helen

    2007-01-01

    Young adulthood, a time of major life transitions and risk of poor mental health, may affect emotional well-being throughout adult life. This article uses longitudinal survey data to examine young Australian women's transitions across 4 domains: residential independence, relationships, work and study, and motherhood. Changes over 3 years in…

  19. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  20. Substellar fragmentation in self-gravitating fluids with a major phase transition

    NASA Astrophysics Data System (ADS)

    Füglistaler, A.; Pfenniger, D.

    2015-06-01

    Context. The observation of various ices in cold molecular clouds, the existence of ubiquitous substellar, cold H2 globules in planetary nebulae and supernova remnants, or the mere existence of comets suggest that the physics of very cold interstellar gas might be much richer than usually envisioned. At the extreme of low temperatures (≲10 K), H2 itself is subject to a phase transition crossing the entire cosmic gas density scale. Aims: This well-known, laboratory-based fact motivates us to study the ideal case of a cold neutral gaseous medium in interstellar conditions for which the bulk of the mass, instead of trace elements, is subject to a gas-liquid or gas-solid phase transition. Methods: On the one hand, the equilibrium of general non-ideal fluids is studied using the virial theorem and linear stability analysis. On the other hand, the non-linear dynamics is studied using computer simulations to characterize the expected formation of solid bodies analogous to comets. The simulations are run with a state-of-the-art molecular dynamics code (LAMMPS) using the Lennard-Jones inter-molecular potential. The long-range gravitational forces can be taken into account together with short-range molecular forces with finite limited computational resources, using super-molecules, provided the right scaling is followed. Results: The concept of super-molecule, where the phase transition conditions are preserved by the proper choice of the particle parameters, is tested with computer simulations, allowing us to correctly satisfy the Jeans instability criterion for one-phase fluids. The simulations show that fluids presenting a phase transition are gravitationally unstable as well, independent of the strength of the gravitational potential, producing two distinct kinds of substellar bodies, those dominated by gravity (planetoids) and those dominated by molecular attractive force (comets). Conclusions: Observations, formal analysis, and computer simulations suggest the

  1. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  2. Critical behavior at a dynamic vortex insulator-to-metal transition

    DOE PAGES

    Poccia, Nicola; Baturina, Tatyana I.; Coneri, Francesco; ...

    2015-09-10

    An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables elucidating open questions concerning the nature of competing vortex states and phase transitions between them. A square array creates the egg crate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observe a vortex insulator-to-vortex metal transition driven by the applied electric current and determine critical exponents strikingly coinciding with those for thermodynamic liquid-gas transition. Lastly, our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibriummore » phase transitions.« less

  3. Critical behavior at a dynamic vortex insulator-to-metal transition.

    PubMed

    Poccia, Nicola; Baturina, Tatyana I; Coneri, Francesco; Molenaar, Cor G; Wang, X Renshaw; Bianconi, Ginestra; Brinkman, Alexander; Hilgenkamp, Hans; Golubov, Alexander A; Vinokur, Valerii M

    2015-09-11

    An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables investigation of the nature of competing vortex states and phase transitions between them. A square array creates the eggcrate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observed a vortex insulator-vortex metal transition driven by the applied electric current and determined critical exponents that coincided with those for thermodynamic liquid-gas transition. Our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibrium phase transitions. Copyright © 2015, American Association for the Advancement of Science.

  4. Aldolase B Overexpression is Associated with Poor Prognosis and Promotes Tumor Progression by Epithelial-Mesenchymal Transition in Colorectal Adenocarcinoma.

    PubMed

    Li, Qingguo; Li, Yaqi; Xu, Junyan; Wang, Sheng; Xu, Ye; Li, Xinxiang; Cai, Sanjun

    2017-01-01

    Glycolysis is considered to be the root of cancer development and progression, which involved a multi-step enzymatic reaction. Our study aimed at figuring out which glycolysis enzyme participates in the development of colorectal cancer and its possible mechanisms. We firstly screened out Aldolase B (ALDOB) by performing qRT-PCR arrays of glycolysis-related genes in five paired liver metastasis and primary colorectal tissues, and further detected ALDOB protein with immunohistochemistry in tissue microarray (TMA) consisting of 229 samples from stage I-III colorectal cancer patients. CRISPR-Cas9 method was adopted to create knock out colon cancer cell lines (LoVo and SW480) of ALDOB. The effect of ALDOB on cell proliferation and metastasis was examined in vitro using colony formation assay as well as transwell migration and invasion assay, respectively. In TMA, there was 64.6% of samples demonstrated strong intensity of ALDOB. High ALDOB expression were associated with poor overall survival and disease-free survival in both univariate and multivariate regression analyses (P<0.05). In vitro functional studies of CCK-8 demonstrated that silencing ALDOB expression significantly (P<0.05) inhibited proliferation, migration and invasion of colon cancer cells. Mechanically, silencing ALDOB activated epithelial markers and repressed mesenchymal markers, indicating inactivation of ALDOB may lead to inhibition of epithelial-mesenchymal transition (EMT). Upregulation of ALDOB promotes colorectal cancer metastasis by facilitating EMT and acts as a potential prognostic factor and therapeutic target in colorectal cancer. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Number of Transition Frequencies of a System Containing an Arbitrary Number of Gas Bubbles

    NASA Astrophysics Data System (ADS)

    Ida, Masato

    2002-05-01

    Transition frequencies” of a system containing an arbitrary number of bubbles levitated in a liquid are discussed. Using a linear coupled-oscillator model, it is shown theoretically that when the system contains N bubbles of different sizes, each bubble has 2N - 1 (or less) transition frequencies which make the phase difference between an external sound and a bubble’s pulsation π / 2. Furthermore, we discuss a discrepancy appearing between the present result regarding the transition frequencies and existing ones for the resonance frequencies in a two-bubble case, and show that the transition frequency, defined as above, and the resonance frequency have a different physical meaning when N ≥ 2, while they are consistent for N = 1.

  6. A gas density drop in the inner 6 AU of the transition disk around the Herbig Ae star HD 139614 . Further evidence for a giant planet inside the disk?

    NASA Astrophysics Data System (ADS)

    Carmona, A.; Thi, W. F.; Kamp, I.; Baruteau, C.; Matter, A.; van den Ancker, M.; Pinte, C.; Kóspál, A.; Audard, M.; Liebhart, A.; Sicilia-Aguilar, A.; Pinilla, P.; Regály, Zs.; Güdel, M.; Henning, Th.; Cieza, L. A.; Baldovin-Saavedra, C.; Meeus, G.; Eiroa, C.

    2017-02-01

    Context. Quantifying the gas surface density inside the dust cavities and gaps of transition disks is important to establish their origin. Aims: We seek to constrain the surface density of warm gas in the inner disk of HD 139614, an accreting 9 Myr Herbig Ae star with a (pre-)transition disk exhibiting a dust gap from 2.3 ± 0.1 to 5.3 ± 0.3 AU. Methods: We observed HD 139614 with ESO/VLT CRIRES and obtained high-resolution (R 90 000) spectra of CO ro-vibrational emission at 4.7 μm. We derived constraints on the disk's structure by modeling the CO isotopolog line-profiles, the spectroastrometric signal, and the rotational diagrams using grids of flat Keplerian disk models. Results: We detected υ = 1 → 0 12CO, 2→1 12CO, 1→0 13CO, 1→0 C18O, and 1→0 C17O ro-vibrational lines. Lines are consistent with disk emission and thermal excitation. 12CO υ = 1 → 0 lines have an average width of 14 km s-1, Tgas of 450 K and an emitting region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km s-1 narrower than 12CO υ = 1 → 0, and are dominated by emission at R ≥ 6 AU. The 12CO υ = 1 → 0 composite line-profile indicates that if there is a gap devoid of gas it must have a width narrower than 2 AU. We find that a drop in the gas surface density (δgas) at R < 5-6 AU is required to be able to simultaneously reproduce the line-profiles and rotational diagrams of the three CO isotopologs. Models without a gas density drop generate 13CO and C18O emission lines that are too broad and warm. The value of δgas can range from 10-2 to 10-4 depending on the gas-to-dust ratio of the outer disk. We find that the gas surface density profile at 1 < R < 6 AU is flat or increases with radius. We derive a gas column density at 1 < R < 6 AU of NH = 3 × 1019-1021 cm-2 (7 × 10-5-2.4 × 10-3 g cm-2) assuming NCO = 10-4NH. We find a 5σ upper limit on the CO column density NCO at R ≤ 1 AU of 5 × 1015 cm-2 (NH ≤ 5 × 1019 cm-2). Conclusions

  7. Gas sensing in 2D materials

    NASA Astrophysics Data System (ADS)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  8. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Philip F.; Conroy, Charlie, E-mail: phopkins@caltech.edu

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances ofmore » these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.« less

  9. Pharmacists’ Recommendations to Improve Care Transitions

    PubMed Central

    Haynes, Katherine Taylor; Oberne, Alison; Cawthon, Courtney

    2013-01-01

    Background Increasingly, hospitals are implementing multi-faceted programs to improve medication reconciliation and transitions of care, often involving pharmacists. Objective To help delineate the optimal role of pharmacists in this context, this qualitative study assessed pharmacists’ views on their roles in hospital-based medication reconciliation and discharge counseling. We also provide pharmacists’ recommendations for improving care transitions. Methods Eleven study pharmacists at two hospitals who participated in the Pharmacist Intervention for Low Literacy in Cardiovascular Disease (PILL-CVD) study completed semi-structured one-on-one interviews, which were coded systematically in NVivo. Pharmacists provided their perspectives on admission and discharge medication reconciliation, in-hospital patient counseling, provision of simple medication adherence aids (e.g., pill box, illustrated daily medication schedule), and telephone follow-up. Results Pharmacists considered medication reconciliation, though time-consuming, to be their most important role in improving care transitions, particularly through detection of errors in the admission medication history that required correction. They also identified patients with poor understanding of their medications, who required additional counseling. Providing adherence aids was felt to be highly valuable for patients with low health literacy, though less useful for patients with adequate health literacy. Pharmacists noted that having trained administrative staff conduct the initial post-discharge follow-up call to screen for issues and triage which patients needed pharmacist follow-up was helpful and an efficient use of resources. Pharmacists’ recommendations for improving care transitions included clear communication among team members, protected time for discharge counseling, patient and family engagement in discharge counseling, and provision of patient education materials. Conclusion Pharmacists are well

  10. Titan solar occultation observations reveal transit spectra of a hazy world

    PubMed Central

    Robinson, Tyler D.; Maltagliati, Luca; Marley, Mark S.; Fortney, Jonathan J.

    2014-01-01

    High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan’s atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration’s (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88–5 μm at a resolution of 12–18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan’s haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1–10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA’s James Webb Space Telescope. PMID:24876272

  11. Is there any pristine gas in nearby starburst galaxies?

    NASA Astrophysics Data System (ADS)

    Lebouteiller, Vianney; Kunth, Daniel

    2008-12-01

    We derive the chemical composition of the neutral gas in the blue compact dwarf (BCD) Pox 36 observed with FUSE. Metals (N, O, Ar, and Fe) are underabundant as compared to the ionized gas associated with H ii regions by a factor ~7. The neutral gas, although it is not pristine, is thus probably less chemically evolved than the ionized gas. This could be due to different dispersal and mixing timescales. Results are compared to those of other BCDs observed with FUSE. The metallicity of the neutral gas in BCDs seems to reach a lower threshold of ~1/50 Z⊙ for extremely-metal poor galaxies.

  12. Thermodynamics of the relativistic Fermi gas in D dimensions

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.; Piña, Omar

    2017-09-01

    The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a "phase transition", qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a "normal" phase, to a phase where the gas compressibility grows as a power law of the temperature.

  13. Conversion of laser energy to gas kinetic energy

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.

    1977-01-01

    Techniques for the gas-phase absorption of laser energy with ultimate conversion to heat or directed kinetic energy are reviewed. It is shown that the efficiency of resonance absorption by the vibration/rotation bands of the working gas can be enhanced by operating at sufficiently high pressures so that the linewidths of the absorbing transition exceed the line spacing. Within this limit, the gas can absorb continuously over the full spectral region of the band, and bleaching can be minimized since the manifold of molecular vibrational levels can simultaneously absorb the laser radiation.

  14. Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations

    NASA Astrophysics Data System (ADS)

    van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea

    2016-01-01

    Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.

  15. Schlieren Measurements of Buoyancy Effects on Flow Transition in Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap S.; Agrawal, Ajay K.

    2005-01-01

    The transition from laminar to turbulent flow in helium jets discharged into air was studied using Rainbow Schlieren Deflectometry technique. In particular, the effects of buoyancy on jet oscillations and flow transition length were considered. Experiments to simulate microgravity were conducted in the 2.2s drop tower at NASA Glenn Research Center. The jet Reynolds numbers varied from 800 to1200 and the jet Richardson numbers ranged between 0.01 and 0.004. Schlieren images revealed substantial variations in the flow structure during the drop. Fast Fourier Transform (FFT) analysis of the data obtained in Earth gravity experiments revealed the existence of a discrete oscillating frequency in the transition region, which matched the frequency in the upstream laminar regime. In microgravity, the transition occurred farther downstream indicating laminarization of the jet in the absence of buoyancy. The amplitude of jet oscillations was reduced by up to an order of magnitude in microgravity. Results suggest that jet oscillations were buoyancy induced and that the brief microgravity period may not be sufficient for the oscillations to completely subside.

  16. Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jeffries, J. B.; Hanson, R. K.; Hinckley, K. M.; Woodmansee, M. A.

    2006-03-01

    A tunable diode laser (TDL) temperature sensor is designed, constructed, tested, and demonstrated in the exhaust of an industrial gas turbine. Temperature is determined from the ratio of the measured absorbance of two water vapor overtone transitions in the near infrared where telecommunication diode lasers are available. Design rules are developed to select the optimal pair of transitions for direct absorption measurements using spectral simulations by systematically examining the absorption strength, spectral isolation, and temperature sensitivity to maximize temperature accuracy in the core flow and minimize sensitivity to water vapor in the cold boundary layer. The contribution to temperature uncertainty from the spectroscopic database is evaluated and precise line-strength data are measured for the selected transitions. Gas-temperature measurements in a heated cell are used to verify the sensor accuracy (over the temperature range of 350 to 1000 K, ΔT˜2 K for the optimal line pair and ΔT˜5 K for an alternative line pair). Field measurements of exhaust-gas temperature in an industrial gas turbine demonstrate the practical utility of TDL sensing in harsh industrial environments.

  17. S1(1A1)<--S0(1A1) transition of benzo[g,h,i]perylene in supersonic jets and rare gas matrices.

    PubMed

    Rouillé, G; Arold, M; Staicu, A; Krasnokutski, S; Huisken, F; Henning, Th; Tan, X; Salama, F

    2007-05-07

    The study of the S1(1A1)<--S0(1A1) transition of benzo[g,h,i]perylene (BghiP, C22H12) in supersonic jets and solid rare gas matrices is reported. In the jet-cooled spectrum, the origin band position is located at 25,027.1+/-0.2 cm-1, the assignment being supported by the analysis of vibrational shifts and rotational band contours. Except for the origin band, which is weak, all bands are attributed to the fundamental excitation of nontotally symmetric b1 vibrational modes of S1. The intensity pattern is interpreted as a consequence of the weak oscillator strength of the electronic transition combined with intensity-borrowing through vibronic interaction between the S1(1A1) and S2(1B1) states. The spectra of the S1(1A1)<--S0(1A1) and S2(1B1)<--S0(1A1) transitions have also been measured for BghiP in solid neon and argon matrices. The comparison of the redshifts determined for either transition reveals that the polarizability of BghiP is larger in its S2 than in its S1 state. Bandwidths of 2.7 cm-1 measured in supersonic jets, which provide conditions relevant for astrophysics, are similar to those of most diffuse interstellar bands. The electronic transitions of BghiP are found to lie outside the ranges covered by present databases. From the comparison between experimental spectra and theoretical computations, it is concluded that the accuracy of empirical and ab initio approaches in predicting electronic energies is still not sufficient to identify astrophysically interesting candidates for spectroscopic laboratory studies.

  18. Carbon Chemistry in Transitional Clouds from the GOT C+ Survey of CII 158 micron Emission in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J.; Willacy, K.; Goldsmith, P. F.

    2011-05-01

    In understanding the lifecycle and chemistry of the interstellar gas, the transition from diffuse atomic to molecular gas clouds is a very important stage. The evolution of carbon from C+ to C0 and CO is a fundamental part of this transition, and C+ along with its carbon chemistry is a key diagnostic. Until now our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the dense molecular H2 phase traced by CO. However, we have generally been missing an important layer in diffuse and transition clouds, which is denoted by the warm "dark gas'', that is mostly H2 and little HI and CO, and is best traced with C+. Here, we discuss the chemistry in the transition from C+ to C0 and CO in these clouds as understood by a survey of the CII 1.9 THz (158 micron) line from a sparse survey of the inner galaxy over about 40 degrees in longitude as part of the Galactic Observations of Terahertz C+ (GOT C+) program, a Herschel Space Observatory Open Time Key Program to study interstellar clouds by sampling ionized carbon. Using the first results from GOT C+ along 11 LOSs, in a sample of 53 transition clouds, Velusamy, Langer et al. (A&A 521, L18, 2010) detected an excess of CII intensities indicative of a thick H2 layer (a significant warm H2, "dark gas'' component) around the 12CO core. Here we present a much larger, statistically significant sample of a few hundred diffuse and transition clouds traced by CII, along with auxiliary HI and CO data in the inner Galaxy between l=-30° and +30°. Our new and more extensive sample of transition clouds is used to elucidate the time dependent physical and carbon chemical evolution of diffuse to transition clouds, and transition layers. We consider the C+ to CO conversion pathways such as H++ O and C+ + H2 chemistry for CO production to constrain the physical parameters such as the FUV intensity and cosmic ray ionization rate that drive the CO chemistry in the diffuse transition clouds.

  19. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM.

    PubMed

    Chen, Xin; Shu, Jiapei; Chen, Qing

    2017-04-24

    Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.

  20. 75 FR 18942 - FY 2010 Discretionary Sustainability Funding Opportunity; Transit Investments for Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... DEPARTMENT OF TRANSPORTATION Federal Transit Administration FY 2010 Discretionary Sustainability... Transit Administration (FTA), DOT. ACTION: Notice of availability of FTA environmental sustainability.... Department of Transportation's (DOT) environmental sustainability efforts. This notice includes priorities...

  1. The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes

    DTIC Science & Technology

    2010-04-01

    Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee Street Buffalo...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING...HyFly Navy EMRG Reentry-F Slide 2 X-43 HIFiRE-2 Figure 17: Transition in Hypervelocity Flows: CUBRC Focus – Fully Duplicated Ground Test

  2. Clinicians’ views on improving inter-organizational care transitions

    PubMed Central

    2013-01-01

    Background Patients with complex health conditions frequently require care from multiple providers and are particularly vulnerable to poorly executed transitions from one healthcare setting to another. Poorly executed care transitions can result in negative patient outcomes (e.g. medication errors, delays in treatment) and increased healthcare spending due to re-hospitalization or emergency room visits by patients. Little is known about care transitions from acute care to complex continuing care and rehabilitation settings. Thus, a qualitative study was undertaken to explore clinicians’ perceptions of strategies aimed at improving patient care transitions from acute care hospitals to complex continuing care and rehabilitation healthcare organizations. Methods A qualitative study using semi-structured interviews was conducted with clinicians employed at two selected healthcare facilities: an acute care hospital and a complex continuing care/rehabilitation organization, respectively. Analysis of the transcripts involved the creation of a coding schema using the content analyses outlined by Ryan and Bernard. In total, 31 interviews were conducted with clinicians at the participating study sites. Results Three themes emerged from the data to delineate what study participants described as strategies to ensure quality inter-organizational transitions of patients transferred from acute care to the complex continuing care and rehabilitation hospital. These themes are: 1) communicating more effectively; 2) being vigilant around the patients’ readiness for transfer and care needs; and 3) documenting more accurately and completely in the patient transfer record. Conclusion Our study provides insights from the perspectives of multiple clinicians that have important implications for health care leaders and clinicians in their efforts to enhance inter-organizational care transitions. Of particular importance is the need to have a collective and collaborative approach amongst

  3. Closure models for transitional blunt-body flows

    NASA Astrophysics Data System (ADS)

    Nance, Robert Paul

    1998-12-01

    A mean-flow modeling approach is proposed for the prediction of high-speed blunt-body wake flows undergoing transition to turbulence. This method couples the k- /zeta (Enstrophy) compressible turbulence model with a procedure for characterizing non-turbulent fluctuations upstream of transition. Two different instability mechanisms are examined in this study. In the first model, transition is brought about by streamwise disturbance modes, whereas the second mechanism considers instabilities in the free shear layer associated with the wake flow. An important feature of this combined approach is the ability to specify or predict the location of transition onset. Solutions obtained using the new approach are presented for a variety of perfect-gas hypersonic flows over blunt- cone configurations. These results are shown to provide better agreement with experimental heating data than earlier laminar predictions by other researchers. In addition, it is demonstrated that the free-shear-layer instability mechanism is superior to the streamwise mechanism in terms of comparisons with heating measurements. The favorable comparisons are a strong indication that transition to turbulence is indeed present in the flowfields considered. They also show that the present method is a useful predictive tool for transitional blunt-body wake flows.

  4. Modeling dynamic beta-gamma polymorphic transition in Tin

    NASA Astrophysics Data System (ADS)

    Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration

    2015-06-01

    Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.

  5. Ultrafine particles and nitrogen oxides generated by gas and electric cooking.

    PubMed

    Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A

    2001-08-01

    To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.

  6. Ultrafine particles and nitrogen oxides generated by gas and electric cooking

    PubMed Central

    Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A

    2001-01-01

    OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens.
METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm.
RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide.
CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.


Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045

  7. Modeling of transitional flows

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.

    1988-01-01

    An effort directed at developing improved transitional models was initiated. The focus of this work was concentrated on the critical assessment of a popular existing transitional model developed by McDonald and Fish in 1972. The objective of this effort was to identify the shortcomings of the McDonald-Fish model and to use the insights gained to suggest modifications or alterations of the basic model. In order to evaluate the transitional model, a compressible boundary layer code was required. Accordingly, a two-dimensional compressible boundary layer code was developed. The program was based on a three-point fully implicit finite difference algorithm where the equations were solved in an uncoupled manner with second order extrapolation used to evaluate the non-linear coefficients. Iteration was offered as an option if the extrapolation error could not be tolerated. The differencing scheme was arranged to be second order in both spatial directions on an arbitrarily stretched mesh. A variety of boundary condition options were implemented including specification of an external pressure gradient, specification of a wall temperature distribution, and specification of an external temperature distribution. Overall the results of the initial phase of this work indicate that the McDonald-Fish model does a poor job at predicting the details of the turbulent flow structure during the transition region.

  8. Microfluidic study of fast gas-liquid reactions.

    PubMed

    Li, Wei; Liu, Kun; Simms, Ryan; Greener, Jesse; Jagadeesan, Dinesh; Pinto, Sascha; Günther, Axel; Kumacheva, Eugenia

    2012-02-15

    We present a new concept for studies of the kinetics of fast gas-liquid reactions. The strategy relies on the microfluidic generation of highly monodisperse gas bubbles in the liquid reaction medium and subsequent analysis of time-dependent changes in bubble dimensions. Using reactions of CO(2) with secondary amines as an exemplary system, we demonstrate that the method enables rapid determination of reaction rate constant and conversion, and comparison of various binding agents. The proposed approach addresses two challenges in studies of gas-liquid reactions: a mass-transfer limitation and a poorly defined gas-liquid interface. The proposed strategy offers new possibilities in studies of the fundamental aspects of rapid multiphase reactions, and can be combined with throughput optimization of reaction conditions.

  9. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2013-02-19

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  10. Understanding the Relationship between Transition Services and Postschool Outcomes for Students with High Incidence Disabilities

    ERIC Educational Resources Information Center

    Joshi, Gauri Salil

    2012-01-01

    Given the consistently poor postschool outcomes of individuals with high incidence disabilities, there is a need to examine the transition services provided to them while in school. This secondary data analysis explored the transition services received by individuals with high incidence disabilities through the National Longitudinal Transition…

  11. Radiative Cooling of Warm Molecular Gas

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Kaufman, Michael J.

    1993-01-01

    We consider the radiative cooling of warm (T >= 100 K), fully molecular astrophysical gas by rotational and vibrational transitions of the molecules H2O, CO, and H2. Using an escape probability method to solve for the molecular level populations, we have obtained the cooling rate for each molecule as a function of temperature, density, and an optical depth parameter. A four-parameter expression proves useful in fitting the run of cooling rate with density for any fixed values of the temperature and optical depth parameter. We identify the various cooling mechanisms which are dominant in different regions of the astrophysically relevant parameter space. Given the assumption that water is very abundant in warm regions of the interstellar medium, H2O rotational transitions are found to dominate the cooling of warm interstellar gas over a wide portion of the parameter space considered. While chemical models for the interstellar medium make the strong prediction that water will be produced copiously at temperatures above a few hundred degrees, our assumption of a high water abundance has yet to be tested observationally. The Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite will prove ideal instruments for testing whether water is indeed an important coolant of interstellar and circumstellar gas.

  12. The RESOLVE Survey Atomic Gas Census and Environmental Influences on Galaxy Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Stark, David V.; Kannappan, Sheila J.; Eckert, Kathleen D.; Florez, Jonathan; Hall, Kirsten R.; Watson, Linda C.; Hoversten, Erik A.; Burchett, Joseph N.; Guynn, David T.; Baker, Ashley D.; Moffett, Amanda J.; Berlind, Andreas A.; Norris, Mark A.; Haynes, Martha P.; Giovanelli, Riccardo; Leroy, Adam K.; Pisano, D. J.; Wei, Lisa H.; Gonzalez, Roberto E.; Calderon, Victor F.

    2016-12-01

    We present the H I mass inventory for the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey, a volume-limited, multi-wavelength census of >1500 z = 0 galaxies spanning diverse environments and complete in baryonic mass down to dwarfs of ∼109 {M}ȯ . This first 21 cm data release provides robust detections or strong upper limits (1.4M H I < 5%–10% of stellar mass M *) for ∼94% of RESOLVE. We examine global atomic gas-to-stellar mass ratios (G/S) in relation to galaxy environment using several metrics: group dark matter halo mass M h, central/satellite designation, relative mass density of the cosmic web, and distance to the nearest massive group. We find that at fixed M *, satellites have decreasing G/S with increasing M h starting clearly at M h ∼ 1012 {M}ȯ , suggesting the presence of starvation and/or stripping mechanisms associated with halo gas heating in intermediate-mass groups. The analogous relationship for centrals is uncertain because halo abundance matching builds in relationships between central G/S, stellar mass, and halo mass, which depend on the integrated group property used as a proxy for halo mass (stellar or baryonic mass). On larger scales G/S trends are less sensitive to the abundance matching method. At fixed M h ≤ 1012 {M}ȯ , the fraction of gas-poor centrals increases with large-scale structure density. In overdense regions, we identify a rare population of gas-poor centrals in low-mass (M h < 1011.4 {M}ȯ ) halos primarily located within ∼1.5× the virial radius of more massive (M h > 1012 {M}ȯ ) halos, suggesting that gas stripping and/or starvation may be induced by interactions with larger halos or the surrounding cosmic web. We find that the detailed relationship between G/S and environment varies when we examine different subvolumes of RESOLVE independently, which we suggest may be a signature of assembly bias.

  13. Moment analysis method as applied to the 2S --> 2P transition in cryogenic alkali metal/rare gas matrices.

    PubMed

    Terrill Vosbein, Heidi A; Boatz, Jerry A; Kenney, John W

    2005-12-22

    The moment analysis method (MA) has been tested for the case of 2S --> 2P ([core]ns1 --> [core]np1) transitions of alkali metal atoms (M) doped into cryogenic rare gas (Rg) matrices using theoretically validated simulations. Theoretical/computational M/Rg system models are constructed with precisely defined parameters that closely mimic known M/Rg systems. Monte Carlo (MC) techniques are then employed to generate simulated absorption and magnetic circular dichroism (MCD) spectra of the 2S --> 2P M/Rg transition to which the MA method can be applied with the goal of seeing how effective the MA method is in re-extracting the M/Rg system parameters from these known simulated systems. The MA method is summarized in general, and an assessment is made of the use of the MA method in the rigid shift approximation typically used to evaluate M/Rg systems. The MC-MCD simulation technique is summarized, and validating evidence is presented. The simulation results and the assumptions used in applying MA to M/Rg systems are evaluated. The simulation results on Na/Ar demonstrate that the MA method does successfully re-extract the 2P spin-orbit coupling constant and Landé g-factor values initially used to build the simulations. However, assigning physical significance to the cubic and noncubic Jahn-Teller (JT) vibrational mode parameters in cryogenic M/Rg systems is not supported.

  14. Advanced Seal Development for Large Industrial Gas Turbines

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  15. Clean air program : design guidelines for bus transit systems using electric and hybrid electric propulsion as an alternative fuel

    DOT National Transportation Integrated Search

    2003-03-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including : Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and : Methanol/Ethanol, are already being used. At presen...

  16. Excerpts from: Transitioning Youth with Mental Health Needs to Meaningful Employment and Independent Living

    ERIC Educational Resources Information Center

    Woolsey, Lindsey; Katz-Leavy, Judith

    2008-01-01

    Transition is an awkward period of life for any young adult. Many youth with diagnosed mental health needs experience poor transition outcomes and are among this country's least understood and most vulnerable youth. This report presents the findings from case studies of five promising program sites and identifies program design features that…

  17. Multielectron transitions in x-ray absorption of krypton

    NASA Astrophysics Data System (ADS)

    Ito, Yoshiaki; Nakamatsu, Hirohide; Mukoyama, Takeshi; Omote, Kazuhiko; Yoshikado, Shinzo; Takahashi, Masao; Emura, Shuichi

    1992-11-01

    The photoabsorption cross section near the K edge in krypton gas has been measured using synchro- tron radiation. Several features for simultaneous multielectron excitations were detected and analyzed by the use of the shakeup and shakeoff probabilities and their dependence on the photon energy. Previous observations of the [1s3p], [1s3d], and [1s4p] transitions have been confirmed. A transition is found between [1s3p] and [1s3d] multiple excitations and identified as a three-electron excitation [1s3d4p].

  18. Direct Numerical Simulation of Transitional Multicomponent-Species Gaseous and Multicomponent-Liquid Drop-Laden Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent C.; Bellan, Josette

    2006-01-01

    A model of multicomponent-liquid (MC-liquid) drop evaporation in a three-dimensional mixing layer is here exercised at larger Reynolds numbers than in a previous study, and transitional states are obtained. The gas phase is followed in an Eulerian frame and the multitude of drops is described in a Lagrangian frame. Complete coupling between phases is included with source terms in the gas conservation equations accounting for the drop/flow interaction in terms of drop drag, drop heating and species evaporation. The liquid composition, initially specified as a single-Gamma (SG) probability distribution function (PDF) depending on the molar mass is allowed to evolve into a linear combination of two SGPDFs, called the double-Gamma PDF (DGPDF). The compositions of liquid and vapor emanating from the drops are calculated through four moments of the DGPDFs, which are drop-specific and location-specific, respectively. The mixing layer is initially excited to promote the double pairing of its four initial spanwise vortices into an ultimate vortex in which small scales proliferate. Simulations are performed for four liquids of different compositions and the effect of the initial mass loading and initial free-stream gas temperature are explored. For reference, Simulations are also performed for gaseous multicomponent mixing layers for which the effect of Reynolds number is investigated. The results encompass examination of the global layer characteristics, flow visualizations and homogeneous-plane statistics at transition. Comparisons are performed with previous pre-transitional MC-liquid simulations and with transitional single-component (SC) liquid studies. It is found that MCC flows at transition, the classical energy cascade is of similar strength, but that the smallest scales contain orders of magnitude less energy than SC flows, which is confirmed by the larger viscous dissipation in the former case. Contrasting to pre-transitional MC flows, the vorticity and drop

  19. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  20. Compact Laser-Based Sensors for Monitoring and Control of Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Hanson, Ronald K.; Jeffries, Jay B.

    2003-01-01

    Research is reported on the development of sensors for gas turbine combustor applications that measure real-time gas temperature using near-infrared water vapor absorption and concentration in the combustor exhaust of trace quantities of pollutant NO and CO using mid-infrared absorption. Gas temperature is extracted from the relative absorption strength of two near-infrared transitions of water vapor. From a survey of the water vapor absorption spectrum, two overtone transitions near 1800 nm were selected that can be rapidly scanned in wavelength by injection current tuning a single DFB diode laser. From the ratio of the absorbances on these selected transitions, a path-integrated gas temperature can be extracted in near-real time. Demonstration measurements with this new temperature sensor showed that combustor instabilities could be identified in the power spectrum of the temperature versus time record. These results suggest that this strategy is extremely promising for gas turbine combustor control applications. Measurements of the concentration of NO and CO in the combustor exhaust are demonstrated with mid-infrared transitions using thermo-electrically cooled, quantum cascade lasers operating near 5.26 and 4.62 microns respectively. Measurements of NO are performed in an insulated exhaust duct of a C2H4-air flame at temperatures of approximately 600 K. CO measurements are performed above a rich H2-air flame seeded with CO2 and cooled with excess N2 to 1150 K. Using a balanced ratiometric detection technique a sensitivity of 0.36 ppm-m was achieved for NO and 0.21 ppm-m for CO. Comparisons between measured and predicted water-vapor and CO2 interference are discussed. The mid-infrared laser quantum cascade laser technology is in its infancy; however, these measurements demonstrate the potential for pollutant monitoring in exhaust gases with mid-IR laser absorption.

  1. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Dan

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydratesmore » and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.« less

  2. Transition from High School to College. Research Brief

    ERIC Educational Resources Information Center

    Johnston, Howard

    2010-01-01

    What does the literature say about effective transition between the high school and post-secondary education? A disturbing number of students leave college without completing their degree or earning the credential they sought. This problem, which is especially acute for poor, minority and rural students, results in a colossal waste of talent,…

  3. Study of the solid state of carbamazepine after processing with gas anti-solvent technique.

    PubMed

    Moneghini, M; Kikic, I; Voinovich, D; Perissutti, B; Alessi, P; Cortesi, A; Princivalle, F; Solinas, D

    2003-09-01

    The purpose of this study was to investigate the influence of supercritical CO2 processing on the physico-chemical properties of carbamazepine, a poorly soluble drug. The gas anti-solvent (GAS) technique was used to precipitate the drug from three different solvents (acetone, ethylacetate and dichloromethane) to study how they would affect the final product. The samples were analysed before and after treatment by scanning electron microscopy analysis and laser granulometry for possible changes in the habitus of the crystals. In addition, the solid state of the samples was studied by means of X-ray powder diffraction, differential scanning calorimetry, diffuse reflectance Fourier-transform infrared spectroscopy and hot stage microscopy. Finally, the in vitro dissolution tests were carried out. The solid state analysis of both samples untreated and treated with CO2, showed that the applied method caused a transition from the starting form III to the form I as well as determined a dramatic change of crystal morphology, resulting in needle-shaped crystals, regardless of the chosen solvent. In order to identify which process was responsible for the above results, carbamazepine was further precipitated from the same three solvents by traditional evaporation method (RV-samples). On the basis of this cross-testing, the solvents were found to be responsible for the reorganisation into a different polymorphic form, and the potential of the GAS process to produce micronic needle shaped particles, with an enhanced dissolution rate compared to the RV-carbamazepine, was ascertained.

  4. Metal enrichment in the neutral gas of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Kunth, D.; Désert, J.-M.; Thuan, T. X.

    2009-05-01

    We derive the chemical composition of the neutral gas in the blue compact dwarf (BCD) Pox 36 observed with FUSE. Metals (N, O, Ar, and Fe) are underabundant as compared to the ionized gas associated with H II regions by a factor ~7. The neutral gas, although it is not pristine, is thus probably less chemically evolved than the ionized gas. This could be due to different dispersal and mixing timescales. Results are compared to those of other BCDs observed with FUSE. The metallicity of the neutral gas in BCDs seems to reach a lower threshold of ~1/50Zsolar for extremely-metal poor galaxies.

  5. Disparities in Life Course Outcomes for Transition-Aged Youth with Disabilities.

    PubMed

    Acharya, Kruti; Meza, Regina; Msall, Michael E

    2017-10-01

    Close to 750,000 youth with special health care needs transition to adult health care in the United States every year; however, less than one-half receive transition-planning services. Using the "F-words" organizing framework, this article explores life course outcomes and disparities in transition-aged youth with disabilities, with a special focus on youth with autism, Down syndrome, and cerebral palsy. Despite the importance of transition, a review of the available literature revealed that (1) youth with disabilities continue to have poor outcomes in all six "F-words" domains (ie, function, family, fitness, fun, friends, and future) and (2) transition outcomes vary by race/ethnicity and disability. Professionals need to adopt a holistic framework to examine transition outcomes within a broader social-ecological context, as well as implement evidence-based transition practices to help improve postsecondary outcomes of youth with disabilities. [Pediatr Ann. 2017;46(10):e371-e376.]. Copyright 2017, SLACK Incorporated.

  6. A study of high speed flows in an aircraft transition duct. Ph.D. Thesis - Iowa State Univ.

    NASA Technical Reports Server (NTRS)

    Reichert, Bruce A.

    1991-01-01

    The study of circular-to-rectangular transition duct flows with and without inlet swirl is presented. A method was devised to create a swirling, solid body rotational flow with minimal associated disturbances. Details of the swirl generator design and construction are discussed. Coefficients based on velocities and total and static pressures measured in cross stream planes at four axial locations within the transition duct along with surface static pressures and surface oil film visualization are presented for both nonswirling and swirling incoming flows. A method was developed to acquire trace gas measurements within the transition duct at high flow velocities. Statistical methods are used to help interpret the trace gas results.

  7. Gate-opening gas adsorption and host-guest interacting gas trapping behavior of porous coordination polymers under applied AC electric fields.

    PubMed

    Kosaka, Wataru; Yamagishi, Kayo; Zhang, Jun; Miyasaka, Hitoshi

    2014-09-03

    The gate-opening adsorption behavior of the one-dimensional chain compound [Ru2(4-Cl-2-OMePhCO2)4(phz)] (1; 4-Cl-2-OMePhCO2(-) = 4-chloro-o-anisate; phz = phenazine) for various gases (O2, NO, and CO2) was electronically monitored in situ by applying ac electric fields to pelletized samples attached to a cryostat, which was used to accurately control the temperature and gas pressure. The gate-opening and -closing transitions induced by gas adsorption/desorption, respectively, were accurately monitored by a sudden change in the real part of permittivity (ε'). The transition temperature (TGO) was also found to be dependent on the applied temperature and gas pressure according to the Clausius-Clapeyron equation. This behavior was also observed in the isostructural compound [Rh2(4-Cl-2-OMePhCO2)4(phz)] (2), which exhibited similar gate-opening adsorption properties, but was not detected in the nonporous gate-inactive compound [Ru2(o-OMePhCO2)4(phz)] (3). Furthermore, the imaginary part of permittivity (ε″) effectively captured the electronic perturbations of the samples induced by the introduced guest molecules. Only the introduction of NO resulted in the increase of the sample's electronic conductivity for 1 and 3, but not for 2. This behavior indicates that electronic host-guest interactions were present, albeit very weak, at the surface of sample 1 and 3, i.e., through grain boundaries of the sample, which resulted in perturbation of the conduction band of this material's framework. This technique involving the in situ application of ac electric fields is useful not only for rapidly monitoring gas sorption responses accompanied by gate-opening/-closing structural transitions but also potentially for the development of molecular framework materials as chemically driven electronic devices.

  8. Infrared and far-infrared transition frequencies for the CH2 radical. [in interstellar gas clouds

    NASA Technical Reports Server (NTRS)

    Sears, T. J.; Mckellar, A. R. W.; Bunker, P. R.; Evenson, K. M.; Brown, J. M.

    1984-01-01

    A list of frequencies and intensities for transitions of CH2 in the middle and far infrared regions is presented which should aid in the detection of CH2 and provide valuable information on the local physical and chemical environment. Results are presented for frequency, vacuum wavelength, and line strength for rotational transition frequencies and for the transition frequencies of the v(2) band.

  9. Liquid absorbent solutions for separating nitrogen from natural gas

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  10. APOSTLE: 11 TRANSIT OBSERVATIONS OF TrES-3b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundurthy, P.; Becker, A. C.; Agol, E.

    2013-02-10

    The Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) observed 11 transits of TrES-3b over two years in order to constrain system parameters and look for transit timing and depth variations. We describe an updated analysis protocol for APOSTLE data, including the reduction pipeline, transit model, and Markov Chain Monte Carlo analyzer. Our estimates of the system parameters for TrES-3b are consistent with previous estimates to within the 2{sigma} confidence level. We improved the errors (by 10%-30%) on system parameters such as the orbital inclination (i {sub orb}), impact parameter (b), and stellar density ({rho}{sub *}) compared to previousmore » measurements. The near-grazing nature of the system, and incomplete sampling of some transits, limited our ability to place reliable uncertainties on individual transit depths and hence we do not report strong evidence for variability. Our analysis of the transit timing data shows no evidence for transit timing variations and our timing measurements are able to rule out super-Earth and gas giant companions in low-order mean motion resonance with TrES-3b.« less

  11. WIND-DRIVEN ACCRETION IN TRANSITIONAL PROTOSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lile; Goodman, Jeremy J.

    Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionlessmore » ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.« less

  12. Clean air program : use of hydrogen to power the advanced technology transit bus (ATTB) : an assessment

    DOT National Transportation Integrated Search

    1997-11-01

    The Advanced Technology Transit Bus (ATTB), developed under primary funding from : the U.S. DOT/Federal Transit Administration (FTA), currently uses a power plant : based on a natural gas burning IC engine-generator set. FTA is interested in : demons...

  13. The Elum Project: A Network of UK Sites to Understand Land-Use Transitions to Bioenergy and Their Implications for Greenhouse Gas Balance and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Harris, Z. M.; Alberti, G.; Bottoms, E.; Rowe, R.; Parmar, K.; Marshall, R.; Elias, D.; Smith, P.; Dondini, M.; Pogson, M.; Richards, M.; Finch, J.; Ineson, P.; Keane, B.; Perks, M.; Wilkinson, M.; Yamulki, S.; Donnison, I.; Farrar, K.; Massey, A.; McCalmont, J.; Drewer, J.; Sohi, S.; McNamara, N.; Taylor, G.

    2014-12-01

    Rising anthropogenic greenhouse gas (GHG) emissions coupled with an increasing need to address energy security are resulting in the development of cleaner, more sustainable alternatives to traditional fossil fuel sources. Bioenergy crops have been proposed to be able to mitigate the effects of climate change as well as provide increased energy security. The aim of this project is to assess the impact of land conversion to second generation non-food bioenergy crops on GHG balance for several land use transitions, including from arable, grassland and forest. A network of 6 sites was established across the UK to assess the processes underpinning GHG balance and to provide input data to a model being used to assess the sustainability of different land use transitions. Monthly analysis of soil GHGs shows that carbon dioxide contributes most to the global warming potential of these bioenergy crops, irrespective of transition. Nitrous oxide emissions were low for all crops except arable cropping and methane emissions were very low for all sites. Nearly all sites have shown a significant decrease in CO2 flux from the control land use. Eddy flux approaches, coupled with soil assessments show that for the transition from grassland to SRC willow there is a significant reduction in GHG emissions from soil and a negative net ecosystem exchange due to increased GPP and ecosystem respiration. These results suggest for this land use transition to bioenergy in a UK specific context, there may be a net benefit for ecosystem GHG exchange of transition to bioenergy Finally we are developing a meta-modelling tool to allow land use managers to make location-specific, informed decisions about land use change to bioenergy. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). This project is co-ordinated by the Centre for Ecology & Hydrology (www.elum.ac.uk).

  14. Trace gas emissions from a mid-latitude prescribed chaparral fire

    Treesearch

    Wesley R. Cofer; Joel S. Levine; Philip J. Riggan; Daniel I. Sebacher; Edward L. Winstead; Shaw Edwin F.; James A. Brass; Vincent. G. Ambrosia

    1988-01-01

    Gas samples were collected in smoke plumes over the San Dimas Experimental Forest during a 400-acre prescribed chaparral fire on December 12, 1986. A helicopter was used to collect gas samples over areas of vigorous flaming combustion and over areas of mixed stages (vigorous/transitional/smoldering) of combustion. Sampling was conducted at altitudes as low as 35 m and...

  15. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2015-04-28

    A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.

  16. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    PubMed

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  17. Now where was I going? The challenge of care transitions for the cognitively impaired.

    PubMed

    Noel, Margaret A

    2012-01-01

    Transitions in care settings can be disconcerting to anyone, but they can be particularly difficult for people with cognitive impairment. MemoryCare's design of integrated clinical and care management services is well suited to minimizing the preventable morbidity that can accompany transitions in health care for cognitively impaired older adults at high risk for poor outcomes.

  18. Transition from Forward Smoldering to Flaming in Small Polyurethane Foam Samples

    NASA Technical Reports Server (NTRS)

    Bar-Ilan, A.; Putzeys, O.; Rein, G.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental observations are presented of the effect of the flow velocity and oxygen concentration, and of a thermal radiant flux, on the transition from smoldering to flaming in forward smoldering of small samples of polyurethane foam with a gas/solid interface. The experiments are part of a project studying the transition from smolder to flaming under conditions encountered in spacecraft facilities, i.e., microgravity, low velocity variable oxygen concentration flows. Because the microgravity experiments are planned for the International Space Station, the foam samples had to be limited in size for safety and launch mass reasons. The feasible sample size is too small for smolder to self propagate because of heat losses to the surrounding environment. Thus, the smolder propagation and the transition to flaming had to be assisted by reducing the heat losses to the surroundings and increasing the oxygen concentration. The experiments are conducted with small parallelepiped samples vertically placed in a wind tunnel. Three of the sample lateral-sides are maintained at elevated temperature and the fourth side is exposed to an upward flow and to a radiant flux. It is found that decreasing the flow velocity and increasing its oxygen concentration, and/or increasing the radiant flux enhances the transition to flaming, and reduces the delay time to transition. Limiting external ambient conditions for the transition to flaming are reported for the present experimental set-up. The results show that smolder propagation and the transition to flaming can occur in relatively small fuel samples if the external conditions are appropriate. The results also indicate that transition to flaming occurs in the char left behind by the smolder reaction, and it has the characteristics of a gas-phase ignition induced by the smolder reaction, which acts as the source of both gaseous fuel and heat.

  19. Renormalization Group Theory for the Imbalanced Fermi Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbels, K. B.; Stoof, H. T. C.

    2008-04-11

    We formulate a Wilsonian renormalization group theory for the imbalanced Fermi gas. The theory is able to recover quantitatively well-established results in both the weak-coupling and the strong-coupling (unitarity) limits. We determine for the latter case the line of second-order phase transitions of the imbalanced Fermi gas and, in particular, the location of the tricritical point. We obtain good agreement with the recent experiments of Y. Shin et al. [Nature (London) 451, 689 (2008)].

  20. Investigation of shallow gas hydrate occurrence and gas seep activity on the Sakhalin continental slope, Russia

    NASA Astrophysics Data System (ADS)

    Jin, Young Keun; Baranov, Boris; Obzhirov, Anatoly; Salomatin, Alexander; Derkachev, Alexander; Hachikubo, Akihiro; Minami, Hrotsugu; Kuk Hong, Jong

    2016-04-01

    The Sakhalin continental slope has been a well-known gas hydrate area since the first finding of gas hydrate in 1980's. This area belongs to the southernmost glacial sea in the northern hemisphere where most of the area sea is covered by sea ice the winter season. Very high organic carbon content in the sediment, cold sea environment, and active tectonic regime in the Sakhalin slope provide a very favorable condition for occurring shallow gas hydrate accumulation and gas emission phenomena. Research expeditions under the framework of a Korean-Russian-Japanese long-term international collaboration projects (CHAOS, SSGH-I, SSGH-II projects) have been conducted to investigate gas hydrate occurrence and gas seepage activities on the Sakhalin continental slope, Russia from 2003 to 2015. During the expeditions, near-surface gas hydrate samples at more than 30 sites have been retrieved and hundreds of active gas seepage structures on the seafloor were newly registered by multidisciplinary surveys. The gas hydrates occurrence at the various water depths from about 300 m to 1000 m in the study area were accompanied by active gas seepage-related phenomena in the sub-bottom, on the seafloor, and in the water column: well-defined upward gas migration structures (gas chimney) imaged by high-resolution seismic, hydroacoustic anomalies of gas emissions (gas flares) detected by echosounders, seafloor high backscatter intensities (seepage structures) imaged by side-scan sonar and bathymetric structures (pockmarks and mounds) mapped by single/multi-beam surveys, and very shallow SMTZ (sulphate-methane transition zone) depths, strong microbial activities and high methane concentrations measured in sediment/seawater samples. The highlights of the expeditions are shallow gas hydrate occurrences around 300 m in the water depth which is nearly closed to the upper boundary of gas hydrate stability zone in the area and a 2,000 m-high gas flare emitted from the deep seafloor.

  1. Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study

    NASA Astrophysics Data System (ADS)

    Cheng, Mengxing; Chowdhury, Tathagata; Mohammed, Aaron; Ingersent, Kevin

    2017-07-01

    We use the poor man's scaling approach to study the phase boundaries of a pair of quantum impurity models featuring a power-law density of states ρ (ɛ ) ∝|ɛ| r , either vanishing (for r >0 ) or diverging (for r <0 ) at the Fermi energy ɛ =0 , that gives rise to quantum phase transitions between local-moment and Kondo-screened phases. For the Anderson model with a pseudogap (i.e., r >0 ), we find the phase boundary for (a) 0 1 , where the phases are separated by first-order quantum phase transitions that are accessible only for broken p-h symmetry. For the p-h-symmetric Kondo model with easy-axis or easy-plane anisotropy of the impurity-band spin exchange, the phase boundary and scaling trajectories are obtained for both r >0 and r <0 . Throughout the regime of weak-to-moderate impurity-band coupling in which poor man's scaling is expected to be valid, the approach predicts phase boundaries in excellent qualitative and good quantitative agreement with the nonperturbative numerical renormalization group, while also establishing the functional relations between model parameters along these boundaries.

  2. Probing the cold and warm molecular gas in the Whirlpool Galaxy: Herschel SPIRE-FTS observations of the central region of M51 (NGC 5194)

    NASA Astrophysics Data System (ADS)

    Schirm, M. R. P.; Wilson, C. D.; Kamenetzky, J.; Parkin, T. J.; Glenn, J.; Maloney, P.; Rangwala, N.; Spinoglio, L.; Baes, M.; Boselli, A.; Cooray, A.; De Looze, I.; Fernández-Ontiveros, J. A.; Karczewski, O. Ł.; Wu, R.

    2017-10-01

    We present Herschel Spectral and Photometric Imaging Receiver (SPIRE)-Fourier Transform Spectrometer (FTS) intermediate-sampled mapping observations of the central ˜8 kpc (˜150 arcsec) of M51, with a spatial resolution of 40 arcsec. We detect four 12CO transitions (J = 4-3 to J = 7-6) and the [C I] 3P2-3P1 and 3P1-3P0 transitions. We supplement these observations with ground-based observations of 12CO J = 1-0 to J = 3-2 and perform a two-component non-local thermodynamic equilibrium analysis. We find that the molecular gas in the nucleus and centre regions has a cool component (Tkin ˜ 10-20 K) with a moderate but poorly constrained density (n(H2) ˜ 103-106 cm-3), as well as significant molecular gas in a warmer (Tkin ˜ 300-3000 K), lower density (n(H2) ˜ 101.6-102.5 cm-3) component. We compare our CO line ratios and calculated densities along with ratios of CO to total infrared luminosity to a grid of photon-dominated region (PDR) models and find that the cold molecular gas likely resides in PDRs with a field strength of G0 ˜ 102. The warm component likely requires an additional source of mechanical heating, from supernovae and stellar winds or possibly shocks produced in the strong spiral density wave. When compared to similar two-component models of other star-forming galaxies published as part of the Very Nearby Galaxies Survey (Arp 220, M82 and NGC 4038/39), M51 has the lowest density for the warm component, while having a warm gas mass fraction that is comparable to those of Arp 220 and M82, and significantly higher than that of NGC 4038/39.

  3. Getting the gas out - developing gas networks in magmatic systems

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine; Rust, Alison; Oppenheimer, Julie; Belien, Isolde

    2015-04-01

    Volcanic eruption style, and explosive potential, are strongly controlled by the pre-eruptive history of the magmatic volatiles: specifically, the more efficient the gas loss prior to eruption, the lower the likelihood of primary (magmatic) explosive activity. Commonly considered gas loss mechanisms include separated flow, where individual bubbles (or bubble clouds) travel at a rate that is faster than the host magma, and permeable flow, where gas escapes through permeable (connected) pathways developed within a (relatively) static matrix. Importantly, gas loss via separated flow is episodic, while gas loss via permeable flow is likely to be continuous. Analogue experiments and numerical models on three phase (solid-liquid-gas) systems also suggest a third mechanism of gas loss that involves the opening and closing of 'pseudo fractures'. Pseudo fractures form at a critical crystallinity that is close to the maximum particle packing. Fractures form by local rearrangement of solid particles and liquid to form a through-going gas fracture; gas escape is episodic, and modulated by the available gas volume and the rate of return flow of interstitial liquid back into the fracture. In all of the gas escape scenarios described above, a fundamental control on gas behaviour is the melt viscosity, which affects the rate of individual bubble rise, the rate of bubble expansion, the rate of film thinning (required for bubble coalescence), and the rate of melt flow into gas-generated fractures. From the perspective of magma degassing, rates of gas expansion and film thinning are key to the formation of an interconnected (permeable) gas pathway. Experiments with both analogue and natural materials show that bubble coalescence is relatively slow, and, in particle-poor melts, does not necessarily create permeable gas networks. As a result, degassing efficiency is modulated by the time scales required either (1) to produce large individual bubbles or bubble clouds (in low viscosity

  4. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  5. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  6. The contact of a homogeneous unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Patel, Parth; Yan, Zhenjie; Fletcher, Richard; Struck, Julian; Zwierlein, Martin

    2017-04-01

    The contact is a fundamental quantity that measures the strength of short-range correlations in quantum gases. As one of its most important implications, it provides a link between the microscopic two-particle correlation function at small distance and the macroscopic thermodynamic properties of the gas. In particular, pairing and superfluidity in a unitary Fermi gas can be expected to leave its mark in behavior of the contact. Here we present measurements on the temperature dependence of the contact of a unitary Fermi gas across the superfluid transition. By trapping ultracold 6Li atoms in a potential that is homogeneous in two directions and harmonic in the third, we obtain radiofrequency spectra of the homogeneous gas at a high signal-to-noise ratio. We compare our data to existing, but often mutually excluding theoretical calculations for the strongly interacting Fermi gas.

  7. Sterilizing the Poor

    ERIC Educational Resources Information Center

    Rothman, Sheila M.

    1977-01-01

    Suggests that freedom for the middle classes may mean vulnerability for the poor. The enthusiasm for sterilization may be so intense as to deprive the poor of their right not to be sterilized. (Author/AM)

  8. fcc-bcc phase transition in plasma crystals using time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Dietz, C.; Bergert, R.; Steinmüller, B.; Kretschmer, M.; Mitic, S.; Thoma, M. H.

    2018-04-01

    Three-dimensional plasma crystals are often described as Yukawa systems for which a phase transition between the crystal structures fcc and bcc has been predicted. However, experimental investigations of this transition are missing. We use a fast scanning video camera to record the crystallization process of 70 000 microparticles and investigate the existence of the fcc-bcc phase transition at neutral gas pressures of 30, 40, and 50 Pa. To analyze the crystal, robust phase diagrams with the help of a machine learning algorithm are calculated. This work shows that the phase transition can be investigated experimentally and makes a comparison with numerical results of Yukawa systems. The phase transition is analyzed in dependence on the screening parameter and structural order. We suggest that the transition is an effect of gravitational compression of the plasma crystal. Experimental investigations of the fcc-bcc phase transition will provide an opportunity to estimate the coupling strength Γ by comparison with numerical results of Yukawa systems.

  9. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimle, Timothy

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladiummore » (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μ m. In general terms, μ el, gives insight into the charge distribution and mm into the number

  10. Deflagration-to-detonation transition in spiral channels

    NASA Astrophysics Data System (ADS)

    Golovastov, S. V.; Mikushkin, A. Yu.; Golub, V. V.

    2017-10-01

    The deflagration-to-detonation transition in hydrogen-air mixtures that fill spiral channels has been studied. A spiral channel has been produced in a cylindrical detonation tube with a twisted ribbon inside. The gas mixture has been ignited by means of a spark gap switch. The predetonation distance versus the twisted ribbon configuration and molar ratio between the gas mixture components has been determined. A pulling force exerted by the detonation tube after a single event of hydrogen-air mixture burnout has been found for four configurations of the twisted ribbon. Conditions under which the use of a spiral tube can be more effective (increase the pulling force) have been formulated.

  11. Molecular Gas in Starburts: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Walter, F.; Sheth, K.

    2014-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  12. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  13. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  14. Heat capacity of free electrons at the degenerate-nondegenerate transition

    NASA Astrophysics Data System (ADS)

    Nimtz, G.; Stadler, J. P.

    1985-04-01

    In this Brief Report the heat capacity of an electron gas at the degenerate-nondegenerate transition is presented. The values are deduced from hot-carrier data of InSb with ~=1014 electrons/cm3 determined by Maneval, Zylberstejn, and Budd.

  15. Transition from diffuse to self-organized discharge in a high frequency dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Belinger, Antoine; Naudé, Nicolas; Gherardi, Nicolas

    2017-05-01

    Depending on the operating conditions, different regimes can be obtained in a dielectric barrier discharge (DBD): filamentary, diffuse (also called homogeneous) or self-organized. For a plane-to-plane DBD operated at high frequency (160 kHz) and at atmospheric pressure in helium gas, we show that the addition of a small amount of nitrogen induces a transition from the diffuse regime to a self-organized regime characterized by the appearance of filaments at the exit of the discharge. In this paper, we detail mechanisms that could be responsible of the transition from diffuse mode to this self-organized mode. We point out the critical role of the power supply and the importance of the gas memory effect from one discharge to the following one on the transition to the self-organised mode. The self-organized mode is usually attributed to a surface memory effect. In this work, we show an additional involvement of the gas memory effect on the self-organized mode. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  16. The CGM of Massive Galaxies: Where Cold Gas Goes to Die?

    NASA Astrophysics Data System (ADS)

    Howk, Jay

    2017-08-01

    We propose to survey the cold HI content and metallicity of the circumgalactic medium (CGM) around 50 (45 new, 5 archival) z 0.5 Luminous Red Galaxies (LRGs) to directly test a fundamental prediction of galaxy assembly models: that cold, metal-poor accretion does not survive to the inner halos of very massive galaxies. Accretion and feedback through the CGM play key roles in our models of the star formation dichotomy in galaxies. Low mass galaxies are thought to accrete gas in cold streams, while high mass galaxies host hot, dense halos that heat incoming gas and prevent its cooling, thereby quenching star formation. HST/COS has provided evidence for cold, metal-poor streams in the halos of star-forming galaxies (consistent with cold accretion). Observations have also demonstrated the presence of cool gas in the halos of passive galaxies, a potential challenge to the cold/hot accretion model. Our proposed observations will target the most massive galaxies and address the origin of the cool CGM gas by measuring the metallicity. This experiment is enabled by our novel approach to deriving metallicities, allowing the use of much fainter QSOs. It cannot be done with archival data, as these rare systems are not often probed along random sight lines. The H I column density (and metallicity) measurements require access to the UV. The large size of our survey is crucial to robustly assess whether the CGM in these galaxies is unique from that of star-forming systems, a comparison that provides the most stringent test of cold-mode accretion/quenching models to date. Conversely, widespread detections of metal-poor gas in these halos will seriously challenge the prevailing theory.

  17. Occupational Skills Training and Counseling Handbook. Transitional Black Women's Project.

    ERIC Educational Resources Information Center

    Atlanta Univ., GA. Women's Inst. for the Southeast.

    This handbook provides seven days of workshops in occupational skills training and counseling for developing career awareness and motivating career decision-making among transitional black women in the population of women who are underemployed, unemployed, undereducated, or poor, and who are unaware of educational or occupational opportunities…

  18. Evidence of Antiblockade in an Ultracold Rydberg Gas

    NASA Astrophysics Data System (ADS)

    Amthor, Thomas; Giese, Christian; Hofmann, Christoph S.; Weidemüller, Matthias

    2010-01-01

    We present the experimental observation of the antiblockade in an ultracold Rydberg gas recently proposed by Ates et al. [Phys. Rev. Lett. 98, 023002 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.023002]. Our approach allows the control of the pair distribution in the gas and is based on a strong coupling of one transition in an atomic three-level system, while introducing specific detunings of the other transition. When the coupling energy matches the interaction energy of the Rydberg long-range interactions, the otherwise blocked excitation of close pairs becomes possible. A time-resolved spectroscopic measurement of the Penning ionization signal is used to identify slight variations in the Rydberg pair distribution of a random arrangement of atoms. A model based on a pair interaction Hamiltonian is presented which well reproduces our experimental observations and allows one to deduce the distribution of nearest-neighbor distances.

  19. Future volcanic lake research: revealing secrets from poorly studied lakes

    NASA Astrophysics Data System (ADS)

    Rouwet, D.; Tassi, F.; Mora-Amador, R. A.

    2012-04-01

    Volcanic lake research boosted after the 1986 Lake Nyos lethal gas burst, a limnic rather than volcanic event. This led to the formation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990's. At Lake Nyos, a degassing pipe is functional since 2001, and two additional pipes were added in 2011, aimed to prevent further limnic eruption events. There are between 150 and 200 volcanic lakes on Earth. Some acidic crater lakes topping active magmatic-hydrothermal systems are monitored continuously or discontinuously. Such detailed studies have shown their usefulness in volcanic surveillance (e.g. Ruapehu, Yugama-Kusatsu-Shiran, Poás). Others are "Nyos-type" lakes, with possible gas accumulation in bottom waters and thus potentially hazardous. "Nyos-type" lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term gas build-up and thus higher potential risk. In temperate climates, such lakes tend to turn over in winter (monomictic), and thus liberating its gas charge yearly. We line out research strategies for the different types of lakes. We believe a complementary, multi-disciplinary approach (geochemistry, geophysics, limnology, biology, statistics, etc.) will lead to new insights and ideas, which can be the base for future following-up and monitoring. After 25 years of pioneering studies on rather few lakes, the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazard, based on probabilistic approaches.

  20. Slug to churn transition analysis using wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    H. F. Velasco, P.; Ortiz-Vidal, L. E.; Rocha, D. M.; Rodriguez, O. M. H.

    2016-06-01

    A comparison between some theoretical slug to churn flow-pattern transition models and experimental data is performed. The flow-pattern database considers vertical upward air-water flow at standard temperature and pressure for 50 mm and 32 mm ID pipes. A briefly description of the models and its phenomenology is presented. In general, the performance of the transition models is poor. We found that new experimental studies describing objectively both stable and unstable slug flow-pattern are required. In this sense, the Wire Mesh Sensor (WMS) can assist to that aim. The potential of the WMS is outlined.

  1. Natural gas in the energy industry of the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuttica, J.

    1995-12-31

    This paper provides a gas industry perspective on the impacts of restructuring the natural gas and electric industries. The four main implications discussed are: (1) market trends, (2) strategic positioning, (3) significant market implications, and (4) issues for the future. Market trends discussed include transitioning rate of return to market competition and regulatory impacts. Significant market implications for gas-fired generation identified include limited new generation investment, extension of existing plants, and an opportunity for distributed power generation. 12 tabs.

  2. Geochemical constraints on the distribution of gas hydrates in the Gulf of Mexico

    USGS Publications Warehouse

    Paull, C.K.; Ussler, W.; Lorenson, T.; Winters, W.; Dougherty, J.

    2005-01-01

    Gas hydrates are common within near-seafloor sediments immediately surrounding fluid and gas venting sites on the continental slope of the northern Gulf of Mexico. However, the distribution of gas hydrates within sediments away from the vents is poorly documented, yet critical for gas hydrate assessments. Porewater chloride and sulfate concentrations, hydrocarbon gas compositions, and geothermal gradients obtained during a porewater geochemical survey of the northern Gulf of Mexico suggest that the lack of bottom simulating reflectors in gas-rich areas of the gulf may be the consequence of elevated porewater salinity, geothermal gradients, and microbial gas compositions in sediments away from fault conduits. 

  3. Hydrodynamic outcomes of planet scattering in transitional discs

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas; Armitage, Philip J.

    2012-01-01

    A significant fraction of unstable multiple planet systems are likely to scatter during the transitional disc phase as gas damping becomes ineffectual. Using a large ensemble of FARGO hydrodynamic simulations and MERCURY N-body integrations, we directly follow the dynamics of planet-disc and planet-planet interactions through the clearing phase and through 50 Myr of planetary system evolution. Disc clearing is assumed to occur as a result of X-ray-driven photoevaporation. We find that the hydrodynamic evolution of individual scattering systems is complex, and can involve phases in which massive planets orbit within eccentric gaps, or accrete directly from the disc without a gap. Comparing the results to a reference gas-free model, we find that the N-body dynamics and hydrodynamics of scattering into one- and two-planet final states are almost identical. The eccentricity distributions in these channels are almost unaltered by the presence of gas. The hydrodynamic simulations, however, also form a population of low-eccentricity three-planet systems in long-term stable configurations, which are not found in N-body runs. The admixture of these systems results in modestly lower eccentricities in hydrodynamic as opposed to gas-free simulations. The precise incidence of these three-planet systems is likely a function of the initial conditions; different planet set-ups (number or spacing) may change the quantitative character of this result. We analyse the properties of surviving multiple planet systems, and show that only a small fraction (a few per cent) enter mean motion resonances after scattering, while a larger fraction form stable resonant chains and avoid scattering entirely. Our results remain consistent with the hypothesis that exoplanet eccentricity results from scattering, though the detailed agreement between observations and gas-free simulation results is likely coincidental. We discuss the prospects for further tests of scattering models by observing planets

  4. Differences in Nutrient Adequacy among Poor and Non-Poor Children.

    ERIC Educational Resources Information Center

    Cook, John T.; Martin, Katie S.

    This study compared the proportion of 1- to 5-year-olds in poor and non-poor households whose intakes of key nutrients were inadequate. Data were obtained from the 1986 United States Department of Agriculture Nationwide Food Consumption Survey and Continuing Survey of Food Intakes by Individuals. An intake below 70 percent of the Recommended Daily…

  5. Microscopic Studies of Quantum Phase Transitions in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Bakr, Waseem S.

    2011-12-01

    In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build

  6. Facies Distribution and Petrophysical Properties of Shoreface-Offshore Transition Environment in Sandakan Formation, NE Sabah Basin

    NASA Astrophysics Data System (ADS)

    Majid, M. Firdaus A.; Suhaili Ismail, M.; Rahman, A. Hadi A.; Azfar Mohamed, M.

    2017-10-01

    Newly exposed outcrop of Miocene shallow marine sandstone in Sandakan Formation, allows characterization of the facies distribution and petrophysical properties of shoreface to offshore transition environment. Six facies are defined: (1) Poorly bioturbated Hummocky Cross Stratified (HCS) sandstone (F1), (2) Moderately bioturbated HCS sandstone (F2), (3) Well bioturbated HCS sandstone (F3), (4) Poorly bioturbated Swaley Cross Stratified (SCS) sandstone (F4), (5) Interbedded HCS sandstone with sand-silt mudstone, (6) Heterolithic mudstone. The sedimentary successions were deposited in upper to lower shoreface, and offshore transition environment. Facies F3, F4 and F5 shows good reservoir quality with good porosity and fair permeability values from 20% to 21% and 14 mD to 33 mD respectively. While Facies F1 exhibits poor reservoir quality with low permeability values 3.13 mD.

  7. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  8. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  9. Transition in the equilibrium distribution function of relativistic particles.

    PubMed

    Mendoza, M; Araújo, N A M; Succi, S; Herrmann, H J

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.

  10. Transition in the Equilibrium Distribution Function of Relativistic Particles

    PubMed Central

    Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220

  11. FINESSE & CASE: Two Proposed Transiting Exoplanet Missions

    NASA Astrophysics Data System (ADS)

    Zellem, Robert Thomas; FINESSE and CASE Science Team

    2018-01-01

    The FINESSE mission concept and the proposed CASE Mission of Opportunity, both recently selected by NASA’s Explorer program to proceed to Step 2, would conduct the first characterizations of exoplanet atmospheres for a statistically significant population. FINESSE would determine whether our Solar System is typical or exceptional, the key characteristics of the planet formation mechanism, and what establishes global planetary climate by spectroscopically surveying 500 exoplanets, ranging from terrestrials with extended atmospheres to sub-Neptunes to gas giants. FINESSE’s broad, instantaneous spectral coverage from 0.5-5 microns and capability to survey hundreds of exoplanets would enable follow-up exploration of TESS discoveries and provide a broader context for interpreting detailed JWST observations. Similarly, CASE, a NASA Mission of Opportunity contribution to ESA’s dedicated transiting exoplanet spectroscopy mission ARIEL, would observe 1000 warm transiting gas giants, Neptunes, and super-Earths, using visible to near-IR photometry and spectroscopy. CASE would quantify the occurrence rate of atmospheric aerosols (clouds and hazes) and measure the geometric albedos of the targets in the ARIEL survey. Thus, with the selection of either of these two missions, NASA would ensure access to critical data for the U.S. exoplanet science community.

  12. New Insight into the Solar System’s Transition Disk Phase Provided by the Metal-rich Carbonaceous Chondrite Isheyevo

    NASA Astrophysics Data System (ADS)

    Morris, Melissa A.; Garvie, Laurence A. J.; Knauth, L. Paul

    2015-03-01

    Many aspects of planet formation are controlled by the amount of gas remaining in the natal protoplanetary disks (PPDs). Infrared observations show that PPDs undergo a transition stage at several megayears, during which gas densities are reduced. Our Solar System would have experienced such a stage. However, there is currently no data that provides insight into this crucial time in our PPD’s evolution. We show that the Isheyevo meteorite contains the first definitive evidence for a transition disk stage in our Solar System. Isheyevo belongs to a class of metal-rich meteorites whose components have been dated at almost 5 Myr after formation of Ca, Al-rich inclusions, and exhibits unique sedimentary layers that imply formation through gentle sedimentation. We show that such layering can occur via the gentle sweep-up of material found in the impact plume resulting from the collision of two planetesimals. Such sweep-up requires gas densities consistent with observed transition disks (10-12-10-11 g cm-3). As such, Isheyevo presents the first evidence of our own transition disk and provides new constraints on the evolution of our solar nebula.

  13. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model.

    PubMed

    Butlitsky, M A; Zelener, B B; Zelener, B V

    2014-07-14

    A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).

  14. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butlitsky, M. A.; Zelener, B. V.; Zelener, B. B.

    A two-component plasma model, which we called a “shelf Coulomb” model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The “shelf Coulomb” model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for largemore » distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ε parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ε and γ = βe{sup 2}n{sup 1/3} (where β = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ε and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ε{sub crit}≈13(T{sub crit}{sup *}≈0.076),γ{sub crit}≈1.8(v{sub crit}{sup *}≈0.17),P{sub crit}{sup *}≈0.39, where specific volume v* = 1/γ{sup 3} and reduced temperature T{sup *} = ε{sup −1}.« less

  15. Poverty and transitions in health in later life.

    PubMed

    Adena, Maja; Myck, Michal

    2014-09-01

    Using a sample of Europeans aged 50+ from 12 countries in the Survey of Health, Ageing and Retirement in Europe (SHARE), we analyse the role of poor material conditions as a determinant of changes in health over a four- to five-year period. We find that poverty defined with respect to relative income has no effect on changes in health. However, broader measures of poor material conditions, such as subjective poverty or low wealth, significantly increase the probability of transition to poor health among the healthy and reduce the chance of recovery from poor health over the time interval analysed. In addition to this, the subjective measure of poverty has a significant effect on mortality, increasing it by 65% among men and by 68% among those aged 50-64. Material conditions affect health among older people. We suggest that if attempts to reduce poverty in later life and corresponding policy targets are to focus on the relevant measures, they should take into account broader definitions of poverty than those based only on relative incomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Molecular Gas Flow

    NASA Astrophysics Data System (ADS)

    Shneider, Mikhail

    2014-10-01

    Contraction of the gas discharge, when current contracts from a significant volume of weakly ionized plasma into a thin arc channel, was attracted attention of scientists for more than a century. Studies of the contraction (also called constriction) mechanisms, besides carrying interesting science, are of practical importance, especially when contraction should be prevented. A set of time-dependent two-dimensional equations for the non-equilibrium weakly-ionized nitrogen/ air plasma is formulated. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; by taking into account the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the pressure (gas density) drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge where the current flows along the density gradient of the background gas was discussed. In this talk the problems related to the dynamic contraction of the current channel inside a quasineutral positive column of a self-sustained glow discharge in molecular gas in a rectangular duct with convection cooling will be discussed. Study presented in this talk was stimulated by the fact that there are large number of experiments on the dynamic contraction of a glow discharge in nitrogen and air flows and a many of possible applications. Similar processes play a role in the powerful gas-discharge lasers. In addition, the problem of dynamic contraction in the large volume of non-equilibrium weakly ionized plasma is closely related to the problem of streamer to leader transitions in lightning and blue jets.

  17. Overexpression of long noncoding RNA H19 indicates a poor prognosis for cholangiocarcinoma and promotes cell migration and invasion by affecting epithelial-mesenchymal transition.

    PubMed

    Xu, Yi; Wang, Zhidong; Jiang, Xingming; Cui, Yunfu

    2017-08-01

    Cholangiocarcinoma (CCA) is a deadly disease that poorly responds to chemotherapy and radiotherapy and whose incidence has increased worldwide. Furthermore, long noncoding RNAs (lncRNAs) play important roles in multiple biological processes, including tumorigenesis. Specifically, H19, the first discovered lncRNA, has been reported to be overexpressed in diverse human carcinomas, but the overall biological role and clinical significance of H19 in CCA remains unknown. In the present study, expression levels of H19 were investigated in CCA tissues and cell lines and were correlated with clinicopathological features. Moreover, we explored the functional roles of H19 depletion in QBC939 and RBE cells, including cell proliferation, apoptosis, migration, invasion and epithelial-to-mesenchymal transition (EMT). The results indicated that H19 was upregulated in CCA tissue samples and cell lines, and this upregulation was associated with tumor size, TNM stage, postoperative recurrence and overall survival in 56 patients with CCA. Moreover, knockdown of H19 followed by RNA silencing restrained cell proliferation and promoted apoptosis. In addition, H19 suppression impaired migration and invasion potential by reversing EMT. Overall, our findings may help to develop diagnostic biomarkers and therapeutics that target H19 for the treatment of CCA. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Time-delayed transition of normal-to-abnormal glow in pin-to-water discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, S.-Y.; Byeon, Y.-S.; Yoo, S.

    2016-08-15

    Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.

  19. Mess in mass transit: though demand is up, the service is down

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-16

    Mass transit systems (bus and rail), in poor mechanical and physical condition, are facing an economic crisis. Most industries that had been constructing new rail or bus equipment have now quit production completely or nearly so. San Diego is buying trolleys for its 16-mile line to the Mexican border, on which construction will begin in late 1979, from a West German supplier. The background of how the US got into this situation is reviewed. American's love affair with the automobile put the transit systems in financial trouble with poor ridership, and now the companies are afraid to reconstruct, thinking perhapsmore » Americans will revert to the automobile if gasoline again becomes plentiful. As the US attempts to remedy the transit situation, there should be a burden sharing between local and Federal governments. Local transit authorities should carry the operating costs, but even if they are heavily traveled, fares meet only 48% of operating costs. Therefore, communities will have to find ways to raise money in order to keep the systems running. The Carter Administration did not seize on mass transit as a means of conserving gasoline, but President Carter did say that part of the windfall tax on oil companies would be set aside for mass transport. But some progress is noted: Baltimore is digging its first subway; Buffalo began construction of a 6.5-mile subway and elevated-transit system; and Atlanta put into operation the first 6.7-mile segment of MARTA. Improvisions in many cities are noted, such as, leasing commercial buses and pressing school buses into operation. (MCW)« less

  20. Poor Smokers, Poor Quitters, and Cigarette Tax Regressivity

    PubMed Central

    Remler, Dahlia K.

    2004-01-01

    The traditional view that excise taxes are regressive has been challenged. I document the history of the term regressive tax, show that traditional definitions have always found cigarette taxes to be regressive, and illustrate the implications of the greater price responsiveness observed among the poor. I explain the different definitions of tax burden: accounting, welfare-based willingness to pay, and welfare-based time inconsistent. Progressivity (equity across income groups) is sensitive to the way in which tax burden is assessed. Analysis of horizontal equity (fairness within a given income group) shows that cigarette taxes heavily burden poor smokers who do not quit, no matter how tax burden is assessed. PMID:14759931

  1. Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Clampin, M.; Latham, D. W.; Seager, S.; Vanderspek, R. K.; Villasenor, J. S.; Winn, J. N.

    2012-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.

  2. Molecular Gas in Local Mergers: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Sheth, K.

    2013-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging will allow multilevel excitation analysis of HCN, HCO+ and CS transitions which will be used to constrain the properties of the gas as a function of position and velocity (across line profiles). We aim to do an extensive multilevel excitation analysis of the merger as a function of radius which will enable in depth understanding of the gas dynamics and gas properties such as temperature and density. This will in turn probe the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will help assemble a more integrated picture of the merger process. We will probe the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  3. Structural origin underlying poor glass forming ability of Al metallic glass

    NASA Astrophysics Data System (ADS)

    Li, F.; Liu, X. J.; Hou, H. Y.; Chen, G.; Chen, G. L.

    2011-07-01

    We performed molecular dynamics simulations to study the glass formation and local atomic structure of rapidly quenched Al. Both potential energy and structural parameters indicate that the glass transition temperature of amorphous Al is as low as 300 K, which may lead to the poor thermal stability of the amorphous Al as it is prone to crystallize even at room temperature. Voronoi polyhedra analysis reveals that the most popular polyhedron is the deformed body-centered cubic (bcc) cluster characterized by the index < 0, 3, 6, 4 > in the amorphous Al, while the icosahedron with the index < 0, 0, 12, 0 > is always predominant in bulk metallic glass formers with excellent glass forming ability (GFA). Moreover, these deformed-bcc short-range orders can make up medium-range orders via the linkage of vertex-, edge-, face-, intercrossed-shared atoms, which are believed to more easily transform into face-centered cubic (fcc) Al nanocrystal compared with the icosahedral clusters in terms of the symmetrical similarity between bcc and fcc structures. This finding could unveil the structural origin of poor GFA of Al-based alloys.

  4. Interaction between phases in the liquid–gas system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, R. S., E-mail: bmsmirnov@gmail.com; Smirnov, B. M.

    This work analyzes the equilibrium between a liquid and a gas over this liquid separated by an interface. Various gas forms exist inside the liquid: dissolved gas molecules attached to solvent molecules, free gas molecules, and gaseous bubbles. Thermodynamic equilibrium is maintained between two phases; the first phase is the liquid containing dissolved and free molecules, and the second phase is the gas over the liquid and bubbles inside it. Kinetics of gas transition between the internal and external gas proceeds through bubbles and includes the processes of bubbles floating up and bubble growth as a result of association duemore » to the Smoluchowski mechanism. Evolution of a gas in the liquid is considered using the example of oxygen in water, and numerical parameters of this system are given. In the regime under consideration for an oxygen–water system, transport of oxygen into the surrounding air proceeds through micron-size bubbles with lifetimes of hours. This regime is realized if the total number of oxygen molecules in water is small compared with the numbers of solvated and free molecules in the liquid.« less

  5. Epithelial-to-mesenchymal transition in penile squamous cell carcinoma.

    PubMed

    Masferrer, Emili; Ferrándiz-Pulido, Carla; Masferrer-Niubò, Magalí; Rodríguez-Rodríguez, Alfredo; Gil, Inmaculada; Pont, Antoni; Servitje, Octavi; García de Herreros, Antonio; Lloveras, Belen; García-Patos, Vicenç; Pujol, Ramon M; Toll, Agustí; Hernández-Muñoz, Inmaculada

    2015-02-01

    Epithelial-to-mesenchymal transition is a phenomenon in epithelial tumors that involves loss of intercellular adhesion, mesenchymal phenotype acquisition and enhanced migratory potential. While the epithelial-to-mesenchymal transition process has been extensively linked to metastatic progression of squamous cell carcinoma, studies of the role of epithelial-to-mesenchymal transition in squamous cell carcinoma containing high risk human papillomaviruses are scarce. Moreover, to our knowledge epithelial-to-mesenchymal transition involvement in human penile squamous cell carcinoma, which can arise through transforming HPV infections or independently of HPV, has not been investigated. We evaluated the presence of epithelial-to-mesenchymal transition markers and their relationship to HPV in penile squamous cell carcinoma. We assessed the expression of E-cadherin, vimentin and the epithelial-to-mesenchymal transition related transcription factors Twist, Zeb1 and Snail by immunohistochemical staining in 64 penile squamous cell carcinoma cases. HPV was detected by polymerase chain reaction amplification. Simultaneous loss of membranous E-cadherin expression and vimentin over expression were noted in 43.5% of penile squamous cell carcinoma cases. HPV was significantly associated with loss of membranous E-cadherin but not with epithelial-to-mesenchymal transition. Recurrence and mortality rates were significantly higher in cases showing epithelial-to-mesenchymal transition. Our findings indicate that in penile squamous cell carcinoma epithelial-to-mesenchymal transition is associated with poor prognosis but not with the presence of HPV. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Heating the sun's lower transition region with fine-scale electric currents

    NASA Technical Reports Server (NTRS)

    Rabin, D.; Moore, R.

    1984-01-01

    Analytical and observational data are presented to show that the lower transition zone, a 100 km thick region at 10,000-200,000 K between the solar chromosphere and corona, is heated by local electric currents. The study was spurred by correlations between the enhanced atmospheric heating and magnetospheric flux in the chromospheric network and active regions. Field aligned current heated flux loops are asserted to mainly reside in and make up most of the transition region. It is shown that thermal conduction from the sides of hot gas columns generated by the current dissipation is the source of the observed temperature distribution in the transition regions.

  7. H I-to-H2 Transition Layers in the Star-forming Region W43

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Bihr, Simon; Beuther, Henrik; Henning, Thomas; Sternberg, Amiel

    2017-02-01

    The process of atomic-to-molecular (H I-to-H2) gas conversion is fundamental for molecular-cloud formation and star formation. 21 cm observations of the star-forming region W43 revealed extremely high H I column densities, of 120-180 {M}⊙ {{pc}}-2, a factor of 10-20 larger than predicted by H I-to-H2 transition theories. We analyze the observed H I with a theoretical model of the H I-to-H2 transition, and show that the discrepancy between theory and observation cannot be explained by the intense radiation in W43, nor be explained by variations of the assumed volume density or H2 formation rate coefficient. We show that the large observed H I columns are naturally explained by several (9-22) H I-to-H2 transition layers, superimposed along the sightlines of W43. We discuss other possible interpretations such as a non-steady-state scenario and inefficient dust absorption. The case of W43 suggests that H I thresholds reported in extragalactic observations are probably not associated with a single H I-to-H2 transition, but are rather a result of several transition layers (clouds) along the sightlines, beam-diluted with diffuse intercloud gas.

  8. A Gas-Kinetic Method for Hyperbolic-Elliptic Equations and Its Application in Two-Phase Fluid Flow

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    1999-01-01

    A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the mixed type system, the co-existence and the phase transition between liquid and gas are described by the van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region, interface between the liquid and gas can be kept sharp through the condensation and evaporation process to remove the "averaged" numerical fluid away from the elliptic region, and the interface thickness depends on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for both phase transition and multifluid interface problems.

  9. Analysis of Some New Electronic Transitions Observed Using Intracavity Laser Spectroscopy (ils): Possible Identification of HCuN

    NASA Astrophysics Data System (ADS)

    Harms, Jack C.; Grames, Ethan M.; O'Brien, Leah C.; O'Brien, James J.

    2017-06-01

    Four new electronic transitions with blue-degraded bandheads were observed in the orange-red region of the visible spectrum. The transitions were observed in the plasma discharge of a hollow copper cathode placed within the cavity of a tunable dye laser system, allowing molecular absorbance to be enhanced upon laser amplification. To produce the molecules, the surface of the copper cathode was soaked in a dilute ammonia solution prior to installation, and 1 torr of H_2 was used as the sputter gas in the dc plasma discharge. The bandheads were observed at 16,560 \\wn, 16,485 \\wn, 16,027 \\wn, and 15,960 \\wn. Using 1.5 torr of D_2 as the sputter gas resulted in a -3 \\wn shift in origin for the bands in the 16,000 \\wn region. Four rotational branches have been identified in each transition, and the transitions have been fit to independent ^{2}Σ - ^{2}Π transitions using PGOPHER, with spin-orbit splittings in the Hund's case (a) Π-states of -71.2 \\wn and -65.4 \\wn. The transitions have tentatively been assigned to HCuN. Results of this analysis will be presented.

  10. New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region

    NASA Astrophysics Data System (ADS)

    van der Marel, Nienke; Williams, Jonathan P.; Ansdell, M.; Manara, Carlo F.; Miotello, Anna; Tazzari, Marco; Testi, Leonardo; Hogerheijde, Michiel; Bruderer, Simon; van Terwisga, Sierk E.; van Dishoeck, Ewine F.

    2018-02-01

    Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities, hinting at recently formed, giant planets. However, many of these studies are biased toward the brightest disks in the nearby star-forming regions, and it is not possible to derive reliable statistics that can be compared with exoplanet populations. We present the analysis of 11 transition disks with large cavities (≥20 au radius) from a complete disk survey of the Lupus star-forming region, using ALMA Band 7 observations at 0.″3 (22–30 au radius) resolution of the 345 GHz continuum, 13CO and C18O 3–2 observations, and the spectral energy distribution of each source. Gas and dust surface density profiles are derived using the physical–chemical modeling code DALI. This is the first study of transition disks of large cavities within a complete disk survey within a star-forming region. The dust cavity sizes range from 20 to 90 au radius, and in three cases, a gas cavity is resolved as well. The deep drops in gas density and large dust cavity sizes are consistent with clearing by giant planets. The fraction of transition disks with large cavities in Lupus is ≳ 11 % , which is inconsistent with exoplanet population studies of giant planets at wide orbits. Furthermore, we present a hypothesis of an evolutionary path for large massive disks evolving into transition disks with large cavities.

  11. Decomposing the gap in childhood undernutrition between poor and non-poor in urban India, 2005-06.

    PubMed

    Kumar, Abhishek; Singh, Aditya

    2013-01-01

    Despite the growing evidence from other developing countries, intra-urban inequality in childhood undernutrition is poorly researched in India. Additionally, the factors contributing to the poor/non-poor gap in childhood undernutrition have not been explored. This study aims to quantify the contribution of factors that explain the poor/non-poor gap in underweight, stunting, and wasting among children aged less than five years in urban India. We used cross-sectional data from the third round of the National Family Health Survey conducted during 2005-06. Descriptive statistics were used to understand the gap in childhood undernutrition between the urban poor and non-poor, and across the selected covariates. Blinder-Oaxaca decomposition technique was used to explain the factors contributing to the average gap in undernutrition between poor and non-poor children in urban India. Considerable proportions of urban children were found to be underweight (33%), stunted (40%), and wasted (17%) in 2005-06. The undernutrition gap between the poor and non-poor was stark in urban India. For all the three indicators, the main contributing factors were underutilization of health care services, poor body mass index of the mothers, and lower level of parental education among those living in poverty. The findings indicate that children belonging to poor households are undernourished due to limited use of health care services, poor health of mothers, and poor educational status of their parents. Based on the findings the study suggests that improving the public services such as basic health care and the education level of the mothers among urban poor can ameliorate the negative impact of poverty on childhood undernutrition.

  12. Effect of annealing on Curie temperature and phase transition in La{sub 0.55}Sr{sub 0.08}Mn{sub 0.37}O{sub 3} epitaxial films grown on SrTiO{sub 3} (100) substrates by reactive radio frequency magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichinose, T.

    2016-08-15

    Mn-poor LaSrMnO{sub 3} (LSMO) epitaxial films were grown on SrTiO{sub 3} (100) substrates by radio frequency magnetron sputtering in an argon and oxygen gas mix, and then the samples were annealed in air at various temperatures (T{sub a}). 2 theta-chi X-ray diffraction mapping, nano-beam diffraction analysis through transmission electron microscopy, and electron back scatter diffraction through scanning electron microscopy revealed that the crystal symmetry of the LSMO films changed from monoclinic/orthorhombic to rhombohedral on annealing in air. Curie temperature (T{sub C}) of the LSMO films was found to increase with increasing T{sub a}, and become higher than the room temperaturemore » at T{sub a} ≥ 861 °C, indicating that the cause of these changes was the filling of oxygen and the transition of the crystal symmetry into rhombohedral. - Highlights: •Mn-poor LSMO changed from monoclinic/orthorhombic to rhombohedral by oxygen supply. •Mn-poor LSMO was increased T{sub C} by changed crystal symmetry, and it showed T{sub C} above RT. •Annealed in air effectively supplied O{sub 2} more than O{sub 2} gas during sputtering •EBSD is useful to evaluate crystal symmetry of complex oxide film from the substrate.« less

  13. Wigner time-delay distribution in chaotic cavities and freezing transition.

    PubMed

    Texier, Christophe; Majumdar, Satya N

    2013-06-21

    Using the joint distribution for proper time delays of a chaotic cavity derived by Brouwer, Frahm, and Beenakker [Phys. Rev. Lett. 78, 4737 (1997)], we obtain, in the limit of the large number of channels N, the large deviation function for the distribution of the Wigner time delay (the sum of proper times) by a Coulomb gas method. We show that the existence of a power law tail originates from narrow resonance contributions, related to a (second order) freezing transition in the Coulomb gas.

  14. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  15. Partial wetting gas-liquid segmented flow microreactor.

    PubMed

    Kazemi Oskooei, S Ali; Sinton, David

    2010-07-07

    A microfluidic reactor strategy for reducing plug-to-plug transport in gas-liquid segmented flow microfluidic reactors is presented. The segmented flow is generated in a wetting portion of the chip that transitions downstream to a partially wetting reaction channel that serves to disconnect the liquid plugs. The resulting residence time distributions show little dependence on channel length, and over 60% narrowing in residence time distribution as compared to an otherwise similar reactor. This partial wetting strategy mitigates a central limitation (plug-to-plug dispersion) while preserving the many attractive features of gas-liquid segmented flow reactors.

  16. Phase transitions in Yang-Mills theories and their gravity duals

    NASA Astrophysics Data System (ADS)

    Marsano, Joseph Daniel

    This thesis is a study of the thermal phase structure of systems that admit dual gauge theory and string theory descriptions. In a pair of examples, we explore the connection between perturbative Yang-Mills and gravitational thermodynamics which arises from the fact that these descriptions probe different corners of a single phase diagram. The structure that emerges from a detailed study of these isolated regions generally suggests a natural conjecture how they may be connected to one another within the full phase diagram. This permits the identification of interesting phenomena in the gauge and gravity regimes under a continuous change in parameters. We begin by studying the AdS5/CFT 4 system which, when the supergravity description is valid, exhibits a first order Hawking-Page phase transition as a function of temperature from a thermal gas of gravitons to a large black hole. In the perturbative Yang-Mills regime, we find that the free theory exhibits a weakly first order deconfinement transition whose precise nature at small nonzero coupling depends on the result of a nontrivial perturbative computation. It is conjectured that this deconfinement transition is continuously connected in the full phase diagram to the Hawking-Page transition at strong coupling, with the confined phase identified with the graviton gas and the deconfined phase identified with the black hole. We then turn to the study of Gregory-Laflamme (GL) black hole/black string transitions in supergravity and their realization in a setup that admits a dual description via the maximally supersymmetric Yang-Mills theory on T2. The thermodynamics of Yang-Mills theories on low dimensional tori is studied in detail revealing an intricate structure of which the GL transition at strong coupling is a small piece. We are led to conjecture that GL physics is continuously connected to deconfinement in maximally supersymmetric 0 + 1-dimensional gauged matrix quantum mechanics. This identification will then

  17. Psychologists and the Transition From Pediatrics to Adult Health Care.

    PubMed

    Gray, Wendy N; Monaghan, Maureen C; Gilleland Marchak, Jordan; Driscoll, Kimberly A; Hilliard, Marisa E

    2015-11-01

    Guidelines for optimal transition call for multidisciplinary teams, including psychologists, to address youth and young adults' multifactorial needs. This study aimed to characterize psychologists' roles in and barriers to involvement in transition from pediatric to adult health care. Psychologists were invited via professional listservs to complete an online survey about practice settings, roles in transition programming, barriers to involvement, and funding sources. Participants also responded to open-ended questions about their experiences in transition programs. One hundred participants responded to the survey. Involvement in transition was reported at multiple levels from individual patient care to institutional transition programming, and 65% reported more than one level of involvement. Direct clinical care (88%), transition-related research (50%), and/or leadership (44%) involvement were reported, with 59% reporting more than one role. Respondents often described advocating for their involvement on transition teams. Various sources of funding were reported, yet, 23% reported no funding for their work. Barriers to work in transition were common and included health care systems issues such as poor coordination among providers or lack of a clear transition plan within the clinic/institution. Psychologists assume numerous roles in the transition of adolescents from pediatric to adult health care. With training in health care transition-related issues, psychologists are ideally positioned to partner with other health professionals to develop and implement transition programs in multidisciplinary settings, provided health care system barriers can be overcome. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  18. Dispersive analysis of the pion transition form factor

    NASA Astrophysics Data System (ADS)

    Hoferichter, M.; Kubis, B.; Leupold, S.; Niecknig, F.; Schneider, S. P.

    2014-11-01

    We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the cross section, generalizing previous studies on decays and scattering, and verify our result by comparing to data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below , and extract the slope of the form factor at vanishing momentum transfer . We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.

  19. The gas phase structure of transition metal dihydrides

    NASA Astrophysics Data System (ADS)

    Demuynck, Jean; Schaefer, Henry F.

    1980-01-01

    ESR and infrared spectroscopic measurements on matrix isolated MnH2 and CrH2 have recently suggested that these simple molecules may be bent. This result would be the opposite of that found experimentally for the transition metal dihalides MX2, known to be linear. Here the geometrical structure of MnH2 has been investigated by molecular electronic structure theory. A large contracted Gaussian basis set [Mn(14s11p6p/9s8p3d), H(5s1p/3s1p)] was used in conjunction with self-consistent field and configuration interaction methods. These suggest that the 6A1 ground state of MnH2 is linear. Further studies of the 3A1 state (one of several low-lying states) of TiH2 also favor linearity, although this potential energy surface is extremely flat with respect to bending. Thus it appears probable that most MH2 molecules, like the related MX2 family, are linear.

  20. Amplitude Variation of Bottom Simulating Reflection with Respect to Frequency - Transitional Base or Attenuation?

    USGS Publications Warehouse

    Lee, Myung W.

    2007-01-01

    The amplitude of a bottom simulating reflection (BSR), which occurs near the phase boundary between gas hydrate-bearing sediments and underlying gas-filled sediments, strongly depends on the frequency content of a seismic signal, as well as the impedance contrast across the phase boundary. A strong-amplitude BSR, detectable in a conventional seismic profile, is a good indicator of the presence of free gas beneath the phase boundary. However, the BSR as observed in low-frequency multichannel seismic data is generally difficult to identify in high-frequency, single-channel seismic data. To investigate the frequency dependence of BSR amplitudes, single-channel seismic data acquired with an air gun source at Blake Ridge, which is located off the shore of South Carolina, were analyzed in the frequency range of 10-240 Hz. The frequency-dependent impedance contrast caused by the velocity dispersion in partially gas saturated sediments is important to accurately analyze BSR amplitude. Analysis indicates that seismic attenuation of gas hydrate-bearing sediments, velocity dispersion, and a transitional base all contribute to the frequency-dependent BSR amplitude variation in the frequency range of 10-500 Hz. When velocity dispersion is incorporated into the BSR amplitude analysis, the frequency-dependent BSR amplitude at Blake Ridge can be explained with gas hydrate-bearing sediments having a quality factor of about 250 and a transitional base with a thickness of about 1 meter.

  1. Modeling the Transition From Predominantly Gas- to Predominantly Aerosol-Phase Products From OH Reactions With the Homologous Series of C10 to C15 n- Alkanes

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Ziemann, P. J.; Griffin, R. J.; Lim, Y. B.; Atkinson, R.; Arey, J.

    2006-12-01

    Recent laboratory studies have shown significant formation of secondary organic aerosol (SOA) from OH reactions with a homologous series of n-alkanes. SOA mass yields of 56% were observed for pentadecane (C15), while only 0.5% yield was observed from octane (C8, the smallest alkane in the series). A rapid transition in SOA yield is observed from C10 to C13, with SOA yields increasing from 4% to 49%. In standard gas-aerosol partitioning theory, the vapor pressure controls the amount of material that can condense into the particle phase. However, the rapid transition observed here suggests there may also be a shift in the predominant reaction pathways for longer chain alkanes, leading to greater production of lower vapor pressure products. Here we present an investigation of the role of vapor pressure versus the role of shifting branching ratios to test the influence of each of these on SOA mass yields. We have added each of the alkanes in this series to the Caltech Atmospheric Chemistry Mechanism (CACM). This mechanism was developed in part to predict explicitly concentrations of secondary and tertiary semivolatile oxidation products that potentially form SOA. Although it is has been developed to lump similar compounds together for computational efficiency, it is nonetheless easily adapted and ideally suited for a detailed zero-dimensional modeling study of this kind. This gas-phase mechanism is linked to the aerosol partitioning module MPMPO (Model to Predict the Multi- phase Partitioning of Organics). MPMPO is a fully coupled module that allows the simultaneous partitioning of semi-volatile species to both an aqueous and an organic aerosol phase.

  2. Transitional care challenges of rehospitalized veterans: listening to patients and providers.

    PubMed

    Stephens, Caroline; Sackett, Nathan; Pierce, Read; Schopfer, David; Schmajuk, Gabriela; Moy, Nicholas; Bachhuber, Melissa; Wallhagen, Margaret I; Lee, Sei J

    2013-10-01

    Readmissions to the hospital are common and costly, often resulting from poor care coordination. Despite increased attention given to improving the quality and safety of care transitions, little is known about patient and provider perspectives of the transitional care needs of rehospitalized Veterans. As part of a larger quality improvement initiative to reduce hospital readmissions, the authors conducted semi-structured interviews with 25 patients and 14 of their interdisciplinary health care providers to better understand their perspectives of the transitional care needs and challenges faced by rehospitalized Veterans. Patients identified 3 common themes that led to rehospitalization: (1) knowledge gaps and deferred power; (2) difficulties navigating the health care system; and (3) complex psychiatric and social needs. Providers identified different themes that led to rehospitalization: (1) substance abuse and mental illness; (2) lack of social or financial support and homelessness; (3) premature discharge and poor communication; and (4) nonadherence with follow-up. Results underscore that rehospitalized Veterans have a complex overlapping profile of real and perceived physical, mental, and social needs. A paradigm of disempowerment and deferred responsibility appears to exist between patients and providers that contributes to ineffective care transitions, resulting in readmissions. These results highlight the cultural constraints on systems of care and suggest that process improvements should focus on increasing the sense of partnership between patients and providers, while simultaneously creating a culture of empowerment, ownership, and engagement, to achieve success in reducing hospital readmissions.

  3. Wetting in a Colloidal Liquid-Gas System

    NASA Astrophysics Data System (ADS)

    Wijting, W. K.; Besseling, N. A.; Stuart, M. A.

    2003-05-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  4. Wetting in a colloidal liquid-gas system.

    PubMed

    Wijting, W K; Besseling, N A M; Stuart, M A Cohen

    2003-05-16

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  5. Barriers to Physical Activity in a Mass Transit Population: A Qualitative Study.

    PubMed

    Das, Bhibha M; Petruzzello, Steven J

    2016-01-01

    The physical inactivity epidemic continues be one of the greatest public health challenges in contemporary society in the United States. The transportation industry is at greater risk of physical inactivity, compared with individuals in other sectors of the workforce. The aim of this study was to use the Nominal Group Technique, a focus group technique, to examine mass transit employees' perceptions of the barriers to physical activity at their worksite. Three focus groups (n = 31) were conducted to examine mass transit employees' perceptions of barriers to physical activity at the worksite. Salient barriers included (1) changing work schedules, (2) poor weather conditions, and (3) lack of scheduled and timely breaks. Findings were consistent with previous research demonstrating shift work, poor weather, and lack of breaks can negatively impact mass transit employees' ability to be physically active. Although physical activity barriers for this population have been consistent for the last 20 years, public health practice and policy have not changed to address these barriers. Future studies should include conducing focus groups stratified by job classification (eg, operators, maintenance, and clerical) along with implementing and evaluating worksite-based physical activity interventions and policy changes.

  6. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1978-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  7. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1979-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  8. Understanding the amorphous-to-microcrystalline silicon transition in SiF{sub 4}/H{sub 2}/Ar gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dornstetter, Jean-Christophe; LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau; Bruneau, Bastien

    2014-06-21

    We report on the growth of microcrystalline silicon films from the dissociation of SiF{sub 4}/H{sub 2}/Ar gas mixtures. For this growth chemistry, the formation of HF molecules provides a clear signature of the amorphous to microcrystalline growth transition. Depositing films from silicon tetrafluoride requires the removal of F produced by SiF{sub 4} dissociation, and this removal is promoted by the addition of H{sub 2} which strongly reacts with F to form HF molecules. At low H{sub 2} flow rates, the films grow amorphous as all the available hydrogen is consumed to form HF. Above a critical flow rate, corresponding tomore » the full removal of F, microcrystalline films are produced as there is an excess of atomic hydrogen in the plasma. A simple yet accurate phenomenological model is proposed to explain the SiF{sub 4}/H{sub 2} plasma chemistry in accordance with experimental data. This model provides some rules of thumb to achieve high deposition rates for microcrystalline silicon, namely, that increased RF power must be balanced by an increased H{sub 2} flow rate.« less

  9. Blood gas analysis as a determinant of occupationally related disability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, W.K.; Zaldivar, G.L.

    1990-05-01

    Arterial blood gas analysis is one of the criteria used by the Department of Labor to award total and permanent disability for coal workers' pneumoconiosis (Black Lung). We have observed that Black Lung claimants often undergo several blood gas analyses with widely differing results that sometimes range from complete normality to life-threatening hypoxemia in the same subject. We concluded that blood gas analysis in occupationally related disability determination is unreliable, in that quality control and instrumentation are variable; that severe hypoxemia is rare in coal workers' pneumoconiosis; and that such hypoxemia is nonspecific and correlates poorly with breathlessness.

  10. How does continental lithosphere break-apart? A 3D seismic view on the transition from magma-poor rifted margin to magmatic oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Emmanuel, M.; Lescanne, M.; Picazo, S.; Tomasi, S.

    2017-12-01

    In the last decade, high-quality seismic data and drilling results drastically challenged our ideas about how continents break apart. New models address their observed variability and are presently redefining basics of rifting as well as exploration potential along deepwater rifted margins. Seafloor spreading is even more constrained by decades of scientific exploration along Mid Oceanic Ridges. By contrast, the transition between rifting and drifting remains a debated subject. This lithospheric breakup "event" is geologically recorded along Ocean-Continent Transitions (OCT) at the most distal part of margins before indubitable oceanic crust. Often lying along ultra-deepwater margin domains and buried beneath a thick sedimentary pile, high-quality images of these domains are rare but mandatory to get strong insights on the processes responsible for lithospheric break up and what are the consequences for the overlying basins. We intend to answer these questions by studying a world-class 3D seismic survey in a segment of a rifted margin exposed in the Atlantic. Through these data, we can show in details the OCT architecture between a magma-poor hyper-extended margin (with exhumed mantle) and a classical layered oceanic crust. It is characterized by 1- the development of out-of-sequence detachment systems with a landward-dipping geometry and 2- the increasing magmatic additions oceanwards (intrusives and extrusives). Geometry of these faults suggests that they may be decoupled at a mantle brittle-ductile interface what may be an indicator on thermicity. Furthermore, magmatism increases as deformation migrates to the future first indubitable oceanic crust what controls a progressive magmatic crustal thickening below, above and across a tapering rest of margin. As the magmatic budget increases oceanwards, full-rate divergence is less and less accommodated by faulting. Magmatic-sedimentary architectures of OCT is therefore changing from supra-detachment to magmatic

  11. Photodissociation Spectroscopy of Anionic Transition Metal Complexes

    NASA Astrophysics Data System (ADS)

    Kaufman, Sydney Hamilton

    Transition metal complexes play an important role in many aspects of chemistry; whether in supporting biological functions, as catalysts for organic reactions, in the environment, or in industry. This thesis is comprised of gas-phase spectroscopic studies of four transition metal species with implications for many different chemical applications. Most knowledge of the target molecules in this thesis are derived from studies in the condensed phase, where the chemical environment can change molecular properties. As a result, it is difficult to gain an understanding of the intrinsic properties in solution as well as a molecular-level picture of chemical reactions that take place where many oxidation states, molecular species, and solvent interactions occur. By isolating one particular species in the gas phase, we are able to observe how each species interacts with light independent of perturbing effects of solvent and counter ions. In this thesis, we perform spectroscopic experiments on mass-selected ions in the gas phase, where we are able to gain information on intrinsic molecular properties without the influence of a condensed phase chemical environment. We employ photodissociation spectroscopy, where we mass-select a particular ionic species from solution and irradiate that molecular ion with the output of a tunable laser in the ultraviolet and visible regions. By monitoring the fragments produced, we can obtain an electronic absorption spectrum of the isolated species as well as gain insight into the photochemistry of the ions under study from the fragmentation pathways observed. We combine this method with solution absorption spectra as well as electronic structure calculations.

  12. Universal Features of the Fluid to Solid Transition for Attractive Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Cipelletti, L.; Prasad, V.; Dinsmore, A.; Segre, P. N.; Weitz, D. A.; Trappe, V.

    2002-01-01

    Attractive colloidal particles can exhibit a fluid to solid phase transition if the magnitude of the attractive interaction is sufficiently large, if the volume fraction is sufficiently high, and if the applied stress is sufficiently small. The nature of this fluid to solid transition is similar for many different colloid systems, and for many different forms of interaction. The jamming phase transition captures the common features of these fluid to solid translations, by unifying the behavior as a function of the particle volume fraction, the energy of interparticle attractions, and the applied stress. This paper describes the applicability of the jamming state diagram, and highlights those regions where the fluid to solid transition is still poorly understood. It also presents new data for gelation of colloidal particles with an attractive depletion interaction, providing more insight into the origin of the fluid to solid transition.

  13. Detection of the MW Transition Between Ortho and Para States

    NASA Astrophysics Data System (ADS)

    Kanamori, Hideto; Dehghani, Zeinab Tafti; Mizoguchi, Asao; Endo, Yasuki

    2017-06-01

    Thorough the detailed analysis of the hyperfine resolved rotational transitions, we have been pointed out that there exists not a little interaction between ortho and para states in the molecular Hamiltonian of S_2Cl_2. Using the ortho-para mixed molecular wavefunctions derived from the Hamiltonian, we calculated the transition moment and frequency of the ortho-para forbidden transitions in the cm- and mm-wave region, and picked up some promising candidate transitions for the spectroscopic detection. In the experiment, the S_2Cl_2 vapor with Ar buffer gas in a supersonic jet condition was used with FTMW spectrometer at National Chiao Tung University. As a result, seven hyperfine resolved rotational transitions in the cm-wave region were detected as the ortho-para transition at the predicted frequency within the experimental error range. The observed intensity was 10^{-3} smaller than that of an allowed transition, which is also consistent with the prediction. This is the first time the electric dipole transition between ortho and para states has been detected in a free isolated molecule. A. Mizoguchi, S. Ota, H. Kanamori, Y. Sumiyoshi, and Y. Endo, J. Mol. Spectrosc, 250, 86 (2008) Z. T. Dehghani, S. Ota, A. Mizoguchi and H. Kanamori, J. Phys. Chem. A, 117(39), 10041, (2013)

  14. Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2005-12-01

    The water vapour spectrum in the 1.25-1.65 µm region is systematically analysed to find the best absorption transitions for sensitive measurement of in-cylinder gas temperature over short paths in an internal combustion engine. The strategy to select the optimum wavelength regions and absorption line combinations is developed for the time-varying pressures and temperatures expected during the compression portion of an engine cycle. We have identified 14 transitions of water vapour in this spectral region as promising for this application. From these transitions, 16 potential line pairs were considered for a wavelength-modulated absorption sensor for in-cylinder gas temperature during the compression stroke. Expected performance is modelled for the intake portion of two engine cycles that produce extreme temperature and pressure variations during compression.

  15. Sulfur gas exchange in Sphagnum-dominated wetlands

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Demello, William Zamboni; Porter, Carolyn A.

    1992-01-01

    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S was investigated by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in trophic status. The effects of inorganic S input on the production and emission of gaseous S were also investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, fens within the Experimental Lakes Area (ELA) in Ontario, Canada and in freshwater and marine tundra. Emissions were determined using Teflon enclosures, gas cryotrapping methods, and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed. Dissolved gases were determined by gas stripping followed by GC.

  16. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks

    PubMed Central

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-01-01

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production. PMID:27819349

  17. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks.

    PubMed

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-11-07

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A "hump" that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the "hump" can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the "hump" more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.

  18. Downregulation of missing in metastasis gene (MIM) is associated with the progression of bladder transitional carcinomas.

    PubMed

    Wang, Ying; Liu, Jiali; Smith, Elizabeth; Zhou, Kang; Liao, Jie; Yang, Guang-Yu; Tan, Ming; Zhan, Xi

    2007-03-01

    Missing in metastasis (MIM) gene encodes a putative metastasis suppressor. However, the role of MIM in tumorigenesis and metastasis has not yet been established. Western blot analysis using a MIM specific antibody demonstrated that MIM protein is present at varying levels in a variety of normal cells as well as tumor cell lines. Immunohistochemical staining of adult mouse tissues revealed abundant MIM immunoreactivity in uroepithelial cells in the bladder, neuron Purkinje cells in the cerebellum, and megakaryocytes in the bone marrow and spleen in addition. MIM immunoreactivity also was found in human normal bladder transitional epithelial cells. However, the reactivity was not seen in 69 percent of human primary transitional cell carcinoma specimens. Over 51 percent of the tumors at low grade display MIM staining similarly to the normal cells, whereas only 16.7 percent of the tumors at high-grade with poor differentiation show faint or mild staining. Furthermore, full-length MIM protein is highly expressed in SV-HUC-L an immortalized normal transitional epithelial cell line, moderately expressed in T24 and poorly expressed in J82 and TCCSUP transitional cell carcinoma cells. This finding indicates that downegulation of MIM expression may correlate with the transition of tumor cells from distinct epithelium-like morphology to less differentiated carcinomas.

  19. Safety threats and opportunities to improve interfacility care transitions: insights from patients and family members.

    PubMed

    Jeffs, Lianne; Kitto, Simon; Merkley, Jane; Lyons, Renee F; Bell, Chaim M

    2012-01-01

    To explore patients' and family members' perspectives on how safety threats are detected and managed across care transitions and strategies that improve care transitions from acute care hospitals to complex continuing care and rehabilitation health care organizations. Poorly executed care transitions can result in additional health care spending due to adverse outcomes and delays as patients wait to transfer from acute care to facilities providing different levels of care. Patients and their families play an integral role in ensuring they receive safe care, as they are the one constant in care transitions processes. However, patients' and family members' perspectives on how safety threats are detected and managed across care transitions from health care facility to health care facility remain poorly understood. This qualitative study used semistructured interviews with patients (15) and family members (seven) who were transferred from an acute care hospital to a complex continuing care/rehabilitation care facility. Data were analyzed using a directed content analytical approach. OUR RESULTS REVEALED THREE KEY OVERARCHING THEMES IN THE PERCEPTIONS: lacking information, getting "funneled through" too soon, and difficulty adjusting to the shift from total care to almost self-care. Several patients and families described their expectations and experiences associated with their interfacility care transitions as being uninformed about their transfer or that transfer happened too early. In addition, study participants identified the need for having a coordinated approach to care transitions that engages patients and family members. Study findings provide patients' and family members' perspectives on key safety threats and how to improve care transitions. Of particular importance is the need for patients and family members to play a more active role in their care transition planning and self-care management.

  20. Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate.

    PubMed

    Fukutome, Asuka; Kawamoto, Haruo; Saka, Shiro

    2015-07-08

    The gas-phase pyrolysis of levoglucosan (LG), the major intermediate species during cellulose gasification, was studied experimentally over the temperature range of 400-900 °C. Gaseous LG did not produce any dehydration products, which include coke, furans, and aromatic substances, although these are characteristic products of the pyrolysis of molten LG. Alternatively, at >500 °C, gaseous LG produced only fragmentation products, such as noncondensable gases and condensable C1 -C3 fragments, as intermediates during noncondensable gas formation. Therefore, it was determined that secondary reactions of gaseous LG can result in the clean (tar- and coke-free) gasification of cellulose. Cooling of the remaining LG in the gas phase caused coke formation by the transition of the LG to the molten state. The molecular mechanisms that govern the gas- and molten-phase reactions of LG are discussed in terms of the acid catalyst effect of intermolecular hydrogen bonding to promote the molten-phase dehydration reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Long non-coding RNA GAS5 sensitizes renal cell carcinoma to sorafenib via miR-21/SOX5 pathway.

    PubMed

    Liu, Lei; Pang, Xinlu; Shang, Wenjin; Xie, Hongchang; Feng, Yonghua; Feng, Guiwen

    2018-06-12

    Although the use of sorafenib appears to increase the survival rate of renal cell carcinoma (RCC) patients, there is also a proportion of patients who exhibit a poor primary response to sorafenib treatment. Therefore, it is critical to elucidate the mechanisms underlying sorafenib resistance and find representative biomarkers for sorafenib treatment in RCC patients. Herein, we identified that a long noncoding RNA GAS5 was downregulated in sorafenib nonresponsive RCCs. GAS5 overexpression conferred sorafenib sensitive to nonresponsive RCC cells, whereas knockdown of GAS5 promoted responsive RCC cells resistant to sorafenib treatment in vitro and in vivo. Mechanistically, GAS5 functioned as competing endogenous RNA to repress miR-21, which controlled its down-stream target SOX5. We proposed that GAS5 was responsible for sorafenib resistance in RCC cells and GAS5 exerted its function through the miR-21/ SOX5 axis. Our findings suggested that GAS5 downregulation may be a new marker of poor response to sorafenib and GAS5 could be a potential therapeutic target for sorafenib treatment in RCC.

  2. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid to transition section

    DOEpatents

    Charron, Richard; Pierce, Daniel

    2015-08-11

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.

  3. Development of spacecraft toxic gas removal agents

    NASA Technical Reports Server (NTRS)

    Moore, R. S.

    1974-01-01

    The development of agents suitable for removal of CO, NH3, NO2 SO2, and other spacecraft contaminants was approached. An extensive technology review was conducted, yielding a large number of potentially useful materials and/or concepts. Because the two toxic gases of greatest interest, CO and NH3, suggested the use of catalysis principles emphasis was placed on the intestigation of transition metals on various supports. Forty-three materials were prepared or obtained and 25 were tested. Gas chromatographic techniques were used to find seven candidates that effectively managed various combinations of the four toxic gases: none managed all. These candidates included six transition metal-containing preparations and a supported LiOH material. Three commercial charcoals showed some efficiency for the toxic gases and may constitute candidates for enhancement by doping with transition metals.

  4. Jordan form, parabolicity and other features of change of type transition for hydrodynamic type systems

    NASA Astrophysics Data System (ADS)

    Konopelchenko, B. G.; Ortenzi, G.

    2017-05-01

    Changes of type transitions for two-component hydrodynamic type systems are discussed. It is shown that these systems generically assume the Jordan form (with 2 × 2 Jordan block) on the transition line with hodograph equations becoming parabolic. Conditions which allow or forbid the transition from the hyperbolic domain to elliptic one are discussed. Hamiltonian systems and their special subclasses and equations, such as dispersionless nonlinear Schrödinger, dispersionless Boussinesq, one-dimensional isentropic gas dynamics equations, and nonlinear wave equations are studied. Numerical results concerning the crossing of transition line for the dispersionless Boussinesq equation are also presented.

  5. Nonequilibrium Second-Order Phase Transition in a Cooper-Pair Insulator.

    PubMed

    Doron, A; Tamir, I; Mitra, S; Zeltzer, G; Ovadia, M; Shahar, D

    2016-02-05

    In certain disordered superconductors, upon increasing the magnetic field, superconductivity terminates with a direct transition into an insulating phase. This phase is comprised of localized Cooper pairs and is termed a Cooper-pair insulator. The current-voltage characteristics measured in this insulating phase are highly nonlinear and, at low temperatures, exhibit abrupt current jumps. Increasing the temperature diminishes the jumps until the current-voltage characteristics become continuous. We show that a direct correspondence exists between our system and systems that undergo an equilibrium, second-order, phase transition. We illustrate this correspondence by comparing our results to the van der Waals equation of state for the liquid-gas mixture. We use the similarities to identify a critical point where an out of equilibrium second-order-like phase transition occurs in our system. Approaching the critical point, we find a power-law behavior with critical exponents that characterizes the transition.

  6. Poor Schools, Poor Students, Successful Teachers

    ERIC Educational Resources Information Center

    Gehrke, Rebecca Swanson

    2005-01-01

    Today, one out of four American children attends school in an urban district; one out of every six American children lives in poverty; and, in urban schools where most of the students are poor, two-thirds or more of the children fail to reach even the "basic" level of achievement on national tests. Urban schools are where most states face the…

  7. Numerical models for the diffuse ionized gas in galaxies. I. Synthetic spectra of thermally excited gas with turbulent magnetic reconnection as energy source

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Lieb, S.; Pauldrach, A. W. A.; Lesch, H.; Hultzsch, P. J. N.; Birk, G. T.

    2012-08-01

    Aims: The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods: We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results: Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.

  8. Harnessing the metal-insulator transition for tunable metamaterials

    NASA Astrophysics Data System (ADS)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-08-01

    The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.

  9. Emission quantification using the tracer gas dispersion method: The influence of instrument, tracer gas species and source simulation.

    PubMed

    Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker; Fredenslund, Anders M; Scheutz, Charlotte

    2018-09-01

    The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument and tracer gas combinations. Analytical instruments with a high detection frequency and good precision were established as the most suitable for successful TDM application. The application of an instrument with a poor precision could only to some extent be overcome by applying a higher tracer gas release rate. A sideward misplacement of the tracer gas release point of about 250m resulted in an emission rate comparable to those obtained using a tracer gas correctly simulating the methane emission. Conversely, an upwind misplacement of about 150m resulted in an emission rate overestimation of almost 50%, showing the importance of proper emission source simulation when applying the TDM. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Chemo-mechanical coupling in kerogen gas adsorption/desorption.

    PubMed

    Ho, Tuan Anh; Wang, Yifeng; Criscenti, Louise J

    2018-05-09

    Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH4 and CO2 adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration.

  11. Baseline Testing of the Hybrid Electric Transit Bus

    NASA Technical Reports Server (NTRS)

    Brown, Jeffrey C.; Eichenberg, Dennis J.; Thompson, William K.

    1999-01-01

    A government, industry and academic cooperative has developed a Hybrid Electric Transit Bus (HETB). Goals of the program include doubling the fuel economy of city transit buses currently in service, and reducing emissions to one-tenth of EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors for the energy storage system and the planned use of a natural gas fueled turbogenerator, to be developed from a small jet engine. At over 17000 kg gross weight, this is the largest vehicle to use ultra-capacitor energy storage. A description of the HETB, the results of performance testing, and future vehicle development plans are the subject of this report.

  12. Glass/Jamming Transition in Colloidal Aggregation

    NASA Technical Reports Server (NTRS)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  13. Decomposing the Gap in Childhood Undernutrition between Poor and Non–Poor in Urban India, 2005–06

    PubMed Central

    Kumar, Abhishek; Singh, Aditya

    2013-01-01

    Background Despite the growing evidence from other developing countries, intra-urban inequality in childhood undernutrition is poorly researched in India. Additionally, the factors contributing to the poor/non-poor gap in childhood undernutrition have not been explored. This study aims to quantify the contribution of factors that explain the poor/non-poor gap in underweight, stunting, and wasting among children aged less than five years in urban India. Methods We used cross-sectional data from the third round of the National Family Health Survey conducted during 2005–06. Descriptive statistics were used to understand the gap in childhood undernutrition between the urban poor and non-poor, and across the selected covariates. Blinder–Oaxaca decomposition technique was used to explain the factors contributing to the average gap in undernutrition between poor and non-poor children in urban India. Result Considerable proportions of urban children were found to be underweight (33%), stunted (40%), and wasted (17%) in 2005–06. The undernutrition gap between the poor and non-poor was stark in urban India. For all the three indicators, the main contributing factors were underutilization of health care services, poor body mass index of the mothers, and lower level of parental education among those living in poverty. Conclusions The findings indicate that children belonging to poor households are undernourished due to limited use of health care services, poor health of mothers, and poor educational status of their parents. Based on the findings the study suggests that improving the public services such as basic health care and the education level of the mothers among urban poor can ameliorate the negative impact of poverty on childhood undernutrition. PMID:23734231

  14. Prognosis in Acute Cerebrovascular Accidents in Relation to Respiratory Pattern and Blood—gas Tensions

    PubMed Central

    Rout, M. W.; Lane, D. J.; Wollner, L.

    1971-01-01

    Respiratory pattern and arterial blood gas tensions were assessed in patients with acute cerebrovascular accidents. Hyperventilation, low Pco2, and high arterial pH were associated with a poor prognosis, whereas patients with normal respiratory pattern and blood gas tensions survived. Periodic and Cheyne-Stokes breathing carried an intermediate prognosis. PMID:5091916

  15. The Smith Cloud: surviving a high-speed transit of the Galactic disc

    NASA Astrophysics Data System (ADS)

    Tepper-García, Thor; Bland-Hawthorn, Joss

    2018-02-01

    The origin and survival of the Smith high-velocity H I cloud has so far defied explanation. This object has several remarkable properties: (i) its prograde orbit is ≈100 km s-1 faster than the underlying Galactic rotation; (ii) its total gas mass (≳ 4 × 106 M⊙) exceeds the mass of all other high-velocity clouds (HVCs) outside of the Magellanic Stream; (iii) its head-tail morphology extends to the Galactic H I disc, indicating some sort of interaction. The Smith Cloud's kinetic energy rules out models based on ejection from the disc. We construct a dynamically self-consistent, multi-phase model of the Galaxy with a view to exploring whether the Smith Cloud can be understood in terms of an infalling, compact HVC that has transited the Galactic disc. We show that while a dark-matter (DM) free HVC of sufficient mass and density can reach the disc, it does not survive the transit. The most important ingredient to survival during a transit is a confining DM subhalo around the cloud; radiative gas cooling and high spatial resolution (≲ 10pc) are also essential. In our model, the cloud develops a head-tail morphology within ∼10 Myr before and after its first disc crossing; after the event, the tail is left behind and accretes on to the disc within ∼400 Myr. In our interpretation, the Smith Cloud corresponds to a gas 'streamer' that detaches, falls back and fades after the DM subhalo, distorted by the disc passage, has moved on. We conclude that subhaloes with MDM ≲ 109 M⊙ have accreted ∼109 M⊙ of gas into the Galaxy over cosmic time - a small fraction of the total baryon budget.

  16. Upregulation of c-mesenchymal epithelial transition expression and RAS mutations are associated with late lung metastasis and poor prognosis in colorectal carcinoma.

    PubMed

    Liu, Jianhua; Zeng, Weiqiang; Huang, Chengzhi; Wang, Junjiang; Xu, Lishu; Ma, Dong

    2018-05-01

    The present study aimed to investigate whether c-mesenchymal epithelial transition factor (C-MET) overexpression combined with RAS (including KRAS, NRAS and HRAS ) or BRAF mutations were associated with late distant metastases and the prognosis of patients with colorectal cancer (CRC). A total of 374 patients with stage III CRC were classified into 4 groups based on RAS/BRAF and C-MET status for comprehensive analysis. Mutations in RAS / BRAF were determined using Sanger sequencing and C-MET expression was examined using immunohistochemistry. The associations between RAS/BRAF mutations in combination with C-MET overexpression and clinicopathological variables including survival were evaluated. In addition, their predictive value for late distant metastases were statistically analyzed via logistic regression and receiver operating characteristic analysis. Among 374 patients, mutations in KRAS, NRAS, HRAS, BRAF and C-MET overexpression were observed in 43.9, 2.4, 0.3, 5.9 and 71.9% of cases, respectively. Considering RAS/BRAF mutations and C-MET overexpression, vascular invasion (P=0.001), high carcino-embryonic antigen level (P=0.031) and late distant metastases (P<0.001) were more likely to occur in patients of group 4. Furthermore, survival analyses revealed RAS/BRAF mutations may have a more powerful impact on survival than C-MET overexpression, although they were both predictive factors for adverse prognosis. Further logistic regression suggested that RAS/BRAF mutations and C-MET overexpression may predict late distant metastases. In conclusion, RAS/BRAF mutations and C-MET overexpression may serve as predictive indicators for metastatic behavior and poor prognosis of CRC.

  17. Electromagnetic PIC modeling with a background gas

    NASA Astrophysics Data System (ADS)

    Verboncoeur, J. P.; Cooperberg, D.

    1997-02-01

    Modeling the interaction of relativistic electromagnetic plasmas with a background gas is described. The timescales range over many orders of magnitude, from the electromagnetic Courant condition (˜10-12 sec) to electron-neutral collision times (˜10-7 sec) to ion transit times (˜10-5 sec). For this work, the traditional Monte Carlo algorithm [1] is described for relativistic electrons. Subcycling is employed to improve efficiency, and smoothing is employed to reduce particle noise. Applications include plasma-focused electron guns, gas-filled microwave tubes, surface wave discharges driven at microwave frequencies, and electron-cyclotron resonance discharges. The method is implemented in the OOPIC code [2].

  18. Unusual Mott transition in multiferroic PbCrO 3

    DOE PAGES

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; ...

    2015-11-24

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. When turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. We report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of similar to 3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrentmore » with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at similar to 300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. Moreover, the anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking.« less

  19. Unusual Mott transition in multiferroic PbCrO3

    PubMed Central

    Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Yu, Xiaohui; Zhang, Jianzhong; Wang, Wendan; Bai, Ligang; Qian, Jiang; Yin, Liang; Sullivan, Neil S.; Jin, Changqing; He, Duanwei; Xu, Jian; Zhao, Yusheng

    2015-01-01

    The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by “bandwidth” control or “band filling.” However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of ∼3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at ∼300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid–gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking. PMID:26604314

  20. Gas distribution and clumpiness in the galaxy group NGC 2563

    NASA Astrophysics Data System (ADS)

    Morandi, Andrea; Sun, Ming; Mulchaey, John; Nagai, Daisuke; Bonamente, Massimiliano

    2017-08-01

    We present a Chandra study of the hot intragroup medium of the galaxy group NCG 2563. The Chandra mosaic observations, with a total exposure time of ˜430 ks, allow the gas density to be detected beyond R200 and the gas temperature out to 0.75 R200. This represents the first observational measurement of the physical properties of a poor groups beyond R500. By capitalizing on the exquisite spatial resolution of Chandra that is capable to remove unrelated emission from point sources and substructures, we are able to radially constrain the inhomogeneities of gas ('clumpiness'), gas fraction, temperature and entropy distribution. Although there is some uncertainty in the measurements, we find evidences of gas clumping in the virialization region, with clumping factor of about 2-3 at R200. The gas clumping-corrected gas fraction is significantly lower than the cosmological baryon budget. These results may indicate a larger impact of the gas inhomogeneities with respect to the prediction from hydrodynamic numerical simulations, and we discuss possible explanations for our findings.

  1. Gas Modelling in the Disc of HD 163296

    NASA Technical Reports Server (NTRS)

    Tilling, I.; Woitke, P.; Meeus, G.; Mora, A.; Montesinos, B.; Riviere-Marichalar, P.; Eiroa, C.; Thi, W. -F.; Isella, A.; Roberge, A.; hide

    2011-01-01

    We present detailed model fits to observations of the disc around the Herbig Ae star HD 163296. This well-studied object has an age of approx. 4Myr, with evidence of a circumstellar disc extending out to approx. 540AU. We use the radiation thermo-chemical disc code ProDiMo to model the gas and dust in the circumstellar disc of HD 163296, and attempt to determine the disc properties by fitting to observational line and continuum data. These include new Herschel/PACS observations obtained as part of the open-time key program GASPS (Gas in Protoplanetary Systems), consisting of a detection of the [Oi] 63 m line and upper limits for several other far infrared lines. We complement this with continuum data and ground-based observations of the CO-12 3-2, 2-1 and CO-13 J=1-0 line transitions, as well as the H2 S(1) transition. We explore the effects of stellar ultraviolet variability and dust settling on the line emission, and on the derived disc properties. Our fitting efforts lead to derived gas/dust ratios in the range 9-100, depending on the assumptions made. We note that the line fluxes are sensitive in general to the degree of dust settling in the disc, with an increase in line flux for settled models. This is most pronounced in lines which are formed in the warm gas in the inner disc, but the low excitation molecular lines are also affected. This has serious implications for attempts to derive the disc gas mass from line observations. We derive fractional PAH abundances between 0.007 and 0.04 relative to ISM levels. Using a stellar and UV excess input spectrum based on a detailed analysis of observations, we find that the all observations are consistent with the previously assumed disc geometry

  2. Checkpoint Kinase 1 Expression Predicts Poor Prognosis in Nigerian Breast Cancer Patients.

    PubMed

    Ebili, Henry Okuchukwu; Iyawe, Victoria O; Adeleke, Kikelomo Rachel; Salami, Babatunde Abayomi; Banjo, Adekunbiola Aina; Nolan, Chris; Rakha, Emad; Ellis, Ian; Green, Andrew; Agboola, Ayodeji Olayinka Johnson

    2018-02-01

    Checkpoint kinase 1 (CHEK1), a DNA damage sensor and cell death pathway stimulator, is regarded as an oncogene in tumours, where its activities are considered essential for tumourigenesis and the survival of cancer cells treated with chemotherapy and radiotherapy. In breast cancer, CHEK1 expression has been associated with an aggressive tumour phenotype, the triple-negative breast cancer subtype, an aberrant response to tamoxifen, and poor prognosis. However, the relevance of CHEK1 expression has, hitherto, not been investigated in an indigenous African population. We therefore aimed to investigate the clinicopathological, biological, and prognostic significance of CHEK1 expression in a cohort of Nigerian breast cancer cases. Tissue microarrays of 207 Nigerian breast cancer cases were tested for CHEK1 expression using immunohistochemistry. The clinicopathological, molecular, and prognostic characteristics of CHEK1-positive tumours were determined using the Chi-squared test and Kaplan-Meier and Cox regression analyses in SPSS Version 16. Nuclear expression of CHEK1 was present in 61% of breast tumours and was associated with tumour size, triple-negative cancer, basal-like phenotype, the epithelial-mesenchymal transition, p53 over-expression, DNA homologous repair pathway dysfunction, and poor prognosis. The rate expression of CHEK1 is high in Nigerian breast cancer cases and is associated with an aggressive phenotype and poor prognosis.

  3. Widom Delta of Supercritical Gas-Liquid Coexistence.

    PubMed

    Ha, Min Young; Yoon, Tae Jun; Tlusty, Tsvi; Jho, Yongseok; Lee, Won Bo

    2018-04-05

    Density fluctuations and the Widom line are of great importance in understanding the critical phenomena and the behaviors of supercritical fluids (SCFs). We report on the direct classification of liquid-like and gas-like molecules coexisting in the SCF, identified by machine learning analysis on simulation data. The deltoid coexistence region encloses the Widom line and may therefore be termed the Widom delta. Number fractions of gas-like and liquid-like particles are found to undergo continuous transition across the delta, following a simplified two-state model. These fractions are closely related to the magnitude of supercritical anomaly, which originates from the fluctuation between the two types. This suggests a microscopic view of the SCF as a mixture of liquid-like and gas-like structures, providing an integrative explanation to the anomalous behaviors near the critical point and the Widom line.

  4. Visualization of deflagration-to-detonation transitions in a channel with repeated obstacles using a hydrogen-oxygen mixture

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Minami, S.; Okamoto, D.; Obara, T.

    2016-09-01

    The deflagration-to-detonation transition in a 100 mm square cross-section channel was investigated for a highly reactive stoichiometric hydrogen oxygen mixture at 70 kPa. Obstacles of 5 mm width and 5, 10, and 15 mm heights were equally spaced 60 mm apart at the bottom of the channel. The phenomenon was investigated primarily by time-resolved schlieren visualization from two orthogonal directions using a high-speed video camera. The detonation transition occurred over a remarkably short distance within only three or four repeated obstacles. The global flame speed just before the detonation transition was well below the sound speed of the combustion products and did not reach the sound speed of the initial unreacted gas for tests with an obstacle height of 5 and 10 mm. These results indicate that a detonation transition does not always require global flame acceleration beyond the speed of sound for highly reactive combustible mixtures. A possible mechanism for this detonation initiation was the mixing of the unreacted and reacted gas in the vicinity of the flame front convoluted by the vortex present behind each obstacle, and the formation of a hot spot by the shock wave. The final onset of the detonation originated from the unreacted gas pocket, which was surrounded by the obstacle downstream face and the channel wall.

  5. Detection of molecular microwave transitions in the 3 mm wavelength range in comet Kohoutek (1973f)

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Huebner, W. F.; Snyder, L. E.

    1976-01-01

    Observations of comet Kohoutek made with a 3-mm line receiver mounted on the 11-m NRAO radio dish at Kitt Peak are presented. The detection of line transitions of hydrogen cyanide and methyl cyanide is reported and discussed along with the variability of neutral gas jets. Microwave transitions in molecules of cometary origin are also examined.

  6. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnitt, R. A.

    2008-06-01

    The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

  7. Linewidth and lineshift parameters of rotation-vibration transitions of linear molecule perturbed by inert gas

    NASA Astrophysics Data System (ADS)

    Johri, Manoj; Johri, Gajendra K.; Rishishwar, Rajendra P.

    1990-12-01

    The study of spectral lineshape is important to understand intermolecular forces1-5. We have calculated the linewidth and the lineshift for different rotation-vibration transitions of linear molecules (CO and HCl) perturbed by argon using generalized interaction potential4. The Murphy Boggs6 (MB), Mehrotra Boggs7 and perturbation theories have been used for the linewidth calculation. The lineshift parameters have been calculated using the MEB theory7 including the phase shift effect and ignoring Ji=Ji and Jf=Jf transitions. In these calculation the variation of the rotational constant with the vibrational quantum number has been taken into account. The calculated lineshift parameters decrease with an increase in the initial rotation quamtum numbers (Ji). It remains positive for the lower values of Ji and becomes negative for the higher values of Ji where as the measured8 values are negative for all the transitions. The calculated linewidth parameters using the MEB theory7 are lower by about 15% than the measured values for CO-A collisions. The vibrational dependence in CO-A collisions show significant change in the lineshift. For H Cl-A collisions the discrepancy between the calculated lienwidth parameters using the Mehrotra Boggs theory and the measured9 values is about 46% for J=0-1 transitions and decreases to 22% for J=8-9 transition. The results of the perturbation theory do not show regular variation of the linewidth parameters with the rotational state. The linewidth parameters using the Murphy Boggs theory are lower than the measured9 values by about 50% for all the transitions considered. It is found that the contribution of the diabetic collisions is important as included in the perturbtive and the Mehrotra Boggs approaches. Further, if the pressure broadening method is used to probe anisotropy of the intermolecular forces, there is need of modifying the existing theoretical models and the experimental techniques.

  8. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOEpatents

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  9. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Riedl, S.; Sánchez Guajardo, E. R.; Kohstall, C.; Hecker Denschlag, J.; Grimm, R.

    2011-03-01

    We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.

  10. Preventing Poor Mental Health and School Dropout of Mexican American Adolescents Following the Transition to Junior High School

    ERIC Educational Resources Information Center

    Gonzales, Nancy A.; Dumka, Larry E.; Deardorff, Julianna; Carter, Sara Jacobs; McCray, Adam

    2004-01-01

    This study provided an initial test of the Bridges to High School Program, an intervention designed to prevent school disengagement and negative mental health trajectories during the transition to junior high school. The intervention included an adolescent coping skills intervention, a parenting skills intervention, and a family strengthening…

  11. Materials investigation of thermal triggers used in pressure relief devices on transit buses.

    DOT National Transportation Integrated Search

    2003-07-01

    This investigation pertains to the composition and general condition of the thermally activated trigger mechanism of Pressure Relief Devices [PRD's], safety devices used on compressed natural gas cylinders commonly used to store fuel on transit buses...

  12. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  13. Analysis of the gas phase reactivity of chlorosilanes.

    PubMed

    Ravasio, Stefano; Masi, Maurizio; Cavallotti, Carlo

    2013-06-27

    Trichlorosilane is the most used precursor to deposit silicon for photovoltaic applications. Despite of this, its gas phase and surface kinetics have not yet been completely understood. In the present work, it is reported a systematic investigation aimed at determining what is the dominant gas phase chemistry active during the chemical vapor deposition of Si from trichlorosilane. The gas phase mechanism was developed calculating the rate constant of each reaction using conventional transition state theory in the rigid rotor-harmonic oscillator approximation. Torsional vibrations were described using a hindered rotor model. Structures and vibrational frequencies of reactants and transition states were determined at the B3LYP/6-31+G(d,p) level, while potential energy surfaces and activation energies were computed at the CCSD(T) level using aug-cc-pVDZ and aug-cc-pVTZ basis sets extrapolating to the complete basis set limit. As gas phase and surface reactivities are mutually interlinked, simulations were performed using a microkinetic surface mechanism. It was found that the gas phase reactivity follows two different routes. The disilane mechanism, in which the formation of disilanes as reaction intermediates favors the conversion between the most stable monosilane species, and the radical pathway, initiated by the decomposition of Si2HCl5 and followed by a series of fast propagation reactions. Though both mechanisms are active during deposition, the simulations revealed that above a certain temperature and conversion threshold the radical mechanism provides a faster route for the conversion of SiHCl3 into SiCl4, a reaction that favors the overall Si deposition process as it is associated with the consumption of HCl, a fast etchant of Si. Also, this study shows that the formation of disilanes as reactant intermediates promotes significantly the gas phase reactivity, as they contribute both to the initiation of radical chain mechanisms and provide a catalytic route for

  14. Determination of the Specific Heat Ratio of a Gas in a Plastic Syringe

    ERIC Educational Resources Information Center

    Chamberlain, Jeff

    2010-01-01

    The rapid compression or expansion of a gas in a plastic syringe is a poor approximation of an adiabatic process. Heat exchange with the walls of the syringe brings the gas to equilibrium in an amount of time that is not significantly greater than the length of the compression or expansion itself. Despite this limitation, it is still possible to…

  15. Poorly Understood Aspects of Striated Muscle Contraction

    PubMed Central

    Månsson, Alf

    2015-01-01

    Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs. PMID:25961006

  16. Poorly understood aspects of striated muscle contraction.

    PubMed

    Månsson, Alf; Rassier, Dilson; Tsiavaliaris, Georgios

    2015-01-01

    Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.

  17. Epigenetic and physiological effects of gibberellin inhibitors and chemical pruners on the floral transition of azalea.

    PubMed

    Meijón, Mónica; Cañal, María Jesús; Valledor, Luis; Rodríguez, Roberto; Feito, Isabel

    2011-03-01

    The ability to control the timing of flowering is a key strategy in planning the production of ornamental species such as azaleas; however, it requires a thorough understanding of floral transition. DNA methylation is involved in controlling the functional state of chromatin and gene expression during floral induction pathways in response to environmental and developmental signals. Plant hormone signalling is also known to regulate suites of morphogenic processes in plants and its role in flowering-time control is starting to emerge as a key controlling step. This work investigates if the gibberellin (GA) inhibitors and chemical pinching applied in improvement of azalea flowering alter the dynamics of DNA methylation or the levels of polyamines (PAs), GAs and cytokinins (CKs) during floral transition, and whether these changes could be related to the effects observed on flowering ability. DNA methylation during floral transition and endogenous content of PAs, GAs and CKs were analysed after the application of GA synthesis inhibitors (daminozide, paclobutrazol and chlormequat chloride) and a chemical pruner (fatty acids). The application of GA biosynthesis inhibitors caused alterations in levels of PAs, GAs and CKs and in global DNA methylation levels during floral transition; also, these changes in plant growth regulators and DNA methylation were correlated with flower development. DNA methylation, PA, GA and CK levels can be used as predictive markers of plant floral capacity in azalea. Copyright © Physiologia Plantarum 2010.

  18. Evidence that displacement activities facilitate behavioural transitions in ring-tailed lemurs.

    PubMed

    Buckley, Victoria; Semple, Stuart

    2012-07-01

    Displacement activities are behavioural patterns defined by their apparent irrelevance to an animal's ongoing actions. Despite being identified in diverse taxa, their function remains poorly understood. One hypothesis posits that displacement activities facilitate transitions between different behaviours by mediating changes in animals' motivational state. Under this hypothesis, it is predicted that displacement activities will occur more frequently around changes in behaviour than at other times, and also that rates of displacement activities will be higher before than after such behavioural transitions. We tested these two predictions in wild ring-tailed lemurs (Lemur catta). During focal observations, animals' behavioural state was continuously recorded, as were all occurrences of self-scratching, a common displacement activity in this species. Self-scratching rates were found to be significantly elevated both before and after behavioural transitions. Furthermore, self-scratching rates were significantly higher before behavioural transitions occurred than after. These results, therefore, provide support for the hypothesis that displacement activities facilitate behavioural transitions in L. catta. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Gas exchange in avian embryos and hatchlings.

    PubMed

    Mortola, Jacopo P

    2009-08-01

    The avian egg has been proven to be an excellent model for the study of the physical principles and the physiological characteristics of embryonic gas exchange. In recent years, it has become a model for the studies of the prenatal development of pulmonary ventilation, its chemical control and its interaction with extra-pulmonary gas exchange. Differently from mammals, in birds the initiation of pulmonary ventilation and the transition from diffusive to convective gas exchange are gradual and slow-occurring events amenable to detailed investigations. The absence of the placenta and of the mother permits the study of the mechanisms of embryonic adaptation to prenatal perturbations in a way that would be impossible with mammalian preparations. First, this review summarises the general aspects of the natural history of the avian egg that are pertinent to embryonic metabolism, growth and gas exchange and the characteristics of the structures participating in gas exchange. Then, the review focuses on the embryonic development of pulmonary ventilation, its regulation in relation to the embryo's environment and metabolic state, the effects that acute or sustained changes in embryonic temperature or oxygenation can have on growth, metabolism and ventilatory control.

  20. Sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.