Sample records for gas processing facilities

  1. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the pre-filing review of any pipeline or other natural gas facilities, including facilities not... from the subject LNG terminal facilities to the existing natural gas pipeline infrastructure. (b) Other... and review process for LNG terminal facilities and other natural gas facilities prior to filing of...

  2. 75 FR 71733 - Requirements for Measurement Facilities Used for the Royalty Valuation of Processed Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... measurement of inlet production, residue gas, fuel gas, flare gas, condensate, natural gas liquids, or any... governing gas and liquid hydrocarbon production measurement. We have recently completed the first phase of... Requirements for Measurement Facilities Used for the Royalty Valuation of Processed Natural Gas AGENCY: Bureau...

  3. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL...

  4. Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods

    DOE PAGES

    Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; ...

    2015-05-07

    Increased natural gas production in recent years has spurred intense interest in methane (CH 4) emissions associated with its production, gathering, processing, transmission, and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH 4 emissions from the natural gasmore » G&P facilities between October 2013 and April 2014. Dual-tracer flux measurements and on-site observations were used to address the magnitude and origins of CH 4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20–47%, depending upon plume classification. Furthermore, combining downwind methane, ethane (C 2H 6), carbon monoxide (CO), carbon dioxide (CO 2), and tracer gas measurements with on-site tracer gas release allows for quantification of facility emissions and in some cases a more detailed picture of source locations.« less

  5. Thunder Energy Inc. applications to modify an existing sweet gas processing facility to a sour gas processing facility and increase the hydrogen sulfide concentration of existing pipelines, Kelsey area: Examiner report 98-2, application numbers 1007719 and 1013399

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Thunder Energy Inc. received approval from the Alberta Energy and Utilities Board for modification of an existing gas plant to process sour gas, and also applied for permission to increase the hydrogen sulfide content of its existing pipelines in the Kelsey area. This report presents the views of Thunder Energy, the Board, and various intervenors at a hearing held to consider objections to the plant approval and matters related to the application. Issues considered include the need for sour gas processing, the need for the plant modification as opposed to the feasibility of using existing sour gas processing facilities, environmentalmore » impacts, and the requirements for notification of industry in the area. The report concludes with the Board`s decision.« less

  6. Managing the visual effects of outer continental shelf and other petroleum-related coastal development

    Treesearch

    Philip A. Marcus; Ethan T. Smith

    1979-01-01

    Five petroleum-related facilities often sited in the coastal zone during development of Outer Continental oil and gas can change the visual appearance of coastal areas. These facilities are service bases, platform fabrication yards, marine terminals and associated storage facilities, oil and gas processing facilities, and liquified natural gas terminals. Examples of...

  7. 40 CFR 60.5401 - What are the exceptions to the equipment leak standards for affected facilities at onshore...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment leak standards for affected facilities at onshore natural gas processing plants? 60.5401 Section... for affected facilities at onshore natural gas processing plants? (a) You may comply with the... is detected. (4)(i) Any pressure relief device that is located in a nonfractionating plant that is...

  8. 40 CFR 60.5401 - What are the exceptions to the equipment leak standards for affected facilities at onshore...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment leak standards for affected facilities at onshore natural gas processing plants? 60.5401 Section... for affected facilities at onshore natural gas processing plants? (a) You may comply with the... is detected. (4)(i) Any pressure relief device that is located in a nonfractionating plant that is...

  9. Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities. Study design and data collection II. Location of study herds relative to the oil and gas industry in Western Canada.

    PubMed

    Waldner, Cheryl L

    2008-01-01

    During the late part of 2000 and early months of 2001, project veterinarians recruited 205 beef herds to participate in a study of the effects of emissions from the upstream oil and gas industry on cattle reproduction and health. Researchers developed herd-selection criteria to optimize the range of exposure to facilities, including oil and gas wells, battery sites, and gas-gathering and gas-processing facilities across the major cattle-producing areas of Western Canada. Herds were initially selected on the basis of a ranking system of exposure potential on the basis of herd-owner reports of the locations of their operations in relation to oil and gas industry facilities. At the end of the study, researchers summarized data obtained from provincial regulatory agencies on facility location and reported flaring and venting volumes for each herd and compared these data to the original rankings of herd-exposure potential. Through this selection process, the researchers were successful in obtaining statistically significant differences in exposure to various types of oil and gas facility types and reported emissions among herds recruited for the study.

  10. Methane Emissions from United States Natural Gas Gathering and Processing.

    PubMed

    Marchese, Anthony J; Vaughn, Timothy L; Zimmerle, Daniel J; Martinez, David M; Williams, Laurie L; Robinson, Allen L; Mitchell, Austin L; Subramanian, R; Tkacik, Daniel S; Roscioli, Joseph R; Herndon, Scott C

    2015-09-01

    New facility-level methane (CH4) emissions measurements obtained from 114 natural gas gathering facilities and 16 processing plants in 13 U.S. states were combined with facility counts obtained from state and national databases in a Monte Carlo simulation to estimate CH4 emissions from U.S. natural gas gathering and processing operations. Total annual CH4 emissions of 2421 (+245/-237) Gg were estimated for all U.S. gathering and processing operations, which represents a CH4 loss rate of 0.47% (±0.05%) when normalized by 2012 CH4 production. Over 90% of those emissions were attributed to normal operation of gathering facilities (1697 +189/-185 Gg) and processing plants (506 +55/-52 Gg), with the balance attributed to gathering pipelines and processing plant routine maintenance and upsets. The median CH4 emissions estimate for processing plants is a factor of 1.7 lower than the 2012 EPA Greenhouse Gas Inventory (GHGI) estimate, with the difference due largely to fewer reciprocating compressors, and a factor of 3.0 higher than that reported under the EPA Greenhouse Gas Reporting Program. Since gathering operations are currently embedded within the production segment of the EPA GHGI, direct comparison to our results is complicated. However, the study results suggest that CH4 emissions from gathering are substantially higher than the current EPA GHGI estimate and are equivalent to 30% of the total net CH4 emissions in the natural gas systems GHGI. Because CH4 emissions from most gathering facilities are not reported under the current rule and not all source categories are reported for processing plants, the total CH4 emissions from gathering and processing reported under the EPA GHGRP (180 Gg) represents only 14% of that tabulated in the EPA GHGI and 7% of that predicted from this study.

  11. 76 FR 56009 - Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Electronics Manufacturing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Pipeline transportation of natural gas. 221210 Natural gas distribution facilities. 211 Extractors of crude... natural gas processing facilities in transmission pipelines or into storage. 40 CFR Sec. 98.230(a)(4). A... and inaccuracies in reporting''. Pipeline Quality Yes. Natural Gas. CEC/ AXPC asserted that ``[t]here...

  12. Fatal chlorine gas exposure at a metal recycling facility: Case report.

    PubMed

    Harvey, Robert R; Boylstein, Randy; McCullough, Joel; Shumate, Alice; Yeoman, Kristin; Bailey, Rachel L; Cummings, Kristin J

    2018-06-01

    At least four workers at a metal recycling facility were hospitalized and one died after exposure to chlorine gas when it was accidentally released from an intact, closed-valved cylinder being processed for scrap metal. This unintentional chlorine gas release marks at least the third such incident at a metal recycling facility in the United States since 2010. We describe the fatal case of the worker whose clinical course was consistent with acute respiratory distress syndrome (ARDS) following exposure to high concentrations of chlorine gas. This case report emphasizes the potential risk of chlorine gas exposure to metal recycling workers by accepting and processing intact, closed-valved containers. The metal recycling industry should take steps to increase awareness of this established risk to prevent future chlorine gas releases. Additionally, public health practitioners and clinicians should be aware that metal recycling workers are at risk for chlorine gas exposure. © 2018 Wiley Periodicals, Inc.

  13. East Spar: Alliance approach for offshore gasfield development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    East spar is a gas/condensate field 25 miles west of Barrow Island, offshore Western Australia. Proved plus probable reserves at the time of development were estimated at 430 Bcf gas and 28 million bbl of condensate. The field was discovered in early 1993 when the Western Australia gas market was deregulated and the concept of a gas pipeline to the gold fields was proposed. This created a window of opportunity for East Spar, but only if plans could be established quickly. A base-case development plan was established to support gas marketing while alternative plans could be developed in parallel. Themore » completed East Spar facilities comprise two subsea wells, a subsea gathering system, and a multiphase (gas/condensate/water) pipeline to new gas-processing facilities. The subsea facilities are controlled through a navigation, communication, and control (NCC) buoy. The control room and gas-processing plant are 39 miles east of the field on Varanus Island. Sales gas is exported through a pre-existing gas-sales pipeline to the Dampier-Bunbury and Goldfields Gas Transmission pipelines. Condensate is stored in and exported by use of pre-existing facilities on Varanus Island. Field development from approval to first production took 22 months. The paper describes its field development.« less

  14. Methane’s Role in Promoting Sustainable Development in the Oil and Natural Gas Industry

    EPA Pesticide Factsheets

    The document summarizes a number of established methods to identify, measure and reduce methane emissions from a variety of equipment and processes in oil and gas production and natural gas processing and transmission facilities.

  15. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  16. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  17. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  18. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  19. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  20. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of themore » gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.« less

  1. Power Up with Methane Gas: Struthers Water Pollution Control Facility

    EPA Pesticide Factsheets

    The city of Struthers received $5.4 million in ARRA funding from the Ohio’s CWSRF for a project that uses methane gas produced at the Struthers Water Pollution Control Facility to power unit treatment processes and offset the facility’s energy footprint.

  2. Pinon Pine power project nears start-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatar, G.A.; Gonzalez, M.; Mathur, G.K.

    1997-12-31

    The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing ofmore » the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.« less

  3. Software and Hardware System for Fast Processes Study When Preparing Foundation Beds of Oil and Gas Facilities

    NASA Astrophysics Data System (ADS)

    Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.

    2018-04-01

    Analysis of existing technologies for preparing foundation beds of oil and gas buildings and structures has revealed the lack of reasoned recommendations on the selection of rational technical and technological parameters of compaction. To study the nature of the dynamics of fast processes during compaction of foundation beds of oil and gas facilities, a specialized software and hardware system was developed. The method of calculating the basic technical parameters of the equipment for recording fast processes is presented, as well as the algorithm for processing the experimental data. The performed preliminary studies confirmed the accuracy of the decisions made and the calculations performed.

  4. 76 FR 71260 - Approval and Promulgation of Implementation Plans; Texas; Revisions to the New Source Review (NSR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... natural gas 7/22/1998 6/17/1998 Repeal and readoption disapproval. processing, as Section treating, or 116... for Changes at Certain Natural Gas Processing, Treating, or Compression Facilities 1. What is the... the following grounds: This definition exempts changes at certain natural gas processing, treating, or...

  5. The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Rivera, Jose A., Jr.

    1997-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over thirty-five years. The facility has a rich history of significant contributions to the design of many United States commercial transports and military aircraft. The facility has many features which contribute to its uniqueness for aeroelasticity testing; however, perhaps the most important facility capability is the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind-tunnel models. The heavy gas also provides other testing benefits, including reduction in the power requirements to operate the facility during testing. Unfortunately, the use of the original heavy gas has been curtailed due to environmental concerns. A new gas, referred to as R-134a, has been identified as a suitable replacement for the former TDT heavy gas. The TDT is currently undergoing a facility upgrade to allow testing in R-134a heavy gas. This replacement gas will result in an operational test envelope, model scaling advantages, and general testing capabilities similar to those available with the former TDT heavy gas. As such, the TDT is expected to remain a viable facility for aeroelasticity research and aircraft dynamic clearance testing well into the 21st century. This paper describes the anticipated advantages and facility calibration plans for the new heavy gas and briefly reviews several past test programs that exemplify the possible benefits of heavy gas testing.

  6. Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Corliss, James M.; Cole, Stanley, R.

    1998-01-01

    The heavy gas test medium has recently been changed in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center. A NASA Construction of Facilities project has converted the TDT heavy gas from dichlorodifluoromethane (R12) to 1,1,1,2 tetrafluoroethane (R134a). The facility s heavy gas processing system was extensively modified to implement the conversion to R134a. Additional system modifications have improved operator interfaces, hardware reliability, and quality of the research data. The facility modifications included improvements to the heavy gas compressor and piping, the cryogenic heavy gas reclamation system, and the heavy gas control room. A series of wind tunnel characterization and calibration tests are underway. Results of the flow characterization tests show the TDT operating envelope in R134a to be very similar to the previous operating envelope in R12.

  7. Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of themore » processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.« less

  8. Exploration and Production of Hydrocarbon Resources in Coastal Alabama and Mississippi.

    DTIC Science & Technology

    1984-11-01

    and R.L. Bluntzer. 984. Laud Subsidence Near Oil and Gas Fields , Houston, Texas. Ground Water 22(4):450-459. Holzworth, G.C. 1972. Mixing Heights, Wind... field is abandoned., The operation of drilling rigs, offshore production facilities, and onshore gas and oil cleaning and processing facilities would...a pipeline releasing natural gas containing hydrogen sulfide could endanger human health and be harmful .-. to plants and animals near the point of

  9. Pace slows in northern Rockies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stremel, K.

    1984-03-01

    This paper deals with recent natural gas development and production in the northern Rocky Mountain region. Because of restricted gas markets, the pace has slowed construction of gas processing and gathering facilities. The gas and oil companies which are planning or building new projects are discussed.

  10. NASA-sponsored containerless processing experiments

    NASA Technical Reports Server (NTRS)

    Hofmeister, William H.

    1990-01-01

    An outline is presented of containerless processing and facilities at Intersonics which is sponsored by NASA. There are electromagnetic, acoustic, and aerodynamic levitation facilities. There are also laser beam and arc lamp heating systems along with state of the art noncontact temperature and optical property measurement facilities. Nonintrusive diagnostic techniques with Laser Induced Fluorescence and mass spectrometer are also available. Controlled atmosphere processing, gas quenching, and proven microgravity processing technology is part of the Intersonics capabilities.

  11. Linam Ranch cryogenic gas plant: A design and operating retrospective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwell, L.J.; Kuscinski, J.

    1999-07-01

    GPM Gas Corporation's Linam Ranch Gas Plant is the processing hub of their southeastern New Mexico gathering system, producing a y-grade NGL product which is pipelined primarily to the Phillips petrochemical complex at Sweeney, Texas, GPM acquired the facility near Hobbs, N.M. late in 1994 when it was still operating as a refrigerated lean oil plant, renamed it, and commenced an upgrade project culminating in its conversion to a high recovery cryogenic facility in early 1996 with a processing capacity of 150 MMscfd. Facilities that were upgraded included inlet liquids receiving and handling, the amine system, mol sieve dehydration, themore » sulfur recovery unit, inlet compression, and the propane refrigeration system. A Foxboro I/A DCS was also placed into operation. The lean oil system was replaced with a high recovery turboexpander unit supplied by KTI Fish based on their Flash Vapor Reflux (FVR) process. Resulting ethane recovery was greater than 95% for the new facilities. New residue compression units were installed including steam generators on the turbine exhausts, which complemented the existing plant steam system. During the three years since conversion to cryogenic operation, GPM has steadily improved plant operations. Expansion of the mol sieve dehydration system and retrofit of evaporation combustion air cooling on gas turbines have expanded nameplate capacity to 170 MMscfd while maintaining ethane recovery at 95%. Future expansion to 200 MMscfd with high recovery is achievable. In addition, creative use of the Foxboro DCS has been employed to implement advanced control schemes for handling inlet liquid slugs, gas and amine balancing for parallel amine contactors, improved sulfur recovery unit (SRU) trim air control, and constraint-based process optimization to maximize horsepower utilization and ethane recovery. Some challenges remain, leaving room for additional improvements. However, GPM's progress so far has resulted in a current ethane recovery level in excess of 97% when processing gas at the original design throughput of 150 MMscfd.« less

  12. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.; Jantzen, C.; Burket, P.

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H 2 gas which requires monitoring of certain vessel’s vapor spaces.more » A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H 2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H 2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.« less

  13. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  14. 78 FR 28501 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Flint Hills Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ..., refinery fuel gas is generated by the facility's processes and collected into two fuel gas mix drums, designated 41V-33 and 45V-39. The gases are then distributed from these mix drums to combustion units at the facility, such as boilers and heaters. FHR Pine Bend operates H 2 S CEMs on the mix drums to satisfy the...

  15. 78 FR 3911 - Notice of Intent To Prepare an Environmental Impact Statement and Possible Amendment to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... propose to construct gas processing facilities in the project area to separate natural gas liquids from... natural gas liquids to market pipelines located near Wamsutter, Wyoming (approximately 100 miles south of... Environmental Impact Statement (EIS) for the proposed Moneta Divide Natural Gas and Oil Development Project...

  16. The Superorbital Expansion Tube concept, experiment and analysis

    NASA Technical Reports Server (NTRS)

    Neely, A. J.; Morgan, R. G.

    1995-01-01

    In response to the need for ground testing facilities for super orbital re-entry research, a small scale facility has been set up at the University of Queensland to demonstrate the superorbital expansion tube concept. This unique device is a free piston driven, triple diaphragm, impulse shock facility which uses the enthalpy multiplication mechanism of the unsteady expansion process and the addition of a secondary shock driver to further heat the driver gas. The pilot facility has been operated to produce quasi-steady test flows in air with shock velocities in excess of 13 km/s and with a usable test flow duration of the order of 15 micro sec. an experimental condition produced in the facility with total enthalpy of 108 MJ/kg and a total pressure of 335 MPa is reported. A simple analytical flow model which accounts for non-ideal rupture of the light tertiary diaphragm and the resulting entropy increase in the test gas is discussed. It is shown that equilibrium calculations more accurately model the unsteady expansion process than calculations assuming frozen chemistry. This is because the high enthalpy flows produced in the facility can only be achieved if the chemical energy stored in the test flow during shock heating of the test gas is partially returned to the flow during the process of unsteady expansion. Measurements of heat transfer rates to a flat plate demonstrate the usability of test flow for aerothermodynamic testing and comparison of these rates with empirical calculations confirms the usable accuracy of the flow model.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahnke, Fred C.

    FuelCell Energy and ACuPowder investigated and demonstrated the use of waste anode exhaust gas from a high temperature fuel cell for replacing the reducing gas in a metal processing furnace. Currently companies purchase high pressure or liquefied gases for the reducing gas which requires substantial energy in production, compression/liquefaction, and transportation, all of which is eliminated by on-site use of anode exhaust gas as reducing gas. We performed research on the impact of the gas composition on product quality and then demonstrated at FuelCell Energy’s manufacturing facility in Torrington, Connecticut. This demonstration project continues to operate even though the researchmore » program is completed as it provides substantial benefits to the manufacturing facility by supplying power, heat, and hydrogen.« less

  18. Mines and mineral processing facilities in the vicinity of the March 11, 2011, earthquake in northern Honshu, Japan

    USGS Publications Warehouse

    Menzie, W. David; Baker, Michael S.; Bleiwas, Donald I.; Kuo, Chin

    2011-01-01

    U.S. Geological Survey data indicate that the area affected by the March 11, 2011, magnitude 9.0 earthquake and associated tsunami is home to nine cement plants, eight iodine plants, four iron and steel plants, four limestone mines, three copper refineries, two gold refineries, two lead refineries, two zinc refineries, one titanium dioxide plant, and one titanium sponge processing facility. These facilities have the capacity to produce the following percentages of the world's nonfuel mineral production: 25 percent of iodine, 10 percent of titanium sponge (metal), 3 percent of refined zinc, 2.5 percent of refined copper, and 1.4 percent of steel. In addition, the nine cement plants contribute about one-third of Japan's cement annual production. The iodine is a byproduct from production of natural gas at the Miniami Kanto gas field, east of Tokyo in Chiba Prefecture. Japan is the world's second leading (after Chile) producer of iodine, which is processed in seven nearby facilities.

  19. 30 CFR 550.304 - Existing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... facilities. (a) Process leading to review of an existing facility. (1) An affected State may request that the... further air quality review, the lessee shall use the highest annual total amount of emissions from the...

  20. 30 CFR 550.304 - Existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... facilities. (a) Process leading to review of an existing facility. (1) An affected State may request that the... further air quality review, the lessee shall use the highest annual total amount of emissions from the...

  1. 30 CFR 550.304 - Existing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... facilities. (a) Process leading to review of an existing facility. (1) An affected State may request that the... further air quality review, the lessee shall use the highest annual total amount of emissions from the...

  2. Characterization of exposure to silver nanoparticles in a manufacturing facility

    NASA Astrophysics Data System (ADS)

    Park, Junsu; Kwak, Byoung Kyu; Bae, Eunjoo; Lee, Jeongjin; Kim, Younghun; Choi, Kyunghee; Yi, Jongheop

    2009-10-01

    An assessment of the extent of exposure to nanomaterials in the workplace will be helpful in improving the occupational safety of workers. It is essential that the exposure data in the workplace are concerned with risk management to evaluate and reduce worker exposure. In a manufacturing facility dealing with nanomaterials, some exposure data for gas-phase reactions are available, but much less information is available regarding liquid-phase reactions. Although the potential for inhaling nanomaterials in a liquid-phase process is less than that for gas-phase, the risks of exposure during wet-chemistry processes are not negligible. In this study, we monitored and analyzed the exposure characteristics of silver nanoparticles during a liquid-phase process in a commercial production facility. Based on the measured exposure data, the source of Ag nanoparticles emitted during the production processes was indentified and a mechanism for the growth of Ag nanoparticle released is proposed. The data reported in this study could be used to establish occupational safety guidelines in the nanotechnology workplace, especially in a liquid-phase production facility.

  3. A High-Speed Continuous Recording High Flow Gas Sampler for Measuring Methane Emissions from Pneumatic Devices at Oil and Natural Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Ferrara, T.; Howard, T. M.

    2016-12-01

    Studies attempting to reconcile facility level emission estimates of sources at oil and gas facilities with basin wide methane flux measurements have had limited success. Pneumatic devices are commonly used at oil and gas production facilities for process control or liquid pumping. These devices are powered by pressurized natural gas from the well, so they are known methane sources at these sites. Pneumatic devices are estimated to contribute 14% to 25% of the total greenhouse gas emissions (GHG) from production facilities. Measurements of pneumatic devices have shown that malfunctioning or poorly maintained control systems may be emitting significantly more methane than currently estimated. Emission inventories for these facilities use emission factors from EPA that are based on pneumatic device measurements made in the early 1990's. Recent studies of methane emissions from production facilities have attempted to measure emissions from pneumatic devices by several different methods. These methods have had limitations including alteration of the system being measured, the inability to distinguish between leaks and venting during normal operation, or insufficient response time to account of the time based emission events. We have developed a high speed recording high flow sampler that is capable of measuring the transient emissions from pneumatic devices. This sampler is based on the well-established high flow measurement technique used in oil and gas for quantifying component leak rates. In this paper we present the results of extensive laboratory controlled release testing. Additionally, test data from several field studies where this sampler has been used to measure pneumatic device emissions will be presented.

  4. The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid

    NASA Astrophysics Data System (ADS)

    Pavlenko, Alexander

    2011-06-01

    The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.

  5. 75 FR 45112 - Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... information and viewpoints from interested parties on approaches to accounting for greenhouse gas emissions... (BACT) review process under PSD? In addition, the first full sentence of the third bulleted item in... is: ``The Clean Air Act (CAA) provisions typically apply at the unit, process, or facility scale...

  6. 76 FR 63915 - DCP Midstream, LP; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... application pursuant to Section 7(c) of the Natural Gas Act and Part 157 of the Commission's Regulations, for... diameter pipeline (the LaSalle Residue Line) connecting DCP's new non-jurisdictional natural gas processing... non-jurisdictional gas gathering company having facilities in Texas, Oklahoma, New Mexico, Louisiana...

  7. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.

  8. Analyses in Support of Risk-Informed Natural Gas Vehicle Maintenance Facility Codes and Standards: Phase II.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaylock, Myra L.; LaFleur, Chris Bensdotter; Muna, Alice Baca

    Safety standards development for maintenance facilities of liquid and compressed natural gas fueled vehicles is required to ensure proper facility design and operating procedures. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase II work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest using risk ranking. Detailed simulations and modeling were performed to estimate the location and behaviormore » of natural gas releases based on these scenarios. Specific code conflicts were identified, and ineffective code requirements were highlighted and resolutions proposed. These include ventilation rate basis on area or volume, as well as a ceiling offset which seems ineffective at protecting against flammable gas concentrations. ACKNOWLEDGEMENTS The authors gratefully acknowledge Bill Houf (SNL -- Retired) for his assistance with the set-up and post-processing of the numerical simulations. The authors also acknowledge Doug Horne (retired) for his helpful discussions. We would also like to acknowledge the support from the Clean Cities program of DOE's Vehicle Technology Office.« less

  9. Renewable Natural Gas Clean-up Challenges and Applications

    DTIC Science & Technology

    2011-01-13

    produced from digesters ─ Animal manure (dairy cows, swine) ─ Waste water treatment facilities > Methane from Landfills > RNG produced from...AGR used in process • Two stage + trim methanation reactor • Dehydration to achieve gas pipeline specifications ~ 70% conversion efficiency 21... digestion of agricultural waste for on-site electricity generation ─Altamont Landfill—Landfill gas (LFG) cleanup for production of liquefied natural gas

  10. NRU is onstream successfully at Block 31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, S.K.; Price, B.C.; Wilson, C.A.

    1986-12-17

    A nitrogen rejection facility, designed and fabricated by Koch Process Systems Inc., has exceeded design capacity and product purity specifications on Block 31 field about 30 miles south of Odessa, Tex. The unit is currently processing approximately 65 MMscfd of oil-associated gas; producing 21 MMscfd nitrogen, 32 MMscfd fuel gas, and 320,000 gal/day ethane-plus product. The startup of this nitrogen rejection facility represents the first facility for handling a feed with such a wide variation in composition. The process worked according to design and has met or exceeded product criteria. The plant is currently processing 10% over design at 78more » MMscfd (70 MMscfd net raw feed) and producing 330,000 gal/day of NGL's, with an ethane recovery of 88%. As with most startups, the main problems were with the rotating equipment items, especially the expander/compressor units. The NRF is providing a reliable source of fuel and should increase plant production and field life.« less

  11. 40 CFR 80.1403 - Which fuels are not subject to the 20% GHG thresholds?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construction after December 19, 2007, and are fired with natural gas, biomass, or a combination thereof, the... are fired with natural gas, biomass, or a combination thereof at all times the facility operated... produced through processes fired with natural gas, biomass, or any combination thereof. (e) The annual...

  12. Stage 1: Expression of interest and consultation document for natural gas distribution in New Brunswick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The New Brunswick government intends to award a franchise to establish natural gas distribution in the province. To this end, the province wishes to invite bids from qualified entities to establish gas distribution facilities. The province will select the preferred bidder(s) through a two-stage competitive bidding process. This document details the province`s policy objectives, questions and issues to be addressed in stage 1 of the process, and the schedule for the process. Appendices include copies of relevant provincial statutes and regulations.

  13. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Jayesh; Hess, Fernando; Horzen, Wessel van

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability ofmore » implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO 2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO 2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam in the existing combined cycle power plant provides sufficient power for all plant loads. The lifecycle GHG profile of the produced jet fuel is 95% of conventional jet fuel. Without converting the fuel gas to a low carbon fuel gas, the emissions would be 108% of conventional jet fuel and without any GHG mitigation, the profile would be 206%. Oil prices greater than $120 per barrel are required to reach a targeted internal rate of return on equity (IRROE) of 12%. Although capital expenditure is much less than if a greenfield facility was built, the relatively small size of the plant, assumed coal price, and the CTL risk profile used in the economic assumptions lead to a high cost of production. Assuming more favorable factors, the economic oil price could be reduced to $78 per barrel with GHG mitigation and $55 per barrel with no GHG mitigation.« less

  14. KSC-2011-1342

    NASA Image and Video Library

    2011-02-02

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, KSC firefighters were on the scene after a backhoe inadvertently struck a natural gas line at around 8:40 a.m. EST in the area north of the Multi Function Facility (MFF). As a precaution, personnel were evacuated from Orbiter Processing Facilities 1 and 2, the MFF, Processing Control Center and Operations Support Building (OSB) I. All traffic was blocked on the Saturn Causeway near the facilities. There were no injuries or damage to any facilities and personnel were allowed back into their buildings before mid-day and the roadway open to traffic. Photo credit: NASA/Jack Pfaller

  15. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  16. Process wastewater treatability study for Westinghouse fluidized-bed coal gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winton, S.L.; Buvinger, B.J.; Evans, J.M.

    1983-11-01

    In the development of a synthetic fuels facility, water usage and wastewater treatment are major areas of concern. Coal gasification processes generally produce relatively large volumes of gas condensates. These wastewaters are typically composed of a variety of suspended and dissolved organic and inorganic solids and dissolved gaseous contaminants. Fluidized-bed coal gasification (FBG) processes are no exception to this rule. The Department of Energy's Morgantown Energy Technology Center (METC), the Gas Research Institute (GRI), and the Environmental Protection Agency (EPA/IERLRTP) recognized the need for a FBG treatment program to provide process design data for FBG wastewaters during the environmental, health,more » and safety characterization of the Westinghouse Process Development Unit (PDU). In response to this need, METC developed conceptual designs and a program plan to obtain process design and performance data for treating wastewater from commercial-scale Westinghouse-based synfuels plants. As a result of this plan, METC, GRI, and EPA entered into a joint program to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a FBG plant. Wastewater from the Westinghouse PDU consists of process quench and gas cooling condensates which are similar to those produced by other FBG processes such as U-Gas, and entrained-bed gasification processes such as Texaco. Therefore, wastewater from this facility was selected as the basis for this study. This paper outlines the current program for developing process design and cost data for the treatment of these wastewaters.« less

  17. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placido, Andrew; Liu, Kunlei; Challman, Don

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will producemore » research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in some detail in this report, along with lessons learned.« less

  18. Colorado gains excess capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stremel, K.

    1984-03-01

    Colorado has gained the majority of new natural gas processing and gathering facilities in the southern Rocky Mountain area. Seven new plants in the Denver-Julesburg Basin have nearly doubled the previous unused design capacity. This paper discusses the development and exploitation of these new facilities and some of the designs.

  19. Atmospheric Mercury in the Barnett Shale Area, Texas: Implications for Emissions from Oil and Gas Processing.

    PubMed

    Lan, Xin; Talbot, Robert; Laine, Patrick; Torres, Azucena; Lefer, Barry; Flynn, James

    2015-09-01

    Atmospheric mercury emissions in the Barnett Shale area were studied by employing both stationary measurements and mobile laboratory surveys. Stationary measurements near the Engle Mountain Lake showed that the median mixing ratio of total gaseous mercury (THg) was 138 ppqv (140 ± 29 ppqv for mean ± S.D.) during the June 2011 study period. A distinct diurnal variation pattern was observed in which the highest THg levels appeared near midnight, followed by a monotonic decrease until midafternoon. The influence of oil and gas (ONG) emissions was substantial in this area, as inferred from the i-pentane/n-pentane ratio (1.17). However, few THg plumes were captured by our mobile laboratory during a ∼3700 km survey with detailed downwind measurements from 50 ONG facilities. One compressor station and one natural gas condensate processing facility were found to have significant THg emissions, with maximum THg levels of 963 and 392 ppqv, respectively, and the emissions rates were estimated to be 7.9 kg/yr and 0.3 kg/yr, respectively. Our results suggest that the majority of ONG facilities in this area are not significant sources of THg; however, it is highly likely that a small number of these facilities contribute a relatively large amount of emissions in the ONG sector.

  20. Gasification Product Improvement Facility (GPIF). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less

  1. 17 CFR 250.58 - Exemption of investments in certain nonutility companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facilities relating to electric and compressed natural gas powered vehicles; (iv) The sale of electric and gas appliances; equipment to promote new technologies, or new applications for existing technologies... and commercialization of technologies or processes that utilize coal waste by-products as an integral...

  2. 40 CFR 98.160 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.160 Definition of the source category. (a) A hydrogen production source category consists of facilities that produce hydrogen gas sold as a product to other entities. (b) This source category comprises process units that produce hydrogen by...

  3. 40 CFR 98.160 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.160 Definition of the source category. (a) A hydrogen production source category consists of facilities that produce hydrogen gas sold as a product to other entities. (b) This source category comprises process units that produce hydrogen by...

  4. 40 CFR 98.160 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.160 Definition of the source category. (a) A hydrogen production source category consists of facilities that produce hydrogen gas sold as a product to other entities. (b) This source category comprises process units that produce hydrogen by...

  5. 40 CFR 98.160 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.160 Definition of the source category. (a) A hydrogen production source category consists of facilities that produce hydrogen gas sold as a product to other entities. (b) This source category comprises process units that produce hydrogen by...

  6. 40 CFR 98.160 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.160 Definition of the source category. (a) A hydrogen production source category consists of facilities that produce hydrogen gas sold as a product to other entities. (b) This source category comprises process units that produce hydrogen by...

  7. The NOXSO clean coal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% ofmore » the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).« less

  8. Alternative Fuels Research Laboratory

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.

    2012-01-01

    NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.

  9. Automated Heat-Flux-Calibration Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.

  10. Translations on Environmental Quality, Number 148

    DTIC Science & Technology

    1977-10-03

    Article 9. Designs for gas filtering installations must include the proper control and automation facilities as per articles 16 and 17. Article 10...mandatorily equipped with: 1. Locking armature at the gas entrance and exit with manual or remote control flanges for the installation of end-caps in...instruments shall be mounted on the control panel of the gas filtering system or the control panel for the technological process. Article 17. (1) The gas

  11. Transport Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, D.A.; Shoemaker, S.A.

    1996-12-31

    The Morgantown Energy Technology Center (METC) is currently evaluating hot gas desulfurization (HGD)in its on-site transport reactor facility (TRF). This facility was originally constructed in the early 1980s to explore advanced gasification processes with an entrained reactor, and has recently been modified to incorporate a transport riser reactor. The TRF supports Integrated Gasification Combined Cycle (IGCC) power systems, one of METC`s advanced power generation systems. The HGD subsystem is a key developmental item in reducing the cost and increasing the efficiency of the IGCC concept. The TRF is a unique facility with high-temperature, high-pressure, and multiple reactant gas composition capability.more » The TRF can be configured for reacting a single flow pass of gas and solids using a variety of gases. The gas input system allows six different gas inputs to be mixed and heated before entering the reaction zones. Current configurations allow the use of air, carbon dioxide, carbon monoxide, hydrogen, hydrogen sulfide, methane, nitrogen, oxygen, steam, or any mixture of these gases. Construction plans include the addition of a coal gas input line. This line will bring hot coal gas from the existing Fluidized-Bed Gasifier (FBG) via the Modular Gas Cleanup Rig (MGCR) after filtering out particulates with ceramic candle filters. Solids can be fed either by a rotary pocket feeder or a screw feeder. Particle sizes may range from 70 to 150 micrometers. Both feeders have a hopper that can hold enough solid for fairly lengthy tests at the higher feed rates, thus eliminating the need for lockhopper transfers during operation.« less

  12. Natural gas operations: considerations on process transients, design, and control.

    PubMed

    Manenti, Flavio

    2012-03-01

    This manuscript highlights tangible benefits deriving from the dynamic simulation and control of operational transients of natural gas processing plants. Relevant improvements in safety, controllability, operability, and flexibility are obtained not only within the traditional applications, i.e. plant start-up and shutdown, but also in certain fields apparently time-independent such as the feasibility studies of gas processing plant layout and the process design of processes. Specifically, this paper enhances the myopic steady-state approach and its main shortcomings with respect to the more detailed studies that take into consideration the non-steady state behaviors. A portion of a gas processing facility is considered as case study. Process transients, design, and control solutions apparently more appealing from a steady-state approach are compared to the corresponding dynamic simulation solutions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  13. 77 FR 130 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Intercontinental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... issues: Water availability; Impacts from subsidence; Impacts to oil and gas exploration and operation in... processing facilities, including the ore process plant, dry stack tailings pile, evaporation ponds, water...

  14. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, T.

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are presentmore » in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.« less

  15. OIL AND GAS FACILITY EMERGENCY AWARENESS PARTNERSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tod Bryant

    2002-08-31

    Energy Education Partnership, Inc. (EEPI) is a 501(c) (3) subsidiary of the Interstate Oil and Gas Compact Commission (IOGCC). The organization was formed four years ago for charitable, educational, and scientific purposes. EEPI adheres to the same mission of IOGCC, and that is to promote conservation and efficient recovery of domestic oil and natural gas resources while protecting health, safety and the environment. The membership of EEPI/IOCGG is composed of the governors of the 30 oil and gas producing states, seven associate member states, and five international affiliates. The governors appoint official representatives and committee members to participate in themore » programs. The membership of EEPI/IOGCC is dedicated to the conservation and prudent utilization of oil and natural gas resources through education and training. Engineers, geologist, environmental scientists and researchers who perform the majority of fossil energy research in the United States all work with EEPI/IOGCC on projects. The ''Oil and Gas Facility Emergency Awareness Program'' consists of three main parts, with two optional projects for the states involved in the pilot program. The three main parts of the program consist of the following: (1) Create a generic publication using the Ohio Oil and Gas Energy Education Program's publication, ''Responding to Oilfield Emergencies'', which is not state-specific. (2) Prepare a training program for emergency response teams, state and federal regulators, oil and gas facility owners and operators, and local citizens. The program will be developed as a PowerPoint presentation and will assist the students in becoming more aware of emergency situations at an oil or gas facility. The students learn who is the designated ''first responder'' in charge, how all people can work together in preventing and controlling problems at an oil or gas facility, and what to do during an emergency. Familiarity with equipment and hazardous substances are introduced as part of the program. (3) Once the publication and the training program are developed, a video that will be used as an introduction to the actual training class, as a refresher for the class, or in a ''train-the-trainer'' program will be produced. In addition to the above-noted three steps, optional projects were considered by the pilot program states. Two optional projects were considered by the states: (1) Working with the local, regional or state firefighters, a training facility would be created using oil and gas equipment. This part of the project will require cooperation between firefighters and industry, and will assist especially the emergency responders in learning more about oil and gas equipment. (2) Also under consideration was a related web site that would include the location of all oil and gas wells and accessible only by password. The overall ''Oil and Gas Facility Emergency Awareness Program'' has many benefits, some of which are: The process will provide opportunity for key industry leaders to develop relationships with local emergency management agencies. Industry personnel will be able to better understand emergency planning, and emergency personnel will better understand industry operations. Health, safety and environment will be better protected because of training. Better risk management will improve the operating climate for independent oil and gas producers. The ''Oil and Gas Facility Emergency Awareness Program'' benefits the emergency response teams, oil and gas facility owners and operators, state and federal regulators, the environment, and most especially the citizens. All groups must work together for the health, safety and protection of the community and the environment.« less

  16. CLEANING OF FLUE GASES FROM WASTE COMBUSTORS

    EPA Science Inventory

    The paper addresses flue gas cleaning processes currently used commercially in waste combustion facilities. It also discusses the operating concepts of dry, semi-dry, and wet processes and their effectiveness in controlling various pollutants. Air pollutants from the combustion o...

  17. CRADA opportunities with METC`s gasification and hot gas cleanup facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, E N; Rockey, J M; Tucker, M S

    1995-06-01

    Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}Fmore » and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.« less

  18. Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, J.D.; Hudson, H.M.

    1982-05-03

    New turboexpander plant designs can process natural gas streams containing moderate amounts of carbon dioxide (CO/sub 2/) for high ethane recovery without inlet gas treating. The designs will handle a wide range of inlet ethane-plus fractions. They also offer reduced horsepower requirements compared to other processes. CO/sub 2/ is a typical component of most natural gas streams. In many cases, processing of these gas streams in a turboexpander plant for high ethane recovery requires pre-treatment of the gas for CO/sub 2/ removal. This is required to avoid the formation of solid CO/sub 2/ (freezing) in the cold sections of themore » process and/or to meet necessary residue gas and liquid product CO/sub 2/ specifications. Depending on the quantities involved, the CO/sub 2/ removal systems is generally a significant portion of both the installed cost and operating cost for the ethane recovery facility. Therefore, turboexpander plant designs that are capable of handling increased quantities of CO/sub 2/ in the feed gas without freezing can offer the gas processor substantial economic benefits.« less

  19. 75 FR 7472 - Southern Natural Gas Company; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Abandonment and Replacement Project and Request for Comments on Environmental Issues February 5, 2010. The... Replacement Project, involving the abandonment and replacement of facilities by Southern Natural Gas Company... process to determine whether the project is in the public convenience and necessity. This notice announces...

  20. 76 FR 39777 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollutions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... in SJVUAPCD Rule 4455, ``Components at Petroleum Refineries, Gas Liquids Processing Facilities and... be added in Rule 4402 or Rule 4623 (Storage of Organic Liquids) that ensure that tanks used to... and Gas Industry Survey Results'', Draft Report, March 2011. Comment 8: SJVUAPCD commented that the...

  1. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    NASA Astrophysics Data System (ADS)

    Knox, C. A.; Farnsworth, R. K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.

  2. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture.

    PubMed

    Zhou, Fanglei; Tien, Huynh Ngoc; Xu, Weiwei L; Chen, Jung-Tsai; Liu, Qiuli; Hicks, Ethan; Fathizadeh, Mahdi; Li, Shiguang; Yu, Miao

    2017-12-13

    Among the current CO 2 capture technologies, membrane gas separation has many inherent advantages over other conventional techniques. However, fabricating gas separation membranes with both high CO 2 permeance and high CO 2 /N 2 selectivity, especially under wet conditions, is a challenge. In this study, sub-20-nm thick, layered graphene oxide (GO)-based hollow fiber membranes with grafted, brush-like CO 2 -philic agent alternating between GO layers are prepared by a facile coating process for highly efficient CO 2 /N 2 separation under wet conditions. Piperazine, as an effective CO 2 -philic agent, is introduced as a carrier-brush into the GO nanochannels with chemical bonding. The membrane exhibits excellent separation performance under simulated flue gas conditions with CO 2 permeance of 1,020 GPU and CO 2 /N 2 selectivity as high as 680, demonstrating its potential for CO 2 capture from flue gas. We expect this GO-based membrane structure combined with the facile coating process to facilitate the development of ultrathin GO-based membranes for CO 2 capture.

  3. Practical guide: Tools and methodologies for an oil and gas industry emission inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, C.C.; Killian, T.L.

    1996-12-31

    During the preparation of Title V Permit applications, the quantification and speciation of emission sources from oil and gas facilities were reevaluated to determine the {open_quotes}potential-to-emit.{close_quotes} The existing emissions were primarily based on EPA emission factors such as AP-42, for tanks, combustion sources, and fugitive emissions from component leaks. Emissions from insignificant activities and routine operations that are associated with maintenance, startups and shutdowns, and releases to control devices also required quantification. To reconcile EPA emission factors with test data, process knowledge, and manufacturer`s data, a careful review of other estimation options was performed. This paper represents the results ofmore » this analysis of emission sources at oil and gas facilities, including exploration and production, compressor stations and gas plants.« less

  4. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 9, July 1--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries,more » product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.« less

  5. Gas-Grain Simulation Facility (GGSF). Volume 2: Conceptual design definition

    NASA Technical Reports Server (NTRS)

    Zamel, James M.

    1993-01-01

    This document is Volume 2 of the Final Report for the Phase A Study of the Gas-Grain Simulation Facility (GGSF), and presents the GGSF Conceptual Design. It is a follow-on to the Volume 1 Facility Definition Study, NASA report CR 177606. The development of a conceptual design for a Space Station Freedom (SSF) facility that will be used for investigating particle interactions in varying environments, including various gas mixtures, pressures, and temperatures is delineated. It's not possible to study these experiments on earth due to the long reaction times associated with this type of phenomena, hence the need for extended periods of microgravity. The particle types will vary in composition (solids and liquids), sizes (from submicrons to centimeters), and concentrations (from single particles to 10(exp 10) per cubic centimeter). The results of the experiments pursued in the GGSF will benefit a variety of scientific inquiries. These investigations span such diverse topics as the formation of planets and planetary rings, cloud and haze processes in planetary atmospheres, the composition and structure of astrophysical objects, and the viability of airborne microbes (e.g., in a manned spacecraft).

  6. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    PubMed

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (< C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosio, J.; Wilcox, P.; Sembsmoen, O.

    A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipelinemore » network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.« less

  8. Alternative Fuel Research in Fischer-Tropsch Synthesis

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  9. An isentropic compression-heated Ludweig tube transient wind tunnel

    NASA Technical Reports Server (NTRS)

    Magari, Patrick J.; Lagraff, John E.

    1991-01-01

    Theoretical development and experimental results show that the Ludweig tube with isentropic heating (LICH) transient wind tunnel described is a viable means of producing flow conditions that are suitable for a variety of experimental investigations. A complete analysis of the wave dynamics of the pump tube compression process is presented. The LICH tube operating conditions are very steady and run times are greater than those of other types of transient facilities such as shock tubes and gas tunnels. This facility is well suited for producing flow conditions that are dynamically similar to those found in a gas turbine, i.e., transonic Mach number, gas-to-wall temperature ratios of about 1.5, and Reynolds numbers greater than 10 to the 6th.

  10. 49 CFR 191.17 - Transmission systems; gathering systems; and liquefied natural gas facilities: Annual report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquefied natural gas facilities: Annual report. 191.17 Section 191.17 Transportation Other Regulations...; gathering systems; and liquefied natural gas facilities: Annual report. (a) Transmission or Gathering. Each..., 2011. (b) LNG. Each operator of a liquefied natural gas facility must submit an annual report for that...

  11. 49 CFR 191.15 - Transmission systems; gathering systems; and liquefied natural gas facilities: Incident report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... under § 191.5 of this part. (b) LNG. Each operator of a liquefied natural gas plant or facility must... liquefied natural gas facilities: Incident report. 191.15 Section 191.15 Transportation Other Regulations...; gathering systems; and liquefied natural gas facilities: Incident report. (a) Transmission or Gathering...

  12. Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance

    Science.gov Websites

    Facility Ryder Opens Natural Gas Vehicle Maintenance Facility to someone by E-mail Share Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Facebook Tweet about Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Twitter Bookmark

  13. 76 FR 64055 - Special Rules Governing Certain Information Obtained Under the Clean Air Act: Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... natural gas. 211112 Natural gas liquid extraction facilities. Petrochemical Production....... 32511... facilities. 211112 Natural gas liquid extraction facilities. Suppliers of Industrial 325120 Industrial gas... reference in EPA's procedures for handling data collected under the Mandatory Greenhouse Gas Reporting Rule...

  14. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO 2 from Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    The objective of this project was to demonstrate an innovative process to mineralize CO 2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO 2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO 2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updatedmore » Techno-Economic Analysis and CO 2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO 2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO 2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.« less

  15. 78 FR 67349 - AltaGas Facilities (U.S.), Inc. (AltaGas); Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Facilities (U.S.), Inc. (AltaGas); Notice of Application Take notice that on October 21, 2013, AltaGas Facilities (U.S.), Inc. (AltaGas), 1700, 355 4th Avenue SW., Calgary, Alberta T2P 0J1, filed an application... years. [[Page 67350

  16. PETC Review, Issue 5, Spring 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaustein, B D; Reiss, J; Tarquinio, M A

    1992-04-01

    This issue of PETC Review contains short discussion on the following topics: advanced coal preparation processes, new scrubbers for flue gas desulfurization, PETC's Coal Preparation Process Research Facility, and PETC's Science Outreach Program. Supplemental sections on publications, highlights, calendars, etc. are also included. (VC)

  17. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  18. Electromagnetic radiations from laser interaction with gas-filled Hohlraum

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Yang, Yongmei; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2018-01-01

    The emission of intensive electromagnetic pulse (EMP) due to laser-target interactions at the ShenGuang-III laser facility has been evaluated by probes. EMP signals measured using the small discone antennas demonstrated two variation trends including a bilateral oscillation wave and a unilateral oscillation wave. The new trend of unilateral oscillation could be attributed to the hohlraum structure and low-Z gas in the hohlraum. The EMP waveform showed multiple peaks when the gas-filled hohlraum was shot by the high-power laser. Comparing the EMP signals with the verification of stimulated Raman scattering energy and hard x-ray energy spectrum, we found that the intensity of EMP signals decreased with the increase of the hohlraum size. The current results are expected to offer preliminary information to study physical processes on laser injecting gas-filled hohlraums in the National Ignition Facility implementation.

  19. PETC Review, Issue 5, Spring 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaustein, B.D.; Reiss, J.; Tarquinio, M.A.

    1992-07-01

    This issue of PETC Review contains short discussion on the following topics: advanced coal preparation processes, new scrubbers for flue gas desulfurization, PETC`s Coal Preparation Process Research Facility, and PETC`s Science Outreach Program. Supplemental sections on publications, highlights, calendars, etc. are also included. (VC)

  20. Operational Phase Life Cycle Assessment of Select NASA Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George H.; Marshall, Timothy J.; McGinnis, Sean

    2011-01-01

    NASA's Aeronautics Test Program (ATP) is responsible for many large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. In order to accomplish these national objectives, significant energy and resources are consumed. A select group of facilities was analyzed using life-cycle assessment (LCA) to determine carbon footprint and environmental impacts. Most of these impacts stem from electricity and natural gas consumption, used directly at the facility and to generate support processes such as compressed air and steam. Other activities were analyzed but determined to be smaller in scale and frequency with relatively negligible environmental impacts. More specialized facilities use R-134a, R-14, jet fuels, or nitrogen gas, and these unique inputs can have a considerable effect on a facility s overall environmental impact. The results of this LCA will be useful to ATP and NASA as the nation looks to identify its top energy consumers and NASA looks to maximize research output and minimize environmental impact. Keywords: NASA, Aeronautics, Wind tunnel, Keyword 4, Keyword 5

  1. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  2. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  3. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  4. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  5. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  6. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  7. 40 CFR 125.137 - As an owner or operator of a new offshore oil and gas extraction facility, must I perform...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... offshore oil and gas extraction facility, must I perform monitoring? 125.137 Section 125.137 Protection of... operator of a new offshore oil and gas extraction facility, must I perform monitoring? As an owner or operator of a new offshore oil and gas extraction facility, you will be required to perform monitoring to...

  8. 40 CFR 125.137 - As an owner or operator of a new offshore oil and gas extraction facility, must I perform...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... offshore oil and gas extraction facility, must I perform monitoring? 125.137 Section 125.137 Protection of... operator of a new offshore oil and gas extraction facility, must I perform monitoring? As an owner or operator of a new offshore oil and gas extraction facility, you will be required to perform monitoring to...

  9. 40 CFR 125.137 - As an owner or operator of a new offshore oil and gas extraction facility, must I perform...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... offshore oil and gas extraction facility, must I perform monitoring? 125.137 Section 125.137 Protection of... operator of a new offshore oil and gas extraction facility, must I perform monitoring? As an owner or operator of a new offshore oil and gas extraction facility, you will be required to perform monitoring to...

  10. 40 CFR 125.137 - As an owner or operator of a new offshore oil and gas extraction facility, must I perform...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... offshore oil and gas extraction facility, must I perform monitoring? 125.137 Section 125.137 Protection of... operator of a new offshore oil and gas extraction facility, must I perform monitoring? As an owner or operator of a new offshore oil and gas extraction facility, you will be required to perform monitoring to...

  11. 78 FR 13695 - Information Collection: Renewable Energy and Alternate Uses of Existing Facilities on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... activities, facilities, safety equipment, inspections and tests, and natural and manmade hazards near the... one line on BOEM-0005 to match language on a similar form for the oil and gas program; this does not.... 111 Within 30 days of .5 4 fee submissions. 2 receiving bill, submit processing fee payments for BOEM...

  12. Loading Rates and Impacts of Substrate Delivery for Enhanced Anaerobic Bioremediation

    DTIC Science & Technology

    2010-01-01

    Naval Facilities Engineering Command/Engineering Services Center NDMA N-nitrosodimethylamine ORP oxidation reduction potential PCE...nitrosodimethylamine ( NDMA ) is used with propellants and is a carcinogen and emerging groundwater contaminant at a number of DoD and DOE facilities. NDMA may...demonstrating an alternative degradation process for NDMA using injection (biosparging) of propane gas and oxygen to stimulate degradation by 23

  13. A facility for gas- and condensed-phase measurements behind shock waves

    NASA Astrophysics Data System (ADS)

    Petersen, Eric L.; Rickard, Matthew J. A.; Crofton, Mark W.; Abbey, Erin D.; Traum, Matthew J.; Kalitan, Danielle M.

    2005-09-01

    A shock-tube facility consisting of two, single-pulse shock tubes for the study of fundamental processes related to gas-phase chemical kinetics and the formation and reaction of solid and liquid aerosols at elevated temperatures is described. Recent upgrades and additions include a new high-vacuum system, a new gas-handling system, a new control system and electronics, an optimized velocity-detection scheme, a computer-based data acquisition system, several optical diagnostics, and new techniques and procedures for handling experiments involving gas/powder mixtures. Test times on the order of 3 ms are possible with reflected-shock pressures up to 100 atm and temperatures greater than 4000 K. Applications for the shock-tube facility include the study of ignition delay times of fuel/oxidizer mixtures, the measurement of chemical kinetic reaction rates, the study of fundamental particle formation from the gas phase, and solid-particle vaporization, among others. The diagnostic techniques include standard differential laser absorption, FM laser absorption spectroscopy, laser extinction for particle volume fraction and size, temporally and spectrally resolved emission from gas-phase species, and a scanning mobility particle sizer for particle size distributions. Details on the set-up and operation of the shock tube and diagnostics are given, the results of a detailed uncertainty analysis on the accuracy of the test temperature inferred from the incident-shock velocity are provided, and some recent results are presented.

  14. A national assessment of underground natural gas storage: identifying wells with designs likely vulnerable to a single-point-of-failure

    NASA Astrophysics Data System (ADS)

    Michanowicz, Drew R.; Buonocore, Jonathan J.; Rowland, Sebastian T.; Konschnik, Katherine E.; Goho, Shaun A.; Bernstein, Aaron S.

    2017-05-01

    The leak of processed natural gas (PNG) from October 2015 to February 2016 from the Aliso Canyon storage facility, near Los Angeles, California, was the largest single accidental release of greenhouse gases in US history. The Interagency Task Force on Natural Gas Storage Safety and California regulators recently recommended operators phase out single-point-of-failure (SPF) well designs. Here, we develop a national dataset of UGS well activity in the continental US to assess regulatory data availability and uncertainty, and to assess the prevalence of certain well design deficiencies including single-point-of-failure designs. We identified 14 138 active UGS wells associated with 317 active UGS facilities in 29 states using regulatory and company data. State-level wellbore datasets contained numerous reporting inconsistencies that limited data concatenation. We identified 2715 active UGS wells across 160 facilities that, like the failed well at Aliso Canyon, predated the storage facility, and therefore were not originally designed for gas storage. The majority (88%) of these repurposed wells are located in OH, MI, PA, NY, and WV. Repurposed wells have a median age of 74 years, and the 2694 repurposed wells constructed prior to 1979 are particularly likely to exhibit design-related deficiencies. An estimated 210 active repurposed wells were constructed before 1917—before cement zonal isolation methods were utilized. These wells are located in OH, PA, NY, and WV and represent the highest priority related to potential design deficiencies that could lead to containment loss. This national baseline assessment identifies regulatory data uncertainties, highlights a potentially widespread vulnerability of the natural gas supply chain, and can aid in prioritization and oversight for high-risk wells and facilities.

  15. 33 CFR 127.201 - Sensing and alarm systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.201 Sensing and alarm...

  16. 33 CFR 127.201 - Sensing and alarm systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vapor or gas may accumulate; and (2) Meet Section 9-4 of NFPA 59A. (c) Fixed sensors that continuously... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.201 Sensing and alarm...

  17. Dynamic analysis of process reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadle, L.J.; Lawson, L.O.; Noel, S.D.

    1995-06-01

    The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process modelsmore » are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.« less

  18. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  19. 40 CFR 125.138 - As an owner or operator of a new offshore oil and gas extraction facility, must I keep records...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... offshore oil and gas extraction facility, must I keep records and report? 125.138 Section 125.138... Intake Structures for New Offshore Oil and Gas Extraction Facilities Under Section 316(b) of the Act § 125.138 As an owner or operator of a new offshore oil and gas extraction facility, must I keep records...

  20. 40 CFR 125.138 - As an owner or operator of a new offshore oil and gas extraction facility, must I keep records...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... offshore oil and gas extraction facility, must I keep records and report? 125.138 Section 125.138... Intake Structures for New Offshore Oil and Gas Extraction Facilities Under Section 316(b) of the Act § 125.138 As an owner or operator of a new offshore oil and gas extraction facility, must I keep records...

  1. 40 CFR 125.138 - As an owner or operator of a new offshore oil and gas extraction facility, must I keep records...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... offshore oil and gas extraction facility, must I keep records and report? 125.138 Section 125.138... Intake Structures for New Offshore Oil and Gas Extraction Facilities Under Section 316(b) of the Act § 125.138 As an owner or operator of a new offshore oil and gas extraction facility, must I keep records...

  2. 40 CFR 125.138 - As an owner or operator of a new offshore oil and gas extraction facility, must I keep records...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... offshore oil and gas extraction facility, must I keep records and report? 125.138 Section 125.138... Intake Structures for New Offshore Oil and Gas Extraction Facilities Under Section 316(b) of the Act § 125.138 As an owner or operator of a new offshore oil and gas extraction facility, must I keep records...

  3. 40 CFR 125.138 - As an owner or operator of a new offshore oil and gas extraction facility, must I keep records...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... offshore oil and gas extraction facility, must I keep records and report? 125.138 Section 125.138... Intake Structures for New Offshore Oil and Gas Extraction Facilities Under Section 316(b) of the Act § 125.138 As an owner or operator of a new offshore oil and gas extraction facility, must I keep records...

  4. Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Atherton, Emmaline; Risk, David; Fougère, Chelsea; Lavoie, Martin; Marshall, Alex; Werring, John; Williams, James P.; Minions, Christina

    2017-10-01

    North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s-1 at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s-1) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom-up estimates of 78 000 t of methane for all oil and gas sector sources in British Columbia. Current bottom-up methods for estimating methane emissions do not normally calculate the fraction of emitting oil and gas infrastructure with thorough on-ground measurements. However, this study demonstrates that mobile surveys could provide a more accurate representation of the number of emission sources in an oil and gas development. This study presents the first mobile collection of methane emissions from oil and gas infrastructure in British Columbia, and these results can be used to inform policy development in an era of methane emission reduction efforts.

  5. 33 CFR 127.1501 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1501 General. (a) The... applicable, of Underwriters Laboratories, Inc., Factory Mutual Research Corporation, or other independent...

  6. 33 CFR 127.1501 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1501 General. (a) The... applicable, of Underwriters Laboratories, Inc., Factory Mutual Research Corporation, or other independent...

  7. 40 CFR 98.212 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING Miscellaneous Uses of Carbonate § 98.212 GHGs to report. You must report CO2 process emissions from all miscellaneous carbonate use at your facility as specified in this subpart. ...

  8. 40 CFR 98.212 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Miscellaneous Uses of Carbonate § 98.212 GHGs to report. You must report CO2 process emissions from all miscellaneous carbonate use at your facility as specified in this subpart. ...

  9. 40 CFR 98.212 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Miscellaneous Uses of Carbonate § 98.212 GHGs to report. You must report CO2 process emissions from all miscellaneous carbonate use at your facility as specified in this subpart. ...

  10. 40 CFR 98.212 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING Miscellaneous Uses of Carbonate § 98.212 GHGs to report. You must report CO2 process emissions from all miscellaneous carbonate use at your facility as specified in this subpart. ...

  11. Outer continental shelf oil and gas activities in the Pacific (Southern California) and their onshore impacts: a summary report, May 1980

    USGS Publications Warehouse

    Macpherson, George S.; Bernstein, Janis

    1980-01-01

    Outer Continental Shelf (OCS) oil and gas exploration and development have been under way in the Pacific (Southern California) Region since 1966. During that time, there have been four Federal lease sales: in 1966, 1968, 1975 (Sale 35), and 1979 (Sale 48). Oil and gas production from three leases has been going on since 1968. It peaked in 1971 and now averages around 31,400 barrels of oil and 15.4 million cubic feet of gas per day. Discoveries on areas leased in the 1968 and 1975 sales have led to plans for eight new platforms to begin production in the early 1980's. Five platforms are in the eastern end of Santa Barbara Channel, one is in the western Channel, and two are in San Pedro Bay, south of Long Beach. Three rigs are doing exploratory drilling in the Region. The most recent estimates by the U.S. Geological Survey of remaining reserves for all identified fields in the Southern California Region are 695 million barrels of oil and 1,575 billion cubic feet of gas (January 1979). The USGS has also made risked estimates of economically recoverable oil and gas resources for all the leased tracts in the Region (March 1980). These risked estimates of economically recoverable resources are 394 billion barrels of oil and 1,295 billion cubic feet of gas. The USGS estimates of undiscovered recoverable resources for the entire Southern California OCS Region (January 1980) are 3,200 million barrels of oil and 3,400 billion cubic feet of gas. Because of the long history of oil and gas production in Southern California from wells onshore and in State waters, there are many existing facilities for the transportation, processing, and refining of oil and gas. Some of the expected new OCS production can be accommodated in these facilities. Four new onshore projects will be required. Two of these are under construction: (1) a 9.6-km (6-mi) onshore oil pipeline (capacity: 60,000 bpd) between Carpinteria (Santa Barbara County) and the existing Mobil-Rincon separation and treatment facility (Ventura County), and (2) a small supply base and dock (upgrade of existing facility) and a 0.4-hectare (1-acre) crude oil distribution facility in Long Beach (Los Angeles County), connected to landfall by a 3-km (1.8-mi) onshore pipeline. The two other facilities are awaiting permit approval: (1) a gas treatment plant at Las Flores Canyon (Santa Barbara County) and (2) a separation and treatment plant at Mandalay Beach (Ventura County) with 4 km (2.5 mi) of onshore pipeline on the same right-of-way from landfall to the plant and from the plant to an existing gas transmission line.

  12. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galowitz, Stephen

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven andmore » reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh's of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.« less

  13. Commercial-scale demonstration of the Liquid Phase Methanol process. Technical progress report number 8, April 1--June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less

  14. 33 CFR 127.601 - Fire equipment: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...

  15. 33 CFR 127.601 - Fire equipment: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...

  16. Title I preliminary engineering for: A. S. E. F. solid waste to methane gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1976-01-01

    An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec.more » 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.« less

  17. Real options valuation and optimization of energy assets

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew

    In this thesis we present algorithms for the valuation and optimal operation of natural gas storage facilities, hydro-electric power plants and thermal power generators in competitive markets. Real options theory is used to derive nonlinear partial-integro-differential equations (PIDEs) for the valuation and optimal operating strategies of all types of facilities. The equations are designed to incorporate a wide class of spot price models that can exhibit the same time-dependent, mean-reverting dynamics and price spikes as those observed in most energy markets. Particular attention is paid to the operational characteristics of real energy assets. For natural gas storage facilities these characteristics include: working gas capacities, variable deliverability and injection rates and cycling limitations. For thermal power plants relevant operational characteristics include variable start-up times and costs, control response time lags, minimum generating levels, nonlinear output functions, structural limitations on ramp rates, and minimum up/down time restrictions. For hydro-electric units, head effects and environmental constraints are addressed. We illustrate the models with numerical examples of a gas storage facility, a hydro-electric pump storage facility and a thermal power plant. This PIDE framework is the first in the literature to achieve second order accuracy in characterizing the operating states of hydro-electric and hydro-thermal power plants. The continuous state space representation derived in this thesis can therefore achieve far greater realism in terms of operating state specification than any other method in the literature to date. This thesis is also the first and only to allow for any continuous time jump diffusion processes in order to account for price spikes.

  18. 40 CFR 98.310 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...

  19. 40 CFR 98.310 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...

  20. 40 CFR 98.310 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...

  1. 40 CFR 98.310 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...

  2. 40 CFR 98.310 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...

  3. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  4. A geographical assessment of vegetation carbon stocks and greenhouse gas emissions on potential microalgae-based biofuel facilities in the United States.

    PubMed

    Quiroz Arita, Carlos; Yilmaz, Özge; Barlak, Semin; Catton, Kimberly B; Quinn, Jason C; Bradley, Thomas H

    2016-12-01

    The microalgae biofuels life cycle assessments (LCA) present in the literature have excluded the effects of direct land use change (DLUC) from facility construction under the assumption that DLUC effects are negligible. This study seeks to model the greenhouse gas (GHG) emissions of microalgae biofuels including DLUC by quantifying the CO 2 equivalence of carbon released to the atmosphere through the construction of microalgae facilities. The locations and types of biomass and Soil Organic Carbon that are disturbed through microalgae cultivation facility construction are quantified using geographical models of microalgae productivity potential including consideration of land availability. The results of this study demonstrate that previous LCA of microalgae to biofuel processes have overestimated GHG benefits of microalgae-based biofuels production by failing to include the effect of DLUC. Previous estimations of microalgae biofuel production potential have correspondingly overestimated the volume of biofuels that can be produced in compliance with U.S. environmental goals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Gas Generation Testing of Spherical Resorcinol-Formaldehyde (sRF) Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colburn, Heather A.; Bryan, Samuel A.; Camaioni, Donald M.

    This report describes gas generation testing of the spherical resorcinol-formaldehyde (sRF) resin that was conducted to support the technology maturation of the LAWPS facility. The current safety basis for the LAWPS facility is based primarily on two studies that had limited or inconclusive data sets. The two studies indicated a 40% increase in hydrogen generation rate of water (as predicted by the Hu model) with sRF resin over water alone. However, the previous studies did not test the range of conditions (process fluids and temperatures) that are expected in the LAWPS facility. Additionally, the previous studies did not obtain replicatemore » test results or comparable liquid-only control samples. All of the testing described in this report, conducted with water, 0.45M nitric acid, and waste simulants with and without sRF resin, returned hydrogen generation rates that are within the current safety basis for the facility of 1.4 times the Hu model output for water.« less

  6. Volatile Organic Compound Emissions from Natural Gas Facilities in the Denver-Julesburg Basin, the Uintah Basin and the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Li, X.; Omara, M.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    Natural gas has been widely considered as a "bridge" fuel in the future. Because of the rapid advancement of horizontal drilling and hydraulic fracturing techniques, the production of crude oil and natural gas in US increased dramatically in recent years; and currently natural gas contributes to about 25% of total US energy consumption. Recent studies suggest that shale gas extraction facilities may emit Volatile Organic Compounds (VOCs), which could contribute to the formation of ozone and affect regional air quality, public health and climate change. In this study we visited 37 natural gas facilities in Denver-Julesburg and Uintah Basins from March to May, 2015. VOCs and methane concentrations were measured downwind of individual facilities with our mobile lab. In total 13 VOCs, including benzene and toluene, were measured by a SRI 8610C Gas Chromatograph. Similar measurements will be conducted in the Marcellus Shale in late August 2015. Preliminary results show that VOC emissions from individual shale gas facilities are variable, which suggests that a single VOC profile may not characterize all natural gas production facilities, though there may be some common characteristics. Measured VOC concentrations will be normalized to concurrently-measured methane emissions, and coupled with methane emission rates measured at these facilities, used to obtain VOC emission factors from natural gas production. This presentation will also compare VOC emission rates from the Marcellus shale with that from the Denver-Julesburg and Uintah basins.

  7. 33 CFR 127.205 - Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...

  8. 33 CFR 127.205 - Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.205 Emergency shutdown. Each transfer... automatically when the fixed sensors under § 127.201(b) measure LNG concentrations exceeding 40% of the lower...

  9. 33 CFR 127.311 - Motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The operator... storage tank or loading flange. (b) During transfer operations, no person may— (1) Stop or park a motor...

  10. 33 CFR 127.1315 - Preliminary transfer inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1315 Preliminary... capacity of each storage tank to or from which LHG will be transferred, to ensure that it is safe for...

  11. 33 CFR 127.315 - Preliminary transfer inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.315 Preliminary transfer... parts; (b) For each of the vessel's cargo tanks from which cargo will be transferred, note the pressure...

  12. Greenhouse gas emissions from alternative water supply processes in southern California, USA

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Townsend-Small, A.

    2012-12-01

    Burgeoning population centers and declining hydrological resources have encouraged the development of alternative water treatment systems, including desalination and wastewater recycling. These processes currently provide potable water for millions of people and assist in satisfying agricultural and landscaping irrigation demands. There are a variety of alternative water production methods in place, and while they help to reduce the demands placed on aquifers, during their operation they are also significant sources of greenhouse gases. The environmental advantages of these alternative water production methods need to be carefully weighed against their energy footprints and greenhouse gas emissions profiles. This study measured the greenhouse gas emissions of a wastewater treatment and recycling facility in Orange County, California to get a more complete picture of the carbon footprint of the plant. We measured atmospheric emissions of CO2, CH4, and N2O throughout the water recycling process and at various times of the day and week. This allowed us to assemble a thorough, cross-sectional profile of greenhouse gas emissions from the facility. We then compared the measured emissions of the treatment plant to the modeled emissions of desalination plants in order to assess the relative carbon footprints of the two water production methods. Other water supply alternatives, including regional water importation, were also included in the comparison in order to provide a more complete understanding of the potential greenhouse gas emissions. Finally, we assessed the significance of wastewater treatment as an urban greenhouse gas source when compared to other known emissions in the region. This research offers a valuable tool for sustainable urban and regional development by providing planners with a quantified comparison of the carbon footprints of several water production options.

  13. Risk Analysis using Corrosion Rate Parameter on Gas Transmission Pipeline

    NASA Astrophysics Data System (ADS)

    Sasikirono, B.; Kim, S. J.; Haryadi, G. D.; Huda, A.

    2017-05-01

    In the oil and gas industry, the pipeline is a major component in the transmission and distribution process of oil and gas. Oil and gas distribution process sometimes performed past the pipeline across the various types of environmental conditions. Therefore, in the transmission and distribution process of oil and gas, a pipeline should operate safely so that it does not harm the surrounding environment. Corrosion is still a major cause of failure in some components of the equipment in a production facility. In pipeline systems, corrosion can cause failures in the wall and damage to the pipeline. Therefore it takes care and periodic inspections or checks on the pipeline system. Every production facility in an industry has a level of risk for damage which is a result of the opportunities and consequences of damage caused. The purpose of this research is to analyze the level of risk of 20-inch Natural Gas Transmission Pipeline using Risk-based inspection semi-quantitative based on API 581 associated with the likelihood of failure and the consequences of the failure of a component of the equipment. Then the result is used to determine the next inspection plans. Nine pipeline components were observed, such as a straight pipes inlet, connection tee, and straight pipes outlet. The risk assessment level of the nine pipeline’s components is presented in a risk matrix. The risk level of components is examined at medium risk levels. The failure mechanism that is used in this research is the mechanism of thinning. Based on the results of corrosion rate calculation, remaining pipeline components age can be obtained, so the remaining lifetime of pipeline components are known. The calculation of remaining lifetime obtained and the results vary for each component. Next step is planning the inspection of pipeline components by NDT external methods.

  14. Impact of Methane Leak Detection and Repair Programs: Determining Pre- and Post-Survey Emissions Profiles

    NASA Astrophysics Data System (ADS)

    Roda-Stuart, D. J.; Ravikumar, A. P.; Brandt, A. R.

    2017-12-01

    Upstream production sites contribute 66 percent of methane emissions from natural gas systems [1]. Being a major greenhouse gas, many states and national governments are developing policies to reduce methane emissions. Recent policies to address this issue have focused on periodic leak detection and repair (LDAR) surveys at oil and gas facilities [2]. Development of effective LDAR surveys is complicated by two things. First, available empirical data makes it difficult to say anything definitive about which facilities or equipment are most prone to leakage. Second, there has been little research done on post-LDAR emissions profiles and the time evolution of leaks, two measures that would influence survey effectiveness and cost. In this work, we present data from LDAR operations conducted at upstream facilities of a Canadian natural gas producer. Surveys were done by an outside contractor using a FLIR optical gas imaging camera. Twenty-two well pads, five processing plants, and three compressor stations were surveyed, of which four, two, and one, respectively, were revisited. We examine the persistence of leaks over time periods ranging from 6 months to 15 months following the initial LDAR survey. Developing pre- and post-survey emission factors and distributions can help inform survey schedules and help update and monitor mitigation targets. Furthermore, we analyze the effect of weather conditions, survey frequency, and operational characteristics of equipment on the effectiveness of the LDAR program. For instance, we find that a survey done at the commissioning of a gas processing plant yields both safety and emissions reduction benefits. Using leak frequency distributions, we identify components and equipment that require more frequent and targeted surveying. Insights from this study can assist businesses and policy makers develop methane mitigation policies aimed at maximizing the marginal benefits of LDAR programs. [1] Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015. US Environmental Protection Agency, 2017. [2] New Source Performance Standards; Oil and Natural Gas Sector: Emission Standards for New, Reconstructed, and Modified Sources. Federal Register, 81(107):35824-35942, 2016.

  15. A low tritium hydride bed inventory estimation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J.E.; Shanahan, K.L.; Baker, R.A.

    2015-03-15

    Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. Themore » first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.« less

  16. Operation reliability analysis of independent power plants of gas-transmission system distant production facilities

    NASA Astrophysics Data System (ADS)

    Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.

    2015-01-01

    The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.

  17. New LNG process scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foglietta, J.H.

    1999-07-01

    A new LNG cycle has been developed for base load liquefaction facilities. This new design offers a different technical and economical solution comparing in efficiency with the classical technologies. The new LNG scheme could offer attractive business opportunities to oil and gas companies that are trying to find paths to monetize gas sources more effectively; particularly for remote or offshore locations where smaller scale LNG facilities might be applicable. This design offers also an alternative route to classic LNG projects, as well as alternative fuel sources. Conceived to offer simplicity and access to industry standard equipment, This design is amore » hybrid result of combining a standard refrigeration system and turboexpander technology.« less

  18. 76 FR 64010 - Special Rules Governing Certain Information Obtained Under the Clean Air Act: Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... natural gas. 211112 Natural gas liquid extraction facilities. Petrochemical Production 32511 Ethylene.... Suppliers of Natural Gas and NGLs 221210 Natural gas distribution facilities. 211112 Natural gas liquid... Gas Reporting Rule, which are provided in the Special Rules Governing Certain Information Obtained...

  19. Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin.

    PubMed

    Lavoie, Tegan N; Shepson, Paul B; Cambaliza, Maria O L; Stirm, Brian H; Karion, Anna; Sweeney, Colm; Yacovitch, Tara I; Herndon, Scott C; Lan, Xin; Lyon, David

    2015-07-07

    We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2-5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr(-1), roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2-4.6 times larger than emissions based on the national study. Results from this study were used to represent "super-emitters" in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of "super-emitters" that may be missed by random sampling of a subset of the total.

  20. CO{sub 2} Reuse in Petrochemical Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Trembly; Brian Turk; Maruthi Pavani

    2010-12-31

    To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals andmore » fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that demonstrated equal or better performance than that of commercial methanation catalysts. The Cat-1 and Cat-3 formulations were successfully scaled up using commercial manufacturing equipment at the Sud-Chemie Inc. pilot-plant facility in Louisville, KY. Pilot transport reactor testing with RTI's Cat-1 formulation at Kellog Brown & Root's Technology Center demonstrated the ability of the process to achieve high single-pass CO{sub 2} conversion. Using information acquired from bench- and pilot-scale testing, a basic engineering design package was prepared for a 4-ton/day CO{sub 2} pilot demonstration unit, including process and instrumentation diagrams, equipment list, control philosophy, and preliminary cost estimate.« less

  1. 33 CFR 127.1205 - Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...

  2. 33 CFR 127.1205 - Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...

  3. St. Fergus terminal gets turboexpanders for critical service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillard, J.K.; Nicol, G.

    1994-09-05

    To expand the St. Fergus gas-reception terminal for the Scottish Area Gas Evacuation (SAGE) system, Mobil North Sea Ltd. is adding a second separation train and two treatment trains. To meet pipeline-gas specifications over a wide range of low rates and feed-gas compositions, single-stage turboexpander chilling was selected over Joule-Thomson valve expansion. Four turboexpanders (two per process train) will operate in parallel to achieve the required performance over the entire flow range of 90--575 MMscfd per process train. Unusual operating conditions for the turboexpanders include dense-phase inlet gas, expansion near the cricondenbar, and high equilibrium liquid content at the exhaustmore » (up to 50 wt %). The two turboexpanders in each train share common suction and discharge facilities as do their associated brake compressor. Details of the more than 400 million pounds Sterling Phase B discussed here include commissioning, start-up, and operation.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. L. Abbott; K. N. Keck; R. E. Schindler

    This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidifymore » (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.« less

  5. Past, Present, and Future Capabilities of the Transonic Dynamics Tunnel from an Aeroelasticity Perspective

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Garcia, Jerry L.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.

  6. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 6, October 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coalmore » gasifiers. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology will be integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading. An off-site product testing program will be conducted to demonstrate the suitability of the methanol product as a transportation fuel and as a fuel for stationary applications for small modular electric power generators for distributed power.« less

  7. 76 FR 14812 - Final Regulation Extending the Reporting Deadline for Year 2010 Data Elements Required Under the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    .... Suppliers of Natural Gas and 221210 Natural gas Natural Gas Liquids. distribution facilities. 211112 Natural gas liquid extraction facilities. Suppliers of Industrial 325120 Industrial gas Greenhouse Gases..., 75 FR Natural Gas Liquids. 66434, 75 FR 79092. Suppliers of Industrial OO 74 FR 56260, 75 FR...

  8. Development of a tritium recovery system from CANDU tritium removal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consistsmore » of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)« less

  9. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  10. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE PAGES

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...

    2017-12-04

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  11. 40 CFR 125.133 - What special definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Subcategories of the Oil and Gas Extraction Point Source Category Effluent Guidelines in 40 CFR 435.10 or 40 CFR..., floating, mobile, facility engaged in the processing of fresh, frozen, canned, smoked, salted or pickled...

  12. 77 FR 33363 - Approval and Promulgation of Implementation Plans; Kentucky; Approval of Revisions to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... facilities that produce ethanol through a natural fermentation process from the definition of ``chemical..., modeling and attainment demonstrations, NSR, and the impact to reformulated gas for the 1997 8- hour ozone...

  13. Measurement of gas and aerosol agricultural emissions

    USDA-ARS?s Scientific Manuscript database

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  14. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processedmore » into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.« less

  15. Autocatalytic Pyrolysis of Wastewater Biosolids for Product Upgrading.

    PubMed

    Liu, Zhongzhe; McNamara, Patrick; Zitomer, Daniel

    2017-09-05

    The main goals for sustainable water resource recovery include maximizing energy generation, minimizing adverse environmental impacts, and recovering beneficial resources. Wastewater biosolids pyrolysis is a promising technology that could help facilities reach these goals because it produces biochar that is a valuable soil amendment as well as bio-oil and pyrolysis gas (py-gas) that can be used for energy. The raw bio-oil, however, is corrosive; therefore, employing it as fuel is challenging using standard equipment. A novel pyrolysis process using wastewater biosolids-derived biochar (WB-biochar) as a catalyst was investigated to decrease bio-oil and increase py-gas yield for easier energy recovery. WB-biochar catalyst increased the py-gas yield nearly 2-fold, while decreasing bio-oil production. The catalyzed bio-oil also contained fewer constituents based on GC-MS and GC-FID analyses. The energy shifted from bio-oil to py-gas, indicating the potential for easier on-site energy recovery using the relatively clean py-gas. The metals contained in wastewater biosolids played an important role in upgrading pyrolysis products. The Ca and Fe in WB-biochar reduced bio-oil yield and increased py-gas yield. The py-gas energy increase may be especially useful at water resource recovery facilities that already combust anaerobic digester biogas for energy since it may be possible to blend biogas and py-gas for combined use.

  16. Phased Demolition of an Occupied Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brede, Lawrence M.; Lauterbach, Merl J.; Witt, Brandon W.

    2008-01-15

    The U.S. government constructed the K-1401 facility in the late 1940's as a support building for various projects supporting the uranium gaseous diffusion process. In 2004 the U.S. Department of Energy authorized Bechtel Jacobs Company, LLC (BJC) to decontaminate and demolish the facility. The K-1401 facility was used for a variety of industrial purposes supporting the gaseous diffusion process. Many different substances were used to support these processes over the years and as a result different parts of the facility were contaminated with fluorine, chlorine trifluoride, uranium and technetium radiological contamination, asbestos, and mercury. The total facility area is 46,015more » m{sup 2} (495,000 sf) including a 6,800 m{sup 2} basement (73,200 sf). In addition to the contamination areas in the facility, a large portion was leased to businesses for re-industrialization when the D and D activities began. The work scope associated with the facility included purging and steam cleaning the former fluorine and chlorine trifluoride systems, decontaminating loose radiologically contaminated and mercury spill areas, dismantling former radiological lines contaminated with uranium oxide compounds and technetium, abating all asbestos containing material, and demolishing the facility. These various situations contributed to the challenge of successfully conducting D and D tasks on the facility. In order to efficiently utilize the work force, demolition equipment, and waste hauling trucks the normal approach of decontaminating the facility of the hazardous materials, and then conducting demolition in series required a project schedule of five years, which is not cost effective. The entire project was planned with continuous demolition as the goal end state. As a result, the first activities, Phase 1, required to prepare sections for demolition, including steam cleaning fluorine and chlorine trifluoride process lines in basement and facility asbestos abatement, were conducted while the tenants who were leasing floor space in the facility moved out. Upon completion of this phase the facility was turned over to the demolition project and the most hazardous materials were removed from the facility. Phase 2 activities included removing the process gas lines from sections C/D/E while decontaminating and preparing sections A and B for demolition. Demolition preparation activities include removing transit siding and universal waste from the area. Phase 3 began with demolition activities in sections A and B1 while continuing process gas line removal from sections C/D/E, as well as conducting demolition preparation activities to these sections. Area B was split into two sections, allowing demolition activities to occur in section B1 while personnel could still access the upper floor in sections C, D, and E. Once demolition began in section B2, personnel entry was only authorized in the basement. This timeline initiated phase 4, and the project completed cleaning the process components from the basement while section B2 demolition began. The final phase, phase 5, began once the basement was cleared. Final demolition activities began on sections C, D, E, and the basement. This material will ship for disposal and is scheduled for completion during FY07. Because the project was able to successfully phase demolition activities, the total facility demolition schedule was reduced by half to 2-1/2 years. The project was able to move portions of the demolition schedule from working in series to working in parallel, allowing the job to deliver facility demolition debris to ship for disposal 'just in time' as the facility was demolished.« less

  17. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending.

    PubMed

    Kim, Yeon Hoo; Kim, Sang Jin; Kim, Yong-Jin; Shim, Yeong-Seok; Kim, Soo Young; Hong, Byung Hee; Jang, Ho Won

    2015-10-27

    Graphene is considered as one of leading candidates for gas sensor applications in the Internet of Things owing to its unique properties such as high sensitivity to gas adsorption, transparency, and flexibility. We present self-activated operation of all graphene gas sensors with high transparency and flexibility. The all-graphene gas sensors which consist of graphene for both sensor electrodes and active sensing area exhibit highly sensitive, selective, and reversible responses to NO2 without external heating. The sensors show reliable operation under high humidity conditions and bending strain. In addition to these remarkable device performances, the significantly facile fabrication process enlarges the potential of the all-graphene gas sensors for use in the Internet of Things and wearable electronics.

  18. 78 FR 18970 - Trunkline LNG Company, LLC; Trunkline LNG Export, LLC; Trunkline Gas Company, LLC; Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... include plans to construct and modify certain pipeline facilities to supply natural gas to the..., Louisiana to supply natural gas to the liquefaction facility from existing gas transmission pipelines... greenfield natural gas pipeline (Mainline Connector) in Jefferson Davis and Calcasieu Parishes, Louisiana...

  19. 78 FR 53493 - Presidential Permits: NOVA Chemicals Inc. Line 20 Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... natural gas liquids from the United States to Ontario, Canada. The Line 20 facilities were constructed in 1986 and operated most recently by another entity for the transport of natural gas pursuant to a..., for the export of natural gas liquids from the United States to Canada. The term ``facilities'' as...

  20. KSC-2011-4958

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla., -- Workers transport NASA's Juno spacecraft from Astrotech's Payload Processing Facility in Titusville, Fla., to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  1. KSC-2011-4956

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla., -- Workers transport NASA's Juno spacecraft from Astrotech's Payload Processing Facility in Titusville, Fla., to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  2. KSC-2011-4954

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- Workers prepare to transport NASA's Juno spacecraft from Astrotech's Payload Processing Facility in Titusville, Fla., to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  3. KSC-2011-4957

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla., -- Workers transport NASA's Juno spacecraft from Astrotech's Payload Processing Facility in Titusville, Fla., to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  4. KSC-2011-4955

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla., -- Workers transport NASA's Juno spacecraft from Astrotech's Payload Processing Facility in Titusville, Fla., to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  5. 40 CFR 60.5415 - How do I demonstrate continuous compliance with the standards for my gas well affected facility...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... plants? 60.5415 Section 60.5415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR..., and unavoidable failure of air pollution control equipment, process equipment, or a process to operate... control systems were kept in operation if at all possible, consistent with safety and good air pollution...

  6. East Kalimantan project recovers 200 MMscfd of associated gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nacouz, E.

    1984-02-06

    Bekapai and Handil fields were discovered in 1972 and 1974 and in the Mahakam offshore Permit, East Kalimantan (Fig. 1). They are operated by Total Indonesie in association with Inpex under a production sharing contract with Pertamina. Oil production of the fields is about 200,000 b/d. Associated gas, until the construction of the facilities described here, were flared. Associated gas production is about 200 MMscfd. The Bekapai field is 40 km offshore in 35 m of water. The Handil field, located in the delta of the Mahakam, has a gathering system and platformmounted central process area. After a first stagemore » of separation at the Bekapai production platform and the central process area of Handil, the production of both fields is sent through pipelines to Senipah terminal onshore for final separation, processing, and storage before shipment.« less

  7. Programs for calculating the explosion resistance of buildings and structures

    NASA Astrophysics Data System (ADS)

    Shevchenko, Nikita; Manucharyan, Rachik; Gravit, Marina; Geraskin, Yuriy

    2017-10-01

    Trends in the development of the oil and gas processing industry and facilities using liquefied hydrocarbon gases in the technological processes lead to an increase in the number of emergency situations and as a result to the increase of the damage and environmental degradation. A gasified housing stock is a special group of explosive objects. The accident in such disasters lead to hundreds of human victims. The main danger of explosive effects on objects can lead to a large-scale destruction connected with an “internal explosion”. It results in the release of combustible substances (gas, oil, etc.) into enclosed or semi-enclosed rooms (modules) with the ignition (in explosion mode of deflagration or detonation) of air gas mixtures (AGM).

  8. New Zealand GTG plant more than halfway home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pine, M.

    The 76 preassembled modules making up the New Zealand Synthetic Fuels Corporation natural gas-to-gasoline (GTG) plant will be an operating plant by 1986. The plant will produce 14,400 barrels per day, about a third of the country's gasoline needs. The project is a good example of cooperation between a government and a multinational corporation in which Mobil is a 25% partner with the New Zealand government. With a commitment for about 16% of the gas reserves in the Maui field, the facility will first convert the gas to methanol using a standard commercial process, then convert the methanol to gasolinemore » by a unique Mobil process that uses a zeolite catalyst. 1 figure.« less

  9. Gas-to-gasoline plant half complete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, B.

    New Zealand has reached the midpoint in construction of the world's first commercial natural gas-to-gasoline (GTG) plant. Plans call for mid-1985 mechanical completion of the $1.475 billion GTG project in Motunui; limited production would begin by year-end 1985 with the plant fully on-stream by 1986, yielding about 628,000 tons (570,000 metric tons)/yr or about 14,450 bbl/stream-day of high-octane, low-sulfur gasoline. The process configuration combines for the first time on a commercial scale the ICI low-pressure gas-to-methanol scheme with Mobil's fixed bed zeolite catalyst process for converting methanol to gasoline. The GTG plant will be the world's biggest methanol plant andmore » New Zealand's largest grassroots industrial facility.« less

  10. Life sciences space station planning document: A reference payload for the exobiology research facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Cosmic Dust Collection and Gas Grain Simulation Facilities represent collaborative efforts between the Life Sciences and Solar System Exploration Divisions designed to strengthen a natural exobiology/Planetary Sciences connection. The Cosmic Dust Collection Facility is a Planetary Science facility, with Exobiology a primary user. Conversely, the Gas Grain Facility is an exobiology facility, with Planetary Science a primary user. Requirements for the construction and operation of the two facilities, contained herein, were developed through joint workshops between the two disciplines, as were representative experiments comprising the reference payloads. In the case of the Gas Grain Simulation Facility, the astrophysics Division is an additional potential user, having participated in the workshop to select experiments and define requirements.

  11. TSTA Piping and Flame Arrestor Operating Experience Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee C.; Willms, R. Scott

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility operated from 1984 to 2001, running a prototype fusion fuel processing loop with ~100 grams of tritium as well as small experiments. There have been several operating experience reports written on this facility’s operation and maintenance experience. This paper describes analysis of two additional components from TSTA, small diameter gas piping that handled small amounts of tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The operating experiences andmore » the component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.« less

  12. 78 FR 56687 - Texas Gas Transmission, LLC; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... based upon the suitability for future transportation of natural gas liquids. Texas Gas states it has... facilities and that Bluegrass would convert the abandoned facilities to natural gas liquids (NGL... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-485-000] Texas Gas...

  13. 78 FR 17157 - Approval of Air Quality Implementation Plans; Indiana; Disapproval of State Implementation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... as fuel, along with coke oven gas and natural gas, in the facility's blast furnace stoves, power... boilers operate on a combination of blast furnace gas, coke oven gas, and natural gas, their full... would remove the SO 2 emission limit for the blast furnace gas flare at the facility. For the reasons...

  14. 78 FR 1851 - Sabine Pass Liquefaction, LLC and Sabine Pass LNG, L.P.; Notice of Intent To Prepare an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... gas liquids (NGL) truck loading facilities. A Project location map depicting the proposed facilities..., metering and send-out facilities; four gas pipeline meter stations; additional workspaces, laydown and... project is further developed. On natural gas projects, the APE at a minimum encompasses all areas subject...

  15. 40 CFR 60.330 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Performance for Stationary Gas Turbines § 60.330 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines...

  16. 40 CFR 60.330 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for Stationary Gas Turbines § 60.330 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines...

  17. 40 CFR 60.330 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Stationary Gas Turbines § 60.330 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines...

  18. 40 CFR 60.330 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Stationary Gas Turbines § 60.330 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines...

  19. 40 CFR 60.330 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Performance for Stationary Gas Turbines § 60.330 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines...

  20. Hynol Process Engineering: Process Configuration, Site Plan, and Equipment Design

    DTIC Science & Technology

    1996-02-01

    feed stock. Compared with other methanol production processes, direct emissions of carbon dioxide can be substantially reduced by using the Hynol...A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the ...Hynol process. The plant is being designed to convert 50 lb./hr of biomass to methanol. The biomass consists of wood, and natural gas is used as a co

  1. Towards Understanding the Impact of Production Techniques and Regulations on Widely Varying Methane Emission Rates in Western Basins

    NASA Astrophysics Data System (ADS)

    Robertson, A.; Edie, R.; Soltis, J.; Field, R. A.; Murphy, S. M.

    2017-12-01

    Recent airborne and mobile lab-based studies by our group and others have demonstrated that production-normalized emission rates of methane can vary dramatically between different Western basins. Three oil and gas basins that are geographically near one another and have relatively similar production characteristics (all three basins produce a mix of natural gas and condensate) have starkly different production-normalized methane emission rates at both the facility and basin-wide levels. This presentation will review previously published data on methane emissions from these basins (Denver Julesburg, Uintah, and Upper Green River) and present new measurement work supporting and expanding upon previous estimates. Beyond this, we use facility level data emissions data combined with information about the date of last upgrade to determine what impact regulations have had on methane emission rates from facilities within the basins. We also investigate what impact different approaches to production may have, in particular the role of having many individual wells processed at a central facility with high throughput is analyzed in terms of its impact on methane emissions.

  2. Towards Understanding the Impact of Production Techniques and Regulations on Widely Varying Methane Emission Rates in Western Basins

    NASA Astrophysics Data System (ADS)

    Regayre, L. A.; Johnson, J. S.; Yoshioka, M.; Pringle, K.; Sexton, D.; Booth, B.; Mann, G.; Lee, L.; Bellouin, N.; Lister, G. M. S.; Johnson, C.; Johnson, B. T.; Mollard, J.; Carslaw, K. S.

    2016-12-01

    Recent airborne and mobile lab-based studies by our group and others have demonstrated that production-normalized emission rates of methane can vary dramatically between different Western basins. Three oil and gas basins that are geographically near one another and have relatively similar production characteristics (all three basins produce a mix of natural gas and condensate) have starkly different production-normalized methane emission rates at both the facility and basin-wide levels. This presentation will review previously published data on methane emissions from these basins (Denver Julesburg, Uintah, and Upper Green River) and present new measurement work supporting and expanding upon previous estimates. Beyond this, we use facility level data emissions data combined with information about the date of last upgrade to determine what impact regulations have had on methane emission rates from facilities within the basins. We also investigate what impact different approaches to production may have, in particular the role of having many individual wells processed at a central facility with high throughput is analyzed in terms of its impact on methane emissions.

  3. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants.

    PubMed

    Monteith, Hugh D; Sahely, Halla R; MacLean, Heather L; Bagley, David M

    2005-01-01

    Municipal wastewater treatment may lead to the emission of greenhouse gases. The current Intergovenmental Panel on Climate Change (Geneva, Switzerland) approach attributes only methane emissions to wastewater treatment, but this approach may overestimate greenhouse gas emissions from the highly aerobic processes primarily used in North America. To better estimate greenhouse gas emissions, a procedure is developed that can be used either with plant-specific data or more general regional data. The procedure was evaluated using full-scale data from 16 Canadian wastewater treatment facilities and then applied to all 10 Canadian provinces. The principal greenhouse gas emitted from municipal wastewater treatment plants was estimated to be carbon dioxide (CO2), with very little methane expected. The emission rates ranged from 0.005 kg CO2-equivalent/m3 treated for primary treatment facilities to 0.26 kg CO2-equivalent/m3 for conventional activated sludge, with anaerobic sludge digestion to over 0.8 kg CO2-equivalent/m3 for extended aeration with aerobic digestion. Increasing the effectiveness of biogas generation and use will decrease the greenhouse gas emissions that may be assigned to the wastewater treatment plant.

  4. Application of computational methods to analyse and investigate physical and chemical processes of high-temperature mineralizing of condensed substances in gas stream

    NASA Astrophysics Data System (ADS)

    Markelov, A. Y.; Shiryaevskii, V. L.; Kudrinskiy, A. A.; Anpilov, S. V.; Bobrakov, A. N.

    2017-11-01

    A computational method of analysis of physical and chemical processes of high-temperature mineralizing of low-level radioactive waste in gas stream in the process of plasma treatment of radioactive waste in shaft furnaces was introduced. It was shown that the thermodynamic simulation method allows fairly adequately describing the changes in the composition of the pyrogas withdrawn from the shaft furnace at different waste treatment regimes. This offers a possibility of developing environmentally and economically viable technologies and small-sized low-cost facilities for plasma treatment of radioactive waste to be applied at currently operating nuclear power plants.

  5. Breckinridge Project, initial effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Report V, Volume 4 provides descriptions, data, and drawings pertaining to Instrument and Plant Air Systems (Plant 36), Telecommunication Systems (Plant 37), Inert Gas Systems (Plant 38), Purge and Flush Oil Systems (Plant 39), Site Development and Roads (Plant 40), Buildings (Plant 41), Solid Waste Management (Plant 42), and Landfill (Plant 44). Instrument and Plant Air Systems (Plant 36) includes all equipment and piping necessary to supply instrument and utility air to the process plants and offsite facilities. Telecommunication Systems (Plant 37) includes the equipment and wiring for: communication throughout the facility; communication between plant data processing systems and offsitemore » computing facilities; and communication with transportation carriers. Inert Gas Systems (Plant 38) provides high purity and low purity nitrogen streams for plant startup and normal operation. Purge and Flush Oil Systems (Plant 39) provides purge and flush oils to various plants. Site Development and Roads (Plant 40) provides site leveling, the addition of roads, fencing, and drainage, and the placement of fills, pilings, footings, and foundations for plants. Buildings (Plant 41) provides buildings for equipment and for personnel, including utilities, lighting, sanitary facilities, heating, air conditioning, and ventilation. Solid Waste Management (Plant 42) identifies, characterizes, segregates, and transports the various types of solid wastes to either Landfill (Plant 44) or outside disposal sites. Landfill (Plant 44) provides disposal of both nonhazardous and hazardous solid wastes. Information is included (as applicable) for each of the eight plants described.« less

  6. 18 CFR 157.212 - Synthetic and liquefied natural gas facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... natural gas facilities. 157.212 Section 157.212 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES... 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7...

  7. 18 CFR 157.212 - Synthetic and liquefied natural gas facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... natural gas facilities. 157.212 Section 157.212 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES... 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7...

  8. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  9. 41 CFR 101-26.602-5 - Procurement of natural gas from the wellhead and other supply sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-26.602-5 Procurement of natural gas from the wellhead and other supply sources. (a) Natural gas... natural gas procurements at a facility exceed 20,000 mcf annually and the facility can accept... natural gas shall be forwarded to the Public Utilities Division (PPU), Office of Procurement, General...

  10. 41 CFR 101-26.602-5 - Procurement of natural gas from the wellhead and other supply sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-26.602-5 Procurement of natural gas from the wellhead and other supply sources. (a) Natural gas... natural gas procurements at a facility exceed 20,000 mcf annually and the facility can accept... natural gas shall be forwarded to the Public Utilities Division (PPU), Office of Procurement, General...

  11. Development of a New Fundamental Measuring Technique for the Accurate Measurement of Gas Flowrates by Means of Laser Doppler Anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Krey, E.-A.

    1990-01-01

    In the Physikalisch-Technische Bundesanstalt (PTB), a research test facility for the accurate measurement of gas (volume and mass) flowrates has been set up in the last few years on the basis of a laser Doppler anemometer (LDA) with a view to directly measuring gas flowrates with a relative uncertainty of only 0,1%. To achieve this, it was necessary to develop laser Doppler anemometry into a precision measuring technique and to carry out detailed investigations on stationary low-turbulence nozzle flow. The process-computer controlled test facility covers the flowrate range from 100 to 4000 m3/h (~0,03 - 1,0 m3/s), any flowrate being measured directly, immediately and without staggered arrangement of several flow meters. After the development was completed, several turbine-type gas meters were calibrated and international comparisons carried out. The article surveys the most significant aspects of the work and provides an outlook on future developments with regard to the miniaturization of optical flow and flowrate sensors for industrial applications.

  12. Occidental conserves Libyan gas by reinjection into oil reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozens, E.T.

    1972-04-24

    As a leading producer in the Libyan Arab Republic, Occidental Petroleum Corp. is vitally concerned with conservation of gas produced along with the oil. Important among the manifestations of this concern is the use of residue gas from a processing plant for injection into an oil-producing reservoir. The miscible drive created by the gas will increase ultimate recovery, and the processing plant recovers LP gas and condensate for sale. Following discovery of the 103-A in 1967, Occidental moved quickly to install production equipment and a 40-in. pipeline to Zueitina, 135 miles distant on the Mediterranean. By Feb. 1968, the firstmore » oil was loaded into tankers. Discovery of C and D fields in the 103 concession followed shortly. The three 103 fields plus an original discovery in the 102 concession increased Occidental's oil rate to more than 700,000 bpd by 1970. Facilities in the Intisar A and D fields each consist of a centralized separator system containing 3 stages of separation, plus degassing boots and surge tanks. The terminal at Zueitina includes 8,000,000 bbl of oil storage. The gas processing, the products pipeline, and other aspects of the industrial plant are discussed in detail.« less

  13. Greenhouse Gas Emissions from Educational Facilities and the EPA Greenhouse Gas Reporting Rule: Actions You Need to Take Now

    ERIC Educational Resources Information Center

    Wurmbrand, Mitchell M.; Klotz, Thomas C.

    2010-01-01

    On September 22, 2009, The United States Environmental Protection Agency (EPA) issued its final rule on greenhouse gas (GHG) emission reporting. The informational literature that EPA has published to support the rule clearly states that EPA believes the vast majority of smaller GHG-emitting facilities, such as educational facilities, will not be…

  14. Synthesis and Characterization of CuO Nanodisks for High-Sensitive and Selective Ethanol Gas Sensor Applications.

    PubMed

    Umar, Ahmad; Lee, Jong-Heun; Kumar, Rajesh; Al-Dossary, O

    2017-02-01

    Herein, the fabrication and characterization of highly sensitive and selective ethanol gas sensor based on CuO nanodisks is reported. The CuO nanodisks were synthesized by facile hydrothermal process and detailed characterization revealed the well-crystallinity, high-purity and high density growth of the prepared material. To fabricate the ethanol gas sensor, the prepared nanodisks were coated on alumina substrate. The fabricated sensor exhibited high-sensitivity and the recorded gas response (resistance-ratio), response time (τ res) and recovery time (τ recov) were 6.2, 119 and 35 s, respectively for 100 ppm of C₂H₅OH at 300 °C. Further, the fabricated sensor shows high selectivity towards ethanol gas compared to H₂ and CO gases.

  15. High-sensitivity gas-mapping 3D imager and method of operation

    DOEpatents

    Kreitinger, Aaron; Thorpe, Michael

    2018-05-15

    Measurement apparatuses and methods are disclosed for generating high-precision and -accuracy gas concentration maps that can be overlaid with 3D topographic images by rapidly scanning one or several modulated laser beams with a spatially-encoded transmitter over a scene to build-up imagery. Independent measurements of the topographic target distance and path-integrated gas concentration are combined to yield a map of the path-averaged concentration between the sensor and each point in the image. This type of image is particularly useful for finding localized regions of elevated (or anomalous) gas concentration making it ideal for large-area leak detection and quantification applications including: oil and gas pipeline monitoring, chemical processing facility monitoring, and environmental monitoring.

  16. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 1: Executive summary and overview

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. The first volume includes the executive summary, overview, scientific justification, history, and planned development of the Facility.

  17. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  18. PETC review: Issue 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santore, R.R.; Friedman, S.; Reiss, J.

    1993-12-31

    Since its beginning, Pittsburgh Energy Technology Center`s (PETC) primary function has been to study and conduct research on coal and its uses and applications. PETC has also been investigating ways in which natural gas can be employed to enhance the use of coal and to convert natural gas into liquid products that can be more readily transported and stored. This review contains five articles which reflect PETC`s mission: State-of-the-Art High Performance Power Systems [HIPPS]; Unconventional Fuel Uses of Natural Gas; Micronized Magnetite -- Beneficiation and Benefits; Reburning for NO{sub x} Reduction; and An Update of PETC`s Process Research Facility.

  19. Enhance gas processing with reflux heat-exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, A.J.

    1994-05-01

    Despite recent successes of membrane-based separations in low-throughput applications, cryogenic processing remains the best route for separating and purifying gas mixtures, especially when high recoveries are required. Now conventional units are being modified to yield even higher recoveries at lower costs. Throughout the chemical process industries (CPI), this is being accomplished with reflux or plate-fin exchangers, especially for processing of natural gas, and offgases from refineries and petrochemical facilities. The concept of utilizing a heat exchanger as a multi stage rectification device is not new. However, only in the last fifteen years or so has accurate design of reflux exchangersmore » become feasible. Also helpful have been the availability of prediction techniques for high-quality thermodynamic data, and process simulators that can rapidly solve the complex material, equilibrium and enthalpy relationships involved in simulating the performance of reflux exchangers. Four projects that show the value and effectiveness of reflux exchangers are discussed below in more detail. The first example considers hydrogen recovery from demethanizer overheads; the second highlights a low energy process for NGL and LPG recovery from natural gas. The third is a simple process for recovery of ethylene from fluid-catalytic cracker (FCC) offgas; and the fourth is a similar process for olefin recovery from dehydrogenation-reactor offgas.« less

  20. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing

    NASA Technical Reports Server (NTRS)

    Yim, John T.; Burt, Jonathan M.

    2015-01-01

    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  1. 40 CFR 98.350 - Definition of source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment § 98.350 Definition of source category. (a) This source category consists of anaerobic processes used to treat industrial wastewater and industrial wastewater treatment sludge at facilities that perform the operations listed in this paragraph. (1...

  2. 40 CFR 98.350 - Definition of source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment § 98.350 Definition of source category. (a) This source category consists of anaerobic processes used to treat industrial wastewater and industrial wastewater treatment sludge at facilities that perform the operations listed in this paragraph. (1...

  3. 40 CFR 98.350 - Definition of source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment § 98.350 Definition of source category. (a) This source category consists of anaerobic processes used to treat industrial wastewater and industrial wastewater treatment sludge at facilities that perform the operations listed in this paragraph. (1...

  4. 40 CFR 98.350 - Definition of source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment § 98.350 Definition of source category. (a) This source category consists of anaerobic processes used to treat industrial wastewater and industrial wastewater treatment sludge at facilities that perform the operations listed in this paragraph. (1...

  5. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in Orbiter Processing Facility Bay 2. Two Get Away Special (GAS) canisters are shown after their installation into Discovery's payload bay. The GAS payload G-765, in the canister on the left, is sponsored by the Canadian Space Agency and managed by C-CORE/Memorial University of Newfoundland. It is a study to understand the transport of fluids in porous media as it pertains to improving methods for enhanced oil recovery. The GAS canister on the right houses the Space Experiment Module (SEM-05), part of an educational initiative of NASA's Shuttle Small Payloads Project. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  6. 18 CFR 260.9 - Reports by natural gas pipeline companies on service interruptions and damage to facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Reports by natural gas..., NATURAL GAS ACT STATEMENTS AND REPORTS (SCHEDULES) § 260.9 Reports by natural gas pipeline companies on service interruptions and damage to facilities. (a)(1) Every natural gas company must report to the...

  7. Research activity at the shock tube facility at NASA Ames

    NASA Astrophysics Data System (ADS)

    Sharma, Surendra P.

    1992-03-01

    The real gas phenomena dominate the relaxation process occurring in the flow around hypersonic vehicles. The air flow around these vehicles undergoes vibrational excitation, chemical dissociation, and ionization. These chemical and kinetic phenomena absorb energy, change compressibility, cause temperature to fall, and density to rise. In high-altitude, low density environments, the characteristic thicknesses of the shock layers can be smaller than the relaxation distances required for the gas to attain chemical and thermodynamic equilibrium. To determine the effects of chemical nonequilibrium over a realistic hypersonic vehicle, it would be desirable to conduct an experiment in which all aspects of fluid flow are simulated. Such an experiment is extremely difficult to setup. The only practical alternative is to develop a theoretical model of the phenomena and to compute the flow around the vehicle including the chemical nonequilibrium, and compare the results with the experiments conducted in the facilities under conditions where only a portion of the flow phenomena is simulated. Three types of experimental data are needed to assist the aerospace community in this model development process: (1) data which will enhance our phenomenological understanding of the relaxation process, (2) data on rate reactions for the relevant reactions, and (3) data on bulk properties, such as spectral radiation emitted by the gas, for a given set of aerodynamic conditions. NASA Ames is in a process of collecting such data by simulating the required aerothermochemical conditions in an electric arc driven shock tube.

  8. Chemical technology for the toxic gas flow control through process water system.

    PubMed

    Broussard, G; Bramanti, O; Salvatore, A; Marchese, F M

    2001-01-01

    The aim of this work is focused on the safety and toxicological aspects due to under-pressure industrial plant management, above all in the case which the gas is very dangerous for human health and environment. Here is illustrated the safe method of control of risks through specific choices of engineering devices and chemical process: in this way we have shown the mathematical calculation regarding the case of ammonia flow gas running in the piping and plant under-pressure. In this paper the Authors show the assessment of the technological solution for falling down of a toxic gas as NH3, which lets off from safety values facilities. The under pressure industrial plants with ammonia are protected through the safety valves, settled at 20 bar pressure. The out-let gas flow is capted by a tank of a water bulk of five time theoretical water amount necessary to the complete absorption of gas. In order to prevent any health risk and carry out a safety management, it needs to verify two basic aspects, with connected specific techniques: 1. The safety valves technology through the mathematical calculation of operating device; 2. The absorption process of the toxic agent for controlling of dangerous runaway of gas.

  9. Performance testing of a prototype Pd-Ag diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, G. A.; Hodge, B. J.

    The fusion fuel cycle has gained significant attention over the last decade as interest in fusion programs has increased. One of the critical components of the fusion process is the tritium fuel cycle. The tritium fuel cycle is designed to supply and recycle process tritium at a specific throughput rate. One of the most important processes within the tritium fuel cycle is the clean-up of the of the process tritium. This step will initially separate the hydrogen isotopes (H2, D2, and T2) from the rest of the process gas using Pd-Ag diffusers or permeators. The Pd-Ag diffuser is an integralmore » component for any tritium purification system; whether part of the United States’ defense mission or fusion programs. Domestic manufacturers of Pd-Ag diffusers are extremely limited and only a few manufacturers exist. Johnson-Matthey (JM) Pd-Ag diffusers (permeators) have previously been evaluated for the separation of hydrogen isotopes from non-hydrogen gas species in the process. JM is no longer manufacturing Pd-Ag diffusers and a replacement vendor needs to be identified to support future needs. A prototype Pd-Ag diffuser has been manufactured by Power and Energy, and is considered a potential replacement for the JM diffuser for tritium service. New diffuser designs for a tritium facility for any fusion energy applications must be characterized by evaluating their operating envelope prior to installation in a tritium processing facility. The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump configuration and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.« less

  10. Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, W E

    2000-12-05

    The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is tomore » take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities.« less

  11. Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiments)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, W.E.

    2000-09-29

    The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is tomore » take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities.« less

  12. Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.

    2018-05-01

    In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.

  13. KSC-2011-4952

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla., -- At the Astrotech Payload Processing Facility in Titusville, Fla., technicians stretch a protective cover over NASA's Juno spacecraft. Juno is being prepared for its move to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  14. KSC-2011-4953

    NASA Image and Video Library

    2011-06-27

    CAPE CANAVERAL, Fla. -- At the Astrotech Payload Processing Facility in Titusville, Fla., , technicians secure a protective cover over NASA's Juno spacecraft. Juno is being prepared for its move to the Hazardous Processing Facility for fueling. The spacecraft will be loaded with the propellant necessary for orbit maneuvers and the attitude control system. Juno is scheduled to launch aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Fla., Aug. 5.The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information visit: www.nasa.gov/juno. Photo credit: NASA/Troy Cryder

  15. On Line Enrichment Monitor (OLEM) UF 6 Tests for 1.5" Sch40 SS Pipe, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March-Leuba, José A.; Garner, Jim; Younkin, Jim

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants while working within budgetary constraints. The “Model Safeguards Approach for Gas Centrifuge Enrichment Plants” (GCEPs) developed by the IAEA Division of Concepts and Planning in June 2006, defines the three primary Safeguards objectives to be the timely detection of: 1) diversion of significant quantities of natural (NU), depleted (DU) or low-enriched uranium (LEU) from declared plant flow, 2) facility misuse to produce undeclared LEU product from undeclared feed, and 3) facility misuse tomore » produce enrichments higher than the declared maximum, in particular, highly enriched uranium (HEU). The ability to continuously and independently (i.e. with a minimum of information from the facility operator) monitor not only the uranium mass balance but also the 235U mass balance in the facility could help support all three verification objectives described above. Two key capabilities required to achieve an independent and accurate material balance are 1) continuous, unattended monitoring of in-process UF 6 and 2) monitoring of cylinders entering and leaving the facility. The continuous monitoring of in-process UF 6 would rely on a combination of load-cell monitoring of the cylinders at the feed and withdrawal stations, online monitoring of gas enrichment, and a high-accuracy net weight measurement of the cylinder contents. The Online Enrichment Monitor (OLEM) is the instrument that would continuously measure the time-dependent relative uranium enrichment, E(t), in weight percent 235U, of the gas filling or being withdrawn from the cylinders. The OLEM design concept combines gamma-ray spectrometry using a collimated NaI(Tl) detector with gas pressure and temperature data to calculate the enrichment of the UF 6 gas within the unit header pipe as a function of time. The OLEM components have been tested on ORNL UF 6 flow loop. Data were collected at five different enrichment levels (0.71%, 2.97%, 4.62%, 6.0%, and 93.7%) at several pressure conditions. The test data were collected in the standard OLEM N.4242 file format for each of the conditions with a 10-minute sampling period and then averaged over the span of constant pressures. Analysis of the collected data has provided enrichment constants that can be used for 1.5” stainless steel schedule 40 pipe measurement sites. The enrichment constant is consistent among all the wide range of enrichment levels and pressures used.« less

  16. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  17. Halogens in oil and gas production-associated wastewater.

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Warner, N. R.; Dwyer, G. S.; Mitch, W.; Vengosh, A.

    2014-12-01

    Elevated chloride and bromide in oil and gas wastewaters that are released to the environment are one of the major environmental risks in areas impacted by shale gas development [Olmstead et al.,2013]. In addition to direct contamination of streams, the potential for formation of highly toxic disinfection by-products (DBPs) in drinking water in utilities located downstream from disposal sites poses a serious risk to human health. Here we report on the occurrence of iodide in oil and gas wastewater. We conducted systematic measurements of chloride, bromide, and iodide in (1) produced waters from conventional oil and gas wells from the Appalachian Basin; (2) hydraulic fracturing flowback fluids from unconventional Marcellus and Fayetteville shale gas, (3) effluents from a shale gas spill site in West Virginia; (4) effluents of oil and gas wastewater disposed to surface water from three brine treatment facilities in western Pennsylvania; and (5) surface waters downstream from the brine treatment facilities. Iodide concentration was measured by isotope dilution-inductively coupled plasma-mass spectrometry, which allowed for a more accurate measurement of iodide in a salt-rich matrix. Iodide in both conventional and unconventional oil and gas produced and flowback waters varied from 1 mg/L to 55 mg/L, with no systematic enrichment in hydraulic fracturing fluids. The similarity in iodide content between the unconventional Marcellus flowback waters and the conventional Appalachian produced waters clearly indicate that the hydraulic fracturing process does not induce additional iodide and the iodide content is related to natural variations in the host formations. Our data show that effluents from the brine treatment facilities have elevated iodide (mean = 20.9±1 mg/L) compared to local surface waters (0.03± 0.1 mg/L). These results indicate that iodide, in addition to chloride and bromide in wastewater from oil and gas production, poses an additional risk to downstream surface water quality and drinking water utilities given the potential of formation of iodate-DBPs in drinking water. Olmstead, S.M. et al. (2013). Shale gas development impacts on surface water quality in Pennsylvania, PNAS, 110, 4962-4967.

  18. 78 FR 72794 - Revisions to Auxiliary Installations, Replacement Facilities, and Siting and Maintenance Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... Gas Act (NGA) requires a natural gas company to have certificate authorization for the ``construction...,'' it would not rely on section 2.55 because of ``doubts that the Natural Gas Act authorizes it to... in its procedures with respect to rate filings and certification of natural-gas facilities...

  19. 75 FR 52937 - Turtle Bayou Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ...] Turtle Bayou Gas Storage Company, LLC; Notice of Application August 20, 2010. Take notice that on August 6, 2010, Turtle Bayou Gas Storage Company, LLC (Turtle Bayou), One Office Park Circle, Suite 300..., operate, and maintain a new salt dome natural gas storage facility in two caverns and related facilities...

  20. Compact plasma Pockels cell for TIL of SGIII laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongjun; Wu, Dengsheng; Lin, Doughui; Yu, Haiwu; Zhang, Jun

    2008-01-01

    Compact plasma Pockel's cells (PPC) with 70mm aperture driven by one-pulse process have been constructed for technical integration line (TIL) of SGIII laser facility. The experimental results indicate that the working range of gas pressure is wide, and the delay of gas breakdown is steady. Measurements of the optical performance show static transmittance of 93.1%, static extinction ratio of 3900, and average switching efficiency of 99.7%. Eight compact PPCs are used for the second-stage integrating experiments of TIL. By using of parallel driving technology, one driver can work for four PPCs. An analyzer of optical switch is replaced with Brewster-angle Nd-glass slabs in amplifier. Two years application results show that the PPCs can effectively minimize the growth of parasitic-oscillation, and have a high reliability.

  1. Handheld hyperspectral imager for standoff detection of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard

    2004-08-01

    Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patented technique, (IMSS Image Multi-spectral Sensing), that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera. This cameras technology has been tested at Dugway Proving Ground and Dstl Porton Down facilities looking at Chemical and Biological agent simulants. In addition to Chemical and Biological detection, the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. In this paper we will present some of the results from the data collection at the TRE test at Dugway Proving Ground during the summer of 2002 and laboratory testing at the Dstl facility at Porton Down in the UK in the fall of 2002.

  2. Energy Systems Fabrication Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    Fabrication The fuel cell fabrication hub includes laboratory spaces with local exhaust and chemical fume hoods that support electrolysis and other chemical process research. Key Infrastructure Perchloric acid washdown hood, local exhaust, specialty gas manifolding, deionized water, chemical fume hoods, glassware

  3. 40 CFR 60.161 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...

  4. 40 CFR 60.161 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...

  5. 40 CFR 60.161 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...

  6. 40 CFR 60.161 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...

  7. 40 CFR 60.161 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...

  8. 40 CFR 98.267 - Records that must be retained.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Phosphoric Acid Production § 98.267 Records that must be... paragraphs (a) through (c) of this section for each wet-process phosphoric acid production facility. (a.../or deliveries (if vertically integrated with a mine). (c) Documentation of the procedures used to...

  9. Testing of Cerex Open Path Ultraviolet Differential Optical Absorption Spectroscopy Systems for Fenceline Monitoring Applications

    EPA Science Inventory

    Industrial facilities, energy production, and refining operations can be significant sources of gas-phase air pollutants. Some industrial emissions originate from fugitive sources (leaks) or process malfunctions and can be mitigated if identified. In recent amendments to the Nati...

  10. 77 FR 61826 - Pipeline Safety: Communication During Emergency Situations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... liquefied natural gas pipeline facilities that operators should immediately and directly notify the Public.... Background Federal regulations for gas, liquefied natural gas (LNG), and hazardous liquid pipeline facilities...

  11. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  12. 78 FR 7850 - Notice of Availability of Finding of No Significant Impact for the Proposed NOVA Chemicals Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... (the Line 20 Facilities), from natural gas transmission to natural gas liquids transportation service in order to transport natural gas liquids, principally ethane, from U.S. sources of supply to a... natural gas liquids service will return the Line 20 Facilities to the service for which a Presidential...

  13. Industrial Facility Combustion Energy Use

    DOE Data Explorer

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  14. High Vacuum Creep Facility in the Materials Processing Laboratory

    NASA Image and Video Library

    1973-01-21

    Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.

  15. Instellar Gas Experiment (IGE): Testing interstellar gas particles to provide information on the processes of nucleosynthesis in the big bang stars and supernova

    NASA Technical Reports Server (NTRS)

    Lind, Don

    1985-01-01

    The Interstellar Gas Experiment (IGE) is designed to collect particles of the interstellar gas - a wind of interstellar media particles moving in the vicinity of the solar system. These particles will be returned to earth where the isotopic ratios of the noble gases among these particles will be measured. IGE was designed and programmed to expose 7 sets of six copper-beryllium metallic collecting foils to the flux of neutral interstellar gas particles which penetrate the heliosphere to the vicinity of the earth's orbit. These particles are trapped in the collecting foils and will be returned to earth for mass-spectrographic analysis when Long Duration Exposure Facility (LDEF) on which IGE was launched, is recovered.

  16. The Chandra X-ray Observatory removed from its container in the Vertical Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Vertical Processing Facility (VPF), the overhead crane lifts Chandra X-ray Observatory completely out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  17. The Chandra X-ray Observatory removed from its container in the Vertical Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Vertical Processing Facility (VPF), workers begin lifting the Chandra X-ray Observatory out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  18. Development of a gas-pressurized high-pressure μSR setup at the RIKEN-RAL Muon Facility

    NASA Astrophysics Data System (ADS)

    Watanabe, I.; Ishii, Y.; Kawamata, T.; Suzuki, T.; Pratt, F. L.; Done, R.; Chowdhury, M.; Goodway, C.; Dreyer, J.; Smith, C.; Southern, M.

    2009-04-01

    The development and testing of a gas-pressurized μSR setup for the RIKEN-RAL Muon Facility is reported. In collaboration with the high-pressure group of the ISIS Facility at the Rutherford Appleton Laboratory, a gas-pressurized setup for a pulsed muon beam at the RIKEN-RAL Muon Facility has been constructed in 2008. The sample is pressurized by helium gas and the designed maximum pressure is 6.4 kbar. The high-pressure cell can be cooled down to 2 K using an existing cryostat. Tests were made injecting the double-pulsed muon beam into a high-purity sample of Sn powder, which confirmed that the maximum pressure achieved at 2 K was close to the designed pressure.

  19. 49 CFR 191.23 - Reporting safety-related conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., controls, or processes gas or LNG. (4) Any material defect or physical damage that impairs the... strength. (5) Any malfunction or operating error that causes the pressure of a pipeline or LNG facility... structural integrity of an LNG storage tank. (8) Any safety-related condition that could lead to an imminent...

  20. Economic and environmental evaluation of flexible integrated gasification polygeneration facilities with carbon capture and storage

    EPA Science Inventory

    One innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which ...

  1. Externalities of energy use, analyzed for shipping and electricity generation

    NASA Astrophysics Data System (ADS)

    Thomson, Heather

    Energy use is central to the modern lifestyle, but producing this energy often comes at an environmental cost. The three studies in this paper look at the tradeoffs involved in energy production. The first looks at transitioning marine vessels to natural gas from current distillate fuels. While natural gas will reduce local air pollutants, such as sulfur oxides and particulate matter, the implications for greenhouse gases depend on how the natural gas is extracted, processed, distributed, and used. Applying a "technology warming potential" (TWP) approach, natural gas as a marine fuel achieves climate parity within 30 years for diesel ignited engines, though it could take up to 190 years to reach climate parity with conventional fuels in a spark ignited engine. Movement towards natural gas as a marine fuel continues to progress, and conditions exist in some regions to make a near-term transition to natural gas feasible. The second study looks at externalities associated with electricity generation. The impact on the surrounding community is one concern when siting new electricity generating facilities. A survey was conducted of residents living near an industrial scale wind turbine and a coal-fired power plant to determine their visual and auditory effects on the residents. Results concluded that respondents living near the wind turbine were in favor of the facility. They were willing to pay an average of 2.56 a month to keep the turbine in its current location. Respondents living near the coal plant were opposed to the facility. They were willing to spend 1.82 a month to have the facility removed. The third study presents a cost effectiveness analysis of three of the main fuels used for electricity generation, namely coal, natural gas, and wind. This analysis adds social costs to the private costs traditionally utilized by investors making decisions. It utilizes previous research on visual and auditory amenity and disamenity values as well as recent published studies on the impacts of electricity generation on water use, wildlife, and property values, among others, as well as other impacts well documented in the literature. When literature values were not identical, low, medium, and high values were considered in order to look at the full range of values. On average, the cost of wind power is 0.0332/kWh, natural gas power is 0.1071/kWh, and coal $0.1314/kWh.

  2. 40 CFR 435.70 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disposal or treatment and disposal, provided: (i) If an Oil and Gas facility, operator or its agent or... AND GAS EXTRACTION POINT SOURCE CATEGORY General Provisions § 435.70 Applicability. (a) Purpose. This subpart is intended to prevent oil and gas facilities, for which effluent limitations guidelines and...

  3. 33 CFR 127.005 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... natural gas (LNG) means a liquid or semisolid consisting mostly of methane and small quantities of ethane...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS General § 127.005 Definitions. As used in this part: Active means accomplishing the transfer of LHG or LNG...

  4. 33 CFR 127.005 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... natural gas (LNG) means a liquid or semisolid consisting mostly of methane and small quantities of ethane...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS General § 127.005 Definitions. As used in this part: Active means accomplishing the transfer of LHG or LNG...

  5. 75 FR 72877 - Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... liquid pipelines, and liquefied natural gas (LNG) facilities. These revisions will enhance PHMSA's... of natural gas pipelines, hazardous liquid pipelines, and LNG facilities. Specifically, PHMSA... commodity transported, and type of commodity transported. 8. Modify hazardous liquid operator telephonic...

  6. A unique high heat flux facility for testing hypersonic engine components

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Gladden, Herbert J.

    1990-01-01

    This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-heat-flux facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing heat fluxes ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and heat fluxes similar to those expected during hypersonic flights were achieved.

  7. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    DOE PAGES

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; ...

    2014-09-09

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T₂-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within themore » CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.« less

  8. Study of spatial resolution of coordinate detectors based on Gas Electron Multipliers

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-02-01

    Spatial resolution of GEM-based tracking detectors is determined in the simulation and measured in the experiments. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting of atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing with accounting of diffusion, gas amplification fluctuations, distribution of signals on readout electrodes, electronics noise and particular algorithm of final coordinate calculation (center of gravity). The simulation demonstrates that the minimum of spatial resolution of about 10 μm can be achieved with a gas mixture of Ar -CO2 (75-25 %) at a strips pitch from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 80-100 μm at a pitch of 460-500 μm. Spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4 M collider. One-coordinate resolution of the DEUTERON detector is measured with electron beam of 500 MeV, 1 GeV and 3.5 GeV energies. The determined value of spatial resolution varies in the range from approximately 35 μm to 50 μm for orthogonal tracks in the experiments.

  9. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Pareizs, John M.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  10. 76 FR 45792 - Proposed Reissuance of a General NPDES Permit for Facilities Related to Oil and Gas Extraction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... General NPDES Permit for Facilities Related to Oil and Gas Extraction AGENCY: Environmental Protection... (GP) regulating activities related to the extraction of oil and gas on the North Slope of the Brooks... intended to regulate activities related to the extraction of oil and gas on the North Slope of the Brooks...

  11. Accumulation of radium in sediments from continued disposal of produced water and hydraulic fracturing flowback water

    NASA Astrophysics Data System (ADS)

    Warner, N. R.; Menio, E. C.; Landis, J. D.; Vengosh, A.; Lauer, N.; Harkness, J.; Kondash, A.

    2014-12-01

    Recent public interest in high volume slickwater hydraulic fracturing (HVHF) has drawn increased interest in wastewater management practices by the public, researchers, industry, and regulators. The management of wastes, including both fluids and solids, poses many engineering challenges, including elevated total dissolved solids and elevated activities of naturally occurring radioactive materials (NORM). One management option for wastewater in particular, which is used in western Pennsylvania, USA, is treatment at centralized waste treatment facilities [1]. Previous studies conducted from 2010-2012 indicated that one centralized facility, the Josephine Brine Treatment facility, removed the majority of radium from produced water and hydraulic fracturing flowback fluid (HFFF) during treatment, but low activities of radium remained in treated effluent and were discharged to surface water [2]. Despite the treatment process and radium reduction, high activities (200 times higher than upstream/background) accumulated in stream sediments at the point of effluent discharge. Here we present new results from sampling conducted at two additional centralized waste treatment facilities (Franklin Brine Treatment and Hart Brine Treatment facilities) and Josephine Brine Treatment facility conducted in June 2014. Preliminary results indicate radium is released to surface water at very low (<50 pCi/L) to non-detectable activities, however; radium continues to accumulate in sediments surrounding the area of effluent release. Combined, the data indicate that 1) radium continues to be released to surface water streams in western Pennsylvania despite oil and gas operators voluntary ban on treatment and disposal of HFFF in centralized waste treatment facilities, 2) radium accumulation in sediments occurred at multiple brine treatment facilities and is not isolated to a single accidental release of contaminants or a single facility. [1] Wilson, J. M. and J. M. VanBriesen (2012). "Oil and Gas Produced Water Management and Surface Drinking Water Sources in Pennsylvania." Environmental Practice 14(04): 288-300. [2] Warner, N. R., C. A. Christie, R. B. Jackson and A. Vengosh (2013). "Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania." ES&T 47(20): 11849-11857.

  12. Fuel Cells Provide Reliable Power to U.S. Postal Service Facility in Anchorage, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Steven

    2003-01-01

    Working together, the U.S. Postal Service (USPS) and Chugach Electric Association, partnering with the Department of Defense (DOD), Department of Energy (DOE), US Army Corps of Engineers Construction Engineering Research Laboratories (USA CERL), Electric Power Research Institute (EPRI), and National Rural Electric Cooperative Association (NRECA), developed and installed one of the largest fuel cell installations in the world. The one-megawatt fuel cell combined heat and power plant sits behind the Anchorage U.S. Postal Service Mail Processing and Distribution Facility. Chugach Electric owns, operates, and maintains the fuel cell power plant, which provides clean, reliable power to the USPS facility. Inmore » addition, heat recovered from the fuel cells, in the form of hot water, is used to heat the USPS Mail Processing and Distribution Facility. By taking a leadership role, the USPS will save over $800,000 in electricity and natural gas costs over the 5 1/2-year contract term with Chugach Electric.« less

  13. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.

    Full Paper Submission for: Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electric power and, heating and cooling capability to commercial and industrial facilities directly onsite, while increasing energy efficiency, security of energy supply, grid independence and enhancing the environmental and economic situation for the site. Food processing industries often have simultaneous requirements for heat, steam, chilling and electricity making them well suited for the use of such systems to supply base-load or as peak reducing generators enabling reduction of overall energy use intensity. This paper documents analysis from a project evaluating opportunities enabled bymore » CCHPDG for emission and cost reductions and energy storage systems installed onsite at food processing facilities. In addition, this distributed generation coupled with energy storage demonstrates a non-wires solution to delay or eliminate the need for upgrades to electric distribution systems. It was found that a dairy processing plant in the Pacific Northwest currently purchasing 15,000 MWh/yr of electricity and 190,000 MMBtu/yr of gas could be provided with a 1.1 MW CCHP system reducing the amount of electric power purchased to 450 MWh/yr while increasing the gas demand to 255,000 MMBtu/yr. The high percentage of hydro-power in this region resulted in CO2 emissions from CCHP to be higher than that attributed to the electric utility/regional energy mix. The value of this work is in documenting a real-world example demonstrating the value of CCHP to facility owners and financial decision makers to encourage them to more seriously consider CCHP systems when building or upgrading facilities.« less

  14. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, themore » acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.« less

  15. Compilation of geospatial data for the mineral industries and related infrastructure of Latin America and the Caribbean

    USGS Publications Warehouse

    Baker, Michael S.; Buteyn, Spencer D.; Freeman, Philip A.; Trippi, Michael H.; Trimmer III, Loyd M.

    2017-07-31

    This report describes the U.S. Geological Survey’s (USGS) ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports in Latin America and the Caribbean. The report includes an overview of data sources and an explanation of the geospatial PDF map format.The geodatabase and geospatial data layers described in this report create a new geographic information product in the form of a geospatial portable document format (PDF) map. The geodatabase contains additional data layers from USGS, foreign governmental, and open-source sources as follows: (1) coal occurrence areas, (2) electric power generating facilities, (3) electric power transmission lines, (4) hydrocarbon resource cumulative production data, (5) liquefied natural gas terminals, (6) oil and gas concession leasing areas, (7) oil and gas field center points, (8) oil and gas pipelines, (9) USGS petroleum provinces, (10) railroads, (11) recoverable proven plus probable hydrocarbon resources, (12) major cities, (13) major rivers, and (14) undiscovered porphyry copper tracts.

  16. LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crapse, K.; Kyser, E.

    2011-09-22

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system replaces the current dilute nitric acid strip solution with 0.01 M boric acid. This literature study is performed to determine if there is a potential for boric acid to crystallize in the lines with emphasis on the transfer lines to the Defense Waste Processing Facility. This report focuses on the aqueous phase chemistry of boric acid under conditions relevant to MCU and SWPF. Operating and transfer conditions examined for the purpose ofmore » this review include temperatures between 13 C (McLeskey, 2008) and 45 C (Fondeur, 2007) and concentrations from 0 to 3M in nitric acid as well as exposure of small amounts of entrained boric acid in the organic phase to the sodium hydroxide caustic wash stream. Experiments were also conducted to observe any chemical reactions and off-gas generation that could occur when 0.01 M boric acid solution mixes with 3 M nitric acid solution and vice versa. Based on the low concentration (0.01M) of boric acid in the MCU/SWPF strip acid and the moderate operating temperatures (13 C to 45 C), it is unlikely that crystallization of boric acid will occur in the acid strip solution under process or transfer conditions. Mixing experiments of boric and nitric acid show no measurable gas generation (< 1 cc of gas per liter of solution) under similar process conditions.« less

  17. Modern process designs for very high NGL recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, A.J.; Tomlinson, T.R.; Johnson, G.L.

    1999-07-01

    Typical margins between NGL and sales gas can justify consideration of very high NGL recovery from natural gas but traditionally, very high percentage recovery of propane or ethane has led to disproportionally high incremental power consumption and hence expensive compressors. Recent technical advances in the process design of cryogenic gas processing plants and in the equipment they se have led to a new breed of flowsheets that can cost-effectively give propane recoveries of as high as 99%. The high NGL recovery achievable with modern plants is economically possible due to their high thermodynamic efficiency. This is mainly because they usemore » the refrigeration available from the process more effectively and so recover more NGL. A high pressure rectification step can further improve NGL recovery economically, especially on larger plants. This residual NGL content would normally remain in the sales gas on a conventional turboexpander plant. Improved recovery of NGL can be obtained with little or no increase in sales gas compression power compared to conventional plants by judicious use of heat exchanger area. With high feed gas pressure and particularly with dense phase operation, the use of two expanders in series for feed gas let-down gives good process efficiency and relatively low specific power per ton of NGL recovered. Use of two expanders also avoids excessive liquid flows in the expander exhaust, thus improving the performance and reliability of the turboexpander system. The techniques discussed in the paper can be employed on revamps to improve NGL recovery. Improved process performance relies heavily on the use of efficient, multistream plant-fin exchangers and these can be easily added to an existing facility to increase NGL production.« less

  18. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    PubMed

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. FAST FLUX TEST FACILITY CONCEPTUAL FACILTY DESIGN DESCRIPTION FOR THE INERT GAS CELL EXAMINATION FACILITY NO. 71

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1968-12-12

    The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.

  20. Feasibility study and verified design concept for new improved hot gas facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The MSFC Hot Gas Facility (HGF) was fabricated in 1975 as a temporary facility to provide immediate turnaround testing to support the SRB and ET TPS development. This facility proved to be very useful and was used to make more than 1300 runs, far more than ever intended in the original design. Therefore, it was in need of constant repair and needed to be replaced with a new improved design to support the continuing SRB/ET TPS product improvement and/or removal efforts. MSFC contracted with Lockheed-Huntsville to work on this improved design through contract NAS8-36304 Feasibility Study and Verified Design Concept for the New Improved Hot Gas Facility. The results of Lockheed-Huntsville's efforts under this contract are summarized.

  1. An integrated exhaust gas analysis system with self-contained data processing and automatic calibration

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Summers, R. L.

    1981-01-01

    An integrated gas analysis system designed to operate in automatic, semiautomatic, and manual modes from a remote control panel is described. The system measures the carbon monoxide, oxygen, water vapor, total hydrocarbons, carbon dioxide, and oxides of nitrogen. A pull through design provides increased reliability and eliminates the need for manual flow rate adjustment and pressure correction. The system contains two microprocessors to range the analyzers, calibrate the system, process the raw data to units of concentration, and provides information to the facility research computer and to the operator through terminal and the control panels. After initial setup, the system operates for several hours without significant operator attention.

  2. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.; Smith III, F. G.; McCabe, D. J.

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how themore » varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.« less

  3. KSC-99pp0355

    NASA Image and Video Library

    1999-03-26

    In the Vertical Processing Facility, TRW technicians check the point of attachment of the solar panel array at right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  4. Experience with advanced instrumentation in a hot section cascade

    NASA Technical Reports Server (NTRS)

    Yeh, Frederick C.; Gladden, Herbert J.

    1989-01-01

    The Lewis Research Center gas turbine Hot Section Test Facility was developed to provide a real engine environment with known boundary conditions for the aerothermal performance evaluation and verification of computer design codes. This verification process requires experimental measurements in a hostile environment. The research instruments used in this facility are presented, and their characteristics and how they perform in this environment are discussed. The research instrumentation consisted of conventional pressure and temperature sensors, as well as thin-film thermocouples and heat flux gages. The hot gas temperature was measured by an aspirated temperature probe and by a dual-element, fast-response temperature probe. The data acquisition mode was both steady state and time dependent. These experiments were conducted over a wide range of gas Reynolds numbers, exit gas Mach numbers, and heat flux levels. This facility was capable of testing at temperatures up to 1600 K, and at pressures up to 18 atm. These corresponded to an airfoil exit Reynolds number range of 0.5 x 10(6) to 2.5 x 10(6) based on the airfoil chord of 5.55 cm. The results characterize the performance capability and the durability of the instrumentation. The challenge of making measurements in hostile environments is also discussed. The instruments exhibited more than adequate durability to achieve the measurement profile. About 70 percent of the thin-film thermocouples and the dual-element temperature probe survived several hundred thermal cycles and more than 35 hr at gas temperatures up to 1600 K. Within the experimental uncertainty, the steady-state and transient heat flux measurements were comparable and consistent over the range of Reynolds numbers tested.

  5. Experience with advanced instrumentation in a hot section cascade

    NASA Astrophysics Data System (ADS)

    Yeh, Frederick C.; Gladden, Herbert J.

    The Lewis Research Center gas turbine Hot Section Test Facility was developed to provide a real engine environment with known boundary conditions for the aerothermal performance evaluation and verification of computer design codes. This verification process requires experimental measurements in a hostile environment. The research instruments used in this facility are presented, and their characteristics and how they perform in this environment are discussed. The research instrumentation consisted of conventional pressure and temperature sensors, as well as thin-film thermocouples and heat flux gages. The hot gas temperature was measured by an aspirated temperature probe and by a dual-element, fast-response temperature probe. The data acquisition mode was both steady state and time dependent. These experiments were conducted over a wide range of gas Reynolds numbers, exit gas Mach numbers, and heat flux levels. This facility was capable of testing at temperatures up to 1600 K, and at pressures up to 18 atm. These corresponded to an airfoil exit Reynolds number range of 0.5 x 10(6) to 2.5 x 10(6) based on the airfoil chord of 5.55 cm. The results characterize the performance capability and the durability of the instrumentation. The challenge of making measurements in hostile environments is also discussed. The instruments exhibited more than adequate durability to achieve the measurement profile. About 70 percent of the thin-film thermocouples and the dual-element temperature probe survived several hundred thermal cycles and more than 35 hr at gas temperatures up to 1600 K. Within the experimental uncertainty, the steady-state and transient heat flux measurements were comparable and consistent over the range of Reynolds numbers tested.

  6. Tritium glovebox stripper system seismic design evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinnell, J. J.; Klein, J. E.

    2015-09-01

    The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological dosesmore » to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.« less

  7. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines.

    PubMed

    Ulvestad, Marte; Overland, Indra

    2012-06-01

    THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO 2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG.

  8. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines

    PubMed Central

    Ulvestad, Marte; Overland, Indra

    2012-01-01

    This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

  9. NREL Provides First-of-its-Kind Guidance Promoting Safety Standards for

    Science.gov Websites

    Promoting Safety Standards for Natural Gas Vehicle Maintenance Facilities NREL Provides First-of-its-Kind Guidance Promoting Safety Standards for Natural Gas Vehicle Maintenance Facilities December 1, 2017 The U.S vehicle maintenance facilities with a new handbook and webinar that outline safety factors and standards

  10. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy; Correction AGENCY: Department of Energy... Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in...

  11. 40 CFR 63.2334 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Oil and natural gas production field facilities, as the term “facility” is defined in § 63.761 of subpart HH. (2) Natural gas transmission and storage facilities, as the term “facility” is defined in § 63... distribution operations located at research and development facilities, consistent with section 112(c)(7) of...

  12. 49 CFR 193.2001 - Scope of part.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... laws (49 U.S.C. 60101 et seq.) and Part 192 of this chapter. (b) This part does not apply to: (1) LNG facilities used by ultimate consumers of LNG or natural gas. (2) LNG facilities used in the course of natural...

  13. 49 CFR 193.2001 - Scope of part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... laws (49 U.S.C. 60101 et seq.) and Part 192 of this chapter. (b) This part does not apply to: (1) LNG facilities used by ultimate consumers of LNG or natural gas. (2) LNG facilities used in the course of natural...

  14. 49 CFR 193.2001 - Scope of part.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... laws (49 U.S.C. 60101 et seq.) and Part 192 of this chapter. (b) This part does not apply to: (1) LNG facilities used by ultimate consumers of LNG or natural gas. (2) LNG facilities used in the course of natural...

  15. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. The payload bay of Space Shuttle Discovery is relatively empty as installation of the Get Away Special (GAS) canisters begins. Two GAS canisters can be seen in the center of the photograph. On the left is G-648, a Canadian Space Agency-sponsored study on manufactured organic thin film by the physical vapor transport method, and on the right is a can with hundreds of commemorative flags to be flown on the mission. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  16. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.

  17. Salt deposits in Arizona promise gas-storage opportunities

    USGS Publications Warehouse

    Rauzi, S.L.

    2002-01-01

    Massive salt formations and their proximity to pipeline systems and power plants make Arizona attractive for natural gas storage. Caverns dissolved in subsurface salt are used to store LPG at Ferrellgas Partners LP facility near Holbrook and the AmeriGas Partners LP facility near Glendale. Three other companies are investigating the feasibility of storing natural gas in Arizona salt: Copper Eagle Gas Storage LLC, Desert Crossing Gas Storage and Transportation System LLC, and Aquila Inc. The most extensive salt deposits are in the Colorado Plateau Province. Marine and nonmarine salt deposits are present in Arizona.

  18. High solubility pathway for the carbon dioxide free production of iron.

    PubMed

    Licht, Stuart; Wang, Baohui

    2010-10-07

    We report a fundamental change in the understanding of iron oxide thermochemistry, opening a facile, new CO(2)-free route to iron production. The resultant process can eliminate a major global source of greenhouse gas emission, producing the staple iron in molten media at high rate and low electrolysis energy.

  19. Signal Decomposition of High Resolution Time Series River Data to Separate Local and Regional Components of Conductivity

    EPA Science Inventory

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of an oil and gas wastewater treatment facility along a river. Data was collected over 14-60 days. The power spectral density was us...

  20. 40 CFR 60.5415 - How do I demonstrate continuous compliance with the standards for my gas well affected facility...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... plants? 60.5415 Section 60.5415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... used to reduce emissions, you must demonstrate continuous compliance with the performance requirements... sudden, infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a...

  1. Chemical Stockpile Disposal Program. Risk Analysis of the Continued Storage of Chemical Munitions

    DTIC Science & Technology

    1987-08-01

    Grass Army Depot LIC liquid incinerator LPF leakers processing facility LPG liquified propane gas MD)B munitions demilitarization building"I 1DIA mu...screening process , con- sidering both frequency and magnitude of agent release, are included in the deliverables of this project. S.1.3. Scove of Study...simplistic terms the PRA process focuses on answering the fol- •• loving three basic questions: 1. Wh.t can go wrong? 2. How frequently is it expected to

  2. Power Systems Development Facility Gasification Test Campaing TC18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifiermore » train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.« less

  3. Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing.

    PubMed

    Zhang, Shumin; Zhang, Pingping; Wang, Yun; Ma, Yanyun; Zhong, Jun; Sun, Xuhui

    2014-09-10

    Well-ordered Cu-doped and undoped SnO2 porous thin films with large specific surface areas have been fabricated on a desired substrate using a self-assembled soft template combined with simple physical cosputtering deposition. The Cu-doped SnO2 porous film gas sensor shows a significant enhancement in its sensing performance, including a high sensitivity, selectivity, and a fast response and recovery time. The sensitivity of the Cu-doped SnO2 porous sensor is 1 order of magnitude higher than that of the undoped SnO2 sensor, with average response and recovery times to 100 ppm of H2S of ∼ 10.1 and ∼ 42.4 s, respectively, at the optimal operating temperature of 180 °C. The well-defined porous sensors fabricated by the method also exhibit high reproducibility because of the accurately controlled fabrication process. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors with easy doping and multilayer porous nanostructure for practical sensing applications.

  4. 78 FR 15715 - Excelerate Liquefaction Solutions I, LLC; Lavaca Bay Pipeline System, LLC; Notice of Intent To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... natural gas from existing pipeline systems to the LNG terminal facilities. The Project would be... room, warehouse, and shop. Pipeline Header System: A 29-mile-long, 42-inch-diameter natural gas pipeline extending northward from the shoreside facilities to nine natural gas interconnects southwest of...

  5. 40 CFR 60.5375 - What standards apply to gas well affected facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What standards apply to gas well affected facilities? 60.5375 Section 60.5375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas...

  6. 40 CFR 60.5375 - What standards apply to gas well affected facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What standards apply to gas well affected facilities? 60.5375 Section 60.5375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas...

  7. 75 FR 12451 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... facilities. 211112 Natural gas liquid extraction facilities. Suppliers of Industrial GHGs 325120 Industrial...,000 metric tons CO2e or more. Natural gas and natural gas liquids suppliers (subpart NN): (A) All... Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions AGENCY...

  8. Reconstructing the Aliso Canyon natural gas leak incident

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Yadav, V.; Verhulst, K. R.; Thorpe, A. K.; Hopkins, F. M.; Prasad, K.; Kuai, L.; Thompson, D. R.; Wong, C.; Sander, S. P.; Mueller, K. L.; Nehrkorn, T.; Lee, M.; Hulley, G. C.; Johnson, W. R.; Aubrey, A. D.; Whetstone, J. R.; Miller, C. E.

    2016-12-01

    Natural gas is a key energy source and presents significant policy challenges including energy reliability and the potential for fugitive methane emissions. The well blowout reported in October 2015 at the Aliso Canyon underground gas storage facility near Porter Ranch, California and subsequent uncontrolled venting was the largest single anthropogenic methane source known to date. Multiple independent estimates indicate that this super-emitter source rivaled the normal methane flux of the entire South Coast Air Basin (SoCAB) for several months until the well was plugged. The complexity of the event and logistical challenges - particularly in the initial weeks - presented significant barriers to estimating methane losses. Additionally, accounting for total gas lost is necessary but not sufficient for understanding the sequence of events and the controlling physical processes. We used a tiered system of observations to assess methane emissions from the Aliso Canyon incident. To generate a complete flux time-series, we applied tracer-transport models and tracer-tracer techniques to persistent, multi-year atmospheric methane observations from a network of surface in-situ and remote-sensing instruments. To study the fine spatio-temporal structure of methane plumes and understand the changing source morphology, we conducted intensive mobile surface campaigns, deployed airborne imaging spectrometers, requested special observations from two satellites, and employed large eddy simulations. Through a synthesis analysis we assessed methane fluxes from Aliso Canyon before, during and after the reported incident. We compared our fine scale spatial data with bottom-up data and reports of activity at the facility to better understand the controlling processes. We coordinated with California stakeholder agencies to validate and interpret these results and to consider the potential broader implications on underground gas storage and future priorities for methane monitoring.

  9. Dynamic simulation solves process control problem in Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-16

    A dynamic simulation study solved the process control problems for a Saih Rawl, Oman, gas compressor station operated by Petroleum Development of Oman (PDO). PDO encountered persistent compressor failure that caused frequent facility shutdowns, oil production deferment, and gas flaring. It commissioned MSE (Consultants) Ltd., U.K., to find a solution for the problem. Saih Rawl, about 40 km from Qarn Alam, produces oil and associated gas from a large number of low and high-pressure wells. Oil and gas are separated in three separators. The oil is pumped to Qarn Alam for treatment and export. Associated gas is compressed in twomore » parallel trains. Train K-1115 is a 350,000 standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage centrifugal compressor driven by a variable-speed motor. The paper describes tripping and surging problems with the gas compressor and the control simplifications that solved the problem.« less

  10. Invasive group A Streptococcus infections associated with liposuction surgery at outpatient facilities not subject to state or federal regulation.

    PubMed

    Beaudoin, Amanda L; Torso, Lauren; Richards, Katherine; Said, Maria; Van Beneden, Chris; Longenberger, Allison; Ostroff, Stephen; Wendt, Joyanna; Dooling, Kathleen; Wise, Matthew; Blythe, David; Wilson, Lucy; Moll, Mària; Perz, Joseph F

    2014-07-01

    Liposuction is one of the most common cosmetic surgery procedures in the United States. Tumescent liposuction, in which crystalloid fluids, lidocaine, and epinephrine are infused subcutaneously before cannula-assisted aspiration of fat, can be performed without intravenous or general anesthesia, often at outpatient facilities. However, some of these facilities are not subject to state or federal regulation and may not adhere to appropriate infection control practices. To describe an outbreak of severe group A Streptococcus (GAS) infections among persons undergoing tumescent liposuction at 2 outpatient cosmetic surgery facilities not subject to state or federal regulation. Outbreak investigation (including cohort analysis of at-risk patients), interviews using a standardized questionnaire, medical record review, facility assessment, and laboratory analysis of GAS isolates. Patients undergoing liposuction at 2 outpatient facilities, one in Maryland and the other in Pennsylvania, between July 1 and September 14, 2012. Confirmed invasive GAS infections (isolation of GAS from a normally sterile site or wound of a patient with necrotizing fasciitis or streptococcal toxic shock syndrome), suspected GAS infections (inflamed surgical site and either purulent discharge or fever and chills in a patient with no alternative diagnosis), postsurgical symptoms and patient-reported experiences related to his or her procedure, and emm types, T-antigen types, and antimicrobial susceptibility of GAS isolates. We identified 4 confirmed cases and 9 suspected cases, including 1 death (overall attack rate, 20% [13 of 66]). One instance of likely secondary GAS transmission to a household member occurred. All confirmed case patients had necrotizing fasciitis and had undergone surgical debridement. Procedures linked to illness were performed by a single surgical team that traveled between the 2 locations; 2 team members (1 of whom reported recent cellulitis) were colonized with a GAS strain that was indistinguishable by laboratory analysis of the isolates from the case patients. Facility assessments and patient reports indicated substandard infection control, including errors in equipment sterilization and infection prevention training. This outbreak of severe GAS infections was likely caused by transmission from colonized health care workers to patients during liposuction procedures. Additional oversight of outpatient cosmetic surgery facilities is needed to assure that they maintain appropriate infection control practices and other patient protections.

  11. Two-step rapid sulfur capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the rangemore » of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.« less

  12. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    PubMed

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  13. New Turbulent Multiphase Flow Facilities for Simulation Benchmarking

    NASA Astrophysics Data System (ADS)

    Teoh, Chee Hau; Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui

    2017-11-01

    The Fluid Transport Lab at Penn State has devoted last few years on developing new experimental facilities to unveil the underlying physics of coupling between solid-gas and gas-liquid multiphase flow in a turbulent environment. In this poster, I will introduce one bubbly flow facility and one dusty flow facility for validating and verifying simulation results. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.

  14. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    PubMed

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content were calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.

  15. Risk management technique for liquefied natural gas facilities

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.

    1975-01-01

    Checklists have been compiled for planning, design, construction, startup and debugging, and operation of liquefied natural gas facilities. Lists include references to pertinent safety regulations. Methods described are applicable to handling of other hazardous materials.

  16. 75 FR 20591 - AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC; Notice of Final General Conformity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... quality impacts associated with the construction and operation of a liquefied natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC, in... of the following LNG terminal and natural gas pipeline facilities: A ship unloading facility, with...

  17. 76 FR 35882 - Distrigas of Massachusetts LLC; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... a liquid nitrogen injection facility at its liquefied natural gas (LNG) Import Terminal in Everett... concern. A fact sheet prepared by the FERC entitled ``An Interstate Natural Gas Facility On My Land? What... Index of regasified LNG while complying with the gas quality and interchangeability specifications of...

  18. 77 FR 67056 - Application for a Presidential Permit To Operate and Maintain Pipeline Facilities on the Border...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... transport natural gas liquids (``NGLs'') extending from a block valve site in St. Clair County, Michigan... Storage LLC., by FERC. Because NOVA intends to place Line 20 facilities back into natural gas liquids... gas liquids would be in the U.S. national interest. DATES: Interested parties are invited to submit...

  19. NOAA Mobile Laboratory Measures Oil and Gas Emissions

    NASA Astrophysics Data System (ADS)

    Kofler, J. D.; Petron, G.; Dube, W. P.; Edwards, P. M.; Brown, S. S.; Geiger, F.; Patrick, L.; Crepinsek, S.; Chen, H.; Miller, B. R.; Montzka, S. A.; Lang, P. M.; Newberger, T.; Higgs, J. A.; Sweeney, C.; Guenther, D.; Karion, A.; Wolter, S.; Williams, J.; Jordan, A.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    A van capable of continuous real time measurements of CH4 , CO2, CO, Water Vapor, Ozone, NO, NO2, Volatile Organic Compounds VOCs including aromatics and other traces gases was driven in the oil and gas fields of the Uintah Basin in northeastern Utah. Compressor Stations, processing plants, oil and gas well heads. Separators, condensate tanks, evaporation pond disposal facilities, holding tanks, hydraulic fracturing sites, gas pipelines and more were studied using the van. The mobile measurements provide a powerful tool to get to the source of the emissions and reveal the unique chemical signature of each of the stages and components of oil and gas production as well as the overall basin and background gas concentrations. In addition to a suite of gas analyzers, the van includes a meteorological system (temperature, humidity, and wind speed and direction), GPS tracking, flask sampling system and a batter power system. Aspects of the vans hardware, sampling methods and operations are discussed along with a few highlights of the measurements.

  20. Iran seeking help in regaining prerevolution oil and gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tippee, B.

    1996-02-19

    This paper reviews the goals of the Iranian oil and gas industry to rebuild their oil and gas production facilities by using foreign investment. It discusses the historical consequences of war in the region to diminish the production and postpone the recovery of natural gas which is currently flared. It describes the major projects Iran hopes to develop through international partnerships and includes field development, pipeline construction, gas reinjection, gas treatment facilities, and new offshore operation. The paper also reviews the US policy on Iran and its attempt to apply sanctions towards this country.

  1. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

  2. System-wide and Superemitter Policy Options for the Abatement of Methane Emissions from the U.S. Natural Gas System

    NASA Astrophysics Data System (ADS)

    Mayfield, E. N.; Robinson, A. L.; Cohon, J. L.

    2017-12-01

    This work assesses trade-offs between system-wide and superemitter policy options for reducing methane emissions from compressor stations in the U.S. transmission and storage system. Leveraging recently collected national emissions and activity data sets, we developed a new process-based emissions model implemented in a Monte Carlo simulation framework to estimate emissions for each component and facility in the system. We find that approximately 83% of emissions, given the existing suite of technologies, have the potential to be abated, with only a few emission categories comprising a majority of emissions. We then formulate optimization models to determine optimal abatement strategies. Most emissions across the system (approximately 80%) are efficient to abate, resulting in net benefits ranging from 160M to 1.2B annually across the system. The private cost burden is minimal under standard and tax instruments, and if firms market the abated natural gas, private net benefits may be generated. Superemitter policies, namely, those that target the highest emitting facilities, may reduce the private cost burden and achieve high emission reductions, especially if emissions across facilities are highly skewed. However, detection across all facilities is necessary regardless of the policy option and there are nontrivial net benefits resulting from abatement of relatively low-emitting sources.

  3. System-wide and Superemitter Policy Options for the Abatement of Methane Emissions from the U.S. Natural Gas System.

    PubMed

    Mayfield, Erin N; Robinson, Allen L; Cohon, Jared L

    2017-05-02

    This work assesses trade-offs between system-wide and superemitter policy options for reducing methane emissions from compressor stations in the U.S. transmission and storage system. Leveraging recently collected national emissions and activity data sets, we developed a new process-based emissions model implemented in a Monte Carlo simulation framework to estimate emissions for each component and facility in the system. We find that approximately 83% of emissions, given the existing suite of technologies, have the potential to be abated, with only a few emission categories comprising a majority of emissions. We then formulate optimization models to determine optimal abatement strategies. Most emissions across the system (approximately 80%) are efficient to abate, resulting in net benefits ranging from $160M to $1.2B annually across the system. The private cost burden is minimal under standard and tax instruments, and if firms market the abated natural gas, private net benefits may be generated. Superemitter policies, namely, those that target the highest emitting facilities, may reduce the private cost burden and achieve high emission reductions, especially if emissions across facilities are highly skewed. However, detection across all facilities is necessary regardless of the policy option and there are nontrivial net benefits resulting from abatement of relatively low-emitting sources.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeishi, T.; Kotoh, K.; Kawabata, Y.

    The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontaminationmore » was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.« less

  5. Milestones of mathematical model for business process management related to cost estimate documentation in petroleum industry

    NASA Astrophysics Data System (ADS)

    Khamidullin, R. I.

    2018-05-01

    The paper is devoted to milestones of the optimal mathematical model for a business process related to cost estimate documentation compiled during construction and reconstruction of oil and gas facilities. It describes the study and analysis of fundamental issues in petroleum industry, which are caused by economic instability and deterioration of a business strategy. Business process management is presented as business process modeling aimed at the improvement of the studied business process, namely main criteria of optimization and recommendations for the improvement of the above-mentioned business model.

  6. Recycling of Zinc- and Lead-Bearing Residues with Pyrolysis Gas

    NASA Astrophysics Data System (ADS)

    Pichler, C.; Antrekowitsch, J.

    2015-09-01

    Efforts in the metallurgical industry for an approximation to the zero waste concept has led to many different investigations. Together with the greenhouse effect, CO2 emissions have caused additional costs for different process steps in the industry. For this reason, alternative carbon carriers have been sought, and charcoal was found to be an ideal substitute, due to its CO2 neutrality. In order to use it in the metallurgical industry, an optimization of the charcoal production through a carbonization process must be carried out. Beside the charcoal, pyrolysis gas also occurs during the heating of wood or agricultural wastes under the exclusion of air. Because of combustible compounds in this gas, it is possible to use it as a reduction agent instead of fossil carbon carriers. Together with the idea of preventing landfilling of metallurgical by-products, an investigation was carried out to treat zinc- and lead-containing materials. For this issue a special process concept was designed and developed. The main aspect was to recycle the zinc- and lead-containing Waelz slag, which results from the processing of steel mill dusts, in a vertical retort. Two different sizes of facilities were constructed to perform the reaction system of the solid Waelz slag with the gaseous reduction agent of pyrolysis gas.

  7. C-431 B -- Scope document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollister, H.L.

    1951-06-01

    This document describes the scope of the C-431-B Reactor Production Facility. In dealing with the broad phases of the project, it includes the Sections ``A`` (Scope Modifications) of the approved Design Criteria, modified to ensure correctness to date. Location of the facility has been set as shown on the site map in HDC-2101, designated site number one. Included in Project C-431-B are the 105-C Building, including within that building facilities previously located in the 1608 Building, a contaminated effluent crib adjacent to 105-C, and gas facilities using the 115-B Building interconnected with 105-C. Also included are an oil shed, amore » thimble storage cave, a badge house, and an exclusion fence. Building services and process lines will be considered part of the project to a location nominally five feet outside of 105-C.« less

  8. 76 FR 22692 - Florida Gas Transmission Company, LLC; Notice of Intent To Prepare an Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... operate a new 15,000-horsepower (hp) electric compressor station (CS 32) along its existing 26-inch... compressor station (CS 18) at MP 668.8; and upgrade existing pipeline facilities, all located in Orange... would be confined to the existing compressor station. The EA Process The National Environmental Policy...

  9. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Pre-filing procedures... applications. 157.21 Section 157.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...) A description of a Public Participation Plan which identifies specific tools and actions to...

  10. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Pre-filing procedures... applications. 157.21 Section 157.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...) A description of a Public Participation Plan which identifies specific tools and actions to...

  11. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Pre-filing procedures... applications. 157.21 Section 157.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...) A description of a Public Participation Plan which identifies specific tools and actions to...

  12. 78 FR 50087 - Notice of Intent To Prepare a Supplemental Environmental Impact Statement for the Alpine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... the majority of the infield road and pipeline route. CPAI proposes placement of fill material on 73.1..., gas, and water produced from the reservoir would be carried via pipeline to CD-1 for processing. Sales... construct, operate, and maintain a drill site, access road, pipelines, and ancillary facilities to support...

  13. STS-130 Launch-on-Need (LON) Assessment

    NASA Technical Reports Server (NTRS)

    Jezierski, Eduardo; Margasahayam, Ravi; McCarter, Dallas; Stampfel, Andrew

    2011-01-01

    A viewgraph presentation covering an STS-130 Launch on Need assessment is shown. The contents include: 1) LON Status GREEN II STS-132 is processing as the LON for STS-131; 2) TSM Bonnet Closure Timing; 3) LC-39A High Pressure Gas Storage Facility (HPGF) Net Damage; and 4) STS-130 Ice Detection Camera FOD concern.

  14. An Economic Evaluation of Onshore and Floating Liquefied Natural Gas Receiving Terminals: the Case Study of Indonesia

    NASA Astrophysics Data System (ADS)

    Giranza, M. J.; Bergmann, A.

    2018-05-01

    Indonesia has abundant natural gas resources, however the primary fuel used for electricity generation is coal and oil. Insufficient natural gas infrastructure with-in the country acts as a barrier to increased natural gas usage. In Indonesia LNG is the most efficient and effective method for distributing natural gas given the difficult geographical conditions, the world’s largest archipelago and located in a deep sea area. The Government is planning to initiate natural gas imports by 2019 to meet the country’s energy demands. In order to allocate adequate amounts of natural gas across the geographic regions Indonesia must build more LNG regasification terminals. The Indonesia government has not yet determined if the additional regasification terminals will be floating or land-based facilities. This paper assesses the two options and identifies which facility attains greater profitability. The financial analysis of investing in the Sorong LNG regasification terminal project is conducted using NPV, IRR, and sensitivity analysis. This analysis demonstrates that FSRU facilities have greater economic viability than onshore LNG regasification facilities. The FSRU project earns greater than a 12% IRR as compared to a negative IRR earned by an onshore project. The government can make the onshore projects viable by increasing the sales fee from US10.00/MMBTU to US10.60/MMBTU.

  15. A noninterference blade vibration measurement system for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Watkins, William B.; Chi, Ray M.

    1987-06-01

    A noninterfering blade vibration system has been demonstrated in tests of a gas turbine first stage fan. Conceptual design of the system, including its theory, design of case mounted probes, and data acquisition and signal processing hardware was done in a previous effort. The current effort involved instrumentation of an engine fan stage with strain gages; data acquisition using shaft-mounted reference and case-mounted optical probes; recording of data on a wideband tape recorder; and posttest processing using off-line analysis in a facility computer and a minicomputer-based readout system designed for near- real-time readout. Results are presented in terms of true blade vibration frequencies, time and frequency dependent vibration amplitudes and comparison of the optical noninterference results with strain gage readings.

  16. Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition

    NASA Astrophysics Data System (ADS)

    McGilvray, M.; Dann, A. G.; Jacobs, P. A.

    2013-07-01

    Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.

  17. 76 FR 77583 - Vantage Pipeline US LP; Notice of Intent To Prepare an Environmental Assessment and Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... facilities of natural gas liquids to be located at the international border of the United States and Canada...) entitled ``An Interstate Natural Gas Facility On My Land? What Do I Need To Know?'' is available for your... Vantage Pipeline Project would serve the national interest by providing the natural gas, oil, and ethane...

  18. A History of Collapse Factor Modeling and Empirical Data for Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    deQuay, Laurence; Hodge, B. Keith

    2010-01-01

    One of the major technical problems associated with cryogenic liquid propellant systems used to supply rocket engines and their subassemblies and components is the phenomenon of propellant tank pressurant and ullage gas collapse. This collapse is mainly caused by heat transfer from ullage gas to tank walls and interfacing propellant, which are both at temperatures well below those of this gas. Mass transfer between ullage gas and cryogenic propellant can also occur and have minor to significant secondary effects that can increase or decrease ullage gas collapse. Pressurant gas is supplied into cryogenic propellant tanks in order to initially pressurize these tanks and then maintain required pressures as propellant is expelled from these tanks. The net effect of pressurant and ullage gas collapse is increased total mass and mass flow rate requirements of pressurant gases. For flight vehicles this leads to significant and undesirable weight penalties. For rocket engine component and subassembly ground test facilities this results in significantly increased facility hardware, construction, and operational costs. "Collapse Factor" is a parameter used to quantify the pressurant and ullage gas collapse. Accurate prediction of collapse factors, through analytical methods and modeling tools, and collection and evaluation of collapse factor data has evolved over the years since the start of space exploration programs in the 1950 s. Through the years, numerous documents have been published to preserve results of studies associated with the collapse factor phenomenon. This paper presents a summary and selected details of prior literature that document the aforementioned studies. Additionally other literature that present studies and results of heat and mass transfer processes, related to or providing important insights or analytical methods for the studies of collapse factor, are presented.

  19. KSC-04PD-0005

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install new equipment for gas chromatography and mass spectrometry in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  20. GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES

    EPA Science Inventory

    This document provides guidance to Superfund remedial project managers, on scene coordinators, facility owners, and potentially responsible parties for conducting an air pathway analysis for landfill gas (LFG) emissions under the Comprehensive Environmental Response, Compensation...

  1. 49 CFR 193.2001 - Scope of part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... LNG facilities used in the transportation of gas by pipeline that is subject to the pipeline safety...

  2. Space processing of composite materials

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1975-01-01

    Materials and processes for the testing of aluminum-base fiber and particle composites, and of metal foams under extended-time low-g conditions were investigated. A wetting and dispersion technique was developed, based on the theory that under the absence of a gas phase all solids are wetted by liquids. The process is characterized by a high vacuum environment and a high temperature cycle. Successful wetting and dispersion experiments were carried out with sapphire fibers, whiskers and particles, and with fibers of silicon carbide, pyrolytic graphite and tungsten. The developed process and facilities permit the preparation of a precomposite which serves as sample material for flight experiments. Low-g processing consists then merely in the uniform redistribution of the reinforcements during a melting cycle. For the preparation of metal foams, gas generation by means of a thermally decomposing compound was found most adaptable to flight experiments. For flight experiments, the use of compacted mixture of the component materials limits low-g processing to a simple melt cycle.

  3. Environmental Assessment (EA): Proposed Aircraft Power Systems Repair Transformation Facility, Hill Air Force Base, Utah

    DTIC Science & Technology

    2007-05-16

    and silicon carbide; spent elastic abrasive media; rags and wipes from the NDI process ; and unused scraps of TIG welding wire. Dust from the thermal...used, which would not be expected to produce regulated air emissions. For this process , no air quality permit updates are anticipated. • Welding ...The electron beam welding equipment would not be expected to produce regulated air emissions. The tungsten inert gas ( TIG ) welding equipment would

  4. KSC-99pp0354

    NASA Image and Video Library

    1999-03-26

    Viewed from above in the Vertical Processing Facility, the Chandra X-ray Observatory is seen with one of its solar panel arrays attached, at right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  5. KSC-99pp0356

    NASA Image and Video Library

    1999-03-25

    In the Vertical Processing Facility, TRW workers continue checking the deployment of the solar panel array (right) after attaching it to the Chandra X-ray Observatory (left). Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  6. KSC-99pp0352

    NASA Image and Video Library

    1999-03-26

    TRW technicians in the Vertical Processing Facility check the fitting of the solar panel array being attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  7. KSC-99pp0363

    NASA Image and Video Library

    1999-03-26

    TRW workers in the Vertical Processing Facility check equipment after deployment of the solar panel array above them, attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  8. KSC-99pp0362

    NASA Image and Video Library

    1999-03-26

    In the Vertical Processing Facility, the Chandra X-ray Observatory is observed after deployment of the solar panel array (near the bottom and to the right). Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  9. Methane Emissions from the Natural Gas Transmission and Storage System in the United States.

    PubMed

    Zimmerle, Daniel J; Williams, Laurie L; Vaughn, Timothy L; Quinn, Casey; Subramanian, R; Duggan, Gerald P; Willson, Bryan; Opsomer, Jean D; Marchese, Anthony J; Martinez, David M; Robinson, Allen L

    2015-08-04

    The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and "super-emitter" facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency's Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA's Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.

  10. 40 CFR 49.146 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT General Federal Implementation Plan Provisions Federal Implementation Plan for Oil and Natural Gas Production Facilities, Fort Berthold Indian... the oil and natural gas production facility each time the oil is unloaded from the produced oil...

  11. 77 FR 34457 - Pipeline Safety: Mechanical Fitting Failure Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... notice provides clarification to owners and operators of gas distribution pipeline facilities when... of a gas distribution pipeline facility to file a written report for any mechanical fitting failure...

  12. A feasibility study of a hypersonic real-gas facility

    NASA Technical Reports Server (NTRS)

    Gully, J. H.; Driga, M. D.; Weldon, W. F.

    1987-01-01

    A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.

  13. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)« less

  14. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas:more » flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79.9% was achieved with a stressed algae sample containing 40% algae oil. The effort concluded that producing biodiesel directly from the algae biomass could be an efficient, cost-effective and readily scalable way to produce biodiesel by eliminating the oil extraction process.« less

  15. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazardsmore » from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.« less

  16. Injector element characterization methodology

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr.

    1988-01-01

    Characterization of liquid rocket engine injector elements is an important part of the development process for rocket engine combustion devices. Modern nonintrusive instrumentation for flow velocity and spray droplet size measurement, and automated, computer-controlled test facilities allow rapid, low-cost evaluation of injector element performance and behavior. Application of these methods in rocket engine development, paralleling their use in gas turbine engine development, will reduce rocket engine development cost and risk. The Alternate Turbopump (ATP) Hot Gas Systems (HGS) preburner injector elements were characterized using such methods, and the methodology and some of the results obtained will be shown.

  17. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Williams, M. S.; Zamecnik, J. R.

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc 4+ state, 104Ru in the melt as reduced Ru +4 state as insoluble RuO 2, and hazardous volatile Cr 6+ in themore » less soluble and less volatile Cr +3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H 2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.« less

  18. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Castermore » for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.« less

  19. Fuel-Flexible Gas Turbine Combustor Flametube Facility

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Stephen A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfield, Bruce J.; Manning, Stephen D.; Thompson, William K.

    2004-01-01

    Facility modifications have been completed to an existing combustor flametube facility to enable testing with gaseous hydrogen propellants at the NASA Glenn Research Center. The purpose of the facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Facility capabilities have been expanded to include testing with gaseous hydrogen, along with the existing hydrocarbon-based jet fuel. Modifications have also been made to the facility air supply to provide heated air up to 350 psig, 1100 F, and 3.0 lbm/s. The facility can accommodate a wide variety of flametube and fuel nozzle configurations. Emissions and performance data are obtained via a variety of gas sample probe configurations and emissions measurement equipment.

  20. Brown Grease to Biodiesel Demonstration Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    San Francisco Public Utilities Commission; URS Corporation; Biofuels, Blackgold

    Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a goodmore » example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas. The research goals are given below: To validate technology performance; To determine the costs and benefits [including economic, socioeconomic, and GHG emissions reduction] associated with co-locating this type of operation at a municipal wastewater treatment plant (WWTP); To develop a business case or model for replication of the program by other municipal agencies (as applicable). In order to accomplish the goals of the project, the following steps were performed: 1. Operation of a demonstration facility designed to receive 10,000 to 12,000 gallons of raw Trap Waste each day from private Trap Waste hauling companies. The demonstration facility was designed and built by Pacific Biodiesel Technologies (PBTech). The demonstration facility would also recover 300 gallons of Brown Grease per day from the raw Trap Waste. The recovered Brown Grease was expected to contain no more than 2% Moisture, Insolubles, and Unsaponifiables (MIU) combined. 2. Co-digestion of the side streams (generated during the recovery of 300 gallons of Brown Grease from the raw Trap Waste) with wastewater sludge in the WWTP's anaerobic digesters. The effects of the side streams on anaerobic digestion were quantified by comparison with baseline data. 3. Production of 240 gallons per day of ASTM D6751-S15 grade Biodiesel fuel via a Biodiesel conversion demonstration facility, with the use of recovered Brown Grease as a feedstock. The demonstration facility was designed and built by Blackgold Biofuels (BGB). Side streams from this process were also co-digested with wastewater sludge. Bench-scale anaerobic digestion testing was conducted on side streams from both demonstration facilities to determine potential toxicity and/or changes in biogas production in the WWTP anaerobic digester. While there is a lot of theoretical data available on the lab-scale production of Biodiesel from grease Trap Waste, this full-scale demonstration project was one of the first of its kind in the United States. The project's environmental impacts were expected to include: Reduction of greenhouse gas emissions by prevention of the release of methane at landfills. Although the combustion product of Biodiesel and Methane gas produced in the Anaerobic digester, Carbon Dioxide, is also a greenhouse gas; it is 20 times weaker for the same amount (per mole) released, making its discharge preferable to that of Methane. The use of Biodiesel in place of fossil-fuel derived Diesel was expected to reduce net Carbon Dioxide, Ash Particulate, Sulfate, Silicate, and Soot emissions, thereby improving air quality.« less

  1. THE IMPACT OF EPA'S GREEN POWER PURCHASES

    EPA Science Inventory

    All federal agencies, including EPA, are required to reduce life-cycle greenhouse gas emissions attributed to facility energy use by 30% below 1990 levels by 2010. A key approach to reducing facility greenhouse gas emissions, employed by EPA, involves the purchase of "green power...

  2. Oil and Natural Gas Production Facilities & Natural Gas Transmission and Storage Facilities Final Air Toxics Rules Fact Sheet

    EPA Pesticide Factsheets

    This page contains a May 1999 fact sheet for the final National Emission Standards for Hazardous Air Pollutants (NESHAP) for Petroleum Refineries. This document provides a summary of the 1999 final rule.

  3. Linking Effective Project Management to Business Strategy in Oil and Gas Industry through Decision-making Processes

    NASA Astrophysics Data System (ADS)

    Adeleke, Adeyinka

    The construction project in the oil and gas industry covers the entire spectrum of hydrocarbon production from the wellhead (upstream) to downstream facilities. In each of these establishments, the activities in a construction project include: consulting, studies, front-end engineering, detail engineering, procurement, program management, construction, installation, commissioning and start-up. Efficient management of each of the activities involved in construction projects is one of the driving forces for the successful completion of the project. Optimizing the crucial factors in project management during each phase of a project in an oil and gas industry can assist managers to maximize the use of available resources and drive the project to successful conclusions. One of these factors is the decision-making process in the construction project. Current research effort investigated the relationship between decision-making processes and business strategy in oil and gas industry using employee surveys. I recruited employees of different races, age group, genders, and years of experience in order understand their influence on the implementation of the decision-making process in oil and gas industry through a quantitative survey. Decision-making was assessed using five decision measures: (a) rational, (b) intuitive, (c) dependent, (d) avoidant, and (e) spontaneous. The findings indicated gender, age, years of work experience and job titles as primary variables with a negative relationship with decision-making approach for employees working in a major oil and gas industry. The study results revealed that the two most likely decision-making methods in oil and gas industry include: making a decision in a logical and systematic way and seek assistance from others when making a decision. Additionally, the two leading management approaches to decision-making in the oil and gas industry include: decision analysis is part of organization culture and management is committed to the decision-making process. Some recommendations for future studies were presented based on the need to intensify the importance of the current study and enlarge the body of knowledge regarding decision-making process in oil and gas industry.

  4. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  5. U.S. Army Natick Soldier Research, Development & Engineering Center Testing Facilities And Equipment. Second Edition

    DTIC Science & Technology

    2011-04-01

    30 Freeze Dryer ................................................. 30 High-Pressure Processing ............................... 30 Microwave Digestive...PP1 Power Platform Energy Analyzer ..... 41 Quintox Gas Combustion Analyzer .................... 41 FLIR Systems SC2000 Thermacam Handheld IR ...electronically directly to the contractor or printed on plotter paper , oak tag, or on CD. alloy steel, stainless steel, aluminum, copper and copper alloys

  6. Design and optimization of integrated gas/condensate plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, C.R.; Wilson, J.L.

    1995-11-01

    An optimized design is demonstrated for combining gas processing and condensate stabilization plants into a single integrated process facility. This integrated design economically provides improved condensate recovery versus use of a simple stabilizer design. A selection matrix showing likely application of this integrated process is presented for use on future designs. Several methods for developing the fluid characterization and for using a process simulator to predict future design compositions are described, which could be useful in other designs. Optimization of flowsheet equipment choices and of design operating pressures and temperatures is demonstrated including the effect of both continuous and discretemore » process equipment size changes. Several similar designs using a turboexpander to provide refrigeration for liquids recovery and stabilizer reflux are described. Operating overthrust and from the P/15-D platform in the Dutch sector of the North Sea has proven these integrated designs are effective. Concerns do remain around operation near or above the critical pressure that should be addressed in future work including providing conservative separator designs, providing sufficient process design safety margin to meet dew point specifications, selecting the most conservative design values of predicted gas dew point and equipment size calculated with different Equations-of-State, and possibly improving the accuracy of PVT calculations in the near critical area.« less

  7. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.

    2017-11-01

    Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any other basin using a top-down methodology, and may be indicative of some characteristics of the basin that make sources from the north-eastern Marcellus region unique.

  8. Test Activities in the Langley Transonic Dynamics Tunnel and a Summary of Recent Facility Improvements

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Johnson, R. Keith; Piatak, David J.; Florance, Jennifer P.; Rivera, Jose A., Jr.

    2003-01-01

    The Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities compared to testing in air. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. This paper describes TDT capabilities that make it particularly suited for aeroelasticity testing. The paper also discusses the nature of recent test activities in the TDT, including summaries of several specific tests. Finally, the paper documents recent facility improvement projects and the continuous statistical quality assessment effort for the TDT.

  9. Systems and methods for harvesting and storing materials produced in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Dayal, Yogeshwar; Brittingham, Martin W.

    2016-04-05

    Systems produce desired isotopes through irradiation in nuclear reactor instrumentation tubes and deposit the same in a robust facility for immediate shipping, handling, and/or consumption. Irradiation targets are inserted and removed through inaccessible areas without plant shutdown and placed in the harvesting facility, such as a plurality of sealable and shipping-safe casks and/or canisters. Systems may connect various structures in a sealed manner to avoid release of dangerous or unwanted matter throughout the nuclear plant, and/or systems may also automatically decontaminate materials to be released. Useable casks or canisters can include plural barriers for containment that are temporarily and selectively removable with specially-configured paths inserted therein. Penetrations in the facilities may limit waste or pneumatic gas escape and allow the same to be removed from the systems without over-pressurization or leakage. Methods include processing irradiation targets through such systems and securely delivering them in such harvesting facilities.

  10. Effects of Mars Atmosphere on Arc Welds: Phase 2

    NASA Technical Reports Server (NTRS)

    Courtright, Z. S.

    2018-01-01

    Gas tungsten arc welding (GTAW) is a vital fusion welding process widely used throughout the aerospace industry. Its use may be critical for the repair or manufacture of systems, rockets, or facilities on the Martian surface. Aluminum alloy AA2219-T87 and titanium alloy Ti-6Al-4V butt welds have been investigated for weldability and weld properties in a simulated Martian gas environment. The resulting simulated Martian welds were compared to welds made in a terrestrial atmosphere, all of which used argon shielding gas. It was found that GTAW is a process that may be used in a Martian gas environment, not accounting for pressure and gravitational effects, as long as adequate argon shielding gas is used to protect the weld metal. Simulated Martian welds exhibited higher hardness in all cases and higher tensile strength in the case of AA2219-T87. This has been attributed to the absorption of carbon into the fusion zone, causing carbide precipitates to form. These precipitates may act to pin dislocations upon tensile testing of AA2219-T87. Dissolved carbon may have also led to carburization, which may have caused the increase in hardness within the fusion zone of the welds. Based on the results of this experiment and other similar experiments, GTAW appears to be a promising process for welding in a Martian gas environment. Additional funding and experimentation is necessary to determine the effects of the low pressure and low gravity environment found on Mars on GTAW.

  11. Open-Path Hydrocarbon Laser Sensor for Oil and Gas Facility Monitoring

    EPA Science Inventory

    This poster reports on an experimental prototype open-path laser absorption sensor for measurement of unspeciated hydrocarbons for oil and gas production facility fence-line monitoring. Such measurements may be useful to meet certain state regulations, and enable advanced leak d...

  12. 40 CFR 49.146 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Federal Implementation Plan for Oil and Natural Gas Production Facilities, Fort Berthold Indian...) Each owner or operator must maintain the following records: (1) The measured barrels of oil produced at the oil and natural gas production facility each time the oil is unloaded from the produced oil...

  13. 78 FR 15712 - Arlington Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... Storage Company, LLC; Notice of Application Take notice that on February 26, 2013, Arlington Storage... Commission's regulations, requesting authorization to expand its Seneca Lake natural gas storage facility... ``Gallery 2''), previously used for propane storage, and related facilities to natural gas storage. The...

  14. Shock-wave facility at Tokyo Institute of Technology

    NASA Astrophysics Data System (ADS)

    Sawaoka, A.; Kondo, K.

    1982-04-01

    The shock-wave facility at the Tokyo Institute of Technology is described. Two double-stage light-gas guns are used to studying material science and technology. Recently construction has begun for a new type of rail gun combined with a double-stage light-gas gun.

  15. Arc-heated gas flow experiments for hypersonic propulsion applications

    NASA Astrophysics Data System (ADS)

    Roseberry, Christopher Matthew

    Although hydrogen is an attractive fuel for a hypersonic air-breathing vehicle in terms of reaction rate, flame temperature, and energy content per unit mass, the substantial tank volume required to store hydrogen imposes a drag penalty to performance that tends to offset these advantages. An alternative approach is to carry a hydrocarbon fuel and convert it on-board into a hydrogen-rich gas mixture to be injected into the engine combustors. To investigate this approach, the UTA Arc-Heated Wind Tunnel facility was modified to run on methane rather than the normally used nitrogen. Previously, this facility was extensively developed for the purpose of eventually performing experiments simulating scramjet engine flow along a single expansion ramp nozzle (SERN) in addition to more generalized applications. This formidable development process, which involved modifications to every existing subsystem along with the incorporation of new subsystems, is described in detail. Fortunately, only a minor plumbing reconfiguration was required to prepare the facility for the fuel reformation research. After a failure of the arc heater power supply, a 5.6 kW plasma-cutting torch was modified in order to continue the arc pyrolysis experiments. The outlet gas flow from the plasma torch was sampled and subsequently analyzed using gas chromatography. The experimental apparatus converted the methane feedstock almost completely into carbon, hydrogen and acetylene. A high yield of hydrogen, consisting of a product mole fraction of roughly 0.7, was consistently obtained. Unfortunately, the energy consumption of the apparatus was too excessive to be feasible for a flight vehicle. However, other researchers have pyrolyzed hydrocarbons using electric arcs with much less power input per unit mass.

  16. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Astrophysics Data System (ADS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-10-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  17. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Technical Reports Server (NTRS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-01-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  18. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galowitz, Stephen

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven andmore » reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.« less

  19. Small gas-turbine units for the power industry: Ways for improving the efficiency and the scale of implementation

    NASA Astrophysics Data System (ADS)

    Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.

    2017-10-01

    Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.

  20. San Francisco Biofuel Program: Brown Grease to Biodiesel Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolis, Domènec; Martis, Mary; Jones, Bonnie

    2013-03-01

    Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a goodmore » example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas.« less

  1. Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review.

    PubMed

    Noyola, A; Paredes, M G; Güereca, L P; Molina, L T; Zavala, M

    2018-10-15

    Wastewater treatment (WWT) may be an important source of methane (CH 4 ), a greenhouse gas with significant global warming potential. Sources of CH 4 emissions from WWT facilities can be found in the water and in the sludge process lines. Among the methodologies for estimating CH 4 emissions inventories from WWT, the more adopted are the guidelines of the Intergovernmental Panel on Climate Change (IPCC), which recommends default emission factors (Tier 1) depending on WWT systems. Recent published results show that well managed treatment facilities may emit CH 4 , due to dissolved CH 4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. However, none of these elements is considered in the current IPCC guidelines. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH 4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH 4 emissions in two facilities in Mexico and on relevant literature data. In the case of well-managed centralized aerobic treatment plant, a MCF of 0.06 (instead of the current 0.0) is proposed, considering that the assumption of a CH 4 -neutral treatment facility, as established in the IPCC methodology, is not supported. Similarly, a MCF of 0.08 is proposed for biological nutrient removal processes, being a new entry in the guidelines. Finally, a one-step straightforward calculation is proposed for centralized aerobic treatment plants with anaerobic digesters that avoids confusion when selecting the appropriate default MCF based on the Tier 1 IPCC guidelines. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Hurricane risk mitigation - High Pressure Gas Facility

    NASA Image and Video Library

    2008-07-29

    A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.

  3. 40 CFR 49.4168 - Notification and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes-Region VIII Federal Implementation Plan for Oil and Natural Gas Well Production Facilities; Fort Berthold... you own or operate more than one oil and natural gas production facility, you may submit one report...

  4. 40 CFR 49.4168 - Notification and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FEDERAL ASSISTANCE INDIAN COUNTRY: AIR QUALITY PLANNING AND MANAGEMENT Implementation Plans for Tribes-Region VIII Federal Implementation Plan for Oil and Natural Gas Well Production Facilities; Fort Berthold... you own or operate more than one oil and natural gas production facility, you may submit one report...

  5. 30 CFR 715.19 - Use of explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wells, petroleum or gas-storage facilities, municipal water-storage facilities, fluid-transmission pipelines, gas or oil-collection lines, or water and sewage lines; and (C) 500 feet of an underground mine... explosive materials shall— (i) Have demonstrated a knowledge of, and a willingness to comply with, safety...

  6. Oil and Natural Gas Production Facilities National Emissions Standards for Hazardous Air Pollutants (NESHAP) Final Rule Fact Sheet

    EPA Pesticide Factsheets

    This page contains a January 2007 fact sheet for the final National Emission Standards for Hazardous Air Pollutants (NESHAP) for Oil and Natural Gas Production Facilities. This document provides a summary of the 2007 final rule.

  7. Hurricane risk mitigation - High Pressure Gas Facility

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.

  8. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Liang; Zhao, Yiqing; Hu, Xiaoyan

    2014-07-15

    Experiments about the observations of stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) in Hohlraum were performed on Shenguang-III (SG-III) prototype facility for the first time in 2011. In this paper, relevant experimental results are analyzed for the first time with a one-dimension spectral analysis code, which is developed to study the coexistent process of SRS and SBS in Hohlraum plasma condition. Spectral features of the backscattered light are discussed with different plasma parameters. In the case of empty Hohlraum experiments, simulation results indicate that SBS, which grows fast at the energy deposition region near the Hohlraum wall, ismore » the dominant instability process. The time resolved spectra of SRS and SBS are numerically obtained, which agree with the experimental observations. For the gas-filled Hohlraum experiments, simulation results show that SBS grows fastest in Au plasma and amplifies convectively in C{sub 5}H{sub 12} gas, whereas SRS mainly grows in the high density region of the C{sub 5}H{sub 12} gas. Gain spectra and the spectra of backscattered light are simulated along the ray path, which clearly show the location where the intensity of scattered light with a certain wavelength increases. This work is helpful to comprehend the observed spectral features of SRS and SBS. The experiments and relevant analysis provide references for the ignition target design in future.« less

  9. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelbaum, Richard; Kumfer, Benjamin; Gopan, Akshay

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702)more » include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.« less

  10. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1999-02-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalentmore » size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. A general arrangement drawing of the char transfer system was forwarded to SCS for their review. Structural steel drawings were used to generate a three-dimensional model of the char transfer system including all pressure vessels and major piping components. Experimental testing at the Combustion and Environmental Test Facility continued during this quarter. Performance of the char burner, as benchmarked by flame stability and low NOx, has been exceptional. The burner was operated successfully both without natural gas and supplemental pulverized coal.« less

  11. Recovery Act: Alpena Biorefinery and Alpena Biorefinery Lignin Separation Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retsina, Theodora

    The Alpena Biorefinery (AB) was constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility. The goal of the AB was to demonstrate a modular, technically successful, and financially viable process of making cellulosic ethanol from woody biomass extract at wood processing facilities. At full capacity, the AB can produce 894,200 gallons per year of cellulosic ethanol and 696,000 gallons per year of aqueous potassium acetate, using extract from northern hardwood and aspen woodchips feedstock. The project objectives and the value proposition of AB promote the national goals of energy independence, greenhouse gas reduction, and green job creationmore » and retention. A successful outcome of the Alpena Biorefinery project has been commercial sales of the first ever cellulosic ethanol RINS generated from woody biomass in the US, under the EPA’s Renewable Fuels Standard Program. We believe that American Process is also likely the first company in the world to produce commercial quantities of cellulosic ethanol from mixed forest residue. Life Cycle Analysis performed by Michigan Institute of Technology found that the entire life cycle greenhouse gas emissions from the plant’s cellulosic ethanol were only 25 percent that of petroleum-based gasoline. They found the potassium acetate runway de-icer coproduct generates up to 45 percent less greenhouse gases than the production of conventional potassium acetate. The Alpena Biorefinery project created 31 permanent jobs for direct employees and helped retain 200 jobs associated with the existing Decorative Panels International facility, by increasing its economic viability through significant savings in waste water treatment costs. The AB project has been declared a Michigan Center of Energy Excellence and was awarded a $4 million State of Michigan grant. The project also received New Market Tax Credit financing for locating in an economically distressed community. All other equity funds were contributed by American Process Inc. The facility will remain operational after the demonstration period. It will also be available as a pilot-plant “for hire,” where third parties can perform trials on emerging biorefinery technologies. Additional capital projects are underway outside of the scope of DOE project.« less

  12. High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach

    PubMed Central

    Cao, Derang; Li, Hao; Pan, Lining; Li, Jianan; Wang, Xicheng; Jing, Panpan; Cheng, Xiaohong; Wang, Wenjie; Wang, Jianbo; Liu, Qingfang

    2016-01-01

    We have demonstrated the synthesis of γ-Fe2O3 nano-particles through a facile and novel calcination process in the air. There is no pH regulation, gas atmosphere, additive, centrifugation or other complicated procedures during the preparing process. A detailed formation process of the nano-particles is proposed, and DMF as a polar solvent may slower the reaction process of calcination. The structures, morphologies, and magnetic properties of γ-Fe2O3 nano-particles were investigated systematically, and the pure γ-Fe2O3 nano-particles obtained at 200 °C display uniform morphology good magnetic property. The saturation magnetization of obtained pure γ-Fe2O3 is about 74 emu/g, which is comparable with bulk material (76 emu/g) and larger than other results. In addition, the photocatalytic activity for degradation of methylene blue is also studied, which shows proper photocatalytic activity. PMID:27581732

  13. 33 CFR 127.1507 - Water systems for fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water systems for fire protection... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1507 Water systems for fire protection. (a) Each waterfront facility handling LHG must have a supply of water and a...

  14. Notices of Intent for Coverage Under the NPDES General Permit for Oil and Gas Exploration Facilities on the Outer Continental Shelf in the Chukchi Sea

    EPA Pesticide Factsheets

    Notices of Intent (NOIs) submitted to EPA for coverage under the NPDES general permit for discharges from oil and gas exploration facilities on the outer continental shelf in the Chukchi Sea off Alaska.

  15. 77 FR 6178 - FY 2012 Discretionary Funding Opportunities: Bus and Bus Facilities Programs (State of Good...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... and green building initiatives for transit facilities and equipment. 3. For transit asset management... efficiency or reduces energy consumption/green house gas emissions. Proposers are encouraged to provide... to: 1. Improve energy efficiency or reduce energy consumption/green house gas emissions. Proposers...

  16. 49 CFR 192.171 - Compressor stations: Additional safety equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of... must have adequate fire protection facilities. If fire pumps are a part of these facilities, their... event of inadequate cooling or lubrication of the unit. (d) Each compressor station gas engine that...

  17. 76 FR 36526 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ....47-mile of 20-inch pipeline to transport natural gas for Virginia Power Services Energy Corp., Inc...- fired electric generation facility being constructed by Virginia Electric and Power Company d/b/a... expects to complete the construction and place the electric generation facility in service during 2014...

  18. A CASE STUDY DEMONSTRATING GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES--SOMERSWORTH, NEW HAMPSHIRE

    EPA Science Inventory

    The purpose of the activities described in this document is to provide a demonstration of the procedures and methodologies described within the "Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities" (Guidance). This demonstration provides an example ...

  19. 75 FR 12489 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... distribution facilities. 211112 Natural gas liquid extraction facilities. Suppliers of Industrial GHGs 325120... Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions AGENCY... provisions for the Mandatory Greenhouse Gas (GHG) Reporting Rule. The amendments do not change the...

  20. AMS implications of charge-changing during acceleration

    NASA Astrophysics Data System (ADS)

    Knies, D. L.; Grabowski, K. S.; Cetina, C.; Demoranville, L. T.; Dougherty, M. R.; Mignerey, A. C.; Taylor, C. L.

    2007-08-01

    The NRL Accelerator Mass Spectrometer facility was recently reconfigured to incorporate a modified Cameca IMS 6f Secondary Ion Mass Spectrometer as a high-performance ion source. The NRL accelerator facility supplants the mass spectrometer portion of the IMS 6f instrument. As part of the initial testing of the combined instrument, charge-state scans were performed under various conditions. These provided the basis for studying the effects of terminal gas pressure on the process of charge-changing during acceleration. A combined system of transmission-micro-channel plate and energy detector was found to remove ghost beams produced from Pd charge-changing events in the accelerator tube.

  1. KSC-99pp0350

    NASA Image and Video Library

    1999-03-26

    In the Vertical Processing Facility, TRW technicians get ready to attach and deploy a solar panel array on the Chandra X-ray Observatory, which is sitting on a workstand. The panel is to the right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  2. KSC-99pp0353

    NASA Image and Video Library

    1999-03-26

    In the Vertical Processing Facility, a TRW technician checks the attachment of the solar panel array (out of sight to the right) to the Chandra X-ray Observatory, at left. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  3. Cost effective modular unit for cleaning oil and gas field waste water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinberg, M.B.; Nenasheva, M.N.; Gafarov, N.A.

    1996-12-31

    Problems of environmental control involving conservation of water resources are vital for the development of giant oil and gas condensate fields near Caspian Sea (Russia) characterized by water shortages. One of the urgent tasks of oil production industry is to use all field waste water consisting of underground, processing and rain water. It was necessary to construct a new highly effective equipment which could be used in local waste water treatment. Now we have at our disposal a technology and equipment to meet the requirements to the treated water quality. Thus we have installed a modular unit of 100 m{supmore » 3}/a day capacity to clean waste water from oil products, suspended matter and other organic pollutants at Orenburg oil and gas condensate field, Russia. The unit provides with a full treatment of produced water and comprises a settling tank with adhesive facility, the number of sorption filters, Trofactor bioreactors and a disinfecting facility. The equipment is fitted into three boxes measuring 9 x 3.2 x 2.7 in each. The equipment is simple in design that enables to save money, time and space. Sorption filters, bioreactors as well as the Trofactor process are a part of know-how. While working on the unit construction we applied well known methods of settling and sorption. The process of mechanic cleaning is undergoing in the following succession: (1) the gravitational separation in a settling tank where the floated film oil products are constantly gathered and the sediment is periodically taken away, (2) the settled water treatment in sorption Filters of a special kind.« less

  4. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  5. Use Of limestone resources in flue-gas desulfurization power plants in the Ohio River Valley

    USGS Publications Warehouse

    Foose, M.P.; Barsotti, A.F.

    1999-01-01

    In 1994, more than 41 of the approximately 160 coal-fired, electrical- power plants within the six-state Ohio River Valley region used flue-gas desulfurization (FGD) units to desulfurize their emissions, an approximately 100% increase over the number of plants using FGD units in 1989. This increase represents a trend that may continue with greater efforts to meet Federal Clean Air Act standards. Abundant limestone resources exist in the Ohio River Valley and are accessed by approximately 975 quarries. However, only 35 of these are believed to have supplied limestone for FGD electrical generating facilities. The locations of these limestone suppliers do not show a simple spatial correlation with FGD facilities, and the closest quarries are not being used in most cases. Thus, reduction in transportation costs may be possible in some cases. Most waste generated by FGD electrical-generating plants is not recycled. However, many FGD sites are relatively close to gypsum wallboard producers that may be able to process some of their waste.

  6. Aerobic biodegradation of sludge with high hydrocarbon content generated by a Mexican natural gas processing facility.

    PubMed

    Roldán-Carrillo, T; Castorena-Cortés, G; Zapata-Peñasco, I; Reyes-Avila, J; Olguín-Lora, P

    2012-03-01

    The biodegradation of oil sludge from Mexican sour gas and petrochemical facilities contaminated with a high content of hydrocarbons, 334.7 ± 7.0 g kg(-1) dry matter (dm), was evaluated. Studies in microcosm systems were carried out in order to determine the capacity of the native microbiota in the sludge to reduce hydrocarbon levels under aerobic conditions. Different carbon/nitrogen/phosphorous (C/N/P) nutrient ratios were tested. The systems were incubated at 30 °C and shaken at 100 rpm. Hydrocarbon removals from 32 to 51% were achieved in the assays after 30 days of incubation. The best assay had C/N/P ratio of 100/1.74/0.5. The results of the Microtox(®) and Ames tests indicated that the original sludge was highly toxic and mutagenic, whereas the best assay gave a final product that did not show toxicity or mutagenicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  8. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE PAGES

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  9. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less

  10. Offshore submarine storage facility for highly chilled liquified gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, S.F.

    1982-12-28

    Improvements in an offshore platform and submarine storage facility for highly chilled liquified gas, such as liquified natural gas, are disclosed. The improved facility includes an elongated, vertically oriented submerged anchoring frame to which one or more insulated storage tanks are moveably mounted so they can be positioned at a selected depth in the water. The double piston tank is constructed with improved seals to transfer ambient water pressure of the selected depth to the cryogenic liquified gas without intermixture. This transferred pressure at the depth selected aids in maintaining the liquified state of the stored liquified gas. Structural improvementsmore » to the tank facilitating ballasting, locking the double piston cylinders together and further facilitating surface access to the tank for inspection, repairs and removal, and structural improvements to the platform are disclosed.« less

  11. Sandia 25-meter compressed helium/air gun

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.

    1982-04-01

    For nearly twenty years the Sandia 25-meter compressed gas gun has been an important tool for studying condensed materials subjected to transient shock compression. Major system modifications are now in progress to provide new control, instrumentation, and data acquisition capabilities. These features will ensure that the facility can continue as an effective means of investigating a variety of physical and chemical processes in shock-compressed solids.

  12. U.S. Natural Gas Storage Risk-Based Ranking Methodology and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folga, Steve; Portante, Edgar; Shamsuddin, Shabbir

    2016-10-01

    This report summarizes the methodology and models developed to assess the risk to energy delivery from the potential loss of underground gas storage (UGS) facilities located within the United States. The U.S. has a total of 418 existing storage fields, of which 390 are currently active. The models estimate the impacts of a disruption of each of the active UGS facilities on their owners/operators, including (1) local distribution companies (LDCs), (2) directly connected transporting pipelines and thus on the customers in downstream States, and (3) third-party entities and thus on contracted customers expecting the gas shipment. Impacts are measured acrossmore » all natural gas customer classes. For the electric sector, impacts are quantified in terms of natural gas-fired electric generation capacity potentially affected from the loss of a UGS facility. For the purpose of calculating the overall supply risk, the overall consequence of the disruption of an UGS facility across all customer classes is expressed in terms of the number of expected equivalent residential customer outages per year, which combines the unit business interruption cost per customer class and the estimated number of affected natural gas customers with estimated probabilities of UGS disruptions. All models and analyses are based on publicly available data. The report presents a set of findings and recommendations in terms of data, further analyses, regulatory requirements and standards, and needs to improve gas/electric industry coordination for electric reliability.« less

  13. KSC-04PD-0006

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  14. Space Station Furnace Facility. Volume 2: Summary of technical reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.

  15. Assessing fugitive emissions of CH4 from high-pressure gas pipelines

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Boothroyd, Ian; Davies, Richard

    2017-04-01

    The impact of unconventional natural gas production using hydraulic fracturing methods from shale gas basins has been assessed using life-cycle emissions inventories, covering areas such as pre-production, production and transmission processes. The transmission of natural gas from well pad to processing plants and its transport to domestic sites is an important source of fugitive CH4, yet emissions factors and fluxes from transmission processes are often based upon ver out of date measurements. It is important to determine accurate measurements of natural gas losses when compressed and transported between production and processing facilities so as to accurately determine life-cycle CH4 emissions. This study considers CH4 emissions from the UK National Transmission System (NTS) of high pressure natural gas pipelines. Mobile surveys of CH4 emissions using a Picarro Surveyor cavity-ring-down spectrometer were conducted across four areas in the UK, with routes bisecting high pressure pipelines and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high pressure pipelines using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 4700 ± 2864 kt CH4/yr - this fugitive emission from high pressure pipelines is 0.016% of the annual gas supply.

  16. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, M.W.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  17. Uncertainty and Traceability for the CEESI Iowa Natural Gas Facility.

    PubMed

    Johnson, Aaron; Kegel, Tom

    2004-01-01

    This paper analyzes the uncertainty of a secondary flow measurement facility that calibrates a significant fraction of United States and foreign flow meters used for custody transfer of natural gas. The facility, owned by the Colorado Experimental Engineering Station Incorporated (CEESI), is located in Iowa. This facility measures flow with nine turbine meter standards, each of which is traceable to the NIST primary flow standard. The flow capacity of this facility ranges from 0.7 actual m(3)/s to 10.7 actual m(3)/s at nominal pressures of 7174 kPa and at ambient temperatures. Over this flow range the relative expanded flow uncertainty varies from 0.28 % to 0.30 % (depending on flow).

  18. A Cluster of Group A Streptococcal Infections in a Skilled Nursing Facility-the Potential Role of Healthcare Worker Presenteeism.

    PubMed

    Kobayashi, Miwako; Lyman, Meghan M; Francois Watkins, Louise K; Toews, Karrie-Ann; Bullard, Leon; Radcliffe, Rachel A; Beall, Bernard; Langley, Gayle; Beneden, Chris Van; Stone, Nimalie D

    2016-12-01

    To determine the extent of a group A streptococcus (GAS) cluster (2 residents with invasive GAS (invasive case-patients), 2 carriers) caused by a single strain (T antigen type 2 and M protein gene subtype 2.0 (T2, emm 2.0)), evaluate factors contributing to transmission, and provide recommendations for disease control. Cross-sectional analysis and retrospective review. Skilled nursing facility (SNF). SNF residents and staff. The initial cluster was identified through laboratory notification and screening of SNF residents with wounds. Laboratory and SNF administrative records were subsequently reviewed to identify additional residents with GAS, oropharyngeal and wound (if present) swabs were collected from SNF staff and residents to examine GAS colonization, staff were surveyed to assess infection control practices and risk factors for GAS colonization, epidemiologic links between case-patients and persons colonized with GAS were determined, and facility infection control practices were assessed. No additional invasive case-patients were identified. Oropharyngeal swabs obtained from all 167 SNF residents were negative; one wound swab grew GAS that was the same as the outbreak strain (T2, emm 2.0). The outbreak strain was not identified in any of the 162 staff members. One of six staff members diagnosed with GAS pharyngitis worked while ill and had direct contact with invasive case-patients within a few weeks before their onset of symptoms. Additional minor breaches in infection control were noted. Sick healthcare workers may have introduced GAS into the SNF, with propagation by infection control lapses. "Presenteeism," or working while ill, may introduce and transmit GAS to vulnerable in SNF populations. Identification of an invasive GAS case-patient should trigger a prompt response by facilities to prevent further transmission and workplace culture, and policies should be in place to discourage presenteeism in healthcare settings. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  19. Preparation and Optical Properties of CuS Nanofilms by a Facile Two-Step Process

    NASA Astrophysics Data System (ADS)

    Cui, Zhankui; Zhou, Junqiang; Ge, Suxiang; Zhao, Hongxiao

    CuS nanofilms were prepared by a facile two-step process including chemical bath deposition of Cu nanofilms first and the subsequent thermal sulfuration step. The composition and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Raman spectroscopy. The optical properties of CuS nanofilms were determined by Ultraviolet-visible (UV-Vis) technique. The results show that the nanofilms composed by Cu spherical nanoparticles were completely transformed to the nanofilms composed by CuS nanosheets when the sulfuration temperature was 350∘C. The light absorption edges of CuS nanofilms exhibit red shift when sulfuration occurred at lower temperature. A plausible growth mechanism related with gas phase reaction for formation of CuS nanofilms was also proposed.

  20. KSC-05PD-0375

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker inside the Multi-Purpose Logistics Module Raffaello is ready for installation of the Human Research Facility-2 (HRF-2) science rack. Raffaello will fly on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  1. KSC-05PD-0369

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers prepare the Human Research Facility-2 (HRF-2) science rack for installation into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  2. KSC-05PD-0372

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Rack Insertion Device moves the Human Research Facility-2 (HRF-2) science rack toward the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  3. KSC-05PD-0368

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Human Research Facility-2 (HRF-2) science rack sits on a stand waiting to be installed into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  4. 33 CFR 127.1105 - Layout and spacing of marine transfer area for LHG.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Layout and spacing of marine... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1105 Layout and spacing of marine transfer area for LHG. Each new waterfront facility...

  5. 33 CFR 127.1105 - Layout and spacing of marine transfer area for LHG.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Layout and spacing of marine... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1105 Layout and spacing of marine transfer area for LHG. Each new waterfront facility...

  6. 33 CFR 127.1105 - Layout and spacing of marine transfer area for LHG.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Layout and spacing of marine... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1105 Layout and spacing of marine transfer area for LHG. Each new waterfront facility...

  7. 33 CFR 127.1105 - Layout and spacing of marine transfer area for LHG.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Layout and spacing of marine... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1105 Layout and spacing of marine transfer area for LHG. Each new waterfront facility...

  8. 33 CFR 127.1105 - Layout and spacing of marine transfer area for LHG.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Layout and spacing of marine... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1105 Layout and spacing of marine transfer area for LHG. Each new waterfront facility...

  9. A CASE STUDY DEMONSTRATING GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES--SOUTH KINGSTOWN, RHODE ISLAND

    EPA Science Inventory

    The report describes a case study that applies EPA/600/R-05/123a, the guidance for conducting air pathway analyses of landfill gas emissions that are of interest to superfund remedial project managers, on-scene coordinators, facility owners, and potentially responsible parties. T...

  10. 78 FR 45268 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... decommission the Ocotillo Sol Solar Project, a solar photovoltaic (PV) power plant facility, on approximately... Applicant's Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final Environmental...

  11. 77 FR 28618 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... project, a solar photovoltaic (PV) power plant facility, on approximately 115 acres of BLM-administered... Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility on BLM...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft Environmental...

  12. 75 FR 45111 - Kinder Morgan Interstate Gas Transmission LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... certain mainline pipeline and ancillary facilities primarily to serve a new ethanol plant in Adams County... develop firm transportation to serve ethanol production facilities in the Midwest, KMIGT held an open... gas to serve its new ethanol plant located near Aurora, Nebraska. Accordingly, KMIGT proposes to...

  13. Contaminant Characterization of Effluent from Pennsylvania Brine Treatment, Inc., Josephine Facility: Implications for Disposal of Oil and Gas Flowback Fluids from Brine Treatment Plants

    EPA Pesticide Factsheets

    The PBT-Josephine Facility accepts only wastewater from the oil and gas industry. This report describes the concentrations of selected contaminants in the effluent water and compares the contaminant effluent concentrations to state and federal standards.

  14. 77 FR 60981 - Kinder Morgan Interstate Gas Transmission L.L.C.; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Pony Express Pipeline Conversion Project and Request for Comments on Environmental Issues The staff of... (EA) that will discuss the environmental impacts of the Pony Express Pipeline Conversion Project involving conversion of facilities from natural gas to oil and construction and operation of new facilities...

  15. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  16. A CASE STUDY DEMONSTRATING U.S. EPA GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES--BUSH VALLEY LANDFILL, HARFORD COUNTY, MARYLAND

    EPA Science Inventory

    The purpose of the activities described in this document is to provide a demonstration of the procedures and methodologies described within the "Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities" (Guidance). This demonstration provides an example ...

  17. 30 CFR 250.1160 - When may I flare or vent gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... receive approval from the Regional Supervisor to flare or vent natural gas at your facility, except in the following situations: Condition Additional requirements (1) When the gas is lease use gas (produced natural...) When properly working equipment yields flash gas (natural gas released from liquid hydrocarbons as a...

  18. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service maintenance...

  19. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  20. Controlling Methane Emissions in the Natural Gas Sector. A Review of Federal and State Regulatory Frameworks Governing Production, Gathering, Processing, Transmission, and Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranhos, Elizabeth; Kozak, Tracy G.; Boyd, William

    This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supplymore » chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.« less

  1. Ultrasensitive Room-Temperature Operable Gas Sensors Using p-Type Na:ZnO Nanoflowers for Diabetes Detection.

    PubMed

    Jaisutti, Rawat; Lee, Minkyung; Kim, Jaeyoung; Choi, Seungbeom; Ha, Tae-Jun; Kim, Jaekyun; Kim, Hyoungsub; Park, Sung Kyu; Kim, Yong-Hoon

    2017-03-15

    Ultrasensitive room-temperature operable gas sensors utilizing the photocatalytic activity of Na-doped p-type ZnO (Na:ZnO) nanoflowers (NFs) are demonstrated as a promising candidate for diabetes detection. The flowerlike Na:ZnO nanoparticles possessing ultrathin hierarchical nanosheets were synthesized by a facile solution route at a low processing temperature of 40 °C. It was found that the Na element acting as a p-type dopant was successfully incorporated in the ZnO lattice. On the basis of the synthesized p-type Na:ZnO NFs, room-temperature operable chemiresistive-type gas sensors were realized, activated by ultraviolet (UV) illumination. The Na:ZnO NF gas sensors exhibited high gas response (S of 3.35) and fast response time (∼18 s) and recovery time (∼63 s) to acetone gas (100 ppm, UV intensity of 5 mW cm -2 ), and furthermore, subppm level (0.2 ppm) detection was achieved at room temperature, which enables the diagnosis of various diseases including diabetes from exhaled breath.

  2. An Overview of the Materials Science Research at the Marshall Space Flight Center Electrostatic Levitator Facility and Recent CDDF Efforts

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Containerless processing is an important tool for materials research. The freedom from a crucible allows processing of liquid materials in a metastable undercooled state, as well as allowing processing of high temperature and highly reactive melts. Electrostatic levitation (ESL) is a containerless method which provides a number of unique advantages, including the ability to process non-conducting materials, the ability to operate in ultra-high vacuum or at moderate gas pressure (approx. = 5 atm), and the decoupling of positioning force from sample heating. ESL also has the potential to reduce internal flow velocities below those possible with electromagnetic, acoustic, or aero-acoustic techniques. In electrostatic levitation, the acceleration of gravity (or residual acceleration in reduced gravity) is opposed by the action of an applied electric field on a charged sample. Microgravity allows electrostatic levitation to work even more effectively. The ESL facility at NASA s Marshall Space Flight Center is in use for materials research and thermophysical property measurement by a number of different internal and external investigators. Results from the recent CDDF studies on the high energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory will be presented. The Microgravity Research Program supports the facility.

  3. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  4. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  5. Control System Upgrade for a Mass Property Measurement Facility

    NASA Technical Reports Server (NTRS)

    Chambers, William; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The Mass Property Measurement Facility (MPMF) at the Goddard Space Flight Center has undergone modifications to ensure the safety of Flight Payloads and the measurement facility. The MPMF has been technically updated to improve reliability and increase the accuracy of the measurements. Modifications include the replacement of outdated electronics with a computer based software control system, the addition of a secondary gas supply in case of a catastrophic failure to the gas supply and a motor controlled emergency stopping feature instead of a hard stop.

  6. Gas and water recycling system for IOC vivarium experiments

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Otsubo, K.

    1986-01-01

    Water and gas recycling units designed as one of the common experiment support system for the life science experiment facilities used in the Japanese Experiment Module are discussed. These units will save transportation and operation costs for the life science experiments in the space station. These units are also designed to have interfaces so simple that the connection to another life science experiment facilities such as the Research Animal Holding Facility developed by the Rockheed Missiles and Space Company can be easily done with small modification.

  7. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 1; Steady Predictions

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Graham, Jason S.; Ahuja, Vineet; Hosangadi, Ashvin

    2010-01-01

    Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. Advanced numerical tools assume greater significance in supporting testing and design of high altitude testing facilities and plume induced testing environments of high thrust engines because of the greater inter-dependence and synergy in the functioning of the different sub-systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Facility designs in this case will require a complex network of diffuser ducts, steam ejector trains, fast operating valves, cooling water systems and flow diverters that need to be characterized for steady state performance. In this paper, we will demonstrate with the use of CFD analyses s advanced capability to evaluate supersonic diffuser and steam ejector performance in a sub-scale A-3 facility at NASA Stennis Space Center (SSC) where extensive testing was performed. Furthermore, the focus in this paper relates to modeling of critical sub-systems and components used in facilities such as the A-3 facility. The work here will address deficiencies in empirical models and current CFD analyses that are used for design of supersonic diffusers/turning vanes/ejectors as well as analyses for confined plumes and venting processes. The primary areas that will be addressed are: (1) supersonic diffuser performance including analyses of thermal loads (2) accurate shock capturing in the diffuser duct; (3) effect of turning duct on the performance of the facility (4) prediction of mass flow rates and performance classification for steam ejectors (5) comparisons with test data from sub-scale diffuser testing and assessment of confidence levels in CFD based flowpath modeling of the facility. The analyses tools used here expand on the multi-element unstructured CFD which has been tailored and validated for impingement dynamics of dry plumes, complex valve/feed systems, and high pressure propellant delivery systems used in engine and component test stands at NASA SSC. The analyses performed in the evaluation of the sub-scale diffuser facility explored several important factors that influence modeling and understanding of facility operation such as (a) importance of modeling the facility with Real Gas approximation, (b) approximating the cluster of steam ejector nozzles as a single annular nozzle, (c) existence of mixed subsonic/supersonic flow downstream of the turning duct, and (d) inadequacy of two-equation turbulence models in predicting the correct pressurization in the turning duct and expansion of the second stage steam ejectors. The procedure used for modeling the facility was as follows: (i) The engine, test cell and first stage ejectors were simulated with an axisymmetric approximation (ii) the turning duct, second stage ejectors and the piping downstream of the second stage ejectors were analyzed with a three-dimensional simulation utilizing a half-plane symmetry approximation. The solution i.e. primitive variables such as pressure, velocity components, temperature and turbulence quantities were passed from the first computational domain and specified as a supersonic boundary condition for the second simulation. (iii) The third domain comprised of the exit diffuser and the region in the vicinity of the facility (primary included to get the correct shock structure at the exit of the facility and entrainment characteristics). The first set of simulations comprising the engine, test cell and first stage ejectors was carried out both as a turbulent real gas calculation as well as a turbulent perfect gas calculation. A comparison for the two cases (Real Turbulent and Perfect gas turbulent) of the Ma Number distribution and temperature distributions are shown in Figures 1 and 2 respectively.

  8. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oilmore » (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.« less

  9. Comparison of electrical capacitance tomography & gamma densitometer measurement in viscous oil-gas flows

    NASA Astrophysics Data System (ADS)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-01

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil & gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil & gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 & 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 & 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  10. Ground-based simulation of LEO environment: Investigations of a select LDEF material: FEP Teflon (trademark)

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) has produced a wealth of data on materials degradation in the low earth orbit (LEO) space environment and has conclusively shown that surface chemistry (as opposed to surface physics-sputtering) is the key to understanding and predicting the degradation of materials in the LEO environment. It is also clear that materials degradation and spacecraft contamination are closely linked and that the fundamental mechanisms responsible for this linking are in general not well understood especially in the area of synergistic effects. The study of the fundamental mechanisms underlying materials degradation in LEO is hampered by the fact that the degradation process itself is not observed during the actual exposure to the environment. Rather the aftermath of the degradation process is studied, i.e., the material that remains after exposure is observed and mechanisms are proposed to explain the observed results. The EOIM-3 flight experiment is an attempt to bring sophisticated diagnostic equipment into the space environment and monitor the degradation process in real time through the use of mass spectrometry. More experiments of this nature which would include surface sensitive diagnostics (Auger and photoelectron spectroscopes) are needed to truly unravel the basic chemical mechanisms involved in the materials degradation process. Since these in-space capabilities will most likely not be available in the near future, ground-based LEO simulation facilities employing sophisticated diagnostics are needed to further advance the basic understanding of the materials degradation mechanisms. The LEO simulation facility developed at Los Alamos National Laboratory has been used to investigate the atomic oxygen/vacuum ultraviolet (AO/VUV) enhanced degradation of FEP Teflon. The results show that photo-ejection of polymer fragments occur at elevated temperature (200 C), that VUV synergistic rare gas sputtering of polymer fragments occur even at 25 C, and that combined OA/VUV interaction produces a wide variety of gas phase reaction products.

  11. A feasibility study for underground coal gasification at Krabi Mine, Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solc, J.; Steadman, E.N.; Boysen, J.E.

    A study to evaluate the technical, economical, and environmental feasibility of underground coal gasification (UCG) in the Krabi Mine, Thailand, was conducted by the Energy and Environmental Research Center (EERC) in cooperation with B.C. Technologies (BCT) and the Electricity Generating Authority of Thailand (EGAT). The selected coal resource was found suitable to fuel a UCG facility producing 460,000 MJ/h (436 million Btu/h) of 100--125 Btu/scf gas for 20 years. The raw UCG gas could be produced for a selling price of $1.94/MMBtu. The UCG facility would require a total investment of $13.8 million for installed capital equipment, and annual operatingmore » expenses for the facility would be $7.0 million. The UCG gas could be either cofired in a power plant currently under construction or power a 40 MW simple-cycle gas turbine or a 60 MW combined-cycle power plant.« less

  12. Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production

    NASA Astrophysics Data System (ADS)

    Brown, Duncan

    Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported as feedstock for bio-fuel facilities. All feedstock are suited for gasification, which produces syngas that can be used to synthesise petrol or diesel via Fischer-Tropsch reactions, or produce hydrogen via water gas shift reactions. Alternatively, the bio-oil product of fast pyrolysis may be upgraded to produce petrol and diesel, or can undergo steam reformation to produce hydrogen. Implementing a network of mobile facilities reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use a fraction of the biomass energy content to meet thermal or electrical demands. The total energy delivered by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energy content, respectively. However, implementing mobile facilities is economically feasible when large transport distances are required. For an annual harvest of 1.717 million m3 (equivalent to 2000 ODTPD), transport costs are reduced to less than 40% of the total levelised delivered feedstock cost when mobile facilities are implemented; transport costs account for up to 80% of feedstock costs for conventional woodchip delivery. Torrefaction provides the lowest cost pathway of delivering a forest residue resource when using mobile facilities. Cost savings occur against woodchip delivery for annual forest residue harvests above 2.25 million m3 or when transport distances greater than 250 km are required. Important parameters that influence levelised delivered costs of feedstock are transport distances (forest residue spatial density), haul cost factors, thermal and electrical demands of mobile facilities, and initial moisture content of forest residues. Relocating mobile facilities can be optimised for lowest cost delivery as transport distances of raw biomass are reduced. The overall cost of bio-fuel production is determined by the feedstock delivery pathway and also the bio-fuel production process employed. Results show that the minimum cost of petrol and diesel production is 0.86 litre -1 when a bio-oil feedstock is upgraded. This corresponds to a 2750 TPD upgrading facility requiring an annual harvest of 4.30 million m3. The miniμm cost of hydrogen production is 2.92 kg -1, via the gasification of a woodchip feedstock and subsequent water gas shift reactions. This corresponds to a 1100 ODTPD facility and requires an annual harvest of 947,000 m3. The levelised cost of bio-fuel strongly depends on the size of annual harvest required for bio-fuel facilities. There are optimal harvest volumes (bio-fuel facility sizes) for each bio-fuel production route, which yield minimum bio-fuel production costs. These occur as the benefits of economies of scale for larger bio-fuel facilities compete against increasing transport costs for larger harvests. Optimal harvest volumes are larger for bio-fuel production routes that use feedstock sourced from mobile facilities, as mobile facilities reduce total transport requirements.

  13. High pressure gas flow, storage, and displacement in fractured rock—Experimental setup development and application

    NASA Astrophysics Data System (ADS)

    Hadi Mosleh, M.; Turner, M.; Sedighi, M.; Vardon, P. J.

    2017-01-01

    This paper presents the design, development, and application of a laboratory setup for the experimental investigations of gas flow and reactions in a fractured rock. The laboratory facility comprises (i) a high pressure manometric sorption apparatus, where equilibrium and kinetic phenomena of adsorption and desorption can be examined, (ii) a high pressure triaxial core flooding system where the chemical reactive transport properties or processes can be explored, and (iii) an ancillary system including pure and mixed gas supply and analysis units. Underground conditions, in terms of pore pressure, confining pressure, and temperature, can be replicated using the triaxial core flooding system developed for depths up to 2 km. Core flooding experiments can be conducted under a range of gas injection pressures up to 20 MPa and temperatures up to 338 K. Details of the design considerations and the specification for the critical measuring instruments are described. The newly developed laboratory facility has been applied to study the adsorption of N2, CH4, and CO2 relevant to applications in carbon sequestration in coal and enhanced coalbed methane recovery. Under a wide range of pressures, the flow of helium in a core sample was studied and the evolution of absolute permeability at different effective stress conditions has been investigated. A comprehensive set of high resolution data has been produced on anthracite coal samples from the South Wales coalfield, using the developed apparatus. The results of the applications provide improved insight into the high pressure flow and reaction of various gas species in the coal samples from the South Wales coalfield.

  14. KSC-2013-4439

    NASA Image and Video Library

    2013-12-19

    VANDENBERG AIR FORCE BASE, Calif. -- A solid rocket motor is rolled into the Solid Rocket Motor Processing Facility at Vandenberg Air Force Base in California. The motor will be attached to the United Launch Alliance Delta II rocket slated to launch NASA's Orbiting Carbon Observatory-2, or OCO-2, spacecraft in July 2014. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. Photo credit: NASA/Randy Beaudoin

  15. KSC-2009-1726

    NASA Image and Video Library

    2009-02-11

    VANDENBERG AIR FORCE BASE, Calif. -- In the Astrotech payload processing facility at Vandenberg Air Force Base in California, NASA's Orbiting Carbon Observatory, or OCO, is being prepared for transfer to Launch Complex 576-E. OCO will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. OCO is scheduled to launch Feb. 24 aboard an Orbital Sciences' Taurus XL rocket. Photo credit: NASA/VAFB

  16. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with themore » basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.« less

  17. 40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., primary zinc facilities, primary lead facilities, and primary molybdenum facilities, including any associated air pollution control or gas-conditioning systems for sulfur dioxide off-gases from...

  18. 30 CFR 256.40 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... interest. (g) Liquefied petroleum products means natural gas liquid products including the following... liquids and nonhydrocarbon gases. (3) Of liquefied petroleum products means the volume of natural gas liquids produced from reservoir gas and liquefied at surface separators, field facilities, or gas...

  19. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ( 99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove 90Sr and actinides, inorganic reducing agents for 99Tc, and zeolites for 137Cs. Test results indicate that excellent removal of 99Tc was achieved using Sn(II)Cl 2 as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alkaline pH, with a DF of 17.9. As anticipated, ammonium ion probably interfered with the Ionsiv®a IE-95 zeolite uptake of 137Cs. Although this DF of 137Cs was moderate, additional testing is expected to identify more effective conditions. Similarly, Monosodium Titanate (MST) was more effective at alkaline pH at removing Sr, Pu, and U, with a DF of 319, 11.6, and 10.5, respectively, within 24 hours. Actually, the Ionsiv® IE-95, which was targeting removal of Cs, was also moderately effective for Sr, and highly effective for Pu and U at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}Tc during the SnCl 2 reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Results of this separation testing indicate that sorption/precipitation was a viable concept and has the potential to decontaminate the stream. All radionuclides were at least partially removed by one or more of the materials tested. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl 2) and sorbent at neutral pH to remove the Tc, followed by pH adjustment and the addition of zeolite (Ionsiv® IE-95) to remove the Cs, Sr, and actinides. Addition of MST to remove Sr and actinides may not be needed. Since this was an initial phase of testing, additional tasks to improve separation methods were expected to be identified. Primarily, further testing is needed to identify the conditions for the decontamination process. Once these conditions are established, follow-on tasks likely include evaluation and testing of applicable solid-liquid separation technologies, slurry rheology measurements, composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and decontaminated LAW Off-Gas Condensate evaporation and solidification.« less

  20. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M. M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax ® K-3 refractory and Inconel ® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing andmore » reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  1. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets;more » however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  2. Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection.

    PubMed

    Kan, Hao; Li, Min; Song, Zhilong; Liu, Sisi; Zhang, Baohui; Liu, Jingyao; Li, Ming-Yu; Zhang, Guangzu; Jiang, ShengLin; Liu, Huan

    2017-11-15

    Low dimensional nanomaterials have emerged as candidates for gas sensors owing to their unique size-dependent properties. In this paper, Bi 2 S 3 nanobelts were synthesized via a facile solvothermal process and spin-coated onto alumina substrates at room temperature. The conductometric devices can even sensitively response to the relatively low concentrations of NO 2 at room temperature, and their sensing performance can be effectively enhanced by the ligand exchange treatment with inorganic salts. The Pb(NO 3 ) 2 -treated device exhibited superior sensing performance of 58.8 under 5ppm NO 2 at room-temperature, with the response and recovery time of 28 and 106s. The competitive adsorption of NO 2 against O 2 on Bi 2 S 3 nanobelts, with the enhancement both in gas adsorption and charge transfer caused by the porous network of the very thin Bi 2 S 3 nanobelts, can be a reasonable explanation for the improved performance at room temperature. Their sensitive room-temperature response behaviors combined with the excellent solution processability, made Bi 2 S 3 nanobelts very attractive for the construction of low-cost gas sensors with lower power consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Susan Koogle Marks 40+ Years at NCI at Frederick | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer In 1973, Susan Koogle commuted from Washington County to a small data processing company in Arlington, Va. When gas prices spiked from 25 to 54 cents a gallon, she began to look for a job closer to home. That’s when she came to work at NCI at Frederick, and in December 2013, she marked her 40th year with the facility.

  4. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass

    Treesearch

    Nathaniel Anderson; J. Greg Jones; Deborah Page-Dumroese; Daniel McCollum; Stephen Baker; Daniel Loeffler; Woodam Chung

    2013-01-01

    Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or...

  5. Shadows of Stuxnet: Recommendations for U.S. Policy on Critical Infrastructure Cyber Defense Derived from the Stuxnet Attack

    DTIC Science & Technology

    2016-03-01

    wastewater, oil and natural gas, chemical, transportation, pharmaceutical, pulp and paper, food and beverage, and discrete manufacturing (e.g...dams, energy infrastructure, banks, farms, food processing facilities, hospitals, nuclear reactors, transportation carriers, and water treatment... food and agriculture sector” is, “almost entirely under private ownership and is comprised of an estimated 2.2 million farms, 900,000 restaurants, and

  6. 18 CFR 157.210 - Mainline natural gas facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Mainline natural gas... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural Gas...

  7. New methodology to baseline and match AME polysilicon etcher using advanced diagnostic tools

    NASA Astrophysics Data System (ADS)

    Poppe, James; Shipman, John; Reinhardt, Barbara E.; Roussel, Myriam; Hedgecock, Raymond; Fonda, Arturo

    1999-09-01

    As process controls tighten in the semiconductor industry, the need to understand the variables that determine system performance become more important. For plasma etch systems, process success depends on the control of key parameters such as: vacuum integrity, pressure, gas flows, and RF power. It is imperative to baseline, monitor, and control these variables. This paper presents an overview of the methods and tools used by Motorola BMC fabrication facility to characterize an Applied Materials polysilicon etcher. Tool performance data obtained from our traditional measurement techniques are limited in their scope and do not provide a complete picture of the ultimate tool performance. Presently the BMC traditional characterization tools provide a snapshot of the static operation of the equipment under test (EUT); however, complete evaluation of the dynamic performance cannot be monitored without the aid of specialized diagnostic equipment. To provide us with a complete system baseline evaluation of the polysilicon etcher, three diagnostic tools were utilized: Lucas Labs Vacuum Diagnostic System, Residual Gas Analyzer, and the ENI Voltage/Impedance Probe. The diagnostic methodology used to baseline and match key parameters of qualified production equipment has had an immense impact on other equipment characterization in the facility. It has resulted in reduced cycle time for new equipment introduction as well.

  8. 76 FR 37300 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... natural gas. 211112 Natural gas liquid extraction facilities. Table 1 of this preamble is not intended to... Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best Available... regulations for Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. Specifically, EPA is...

  9. Limits of a spatial resolution of the cascaded GEM based detectors

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-06-01

    Spatial resolution of tracking detectors based on GEM cascades is determined in the simulation and measured. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing taking into account diffusion, gas amplification fluctuations, the distribution of signals over readout electrodes, electronics noise and particular algorithm of final coordinate calculation (centre-of-gravity algorithm). The simulation demonstrates that the minimum of the spatial resolution of about 10-20 μm can be achieved with a gas mixture of Ar-CO2 (75%-25%) at a strip pitch in the range from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 70-100 μm at a pitch of 450-500 μm. The reasons of such behavior are discussed and corresponding hypothesis is tested. Particularly, the effect of electron cloud modification due to a GEM operation is considered using the ANSYS and Garfield++ simulation programs. The detection efficiency and spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at BINP are measured at the extracted beam facility of the VEPP-4M collider. One-coordinate resolution of two detectors for the DEUTERON facility is measured with a 2 GeV electron beam. The determined values of the detectors' spatial resolution is equal to 46.6 ± 0.1 μm and 38.5 ± 0.2 μm for orthogonal tracks in two detectors, respectively.

  10. A method for aircraft afterburner combustion without flameholders

    NASA Astrophysics Data System (ADS)

    Birmaher, Shai

    2009-12-01

    State of the art aircraft afterburners employ spray bars to inject fuel and flameholders to stabilize the combustion process. Such afterburner designs significantly increase the length (and thus weight), pressure losses, and observability of the engine. This thesis presents a feasibility study of a compact 'prime and trigger' (PAT) afterburner concept that eliminates the fuel spray bars and flameholders and, thus, eliminates the above-mentioned problems. In this concept, afterburner fuel is injected just upstream or in between the turbine stages. As the fuel travels through the turbine stages, it evaporates, mixes with the bulk flow, and undergoes some chemical reactions without any significant heat release, a process referred to as 'priming'. Downstream of the turbine stages, combustion could take place through autoignition. However, if fuel autoignition does not occur or if autoignition does not produce a combustion zone that is stable and highly efficient, then a low power pilot, or 'trigger', can be used to control the combustion process. The envisioned trigger for the PAT concept is a jet of product gas from ultra-rich hydrocarbon/air combustion that is injected through the afterburner liner. This 'partial oxidation' (POx) gas, which consists mostly of H2, CO, and diluents, rapidly produces radicals and heat that accelerate the autoignition of the primed mixture and, thus, provide an anchor point for the afterburner combustion process. The objective of this research was to demonstrate the feasibility of the PAT concept by showing that (1) combustion of fuel injected within or upstream of turbine stages can occur only downstream of the turbine stages, and (2) the combustion zone is compact, stable and efficient. This was accomplished using two experimental facilities, a developed theoretical model, and Chemkin simulations. The first facility, termed the Afterburner Facility (AF), simulated the bulk flow temperature, velocity and O2 content through a turbojet combustor, turbine stage and afterburner. To model the PAT concept, Jet-A was injected upstream of the simulated turbine stage and a H2 jet was used to trigger the primed Jet-A combustion process downstream of the turbine stage. H2 was used because POx gas was not available for experiments. The second facility, termed the Propane Autoignition Combustor (PAC), was essentially a scaled-down, simplified version of the AF. The PAC experiments focused on the trigger stage of the PAT concept, using H 2 in lieu of POx gas and employing measurement techniques that were in some ways more detailed than in the AF experiments. The developed model simulated the physics of fuel priming in the AF and predicted the Jet-A autoignition location. It was used to predict and interpret the AF results and to study the feasibility of the PAT concept at pressures outside the AF operating range. Finally, the Chemkin simulations were used to examine the effect of several POx gas compositions on the Jet-A/vitiated-air autoignition process; to compare the POx and H2 triggers; and to explore several reasons for why POx gas and H2 are suitable trigger mechanisms. he experimental, theoretical, and numerical results obtained in this investigation indicated that the PAT concept provides a feasible approach to afterburner combustion. The experiments in the AF showed that the ignition delay of Jet-A is sufficiently long to allow fuel injection within turbine stages without significant heat release upstream of the afterburner. In the AF experiments without the H2 trigger, Jet-A combustion was achieved through autoignition; however, the autoignition combustion zone exhibited large axial fluctuations and low combustion efficiency. The H2 trigger was able to shift the combustion zone upstream, make it more compact, reduce fluctuations in its axial position, and raise the combustion efficiency to nearly 100%. The PAC experiments also showed that a H2 trigger can shift the combustion zone upstream, make it more compact, and increase the combustion efficiency. The PAC results were obtained with lower O 2 content and higher equivalence ratios than in the AF. Therefore, the combined AF and PAC results suggested that the PAT concept is feasible over a wide range of operating conditions. The developed model showed good agreement with the AF results. It also predicted that the PAT concept is feasible at bulk flow pressures outside the AF operating range. Finally, the Chemkin results showed that both the H2 and POx gas triggers can significantly reduce the ignition delay time of primed Jet-A/vitiated air mixtures. Thus, POx gas is a suitable trigger for the PAT concept and should be tested in future experimental investigations.

  11. Risk-based process safety assessment and control measures design for offshore process facilities.

    PubMed

    Khan, Faisal I; Sadiq, Rehan; Husain, Tahir

    2002-09-02

    Process operation is the most hazardous activity next to the transportation and drilling operation on an offshore oil and gas (OOG) platform. Past experiences of onshore and offshore oil and gas activities have revealed that a small mis-happening in the process operation might escalate to a catastrophe. This is of especial concern in the OOG platform due to the limited space and compact geometry of the process area, less ventilation, and difficult escape routes. On an OOG platform, each extra control measure, which is implemented, not only occupies space on the platform and increases congestion but also adds extra load to the platform. Eventualities in the OOG platform process operation can be avoided through incorporating the appropriate control measures at the early design stage. In this paper, the authors describe a methodology for risk-based process safety decision making for OOG activities. The methodology is applied to various offshore process units, that is, the compressor, separators, flash drum and driers of an OOG platform. Based on the risk potential, appropriate safety measures are designed for each unit. This paper also illustrates that implementation of the designed safety measures reduces the high Fatal accident rate (FAR) values to an acceptable level.

  12. 40 CFR 125.134 - As an owner or operator of a new offshore oil and gas extraction facility, what must I do to...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....134 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water... oil and gas extraction facilities that do not employ sea chests as cooling water intake structures and...

  13. 40 CFR 125.136 - As an owner or operator of a new offshore oil and gas extraction facility, what must I collect...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stresses on the source waterbody. (B) Evaluation of potential cooling water intake structure effects. This... (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Offshore Oil and Gas Extraction Facilities...

  14. 40 CFR 125.134 - As an owner or operator of a new offshore oil and gas extraction facility, what must I do to...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....134 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water... oil and gas extraction facilities that do not employ sea chests as cooling water intake structures and...

  15. 40 CFR 125.136 - As an owner or operator of a new offshore oil and gas extraction facility, what must I collect...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stresses on the source waterbody. (B) Evaluation of potential cooling water intake structure effects. This... (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Offshore Oil and Gas Extraction Facilities...

  16. Environmental Law Deskbook

    DTIC Science & Technology

    1991-10-01

    Agency FFA Federal Facilities Agreement FFCA Federal Facilities Compliance Agreement FGD Flue Gas Desulfurization FIFRA Federal Insecticide, Fungicide...carrying out response. If none, state why. EXAMPLE: Gas barriers used to control and contain vapor emissions. Runoff contained by excavating ditch...NPDES PERMITS 20-2 2006 WATER QUALITY STANDARDS 20-2 2007 POLLUTION CONTROL TECHNOLOGY 20-3 2008 TECHNOLOGY VARIANCE AND MODIFICATIONS 20-4 2009

  17. 77 FR 26353 - Notice of Availability of the Environmental Assessment and Request for Comments on Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... a liquid form at an existing natural gas facility in North Dakota. The ethane that would be... maintenance of pipeline facilities of natural gas liquids and also evaluates reasonable alternatives to the... Pipeline Project would be an underground high vapor pressure pipeline that would carry liquid ethane from...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrack, A.G.

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses tomore » calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).« less

  19. Field calibration of orifice meters for natural gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, V.C.; Shen, J.J.S.

    1989-03-01

    This paper presents the orifice calibration results for nominal 15.24, 10.16, and 5.08-cm (6,4,2-in.) orifice meters conducted at the Chevron's Sand Hills natural gas flow measurement facility in Crane, Texas. Over 200 test runs were collected in a field environment to study the accuracy of the orifice meters. Data were obtained at beta ratios ranging from 0.12 to 0.74 at the nominal conditions of 4576 kPa and 27{sup 0}C (650 psig and 80{sup 0}F) with a 0.57 specific gravity processed, pipeline quality natural gas. A bank of critical flow nozzles was used as the flow rate proving device to calibratemore » the orifice meters. Orifice discharge coefficients were computed with ANSI/API 2530-1985 (AGA3) and ISO 5167/ASME MFC-3M-1984 equations for every set of data points. With the orifice bore Reynolds numbers ranging from 1 to 9 million, the Sand Hills calibration data bridge the gap between the Ohio State water data at low Reynolds numbers and Chevron's high Reynolds number test data taken at a large test facility in Venice, Louisiana. The test results also successfully demonstrate that orifice meters can be accurately proved with critical flow nozzles under realistic field conditions.« less

  20. A Designed ZnO@ZIF-8 Core-Shell Nanorod Film as a Gas Sensor with Excellent Selectivity for H2 over CO.

    PubMed

    Wu, Xiaonan; Xiong, Shunshun; Mao, Zhenghao; Hu, Sheng; Long, Xinggui

    2017-06-12

    The development of H 2 gas sensors is important for H 2 production as a fuel. In this work, a ZnO@ZIF-8 core-shell nanorod film is designed and synthesized as a gas sensor through a facile solution deposition process. This film shows an excellent selective response for H 2 over CO. By fine-tuning the reaction conditions, a ZnO@ZIF-8 core-shell structure with a thin, fine-grain, porous ZIF-8 shell is obtained. Owing to the facile H 2 penetration through the ZIF-8 thin shell (≈110 nm) and the increased oxygen vacancies for the complex film, the ZnO@ZIF-8 nanorod film shows a higher H 2 sensitivity than a raw ZnO nanorod film. More importantly, the ZnO@ZIF-8 nanorod film shows no response for CO at 200 °C. Because of the fine-grain confinement of the porous ZIF-8 shell (<140 nm), the molecular sieving effect is strengthened, which allows the effective separation of H 2 over CO. This work provides a promising strategy for the design of high-performance H 2 sensors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Developing a Natural Gas-Powered Bus Rapid Transit Service. A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, George

    2015-11-01

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largestmore » rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.« less

  2. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, G.

    2015-11-03

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largestmore » rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.« less

  3. Venezuela natural gas for vehicles project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsicobetre, D.; Molero, T.

    1998-12-31

    The Natural Gas for Vehicles (NGV) Project in Venezuela describes the development and growth of the NGV project in the country. Venezuela is a prolific oil producer with advanced exploration, production, refining and solid marketing infrastructure. Gas production is 5.2 Bscfd. The Venezuelan Government and the oil state owned company Petroleos de Venezuela (PDVSA), pursued the opportunity of using natural gas for vehicles based on the huge amounts of gas reserves present and produced every day associated with the oil production. A nationwide gas pipeline network crosses the country from south to west reaching the most important cities and servingmore » domestic and industrial purposes but there are no facilities to process or export liquefied natural gas. NGV has been introduced gradually in Venezuela over the last eight years by PDVSA. One hundred forty-five NGV stations have been installed and another 25 are under construction. Work done comprises displacement or relocation of existing gasoline equipment, civil work, installation and commissioning of equipment. The acceptance and usage of the NGV system is reflected in the more than 17,000 vehicles that have been converted to date using the equivalent of 2,000 bbl oil/day.« less

  4. Comparison of methane emission estimates from multiple measurement techniques at natural gas production pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Clay Samuel; Vaughn, Timothy L.; Zimmerle, Daniel

    This study presents the results of a campaign that estimated methane emissions at 268 gas production facilities in the Fayetteville shale gas play using onsite measurements (261 facilities) and two downwind methods - the dual tracer flux ratio method (Tracer Facility Estimate - TFE, 17 facilities) and the EPA Other Test Method 33a (OTM33A Facility Estimate - OFE, 50 facilities). A study onsite estimate (SOE) for each facility was developed by combining direct measurements and simulation of unmeasured emission sources, using operator activity data and emission data from literature. The SOE spans 0-403 kg/h and simulated methane emissions from liquidmore » unloadings account for 88% of total emissions estimated by the SOE, with 76% (95% CI [51%-92%]) contributed by liquid unloading at two facilities. TFE and SOE show overlapping 95% CI between individual estimates at 15 of 16 (94%) facilities where the measurements were paired, while OFE and SOE show overlapping 95% CI between individual estimates at 28 of 43 (65%) facilities. However, variance-weighted least-squares (VWLS) regressions performed on sets of paired estimates indicate statistically significant differences between methods. The SOE represents a lower bound of emissions at facilities where onsite direct measurements of continuously emitting sources are the primary contributor to the SOE, a sub-selection of facilities which minimizes expected inter-method differences for intermittent pneumatic controllers and the impact of episodically-emitting unloadings. At 9 such facilities, VWLS indicates that TFE estimates systematically higher emissions than SOE (TFE-to-SOE ratio = 1.6, 95% CI [1.2 to 2.1]). At 20 such facilities, VWLS indicates that OFE estimates systematically lower emissions than SOE (OFE-to-SOE ratio of 0.41 [0.26 to 0.90]). Given that SOE at these facilities is a lower limit on emissions, these results indicate that OFE is likely a less accurate method than SOE or TFE for this type of facility.« less

  5. Comparison of methane emission estimates from multiple measurement techniques at natural gas production pads

    DOE PAGES

    Bell, Clay Samuel; Vaughn, Timothy L.; Zimmerle, Daniel; ...

    2017-02-09

    This study presents the results of a campaign that estimated methane emissions at 268 gas production facilities in the Fayetteville shale gas play using onsite measurements (261 facilities) and two downwind methods - the dual tracer flux ratio method (Tracer Facility Estimate - TFE, 17 facilities) and the EPA Other Test Method 33a (OTM33A Facility Estimate - OFE, 50 facilities). A study onsite estimate (SOE) for each facility was developed by combining direct measurements and simulation of unmeasured emission sources, using operator activity data and emission data from literature. The SOE spans 0-403 kg/h and simulated methane emissions from liquidmore » unloadings account for 88% of total emissions estimated by the SOE, with 76% (95% CI [51%-92%]) contributed by liquid unloading at two facilities. TFE and SOE show overlapping 95% CI between individual estimates at 15 of 16 (94%) facilities where the measurements were paired, while OFE and SOE show overlapping 95% CI between individual estimates at 28 of 43 (65%) facilities. However, variance-weighted least-squares (VWLS) regressions performed on sets of paired estimates indicate statistically significant differences between methods. The SOE represents a lower bound of emissions at facilities where onsite direct measurements of continuously emitting sources are the primary contributor to the SOE, a sub-selection of facilities which minimizes expected inter-method differences for intermittent pneumatic controllers and the impact of episodically-emitting unloadings. At 9 such facilities, VWLS indicates that TFE estimates systematically higher emissions than SOE (TFE-to-SOE ratio = 1.6, 95% CI [1.2 to 2.1]). At 20 such facilities, VWLS indicates that OFE estimates systematically lower emissions than SOE (OFE-to-SOE ratio of 0.41 [0.26 to 0.90]). Given that SOE at these facilities is a lower limit on emissions, these results indicate that OFE is likely a less accurate method than SOE or TFE for this type of facility.« less

  6. Compressed Gas Safety for Experimental Fusion Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertialmore » fusion experiments.« less

  7. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... application describes an offshore natural gas deepwater port facility that would be located approximately 16.2...

  8. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  9. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  10. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  11. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  12. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Portable gas detectors. 127.203... Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the...

  13. 78 FR 77445 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... Gas Storage LLC; Notice of Application Take notice that on December 6, 2013, Tres Palacios Gas Storage... working gas storage capacity in its salt cavern natural gas storage facility located in Matagorda, Colorado, and Wharton Counties, Texas. Tres Palacios states that the proposed abandonment of storage...

  14. 78 FR 11585 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... facilities. 211 Extractors of crude petroleum and natural gas. 211112 Natural gas liquid extraction... Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission Deadline for Petroleum and Natural Gas Systems Source Category AGENCY: Environmental Protection Agency (EPA). ACTION...

  15. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  16. KSC-99pp0351

    NASA Image and Video Library

    1999-03-26

    In the Vertical Processing Facility, TRW technicians look at the point of attachment on the Chandra X-ray Observatory, at left, for the solar panel array (behind them). They are getting ready to attach and deploy the solar panel. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93

  17. 18 CFR 292.205 - Criteria for qualifying cogeneration facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... standard. For any topping-cycle cogeneration facility, the useful thermal energy output of the facility... thermal energy output, during the 12-month period beginning with the date the facility first produces... total energy input of natural gas and oil to the facility; or (B) If the useful thermal energy output is...

  18. 77 FR 31841 - Notice of Applications for Authorization To Abandon Facilities and Services and To Acquire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... To Abandon Facilities and Services and To Acquire Facilities by Merger Steuben Gas Storage Company... Field Storage Facilities (Adrian Field) which Steuben operates pursuant to certificates of public... authorization to charge market based rates following its acquisition of the Adrian Field Storage Facility. The...

  19. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Wells, Beric E.; Bottenus, Courtney LH

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogenmore » gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.« less

  20. On-site flow calibration of turbine meters for natural gas custody transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, V.C.; Schexnayder, L.L.; Conkling, D.B.

    1991-05-01

    This paper presents the design criteria, performance characteristics, and calibration procedures relating to a turbine-meter flow-calibration facility used in the high-volume custody transfer of natural gas. The facility, located in Venice, LA, is owned and operated by Chevron U.S.A. Inc. and is used to meter sales volumes of up to 500 MMscf/D (14.16 {times} 10 std m{sup 3}/d) at a nominal operating pressure of 1,000 psig (6.9 MPa). The system includes three 12-in. (30.48 cm) turbine meters used for sales-volume measurement, a bank of sonic nozzles, and a master turbine meter connected in series with the sales meters. The sonicmore » nozzles and master meter serve as flow-proving and -calibration devices. sonic nozzles are recommended by the turbine-meter standard for meter calibration. This paper examines the performance of on-site calibration of gas turbine meters. The Venice facility successfully demonstrated that on-site calibration of gas-metering devices can ensure accurate gas-flow measurement under field conditions.« less

Top