Sample records for gas processing unit

  1. Natural Gas Processing Plants in the United States: 2010 Update

    EIA Publications

    2011-01-01

    This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations.

  2. Process for removing an organic compound from water

    DOEpatents

    Baker, Richard W.; Kaschemekat, Jurgen; Wijmans, Johannes G.; Kamaruddin, Henky D.

    1993-12-28

    A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

  3. Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klint, V.W.; Dale, P.R.; Stephenson, C.

    1997-10-01

    Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) processmore » for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.« less

  4. 40 CFR 63.640 - Applicability and designation of affected source.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reformer catalyst regeneration vents, and sulfur plant vents; and (5) Emission points routed to a fuel gas... required for refinery fuel gas systems or emission points routed to refinery fuel gas systems. (e) The... petroleum refining process unit that is subject to this subpart; (3) Units processing natural gas liquids...

  5. 40 CFR 63.640 - Applicability and designation of affected source.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reformer catalyst regeneration vents, and sulfur plant vents; and (5) Emission points routed to a fuel gas... required for refinery fuel gas systems or emission points routed to refinery fuel gas systems. (e) The... petroleum refining process unit that is subject to this subpart; (3) Units processing natural gas liquids...

  6. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  7. 40 CFR Appendix B to Part 63 - Sources Defined for Early Reduction Provisions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... All valves in gas or light liquid service within a process unit b. All pumps in light liquid service within a process unit c. All connectors in gas or light liquid service within a process unit d. Each...-ended valve or line i. Each sampling connection system j. Each instrumentation system k. Each pump...

  8. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of themore » gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.« less

  9. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  10. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  11. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  12. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  13. 30 CFR 202.151 - Royalty on processed gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residue gas shall be allowed royalty free for operation of the processing plant, but no allowance shall be... that proportionate share of each lease's residue gas necessary for the operation of the processing... resulting from processing gas, which is reinjected into a reservoir within the same lease, unit area, or...

  14. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  15. Gas plant converts amine unit to MDEA-based solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mak, H.Y.

    1992-10-01

    This paper reports that methyldiethanolamine (MDEA) has successfully replaced monoethanolamine (MEA) solvent at one of Canada's largest gas processing plants. This acid gas treating solvent lowered costs associated with pumping horsepower, reboiler duty, solvent losses, corrosion and other gas processing problems. Not all operating conditions at a gas processing plant favor MDEA or MEA. In the Rimbey plant, originally designed to process sour gas, more sweet gas feed (per volume) called for considering advantages of the lesser-used MDEA. Gulf Canada Resources operates several major sour gas plants in Alberta. The Rimbey Plant was designed in 1960 to process 400 MMscfdmore » of sour gas with 2% H[sub 2]S and 1.32% CO[sub 2]. The amine unit was designed to circulate 2,400 gpm of 20 wt% MEA solution. The single train amine plant has four gas conductors and two amine regenerators. The present raw inlet gas flowrate to the Rimbey Plant is about 312 MMscfd which is made up of three sources: 66 MMscfd of sour gas with 1.5% H[sub 2]S and 1.8% CO[sub 2]; 65 MMscfd of high CO[sub 2] gas with 400 ppmv H[sub 2]S and 3.9% CO[sub 2]; and 181 MMscfd of sweet gas with 2.2% CO[sub 2].« less

  16. Method for removing metal vapor from gas streams

    DOEpatents

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  17. Method for removing metal vapor from gas streams

    DOEpatents

    Ahluwalia, R. K.; Im, K. H.

    1996-01-01

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

  18. 40 CFR 63.761 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...

  19. 40 CFR 63.761 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...

  20. 40 CFR 63.761 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...

  1. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.

    PubMed

    Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang

    2014-07-15

    Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero.

  2. Stabilization of gas turbine unit power

    NASA Astrophysics Data System (ADS)

    Dolotovskii, I.; Larin, E.

    2017-11-01

    We propose a new cycle air preparation unit which helps increasing energy power of gas turbine units (GTU) operating as a part of combined cycle gas turbine (CCGT) units of thermal power stations and energy and water supply systems of industrial enterprises as well as reducing power loss of gas turbine engines of process blowers resulting from variable ambient air temperatures. Installation of GTU power stabilizer at CCGT unit with electric and thermal power of 192 and 163 MW, respectively, has resulted in reduction of produced electrical energy production costs by 2.4% and thermal energy production costs by 1.6% while capital expenditures after installation of this equipment increased insignificantly.

  3. Agricultural Construction Volume II. Oxy-Gas and Other Cutting/Welding Processes. Woodworking, Metals, Finishing. Instructor's Guide.

    ERIC Educational Resources Information Center

    Admire, Myron; Maricle, Gary

    This guide contains instructor's materials for teaching a secondary agricultural construction course consisting of instructional units on oxy-gas and other cutting and welding processes (10 lessons), woodworking (6 lessons), metals (10 lessons), and finishing (4 lessons). The materials for each unit include student objectives, a list of…

  4. Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope

    USGS Publications Warehouse

    Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.

    2011-01-01

    In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.

  5. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  6. 40 CFR 63.7522 - Can I use emissions averaging to comply with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section. You may not include new boilers or process heaters in an emissions average. (b) For a group of... subcategory of units designed to burn gas 2 (other) fuels. (iv) You may not average across the units designed to burn liquid, units designed to burn solid fuel, and units designed to burn gas 2 (other...

  7. Analysis of digester design concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashare, E.; Wilson, E. H.

    1979-01-29

    Engineering economic analyses were performed on various digester design concepts to determine the relative performance for various biomass feedstocks. A comprehensive literature survey describing the state-of-the-art of the various digestion designs is included. The digester designs included in the analyses are CSTR, plug flow, batch, CSTR in series, multi-stage digestion and biomethanation. Other process options investigated included pretreatment processes such as shredding, degritting, and chemical pretreatment, and post-digestion processes, such as dewatering and gas purification. The biomass sources considered include feedlot manure, rice straw, and bagasse. The results of the analysis indicate that the most economical (on a unit gasmore » cost basis) digester design concept is the plug flow reactor. This conclusion results from this system providing a high gas production rate combined with a low capital hole-in-the-ground digester design concept. The costs determined in this analysis do not include any credits or penalties for feedstock or by-products, but present the costs only for conversion of biomass to methane. The batch land-fill type digester design was shown to have a unit gas cost comparable to that for a conventional stirred tank digester, with the potential of reducing the cost if a land-fill site were available for a lower cost per unit volume. The use of chemical pretreatment resulted in a higher unit gas cost, primarily due to the cost of pretreatment chemical. A sensitivity analysis indicated that the use of chemical pretreatment could improve the economics provided a process could be developed which utilized either less pretreatment chemical or a less costly chemical. The use of other process options resulted in higher unit gas costs. These options should only be used when necessary for proper process performance, or to result in production of a valuable by-product.« less

  8. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  9. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  10. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  11. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  12. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  13. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  14. Gas hydrate suspensions formation and transportation research

    NASA Astrophysics Data System (ADS)

    Gulkov, A. N.; Gulkova, S.; Zemenkov, Yu D.; Lapshin, V. D.

    2018-05-01

    An experimental unit for studying the formation of gas hydrate suspensions and their transport properties is considered. The scheme of installation and the basic processes, which can be studied, are described. The results of studies of gas hydrates and a gas hydrate suspension’ formation in an adiabatic process in a stream of seawater are given. The adiabatic method of obtaining gas hydrates and forming gas hydrate suspensions is offered to use. Directions for further research are outlined.

  15. Evaluation of phase separator number in hydrodesulfurization (HDS) unit

    NASA Astrophysics Data System (ADS)

    Jayanti, A. D.; Indarto, A.

    2016-11-01

    The removal process of acid gases such as H2S in natural gas processing industry is required in order to meet sales gas specification. Hydrodesulfurization (HDS)is one of the processes in the refinery that is dedicated to reduce sulphur.InHDS unit, phase separator plays important role to remove H2S from hydrocarbons, operated at a certain pressure and temperature. Optimization of the number of separator performed on the system is then evaluated to understand the performance and economics. From the evaluation, it shows that all systems were able to meet the specifications of H2S in the desired product. However, one separator system resulted the highest capital and operational costs. The process of H2S removal with two separator systems showed the best performance in terms of both energy efficiency with the lowest capital and operating cost. The two separator system is then recommended as a reference in the HDS unit to process the removal of H2S from natural gas.

  16. Design and implementation of the monitoring system for underground coal fires in Xinjiang region, China

    NASA Astrophysics Data System (ADS)

    Li-bo, Dang; Jia-chun, Wu; Yue-xing, Liu; Yuan, Chang; Bin, Peng

    2017-04-01

    Underground coal fire (UCF) is serious in Xinjiang region of China. In order to deal with this problem efficiently, a UCF monitoring System, which is based on the use of wireless communication technology and remote sensing images, was designed and implemented by Xinjiang Coal Fire Fighting Bureau. This system consists of three parts, i.e., the data collecting unit, the data processing unit and the data output unit. For the data collecting unit, temperature sensors and gas sensors were put together on the sites with depth of 1.5 meter from the surface of coal fire zone. Information on these sites' temperature and gas was transferred immediately to the data processing unit. The processing unit was developed by coding based on GIS software. Generally, the processed datum were saved in the computer by table format, which can be displayed on the screen as the curve. Remote sensing image for each coal fire was saved in this system as the background for each monitoring site. From the monitoring data, the changes of the coal fires were displayed directly. And it provides a solid basis for analyzing the status of coal combustion of coal fire, the gas emission and possible dominant direction of coal fire propagation, which is helpful for making-decision of coal fire extinction.

  17. Turbine Fuels from Tar Sands Bitumen and Heavy Oil. Phase I. Preliminary Process Analysis.

    DTIC Science & Technology

    1985-04-09

    OIL RESERVOIRS OF THE UNITED STATES Resource: Oil -in-Place State Field Name (County) (Million Bbls.) Arkansas Smackover Old (Union) 1,6U0 California...Flow Schematic for Gas Oil Feed Hydrotreater 94 14 Summary of Case Studies for Processing Bitumen from New Mexico 95 15 Summary of Case Studies for...Naphtha Hydrotreating Process Estimates 112 14 Gas Oil Hydrocracking Process Estimates 113 l! Gas Oil Hydrotreating Process Estimate 114 16 Fluid

  18. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION - NEW ORLEANS, MARCH 1976, VOLUME I

    EPA Science Inventory

    The proceedings document the presentation made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, nonregenerable, and advanced processes; process costs; and by-produc...

  19. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION-NEW ORLEANS, MARCH 1976. VOLUME II

    EPA Science Inventory

    The proceedings document the presentations made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, non-regenerable, and advanced processes; process costs; and by-prod...

  20. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less

  1. An experimental approach aiming the production of a gas mixture composed of hydrogen and methane from biomass as natural gas substitute in industrial applications.

    PubMed

    Kraussler, Michael; Schindler, Philipp; Hofbauer, Hermann

    2017-08-01

    This work presents an experimental approach aiming the production of a gas mixture composed of H 2 and CH 4 , which should serve as natural gas substitute in industrial applications. Therefore, a lab-scale process chain employing a water gas shift unit, scrubbing units, and a pressure swing adsorption unit was operated with tar-rich product gas extracted from a commercial dual fluidized bed biomass steam gasification plant. A gas mixture with a volumetric fraction of about 80% H 2 and 19% CH 4 and with minor fractions of CO and CO 2 was produced by employing carbon molecular sieve as adsorbent. Moreover, the produced gas mixture had a lower heating value of about 15.5MJ·m -3 and a lower Wobbe index of about 43.4MJ·m -3 , which is similar to the typical Wobbe index of natural gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...

  3. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...

  4. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...

  5. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...

  6. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1 of...

  7. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste... resulting from the quench and compression of cracked gas (the cracking furnace effluent) at an ethylene... within an ethylene production unit. Process wastewater is not organic wastes, process fluids, product...

  8. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION HELD AT HOLLYWOOD, FLORIDA, NOVEMBER 1977. VOLUME II

    EPA Science Inventory

    The proceedings document presentations made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, non-regenerable, and advanced processes; process costs; and by-product ...

  9. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION HELD AT HOLLYWOOD, FLORIDA, NOVEMBER 1977. VOLUME I

    EPA Science Inventory

    The proceedings document presentations made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, non-regenerable, and advanced processes; process costs; and by-product ...

  10. PCDD/PCDF reduction by the co-combustion process.

    PubMed

    Lee, Vinci K C; Cheung, Wai-Hung; McKay, Gordon

    2008-01-01

    A novel process, termed the co-combustion process, has been developed and designed to utilise the thermal treatment of municipal solid waste (MSW) in cement clinker production and reduce PCDD/PCDF emissions. To test the conceptual design; detailed engineering design of the process and equipment was performed and a pilot plant was constructed to treat up to 40 tonnes MSW per day. The novel process features included several units external to the main traditional cement rotary kiln: an external calcinations unit in which the hot gas calcined the limestone thus making significant energy savings for this chemical reaction; the lime generated was used in a second chamber to act as a giant acid gas scrubber to remove SOx and particularly HCl (a source of chloride); an external rotary kiln and secondary combustion unit capable of producing a hot gas at 1200 degrees C; a gas cooler to simulate a boiler turbogenerator set for electricity generation; the incorporation of some of the bottom ash, calcined lime and dust collector solids into the cement clinker. A PCDD/PCDF inventory has been completed for the entire process and measured PCDD/PCDF emissions were 0.001 ng I-TEQ/Nm(3) on average which is 1% of the best practical means [Hong Kong Environmental Protection Department, 2001. A guidance note on the best practicable means for incinerators (municipal waste incineration), BPM12/1] MSW incineration emission limit values.

  11. Linam Ranch cryogenic gas plant: A design and operating retrospective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwell, L.J.; Kuscinski, J.

    1999-07-01

    GPM Gas Corporation's Linam Ranch Gas Plant is the processing hub of their southeastern New Mexico gathering system, producing a y-grade NGL product which is pipelined primarily to the Phillips petrochemical complex at Sweeney, Texas, GPM acquired the facility near Hobbs, N.M. late in 1994 when it was still operating as a refrigerated lean oil plant, renamed it, and commenced an upgrade project culminating in its conversion to a high recovery cryogenic facility in early 1996 with a processing capacity of 150 MMscfd. Facilities that were upgraded included inlet liquids receiving and handling, the amine system, mol sieve dehydration, themore » sulfur recovery unit, inlet compression, and the propane refrigeration system. A Foxboro I/A DCS was also placed into operation. The lean oil system was replaced with a high recovery turboexpander unit supplied by KTI Fish based on their Flash Vapor Reflux (FVR) process. Resulting ethane recovery was greater than 95% for the new facilities. New residue compression units were installed including steam generators on the turbine exhausts, which complemented the existing plant steam system. During the three years since conversion to cryogenic operation, GPM has steadily improved plant operations. Expansion of the mol sieve dehydration system and retrofit of evaporation combustion air cooling on gas turbines have expanded nameplate capacity to 170 MMscfd while maintaining ethane recovery at 95%. Future expansion to 200 MMscfd with high recovery is achievable. In addition, creative use of the Foxboro DCS has been employed to implement advanced control schemes for handling inlet liquid slugs, gas and amine balancing for parallel amine contactors, improved sulfur recovery unit (SRU) trim air control, and constraint-based process optimization to maximize horsepower utilization and ethane recovery. Some challenges remain, leaving room for additional improvements. However, GPM's progress so far has resulted in a current ethane recovery level in excess of 97% when processing gas at the original design throughput of 150 MMscfd.« less

  12. 40 CFR 98.162 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING Hydrogen Production § 98.162 GHGs to report. You must report: (a) CO2 emissions from each hydrogen production process unit. (b) [Reserved] (c) CO2, CH4, and N2O emissions from each stationary combustion unit other than hydrogen production process units. You must calculate and report these...

  13. 40 CFR 98.162 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Hydrogen Production § 98.162 GHGs to report. You must report: (a) CO2 emissions from each hydrogen production process unit. (b) [Reserved] (c) CO2, CH4, and N2O emissions from each stationary combustion unit other than hydrogen production process units. You must calculate and report these...

  14. 40 CFR 98.162 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING Hydrogen Production § 98.162 GHGs to report. You must report: (a) CO2 emissions from each hydrogen production process unit. (b) [Reserved] (c) CO2, CH4, and N2O emissions from each stationary combustion unit other than hydrogen production process units. You must calculate and report these...

  15. 40 CFR 98.162 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Hydrogen Production § 98.162 GHGs to report. You must report: (a) CO2 emissions from each hydrogen production process unit. (b) [Reserved] (c) CO2, CH4, and N2O emissions from each stationary combustion unit other than hydrogen production process units. You must calculate and report these...

  16. 40 CFR 98.72 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...

  17. 40 CFR 98.72 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...

  18. 40 CFR 98.72 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...

  19. 40 CFR 98.72 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements of this subpart (CO2... production, and therefore is not released to the ambient air from the ammonia manufacturing process unit). (b...

  20. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    DOEpatents

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  1. 40 CFR 98.162 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Hydrogen Production § 98.162 GHGs to report. You must report: (a) CO2 process emissions from each hydrogen production process unit. (b) CO2, CH4 and N2O combustion emissions from each hydrogen production process unit. You must calculate and report these combustion emissions under subpart C...

  2. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOEpatents

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  3. 75 FR 14545 - Revisions to the California State Implementation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... producing devices by covering hot wells and collecting vapors for recycle to refinery gas or incineration... refinery process unit turnaround by collecting vapors for recycle to refinery gas, incineration, or flaring...

  4. Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine

    NASA Astrophysics Data System (ADS)

    Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.

    2011-10-01

    The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.

  5. 75 FR 45112 - Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... information and viewpoints from interested parties on approaches to accounting for greenhouse gas emissions... (BACT) review process under PSD? In addition, the first full sentence of the third bulleted item in... is: ``The Clean Air Act (CAA) provisions typically apply at the unit, process, or facility scale...

  6. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric

    2011-10-01

    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, R.D.

    This is volume II of papers which were presented at the natural gas RD&D contractors review meeting. Topics include: natural gas upgrading, storage, well drilling, completion, and stimulation. Individual papers were processed separately for the United States Department of Energy databases.

  8. USGS National Assessment of Oil and Gas Online (NOGA Online)

    USGS Publications Warehouse

    Biewick, L.H.

    2003-01-01

    The Central Energy Resources Team (CERT) of the U.S. Geological Survey is providing results of the USGS National Assessment of Oil and Gas online (NOGA Online). In addition to providing resource estimates and geologic reports, NOGA Online includes an internet map application that allows interactive viewing and analysis of assessment data and results. CERT is in the process of reassessing domestic oil and natural gas resources in a series of priority basins in the United States using a Total Petroleum System (TPS) approach where the assessment unit is the basic appraisal unit (rather than the oil and gas play used in the 1995 study). Assessments of undiscovered oil and gas resources in five such priority provinces were recently completed to meet the requirements of the Energy Policy and Conservation Act of 2000 (EPCA 2000). New assessment results are made available at this site on an ongoing basis.

  9. Evaluation of high-efficiency gas-liquid contactors for natural gas processing. Second semiannual technical progress report, April 1, 1993--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The objective of this proposed program is to evaluate the potential of rotating gas-liquid contactors for natural gas processing by expanding the currently available database. This expansion will focus on application of this technology to environments representative of those typically encountered in natural gas processing plants. Operational and reliability concerns will be addressed while generating pertinent engineering data relating to the mass-transfer process. Work to be performed this reporting period are: complete all negotiations and processing of agreements; complete assembly, modifications, shakedown, and conduct fluid dynamic studies using the plastic rotary contactor unit; confirmation of project test matrix; and locate,more » and transport an amine plant and dehydration plant. Accomplishment for this period are presented.« less

  10. Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, J.D.; Hudson, H.M.

    1982-05-01

    Several new turboexpander gas-plant schemes offer two advantages over conventional processes: they can recover over 85% of the natural gas stream's ethane while handling higher inlet CO/sub 2/ concentrations without freezing - this saves considerable costs by allowing smaller CO/sub 2/ removal units or eliminating the need for them entirely, and the liquids recovery system requires no more external horsepower and in many cases, even less; this maximized the quantity of liquids recovered per unit of energy input, thus further lowering costs. The economic benefits associated with the proved plant designs make the processes attractive even for inlet gas streamsmore » containing little or no CO/sub 2/.« less

  11. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  12. Cyclic membrane separation process

    DOEpatents

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  13. Apparatus Circulates Sterilizing Gas

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Schwarz, Ray P.

    1991-01-01

    Apparatus circulates sterilizing gas containing ethylene oxide and chlorofluorocarbon through laboratory or medical equipment. Confines sterilizing gas, circulating it only through parts to be treated. Consists of two units. One delivers ethylene oxide/chlorofluorocarbon gas mixture and removes gas after treatment. Other warms, humidifies, and circulates gas through equipment to be treated. Process provides reliable sterilization with negligible residual toxicity from ethylene oxide. Particularly suitable for sterilization of interiors of bioreactors, heart/lung machines, dialyzers, or other equipment including complicated tubing.

  14. Advances of two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process.

    PubMed

    Chaohe, Yang; Xiaobo, Chen; Jinhong, Zhang; Chunyi, Li; Honghong, Shan

    Two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process proposed by State Key Laboratory of Heavy oil Processing, China University of Petroleum, can remarkably enhance the propylene yield and minimize the dry gas and coke yields, and obtain high-quality light oils (gasoline and diesel). It has been commercialized since 2006. Up to now, three TMP commercial units have been put into production and other four commercial units are under design and construction. The commercial data showed that taking paraffinic based Daqing (China) atmospheric residue as the feedstock, the propylene yield reached 20.31 wt%, the liquid products yield (the total yield of liquefied petroleum gas, gasoline, and diesel) was 82.66 wt%, and the total yield of dry gas and coke was 14.28 wt%. Moreover, the research octane number of gasoline could be up to 96.

  15. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...

  16. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...

  17. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...

  18. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...

  19. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...

  20. 40 CFR 60.482-7 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Before November 7, 2006 § 60.482-7 Standards: Valves in gas/vapor service and in light liquid service. (a... operation in gas/vapor service or light liquid service after the initial startup date for the process unit... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service...

  1. 40 CFR 60.482-7 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Before November 7, 2006 § 60.482-7 Standards: Valves in gas/vapor service and in light liquid service. (a... operation in gas/vapor service or light liquid service after the initial startup date for the process unit... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service...

  2. 40 CFR 60.482-7 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Before November 7, 2006 § 60.482-7 Standards: Valves in gas/vapor service and in light liquid service. (a... operation in gas/vapor service or light liquid service after the initial startup date for the process unit... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service...

  3. 40 CFR 60.482-7 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Before November 7, 2006 § 60.482-7 Standards: Valves in gas/vapor service and in light liquid service. (a... operation in gas/vapor service or light liquid service after the initial startup date for the process unit... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service...

  4. 40 CFR 60.482-7 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Before November 7, 2006 § 60.482-7 Standards: Valves in gas/vapor service and in light liquid service. (a... operation in gas/vapor service or light liquid service after the initial startup date for the process unit... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service...

  5. Fuel processing for PEM fuel cells: transport and kinetic issues of system design

    NASA Astrophysics Data System (ADS)

    Zalc, J. M.; Löffler, D. G.

    In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.

  6. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  7. Molecular and isotopic analyses of the hydrocarbon gases within gas hydrate-bearing rock units of the Prudhoe Bay-Kuparuk River area in northern Alaska

    USGS Publications Warehouse

    Valin, Zenon C.; Collett, Timothy S.

    1992-01-01

    Gas hydrates, which are crystalline substances of water molecules that encase gas molecules, have the potential for being a significant source of natural gas. World-wide estimates for the amount of gas contained in hydrates range from 1.1 x 105 to 2.7 x 108 trillion cubic feet. Gas hydrates exist in many Arctic regions, including the North Slope of Alaska. The two primary objectives of the U.S. Geological Survey Gas Hydrate Research Project are (1) to map the distribution of in-situ gas hydrates on the North Slope of Alaska, and (2) to evaluate the geologic parameters that control the distribution of these gas hydrates. To aid in this study, British Petroleum Exploration, ARCO Alaska, Exxon Company USA, and the Continental Oil Company allowed the U.S. Geological Survey to collect geochemical samples from drilling North Slope production wells. Molecular analysis of gaseous drill cutting and free-flowing gas samples from 10 production wells drilled in the Prudhoe Bay, Kuparuk River, and Milne Point oil fields indicates that methane is the primary hydrocarbon gas in the gas hydrate-bearing stratigraphic units. Isotopic data for several of these rock units indicate that the methane within the inferred gas hydrate occurences originated from both microbial and thermogenic processes.

  8. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  9. Development of the CCP-200 mathematical model for Syzran CHPP using the Thermolib software package

    NASA Astrophysics Data System (ADS)

    Usov, S. V.; Kudinov, A. A.

    2016-04-01

    Simplified cycle diagram of the CCP-200 power generating unit of Syzran CHPP containing two gas turbines PG6111FA with generators, two steam recovery boilers KUP-110/15-8.0/0.7-540/200, and one steam turbine Siemens SST-600 (one-cylinder with two variable heat extraction units of 60/75 MW in heatextraction and condensing modes, accordingly) with S-GEN5-100 generators was presented. Results of experimental guarantee tests of the CCP-200 steam-gas unit are given. Brief description of the Thermolib application for the MatLab Simulink software package is given. Basic equations used in Thermolib for modeling thermo-technical processes are given. Mathematical models of gas-turbine plant, heat-recovery steam generator, steam turbine and integrated plant for power generating unit CCP-200 of Syzran CHPP were developed with the help of MatLab Simulink and Thermolib. The simulation technique at different ambient temperature values was used in order to get characteristics of the developed mathematical model. Graphic comparison of some characteristics of the CCP-200 simulation model (gas temperature behind gas turbine, gas turbine and combined cycle plant capacity, high and low pressure steam consumption and feed water consumption for high and low pressure economizers) with actual characteristics of the steam-gas unit received at experimental (field) guarantee tests at different ambient temperature are shown. It is shown that the chosen degrees of complexity, characteristics of the CCP-200 simulation model, developed by Thermolib, adequately correspond to the actual characteristics of the steam-gas unit received at experimental (field) guarantee tests; this allows considering the developed mathematical model as adequate and acceptable it for further work.

  10. Microgravity Passive Phase Separator

    NASA Technical Reports Server (NTRS)

    Paragano, Matthew; Indoe, William; Darmetko, Jeffrey

    2012-01-01

    A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface area of the separating screen. Additionally, there are no moving parts, and there are no failure modes that involve fluid loss. A patent application has been filed.

  11. Understanding Emissions from Control-Related Equipment used in Oil and Gas Production Operations to Support EPA’s Air Quality Modeling of Ozone Non-attainment Areas

    EPA Science Inventory

    Oil and gas production has increased significantly in the United States over the past ten years. Improperly maintained and controlled oil and gas extraction and production (E&P) processes have the potential to emit significant amounts of pollutants that can impact human health an...

  12. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    PubMed

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Power Up with Methane Gas: Struthers Water Pollution Control Facility

    EPA Pesticide Factsheets

    The city of Struthers received $5.4 million in ARRA funding from the Ohio’s CWSRF for a project that uses methane gas produced at the Struthers Water Pollution Control Facility to power unit treatment processes and offset the facility’s energy footprint.

  14. Helium extraction and nitrogen removal from LNG boil-off gas

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Peng, N.; Liu, L.; Gong, L.

    2017-02-01

    The helium bearing boil off gas (BOG) from liquid natural gas (LNG) storage tank in LNG plant, which has a helium concentration of about 1%, has attracted the attention in China as a new helium source. As the BOG is usually reused by re-condensing to recover methane, it is likely to cause continuous accumulation of nitrogen in the unit, thus a nitrogen removal process must be integrated. This paper describes a conceptional cryogenic separation system aiming at recovering methane, helium and nitrogen from BOG based on cryogenic distillation and condensation process.

  15. A pilot scale ultrasonic system to enhance extraction processes with dense gases

    NASA Astrophysics Data System (ADS)

    Riera, E.; Blasco, M.; Tornero, A.; Casas, E.; Roselló, C.; Simal, S.; Acosta, V. M.; Gallego-Juárez, J. A.

    2012-05-01

    The use of dense gases (supercritical fluids) as extracting agents has been attracting wide interest for years. In particular, supercritical carbon dioxide is considered nowadays as a green and very useful solvent. Nevertheless, the extraction process has a slow dynamics. Power ultrasound represents an efficient way for accelerating and enhancing the kinetics of the process by producing strong agitation and turbulence, compressions and decompressions, and heating in the media. For this purpose, a device prototype for using ultrasound in supercritical media was developed, tested and validated in extraction processes of oil from grounded almonds (55% oil content, wet basis and 3-4 mm particle size) in a 5 L extraction unit. An amount of 1500 g of grounded almonds was placed in a cylindrical basket during the trials inside the dense gas extractor (DGE) where solvent was introduced at different flow rates, pressures and temperatures. In all cases the ultrasonic energy confirmed the enhancement and acceleration of the almond oil extraction kinetics using supercritical CO2. Presently the power ultrasound effect in such a process is being deeply analyzed in a 5 L extraction unit before scaling-up a new ultrasonic system. This technology, still under development, has been designed for a bigger dense gas pilot-plant consisting of two extractors (20 L capacity), two separation units and has the possibility of operating at a pressure up to 50 MPa. The goal of this work is to study the effect of high-power ultrasound coupled to dense gas extraction inside the basket with the product, and to present a prototype for the use of power ultrasound in extraction processes with dense gases inside a new 20 L extractor unit.

  16. 40 CFR 98.72 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.72 GHGs to report. You must report: (a) CO2 process..., reported for each ammonia manufacturing process unit following the requirements in this subpart. (b) CO2...

  17. 40 CFR 98.160 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.160 Definition of the source category. (a) A hydrogen production source category consists of facilities that produce hydrogen gas sold as a product to other entities. (b) This source category comprises process units that produce hydrogen by...

  18. 40 CFR 98.160 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.160 Definition of the source category. (a) A hydrogen production source category consists of facilities that produce hydrogen gas sold as a product to other entities. (b) This source category comprises process units that produce hydrogen by...

  19. 40 CFR 98.160 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.160 Definition of the source category. (a) A hydrogen production source category consists of facilities that produce hydrogen gas sold as a product to other entities. (b) This source category comprises process units that produce hydrogen by...

  20. 40 CFR 98.160 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.160 Definition of the source category. (a) A hydrogen production source category consists of facilities that produce hydrogen gas sold as a product to other entities. (b) This source category comprises process units that produce hydrogen by...

  1. 40 CFR 98.160 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.160 Definition of the source category. (a) A hydrogen production source category consists of facilities that produce hydrogen gas sold as a product to other entities. (b) This source category comprises process units that produce hydrogen by...

  2. Syllabus in Trade Welding.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  3. Modern trends in increasing the quality of the steels intended for cutting and metal-working tools: I. Improvement of granule metallurgy processes

    NASA Astrophysics Data System (ADS)

    Belyanchikov, L. N.

    2008-12-01

    The following new technological processes for producing fine gas-atomized powders of tool and high-speed steels with a low content of nonmetallic inclusions are considered: the process designed by Böhler Uddeholm Powder Technology (Austria) and processes involving a heated gas. In the former process, a metal is poured from a ladle with electroslag heating, and the atomizing unit consists of three injectors. A new process of producing tools from fine powders by three-dimensional printing, i.e., so-called 3D-printing, is described.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotman, D.

    After nearly a decade of work and $150 million in development costs. Exxon Research and Engineering (ER&E; Florham Park, NJ) says its natural gas conversion process based on Fischer-Tropsch technology is ready for full-scale commercialization. ER&E is looking to entice one of Exxon`s other business units into building a plant based on the process. The Exxon technology makes refinery or petrochemical feedstocks from natural gas in an integrated three-step process, including fluid-bed reactor to make synthesis gas and a hydrocarbon synthesis step using a proprietary Fischer-Tropsch catalyst. Exxon has successfully demonstrated the process at a pilot plant in Baton Rouge,more » LA but says no commercialization decision has been made. ER&E estimates that to commercialize the technology economically will require a large gas conversion plant-with a price tag of about $2 billion.« less

  5. Discussion of Carbon Emissions for Charging Hot Metal in EAF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Yang, Ling-zhi; Jiang, Tao; Li, Guang-hui; Guo, Yu-feng

    2017-07-01

    As the cost of hot metal is reduced for iron ore prices are falling in the international market, more and more electric arc furnace (EAF) steelmaking enterprises use partial hot metal instead of scrap as raw materials to reduce costs and the power consumption. In this paper, carbon emissions based on 1,000 kg molten steel by charging hot metal in EAF steelmaking is studied. Based on the analysis of material and energy balance calculation in EAF, the results show that 146.9, 142.2, 137.0, and 130.8 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 %, while 143.4, 98.5, 65.81, and 31.5 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 % by using gas waste heat utilization (coal gas production) for EAF steelmaking unit process. However, carbon emissions are increased by charging hot metal for the whole blast furnace-electric arc furnace (BF-EAF) steelmaking process. In the condition that the hot metal produced by BF is surplus, as carbon monoxide in gas increased by charging hot metal, the way of coal gas production can be used for waste heat utilization, which reduces carbon emissions in EAF steelmaking unit process.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosio, J.; Wilcox, P.; Sembsmoen, O.

    A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipelinemore » network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.« less

  7. Multiscale Numerical Methods for Non-Equilibrium Plasma

    DTIC Science & Technology

    2015-08-01

    current paper reports on the implementation of a numerical solver on the Graphic Processing Units (GPUs) to model reactive gas mixtures with detailed...Governing equations The flow ismodeled as amixture of gas specieswhile neglecting viscous effects. The chemical reactions taken place between the gas ...components are to be modeled in great detail. The set of the Euler equations for a reactive gas mixture can be written as: ∂Q ∂t + ∇ · F̄ = Ω̇ (1) where Q

  8. Extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2000-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  9. Apparatus for extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2001-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  10. 40 CFR 63.1001 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that returns process fluid to the process and is not vented directly to the atmosphere. Closed-purge.... Combustion device means an individual unit of equipment, such as a flare, incinerator, process heater, or..., flares, boilers, and process heaters. Primary condensers on steam strippers or fuel gas systems are not...

  11. 40 CFR 63.1001 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that returns process fluid to the process and is not vented directly to the atmosphere. Closed-purge.... Combustion device means an individual unit of equipment, such as a flare, incinerator, process heater, or..., flares, boilers, and process heaters. Primary condensers on steam strippers or fuel gas systems are not...

  12. 40 CFR 63.1001 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that returns process fluid to the process and is not vented directly to the atmosphere. Closed-purge.... Combustion device means an individual unit of equipment, such as a flare, incinerator, process heater, or..., flares, boilers, and process heaters. Primary condensers on steam strippers or fuel gas systems are not...

  13. 40 CFR 63.1001 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that returns process fluid to the process and is not vented directly to the atmosphere. Closed-purge.... Combustion device means an individual unit of equipment, such as a flare, incinerator, process heater, or..., flares, boilers, and process heaters. Primary condensers on steam strippers or fuel gas systems are not...

  14. 40 CFR 60.2265 - What definitions must I know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen, carbon monoxide, synthesis gas, or other gases for use in other manufacturing processes. (7... liquids or solids to produce hydrogen, carbon monoxide, synthesis gas, or other gases for use in other...) Units burning only coke to produce purified carbon monoxide that is used as an intermediate in the...

  15. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... purified carbon monoxide that is used as an intermediate in the production of other chemical compounds. (6) Units burning only hydrocarbon liquids or solids to produce hydrogen, carbon monoxide, synthesis gas, or... hydrogen, carbon monoxide, synthesis gas, or other gases for use in other manufacturing processes. (7...

  16. 40 CFR 60.2265 - What definitions must I know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen, carbon monoxide, synthesis gas, or other gases for use in other manufacturing processes. (7... liquids or solids to produce hydrogen, carbon monoxide, synthesis gas, or other gases for use in other...) Units burning only coke to produce purified carbon monoxide that is used as an intermediate in the...

  17. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... purified carbon monoxide that is used as an intermediate in the production of other chemical compounds. (6) Units burning only hydrocarbon liquids or solids to produce hydrogen, carbon monoxide, synthesis gas, or... hydrogen, carbon monoxide, synthesis gas, or other gases for use in other manufacturing processes. (7...

  18. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGDmore » & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.« less

  19. A Novel Study of Methane-Rich Gas Reforming to Syngas and Its Kinetics over Semicoke Catalyst

    PubMed Central

    Zhang, Guojie; Su, Aiting; Qu, Jiangwen; Du, Yannian

    2014-01-01

    A small-size gasification unit is improved through process optimization to simulate industrial United Gas Improvement Company gasification. It finds that the reaction temperature has important impacts on semicoke catalyzed methane gas mixture. The addition of water vapor can enhance the catalytic activity of reforming, which is due to the fact that addition of water vapor not only removes carbon deposit produced in the reforming and gasification reaction processes, but also participates in gasification reaction with semicoke to generate some active oxygen-containing functional groups. The active oxygen-containing functional groups provide active sites for carbon dioxide reforming of methane, promoting the reforming reaction. It also finds that the addition of different proportions of methane-rich gas can yield synthesis gas with different H2/CO ratio. The kinetics study shows that the semicoke can reduce the activation energy of the reforming reaction and promote the occurrence of the reforming reaction. The kinetics model of methane reforming under the conditions of steam gasification over semicoke is as follows: k-=5.02×103·pCH40.71·pH20.26·exp(−74200/RT). PMID:24959620

  20. Characterization of cellulosic wastes and gasification products from chicken farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Paul, E-mail: p.joseph@ulster.ac.uk; Tretsiakova-McNally, Svetlana; McKenna, Siobhan

    Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chickenmore » litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.« less

  1. Fatal chlorine gas exposure at a metal recycling facility: Case report.

    PubMed

    Harvey, Robert R; Boylstein, Randy; McCullough, Joel; Shumate, Alice; Yeoman, Kristin; Bailey, Rachel L; Cummings, Kristin J

    2018-06-01

    At least four workers at a metal recycling facility were hospitalized and one died after exposure to chlorine gas when it was accidentally released from an intact, closed-valved cylinder being processed for scrap metal. This unintentional chlorine gas release marks at least the third such incident at a metal recycling facility in the United States since 2010. We describe the fatal case of the worker whose clinical course was consistent with acute respiratory distress syndrome (ARDS) following exposure to high concentrations of chlorine gas. This case report emphasizes the potential risk of chlorine gas exposure to metal recycling workers by accepting and processing intact, closed-valved containers. The metal recycling industry should take steps to increase awareness of this established risk to prevent future chlorine gas releases. Additionally, public health practitioners and clinicians should be aware that metal recycling workers are at risk for chlorine gas exposure. © 2018 Wiley Periodicals, Inc.

  2. Modelling of Technological Solutions to 4th Generation DH Systems

    NASA Astrophysics Data System (ADS)

    Vigants, Edgars; Prodanuks, Toms; Vigants, Girts; Veidenbergs, Ivars; Blumberga, Dagnija

    2017-11-01

    Flue gas evaporation and condensing processes are investigated in a direct contact heat exchanger - condensing unit, which is installed after a furnace. By using equations describing processes of heat and mass transfer, as well as correlation coherences for determining wet gas parameters, a model is formed to create a no-filling, direct contact heat exchanger. Results of heating equipment modelling and experimental research on the gas condensing unit show, that the capacity of the heat exchanger increases, when return temperature of the district heating network decreases. In order to explain these alterations in capacity, the character of the changes in water vapour partial pressure, in the propelling force of mass transfer, in gas and water temperatures and in the determining parameters of heat transfer are used in this article. The positive impact on the direct contact heat exchanger by the decreased district heating (DH) network return temperature shows that introduction of the 4th generation DH system increases the energy efficiency of the heat exchanger. In order to make an assessment, the methodology suggested in the paper can be used in each particular situation.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOLmore » acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid-life activity of the shift-catalyst. The SELEXOL unit consists of the H2S and CO2 absorbers that are designed to meet the stringent environmental limits and requirements of other associated units. The model also considers the stripper for recovering H2S that is sent as a feed to a split-flow Claus unit. The tail gas from the Claus unit is recycled to the SELEXOL unit. The cleaned syngas is sent to the GE 7FB gas turbine. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady-state simulation is solved in sequential-modular mode in Aspen Plus{reg_sign} and consists of more than 300 unit operations, 33 design specs, and 16 calculator blocks. The equation-oriented dynamic simulation consists of more than 100,000 equations solved using a multi-step Gear's integrator in Aspen Plus Dynamics{reg_sign}. The challenges faced in solving the dynamic model and key transient results from this dynamic model will also be discussed.« less

  4. Evaluating the energy performance of a hybrid membrane-solvent process for flue gas carbon dioxide capture

    DOE PAGES

    Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David; ...

    2016-10-13

    In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less

  5. Evaluating the energy performance of a hybrid membrane-solvent process for flue gas carbon dioxide capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David

    In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less

  6. Gas-Liquid Processing in Microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; Twitchell, Alvin

    Processing gases and liquids together in microchannels having at least one dimension <1 mm has unique advantages for rapid heat and mass transfer. One approach for managing the two phases is to use porous structures as wicks within microchannels to segregate the liquid phase from the gas phase. Gas-liquid processing is accomplished by providing a gas flow path and inducing flow of the liquid phase through or along the wick under an induced pressure gradient. A variety of unit operations are enabled, including phase separation, partial condensation, absorption, desorption, and distillation. Results are reported of an investigation of microchannel phasemore » separation in a transparent, single-channel device. Next, heat exchange is integrated with the microchannel wick approach to create a partial condenser that also separates the condensate. Finally, the scale-up to a multi-channel phase separator is described.« less

  7. A Spatial Risk Analysis of Oil Refineries within the United States

    DTIC Science & Technology

    2012-03-01

    regulator and consumer. This is especially true within the energy sector which is composed of electrical power, oil , and gas infrastructure [10...Naphtali, "Analysis of Electrical Power and Oil and Gas Pipeline Failures," in International Federation for Information Processing, E. Goetz and S...61-67, September 1999. [5] J. Simonoff, C. Restrepo, R. Zimmerman, and Z. Naphtali, "Analysis of Electrical Power and Oil and Gas Pipeline Failures

  8. Ferrite Research Aimed at Improving Induction Linac Driven FEL performance. Phase 2

    DTIC Science & Technology

    1992-10-01

    energy costs and decrease our dependence on foreign energy sources. SO 2 control has used flue gas desulfurization scrubbers after combustion, coal...minimizing operating costs. . Dry Mode of Operation Conventional flue - gas treatment processes are generally wet systems which generate waste water and wet ...energy source in the United States. So reducing the SO 2 and NOx emission from flue gas will allow use of abundant, high-sulphur coal resources, lower

  9. Hydrogen in the Methanol Production Process

    ERIC Educational Resources Information Center

    Kralj, Anita Kovac; Glavic, Peter

    2006-01-01

    Hydrogen is a very important industrial gas in chemical processes. It is very volatile; therefore, it can escape from the process units and its mass balance is not always correct. In many industrial processes where hydrogen is reacted, kinetics are often related to hydrogen pressure. The right thermodynamic properties of hydrogen can be found for…

  10. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, January--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    AQUATECH Systems a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler No. 4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfurmore » or sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL demonstration Program began September 10, 1991 and is approximately 22 months in duration. During the 6 months of scheduled operations period, expected to begin January 1992, data will be collected from the SOXAL system to define: SO{sub 2} and NO{sub x} control efficiencies; Current efficiency for the regeneration unit; Sulfate oxidation in the absorber; Make-up reagent rates; Product quality including concentrations and compositions; System integration and control philosophy; and Membrane stability and performance with respect to foulants.« less

  11. Scrubbers with a level head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedersen, G.C.; Bhattachararjee, P.K.

    1997-11-01

    The available methods for removing pollutants from a gas stream are numerous, to say the least. A popular method, scrubbers allow users to separate gases and solids by allowing the gas to come into contact with a liquid stream. In the end, the pollutants are washed away in the effluent, and the gas exits the system to be used in later processes or to be released into the atmosphere. For many years, counter-flow scrubber methods have been used for the lion`s share of the work in industries such as phosphate fertilizer and semiconductor chemicals manufacturing. Now these industries are exploringmore » the use of cross-flow scrubber design, which offers consistently high efficiency and low operating costs. In addition, the unit`s horizontal orientation makes maintenance easier than typical tower scrubbers. For certain classes of unit operations, cross-flow is now being recognized as a strong alternative to conventional counterflow technology.« less

  12. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) of this section, the owner or operator of an affected source (i.e., glycol dehydration unit) located... subpart as follows: (1) The control requirements for glycol dehydration unit process vents specified in... maintained as required in § 63.1284(d). (1) The actual annual average flow of gas to the glycol dehydration...

  13. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) of this section, the owner or operator of an affected source (i.e., glycol dehydration unit) located... subpart as follows: (1) The control requirements for glycol dehydration unit process vents specified in... maintained as required in § 63.1284(d). (1) The actual annual average flow of gas to the glycol dehydration...

  14. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of this section, the owner or operator of an affected source (i.e., glycol dehydration unit) located... subpart as follows: (1) The control requirements for glycol dehydration unit process vents specified in... maintained as required in § 63.1284(d). (1) The actual annual average flow of gas to the glycol dehydration...

  15. Energy efficient industrial technology in Europe: A compendium

    NASA Astrophysics Data System (ADS)

    Fassbender, A. G.; McGee, M. J.

    1982-05-01

    Energy efficient industrial technologies currently in use in Europe are described. Gas-fired equipment in West Germany, France, and the United Kingdom is emphasized. Some of these technologies are unique and some are currently available in the United States. Load management, cogeneration, heat recovery, and various industrial processes are discussed.

  16. 40 CFR 63.1562 - What parts of my plant are covered by this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regeneration of the catalyst used in the unit (i.e., the catalyst regeneration flue gas vent). (2) The process...-regenerative, cyclic, or continuous processes) that are associated with regeneration of the catalyst used in...

  17. 40 CFR 63.1562 - What parts of my plant are covered by this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration of the catalyst used in the unit (i.e., the catalyst regeneration flue gas vent). (2) The process...-regenerative, cyclic, or continuous processes) that are associated with regeneration of the catalyst used in...

  18. 40 CFR 63.1562 - What parts of my plant are covered by this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regeneration of the catalyst used in the unit (i.e., the catalyst regeneration flue gas vent). (2) The process...-regenerative, cyclic, or continuous processes) that are associated with regeneration of the catalyst used in...

  19. 40 CFR 63.1562 - What parts of my plant are covered by this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regeneration of the catalyst used in the unit (i.e., the catalyst regeneration flue gas vent). (2) The process...-regenerative, cyclic, or continuous processes) that are associated with regeneration of the catalyst used in...

  20. 40 CFR 63.1562 - What parts of my plant are covered by this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regeneration of the catalyst used in the unit (i.e., the catalyst regeneration flue gas vent). (2) The process...-regenerative, cyclic, or continuous processes) that are associated with regeneration of the catalyst used in...

  1. Magnetic Tracking of Gas Hydrate Deposits.

    NASA Astrophysics Data System (ADS)

    Lowe, C.; Enkin, R. J.; Judith, B.; Dallimore, S. R.

    2005-12-01

    Analysis of recovered core from the Mallik gas hydrate field in the Mackenzie Delta, Northwest Territories, Canada demonstrates that the magnetic properties of hydrate-bearing strata differ significantly from those strata lacking gas hydrate. The recovered core, which extends from just above (885 m) to just below (1152 m) observed gas hydrate occurrences (891-1107 m), comprises a series of six stratigraphic units that are either sand or silt dominated. Gas hydrate is preferentially concentrated in the higher porosity, sand-dominated units. Although the sediment source region for the Mackenzie Delta is sufficiently large that silts and sands have similar primary mineralogy, their magnetic properties are distinct. Magnetite, apparent in silt units with porosities too low to accommodate significant gas hydrate deposits, is reduced to iron sulphide in the gas hydrate-bearing sand horizons. The degree of the observed magnetic reduction increases with increasing gas hydrate concentration. Furthermore, silts retain their primary magnetism, whereas sands are remagnetized. Two independent investigations of marine gas hydrate occurrences (Blake Ridge, offshore eastern USA and Cascadia, offshore western Canada) demonstrate similar magnetic reduction within known gas hydrate fields, and an even larger depletion of magnetic minerals in vent zones where methane is actively fluxing to surface. Collectively, the findings from these three regions indicate that porosity and structure are fundamental controls on methane pathways. Investigations are presently underway to determine the precise triggers and chemical pathways of the observed magnetic reductions. However, findings to date indicate that magnetic studies of host sediments in gas hydrate systems provide a powerful lithologic correlation tool, a window into the processes associated with gas hydrate formation, and form the basis of quantitative analysis of magnetic surveys over gas hydrate deposits.

  2. Methods of making transportation fuel

    DOEpatents

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2012-04-10

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation. The alkylated hydrocarbons may be blended with one or more components to produce transportation fuel.

  3. Field testing results for the R-BTEX{sup {trademark}} process for controlling glycol dehydrator emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamez, J.P.; Rueter, C.O.; Beitler, C.M.

    1995-12-01

    lncreasing regulatory pressure has made emissions of benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) and total volatile organic compounds (VOC) from glycol dehydration units a major concern for the natural gas industry since there are over 40,000 of these units in operation. The Clean Air Act Amendments (CAAA) of 1990 have been the impetus for air toxics regulations, and the Maximum Achievable Control Technology (MACT) standards for the oil and gas industry will be proposed in June, 1995, and will include glycol dehydrators. In addition, several states are regulating or considering regulation of these units. The most commonmore » control systems that have been applied to glycol dehydrators are combustion or condensation systems. Combustion systems suffer from high operating costs since they do not recover the hydrocarbon for sale and require supplemental fuel. Many of the condensation systems may not achieve sufficiently low condenser temperatures to meet regulatory control limits. The R-BTEX{sup TM} process addresses this shortcoming by recovering the steam from the glycol dehydrator and converting it to cooling water; this allows R-BTEX to achieve the lowest condenser temperature possible without refrigeration. The Gas Research Institute (GRI) is conducting a field test program to demonstrate the process under a variety of conditions. Under this program, testing has been completed at one site in south Texas and at another site in western Colorado. Startup of a third unit at a Gulf Coast site in Texas should occur in late 1994. This paper presents the testing results for the first two sites and includes a side-by-side comparison of the R-BTEX process with other available control technologies.« less

  4. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.

    PubMed

    Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L

    2016-12-20

    A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO 2 e/m 3 SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of natural gas as fuel in the rest of the process units' heaters (39%). OSTUM's results are in agreement with those of a process simulation model developed by CanmetENERGY, other literature, and confidential data of a commercial upgrading operation. For the application of the model, emissions are found to be most sensitive to the amount of natural gas utilized as feedstock by the steam methane reformer. OSTUM is capable of evaluating the impact of different technologies, feedstock qualities, operating conditions, and fuel mixes on upgrading emissions, and its life cycle perspective allows easy incorporation of results into well-to-wheel analyses.

  5. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota

    2014-12-01

    The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: UTC FUEL CELLS' PC25C POWER PLANT - GAS PROCESSING UNIT PERFORMANCE FOR ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system based on the UTC Fuel Cell's PC25C Fuel Cell Power Plant was evaluated. The...

  7. 76 FR 55111 - United States v. General Electric Co., et al.; Proposed Final Judgment and Competitive Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... areas in the energy industry, including coal, oil, natural gas, and nuclear energy, as well as in... higher power ratings. 12. In processing and refining crude oil into petroleum products, oil refineries... energy industry, including coal, oil, natural gas, and nuclear energy, as well as in renewable resources...

  8. DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.

    EPA Science Inventory

    The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

  9. Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelemy, N.M.; Lynn, S.

    1991-07-01

    This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently tomore » the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.« less

  10. Design of structure and simulation of the three-zone gasifier of dense layer of the inverted process

    NASA Astrophysics Data System (ADS)

    Zagrutdinov, R. Sh; Negutorov, V. N.; Maliykhin, D. G.; Nikishanin, M. S.; Senachin, P. K.

    2017-11-01

    Experts of LLC “New Energy Technologies” have developed gasifiers designs, with the implementation of the three-zone gasification method, which satisfy the following conditions: 1) the generated gas must be free from tar, soot and hydrocarbons, with a given ratio of CO/H2; 2) to use as the fuel source a wide range of low-grade low-value solid fuels, including biomass and various kinds of carbonaceous wastes; 3) have high reliability in operation, do not require qualified operating personnel, be relatively inexpensive to produce and use steam-air blowing instead of expensive steam-oxygen one; 4) the line of standard sizes should be sufficiently wide (with a single unit capacity of fuel from 1 to 50-70 MW). Two models of gas generators of the inverted gasification process with three combustion zones operating under pressure have been adopted for design: 1) gas generator with a remote combustion chamber type GOP-VKS (two-block version) and 2) a gas generator with a common combustion chamber of the GOP-OK type (single-block version), which is an almost ideal model for increasing the unit capacity. There have been worked out various schemes for the preparation of briquettes from practically the entire spectrum of low-grade fuel: high-ash and high-moisture coals, peat and biomass, including all types of waste - solid household waste, crop, livestock, poultry, etc. In the gas generators there are gasified the cylindrical briquettes with a diameter of 20-25 mm and a length of 25-35 mm. There have been developed a mathematical model and computer code for numerical simulation of synthesis gas generation processes in a gasifier of a dense layer of inverted process during a steam-air blast, including: continuity equations for the 8 gas phase components and for the solid phase; the equation of the heat balance for the entire heterogeneous system; the Darcy law equation (for porous media); equation of state for 8 components of the gas phase; equations for the rates of 3 gas-phase and 4 heterogeneous reactions; macro kinetics law of coke combustion; other equations and boundary conditions.

  11. Stack gas treatment

    DOEpatents

    Reeves, Adam A.

    1977-04-12

    Hot stack gases transfer contained heat to a gravity flow of pebbles treated with a catalyst, cooled stacked gases and a sulfuric acid mist is withdrawn from the unit, and heat picked up by the pebbles is transferred to air for combustion or other process. The sulfuric acid (or sulfur, depending on the catalyst) is withdrawn in a recovery unit.

  12. Westinghouse to launch coal gasifier with combined cycle unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavsky, R.M.; Margaritis, P.J.

    1980-03-01

    Following an extensive test program with a prototype coal gasifier, Westinghouse Electric Corp. is now offering an integrated gasifier/combined-cycle unit as a feasible alternative for generating power from coal in an efficient, clean manner. The Westinghouse gasification process uses a single-stage pressurized fluidized-bed reactor, followed by heat recovery, gas cleaning, sulfur and amonia removal and recovery, and gas reheat. The system produces a fuel gas free of sulfur and other contaminants from crushed run-of-mine coals of varying reactivities and caking properties. The by-products include ammonia and sulfur and an agglomerated ash residue that serves as an acceptable landfill. Air formore » the gasifier is bled from the gas-turbine air compressor and further pressurized with a booster compressor. The hot exhaust gases from the gas turbine pass through a heat-recovery steam generator that produces sufficient steam to drive a turbine providing about 40% of the total electricity generated in the plant.« less

  13. A portable liquid crystal-based polarized light system for the detection of organophosphorus nerve gas.

    PubMed

    He, Feng Jie; Liu, Hui Long; Chen, Long Cong; Xiong, Xing Liang

    2018-03-01

    Liquid crystal (LC)-based sensors have the advantageous properties of being fast, sensitive, and label-free, the results of which can be accessed directly only through the naked eye. However, the inherent disadvantages possessed by LC sensors, such as relying heavily on polarizing microscopes and the difficulty to quantify, have limited the possibility of field applications. Herein, we have addressed these issues by constructing a portable polarized detection system with constant temperature control. This system is mainly composed of four parts: the LC cell, the optics unit, the automatic temperature control unit, and the image processing unit. The LC cell was based on the ordering transitions of LCs in the presence of analytes. The optics unit based on the imaging principle of LCs was designed to substitute the polarizing microscope for the real-time observation. The image processing unit is expected to quantify the concentration of analytes. The results have shown that the presented system can detect dimethyl methyl phosphonate (a stimulant for organophosphorus nerve gas) within 25 s, and the limit of detection is about 10 ppb. In all, our portable system has potential in field applications.

  14. A portable liquid crystal-based polarized light system for the detection of organophosphorus nerve gas

    NASA Astrophysics Data System (ADS)

    He, Feng Jie; Liu, Hui Long; Chen, Long Cong; Xiong, Xing Liang

    2018-03-01

    Liquid crystal (LC)-based sensors have the advantageous properties of being fast, sensitive, and label-free, the results of which can be accessed directly only through the naked eye. However, the inherent disadvantages possessed by LC sensors, such as relying heavily on polarizing microscopes and the difficulty to quantify, have limited the possibility of field applications. Herein, we have addressed these issues by constructing a portable polarized detection system with constant temperature control. This system is mainly composed of four parts: the LC cell, the optics unit, the automatic temperature control unit, and the image processing unit. The LC cell was based on the ordering transitions of LCs in the presence of analytes. The optics unit based on the imaging principle of LCs was designed to substitute the polarizing microscope for the real-time observation. The image processing unit is expected to quantify the concentration of analytes. The results have shown that the presented system can detect dimethyl methyl phosphonate (a stimulant for organophosphorus nerve gas) within 25 s, and the limit of detection is about 10 ppb. In all, our portable system has potential in field applications.

  15. Mechanistic simulation of batch acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™.

    PubMed

    Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L

    2018-05-22

    Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.

  16. 40 CFR 98.70 - Definition of source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...

  17. 40 CFR 98.70 - Definition of source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...

  18. 40 CFR 98.70 - Definition of source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...

  19. 40 CFR 98.70 - Definition of source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...

  20. 40 CFR 98.70 - Definition of source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.70 Definition of source category. The ammonia manufacturing source category comprises the process units listed in paragraphs (a) and (b) of this section. (a) Ammonia manufacturing processes in which ammonia is manufactured from a fossil...

  1. Longannet unit 2 return to service after gas reburn retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golland, E.; De Santis, R.; McPhail, J.

    1998-07-01

    A gas reburning system, to demonstrate the economic and technical viability of the technology as a means of reducing emissions of oxides of nitrogen, has been installed on a 600 Mwe coal fired boiler at Longannet Power Station, owned and operated by ScottishPower. The Project, which was awarded a grant under the European Commissions THERMIE Programme, is being undertaken by ScottishPower in conjunction with a number of European partners, namely: British Gas, ESB, ENEL, Ansaldo Energia, EDF and Mitsui Babcock Energy. The project commenced in August 1994, when the participating partners began the process design. This included the definition ofmore » the number and location of the gas injectors, overfire air ports; specification of the associated process conditions for overfire air, recirculated flue gas and process gas; and the control system philosophy. Installation of the reburn equipment commenced in December 1995, and was completed in October 1996. Following commissioning in late 1996, a comprehensive testing program was undertaken with the objectives of optimizing reburn performance and validating the process design methodology. This paper describers the background and scope of the project, including the use and development of in-house experimental and theoretical modeling used in the process design, and reports on the progress and results obtained to date from the testing program.« less

  2. A process for capturing CO 2 from the atmosphere

    DOE PAGES

    Keith, David W.; Holmes, Geoffrey; St. Angelo, David; ...

    2018-06-07

    Here, we describe a process for capturing CO 2 from the atmosphere in an industrial plant. The design captures ~1 Mt-CO 2/year in a continuous process using an aqueous KOH sorbent coupled to a calcium caustic recovery loop. We describe the design rationale, summarize performance of the major unit operations, and provide a capital cost breakdown developed with an independent consulting engineering firm. We report results from a pilot plant which provides data on performance of the major unit operations. We summarize the energy and material balance computed using an Aspen process simulation. When CO 2 is delivered at 15more » MPa the design requires either 8.81 GJ of natural gas, or 5.25 GJ of gas and 366 kWhr of electricity, per ton of CO 2 captured. Depending on financial assumptions, energy costs, and the specific choice of inputs and outputs, the levelized cost per ton CO 2 captured from the atmosphere ranges from 94 to 232 $/t-CO 2.« less

  3. NRU is onstream successfully at Block 31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, S.K.; Price, B.C.; Wilson, C.A.

    1986-12-17

    A nitrogen rejection facility, designed and fabricated by Koch Process Systems Inc., has exceeded design capacity and product purity specifications on Block 31 field about 30 miles south of Odessa, Tex. The unit is currently processing approximately 65 MMscfd of oil-associated gas; producing 21 MMscfd nitrogen, 32 MMscfd fuel gas, and 320,000 gal/day ethane-plus product. The startup of this nitrogen rejection facility represents the first facility for handling a feed with such a wide variation in composition. The process worked according to design and has met or exceeded product criteria. The plant is currently processing 10% over design at 78more » MMscfd (70 MMscfd net raw feed) and producing 330,000 gal/day of NGL's, with an ethane recovery of 88%. As with most startups, the main problems were with the rotating equipment items, especially the expander/compressor units. The NRF is providing a reliable source of fuel and should increase plant production and field life.« less

  4. A process for capturing CO 2 from the atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith, David W.; Holmes, Geoffrey; St. Angelo, David

    Here, we describe a process for capturing CO 2 from the atmosphere in an industrial plant. The design captures ~1 Mt-CO 2/year in a continuous process using an aqueous KOH sorbent coupled to a calcium caustic recovery loop. We describe the design rationale, summarize performance of the major unit operations, and provide a capital cost breakdown developed with an independent consulting engineering firm. We report results from a pilot plant which provides data on performance of the major unit operations. We summarize the energy and material balance computed using an Aspen process simulation. When CO 2 is delivered at 15more » MPa the design requires either 8.81 GJ of natural gas, or 5.25 GJ of gas and 366 kWhr of electricity, per ton of CO 2 captured. Depending on financial assumptions, energy costs, and the specific choice of inputs and outputs, the levelized cost per ton CO 2 captured from the atmosphere ranges from 94 to 232 $/t-CO 2.« less

  5. Review of hydrofracking, the environmental pollution and some new methods may be used to skip the water in fracking process

    NASA Astrophysics Data System (ADS)

    Wang, B.

    2013-12-01

    Shale gas is natural gas that is found trapped within shale formations. And it has become an increasingly important source of natural gas in the United States since start of this century. Because shales ordinarily have insufficient permeability to allow significant fluid flow to a well bore, so gas production in commercial quantities requires fractures to provide permeability. Usually, the shale gas boom is due to modern technology in hydraulic fracturing to create extensive artificial fractures around well bores. In the same time, horizontal drilling is often used with shale gas wells, to create maximum borehole surface area in contact with shale. However, the extraction and use of shale gas can affect the environment through the leaking of extraction into water supplies, and the pollution caused by improper processing of natural gas. The challenge to prevent pollution is that shale gas extractions varies widely even in the two wells that in the same project. What's more, the enormous amounts of water will be needed for drilling, while some of the largest sources of shale gas are found in deserts. So if we can find some technologies to substitute the water in the fracking process, we will not only solve the environmental problems, but also the water supply issues. There are already some methods that have been studied for this purpose, like the CO2 fracking process by Tsuyoshi Ishida et al. I will also propose our new method called air-pressure system for fracking the shales without using water in the fracking process at last.

  6. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reservesmore » and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.« less

  7. 40 CFR 63.107 - Identification of process vents subject to this subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to this subpart. 63.107 Section 63.107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... going to a fuel gas system as defined in § 63.101. (4) A gas stream exiting a control device used to... transfer operation vent subject to § 63.119 or § 63.126. (8) A vent from a waste management unit subject to...

  8. Chemical looping integration with a carbon dioxide gas purification unit

    DOEpatents

    Andrus, Jr., Herbert E.; Jukkola, Glen D.; Thibeault, Paul R.; Liljedahl, Gregory N.

    2017-01-24

    A chemical looping system that contains an oxidizer and a reducer is in fluid communication with a gas purification unit. The gas purification unit has at least one compressor, at least one dryer; and at least one distillation purification system; where the gas purification unit is operative to separate carbon dioxide from other contaminants present in the flue gas stream; and where the gas purification unit is operative to recycle the contaminants to the chemical looping system in the form of a vent gas that provides lift for reactants in the reducer.

  9. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating.

    PubMed

    Jiang, Xu; Wang, Keda; Li, Junqing; Zhan, Hui; Song, Zhenan; Che, Guohang; Lyu, Guohui

    2017-02-15

    This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG) for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE) light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed.

  10. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, July--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    AQUATECH Systems, a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation Dunkirk Steam Station Boiler No. 4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfurmore » or sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or lower sulfur coal. The SOXAL demonstration Program began September 10, 1991 and is approximately 26 months in duration. During the 6 months of scheduled operations, between January and July of 1993, data was collected from the SOXAL system to define: SO{sub 2} and NO{sub x} control efficiencies; Current efficiency for the regeneration unit; Sulfate oxidation in the absorber; Make-up reagent rates; Product quality including concentrations and compositions; System integration and control philosophy; and Membrane stability and performance with respect to foulants. The program is expected to be concluded in November 1993.« less

  11. Sour pressure swing adsorption process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadra, Shubhra Jyoti; Wright, Andrew David; Hufton, Jeffrey Raymond

    Methods and apparatuses for separating CO.sub.2 and sulfur-containing compounds from a synthesis gas obtained from gasification of a carbonaceous feedstock. The primary separating steps are performed using a sour pressure swing adsorption (SPSA) system, followed by an acid gas enrichment system and a sulfur removal unit. The SPSA system includes multiple pressure equalization steps and a rinse step using a rinse gas that is supplied from a source other than directly from one of the adsorber beds of the SPSA system.

  12. On numerical model of time-dependent processes in three-dimensional porous heat-releasing objects

    NASA Astrophysics Data System (ADS)

    Lutsenko, Nickolay A.

    2016-10-01

    The gas flows in the gravity field through porous objects with heat-releasing sources are investigated when the self-regulation of the flow rate of the gas passing through the porous object takes place. Such objects can appear after various natural or man-made disasters (like the exploded unit of the Chernobyl NPP). The mathematical model and the original numerical method, based on a combination of explicit and implicit finite difference schemes, are developed for investigating the time-dependent processes in 3D porous energy-releasing objects. The advantage of the numerical model is its ability to describe unsteady processes under both natural convection and forced filtration. The gas cooling of 3D porous objects with different distribution of heat sources is studied using computational experiment.

  13. Risk-based process safety assessment and control measures design for offshore process facilities.

    PubMed

    Khan, Faisal I; Sadiq, Rehan; Husain, Tahir

    2002-09-02

    Process operation is the most hazardous activity next to the transportation and drilling operation on an offshore oil and gas (OOG) platform. Past experiences of onshore and offshore oil and gas activities have revealed that a small mis-happening in the process operation might escalate to a catastrophe. This is of especial concern in the OOG platform due to the limited space and compact geometry of the process area, less ventilation, and difficult escape routes. On an OOG platform, each extra control measure, which is implemented, not only occupies space on the platform and increases congestion but also adds extra load to the platform. Eventualities in the OOG platform process operation can be avoided through incorporating the appropriate control measures at the early design stage. In this paper, the authors describe a methodology for risk-based process safety decision making for OOG activities. The methodology is applied to various offshore process units, that is, the compressor, separators, flash drum and driers of an OOG platform. Based on the risk potential, appropriate safety measures are designed for each unit. This paper also illustrates that implementation of the designed safety measures reduces the high Fatal accident rate (FAR) values to an acceptable level.

  14. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, April--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    AQUATECH Systems, a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler No. 4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfurmore » or sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL demonstration Program began September 10, 1991 and is approximately 22 months in duration.« less

  15. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, October--December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    AQUATECH Systems a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 2--3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler {number_sign}4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfur ormore » sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL Demonstration Program began September 10, 1991 and is approximately 22 months in duration.« less

  16. Natural gas use is taking off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffmann, B.G.

    1995-07-01

    The paper describes an infrared radiant heat process to de-ice aircraft. A typical 727 aircraft de-icing costs $2000--3000 using the current glycol method. The natural gas powered heater would only cost $400 per aircraft and would not pose the environmental problems that the glycol does. It is estimated that one Infratek system could consume 3.8 million cubic feet of natural gas each year during the de-icing season. Large airports might have as many as 10 units. 3.8 million cu. ft. of gas is equal to about 40 New York residential customers or eight New York commercial customers.

  17. Argon recovery from hydrogen depleted ammonia plant purge gas using a HARP Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, R.; Lerner, S.L.; Maclean, D.L.

    1987-01-01

    A number of ammonia plants employ membranes or cryogenic hydrogen recovery units to separate hydrogen contained in the purge gas for recycle to the ammonia synthesis loop. The resulting hydrogen depleted purge gas, which is usually used for fuel, is an attractive source of argon. This paper presents the novel features of a process which employs a combination of pressure swing adsorption (PSA) and cryogenic technology to separate the argon from this hydrogen depleted purge gas stream. This new proprietary Hybrid Argon Recovery Progress (HARP) plant is an effective alternative to a conventional all-cryogenic plant.

  18. The WINCOF-I code: Detailed description

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Mullican, A.

    1993-01-01

    The performance of an axial-flow fan-compressor unit is basically unsteady when there is ingestion of water along with the gas phase. The gas phase is a mixture of air and water vapor in the case of a bypass fan engine that provides thrust power to an aircraft. The liquid water may be in the form of droplets and film at entry to the fan. The unsteadiness is then associated with the relative motion between the gas phase and water, at entry and within the machine, while the water undergoes impact on material surfaces, centrifuging, heat and mass transfer processes, and reingestion in blade wakes, following peal off from blade surfaces. The unsteadiness may be caused by changes in atmospheric conditions and at entry into and exit from rain storms while the aircraft is in flight. In a multi-stage machine, with an uneven distribution of blade tip clearance, the combined effect of various processes in the presence of steady or time-dependent ingestion is such as to make the performance of a fan and a compressor unit time-dependent from the start of ingestion up to a short time following termination of ingestion. The original WINCOF code was developed without accounting for the relative motion between gas and liquid phases in the ingested fluid. A modification of the WINCOF code was developed and named WINCOF-1. The WINCOF-1 code can provide the transient performance of a fan-compressor unit under a variety of input conditions.

  19. Design of a unit to produce hot distilled water for the same power consumption as a water heater

    NASA Technical Reports Server (NTRS)

    Bambenek, R. A.; Nuccio, P. P.

    1973-01-01

    Unit recovers 97% of water contained in pretreated waste water. Some factors are: cleansing agent prevents fouling of heat transfer surface by highly concentrated waste; absence of dynamic seals reduces required purge gas flow rate; and recycle loop maintains constant flushing process to carry cleansing agent across evaporation surface.

  20. DEMONSTRATION OF WELLMAN-LORD/ALLIED CHEMICAL FGD TECHNOLOGY: DEMONSTRATION TEST SECOND YEAR RESULTS

    EPA Science Inventory

    The report gives results of an evaluation of the performance (over a 2-year period) of a full-scale flue gas desulfurization (FGD) unit to demonstrate the Wellman-Lord/Allied Chemical process. The process is regenerable, employing sodium sulfite wet scrubbing, thermal regeneratio...

  1. 78 FR 28501 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Flint Hills Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ..., refinery fuel gas is generated by the facility's processes and collected into two fuel gas mix drums, designated 41V-33 and 45V-39. The gases are then distributed from these mix drums to combustion units at the facility, such as boilers and heaters. FHR Pine Bend operates H 2 S CEMs on the mix drums to satisfy the...

  2. Development of a life-cycle fugitive methane emissions model utilizing device level emissions and activity factors

    NASA Astrophysics Data System (ADS)

    Englander, J.; Brandt, A. R.

    2017-12-01

    There has been numerous studies in quantifying the scale of fugitive emissions from across the natural gas value chain. These studies have typically focused on either specific types of equipment (such as valves) or on a single part of the life-cycle of natural gas production (such as gathering stations).1,2 However it has been demonstrated that average emissions factors are not sufficient for representing leaks in the natural gas system.3 In this work, we develop a robust estimate of fugitive emissions rates by incorporating all publicly available studies done at the component up to the process level. From these known studies, we create a database of leaks with normalized nomenclature from which leak estimates can be drawn from actual leak observations. From this database, and parameterized by meta-data such as location, scale of study, or placement in the life-cycle, we construct stochastic emissions factors specific for each process unit. This will be an integrated tool as part of the Oil production greenhouse gas estimator (OPGEE) as well as the Fugitive Emissions Abatement Simulation Toolkit (FEAST) models to enhances their treatment of venting and fugitive emissions, and will be flexible to include user provided data and input parameters.4,51. Thoma, ED et al. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions. J. Environ. Prot. 2017. 2. Marchese, AJ et al. Methane Emissions from United States Natural Gas Gathering and Processing. ES&T 2015. doi:10.1021/acs.est.5b02275 3. Brandt, AR et al. Methane Leaks from Natural Gas Systems Follow Extreme Distributions. ES&T 2016. doi:10.1021/acs.est.6b04303 4. El-Houjeiri, HM et al. An open-source LCA tool estimating greenhouse gas emissions from crude oil production using field characteristics. ES&T 2013. doi: 10.1021/es304570m 5. Kemp, CE et al. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source `Virtual Gas Field' Simulator. ES&T 2016. doi:10.1021/acs.est.5b06068

  3. Advanced direct coal liquefaction concepts. Quarterly report, April 1, 1993--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    Construction and commissioning of the bench unit for operation of the first stage of the process was completed. Solubilization of Black Thunder coal using carbon monoxide and steam was successfully demonstrated in the counterflow reactor system. The results were comparable with those obtained in the autoclave with the exception that coal solubilization at the same nominal residence times was slightly lower. The bench unit has now been modified for two stage operation. The Wilsonville process derived solvent for Black Thunder coal (V-1074) was found to be essentially as stable as the previous solvent used in the autoclave runs (V-178 +more » 320) at reactor conditions. This solvent (V-1074) is, therefore, being used in the bench unit tests. Carbon monoxide may be replaced by synthesis gas for the coal solubilization step in the process. However, in autoclave tests, coal conversion was found to be dependent on the amount of carbon monoxide present in the synthesis gas. Coal conversions ranged from 88% for pure carbon monoxide to 67% for a 25:75 carbon monoxide/hydrogen mixture at equivalent conditions. Two stage liquefaction tests were completed in the autoclave using a disposable catalyst (FeS) and hydrogen in the second stage. Increased coal conversion, higher gas and oil and lower asphaltene and preasphaltene yields were observed as expected. However, no hydrogen consumption was observed in the second stage. Other conditions, in particular, alternate catalyst systems will be explored.« less

  4. Cost effective modular unit for cleaning oil and gas field waste water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinberg, M.B.; Nenasheva, M.N.; Gafarov, N.A.

    1996-12-31

    Problems of environmental control involving conservation of water resources are vital for the development of giant oil and gas condensate fields near Caspian Sea (Russia) characterized by water shortages. One of the urgent tasks of oil production industry is to use all field waste water consisting of underground, processing and rain water. It was necessary to construct a new highly effective equipment which could be used in local waste water treatment. Now we have at our disposal a technology and equipment to meet the requirements to the treated water quality. Thus we have installed a modular unit of 100 m{supmore » 3}/a day capacity to clean waste water from oil products, suspended matter and other organic pollutants at Orenburg oil and gas condensate field, Russia. The unit provides with a full treatment of produced water and comprises a settling tank with adhesive facility, the number of sorption filters, Trofactor bioreactors and a disinfecting facility. The equipment is fitted into three boxes measuring 9 x 3.2 x 2.7 in each. The equipment is simple in design that enables to save money, time and space. Sorption filters, bioreactors as well as the Trofactor process are a part of know-how. While working on the unit construction we applied well known methods of settling and sorption. The process of mechanic cleaning is undergoing in the following succession: (1) the gravitational separation in a settling tank where the floated film oil products are constantly gathered and the sediment is periodically taken away, (2) the settled water treatment in sorption Filters of a special kind.« less

  5. Improvement of the control of a gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Gött, Gregor; Schöpp, Heinz; Hofmann, Frank; Heinz, Gerd

    2010-02-01

    Up to now, the use of the electrical characteristics for process control is state of the art in gas metal arc welding (GMAW). The aim of the work is the improvement of GMAW processes by using additional information from the arc. Therefore, the emitted light of the arc is analysed spectroscopically and compared with high-speed camera images. With this information, a conclusion about the plasma arc and the droplet formation is reasonable. With the correlation of the spectral and local information of the plasma, a specific control of the power supply can be applied. A corresponding spectral control unit (SCU) is introduced.

  6. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.

  7. Pyrolysis process for the treatment of food waste.

    PubMed

    Grycová, Barbora; Koutník, Ivan; Pryszcz, Adrian

    2016-10-01

    Different waste materials were pyrolysed in the laboratory pyrolysis unit to the final temperature of 800°C with a 10min delay at the final temperature. After the pyrolysis process a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The gas from the pyrolysis experiments was captured discontinuously into Tedlar gas sampling bags and the selected components were analyzed by gas chromatography (methane, ethene, ethane, propane, propene, hydrogen, carbon monoxide and carbon dioxide). The highest concentration of measured hydrogen (WaCe 61%vol.; WaPC 66%vol.) was analyzed at the temperature from 750 to 800°C. The heating values of the solid and liquid residues indicate the possibility of its further use for energy recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Alexis T.; Alger, Monty M.; Flytzani-Stephanopoulos, Maria

    A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world’s highest-cost producer in 2005 to among the lowest-cost producers today. The low cost and increased supply of natural gas and natural gas liquids provides an opportunity tomore » discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel. To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.« less

  9. 21 CFR 870.4300 - Cardiopulmonary bypass gas control unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass gas control unit. 870.4300... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4300 Cardiopulmonary bypass gas control unit. (a) Identification. A cardiopulmonary bypass gas control unit is a device used...

  10. 21 CFR 870.4300 - Cardiopulmonary bypass gas control unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass gas control unit. 870.4300... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4300 Cardiopulmonary bypass gas control unit. (a) Identification. A cardiopulmonary bypass gas control unit is a device used...

  11. Design of an integrated fuel processor for residential PEMFCs applications

    NASA Astrophysics Data System (ADS)

    Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai

    KIER has been developing a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. For the effective design of a compact hydrogen production system, each unit process for steam reforming and water gas shift, has a steam generator and internal heat exchangers which are thermally and physically integrated into a single packaged hardware system. The newly designed fuel processor (prototype II) showed a thermal efficiency of 78% as a HHV basis with methane conversion of 89%. The preferential oxidation unit with two staged cascade reactors, reduces, the CO concentration to below 10 ppm without complicated temperature control hardware, which is the prerequisite CO limit for the PEMFC stack. After we achieve the initial performance of the fuel processor, partial load operation was carried out to test the performance and reliability of the fuel processor at various loads. The stability of the fuel processor was also demonstrated for three successive days with a stable composition of product gas and thermal efficiency. The CO concentration remained below 10 ppm during the test period and confirmed the stable performance of the two-stage PrOx reactors.

  12. Enhance gas processing with reflux heat-exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, A.J.

    1994-05-01

    Despite recent successes of membrane-based separations in low-throughput applications, cryogenic processing remains the best route for separating and purifying gas mixtures, especially when high recoveries are required. Now conventional units are being modified to yield even higher recoveries at lower costs. Throughout the chemical process industries (CPI), this is being accomplished with reflux or plate-fin exchangers, especially for processing of natural gas, and offgases from refineries and petrochemical facilities. The concept of utilizing a heat exchanger as a multi stage rectification device is not new. However, only in the last fifteen years or so has accurate design of reflux exchangersmore » become feasible. Also helpful have been the availability of prediction techniques for high-quality thermodynamic data, and process simulators that can rapidly solve the complex material, equilibrium and enthalpy relationships involved in simulating the performance of reflux exchangers. Four projects that show the value and effectiveness of reflux exchangers are discussed below in more detail. The first example considers hydrogen recovery from demethanizer overheads; the second highlights a low energy process for NGL and LPG recovery from natural gas. The third is a simple process for recovery of ethylene from fluid-catalytic cracker (FCC) offgas; and the fourth is a similar process for olefin recovery from dehydrogenation-reactor offgas.« less

  13. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placido, Andrew; Liu, Kunlei; Challman, Don

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will producemore » research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in some detail in this report, along with lessons learned.« less

  14. Geology and geochemistry of gas-charged sediment on Kodiak Shelf, Alaska

    USGS Publications Warehouse

    Hampton, M.A.; Kvenvolden, K.A.

    1981-01-01

    Methane concentrations in some sediment cores from the Kodiak Shelf and adjacent continental slope increase with depth by three or four orders of magnitude and exceed the solubility in water at ambient conditions. Acoustic anomalies in seismic-reflection records imply that methane-rich sediment is widespread. Molecular composition of hydrocarbon gases and isotopic composition of methane indicate gas formation by shallow biogenic processes. Stratigraphic positions of acoustic anomalies in Quaternary glacial and posttransgressive sediments suggest that these units are likely sources of gas. A seep along the extension of a fault may be gas venting from a deeper thermogenic source. ?? 1981 A.M. Dowden, Inc.

  15. 40 CFR 98.282 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Silicon Carbide Production § 98.282 GHGs to report. You must report: (a) CO2 and CH4 process emissions from all silicon carbide process units or furnaces combined. (b) CO2, CH4, and N2O... (General Stationary Fuel Combustion Sources) by following the requirements of subpart C. ...

  16. 40 CFR 98.282 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING Silicon Carbide Production § 98.282 GHGs to report. You must report: (a) CO2 and CH4 process emissions from all silicon carbide process units or furnaces combined. (b) CO2, CH4, and N2O... (General Stationary Fuel Combustion Sources) by following the requirements of subpart C. ...

  17. 40 CFR 98.282 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Silicon Carbide Production § 98.282 GHGs to report. You must report: (a) CO2 and CH4 process emissions from all silicon carbide process units or furnaces combined. (b) CO2, CH4, and N2O... (General Stationary Fuel Combustion Sources) by following the requirements of subpart C. ...

  18. 40 CFR 98.282 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING Silicon Carbide Production § 98.282 GHGs to report. You must report: (a) CO2 and CH4 process emissions from all silicon carbide process units or furnaces combined. (b) CO2, CH4, and N2O... (General Stationary Fuel Combustion Sources) by following the requirements of subpart C. ...

  19. Electrolytic pretreatment unit gaseous effluent conditioning

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1976-01-01

    The electrolytic pretreatment of urine is an advanced process that eliminates the need for handling and storing the highly corrosive chemicals that are normally used in water reclamation systems. The electrolytic pretreatment process also converts the organic materials in urine to gases (N2 and O2) that can be used to replenish those lost to space by leakage, venting, and air lock operations. The electrolytic process is more than a pretreatment, since it decreases the urine solids content by approximately one third, thus reducing the load and eventual solids storage requirements of the urine processing system. The evolved gases from the pretreatment step cannot, however, be returned directly to the atmosphere of a spacecraft without first removing several impurities including hydrogen, chlorine, and certain organic compounds. A treatment concept was developed that would decrease the impurities in the gas stream that emanates from an electrolysis unit to levels sufficiently low to allow the conditioned gas stream to be safely discharged to a spacecraft atmosphere. Two methods were experimentally demonstrated that can accomplish the desired cleanup. The bases of the two methods are, repectively: (1) raw urine scrubbing and (2) silica gel sorption.

  20. OSPREY Model Development Status Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veronica J Rutledge

    2014-04-01

    During the processing of used nuclear fuel, volatile radionuclides will be discharged to the atmosphere if no recovery processes are in place to limit their release. The volatile radionuclides of concern are 3H, 14C, 85Kr, and 129I. Methods are being developed, via adsorption and absorption unit operations, to capture these radionuclides. It is necessary to model these unit operations to aid in the evaluation of technologies and in the future development of an advanced used nuclear fuel processing plant. A collaboration between Fuel Cycle Research and Development Offgas Sigma Team member INL and a NEUP grant including ORNL, Syracuse University,more » and Georgia Institute of Technology has been formed to develop off gas models and support off gas research. Georgia Institute of Technology is developing fundamental level model to describe the equilibrium and kinetics of the adsorption process, which are to be integrated with OSPREY. This report discusses the progress made on expanding OSPREY to be multiple component and the integration of macroscale and microscale level models. Also included in this report is a brief OSPREY user guide.« less

  1. Principle and Performance of Gas Self-inducing Reactors and Applications to Biotechnology.

    PubMed

    Ye, Qin; Li, Zhimin; Wu, Hui

    2016-01-01

    Gas-liquid contacting is an important unit operation in chemical and biochemical processes, but the gas utilization efficiency is low in conventional gas-liquid contactors especially for sparingly soluble gases. The gas self-inducing impeller is able to recycle gas in the headspace of a reactor to the liquid without utilization of additional equipment such as a gas compressor, and thus, the gas utilization efficiency is significantly enhanced. Gas induction is caused by the low pressure or deep vortex at a sufficiently high impeller speed, and the speed at which gas induction starts is termed the critical speed. The critical impeller speed, gas-induction flow rate, power consumption, and gas-liquid mass transfer are determined by the impeller design and operation conditions. When the reactor is operated in a dead-end mode, all the introduced gas can be completely used, and this feature is especially favorable to flammable and/or toxic gases. In this article, the principles, designs, characteristics of self-inducing reactors, and applications to biotechnology are described.

  2. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard, S.; Lu, Yingzhong

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries thatmore » utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.« less

  3. Trends in increasing gas-turbine units efficiency

    NASA Astrophysics Data System (ADS)

    Lebedev, A. S.; Kostennikov, S. V.

    2008-06-01

    A review of the latest models of gas-turbine units (GTUs) manufactured by leading firms of the world is given. With the example of units made by General Electric, Siemens, and Alstom, modern approaches to the problem of increasing the efficiency of gas-turbine units are dealt with. Basic principles of designing of moderate-size capacity gas turbine units are discussed, and comparison between characteristics of foreign-made GTUs belonging to this class and the advanced domestic GTE-65 unit is made.

  4. Feasibility study of NaOH regeneration in acid gas removal unit using membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Taufany, Fadlilatul; Pratama, Alvian; Romzuddin, Muhammad

    2017-05-01

    The world's energy demand is increasing with the development of human civilization. Due to limited energy resource, after 2020 fossil fuels thus is predicted will be replaced by renewable resources. Taking an example, one of the potential renewable energy to be considered is biogas, as its high content of methane, which can be produced via the fermentation process of the organic compounds under controlled anaerobic environment by utilizing the methanogen bacteria. However, prior the further use, this biogas must be purified from its impurities contents, i.e. acid gas of CO2 and H2S, up to 4% and 16 ppmv, respectively, in the acid gas removal unit. This such of purification efforts, will significantly increase the higher heating value of biogas, approximately from 600 to 900 Btu/Scf. During the purification process in this acid gas removal unit, NaOH solution is used as a liquid absorbent to reduce those acid gases content, in which the by-product of alkali salt (brine) was produced as waste. Here we report the feasibility study of the NaOH regeneration process in acid gas removal unit via membrane electrolysis technology, in which both the technical and economic aspects are taken account. To be precise in procedure, the anode semi-cell was filled with the brine solution, while the cathode semi-cell was filled with demineralized water, and those electrodes were separated by the cation exchange membrane. Furthermore, the applied potential was varied ranging from 5, 10, 15 and to 20 V, while the concentration of KCl electrolyte solutions were varied ranging from 0.01, 0.05, 0.1, and to 0.03 M. This study was conducted under controlled temperatures of 30 and 50 °C. Here we found that the % sodium recovery was increased along with the applied potential, temperature, and the decrease in KCl electrolyte concentration. We found that the best results, by means of the highest % sodium recovery, i.e. 97.26 %, was achieved under the experimental condition of temperature at 30 °C, applied potential at 15 V, and KCl electrolyte concentration at 0.01 M. At such electrolysis condition, the energy efficiency was calculated to be 0,009 M-NaOH/Wh, or was equal to operating cost at 0.04/kg-NaOH.

  5. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Gary; Albritton, John; Denton, David

    In September 2010, RTI and the DOE/NETL signed a cooperative agreement (DE-FE000489) to design, build, and operate a pre-commercial syngas cleaning system that would capture up to 90% of the CO 2 in the syngas slipstream, and demonstrate the ability to reduce syngas contaminants to meet DOE’s specifications for chemical production application. This pre-commercial syngas cleaning system is operated at Tampa Electric Company’s (TEC) 250-MWe integrated gasification combined cycle (IGCC) plant at Polk Power Station (PPS), located near Tampa, Florida. The syngas cleaning system consists of the following units: Warm Gas Desulfurization Process (WDP) - this unit processes a syngasmore » flow equivalent of 50 MWe of power (50 MWe equivalent corresponds to about 2.0 MM scfh of syngas on dry basis) to produce a desulfurized syngas with a total sulfur (H 2S+COS) concentration ~ 10 ppmv. Water Gas Shift (WGS) Reactor - this unit converts sufficient CO into CO 2 to enable 90% capture of the CO 2 in the syngas slipstream. This reactor uses conventional commercial shift catalyst technologies. Low Temperature Gas Cooling (LTGC) - this unit cools the syngas for the low temperature activated MDEA process and separates any condensed water. Activated MDEA Process (aMDEA) - this unit employs a non-selective separation for the CO 2 and H 2S present in the raw syngas stream. Because of the selective sulfur removal by the upstream WDP unit, the CO 2 capture target of 90% CO 2 can be achieved with the added benefit that total sulfur concentration in the CO 2 product is < 100 ppmv. An additional advantage of the activated MDEA process is that the non-selective sulfur removal from the treated syngas reduces sulfur in the treated gas to very low sub-ppmv concentrations, which are required for chemical production applications. Testing to date of this pre-commercial syngas cleaning system has shown that the technology has great potential to provide clean syngas from coal and petcoke-based gasification at increased efficiency and at significantly lower capital and operating costs than conventional syngas cleanup technologies. However, before the technology can be deemed ready for scale-up to a full commercial-scale demonstration, additional R&D testing is needed at the site to address the following critical technical risks: WDP sorbent stability and performance; Impact of WDP on downstream cleanup and conversion steps; Metallurgy and refractory; Syngas cleanup performance and controllability; Carbon capture performance and additional syngas cleanup The proposed plan to acquire this additional R&D data involves: Operation of the units to achieve an additional 3,000 hours of operation of the system within the performance period, with a target of achieving 1,000 hours of those hours via continuous operation of the entire integrated pre-commercial demonstration system; Rapid turnaround of repairs and/or modifications required as necessary to return any specific unit to operating status with documentation and lessons learned to support technology maturation, and; Proactive performance of maintenance activities during any unplanned outages and if possible while operating.« less

  6. Arc-Jet Thrustor Development

    NASA Technical Reports Server (NTRS)

    Curran, F. M.; Hamley, J. A.; Gruber, R. P.; Sankovic, J. M.; Haag, T. W.; Marren, W. E.; Sarmiento, C. J.; Carney, L.

    1993-01-01

    Two flight-type 1.4-kW hydrazine arcjet systems developed and tested under Lewis program. Each consists of thrustor, gas generator, and power-processing unit. Performance significantly improved. Technology transferred to user community, and first commercial flight anticipated in 1993.

  7. Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope

    USGS Publications Warehouse

    Boswell, R.; Rose, K.; Collett, T.S.; Lee, M.; Winters, W.; Lewis, K.A.; Agena, W.

    2011-01-01

    Data acquired at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled in the Milne Point area of the Alaska North Slope in February, 2007, indicates two zones of high gas hydrate saturation within the Eocene Sagavanirktok Formation. Gas hydrate is observed in two separate sand reservoirs (the D and C units), in the stratigraphically highest portions of those sands, and is not detected in non-sand lithologies. In the younger D unit, gas hydrate appears to fill much of the available reservoir space at the top of the unit. The degree of vertical fill with the D unit is closely related to the unit reservoir quality. A thick, low-permeability clay-dominated unit serves as an upper seal, whereas a subtle transition to more clay-rich, and interbedded sand, silt, and clay units is associated with the base of gas hydrate occurrence. In the underlying C unit, the reservoir is similarly capped by a clay-dominated section, with gas hydrate filling the relatively lower-quality sands at the top of the unit leaving an underlying thick section of high-reservoir quality sands devoid of gas hydrate. Evaluation of well log, core, and seismic data indicate that the gas hydrate occurs within complex combination stratigraphic/structural traps. Structural trapping is provided by a four-way fold closure augmented by a large western bounding fault. Lithologic variation is also a likely strong control on lateral extent of the reservoirs, particularly in the D unit accumulation, where gas hydrate appears to extend beyond the limits of the structural closure. Porous and permeable zones within the C unit sand are only partially charged due most likely to limited structural trapping in the reservoir lithofacies during the period of primary charging. The occurrence of the gas hydrate within the sands in the upper portions of both the C and D units and along the crest of the fold is consistent with an interpretation that these deposits are converted free gas accumulations formed prior to the imposition of gas hydrate stability conditions. ?? 2009.

  8. Methane Emissions from United States Natural Gas Gathering and Processing.

    PubMed

    Marchese, Anthony J; Vaughn, Timothy L; Zimmerle, Daniel J; Martinez, David M; Williams, Laurie L; Robinson, Allen L; Mitchell, Austin L; Subramanian, R; Tkacik, Daniel S; Roscioli, Joseph R; Herndon, Scott C

    2015-09-01

    New facility-level methane (CH4) emissions measurements obtained from 114 natural gas gathering facilities and 16 processing plants in 13 U.S. states were combined with facility counts obtained from state and national databases in a Monte Carlo simulation to estimate CH4 emissions from U.S. natural gas gathering and processing operations. Total annual CH4 emissions of 2421 (+245/-237) Gg were estimated for all U.S. gathering and processing operations, which represents a CH4 loss rate of 0.47% (±0.05%) when normalized by 2012 CH4 production. Over 90% of those emissions were attributed to normal operation of gathering facilities (1697 +189/-185 Gg) and processing plants (506 +55/-52 Gg), with the balance attributed to gathering pipelines and processing plant routine maintenance and upsets. The median CH4 emissions estimate for processing plants is a factor of 1.7 lower than the 2012 EPA Greenhouse Gas Inventory (GHGI) estimate, with the difference due largely to fewer reciprocating compressors, and a factor of 3.0 higher than that reported under the EPA Greenhouse Gas Reporting Program. Since gathering operations are currently embedded within the production segment of the EPA GHGI, direct comparison to our results is complicated. However, the study results suggest that CH4 emissions from gathering are substantially higher than the current EPA GHGI estimate and are equivalent to 30% of the total net CH4 emissions in the natural gas systems GHGI. Because CH4 emissions from most gathering facilities are not reported under the current rule and not all source categories are reported for processing plants, the total CH4 emissions from gathering and processing reported under the EPA GHGRP (180 Gg) represents only 14% of that tabulated in the EPA GHGI and 7% of that predicted from this study.

  9. Total Petroleum Systems and Geologic Assessment of Oil and Gas Resources in the Powder River Basin Province, Wyoming and Montana

    USGS Publications Warehouse

    Anna, L.O.

    2009-01-01

    The U.S. Geological Survey completed an assessment of the undiscovered oil and gas potential of the Powder River Basin in 2006. The assessment of undiscovered oil and gas used the total petroleum system concept, which includes mapping the distribution of potential source rocks and known petroleum accumulations and determining the timing of petroleum generation and migration. Geologically based, it focuses on source and reservoir rock stratigraphy, timing of tectonic events and the configuration of resulting structures, formation of traps and seals, and burial history modeling. The total petroleum system is subdivided into assessment units based on similar geologic characteristics and accumulation and petroleum type. In chapter 1 of this report, five total petroleum systems, eight conventional assessment units, and three continuous assessment units were defined and the undiscovered oil and gas resources within each assessment unit quantitatively estimated. Chapter 2 describes data used in support of the process being applied by the U.S. Geological Survey (USGS) National Oil and Gas Assessment (NOGA) project. Digital tabular data used in this report and archival data that permit the user to perform further analyses are available elsewhere on this CD-ROM. Computers and software may import the data without transcription from the Portable Document Format files (.pdf files) of the text by the reader. Because of the number and variety of platforms and software available, graphical images are provided as .pdf files and tabular data are provided in a raw form as tab-delimited text files (.tab files).

  10. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal,more » IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.« less

  11. Unconventional oil and gas extraction and animal health.

    PubMed

    Bamberger, M; Oswald, R E

    2014-08-01

    The extraction of hydrocarbons from shale formations using horizontal drilling with high volume hydraulic fracturing (unconventional shale gas and tight oil extraction), while derived from methods that have been used for decades, is a relatively new innovation that was introduced first in the United States and has more recently spread worldwide. Although this has led to the availability of new sources of fossil fuels for domestic consumption and export, important issues have been raised concerning the safety of the process relative to public health, animal health, and our food supply. Because of the multiple toxicants used and generated, and because of the complexity of the drilling, hydraulic fracturing, and completion processes including associated infrastructure such as pipelines, compressor stations and processing plants, impacts on the health of humans and animals are difficult to assess definitively. We discuss here findings concerning the safety of unconventional oil and gas extraction from the perspectives of public health, veterinary medicine, and food safety.

  12. Laboratory Measurements of Gas Phase Pyrolysis Products from Southern Wildland Fuels using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scharko, N.; Safdari, S.; Danby, T. O.; Howarth, J.; Beiswenger, T. N.; Weise, D.; Myers, T. L.; Fletcher, T. H.; Johnson, T. J.

    2017-12-01

    Combustion is an oxidation reaction that occurs when there is less fuel available than oxidizers, while pyrolysis is a thermal decomposition process that occurs under "fuel rich" conditions where all of the available oxidizers are consumed leaving some fuel(s) either unreacted or partially reacted. Gas-phase combustion products from biomass burning experiments have been studied extensively; less is known, however, about pyrolysis processes and products. Pyrolysis is the initial reaction occurring in the burning process and generates products that are subsequently oxidized during combustion, yielding highly-oxidized chemicals. This laboratory study investigates the pyrolysis processes by using an FTIR spectrometer to detect and quantify the gas-phase products from thermal decomposition of intact understory fuels from forests in the southeastern United States. In particular, a laboratory flat-flame burner operating under fuel rich conditions (no oxygen) was used to heat individual leaves to cause decomposition. The gas-phase products were introduced to an 8 meter gas cell coupled to an infrared spectrometer were used to monitor the products. Trace gas emissions along with emission ratios, which are calculated by dividing the change in the amount of the trace gas by the change in the amount of CO, for the plant species, gallberry (Ilex glabra) and swampbay (Persea palustris) were determined. Preliminary measurements observed species such as CO2, CO, C2H2, C2H4, HCHO, CH3OH, isoprene, 1,3-butadiene, phenol and NH3 being produced as part of the thermal decomposition process. It is important to note that FTIR will not detect H2.

  13. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  14. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    PubMed

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Test stand for gas-discharge chamber of TEA CO2 lasers with pulse-periodical energy supply

    NASA Astrophysics Data System (ADS)

    Shorin, Vladimyr P.; Bystrov, N. D.; Zhuravlyov, O. A.; Nekrasov, V. V.

    1997-05-01

    Test stand for function optimization (incomposition of gas- dynamic circuit (GDC) of operating characteristics of full- size discharge chamber of flowing TEA carbon-dioxide lasers (power up to 100 kW) was created in Samara State Aerospace University (former Kuibyshev Aviation Institute). Test stand includes an inside-type GDC, low inductive generators of voltage pulses of preionization and main discharges, two-flow rate system of gas supply and noise immunity diagnostic system. Module construction of units of GDC, power supplies of preionization and main discharges allows to change configuration of stand's systems for providing given properties of gas flow and its energy supply. This test stand can also be used in servicing of laser system. The diagnostic system of this stand allows us to analyze energy properties of discharge by means of oscillographic measurements of voltage and current with following processing of discharges' volt- ampere characteristics by means of a computer; rate of non- stationary gas-dynamic disturbances in discharge gap of discharge chamber was measured by means of pulse holographic system (UlG-1M) with data processing of schliren- and interferogram (density fluctuation sensitivity approximately 10-2) and sensor measurement system of gas-dynamic shock and acoustics process with resonance frequency exceeding 100 kHz. Research results of process of plasma plate wave and channel structures interaction with mediums, including actuation non-stationary gas-dynamic flows, cavitation erosion of preionization electrodes' dielectric substructure, ancillary heating of channels by main volumetric discharge are presented as well.

  16. Estimates of hydraulic fracturing (Frac) sand production, consumption, and reserves in the United States

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2015-01-01

    The practice of fracturing reservoir rock in the United States as a method to increase the flow of oil and gas from wells has a relatively long history and can be traced back to 1858 in Fredonia, New York, when a gas well situated in shale of the Marcellus Formation was successfully fractured using black powder as a blasting agent. Nearly all domestic hydraulic fracturing, often referred to as hydrofracking or fracking, is a process where fluids are injected under high pressure through perforations in the horizontal portion of a well casing in order to generate fractures in reservoir rock with low permeability (“tight”). Because the fractures are in contact with the well bore they can serve as pathways for the recovery of gas and oil. To prevent the fractures generated by the fracking process from closing or becoming obstructed with debris, material termed “proppant,” most commonly high-silica sand, is injected along with water-rich fluids to maintain or “prop” open the fractures. The first commercial application of fracking in the oil and gas industry took place in Oklahoma and Texas during the 1940s. In 1949, over 300 wells, mostly vertical, were fracked (ALL Consulting, LLC, 2012; McGee, 2012; Veil, 2012) and used silica sand as a proppant (Fracline, 2011). The resulting increase in well productivity demonstrated the significant potential that fracking might have for the oil and gas industry.

  17. EPA Collaboration on International Air Pollution Standards for Aircraft

    EPA Pesticide Factsheets

    EPA has collaborated with the United Nation’s International Civil Aviation Organization (ICAO) to set a timeframe for initiating the U.S. domestic regulatory process for addressing greenhouse gas emissions from aircraft under the Clean Air Act.

  18. 40 CFR 98.312 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.312 GHGs to report. (a) You must report CO2 process emissions from each chloride process line as required in this subpart. (b) You must report CO2, CH4, and N2O emissions from each stationary combustion unit under subpart C of this part (General Stationary Fuel...

  19. 40 CFR 98.312 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.312 GHGs to report. (a) You must report CO2 process emissions from each chloride process line as required in this subpart. (b) You must report CO2, CH4, and N2O emissions from each stationary combustion unit under subpart C of this part (General Stationary Fuel...

  20. 40 CFR 98.312 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.312 GHGs to report. (a) You must report CO2 process emissions from each chloride process line as required in this subpart. (b) You must report CO2, CH4, and N2O emissions from each stationary combustion unit under subpart C of this part (General Stationary Fuel...

  1. 40 CFR 98.282 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Silicon Carbide Production § 98.282 GHGs to report. You must report: (a) CO2 process emissions from all silicon carbide process units or furnaces combined. (b) CO2, CH4, and N2O emissions from... Stationary Fuel Combustion Sources) by following the requirements of subpart C. [74 FR 56374, Oct. 30, 2009...

  2. 40 CFR 98.312 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.312 GHGs to report. (a) You must report CO2 process emissions from each chloride process line as required in this subpart. (b) You must report CO2, CH4, and N2O emissions from each stationary combustion unit under subpart C of this part (General Stationary Fuel...

  3. 40 CFR 98.312 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.312 GHGs to report. (a) You must report CO2 process emissions from each chloride process line as required in this subpart. (b) You must report CO2, CH4, and N2O emissions from each stationary combustion unit under subpart C of this part (General Stationary Fuel...

  4. 40 CFR 63.107 - Identification of process vents subject to this subpart.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process vents associated with an air oxidation reactor, distillation unit, or reactor that is in a source.... (b) Some, or all, of the gas stream originates as a continuous flow from an air oxidation reactor... specified in paragraphs (c)(1) through (3) of this section. (1) Is directly from an air oxidation reactor...

  5. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    PubMed

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more efficient Hg-removal. Overall mercury removal efficiencies from flue gas can attain 80-95%, depending on sorbent type/impregnation, sorbent surplus and operating conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Analysis of potential benefits of integrated-gasifier combined cycles for a utility system

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.

    1983-01-01

    Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units.

  7. Increase in the thermodynamic efficiency of the working process of spark-ignited engines on natural gas with the addition of hydrogen

    NASA Astrophysics Data System (ADS)

    Mikhailovna Smolenskaya, Natalia; Vladimirovich Smolenskii, Victor; Vladimirovich Korneev, Nicholas

    2018-02-01

    The work is devoted to the substantiation and practical implementation of a new approach for estimating the change in internal energy by pressure and volume. The pressure is measured with a calibrated sensor. The change in volume inside the cylinder is determined by changing the position of the piston. The position of the piston is precisely determined by the angle of rotation of the crankshaft. On the basis of the proposed approach, the thermodynamic efficiency of the working process of spark ignition engines on natural gas with the addition of hydrogen was estimated. Experimental studies were carried out on a single-cylinder unit UIT-85. Their analysis showed an increase in the thermodynamic efficiency of the working process with the addition of hydrogen in a compressed natural gas (CNG).The results obtained make it possible to determine the characteristic of heat release from the analysis of experimental data. The effect of hydrogen addition on the CNG combustion process is estimated.

  8. Membranes for Environmentally Friendly Energy Processes

    PubMed Central

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  9. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units AGENCY... Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units.'' The EPA is making... for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units, and...

  10. Features of electromagnetic processes in electric gas turbine installations

    NASA Astrophysics Data System (ADS)

    Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.

    2017-12-01

    Electric gas turbine aggregates are considered in terms of ensuring reliable operation of gas-dynamic bearings. A complex of unfavorable factors affecting this unit of the installation is described, including rotor unbalance, eccentricity, irregularity of armature field rotation, its amplitude variation during rotor rotation, etc. The studies have shown that it is possible to increase the efficiency of EGTA by increasing the number of armature winding phases (i.e. reducing electromagnetic torque ripples), amplifying the damping circuits on the rotor, as well as by introducing pulse-width modulation of currents in the phases and flexible feedbacks.

  11. Low-btu gas in the US Midcontinent: A challenge for geologists and engineers

    USGS Publications Warehouse

    Newell, K. David; Bhattacharya, Saibal; Sears, M. Scott

    2009-01-01

    Several low-btu gas plays can be defined by mapping gas quality by geological horizon in the Midcontinent. Some of the more inviting plays include Permian strata west of the Central Kansas uplift and on the eastern flank of Hugoton field and Mississippi chat and other pays that subcrop beneath (and directly overlie) the basal Pennsylvanian angular unconformity at the southern end of the Central Kansas uplift. Successful development of these plays will require the cooperation of reservoir geologists and process engineers so that the gas can be economically upgraded and sold at a nominal pipeline quality of 950 btu/scf or greater. Nitrogen is the major noncombustible contaminant in these gas fields, and various processes can be utilized to separate it from the hydrocarbon gases. Helium, which is usually found in percentages corresponding to nitrogen, is a possible ancillary sales product in this region. Its separation from the nitrogen, of course, requires additional processing. The engineering solution for low-btu gas depends on the rates, volumes, and chemistry of the gas needing upgrading. Cryogenic methods of nitrogen removal are classically used for larger feed volumes, but smaller feed volumes characteristic of isolated, low-pressure gas fields can now be handled by available small-scale PSA technologies. Operations of these PSA plants are now downscaled for upgrading stripper well gas production. Any nitrogen separation process should be sized, within reason, to match the anticipated flow rate. If the reservoir rock surprises to the upside, the modularity of the upgrading units is critical, for they can be stacked to meet higher volumes. If a reservoir disappoints (and some will), modularity allows the asset to be moved to another site without breaking the bank.

  12. 7 CFR 2900.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.2... maintenance of food quality after processing. (b) Establishment means an economic unit, generally at a single... definition used in the Standard Industrial Classification Manual, 1972 edition). (c) Essential Agricultural...

  13. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.

    PubMed

    Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael; Forman, Grant S; DiVita, Vincent B

    2014-07-01

    This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.

  14. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding: Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium in stainless steel welding fumes.

    PubMed

    Keane, M; Siert, A; Stone, S; Chen, B; Slaven, J; Cumpston, A; Antonini, J

    2012-09-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr 6+ ) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr 6+ fractions were measured in the fumes; fume generation rates, Cr 6+ generation rates, and Cr 6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr 6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr 6+ ranged from 69 to 7800 μg/min, and Cr 6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr 6+ (ppm) in the fume did not necessarily correlate with the Cr 6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr 6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use.

  15. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...

  16. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...

  17. Map of assessed shale gas in the United States, 2012

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2013-01-01

    The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and square-mile cells are shown to represent proprietary shale-gas wells. The square-mile cells include gas-producing wells from shale intervals. In some cases, shale-gas formations contain gas in deeper parts of a basin and oil at shallower depths (for example, the Woodford Shale and the Eagle Ford Shale). Because a discussion of shale oil is beyond the scope of this report, only shale-gas assessment units and cells are shown. The map can be printed as a hardcopy map or downloaded for interactive analysis in a Geographic Information System data package using the ArcGIS map document (file extension MXD) and published map file (file extension PMF). Also available is a publications access table with hyperlinks to current U.S. Geological Survey shale gas assessment publications and web pages. Assessment results and geologic reports are available as completed at the U.S. Geological Survey Energy Resources Program Web Site, http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx. A historical perspective of shale gas activity in the United States is documented and presented in a video clip included as a PowerPoint slideshow.

  18. Fatalities among oil and gas extraction workers--United States, 2003-2006.

    PubMed

    2008-04-25

    Oil and gas extraction (i.e., removing oil and natural gas from the ground) is a growing industry in the United States, employing approximately 380,000 workers in 2006. In recent years, activity in this industry has increased substantially, from an average of 800 actively drilling rigs in the United States during the 1990s to approximately 1,300 during 2003-2006. In August 2005, the U.S. Department of Labor's Bureau of Labor Statistics (BLS) asked CDC to investigate a 15% increase in fatalities among oil and gas extraction workers (from 85 fatalities in 2003 to 98 in 2004). CDC analyzed data from the BLS Census of Fatal Occupational Injuries (CFOI) for the period 2003-2006. This report describes the results of that analysis, which indicated that increases in oil and gas extraction activity were correlated with an increase in the rate of fatal occupational injuries in this industry, with an annual fatality rate of 30.5 per 100,000 workers (404 fatalities) during 2003-2006, approximately seven times the rate for all workers (4.0 per 100,000 workers). Nearly half of all fatal injuries among these workers were attributed to highway motor-vehicle crashes and workers being struck by machinery or equipment. Employers should work with existing industry groups and federal, state, and local government agencies to promote seatbelt use. In addition, researchers and public health officials should collaborate with industry groups to establish engineering and process controls that remove workers from potentially dangerous machinery while drilling and servicing oil and gas wells.

  19. 40 CFR 60.5430 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... natural gas liquids from field gas, the fractionation of the liquids into natural gas products, or other... gas unit means a unit used to cool natural gas to the point at which it is condensed into a liquid... pressurized natural gas. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and...

  20. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Jayesh; Hess, Fernando; Horzen, Wessel van

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability ofmore » implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO 2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO 2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam in the existing combined cycle power plant provides sufficient power for all plant loads. The lifecycle GHG profile of the produced jet fuel is 95% of conventional jet fuel. Without converting the fuel gas to a low carbon fuel gas, the emissions would be 108% of conventional jet fuel and without any GHG mitigation, the profile would be 206%. Oil prices greater than $120 per barrel are required to reach a targeted internal rate of return on equity (IRROE) of 12%. Although capital expenditure is much less than if a greenfield facility was built, the relatively small size of the plant, assumed coal price, and the CTL risk profile used in the economic assumptions lead to a high cost of production. Assuming more favorable factors, the economic oil price could be reduced to $78 per barrel with GHG mitigation and $55 per barrel with no GHG mitigation.« less

  1. Pilot plant studies of the CO{sub 2} capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO{sub 2} capture technology development plant and the Boundary Dam CO{sub 2} capture demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idem, R.; Wilson, M.; Tontiwachwuthikul, P.

    2006-04-12

    Evaluations of the benefits of using a mixed MEA/MDEA solvent for CO{sub 2} capture in terms of the heat requirement for solvent regeneration, lean and rich loadings, CO{sub 2} production, and solvent stability were performed by comparing the performance of aqueous 5 kmol/m{sup 3} MEA with that of an aqueous 4:1 molar ratio MEA/MDEA blend of 5 kmol/ml total amine concentration as a function of the operating time. The tests were performed using two pilot CO{sub 2} capture plants of the International Test Centre for CO{sub 2} Capture (ITC), which provided two different sources and compositions of flue gas. Themore » University of Regina CO{sub 2} plant (UR unit) processes flue gas from the combustion of natural gas while the Boundary Dam CO{sub 2} plant (BD unit) processes flue gas from a coal-fired electric power station. The results show that a huge heat-duty reduction can be achieved by using a mixed MEA/MDEA solution instead of a single MEA solution in an industrial environment of a CO{sub 2} capture plant. However, this benefit is dependent on whether the chemical stability of the solvent can be maintained.« less

  2. Ionomer-Membrane Water Processing Methods

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(TradeMark) over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  3. Ionomer-Membrane Water Processing Apparatus

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(Registered Trademark), over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  4. Ionomer-Membrane Water Processing Apparatus

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura Katrina (Inventor)

    2017-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion.RTM., over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  5. Generation of useful energy from process fluids using the biphase turbine

    NASA Astrophysics Data System (ADS)

    Helgeson, N. L.

    1981-01-01

    The six largest energy consuming industries in the United States were surveyed to determine the energy savings that could result from applying the Biphase turbine to industrial process streams. A national potential energy savings of 58 million barrels of oil per year (technical market) was identified. This energy is recoverable from flashing gas liquid process streams and is separate and distinct from exhaust gas waste heat recovery. The industries surveyed in this program were the petroleum chemical, primary metals, paper and pulp, stone-clay-glass, and food. It was required to determine the applicability of the Biphase turbine to flashing operations connected with process streams, to determine the energy changes associated with these flashes if carried out in a Biphase turbine, and to determine the suitability (technical and economical feasibility) of applying the Biphase turbine to these processes.

  6. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 9, July 1--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries,more » product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.« less

  7. Process wastewater treatability study for Westinghouse fluidized-bed coal gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winton, S.L.; Buvinger, B.J.; Evans, J.M.

    1983-11-01

    In the development of a synthetic fuels facility, water usage and wastewater treatment are major areas of concern. Coal gasification processes generally produce relatively large volumes of gas condensates. These wastewaters are typically composed of a variety of suspended and dissolved organic and inorganic solids and dissolved gaseous contaminants. Fluidized-bed coal gasification (FBG) processes are no exception to this rule. The Department of Energy's Morgantown Energy Technology Center (METC), the Gas Research Institute (GRI), and the Environmental Protection Agency (EPA/IERLRTP) recognized the need for a FBG treatment program to provide process design data for FBG wastewaters during the environmental, health,more » and safety characterization of the Westinghouse Process Development Unit (PDU). In response to this need, METC developed conceptual designs and a program plan to obtain process design and performance data for treating wastewater from commercial-scale Westinghouse-based synfuels plants. As a result of this plan, METC, GRI, and EPA entered into a joint program to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a FBG plant. Wastewater from the Westinghouse PDU consists of process quench and gas cooling condensates which are similar to those produced by other FBG processes such as U-Gas, and entrained-bed gasification processes such as Texaco. Therefore, wastewater from this facility was selected as the basis for this study. This paper outlines the current program for developing process design and cost data for the treatment of these wastewaters.« less

  8. Data acquisition and experiment control system of the project Maus (materials science experiments under weightlessness)

    NASA Astrophysics Data System (ADS)

    Lensch, D.

    In the context of Spacelab and Shuttle utilization, it is possible to conduct experiments in 'Small Self Contained Packages' (SSCP). This possibility exists primarily for experiments related to materials research/industrial processing engineering. The program involved is called 'get away special' (GAS). The project Maus was established in West Germany with the aim to participate in the program GAS. The autonomous design of the considered experiments made it necessary to develop an electronic unit for the control and the automatic conduction of the experiment. In addition, the process of the acquisition and the recording of the experimental data is also controlled.

  9. Tunable molten oxide pool assisted plasma-melter vitrification systems

    DOEpatents

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.

  10. ADVANCED SULFUR CONTROL CONCEPTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce themore » number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).« less

  11. Complex of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment

    NASA Astrophysics Data System (ADS)

    Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.

    2015-07-01

    A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.

  12. Removal of contaminant gases from an electrolytic urine pretreatment process. [in spacecraft life support systems

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1977-01-01

    The effluent gas stream from an electrolytic urine pretreatment process was analyzed by gas chromatography-mass spectroscopy and wet chemical methods to determine its composition. The major constituents were identified as: hydrogen, carbon dioxide, oxygen, nitrogen, water vapor, and chlorine. The trace impurities were chlorinated light hydrocarbons, and a number of other organic impurities in the low ppm range. Several methods of removing all of the undesirable gases to levels acceptable for return to a space cabin atmosphere were investigated experimentally. A subsystem concept comprised of the following sequential unit processes and operations was successfully demonstrated: (1) raw urine scrubbing, (2) silica gel sorption, (3) dilution with cabin air, and (4) catalytic oxidation.

  13. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    PubMed

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  14. Conservation of strategic metals

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1982-01-01

    A long-range program in support of the aerospace industry aimed at reducing the use of strategic materials in gas turbine engines is discussed. The program, which is called COSAM (Conservation of Strategic Aerospace Materials), has three general objectives. The first objective is to contribute basic scientific understanding to the turbine engine technology bank so that our national security is not jeopardized if our strategic material supply lines are disrupted. The second objective is to help reduce the dependence of United States military and civilian gas turbine engines on worldwide supply and price fluctuations in regard to strategic materials. The third objective is, through research, to contribute to the United States position of preeminence in the world gas turbine engine markets by minimizing the acquisition costs and optimizing the performance of gas turbine engines. Three major research thrusts are planned: strategic element substitution; advanced processing concepts; and alternate material identification. Results from research and any required supporting technology will give industry the materials technology options it needs to make tradeoffs in material properties for critical components against the cost and availability impacts related to their strategic metal content.

  15. The chemical energy unit partial oxidation reactor operation simulation modeling

    NASA Astrophysics Data System (ADS)

    Mrakin, A. N.; Selivanov, A. A.; Batrakov, P. A.; Sotnikov, D. G.

    2018-01-01

    The chemical energy unit scheme for synthesis gas, electric and heat energy production which is possible to be used both for the chemical industry on-site facilities and under field conditions is represented in the paper. The partial oxidation reactor gasification process mathematical model is described and reaction products composition and temperature determining algorithm flow diagram is shown. The developed software product verification showed good convergence of the experimental values and calculations according to the other programmes: the temperature determining relative discrepancy amounted from 4 to 5 %, while the absolute composition discrepancy ranged from 1 to 3%. The synthesis gas composition was found out practically not to depend on the supplied into the partial oxidation reactor (POR) water vapour enthalpy and compressor air pressure increase ratio. Moreover, air consumption coefficient α increase from 0.7 to 0.9 was found out to decrease synthesis gas target components (carbon and hydrogen oxides) specific yield by nearly 2 times and synthesis gas target components required ratio was revealed to be seen in the water vapour specific consumption area (from 5 to 6 kg/kg of fuel).

  16. Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration.

    PubMed

    Hedayatipour, Mostafa; Jaafarzadeh, Neemat; Ahmadmoazzam, Mehdi

    2017-12-01

    Oil and gas well drilling industries discharge large volumes of contaminated wastewater produced during oil and gas exploration process. In this study, the effect of different operational variables, including temperature, pH and transmembrane pressure on process performance of a commercially available nanofiltration membrane (JCM-1812-50N, USA) for removing Ba, Ni, Cr, NaCl and TDS from produced wastewater by dewatering unit of an oil and gas well drilling industry was evaluated. In optimum experimental conditions (T = 25 °C, P = 170 psi and pH = 4) resulted from Thaguchi method, 85.3, 77.4, 58.5, 79.6 and 56.3% removal efficiencies were achieved for Ba, Ni, Cr, NaCl and TDS, respectively. Also, results from a comparison of the Schuller and Wilcox diagrams revealed that the effluent of the membrane system is usable for drinking water, irrigating and agriculture purposes. Moreover, the process effluent quality showed a scaling feature, according to Langelier saturation index and illustrated that the necessary proceedings should be taken to prevent scaling for industrial application. The nanofiltration membrane process with an acceptable recovery rate of 47.17% represented a good performance in the wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Instrumentation for optimizing an underground coal-gasification process

    NASA Astrophysics Data System (ADS)

    Seabaugh, W.; Zielinski, R. E.

    1982-06-01

    While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.

  18. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranesmore » provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  19. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.« less

  20. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.« less

  1. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide muchmore » greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  2. Noise, chaos, and (ɛ, τ)-entropy per unit time

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Wang, Xiao-Jing

    1993-12-01

    The degree of dynamical randomness of different time processes is characterized in terms of the (ε, τ)-entropy per unit time. The (ε, τ)-entropy is the amount of information generated per unit time, at different scales τ of time and ε of the observables. This quantity generalizes the Kolmogorov-Sinai entropy per unit time from deterministic chaotic processes, to stochastic processes such as fluctuations in mesoscopic physico-chemical phenomena or strong turbulence in macroscopic spacetime dynamics. The random processes that are characterized include chaotic systems, Bernoulli and Markov chains, Poisson and birth-and-death processes, Ornstein-Uhlenbeck and Yaglom noises, fractional Brownian motions, different regimes of hydrodynamical turbulence, and the Lorentz-Boltzmann process of nonequilibrium statistical mechanics. We also extend the (ε, τ)-entropy to spacetime processes like cellular automata, Conway's game of life, lattice gas automata, coupled maps, spacetime chaos in partial differential equations, as well as the ideal, the Lorentz, and the hard sphere gases. Through these examples it is demonstrated that the (ε, τ)-entropy provides a unified quantitative measure of dynamical randomness to both chaos and noises, and a method to detect transitions between dynamical states of different degrees of randomness as a parameter of the system is varied.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Prior to 1978, the Wilsonville Advanced Coal Liquefaction facility material balance surrounded only the thermal liquefaction unit and involved analyses of only the slurry stream and individual gas streams. The distillate solvent yield was determined by difference. Subsequently, several modifications and additional process units were introduced to this single unit system. With the inclusion of the deashing unit in 1978 and the catalytic hydrogenation unit in 1981, the process has evolved into a sophisticated two-stage coal liquefaction process and has the potential for various modes of integration. This report presents an elemental balancing procedure and a simplified presentation format thatmore » is sufficiently flexible to meet current and future needs. The development of the elemental balancing technique and the relevant computer programs to handle the calculations have been addressed. This will be useful in modelling individual unit performance as well as determining the impact of each unit on the overall liquefaction system, provided the units are on a steady-state basis. Five different material balance envelopes are defined. Three of these envelopes pertain to the individual units (the thermal liquefaction or TL unit, the Critical Solvent Deashing or CSD unit and the H-Oil Ebullated Bed Hydrotreating or HTR unit). The fourth or single stage material balance envelope combines the TL and CSD units. The fifth envelope is the two-stage configuration combining all three units. 3 references.« less

  4. 76 FR 52652 - National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... gas-fired turbines for compressor units A2 and A3 and restaging of centrifugal compressors for units.... CP11-133-000] National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of... assessment (EA) for National Fuel Gas Supply Corporation's (National Fuel) proposed Northern Access Project...

  5. Advanced PIC-MCC simulation for the investigation of step-ionization effect in intermediate-pressure capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June

    2018-03-01

    A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.

  6. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.

    PubMed

    Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2009-06-01

    For geological sequestration of carbon dioxide (CO2) separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This study estimated the flue gas impurities to be included in the CO2 stream separated from a CO2 control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO2) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO2 and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO2 could be included in the separated CO2 stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO2 of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO2 concentration below 40 ppmw in the separated CO2 stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO2 streams. In addition to SO2, mercury, and other impurities in separated CO2 streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning, engineering, and management.

  7. Multiparametric methane sensor for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Borecki, M.; Duk, M.; Kociubiński, A.; Korwin-Pawlowski, M. L.

    2016-12-01

    Today, methane sensors find applications mostly in safety alarm installations, gas parameters detection and air pollution classification. Such sensors and sensors elements exists for industry and home use. Under development area of methane sensors application is dedicated to ground gases monitoring. Proper monitoring of soil gases requires reliable and maintenance-free semi-constant and longtime examination at relatively low cost of equipment. The sensors for soil monitoring have to work on soil probe. Therefore, sensor is exposed to environment conditions, as a wide range of temperatures and a full scale of humidity changes, as well as rain, snow and wind, that are not specified for classical methane sensors. Development of such sensor is presented in this paper. The presented sensor construction consists of five commercial non dispersive infra-red (NDIR) methane sensing units, a set of temperature and humidity sensing units, a gas chamber equipped with a micro-fan, automated gas valves and also a microcontroller that controls the measuring procedure. The electronics part of sensor was installed into customized 3D printed housing equipped with self-developed gas valves. The main development of proposed sensor is on the side of experimental evaluation of construction reliability and results of data processing included safety procedures and function for hardware error correction. Redundant methane sensor units are used providing measurement error correction as well as improved measurement accuracy. The humidity and temperature sensors are used for internal compensation of methane measurements as well as for cutting-off the sensor from the environment when the conditions exceed allowable parameters. Results obtained during environment sensing prove that the gas concentration readings are not sensitive to gas chamber vertical or horizontal position. It is important as vertical sensor installation on soil probe is simpler that horizontal one. Data acquired during six month of environment monitoring prove that error correction of methane sensing units was essential for maintenance free sensor operation, despite used safety procedures.

  8. ERP System Implementation: An Oil and Gas Exploration Sector Perspective

    NASA Astrophysics Data System (ADS)

    Mishra, Alok; Mishra, Deepti

    Enterprise Resource Planning (ERP) systems provide integration and optimization of various business processes which leads to improved planning and decision quality, smoother coordination between business units resulting in higher efficiency, and quicker response time to customer demands and inquiries. This paper reports challenges, opportunities and outcome of ERP implementation in Oil & Gas exploration sector. This study will facilitate in understanding transition, constraints and implementation of ERP in this sector and also provide guidelines from lessons learned in this regard.

  9. Method of calculating gas dynamics and heat transfer in single stage refrigeration units

    NASA Technical Reports Server (NTRS)

    Zhitomirskiy, I. S.; Popolskiy, A. B.

    1974-01-01

    A generalized mathematical model of gas-dynamic and heat transfer processes in single-stage regenerative installations operating in Stirling, MacMahon, Gifford-MacMahon, and pulsating tube cycles is proposed. A numerical method os solving initial equations on a digital computer is given. This makes it possible to calculate the change in the thermodynamic parameters in the working cycle in different machine components, as well as the dependence of cold productivity on the temperature level in the steady regime.

  10. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, A.K.

    1984-09-07

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  11. Bioethanol production optimization: a thermodynamic analysis.

    PubMed

    Alvarez, Víctor H; Rivera, Elmer Ccopa; Costa, Aline C; Filho, Rubens Maciel; Wolf Maciel, Maria Regina; Aznar, Martín

    2008-03-01

    In this work, the phase equilibrium of binary mixtures for bioethanol production by continuous extractive process was studied. The process is composed of four interlinked units: fermentor, centrifuge, cell treatment unit, and flash vessel (ethanol-congener separation unit). A proposal for modeling the vapor-liquid equilibrium in binary mixtures found in the flash vessel has been considered. This approach uses the Predictive Soave-Redlich-Kwong equation of state, with original and modified molecular parameters. The congeners considered were acetic acid, acetaldehyde, furfural, methanol, and 1-pentanol. The results show that the introduction of new molecular parameters r and q in the UNIFAC model gives more accurate predictions for the concentration of the congener in the gas phase for binary and ternary systems.

  12. Minimize Solvent Oxidation with NO X Pre-Scrubbing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, Andrew; Sachde, Darshan; Vance, Austyn

    A novel method to remove nitrogen dioxide (NO 2) from the flue gas of coal-fired power plants with CO 2 capture was further developed for commercial implementation. The technology leverages the equipment and chemistry in an existing (sulfur dioxide) SO 2 polishing scrubber upstream of the main CO 2 capture unit to remove the NO 2, preventing degradation of the CO 2 capture solvent and formation of nitrosamines (environmental hazards). The research in this report focuses on further evaluation of the chemical additives and operating conditions associated with the NO 2 removal process to define conditions for commercial scale testingmore » and deployment. Experimental work systematically evaluated a series of potential additives to minimize the oxidation of sulfite in a representative SO 2 pre-scrubber solution (sulfite, in turn, absorbs NO 2). The additive combinations and concentrations were varied alongside important process conditions such as temperature, oxygen concentration, and metals present in solution to mimic the conditions expected in a commercial system. Important results of the parametric experimental work include identifying a new, potent sulfite oxidation inhibitor, revealing the importance of combining inhibitors with metal chelating agents, validation of a low-cost additive process, and development of a new semi-empirical model to represent mechanisms associated with sulfite oxidation. In addition, the experimental work reveled the impact of operating at higher temperatures (representative of a field test unit), which will guide the selection and concertation of additives as well. Engineering analysis found that waste solutions from the pre-scrubber with NO 2 additives may potentially be integrated with existing processes on site (e.g., flue gas desulfurization unit). In addition, techno-economic analysis identified potential net savings as large as $1.30/tonne CO 2 captured and quantified the potential benefit of low cost additive options actively being pursued by the development team. Finally, the experimental results and engineering analysis supported the development of a detailed field testing plan and protocol to evaluate the technology at near-commercial scale. The field test preparation included development of procedures to introduce chemical additives to an existing SO 2 polishing unit and identification of representative flue gas conditions based on a review of existing plants. These activities will have direct bearing on operation and design of commercial units.« less

  13. Effects on the efficiency of activated carbon on exposure to welding fumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, D.

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as partmore » of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.« less

  14. 40 CFR 98.164 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.164 Monitoring and QA/QC requirements. The GHG emissions data for hydrogen production process units must be quality-assured as specified in... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants (incorporated...

  15. Ammonia Detection

    NASA Technical Reports Server (NTRS)

    Ward, William Douglas (Inventor)

    2014-01-01

    The different advantageous embodiments provide for identifying gas leakage in a platform. A processor unit identifies a rate of the gas of the substance leaking from a container in a first compartment for a platform. The processor unit also identifies an amount of gas that has leaked from the container at a selected time based on the rate of the gas of the substance leaking from the container and a total time. The processor unit identifies an amount of the gas of the substance present in a number of compartments associated with the first compartment using the amount of gas leaked from the container in the first compartment and a pressure for each compartment in the number of compartments. The processor unit determines whether the amount of gas in at least one of the first compartment and the number of compartments is outside of a desired amount for the gas.

  16. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  17. The Impact of a Potential Shale Gas Development in Germany and the United Kingdom on Pollutant and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Weger, L.; Cremonese, L.; Bartels, M. P.; Butler, T. M.

    2016-12-01

    Several European countries with domestic shale gas reserves are considering extracting this natural gas resource to complement their energy transition agenda. Natural gas, which produces lower CO2 emissions upon combustion compared to coal or oil, has the potential to serve as a bridge in the transition from fossil fuels to renewables. However, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact climate as well as local and regional air quality. In this study, we explore the impact of a potential shale gas development in Europe, specifically in Germany and the United Kingdom, on emissions of greenhouse gases and pollutants. In order to investigate the effect on emissions, we first estimate a range of wells drilled per year and production volume for the two countries under examination based on available geological information and on regional infrastructural and economic limitations. Subsequently we assign activity data and emissions factors to the well development, gas production and processing stages of shale gas generation to enable emissions quantification. We then define emissions scenarios to explore different storylines of potential shale gas development, including low emissions (high level of regulation), high emissions (low level of regulation) and middle emissions scenarios, which influence fleet make-up, emission factor and activity data choices for emissions quantification. The aim of this work is to highlight important variables and their ranges, to promote discussion and communication of potential impacts, and to construct possible visions for a future shale gas development in the two study countries. In a follow-up study, the impact of pollutant emissions from these scenarios on air quality will be explored using the Weather Research and Forecasting model with chemistry (WRF-Chem) model.

  18. Small gas-turbine units for the power industry: Ways for improving the efficiency and the scale of implementation

    NASA Astrophysics Data System (ADS)

    Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.

    2017-10-01

    Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.

  19. Process Simulation of Gas Metal Arc Welding Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Paul E.

    2005-09-06

    ARCWELDER is a Windows-based application that simulates gas metal arc welding (GMAW) of steel and aluminum. The software simulates the welding process in an accurate and efficient manner, provides menu items for process parameter selection, and includes a graphical user interface with the option to animate the process. The user enters the base and electrode material, open circuit voltage, wire diameter, wire feed speed, welding speed, and standoff distance. The program computes the size and shape of a square-groove or V-groove weld in the flat position. The program also computes the current, arc voltage, arc length, electrode extension, transfer ofmore » droplets, heat input, filler metal deposition, base metal dilution, and centerline cooling rate, in English or SI units. The simulation may be used to select welding parameters that lead to desired operation conditions.« less

  20. Microbial communities associated with wet flue gas desulfurization systems

    PubMed Central

    Brown, Bryan P.; Brown, Shannon R.; Senko, John M.

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  1. Thermodynamic Analysis on of Skid-Mounted Coal-bed Methane Liquefaction Device using Cryogenic Turbo-Expander

    NASA Astrophysics Data System (ADS)

    Chen, Shuangtao; Niu, Lu; Zeng, Qiang; Li, Xiaojiang; Lou, Fang; Chen, Liang; Hou, Yu

    2017-12-01

    Coal-bed methane (CBM) reserves are rich in Sinkiang of China, and liquefaction is a critical step for the CBM exploration and utilization. Different from other CBM gas fields in China, CBM distribution in Sinkiang is widespread but scattered, and the pressure, flow-rate and nitrogen content of CBM feed vary significantly. The skid-mounted liquefaction device is suggested as an efficient and economical way to recover methane. Turbo-expander is one of the most important parts which generates the cooling capacity for the cryogenic liquefaction system. Using turbo-expander, more cooling capacity and higher liquefied fraction can be achieved. In this study, skid-mounted CBM liquefaction processes based on Claude cycle are established. Cryogenic turbo-expander with high expansion ratio is employed to improve the efficiency of CBM liquefaction process. The unit power consumption per liquefaction mole flow-rate for CBM feed gas is used as the object function for process optimization, compressor discharge pressure, flow ratio of feed gas to turbo-expander and nitrogen friction are analyzed, and optimum operation range of the liquefaction processes are obtained.

  2. Control system for several rotating mirror camera synchronization operation

    NASA Astrophysics Data System (ADS)

    Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji

    1997-05-01

    This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.

  3. [Nitrous oxide production by the German Armed Forces in the 20th century : History of medicine and pharmacy in the Armed Forces].

    PubMed

    Kronabel, D B J

    2010-03-01

    The nitrous oxide production unit of the German Armed Forces was a worldwide unique facility which was only employed in the former main medical depot at Euskirchen (nitrous oxide: medical gas which is now obsolete). The last unit was phased out in 2002 and brought to the main medical depot at Blankenburg. Unfortunately the unit is now no longer in the depot and seems to have disappeared. This article describes the nitrous oxide production process and the use of the production unit which was designed by the Socsil company of Switzerland.

  4. 78 FR 41117 - Virgil C. Summer Nuclear Station, Units 2 and 3; South Carolina Electric and Gas; Change to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... VIII, ``Processes for Changes and Departures,'' Appendix D to 10 CFR Part 52 to allow the licensee to... reduction in standardization caused by the exemption; and F. the exemption will not result in a significant...

  5. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1) through...

  6. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1) through...

  7. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1) through...

  8. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1) through...

  9. 40 CFR 98.422 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Suppliers of Carbon Dioxide § 98.422 GHGs to report. (a) Mass of CO2 captured from each production process unit. (b) Mass of CO2 extracted from each CO2 production wells. (c) Mass of CO2 imported. (d) Mass of CO2 exported. ...

  10. 77 FR 48878 - Approval and Promulgation of Federal Implementation Plan for Oil and Natural Gas Well Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... the sales natural gas pipeline or to an emissions control unit when a natural gas sales pipeline is... vapor recovery unit (VRU) to be injected into a natural gas sales pipeline for conveyance to a natural gas plant. In the event that pipeline injection of recoverable natural gas is temporarily infeasible...

  11. Estimating Regional and National-Scale Greenhouse Gas Emissions in the Agriculture, Forestry, and Other Land Use (AFOLU) Sector using the `Agricultural and Land Use (ALU) Tool'

    NASA Astrophysics Data System (ADS)

    Spencer, S.; Ogle, S. M.; Wirth, T. C.; Sivakami, G.

    2016-12-01

    The Intergovernmental Panel on Climate Change (IPCC) provides methods and guidance for estimating anthropogenic greenhouse gas emissions for reporting to the United Nations Framework Convention on Climate Change. The methods are comprehensive and require extensive data compilation, management, aggregation, documentation and calculations of source and sink categories to achieve robust emissions estimates. IPCC Guidelines describe three estimation tiers that require increasing levels of country-specific data and method complexity. Use of higher tiers should improve overall accuracy and reduce uncertainty in estimates. The AFOLU sector represents a complex set of methods for estimating greenhouse gas emissions and carbon sinks. Major AFOLU emissions and sinks include carbon dioxide (CO2) from carbon stock change in biomass, dead organic matter and soils, urea or lime application to soils, and oxidation of carbon in drained organic soils; nitrous oxide (N2O) and methane (CH4) emissions from livestock management and biomass burning; N2O from organic amendments and fertilizer application to soils, and CH4 emissions from rice cultivation. To assist inventory compilers with calculating AFOLU-sector estimates, the Agriculture and Land Use Greenhouse Gas Inventory Tool (ALU) was designed to implement Tier 1 and 2 methods using IPCC Good Practice Guidance. It guides the compiler through activity data entry, emission factor assignment, and emissions calculations while carefully maintaining data integrity. ALU also provides IPCC defaults and can estimate uncertainty. ALU was designed to simplify the AFOLU inventory compilation process at regional or national scales, disaggregating the process into a series of steps reduces the potential for errors in the compilation process. An example application has been developed using ALU to estimate methane emissions from rice production in the United States.

  12. An integrated exhaust gas analysis system with self-contained data processing and automatic calibration

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Summers, R. L.

    1981-01-01

    An integrated gas analysis system designed to operate in automatic, semiautomatic, and manual modes from a remote control panel is described. The system measures the carbon monoxide, oxygen, water vapor, total hydrocarbons, carbon dioxide, and oxides of nitrogen. A pull through design provides increased reliability and eliminates the need for manual flow rate adjustment and pressure correction. The system contains two microprocessors to range the analyzers, calibrate the system, process the raw data to units of concentration, and provides information to the facility research computer and to the operator through terminal and the control panels. After initial setup, the system operates for several hours without significant operator attention.

  13. Prospective gas turbine and combined-cycle units for power engineering (a Review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2013-02-01

    The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.

  14. Metabolomics by Gas Chromatography-Mass Spectrometry: the combination of targeted and untargeted profiling

    PubMed Central

    Fiehn, Oliver

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS)-based metabolomics is ideal for identifying and quantitating small molecular metabolites (<650 daltons), including small acids, alcohols, hydroxyl acids, amino acids, sugars, fatty acids, sterols, catecholamines, drugs, and toxins, often using chemical derivatization to make these compounds volatile enough for gas chromatography. This unit shows that on GC-MS- based metabolomics easily allows integrating targeted assays for absolute quantification of specific metabolites with untargeted metabolomics to discover novel compounds. Complemented by database annotations using large spectral libraries and validated, standardized standard operating procedures, GC-MS can identify and semi-quantify over 200 compounds per study in human body fluids (e.g., plasma, urine or stool) samples. Deconvolution software enables detection of more than 300 additional unidentified signals that can be annotated through accurate mass instruments with appropriate data processing workflows, similar to liquid chromatography-MS untargeted profiling (LC-MS). Hence, GC-MS is a mature technology that not only uses classic detectors (‘quadrupole’) but also target mass spectrometers (‘triple quadrupole’) and accurate mass instruments (‘quadrupole-time of flight’). This unit covers the following aspects of GC-MS-based metabolomics: (i) sample preparation from mammalian samples, (ii) acquisition of data, (iii) quality control, and (iv) data processing. PMID:27038389

  15. Public and stakeholder participation for managing and reducing the risks of shale gas development.

    PubMed

    North, D Warner; Stern, Paul C; Webler, Thomas; Field, Patrick

    2014-01-01

    Emerging technologies pose particularly strong challenges for risk governance when they have multidimensional and inequitable impacts, when there is scientific uncertainty about the technology and its risks, when there are strong value conflicts over the perceived benefits and risks, when decisions must be made urgently, and when the decision making environment is rife with mistrust. Shale gas development is one such emerging technology. Drawing on previous U.S. National Research Council committee reports that examined risk decision making for complex issues like these, we point to the benefits and challenges of applying the analytic-deliberative process recommended in those reports for stakeholder and public engagement in risk decision making about shale gas development in the United States. We discuss the different phases of such a process and conclude by noting the dangers of allowing controversy to ossify and the benefits of sound dialogue and learning among publics, stakeholders, industry, and regulatory decision makers.

  16. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbingmore » liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  17. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in... vented through the same stack as any combustion unit or process equipment that reports CO2 emissions...

  18. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b..., dry basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage... reduction furnace are vented through the same stack as any combustion unit or process equipment that reports...

  19. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in... vented through the same stack as any combustion unit or process equipment that reports CO2 emissions...

  20. 40 CFR 98.164 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.164 Monitoring and QA/QC requirements. The GHG emissions data for hydrogen production process units must be quality-assured as specified in..., Hydrogen, and Nitrogen in Petroleum Products and Lubricants (incorporated by reference, see § 98.7). (xi...

  1. SOURCE APPORTIONMENT OF PRIMARY CARBONACEOUS AEROSOL USING THE COMMUNITY MULTISCALE AIR QUALITY MODEL

    EPA Science Inventory

    A substantial fraction of fine particulate matter (PM) across the United States is composed of carbon, which may be either emitted in particulate form (i.e., primary) or formed in the atmosphere through gas-to-particle conversion processes (i.e., secondary). Primary carbonaceous...

  2. Development of Mobile Tracer Correlation Method for Quantification of Emissions from Landfills and Other Large Area Sources

    EPA Science Inventory

    There is an emerging need to develop cost effective measurement methods for greenhouse gas and air pollutant emissions from large area sources such as landfills, waste water treatment ponds, open area processing units, agricultural operations, CO2 sequestration fields, and site r...

  3. Development of Mobile Tracer Correlation Approach for Quantification of Emissions from Landfills and Other Large Area Sources

    EPA Science Inventory

    There is a recognized need to develop cost effective measurement methods for greenhouse gas and air pollutant emissions from large area sources such as landfills, waste water treatment ponds, open area processing units, agricultural operations, CO2 sequestration fields, and site ...

  4. 40 CFR 98.408 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.408 Definitions. All terms...) Natural Gas 1.027 MMBtu/Mscf 53.02 Propane 3.836 MMBtu/bbl 63.02 Normal butane 4.326 MMBtu/bbl 64.93... Unit Default CO2 emission value(MT CO2/Unit) Natural Gas Mscf 0.054452 Propane Barrel 0.241745 Normal...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, R.S.; Boustany, K.

    The PRISM gas membrane separation system has been commercially proven for over 5 yr in the chemical and refinery processing industry. The system has been used successfully in the field for removal of CO2 from streams containing 10 to 90% CO2. The on-stream time of the system has equalled availability of feed gas. It has operated with H2S and other contaminants with no deleterious effects. The only pretreatment required is to maintain the shell side gas at 20 to 25 F above the dew point. Variation in feed gas rates and composition present no operating problem. The proposed system ismore » a skid-mounted modular unit that is easily adaptable to variations in feed volume and CO2 content. The economic advantages in capital and operating costs are demonstrated.« less

  6. Quantification of Fugitive Methane Emissions with Spatially Correlated Measurements Collected with Novel Plume Camera

    NASA Astrophysics Data System (ADS)

    Tsai, Tracy; Rella, Chris; Crosson, Eric

    2013-04-01

    Quantification of fugitive methane emissions from unconventional natural gas (i.e. shale gas, tight sand gas, etc.) production, processing, and transport is essential for scientists, policy-makers, and the energy industry, because methane has a global warming potential of at least 21 times that of carbon dioxide over a span of 100 years [1]. Therefore, fugitive emissions reduce any environmental benefits to using natural gas instead of traditional fossil fuels [2]. Current measurement techniques involve first locating all the possible leaks and then measuring the emission of each leak. This technique is a painstaking and slow process that cannot be scaled up to the large size of the natural gas industry in which there are at least half a million natural gas wells in the United States alone [3]. An alternative method is to calculate the emission of a plume through dispersion modeling. This method is a scalable approach since all the individual leaks within a natural gas facility can be aggregated into a single plume measurement. However, plume dispersion modeling requires additional knowledge of the distance to the source, atmospheric turbulence, and local topography, and it is a mathematically intensive process. Therefore, there is a need for an instrument capable of simple, rapid, and accurate measurements of fugitive methane emissions on a per well head scale. We will present the "plume camera" instrument, which simultaneously measures methane at different spatial points or pixels. The spatial correlation between methane measurements provides spatial information of the plume, and in addition to the wind measurement collected with a sonic anemometer, the flux can be determined. Unlike the plume dispersion model, this approach does not require knowledge of the distance to the source and atmospheric conditions. Moreover, the instrument can fit inside a standard car such that emission measurements can be performed on a per well head basis. In a controlled experiment with known releases from a methane tank, a 2-pixel plume camera measured 496 ± 160 sccm from a release of 650 sccm located 21 m away, and 4,180 ± 962 sccm from a release of 3,400 sccm located 49 m away. These results in addition to results with a higher-pixel camera will be discussed. Field campaign data collected with the plume camera pixels mounted onto a vehicle and driven through the natural gas fields in the Uintah Basin (Utah, United States) will also be presented along with the limitations and advantages of the instrument. References: 1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.). IPCC, 2007: Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2. R.W. Howarth, R. Santoro, and A. Ingraffea. "Methane and the greenhouse-gas footprint of natural gas from shale formations." Climate Change, 106, 679 (2011). 3. U.S. Energy Information Administration. "Number of Producing Wells." . Accessed 6 January 2013.

  7. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumentedmore » and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.« less

  8. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary design of the bench-scale equipment continues.« less

  9. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. Potting and module materials testing continued. Preliminary design of the bench-scale equipment continues.« less

  10. Evaluation of long-term gas hydrate production testing locations on the Alaska north slope

    USGS Publications Warehouse

    Collett, T.S.; Boswell, R.; Lee, M.W.; Anderson, B.J.; Rose, K.; Lewis, K.A.

    2011-01-01

    The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation. Copyright 2011, Offshore Technology Conference.

  11. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    USGS Publications Warehouse

    Collett, Timothy; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2011-01-01

    The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation.

  12. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogenmore » from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.« less

  13. Survey of flue gas desulfurization systems: Dickerson Station, Potomac Electric Power Co. Final report, Feb--Aug 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, G.A.

    1975-09-01

    Results are given of a survey of a flue gas desulfurization system, utilizing the Chemico/Basic MgO-SO2 removal/recovery process, that has been retrofitted to handle approximately half of the exhaust gas from the 190 MW unit 3 at Potomac Electric Power Company's Dickerson Station. The system was installed at a cost of SO.5 million. The boiler burns 2% sulfur coal and is equipped with a 94% efficient electrostatic precipitator. A single two-stage scrubber/absorber is used. The liquor streams for the two stages are separate, both operating in a closed-loop mode. Magnesium oxide (MgO) is regenerated off-site. (GRA)

  14. Evaluation Of Rotation Frequency Gas-Diesel Engines When Using Automatic Control System

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A.; Efremov, A.

    2017-01-01

    A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of gas-diesel engine may be reduced at 25-30 times at optimal settings of the controller in all the power range. The results of modeling showing a considerable quality improvement of transient processes in the investigated system at a sharp change of loading are presented in this article.

  15. Method of making improved gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN

    2002-11-05

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  16. Tuneable diode laser gas analyser for methane measurements on a large scale solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Lengden, Michael; Cunningham, Robert; Johnstone, Walter

    2011-10-01

    A new in-line, real time gas analyser is described that uses tuneable diode laser spectroscopy (TDLS) for the measurement of methane in solid oxide fuel cells. The sensor has been tested on an operating solid oxide fuel cell (SOFC) in order to prove the fast response and accuracy of the technology as compared to a gas chromatograph. The advantages of using a TDLS system for process control in a large-scale, distributed power SOFC unit are described. In future work, the addition of new laser sources and wavelength modulation will allow the simultaneous measurement of methane, water vapour, carbon-dioxide and carbon-monoxide concentrations.

  17. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    PubMed

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Field tests prove microscale NRU to upgrade low-btu gas

    USGS Publications Warehouse

    Bhattacharya, Saibal; Newell, K. David; Watney, W. Lynn; Sigel, Micael

    2009-01-01

    The Kansas Geological Survey (University of Kansas) and the American Energies Corp., Wichita, have conducted field tests of a scalable, microscale, N2-rejection unit (NRU) to demonstrate its effectiveness to upgrade low-pressure ((<100 psig) and low-volume (=100 Mcfd) low-btu gas to pipeline quality. The tests aim to develop inexpensive NRU technology, which is designed for low- volume, low-pressure gas wells, to significantly increase the contribution of marginal low-btu gas to the gas supply of the US. The NRU uses two towers and uses three stages, namely, adsorption under pressure, venting to 2 psig, and desorption under vacuum. The modular design allows additional sets of towers to be added or removed to handle increases or decreases in feed volumes. The field tests also reveal that a strong compressor, which is capable of evacuating the tower (volume) as quickly as possible, should be employed to reduce process cycle time and increase plant throughput.

  19. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Hoeschele, E. Weitzel, C. Backman

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit withmore » lower storage volume and reduced gas input requirements.« less

  20. Determining gas hydrate distribution in sands using integrated analysis of well log and seismic data in the Terrebonne Basin, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, Jess; Cook, Ann; Daigle, Hugh

    The Terrebonne Basin is a salt bounded mini-basin in the northeast section of the Walker Ridge protraction area in the Gulf of Mexico, and the main site for an upcoming gas-hydrate focused International Ocean Discovery Program (IODP) cruise. The basin is infilled by an increasingly mud rich sedimentary sequence with several 5-15 meter gas-hydrate filled sand units of Miocene to Pliocene age overlying the up-domed salt. These gas-hydrate filled sand units can be identified in logging while drilling data from two existing wells in the Terrebonne Basin, drilled in 2009 by the Gas Hydrate Joint Industry Project (JIP) Leg 2.more » The sand units are cross cut by a distinct bottom-simulating reflector (BSR), and are clearly characterized by a polarity reversal in the sand units. The polarity reversal is caused by a positive gas-hydrate filled sand within the stability zone changing to negative gas-bearing sand. Using well data and calculated synthetic seismogram well ties we are able to identify several additional 1-4 meter gas-hydrate and water-saturated sand units associated with thick (100-200 m-thick), fine grained, hydrate bearing fractured units in the upper sedimentary sequence on the seismic data. Following on previous work, we propose that microbial generation of methane occurring within the fine-grained, fractured units acts as a source for gas hydrate formation in the thin sands. In contrast, it has been proposed that the gas hydrate in the 5-15 m-thick sands first discovered by the JIP was originates from a deeper thermogenic source. Through correlating hydrate occurrence in sands from well data, to amplitudes derived from the seismic data, we can estimate possible distribution of hydrate across the basin. Overall, we find the Terrebonne basin to be a complex gas hydrate system with multiple mechanisms of methane generation and migration.« less

  1. World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States

    EIA Publications

    2011-01-01

    The Energy Information Administration sponsored Advanced Resources International, Inc., to assess 48 gas shale basins in 32 countries, containing almost 70 shale gas formations. This effort has culminated in the report: World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States.

  2. Unit with Fluidized Bed for Gas-Vapor Activation of Different Carbonaceous Materials for Various Purposes: Design, Computation, Implementation

    NASA Astrophysics Data System (ADS)

    Strativnov, Eugene

    2017-02-01

    We propose the technology of obtaining the promising material with wide specter of application-activated nanostructured carbon. In terms of technical indicators, it will stand next to the materials produced by complex regulations with the use of costly chemical operations. It can be used for the following needs: as a sorbent for hemosorption and enterosorption, for creation of the newest source of electric current (lithium and zinc air batteries, supercapacitors), and for processes of short-cycle adsorption gas separation.

  3. Air impacts of increased natural gas acquisition, processing, and use: a critical review.

    PubMed

    Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B

    2014-01-01

    During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource.

  4. A Wireless Electronic Nose System Using a Fe2O3 Gas Sensing Array and Least Squares Support Vector Regression

    PubMed Central

    Song, Kai; Wang, Qi; Liu, Qi; Zhang, Hongquan; Cheng, Yingguo

    2011-01-01

    This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH4/H2) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process. PMID:22346587

  5. Map of assessed continuous (unconventional) oil resources in the United States, 2014

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2015-01-01

    The U.S. Geological Survey (USGS) conducts quantitative assessments of potential oil and gas resources of the onshore United States and associated coastal State waters. Since 2000, the USGS has completed assessments of continuous (unconventional) resources in the United States based on geologic studies and analysis of well-production data and has compiled digital maps of the assessment units classified into four categories: shale gas, tight gas, coalbed gas, and shale oil or tight oil (continuous oil). This is the fourth digital map product in a series of USGS unconventional oil and gas resource maps; its focus being shale-oil or tight-oil (continuous-oil) assessments. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, which includes an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and a published map file (.pmf). Supporting geologic studies of total petroleum systems and assessment units, as well as studies of the methodology used in the assessment of continuous-oil resources in the United States, are listed with hyperlinks in table 1. Assessment results and geologic reports are available at the USGS websitehttp://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx.

  6. Exhaust gas purification system for lean burn engine

    DOEpatents

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  7. Geology and oil and gas assessment of the Mancos-Menefee Composite Total Petroleum System: Chapter 4 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    Ridgley, J.L.; Condon, S.M.; Hatch, J.R.

    2013-01-01

    Eight assessment units were defined in the Mancos-Menefee Composite TPS. Of the eight assessment units, four were assessed as conventional oil or gas accumulations and four as continuous-type accumulations. The conventional assessment units are Dakota-Greenhorn Conventional Oil and Gas Assessment Unit (AU), Gallup Sandstone Conventional Oil and Gas AU, Mancos Sandstones Conventional Oil AU, and the Mesaverde Updip Conventional Oil AU. Continuous-type assessments are Dakota-Greenhorn Continuous Gas AU, Mancos Sandstones Continuous Gas AU, Mesaverde Central-Basin Continuous Gas AU, and Menefee Coalbed Gas AU. The Mesaverde Updip Conventional AU was not quantitatively assessed for undiscovered oil and gas resources, because the producing oil fields were smaller than the 0.5 million barrel cutoff, and the potential of finding fields above this cutoff was considered to be low. Total oil resources that have the potential for additions to reserves in the next 30 years are estimated at a mean of 16.78 million barrels. Most of this resource will come from reservoirs in the Mancos Sandstones Oil AU. Gas resources that have the potential for additions to reserves in the next 30 years are estimated at a mean of 11.11 trillion cubic feet of gas (TCFG). Of this amount, 11.03 TCFG will come from continuous gas accumulations; the remainder will be gas associated with oil in conventional accumulations.Total natural gas liquids (NGL) that have the potential for additions to reserves in the next 30 years are estimated at a mean of 99.86 million barrels. Of this amount, 96.95 million barrels will come from the continuous gas assessment units, and 78.3 percent of this potential resource will come from the Mancos Sandstones Continuous Gas AU.

  8. New projects for CCGTs with coal gasification (Review)

    NASA Astrophysics Data System (ADS)

    Olkhovskii, G. G.

    2016-10-01

    Perspectives of using coal in combined-cycle gas turbine units (CCGTs), which are significantly more efficient than steam power plants, have been associated with preliminary coal gasification for a long time. Due to gasification, purification, and burning the resulting synthesis gas at an increased pressure, there is a possibility to intensify the processes occurring in them and reduce the size and mass of equipment. Physical heat evolving from gasification can be used without problems in the steam circuit of a CCGT. The downside of these opportunities is that the unit becomes more complex and expensive, and its competitiveness is affected, which was not achieved for CCGT power plants with coal gasification built in the 1990s. In recent years, based on the experience with these CCGTs, several powerful CCGTs of the next generation, which used higher-output and cost-effective gas-turbine plants (GTPs) and more advanced systems of gasification and purification of synthesis gas, were either built or designed. In a number of cases, the system of gasification includes devices of CO vapor reforming and removal of the emitted CO2 at a high pressure prior to fuel combustion. Gasifiers with air injection instead of oxygen injection, which is common in coal chemistry, also find application. In this case, the specific cost of the power station considerably decreases (by 15% and more). In units with air injection, up to 40% air required for separation is drawn from the intermediate stage of the cycle compressor. The range of gasified coals has broadened. In order to gasify lignites in one of the projects, a transfer reactor was used. The specific cost of a CCGT with coal gasification rose in comparison with the period when such units started being designed, from 3000 up to 5500 dollars/kW.

  9. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    USGS Publications Warehouse

    Collett, Timothy S.; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2012-01-01

    The results of short-duration formation tests in northern Alaska and Canada have further documented the energy-resource potential of gas hydrates and have justified the need for long-term gas-hydrate-production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally occurring gas hydrate to depressurization-induced or thermal-, chemical-, or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gashydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas-hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with the US Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk River, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas-hydrate-production test sites. The test-site-assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas-hydrate testing. The site-selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas-hydrate-production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area and provides new information on the nature of gas-hydrate occurrence and the potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well-log analysis, geological correlation and mapping, and numerical simulation.

  10. Estimation of Potential Shale Gas Yield Amount and Land Degradation in China by Landcover Distribution regarding Water-Food-Energy and Forest

    NASA Astrophysics Data System (ADS)

    Kim, N.; Heo, S.; Lim, C. H.; Lee, W. K.

    2017-12-01

    Shale gas is gain attention due to the tremendous reserves beneath the earth. The two known high reservoirs are located in United States and China. According to U.S Energy Information Administration China have estimated 7,299 trillion cubic feet of recoverable shale gas and placed as world first reservoir. United States had 665 trillion cubic feet for the shale gas reservoir and placed fourth. Unlike the traditional fossil fuel, spatial distribution of shale gas is considered to be widely spread and the reserved amount and location make the resource as energy source for the next generation. United States dramatically increased the shale gas production. For instance, shale gas production composes more than 50% of total natural gas production whereas China and Canada shale gas produce very small amount of the shale gas. According to U.S Energy Information Administration's report, in 2014 United States produced shale gas almost 40 billion cubic feet per day but China only produced 0.25 billion cubic feet per day. Recently, China's policy had changed to decrease the coal powerplants to reduce the air pollution and the energy stress in China is keep increasing. Shale gas produce less air pollution while producing energy and considered to be clean energy source. Considering the situation of China and characteristics of shale gas, soon the demand of shale gas will increase in China. United States invested 71.7 billion dollars in 2013 but it Chinese government is only proceeding fundamental investment due to land degradation, limited water resources, geological location of the reservoirs.In this study, firstly we reviewed the current system and technology of shale gas extraction such as hydraulic Fracturing. Secondly, listed the possible environmental damages, land degradations, and resource demands for the shale gas extraction. Thirdly, invested the potential shale gas extraction amount in China based on the location of shale gas reservoirs and limited resources for the gas extraction. Fourthly, invested the potential land degradation on agricultural, surface water, and forest in developing shale gas extraction scenario. In conclusion, we suggested possible environmental damages and social impacts from shale gas extraction in China.

  11. A regenerative process for carbon dioxide removal and hydrogen production in IGCC

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Khayyat, Armin

    Advanced power generation technologies, such as Integrated Gasification-Combined Cycles (IGCC) processes, are among the leading contenders for power generation conversion because of their significantly higher efficiencies and potential environmental advantages, compared to conventional coal combustion processes. Although the increased in efficiency in the IGCC processes will reduce the emissions of carbon dioxide per unit of power generated, further reduction in CO2 emissions is crucial due to enforcement of green house gases (GHG) regulations. In IGCC processes to avoid efficiency losses, it is desirable to remove CO2 in the temperature range of 300° to 500°C, which makes regenerable MgO-based sorbents ideal for such operations. In this temperature range, CO2 removal results in the shifting of the water-gas shift (WGS) reaction towards significant reduction in carbon monoxide (CO), and enhancement in hydrogen production. However, regenerable, reactive and attrition resistant sorbents are required for such application. In this work, a highly reactive and attrition resistant regenerable MgO-based sorbent is prepared through dolomite modification, which can simultaneously remove carbon dioxide and enhance hydrogen production in a single reactor. The results of the experimental tests conducted in High-Pressure Thermogravimetric Analyzer (HP-TGA) and high-pressure packed-bed units indicate that in the temperature range of 300° to 500°C at 20 atm more than 95 molar percent of CO2 can be removed from the simulated coal gas, and the hydrogen concentration can be increased to above 70 percent. However, a declining trend is observed in the capacity of the sorbent exposed to long-term durability analysis, which appears to level off after about 20 cycles. Based on the physical and chemical analysis of the sorbent, a two-zone expanding grain model was applied to obtain an excellent fit to the carbonation reaction rate data at various operating conditions. The modeling results indicate that more than 90 percent purification of hydrogen is achievable, either by increasing the activity of the sorbent towards water-gas shift reaction or by mixing the sorbent bed with a commercialized water-gas shift catalyst. The preliminary economical evaluation of the MgO-based process indicates that this process can be economically viable compared to the commercially available WGS/Selexol(TM) processes.

  12. Gas-Phase Hydrodesulfurization of JP-8 Light Fraction Using Steam Reformate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiwen; King, David L.

    2006-10-11

    Gas phase hydrodesulfurization of JP-8 light fraction was investigated over CoMo/Al2O3 and NiMo/Al2O3 catalysts. Use of a light fraction provides a fuel that is more easily desulfurized, and allows the process to operate in the vapor phase. This study investigated the utilization of reformate (syngas) from a steam reformer rather than pure H2 as gas feed to HDS unit. This is consistent with what might be available to the military during operation in the field. Dry syngas functions almost as well as pure H2 in the HDS reaction, and sulfur levels below 5ppmw are readily obtained from a feed initiallymore » containing 320ppmw sulfur. Addition of steam at 40 vol% to the gas feed has a significant negative impact on HDS performance with CoMo/Al2O3, but only a small effect with NiMo/Al2O3. The impacts of various process conditions on S removal efficiency were examined and will be described.« less

  13. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    PubMed

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.

  14. Converting to DEA/MDEA mix ups sweetening capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, M.L.; Hagan, K.M.; Bullin, J.A.

    1996-08-12

    Mixing amines can be the best method for increasing capacity or improving efficiency in an amine sweetening unit. In many cases, it may be possible simply to add a second amine to the existing solution on the fly, or as the unit is running. Union Pacific Resources` Bryan, Tex., gas plant provides one example. The plant was converted from diethanolamine (DEA) to a DEA/MDEA (methyl DEA) mixture after analysis by TSWEET, a process-simulation program. After conversion, CO{sub 2} levels in the sales gas fell to less than pipeline specifications. Data were taken for the absorber at a constant amine circulationmore » of 120 gpm. A comparison of the performance data to the values calculated by the program proved the accuracy of TSWEET. The conversion and performance of the plant are described.« less

  15. Map of assessed tight-gas resources in the United States

    USGS Publications Warehouse

    Biewick, Laura R. H.; ,

    2014-01-01

    This report presents a digital map of tight-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within tight-gas assessment units (AUs). This is the second digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hard-copy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS tight-gas assessment publications and web pages.

  16. Map of assessed coalbed-gas resources in the United States, 2014

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2014-01-01

    This report presents a digital map of coalbed-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within coalbed-gas assessment units (AUs). This is the third digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS coalbed-gas assessment publications and web pages.

  17. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6)

    PubMed Central

    Dormady, Shane P.; Zhang, Xin-Min; Basch, Ross S.

    2000-01-01

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively γ-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be γ-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  18. Evaluation of undiscovered natural gas in the Upper Cretaceous Ferron Coal/Wasatch Plateau Total Petroleum System, Wasatch Plateau and Castle Valley, Utah

    USGS Publications Warehouse

    Henry, M.E.; Finn, T.M.

    2003-01-01

    The Total Petroleum System approach was used to estimate undiscovered gas potential of the Wasatch Plateau and Castle Valley, central Utah. The Ferron Coal/Wasatch Plateau Total Petroleum System was geologically defined and subdivided into seven assessment units, six of which were formally evaluated. Geologic data considered in defining the assessment unit boundaries included thermal maturity, coal presence and thickness, overburden thickness, and faulting intensity. Historical production data were also used to estimate volumes of gas from undrilled areas. The one conventional assessment unit includes almost the entire area of the petroleum system and is characterized by known accumulations that occur in structural or combination traps in sandstone reservoirs. The estimated undiscovered conventional producible gas that may be added to reserves of this unit ranges from a low (F95) of 14.8 billion cubic feet (BCFG) [419 million cubic meters (Mm3)] of gas to a high (F5) of 82 BCFG [2321 Mm3] and a mean value of 39.9 BCFG [1130 Mm3]. Continuous gas accumulations are those in which the entire assessment unit is considered to be gas-charged. Within these assessment units, there may be wells drilled that are not economic successes but all are expected to contain gas. Coalbed gas is in this continuous category. Mean estimates of undiscovered gas for the five continuous assessment units are: (1) Northern Coal Fairway/Drunkards Wash-752.3 BCFG [21,323 Mm3]; (2) Central Coal Fairway/Buzzard Bench-536.7 BCFG [15,194 Mm3]; (3) Southern Coal Fairway-152.6 BCFG [4320 Mm3]; (4) Deep (6000 feet plus) Coal and Sandstone-59.1 BCFG [1673 Mm3]; (5) Southern Coal Outcrop-10.6 BCFG [300 Mm3]; and Joes Valley and Musinia Grabens-not assessed.The mean estimate of undiscovered gas for the entire TPS is 1551.2 BCFG [43,914 Mm3]. There is a 95% chance that at least 855.7 BCFG [24,225 Mm3] and a 5% chance that at least 2504 BCFG [70,888 Mm3] of undiscovered producible gas remain in the TPS. ?? 2003 Published by Elsevier B.V.

  19. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... associated requirements for Tier 4 in subpart C of this part (General Stationary Fuel Combustion Sources). (b... basis (% CO2). Q = Hourly stack gas volumetric flow rate (scfh). %H2O = Hourly moisture percentage in... furnace are vented through the same stack as any combustion unit or process equipment that reports CO2...

  20. Gas production in the Barnett Shale obeys a simple scaling theory

    PubMed Central

    Patzek, Tad W.; Male, Frank; Marder, Michael

    2013-01-01

    Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United States’ oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, individually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet. PMID:24248376

  1. Gas production in the Barnett Shale obeys a simple scaling theory.

    PubMed

    Patzek, Tad W; Male, Frank; Marder, Michael

    2013-12-03

    Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United States' oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, individually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet.

  2. Air pollution control systems in WtE units: an overview.

    PubMed

    Vehlow, J

    2015-03-01

    All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOEpatents

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  4. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOEpatents

    Steele, Robert C [Woodinville, WA; Edmonds, Ryan G [Renton, WA; Williams, Joseph T [Kirkland, WA; Baldwin, Stephen P [Winchester, MA

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  5. 40 CFR 60.5407 - What are the requirements for monitoring of emissions and operations from my sweetening unit...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period. At least one sample per 24-hour... sampling schedule. (3) The average acid gas flow rate from the sweetening unit. You must install and operate a monitoring device to continuously measure the flow rate of acid gas. The monitoring device...

  6. 40 CFR 60.5407 - What are the requirements for monitoring of emissions and operations from my sweetening unit...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period. At least one sample per 24-hour... sampling schedule. (3) The average acid gas flow rate from the sweetening unit. You must install and operate a monitoring device to continuously measure the flow rate of acid gas. The monitoring device...

  7. Bench Scale Process for Low Cost CO 2 Capture Using a Phase-Changing Absorbent: Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorf, Tiffany; Buddle, Stanlee; Caraher, Joel

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO 2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2-capture absorbent for post-combustion capture of CO 2 from coal-fired power plants. The U.S. Department of Energy’s goal for Transformational Carbon Capture Technologies is the development of technologies available for demonstration by 2025 that can capture 90% of emitted CO 2 with at least 95% CO 2 purity for less than $40/tonne of CO 2 captured. In the first budget period of the project,more » the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO 2 capture performance. In the second budget period of the project, individual bench-scale unit operations were tested to determine the performance of each of each unit. Solids production was demonstrated in dry simulated flue gas across a wide range of absorber operating conditions, with single stage CO 2 conversion rates up to 75mol%. Desorber operation was demonstrated in batch mode, resulting in desorption performance consistent with the equilibrium isotherms for GAP-0/CO 2 reaction. Important risks associated with gas humidity impact on solids consistency and desorber temperature impact on thermal degradation were explored, and adjustments to the bench-scale process were made to address those effects. Corrosion experiments were conducted to support selection of suitable materials of construction for the major unit operations in the process. The bench scale unit operations were assembled into a continuous system to support steady state system testing. In the third budget period of the project, continuous system testing was conducted, including closed-loop operation of the absorber and desober systems. Slurries of GAP-0/GAP-0 carbamate/water mixtures produced in the absorber were pumped successfully to the desorber unit, and regenerated solvent was returned to the absorber. A techno-economic analysis, EH&S risk assessment, and solvent manufacturability study were completed.« less

  8. A Small-Scale Low-Cost Gas Chromatograph

    ERIC Educational Resources Information Center

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  9. Biofiltration of air contaminated by styrene: Effect of nitrogen supply, gas flow rate, and inlet concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorio, H.; Bibeau, L.; Heitz, M.

    2000-05-01

    The biofiltration process is a promising technology for the treatment of dilute styrene emissions in air. The efficiency of this process is however strongly dependent upon various operational parameters such as the filter bed characteristics, nutrient supplies, input contaminant concentrations, and gas flow rates. The biofiltration of air containing styrene vapors was therefore investigated, employing a novel biomass filter material, in two identical but separate laboratory scale biofiltration units (units 1 and 2), both biofilters being initially inoculated with a microbial consortium. Each biofilter was irrigated with a nutrient solution supplying nitrogen in one of two forms; i.e., mainly asmore » ammonia for unit 1 and exclusively as nitrate for unit 2. The experimental results have revealed that greater styrene elimination rates are achieved in the biofilter supplied with ammonia as the major nitrogen source in comparison to the lesser elimination performance obtained with the nitrate provided biofilter. However, in achieving the high styrene removal rates in the ammonia supplied biofilter, the excess of biomass accumulates on the filtering pellets and causes progressive clogging of the filter media. Furthermore, the effectiveness of nitrate supply as the sole nitrogen nutrient form, on reducing or controlling the biomass accumulation in the filter media in comparison to ammonia, could not be satisfactorily demonstrated because the two biofilters operated with very different styrene elimination capacities. The monitoring of the carbon dioxide concentration profile through both biofilters revealed that the ratio of carbon dioxide produced to the styrene removed was approximately 3/1, which confirms the complete biodegradation of removed styrene, given that some of the organic carbon consumed is also used for the microbial growth. The effects of the most important design parameters, namely styrene input concentrations and gas flow rates, were investigated for each nutrient solution.« less

  10. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  11. A method to predict equilibrium conditions of gas hydrate formation in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, M.A.; Pooladi-Darvish, M.; Bishnoi, P.R.

    1999-06-01

    In the petroleum industry, it is desirable to avoid the formation of gas hydrates. When gas hydrates form, they tend to agglomerate and block pipelines and process equipment. However, naturally occurring gas hydrates that form in the permafrost region or in deep oceans represent a vast untouched natural gas reserve. Although the exact amount of gas in the hydrate form is not known, it is believed to be comparable to the known amount of gas in the free state. Numerous methods for the recovery of natural gas from hydrate fields have been proposed. These techniques include thermal decomposition, depressurization, andmore » chemical injection. To fully exploit hydrate reserves, it will be necessary to know the decomposition/formation conditions of the gas hydrate in porous media. A predictive model has been developed to determine the incipient hydrate formation conditions in porous media. The only additional information that is needed to determine the incipient hydrate formation conditions is the pore radius, surface energy per unit area, and wetting angle. It was found that the model performed well in predicting the experimental data of Handa and Stupin.« less

  12. Noble Gas Release Signal as a Precursor to Fracture

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Lee, H.; Gardner, W. P.

    2017-12-01

    We present empirical results of rock strain, microfracturing, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite, basalt, shale and bedded rock salt. Noble gases are released and measured real-time during deformation using mass spectrometry. The gas release represents a precursive signal to macrofracture. Gas release is associated with increased acoustic emissions indicating that microfracturing is required to release gas and create pathways for the gas to be sensed. The gas released depends on initial gas content, pore structure and its evolution during deformation, the deformation amount, matrix permeability, deformation style and the stress/strain history. Gases are released from inter and intracrystalline sites; release rate increases as strain and microfracturing increases. The gas composition depends on lithology, geologic history and age, fluids present, and radioisotope concentrations that affect radiogenic noble gas isotope (e.g. 4He,40Ar) production. Noble gas emission and its relationship to crustal processes such as seismicity and volcanism, tectonic velocities, qualitative estimates of deep permeability, age dating of groundwater, and a signature of nuclear weapon detonation. Our result show that mechanical deformation of crustal materials is an important process controlling gas release from rocks and minerals, and should be considered in techniques which utilize gas release and/or accumulation. We propose using noble gas release to signal rock deformation in boreholes, mines and waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress, strain, and/or permanent deformation dependent. Calibration of such relationships, for example relating gas release per rock unit volume to strain may be used to quantify rock deformation and develop predictive models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7823A

  13. Translations on USSR Resources, Number 763

    DTIC Science & Technology

    1978-01-06

    supplying gas pumping units, pipes, and other equipment. 33 Shatlyk . Complex Gas Preparation Unit i 1 * Medvezhe. Gas Prepara- tion Block. Thus...handled satisfactorily. . Shatlyk . Turkmengazprom. Central Control Station Combine with Head Facilities Operating Room. By means of the Impul’s-2 remote

  14. System and method for identifying, reporting, and evaluating presence of substance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Maurice; Lusby, Michael; Van Hook, Arthur

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive andmore » evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.« less

  15. System and method for identifying, reporting, and evaluating presence of substance

    DOEpatents

    Smith, Maurice [Kansas City, MO; Lusby, Michael [Kansas City, MO; Van Hook, Arthur [Lotawana, MO; Cook, Charles J [Raytown, MO; Wenski, Edward G [Lenexa, KS; Solyom, David [Overland Park, KS

    2012-02-14

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive and evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.

  16. System And Method For Identifying, Reporting, And Evaluating Presence Of Substance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Maurice; Lusby, Michael; Hook, Arthur Van

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive andmore » evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.« less

  17. GASP. I. Gas Stripping Phenomena in Galaxies with MUSE

    NASA Astrophysics Data System (ADS)

    Poggianti, Bianca M.; Moretti, Alessia; Gullieuszik, Marco; Fritz, Jacopo; Jaffé, Yara; Bettoni, Daniela; Fasano, Giovanni; Bellhouse, Callum; Hau, George; Vulcani, Benedetta; Biviano, Andrea; Omizzolo, Alessandro; Paccagnella, Angela; D’Onofrio, Mauro; Cava, Antonio; Sheen, Y.-K.; Couch, Warrick; Owers, Matt

    2017-07-01

    GAs Stripping Phenomena in galaxies with MUSE (GASP) is a new integral-field spectroscopic survey with MUSE at the VLT aimed at studying gas removal processes in galaxies. We present an overview of the survey and show a first example of a galaxy undergoing strong gas stripping. GASP is obtaining deep MUSE data for 114 galaxies at z = 0.04–0.07 with stellar masses in the range {10}9.2{--}{10}11.5 {M}ȯ in different environments (galaxy clusters and groups over more than four orders of magnitude in halo mass). GASP targets galaxies with optical signatures of unilateral debris or tails reminiscent of gas-stripping processes (“jellyfish galaxies”), as well as a control sample of disk galaxies with no morphological anomalies. GASP is the only existing integral field unit (IFU) survey covering both the main galaxy body and the outskirts and surroundings, where the IFU data can reveal the presence and origin of the outer gas. To demonstrate GASP’s ability to probe the physics of gas and stars, we show the complete analysis of a textbook case of a jellyfish galaxy, JO206. This is a massive galaxy (9× {10}10 {M}ȯ ) in a low-mass cluster (σ ∼ 500 {km} {{{s}}}-1) at a small projected clustercentric radius and a high relative velocity, with ≥90 kpc long tentacles of ionized gas stripped away by ram pressure. We present the spatially resolved kinematics and physical properties of the gas and stars and depict the evolutionary history of this galaxy.

  18. Unitization of oil and gas fields in Texas. A study of legislative, administrative, and judicial policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, J.L.

    1986-01-01

    In the 1970s, the long lines of cars at gasoline stations, the blackouts, and the school and factory closings announced to the public that the United States had an ''energy crisis.'' In response, an outpouring of state and federal legislation sought to lessen the effects of the oil and gas shortages and to prevent their recurrence. By 1985, every oil- and gas-producing state but Texas has passed a compulsory unitization statute. ''Unitization'' is the joint, coordinated operation of all, or at least a large part, of an oil or gas reservoir by the owners of the separate tracts overlying themore » reservoir; only by such joint endeavors can the many owners of interests in oil and gas fields operate efficiently to recover as much as possible at the lowest cost. In this book, Jacqueline Lang Weaver explains why Texas failed to enact such a statute--and how Texas has achieved a substantial degree of unitization nonetheless.« less

  19. Estimating population exposure to ambient polycyclic aromatic hydrocarbon in the United States - Part II: Source apportionment and cancer risk assessment.

    PubMed

    Zhang, Jie; Wang, Peng; Li, Jingyi; Mendola, Pauline; Sherman, Seth; Ying, Qi

    2016-12-01

    A revised Community Multiscale Air Quality (CMAQ) model was developed to simulate the emission, reactions, transport, deposition and gas-to-particle partitioning processes of 16 priority polycyclic aromatic hydrocarbons (PAHs), as described in Part I of the two-part series. The updated CMAQ model was applied in this study to quantify the contributions of different emission sources to the predicted PAH concentrations and excess cancer risk in the United States (US) in 2011. The cancer risk in the continental US due to inhalation exposure of outdoor naphthalene (NAPH) and seven larger carcinogenic PAHs (cPAHs) was predicted to be significant. The incremental lifetime cancer risk (ILCR) exceeds 1×10 -5 in many urban and industrial areas. Exposure to PAHs was estimated to result in 5704 (608-10,800) excess lifetime cancer cases. Point sources not related with energy generation and the oil and gas processes account for approximately 31% of the excess cancer cases, followed by non-road engines with 18.6% contributions. Contributions of residential wood combustion (16.2%) are similar to that of transportation-related sources (mostly motor vehicles with small contributions from railway and marine vessels; 13.4%). The oil and gas industry emissions, although large contributors to high concentrations of cPAHs regionally, are only responsible of 4.3% of the excess cancer cases, which is similar to the contributions of non-US sources (6.8%) and non-point sources (7.2%). The power generation units pose the most minimal impact on excess cancer risk, with contributions of approximately 2.3%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dry-running gas seals save $200,000/yr in retrofit hydrogen recycle compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennacchi, R.P.; Germain, A.

    1987-10-01

    Texaco Chemical Company was using three drums of oil per day in the seal oil system of a hydrogen recycle compressor, resulting in maintenance and operational expenses of more than $160,000 per year. Running 24 hours/day, 365 days/yr, the 26-yr-old compressor is the heart of the benzene manufacturing process unit at the Port Arthur, Texas plant. In the event of an unscheduled shutdown, the important aromatics unit process would halt and cause production losses of thousands of dollars per day. In addition, the close monitoring and minimization of leakage are essential since the gas consists of over 75% hydrogen, withmore » methane, ethane, propane, isobutane, N-butane and pentanes. Texaco Chemical Company decided that retrofit of the hydrogen recycle compressor should be undertaken if the system could be developed to sharply reduce operations and maintenance costs, and increase efficiencies. Texaco engineers selected a dry running-type gas sealing system developed for pipeline compressors in the United States, Canada, and overseas. A tandem-type sealing system was designed to meet specific needs of a hydrogen recycle compressor. The retrofit was scheduled for August 1986 to coincide with the plant's preventative maintenance program. The seal system installation required five days. The retrofit progressed according to schedule, with no problems experienced at the first and several startups since the initial installation. Oil consumption has been eliminated, along with seal support and parasitic energy requirements. With the savings in seal oil, energy, operations and maintenance, payback period for the retrofit sealing system was just over six months. Savings are expected to continue at an annual rate of over $200,000.« less

  1. Water resources and shale gas/oil production in the Appalachian Basin: critical issues and evolving developments

    USGS Publications Warehouse

    Kappel, William M.; Williams, John H.; Szabo, Zoltan

    2013-01-01

    Unconventional natural gas and oil resources in the United States are important components of a national energy program. While the Nation seeks greater energy independence and greener sources of energy, Federal agencies with environmental responsibilities, state and local regulators and water-resource agencies, and citizens throughout areas of unconventional shale gas development have concerns about the environmental effects of high volume hydraulic fracturing (HVHF), including those in the Appalachian Basin in the northeastern United States (fig. 1). Environmental concerns posing critical challenges include the availability and use of surface water and groundwater for hydraulic fracturing; the migration of stray gas and potential effects on overlying aquifers; the potential for flowback, formation fluids, and other wastes to contaminate surface water and groundwater; and the effects from drill pads, roads, and pipeline infrastructure on land disturbance in small watersheds and headwater streams (U.S. Government Printing Office, 2012). Federal, state, regional and local agencies, along with the gas industry, are striving to use the best science and technology to develop these unconventional resources in an environmentally safe manner. Some of these concerns were addressed in U.S. Geological Survey (USGS) Fact Sheet 2009–3032 (Soeder and Kappel, 2009) about potential critical effects on water resources associated with the development of gas extraction from the Marcellus Shale of the Hamilton Group (Ver Straeten and others, 1994). Since that time, (1) the extraction process has evolved, (2) environmental awareness related to high-volume hydraulic fracturing process has increased, (3) state regulations concerning gas well drilling have been modified, and (4) the practices used by industry to obtain, transport, recover, treat, recycle, and ultimately dispose of the spent fluids and solid waste materials have evolved. This report updates and expands on Fact Sheet 2009–3032 and presents new information regarding selected aspects of unconventional shale gas development in the Appalachian Basin (primarily Virginia, West Virginia, Maryland, Pennsylvania, Ohio, and New York). This document was prepared by the USGS, in cooperation with the U.S. Department of Energy, and reviews the evolving technical advances and scientific studies made in the Appalachian Basin between 2009 and the present (2013), addressing past and current issues for oil and gas development in the region.

  2. Neogene Gas Total Petroleum System -- Neogene Nonassociated Gas Assessment Unit of the San Joaquin Basin Province: Chapter 22 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2009-01-01

    The Neogene Nonassociated Gas Assessment Unit (AU) of the Neogene Total Petroleum System consists of nonassociated gas accumulations in Pliocene marine and brackish-water sandstone located in the south and central San Joaquin Basin Province (Rudkin, 1968). Traps consist mainly of stratigraphic lenses in low-relief, elongate domes that trend northwest-southeast. Reservoir rocks typically occur as sands that pinch out at shallow depths (1,000 to 7,500 feet) within the Etchegoin and San Joaquin Formations. Map boundaries of the assessment unit are shown in figures 22.1 and 22.2; this assessment unit replaces the Pliocene Nonassociated Gas play 1001 (shown by purple line in fig. 22.1) considered by the U.S. Geological Survey (USGS) in its 1995 National Assessment (Beyer, 1996). The AU is drawn to include all existing fields containing nonassociated gas accumulations in the Pliocene to Pleistocene section, as was done in the 1995 assessment, but it was greatly expanded to include adjacent areas believed to contain similar source and reservoir rock relationships. Stratigraphically, the AU extends from the topographic surface to the base of the Etchegoin Formation (figs. 22.3 and 22.4). The boundaries of the AU explicitly exclude gas accumulations in Neogene rocks on the severely deformed west side of the basin and gas accumulations in underlying Miocene rocks; these resources, which primarily consist of a mixture of mostly thermogenic and some biogenic gas, are included in two other assessment units. Lillis and others (this volume, chapter 10) discuss the geochemical characteristics of biogenic gas in the San Joaquin Basin Province. Primary fields in the assessment unit are defined as those containing hydrocarbon resources greater than the USGS minimum threshold for assessment—3 billion cubic feet (BCF) of gas; secondary fields contain smaller volumes of gas but constitute a significant show of hydrocarbons. Although 12 fields meet the 3 BCF criterion for inclusion in the AU, only 5 fields were considered at the time of assessment.

  3. Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO₂ Capture from Post-Combustion Flue Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shiaoguo

    A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO₂ stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy usemore » and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO₂ capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and safety risks have been addressed through experimental tests, consultation with vendors and engineering analysis. Multiple rounds of TEA were performed to improve the GPS-based PCC process design and operation, and to compare the energy use and cost performance of a nominal 550-MWe supercritical pulverized coal (PC) plant among the DOE/NETL report Case 11 (the PC plant without CO₂ capture), the DOE/NETL report Case 12 (the PC plant with benchmark MEA-based PCC), and the PC plant using GPS-based PCC. The results reveal that the net power produced in the PC plant with GPS-based PCC is 647 MWe, greater than that of the Case 12 (550 MWe). The 20-year LCOE for the PC plant with GPS-based PCC is 97.4 mills/kWh, or 152% of that of the Case 11, which is also 23% less than that of the Case 12. These results demonstrate that the GPS-based PCC process is energy-efficient and cost-effective compared with the benchmark MEA process.« less

  4. Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.

    1995-12-31

    The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalystsmore » for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.« less

  5. Considerations for the development of shale gas in the United Kingdom.

    PubMed

    Hays, Jake; Finkel, Madelon L; Depledge, Michael; Law, Adam; Shonkoff, Seth B C

    2015-04-15

    The United States shale gas boom has precipitated global interest in the development of unconventional oil and gas resources. Recently, government ministers in the United Kingdom started granting licenses that will enable companies to begin initial exploration for shale gas. Meanwhile, concern is increasing among the scientific community about the potential impacts of shale gas and other types of unconventional natural gas development (UGD) on human health and the environment. Although significant data gaps remain, there has been a surge in the number of articles appearing in the scientific literature, nearly three-quarters of which has been published since the beginning of 2013. Important lessons can be drawn from the UGD experience in the United States. Here we explore these considerations and argue that shale gas development policies in the UK and elsewhere should be informed by empirical evidence generated on environmental, public health, and social risks. Additionally, policy decisions should take into account the measured effectiveness of harm reduction strategies as opposed to hypothetical scenarios and purported best practices that lack empirical support. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Chapter 9: Oil and gas resource potential north of the Arctic Circle

    USGS Publications Warehouse

    Gautier, D.L.; Bird, K.J.; Charpentier, R.R.; Grantz, A.; Houseknecht, D.W.; Klett, T.R.; Moore, Thomas E.; Pitman, Janet K.; Schenk, C.J.; Schuenemeyer, J.H.; Sorensen, K.; Tennyson, Marilyn E.; Valin, Z.C.; Wandrey, C.J.

    2011-01-01

    The US Geological Survey recently assessed the potential for undiscovered conventional petroleumin the Arctic. Using a new map compilation of sedimentary elements, the area north of the Arctic Circle was subdivided into 70 assessment units, 48 of which were quantitatively assessed. The Circum-Arctic Resource Appraisal (CARA) was a geologically based, probabilistic study that relied mainly on burial history analysis and analogue modelling to estimate sizes and numbers of undiscovered oil and gas accumulations. The results of the CARA suggest the Arctic is gas-prone with an estimated 770-2990 trillion cubic feet of undiscovered conventional natural gas, most of which is in Russian territory. On an energy-equivalent basis, the quantity of natural gas ismore than three times the quantity of oil and the largest undiscovered gas eld is expected to be about 10 times the size of the largest undiscovered oil eld. In addition to gas, the gas accumulationsmay contain an estimated 39 billion barrels of liquids. The South Kara Sea is themost prospective gas assessment unit, but giant gas elds containingmore than 6 trillion cubic feet of recoverable gas are possible at a 50%chance in 10 assessment units. Sixty per cent of the estimated undiscovered oil resource is in just six assessment units, of which the Alaska Platform, with 31%of the resource, is the most prospective. Overall, the Arctic is estimated to contain between 44 and 157 billion barrels of recoverable oil. Billion barrel oil elds are possible at a 50%chance in seven assessment units.Undiscovered oil resources could be signicant to the Arctic nations, but are probably not sufcient to shift the world oil balance away from the Middle East. ?? 2011 The Geological Society of London.

  7. National Assessment of Oil and Gas Project: Petroleum systems and assessment of undiscovered oil and gas in the Denver Basin Province, Colorado, Kansas, Nebraska, South Dakota, and Wyoming - USGS Province 39

    USGS Publications Warehouse

    Higley, Debra K.

    2007-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas resources of the Denver Basin Province (USGS Province 39), Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Petroleum is produced in the province from sandstone, shale, and limestone reservoirs that range from Pennsylvanian to Upper Cretaceous in age. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define seven total petroleum systems and twelve assessment units. Nine of these assessment units were quantitatively assessed for undiscovered oil and gas resources. Gas was not assessed for two coal bed methane assessment units due to lack of information and limited potential; oil resources were not assessed for the Fractured Pierre Shale Assessment Unit due to its mature development status.

  8. Energy Efficiency of Low-Temperature Deaeration of Makeup Water for a District Heating System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapov, V. I., E-mail: vlad-sharapov2008@yandex.ru; Kudryavtseva, E. V.

    2016-07-15

    It is shown that the temperature of makeup water in district heating systems has a strong effect on the energy efficiency of turbines of thermal power plants. A low-temperature deaeration process that considerably improves the energy efficiency of thermal power plants is developed. The desorbing agent is the gas supplied to the burners of the boiler. The energy efficiency of the process for a typical unit of thermal power plant is assessed.

  9. Valorization of Flue Gas by Combining Photocatalytic Gas Pretreatment with Microalgae Production.

    PubMed

    Eynde, Erik Van; Lenaerts, Britt; Tytgat, Tom; Blust, Ronny; Lenaerts, Silvia

    2016-03-01

    Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solublilty in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NOx in the cultivation broth. The absorbed NOx will form NO2(-) and NO3(-) that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%.

  10. Potential for solar industrial process heat in the United States: A look at California

    NASA Astrophysics Data System (ADS)

    Kurup, Parthiv; Turchi, Craig

    2016-05-01

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendly policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.

  11. Potential for Solar Industrial Process Heat in the United States: A Look at California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurup, Parthiv; Turchi, Craig

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendlymore » policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.« less

  12. 40 CFR 98.112 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING Ferroalloy Production § 98.112 GHGs to report. You must report: (a) Process CO2... Table K-1 to subpart K. (b) CO2, CH4, and N2O emissions from each stationary combustion unit following... part (General Stationary Fuel Combustion Sources). [74 FR 56374, Oct. 30, 2009, as amended at 75 FR...

  13. 40 CFR 98.112 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Ferroalloy Production § 98.112 GHGs to report. You must report: (a) Process CO2... Table K-1 to subpart K. (b) CO2, CH4, and N2O emissions from each stationary combustion unit following... part (General Stationary Fuel Combustion Sources). [74 FR 56374, Oct. 30, 2009, as amended at 75 FR...

  14. 40 CFR 98.112 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING Ferroalloy Production § 98.112 GHGs to report. You must report: (a) Process CO2... Table K-1 to subpart K. (b) CO2, CH4, and N2O emissions from each stationary combustion unit following... part (General Stationary Fuel Combustion Sources). [74 FR 56374, Oct. 30, 2009, as amended at 75 FR...

  15. 40 CFR 98.112 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Ferroalloy Production § 98.112 GHGs to report. You must report: (a) Process CO2... Table K-1 to subpart K. (b) CO2, CH4, and N2O emissions from each stationary combustion unit following... part (General Stationary Fuel Combustion Sources). [74 FR 56374, Oct. 30, 2009, as amended at 75 FR...

  16. Proceedings of Tripartite Conference on Submarine Medicine and IEP B-52 - France, United Kingdom, United States (6th) Held in Groton, Connecticut on 1-4 June 1987

    DTIC Science & Technology

    1990-10-03

    stored and statistical profiles generated on 20-36 compounds of most interest. The list of priority compounds could be readily changed. Mr. Thill...a propellant gas. Calculations showed that atmospheric dilution would be rapid. Tests showed that the compound was very stable in the atmosphere...ppm (less methane) Particulates/mist : < 5 mg/cu.m. Odor : Not objectionable Thousands of samples are processed every year and the failure rate is low

  17. Thailand's downstream projects proliferate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-03

    Thailand continues to press expansion and modernization of its downstream sector. Among recent developments: Construction of an olefins unit at Thailand's second major petrochemical complex and a worldscale aromatics unit in Thailand is threatened by rising costs. Thailand's National Petrochemical Corp (NPC) let a 9 billion yen contract to Mitsui Engineering and Shipbuilding Co. and C. Itoh and Co. for a dual fuel cogeneration power plant at its Mab Ta Phud, Rayong province, petrochemical complex. Financing is in place to flash a green light for a $530 million Belgian-Thai joint venture sponsoring a worldscale polyvinyl chloride/vinyl chloride monomer plant inmore » Thailand. Work is more than 50% complete on the $345 million second phase expansion of Thai Oil's Sri Racha refinery in Chon Buri province. Petroleum Authority of Thailand (PTT) endorsed a plan to install two more natural gas processing plants in Thailand to meet rapidly growing domestic demand for petroleum gas.« less

  18. Helium gas purity monitor based on low frequency acoustic resonance

    NASA Astrophysics Data System (ADS)

    Kasthurirengan, S.; Jacob, S.; Karunanithi, R.; Karthikeyan, A.

    1996-05-01

    Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type are commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.

  19. Assessment of undiscovered oil and gas resources of the Cretaceous-Tertiary Composite Total Petroleum System, Taranaki Basin Assessment Unit, New Zealand

    USGS Publications Warehouse

    Wandrey, Craig J.; Schenk, Christopher J.; Klett, Timothy R.; Brownfield, Michael E.; Charpentier, Ronald R.; Cook, Troy A.; Pollastro, Richard M.; Tennyson, Marilyn E.

    2013-01-01

    The Cretaceous-Tertiary Composite Total Petroleum System coincident Taranaki Basin Assessment Unit was recently assessed for undiscovered technically recoverable oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey (USGS) World Energy Resources Project, World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 487 million barrels of oil, 9.8 trillion cubic feet of gas, and 408 million barrels of natural gas liquids.

  20. Method and system for fiber optic determination of gas concentrations in liquid receptacles

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2008-01-01

    A system for determining gas compositions includes a probe, inserted into a source of gaseous material, the probe having a gas permeable sensor tip and being capable of sending and receiving light to and from the gaseous material, a sensor body, connected to the probe, situated outside of the source and a fiber bundle, connected to the sensor body and communicating light to and from the probe. The system also includes a laser source, connected to one portion of the fiber bundle and providing laser light to the fiber bundle and the probe a Raman spectrograph, connected to another portion of the fiber bundle, receiving light from the probe and filtering the received light into specific channels and a data processing unit, receiving and analyzing the received light in the specific channels and outputting concentration of specific gas species in the gaseous material based on the analyzed received light.

  1. Quantification of greenhouse gas (GHG) emissions from wastewater treatment plants using a ground-based remote sensing approach

    NASA Astrophysics Data System (ADS)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2016-04-01

    The direct release of nitrous oxide (N2O) and methane (CH4) from wastewater treatment plants (WWTP) is important because it contributes to the global greenhouse gases (GHGs) release and strongly effects the WWTP carbon footprint. Biological nitrogen removal technologies could increase the direct emission of N2O (IPCC, 2006), while CH4 losses are of environmental, economic and safety concern. Currently, reporting of N2O and CH4 emissions from WWTPs are performed mainly using methods suggested by IPCC which are not site specific (IPCC, 2006). The dynamic tracer dispersion method (TDM), a ground based remote sensing approach implemented at DTU Environment, was demonstrated to be a novel and successful tool for full-scale CH4 and N2O quantification from WWTPs. The method combines a controlled release of tracer gas from the facility with concentration measurements downwind of the plant (Mønster et al., 2014; Yoshida et al., 2014). TDM in general is based on the assumption that a tracer gas released at an emission source, in this case a WWTP, disperses into the atmosphere in the same way as the GHG emitted from process units. Since the ratio of their concentrations remains constant along their atmospheric dispersion, the GHG emission rate can be calculated using the following expression when the tracer gas release rate is known: EGHG=Qtr*(CGHG/Ctr)*(MWGHG/MWtr) EGHG is the GHG emission in mass per time, Qtr is the tracer release in mass per time, CGHG and Ctr are the concentrations measured downwind in parts per billion subtracted of their background values and integrated over the whole plume, and MWGHG and MWtr are the molar weights of GHG and tracer gas respectively (Mønster et al. 2014). In this study, acetylene (C2H2) was used as tracer. Downwind plume concentrations were measured driving along transects with two cavity ring down spectrometers (Yoshida et al., 2014). TDM was successfully applied in different seasons at several Scandinavian WWTPs characterized by different capacity, process unit technologies and locations. The method was applied at plants with different combination of nitrogen removal technologies and sewage sludge treatment. According to the plant capacity and technologies, quantified emissions ranged in the following intervals: from 0.7 to 3.4 kg N2O/h and from 1.1 to 17.6 kg CH4/h. In addition to quantifying the whole emission from the facilities, main sources in the plants were identified. While CH4 was generally emitted from sludge treatment areas, N2O was detected from nitrogen removal technologies both in the main stream and in the side treatment. Process units like biosolids storage and aeration tanks were the only units releasing both GHGs, although in different magnitude. References IPCC, 2006. Guidelines for National Greenhouse Gas Inventories, Volume 5 - Waste. Mønster, J., Samuelsson, J., Kjeldsen, P., Rella, C.W., Scheutz, C., 2014. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements - a sensitivity analysis based on multiple field surveys. Waste Manag. 34, 1416-28. doi:10.1016/j.wasman.2014.03.025 Yoshida, H., Mønster, J., Scheutz, C., 2014. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant. Water Res. 1, 108-118. doi:10.1016/j.watres.2014.05.014

  2. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. A HazOp review was conducted. Potting and module materials testing continued. Preliminary design of the bench-scale equipment continues. A status meeting was held in Morgantown, WV with the DOE Project Manager.« less

  3. Vibration-Induced Gas-Liquid Interface Breakup

    NASA Astrophysics Data System (ADS)

    O'Hern, Timothy; Torczynski, John; Romero, Ed; Shelden, Bion

    2010-11-01

    Gas-liquid interfaces can be forced to break up when subjected to vibrations within critical ranges of frequency and amplitude. This breakup mechanism was examined experimentally using deep layers of silicone oils over a range of viscosity and sinusoidal, primarily axial vibration conditions that can produce dramatic disturbances at the gas-liquid free surface. Although small-amplitude vibrations produce standing Faraday waves, large-amplitude vibrations produce liquid jets into the gas, droplets pinching off from the jets, gas cavities in the liquid from droplet impact, and bubble transport below the interface. Experiments used several different silicone oils over a range of pressures and vibration conditions. Computational simulations exhibiting similar behavior will be included in the presentation. Applications include liquid fuel rockets, inertial sensing devices, moving vehicles, mixing processes, and acoustic excitation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  5. The usage of waste heat recovery units with improved heat engineering rates: theory and experimental research

    NASA Astrophysics Data System (ADS)

    Chebotarev, Victor; Koroleva, Alla; Pirozhnikova, Anastasia

    2017-10-01

    Use of recuperator in heat producing plants for utilization of natural gas combustion products allows to achieve the saving of gas fuel and also provides for environmental sanitation. Decrease of the volumes of natural gas combustion due to utilization of heat provides not only for reduction of harmful agents in the combustion products discharged into the atmosphere, but also creates conditions for increase of energy saving in heating processes of heat producing plants due to air overheating in the recuperator. Grapho-analytical method of determination of energy saving and reduction of discharges of combustion products into the atmosphere is represented in the article. Multifunctional diagram is developed, allowing to determine simultaneously savings from reduction of volumes of natural gas combusted and from reduction of amounts of harmful agents in the combustion products discharged into the atmosphere. Calculation of natural gas economy for heat producing plant taking into consideration certain capacity is carried out.

  6. Advanced gas turbines breathe new life into vintage reheat units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This article describes the repowering of reheat units with advanced gas turbines. The topics of the article include a project overview, plant configuration including heat recovery steam generators and the plant-wide distributed control system, upgrade of existing steam turbines, gas turbine technology, reliability, availability, maintenance features, and training.

  7. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units E Appendix E to Part 75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION...

  8. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units E Appendix E to Part 75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION...

  9. 26 CFR 1.613A-7 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from such wells), refers to wells located in the United States or in a possession of the United States...) for natural gas has been made. See § 1.613A-5. (j) Barrel. The term barrel means 42 United States... oil or natural gas, which are made outside the United States shall be disregarded if no domestic...

  10. Clean amine solvents economically and online

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J.; Burns, D.

    1995-08-01

    Using electrodialysis technology to clean amine solvents is economically competitive with traditional change-out or ``bleed and feed`` methods, even for small systems, because a unit shutdown is not necessary to perform the process. Electrodialysis also has advantages over other online cleanup processes like ion exchange and vacuum reclamation. Off gases and olefinic and saturate liquefied petroleum gas (LPG) streams generated during operation of fluid catalytic crackers (FCC), cokers and other refinery processing equipment must be treated to remove undesirable components like hydrogen sulfide and carbon dioxide before they can be sold or used in downstream processes. At an Arkansas City,more » Kansas, refinery, a classic amine-based chemical absorbent system is used for this purpose. It comprises two absorbing contacts for gas and two for liquids. The system is charged with an N-methyldiethanolamine (MDEA)-based product that selectively absorbs contaminants. Amine is regenerated by removing contaminants with steam stripping. Lean amine is then recirculated to the absorbers. This case history demonstrates the effectiveness of electrodialysis technology for contaminant removal.« less

  11. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low emissions of nitrogen oxides are developed.

  12. High performance gas adsorption and separation of natural gas in two microporous metal-organic frameworks with ternary building units.

    PubMed

    Wang, Dongmei; Zhao, Tingting; Cao, Yu; Yao, Shuo; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2014-08-14

    Two novel MMOFs, JLU-Liu5 and JLU-Liu6, are based on ternary building units and exhibit high adsorption selectivity for CO2, C2H6 and C3H8 over CH4, which is attributed to steric effects and host-guest interactions. These MMOFs are promising materials for gas adsorption and natural gas purification.

  13. Simple construction and performance of a conical plastic cryocooler

    NASA Technical Reports Server (NTRS)

    Lambert, N.

    1985-01-01

    Low power cryocoolers with conical displacers offer several advantages over stepped displacers. The described fabrication process allows quick and reproducible manufacturing of plastic conical displacer units. This could be of commercial interest, but it also makes systematic optimization feasible by constructing a number of different models. The process allows for a wide range of displacer profiles. Low temperature performance as dominated by regenerator losses, and several effects are discussed. A simple device is described which controls gas flow during expansion.

  14. Revisiting low-fidelity two-fluid models for gas-solids transport

    NASA Astrophysics Data System (ADS)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-08-01

    Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  15. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  16. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  17. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  18. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding

    PubMed Central

    KEANE, M.; SIERT, A.; STONE, S.; CHEN, B.; SLAVEN, J.; CUMPSTON, A.; ANTONINI, J.

    2015-01-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr6+) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr6+ fractions were measured in the fumes; fume generation rates, Cr6+ generation rates, and Cr6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr6+ ranged from 69 to 7800 μg/min, and Cr6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr6+ (ppm) in the fume did not necessarily correlate with the Cr6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). Conclusion: The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use. PMID:26690276

  19. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit withmore » lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less

  20. Modernization of gas-turbine engines with high-frequency induction motors

    NASA Astrophysics Data System (ADS)

    Abramovich, B. N.; Sychev, Yu A.; Kuznetsov, P. A.

    2018-03-01

    Main tendencies of growth of electric energy consumption in general and mining industries were analyzed in the paper. A key role of electric drive in this process was designated. A review about advantages and disadvantages of unregulated gearboxes with mechanical units that are commonly used in domestically produced gas-turbine engines was made. This review allows one to propose different gas-turbine engines modernization schemes with the help of PWM-driven high-frequency induction motors. Induction motors with the double rotor winding were examined. A simulation of high-frequency induction motors with double rotor windings in Matlab-Simulink software was carried out based on equivalent circuit parameters. Obtained characteristics of new motors were compared with serially produced analogues. After the simulation, results were implemented in the real prototype.

  1. A quality evaluation of stabilization of rotation frequency of gas-diesel engines when using an adaptive automatic control system

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A. A.; Efremov, A. A.

    2017-02-01

    A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on the condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of a gas-diesel engine may be reduced 25-30 times in case of optimal settings of the controller in the whole power range. The results of modelling showing a considerable quality improvement of transient processes in the investigated system during a sharp change of loading are presented in this article.

  2. Frac sand in the United States: a geological and industry overview

    USGS Publications Warehouse

    Benson, Mary Ellen; Wilson, Anna B.; Bleiwas, Donald I.

    2015-01-01

    More than 40 United States industry operators are involved in the mining, processing, transportation, and distribution of frac sand to a robust market that is fast-growing in the United States and throughout the world. In addition to the abrupt rise in frac sand mining and distribution, a new industry has emerged from the production of alternative proppants, such as coated sand and synthetic beads. Alternative proppants, developed through new technologies, are competing with supplies of natural frac sand. In the long term, the vitality of both industries will be tied to the future of hydraulic fracturing of tight oil and gas reservoirs, which will be driven by the anticipated increases in global energy consumption.

  3. Investigating GHGs and VOCs emissions from a shale gas industry in Germany and the UK

    NASA Astrophysics Data System (ADS)

    Cremonese, L.; Weger, L.; Denier Van Der Gon, H.; Bartels, M. P.; Butler, T. M.

    2017-12-01

    The shale gas and shale oil production boom experienced in the US led the country to a significant reduction of foreign fuel imports and an increase in domestic energy security. Several European countries are considering to extract domestic shale gas reserves that might serve as a bridge in the transition to renewables. Nevertheless, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact local and regional air quality and climate. Results from numerous studies investigating greenhouse gas and pollutant emissions from shale oil and shale gas extraction in North America can help in estimating the impact of such industrial activity elsewhere, when local regulations are taken into consideration. In order to investigate the extent of emissions and their distribution from a potential shale gas industry in Germany and the United Kingdom, we develop three drilling scenarios compatible with desired national gas outputs based on available geological information on potential productivity ranges of the reservoirs. Subsequently we assign activity data and emissions factors to wells under development, as well as to producing wells (from activities at the well site up until processing plants) to enable emissions quantification. We then define emissions scenarios to explore different shale gas development pathways: 1) implementation of "high-technology" devices and recovery practices (low emissions); 2) implementation of "low-technology" devices and recovery practices (high emissions), and 3) intermediate scenarios reflecting assumptions on local and national settings, or extremely high emission events (e.g. super-emitters); all with high and low boundaries of confidence driven by uncertainties. A comparison of these unconventional gas production scenarios to conventional natural gas production in Germany and the United Kingdom is also planned. The aim of this work is to highlight important variables and their ranges, to promote discussion and communication of potential impacts, and to construct possible visions for a future shale gas development in the two study countries. In a follow-up study, the impact of pollutant emissions from these scenarios on air quality will be explored using the Weather Research and Forecasting model with chemistry (WRF-Chem) model.

  4. The Gaseous State. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the gaseous state is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one deals with the distinctive characteristics of gases, then considers the gas laws, in particular the ideal gas equation and its applications. Level two concentrates on…

  5. 78 FR 53493 - Presidential Permits: NOVA Chemicals Inc. Line 20 Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... natural gas liquids from the United States to Ontario, Canada. The Line 20 facilities were constructed in 1986 and operated most recently by another entity for the transport of natural gas pursuant to a..., for the export of natural gas liquids from the United States to Canada. The term ``facilities'' as...

  6. Methane Hydrates: Chapter 8

    USGS Publications Warehouse

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.

  7. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  8. Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions

    NASA Astrophysics Data System (ADS)

    Freundt, A.; Schmincke, H.-U.

    1985-04-01

    The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.

  9. Learning by Doing: The Objectification of Knowledge across Semiotic Modalities in Middle School Chemistry Lab Activities

    ERIC Educational Resources Information Center

    Wright, Laura J.

    2008-01-01

    This analysis follows students' action and interaction with a single scientific phenomenon (bubbling/gas) over the course of a curriculum unit in a middle school science classroom to examine how and what they learn when doing laboratory activities. Taking a situated approach to interaction, I place the process of objectification in its multimodal…

  10. Gas Metal Arc Welding and Flux-Cored Arc Welding. Third Edition. Teacher Edition [and] Student Edition [and] Student Workbook.

    ERIC Educational Resources Information Center

    Knapp, John; Harper, Eddie

    This packet, containing a teacher's edition, a student edition, and a student workbook, introduces students to high deposition welding and processes for "shielding" a weld. In addition to general information, the teacher edition consists of introductory pages and teacher pages, as well as unit information that corresponds to the…

  11. 40 CFR 63.1282 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance demonstrations. (a) Determination of glycol dehydration unit flowrate, benzene emissions, or BTEX... dehydration unit natural gas flowrate, benzene emissions, or BTEX emissions. (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be made using the procedures of either paragraph...

  12. 40 CFR 63.1282 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance demonstrations. (a) Determination of glycol dehydration unit flowrate, benzene emissions, or BTEX... dehydration unit natural gas flowrate, benzene emissions, or BTEX emissions. (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be made using the procedures of either paragraph...

  13. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generatemore » a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.« less

  14. Towards an energy-friendly and cleaner solvent-extraction of vegetable oil.

    PubMed

    Kong, Weibin; Baeyens, Jan; Qin, Peiyong; Zhang, Huili; Tan, Tianwei

    2018-07-01

    The extraction of vegetable oils is an energy-intensive process. It has moreover a significant environmental impact through hexane emissions and through the production of organic-loaded wastewater. A rice bran oil process was selected as the basis, since full data were available. By using Aspen Plus v8.2 simulation, with additional scripts, several improvements were examined, such as using heat exchanger networks, integrating a Vapor Recompression Heat Pump after the evaporation and stripping, and examining a nitrogen stripping of hexane in the rice bran meal desolventizing unit followed by a gas membrane to recover hexane. Energy savings by the different individual and combined improvements are calculated, and result in a 94.2% gain in steam consumption and a 73.8% overall energy saving. The power consumption of the membrane unit reduces the overall energy savings by about 5%. Hexane separation and enrichment by gas membranes facilitates its condensation and re-use, while achieving a reduction of hexane emissions by over 50%. Through the considerable reduction of required steam flow rates, 61% of waste water is eliminated, mostly as organic-loaded steam condensate. Through overall energy savings, 52% of related CO 2 emissions are eliminated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Pressurized diesel fuel processing using hydrogen peroxide for the fuel cell power unit in low-oxygen environments

    NASA Astrophysics Data System (ADS)

    Lee, Kwangho; Han, Gwangwoo; Cho, Sungbaek; Bae, Joongmyeon

    2018-03-01

    A novel concept for diesel fuel processing utilizing H2O2 is suggested to obtain the high-purity H2 required for air-independent propulsion using polymer electrolyte membrane fuel cells for use in submarines and unmanned underwater vehicles. The core components include 1) a diesel-H2O2 autothermal reforming (ATR) reactor to produce H2-rich gas, 2) a water-gas shift (WGS) reactor to convert CO to H2, and 3) a H2 separation membrane to separate only high-purity H2. Diesel and H2O2 can easily be pressurized as they are liquids. The application of the H2 separation membrane without a compressor in the middle of the process is thus advantageous. In this paper, the characteristics of pressurized ATR and WGS reactions are investigated according to the operating conditions. In both reactors, the methanation reaction is enhanced as the pressure increases. Then, permeation experiments with a H2 separation membrane are performed while varying the temperature, pressure difference, and inlet gas composition. In particular, approximately 90% of the H2 is recovered when the steam-separated rear gas of the WGS reactor is used in the H2 separation membrane. Finally, based on the experimental results, design points are suggested for maximizing the efficiency of the diesel-H2O2 fuel processor.

  16. Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico

    DOE PAGES

    Hillman, Jess I. T.; Cook, Ann E.; Daigle, Hugh; ...

    2017-07-27

    Here, the interactions of microbial methane generation in fine-grained clay-rich sediments, methane migration, and gas hydrate accumulation in coarse-grained, sand-rich sediments are not yet fully understood. The Terrebonne Basin in the northern Gulf of Mexico provides an ideal setting to investigate the migration of methane resulting in the formation of hydrate in thin sand units interbedded with fractured muds. Using 3D seismic and well log data, we have identified several previously unidentified hydrate bearing units in the Terrebonne Basin. Two units are >100 m- thick fine-grained clay-rich units where gas hydrate occurs in near-vertical fractures. In some locations, these fine-grainedmore » units lack fracture features, and they contain 1-4-m thick hydrate bearing-sands. In addition, several other thin sand units were identified that contain gas hydrate, including one sand that was intersected by a well at the location of a discontinuous bottom-simulating reflector. Using correlation of well log data to seismic data, we have mapped and described these new units in detail across the extent of the available data, allowing us to determine the variation of seismic amplitudes and investigate the distribution of free gas and/or hydrate. We present several potential source-reservoir scenarios between the thick fractured mud units and thin hydrate bearing sands. We observe that hydrate preferentially forms within thin sand layers rather than fractures when sands are present in larger marine mud units. Based on regional mapping showing the patchy lateral extent of the thin sand layers, we propose that diffusive methane migration or short-migration of microbially generated methane from the marine mud units led to the formation of hydrate in these thin sands, as discontinuous sands would not be conducive to long-range migration of methane from deeper reservoirs.« less

  17. Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, Jess I. T.; Cook, Ann E.; Daigle, Hugh

    Here, the interactions of microbial methane generation in fine-grained clay-rich sediments, methane migration, and gas hydrate accumulation in coarse-grained, sand-rich sediments are not yet fully understood. The Terrebonne Basin in the northern Gulf of Mexico provides an ideal setting to investigate the migration of methane resulting in the formation of hydrate in thin sand units interbedded with fractured muds. Using 3D seismic and well log data, we have identified several previously unidentified hydrate bearing units in the Terrebonne Basin. Two units are >100 m- thick fine-grained clay-rich units where gas hydrate occurs in near-vertical fractures. In some locations, these fine-grainedmore » units lack fracture features, and they contain 1-4-m thick hydrate bearing-sands. In addition, several other thin sand units were identified that contain gas hydrate, including one sand that was intersected by a well at the location of a discontinuous bottom-simulating reflector. Using correlation of well log data to seismic data, we have mapped and described these new units in detail across the extent of the available data, allowing us to determine the variation of seismic amplitudes and investigate the distribution of free gas and/or hydrate. We present several potential source-reservoir scenarios between the thick fractured mud units and thin hydrate bearing sands. We observe that hydrate preferentially forms within thin sand layers rather than fractures when sands are present in larger marine mud units. Based on regional mapping showing the patchy lateral extent of the thin sand layers, we propose that diffusive methane migration or short-migration of microbially generated methane from the marine mud units led to the formation of hydrate in these thin sands, as discontinuous sands would not be conducive to long-range migration of methane from deeper reservoirs.« less

  18. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado and Utah using mobile stable isotope (13CH4) analysis

    NASA Astrophysics Data System (ADS)

    Rella, Chris; Jacobson, Gloria; Crosson, Eric; Karion, Anna; Petron, Gabrielle; Sweeney, Colm

    2013-04-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation. However, given that the global warming potential of methane is many times greater than that of carbon dioxide (Solomon et al. 2007), the importance of quantifying the fugitive emissions of methane throughout the natural gas production and distribution process becomes clear (Howarth et al. 2011). A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis. In particular, the 13CH4 signature of natural gas (-35 to -40 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-45 to -70 permil). In this paper we present measurements of mobile field 13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in two intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, and the Uintah basin in Utah. Mobile isotope measurements in the nocturnal boundary layer have been made, over a total path of 100s of km throughout the regions, allowing spatially resolved measurements of the regional isotope signature. Secondly, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in these regions, by making measurements of the isotope ratio directly in the downwind plume from each source. These data are combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities in the regions. The fraction of total methane emissions in the Denver-Julesburg basin that can be attributed to natural gas fugitive emissions has been determined to be 71 +/- 9%. References: 1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.). IPCC, 2007: Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2. R.W. Howarth, R. Santoro, and A. Ingraffea. "Methane and the greenhouse-gas footprint of natural gas from shale formations." Climate Change, 106, 679 (2011).

  19. The effects of detoxification of domestic gas on suicide in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, D.

    As domestic gas was detoxified in the United States, the rate of suicide by domestic gas decreased. During this time period (1950-60), there was a parallel increase in the per capita ownership of cars and an accompanying increase in the rate of suicide by motor vehicle exhaust. However, displacement of suicide method from domestic gas to car exhaust occurred only for males and not for females.

  20. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE).more » Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and low-cost CO{sub 2} compression equipment, an incremental LCOE of $33/MWh at 90% capture can be achieved (40% lower than the advanced MEA case). Even with lower cost compression, it appears unlikely that a membrane process using high feed compression (>5 bar) can be competitive with amine absorption, due to the capital cost and energy consumption of this equipment. Similarly, low vacuum pressure (<0.2 bar) cannot be used due to poor efficiency and high cost of this equipment. High membrane permeance is important to reduce the capital cost and footprint of the membrane unit. CO{sub 2}/N{sub 2} selectivity is less important because it is too costly to generate a pressure ratio where high selectivity can be useful. A potential cost ?sweet spot? exists for use of membrane-based technology, if 50-70% CO{sub 2} capture is acceptable. There is a minimum in the cost of CO{sub 2} avoided/ton that membranes can deliver at 60% CO{sub 2} capture, which is 20% lower than the cost at 90% capture. Membranes operating with no feed compression are best suited for lower capture rates. Currently, it appears that the biggest hurdle to use of membranes for post-combustion CO{sub 2} capture is compression equipment cost. An alternative approach is to use sweep membranes in parallel with another CO{sub 2} capture technology that does not require feed compression or vacuum equipment. Hybrid designs that utilize sweep membranes for selective CO{sub 2} recycle show potential to significantly reduce the minimum energy of CO{sub 2} separation.« less

  1. Selling 'Fracking': Legitimation of High Speed Oil and Gas Extraction in the Marcellus Shale Region

    NASA Astrophysics Data System (ADS)

    Matz, Jacob R.

    The advent of horizontal hydraulic fracture drilling, or 'fracking,' a technology used to access oil and natural gas deposits, has allowed for the extraction of deep, unconventional shale gas and oil deposits in various shale seams throughout the United States and world. One such shale seam, the Marcellus shale, extends from New York State, across Pennsylvania, and throughout West Virginia, where shale gas development has significantly increased within the last decade. This boom has created a massive amount of economic activity surrounding the energy industry, creating jobs for workers, income from leases and royalties for landowners, and profits for energy conglomerates. However, this bounty comes with risks to environmental and public health, and has led to divisive community polarization over the issue in the Marcellus shale region. In the face of potential environmental and social disruption, and a great deal of controversy surrounding 'fracking,' the oil and gas industry has had to undertake a myriad of public relations campaigns and initiatives to legitimize their extraction efforts in the Marcellus shale region, and to project the oil and gas industry in a positive light to residents, policy makers, and landowners. This thesis describes one such public relations initiative, the Energy in Depth Northeast Marcellus Initiative. Through qualitative content analysis of Energy in Depth's online web material, this thesis examines the ways in which the oil and gas industry narrates the shale gas boom in the Marcellus shale region, and the ways in which the industry frames the discourse surrounding natural gas development. Through the use of environmental imagery, appeals to scientific reason, and appeals to patriotism, the oil and gas industry uses Energy in Depth to frame the shale gas extraction process in a positive way, all the while framing those who question or oppose the processes of shale gas extraction as irrational obstructionists.

  2. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    NASA Astrophysics Data System (ADS)

    Robinson, Patrick J.

    Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process simulators Aspen Plus and Aspen Dynamics. This dissertation first presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. Limitations in the software dealing with solids make this a necessary task. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudo fuel. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macro-scale thermal, flow, composition and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers, but merely presents an idea of how to dynamically simulate coal gasification in an approximate way. This dissertation also presents models of the downstream units of a typical IGCC. Dynamic simulations of the H2S absorption/stripping unit, Water-gas Shift (WGS) reactors, and CO2 absorption/stripping unit are essential for the development of stable and agile plantwide control structures of this hybrid power/chemical plant. Due to the high pressure of the system, hydrogen sulfide is removed by means of physical absorption. SELEXOLRTM (a mixture of the dimethyl ethers of polyethylene glycol) is used to achieve a gas purity of less than 5 ppm H2S. This desulfurized synthesis gas is sent to two water gas shift reactors that convert a total of 99% of carbon monoxide to hydrogen. Physical absorption of carbon dioxide with Selexol produces a hydrogen rich stream (90 mol% H2) to be fed into combustion turbines or to a methanol plant. Steady-state economic designs and plantwide control structures are developed in this dissertation. A steady-state economic design, control structure, and successful turndown of the methanol plant are shown in this dissertation. The Plantwide control structure and interaction among units are also shown. The methanol plant was sized to handle a reductions of the power generation from an IGCC by 50%, producing a high purity methanol stream of 99.5 mol%. Advanced regulatory control structures were designed and play a significant role for the successful turndown of the methanol plant to 20% capacity. The cooled methanol reactor is controlled by the exit temperature instead of a peak temperature within the reactor. During times of low capacity and minimum vapor rate within the column, tray temperature is controlled by recycling some of the distillate and bottoms flow. The gasifier feed is held constant. The product hydrogen from the IGCC is fed to the combustion turbine as required by electric power demand. Synthesis gas fed into the methanol plant maintains pressure of the hydrogen stream. Make-up hydrogen is also fed to the methanol plant to maintain stoichiometry via a flow ratio. This ratio is adjusted to hold carbon monoxide composition of the recycle gas in the methanol plant. This dissertation also explores various methods on how to turn down distillation columns to very low capacity. Recycling flow back to the column was determined to be the best method. Inserting Langmuir-Hinshelwood-Hougen-Watson kinetics into Aspen was also demonstrated with an example.

  3. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U.; Thekdi, Arvind; Rogers, Benjamin M.

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hotmore » exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.« less

  4. Evaluation of Gas Hydrate at Alaminos Canyon 810, Northern Gulf of Mexico Slope

    NASA Astrophysics Data System (ADS)

    Yang, C.; Cook, A.; Sawyer, D.; Hillman, J. I. T.

    2016-12-01

    We characterize the gas hydrate reservoir in Alaminos Canyon Block 810 (AC810) on the northern Gulf of Mexico slope, approximately 400 km southeast of Houston, Texas, USA. Three-dimensional seismic data shows a bottom-simulating-reflection (BSR), over 30 km2, which suggests that a significant gas hydrate accumulation may occur at AC810. Furthermore, logging while drilling (LWD) data acquired from a Statoil well located that penetrated the BSR near the crest of the regional anticline indicates two possible gas hydrate units (Hydrate Unit A and Hydrate Unit B). LWD data in this interval are limited to gamma ray and resistivity only. Resistivity curve separations are observed in Hydrate Unit A (131 to 253 mbsf) suggesting hydrate-filled fractures in marine mud. A spiky high resistivity response in Hydrate Unit B (308 to 354 mbsf) could either be a marine mud or a sand-prone interval. The abrupt decrease (from 7 to 1 Ωm) in resistivity logs at 357 mbsf generally corresponds with the interpreted base of hydrate stability, as the BSR is observed near 350 mbsf on the seismic data. To further investigate the formation characteristics, we generate synthetic traces using general velocity and density trends for marine sediments to match the seismic trace extracted at the Statoil well. We consider models with 1) free gas and 2) water only below the base of hydrate stability. In our free gas-below models, we find the velocity of Hydrate Unit A and Hydrate Unit B is generally low and does not deviate significantly from the general velocity trends, suggesting that gas hydrate is present in a marine mud. In the water-below model, the compressional velocity of Hydrate Unit B ranges from 2450 m/s to 3150 m/s. This velocity is similar to the velocity of high hydrate saturation in sand; typically greater than 2500 m/s. This may indicate that Hydrate Unit B is sand with high hydrate saturation; however, to achieve a suitable match between the water-below synthetic seismogram and the trace, a high velocity layer was required below the base of hydrate stability, which is not indicated by the well logs. Our models indicate that at AC810, Hydrate Unit A probably contains hydrate filled fractures in a marine mud. For Hydrate Unit B, our models suggest hydrate may occur in a sand-prone interval, but is more likely to be gas hydrate filled fractures in marine mud.

  5. Detection of Hot Halo Gets Theory Out of Hot Water

    NASA Astrophysics Data System (ADS)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of intergalactic gas," said Jesper Rasmussen of the University of Birmingham, United Kingdom and a coauthor of the report. "What we found is in good agreement with computer simulations in which galaxies are built up gradually from the merger of smaller clouds of hot gas and dark matter." The computer simulations were done by Jesper Sommer-Larsen (also a coauthor of the report) and collaborators at the University of Copenhagen. The paper describing these results will be published in the April issue of the journal New Astronomy. Other researchers on this project were Sune Toft, Yale University; Andrew Benson, University of Oxford, United Kingdom; and Richard Bower, University of Durham, United Kingdom. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. http://chandra.harvard.edu and http://chandra.nasa.gov

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reggio, R.; Haun, R.

    This paper reviews the engineering and design work along with the installation procedures for a Persian Gulf natural gas pipeline. OPMI Ltd., a joint venture of Offshore Pipelines, Inc., Houston, and Maritime Industrial Services Co., Ltd., United Arab Emirates (UAE), successfully completed this 57.4 mile, 16-inch gas export pipeline for Consolidated Transmissions Inc. The pipeline begins at a platform in the Mubarek field offshore Sharjah, UAE, and runs to a beach termination at the Dugas treatment plant, Jebel Ali, Dubai. The paper describes the site preparation required for installation of the pipeline along with the specific design of the pipelinemore » itself to deal with corrosion, welding processes, condensate dropout, and temperature gradients.« less

  7. 76 FR 78314 - Notice of Lodging of Consent Decree Under the Comprehensive Environmental Response, Compensation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Consent Decree in United States of America and District of Columbia v. Washington Gas Light Company, Civil... Gas Light Company response costs incurred or to be incurred by the National Park Service, the United... from the Washington Gas East Station Site, located in Washington, DC (the ``Site''). The Consent Decree...

  8. Competency Based Education Curriculum for the Orientation and Safety Program of the Oil and Gas Industry.

    ERIC Educational Resources Information Center

    United Career Center, Clarksburg, WV.

    This competency-based education curriculum for teaching the orientation and safety program for the oil and gas industry in West Virginia is organized into seven units. These units cover the following topics: introduction to oil and gas, first aid, site preparation, drilling operations, equipment familiarity, well completion, and preparation for…

  9. 40 CFR 60.646 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period: At least one sample per 24-hour... require a more frequent sampling schedule. (3) The average acid gas flow rate from the sweetening unit... rate of acid gas. The monitoring device reading shall be recorded at least once per hour during each 24...

  10. 40 CFR 60.646 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period: At least one sample per 24-hour... require a more frequent sampling schedule. (3) The average acid gas flow rate from the sweetening unit... rate of acid gas. The monitoring device reading shall be recorded at least once per hour during each 24...

  11. 40 CFR 60.646 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period: At least one sample per 24-hour... require a more frequent sampling schedule. (3) The average acid gas flow rate from the sweetening unit... rate of acid gas. The monitoring device reading shall be recorded at least once per hour during each 24...

  12. 40 CFR 60.646 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period: At least one sample per 24-hour... require a more frequent sampling schedule. (3) The average acid gas flow rate from the sweetening unit... rate of acid gas. The monitoring device reading shall be recorded at least once per hour during each 24...

  13. 40 CFR 60.646 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentration in the acid gas from the sweetening unit for each 24-hour period: At least one sample per 24-hour... require a more frequent sampling schedule. (3) The average acid gas flow rate from the sweetening unit... rate of acid gas. The monitoring device reading shall be recorded at least once per hour during each 24...

  14. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S., E-mail: suman.mech09@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR)more » cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Rakesh

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. Wemore » also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.« less

  16. Assessment of Process Capability: the case of Soft Drinks Processing Unit

    NASA Astrophysics Data System (ADS)

    Sri Yogi, Kottala

    2018-03-01

    The process capability studies have significant impact in investigating process variation which is important in achieving product quality characteristics. Its indices are to measure the inherent variability of a process and thus to improve the process performance radically. The main objective of this paper is to understand capability of the process being produced within specification of the soft drinks processing unit, a premier brands being marketed in India. A few selected critical parameters in soft drinks processing: concentration of gas volume, concentration of brix, torque of crock has been considered for this study. Assessed some relevant statistical parameters: short term capability, long term capability as a process capability indices perspective. For assessment we have used real time data of soft drinks bottling company which is located in state of Chhattisgarh, India. As our research output suggested reasons for variations in the process which is validated using ANOVA and also predicted Taguchi cost function, assessed also predicted waste monetarily this shall be used by organization for improving process parameters. This research work has substantially benefitted the organization in understanding the various variations of selected critical parameters for achieving zero rejection.

  17. Increasing Model Complexity: Unit Testing and Validation of a Coupled Electrical Resistive Heating and Macroscopic Invasion Percolation Model

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Krol, M.; Mumford, K. G.

    2016-12-01

    Geoenvironmental models are becoming increasingly sophisticated as they incorporate rising numbers of mechanisms and process couplings to describe environmental scenarios. When combined with advances in computing and numerical techniques, these already complicated models are experiencing large increases in code complexity and simulation time. Although, this complexity has enabled breakthroughs in the ability to describe environmental problems, it is difficult to ensure that complex models are sufficiently robust and behave as intended. Many development tools used for testing software robustness have not seen widespread use in geoenvironmental sciences despite an increasing reliance on complex numerical models, leaving many models at risk of undiscovered errors and potentially improper validations. This study explores the use of unit testing, which independently examines small code elements to ensure each unit is working as intended as well as their integrated behaviour, to test the functionality and robustness of a coupled Electrical Resistive Heating (ERH) - Macroscopic Invasion Percolation (MIP) model. ERH is a thermal remediation technique where the soil is heated until boiling and volatile contaminants are stripped from the soil. There is significant interest in improving the efficiency of ERH, including taking advantage of low-temperature co-boiling behaviour which may reduce energy consumption. However, at lower co-boiling temperatures gas bubbles can form, mobilize and collapse in cooler areas, potentially contaminating previously clean zones. The ERH-MIP model was created to simulate the behaviour of gas bubbles in the subsurface and to evaluate ERH during co-boiling1. This study demonstrates how unit testing ensures that the model behaves in an expected manner and examines the robustness of every component within the ERH-MIP model. Once unit testing is established, the MIP module (a discrete gas transport algorithm for gas expansion, mobilization and fragmentation2) was validated against a two-dimensional light transmission visualization experiment 3. 1. Krol, M. M., et al. (2011), Adv. Water Resour. 2011, 34 (4), 537-549. 2. Mumford, K. G., et al. (2010), Adv. Water Resour. 2010, 33 (4), 504-513. 3. Hegele, P. R. and Mumford, K. G. Journal of Contaminant Hydrology 2014, 165, 24-36.

  18. 40 CFR 63.1282 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... demonstrations. (a) Determination of glycol dehydration unit flowrate or benzene emissions. The procedures of this paragraph shall be used by an owner or operator to determine glycol dehydration unit natural gas....1274(d). (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be...

  19. 40 CFR 63.1282 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... demonstrations. (a) Determination of glycol dehydration unit flowrate or benzene emissions. The procedures of this paragraph shall be used by an owner or operator to determine glycol dehydration unit natural gas....1274(d). (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be...

  20. 30 CFR 250.403 - What drilling unit movements must I report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a) You must report the... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What drilling unit movements must I report? 250...

  1. 46 CFR 153.12 - IMO Certificates for United States Ships.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false IMO Certificates for United States Ships. 153.12 Section... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.12 IMO Certificates for United States Ships. Either a classification society authorized under 46 CFR part...

  2. 46 CFR 153.12 - IMO Certificates for United States Ships.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false IMO Certificates for United States Ships. 153.12 Section... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.12 IMO Certificates for United States Ships. Either a classification society authorized under 46 CFR part...

  3. 46 CFR 153.12 - IMO Certificates for United States Ships.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false IMO Certificates for United States Ships. 153.12 Section... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.12 IMO Certificates for United States Ships. Either a classification society authorized under 46 CFR part...

  4. 46 CFR 153.12 - IMO Certificates for United States Ships.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false IMO Certificates for United States Ships. 153.12 Section... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.12 IMO Certificates for United States Ships. Either a classification society authorized under 46 CFR part...

  5. Using an extractive Fourier transform infrared spectrometer for improving cleanroom air quality in a semiconductor manufacturing plant.

    PubMed

    Li, Shou-Nan; Chang, Chin-Ta; Shih, Hui-Ya; Tang, Andy; Li, Alen; Chen, Yin-Yung

    2003-01-01

    A mobile extractive Fourier transform infrared (FTIR) spectrometer was successfully used to locate, identify, and quantify the "odor" sources inside the cleanroom of a semiconductor manufacturing plant. It was found that ozone (O(3)) gas with a peak concentration of 120 ppm was unexpectedly releasing from a headspace of a drain for transporting used ozonized water and that silicon tetrafluoride (SiF(4)) with a peak concentration of 3 ppm was off-gassed from silicon wafers after dry-etching processing. When the sources of the odors was pinpointed by the FTIR, engineering control measures were applied. For O(3) control, a water-sealed pipeline was added to prevent the O(3) gas (emitting from the ozonized water) from entering the mixing unit. A ventilation system also was applied to the mixing unit in case of O(3) release. For SiF(4) mitigation, before the wafer-out chamber was opened, N(2) gas with a flow rate of 150 L/min was used for 100 sec to purge the wafer-out chamber, and a vacuum system was simultaneously activated to pump away the purging N(2). The effectiveness of the control measures was assured by using the FTIR. In addition, the FTIR was used to monitor the potential hazardous gas emissions during preventative maintenance of the semiconductor manufacturing equipment.

  6. Assessment of potential additions to conventional oil and gas resources in discovered fields of the United States from reserve growth, 2012

    USGS Publications Warehouse

    ,

    2012-01-01

    The U.S. Geological Survey estimated volumes of technically recoverable, conventional petroleum resources that have the potential to be added to reserves from reserve growth in 70 discovered oil and gas accumulations of the United States, excluding Federal offshore areas. The mean estimated volumes are 32 billion barrels of crude oil, 291 trillion cubic feet of natural gas, and 10 billion barrels of natural gas liquids.

  7. Total petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas

    USGS Publications Warehouse

    Pollastro, R.M.

    2007-01-01

    Undiscovered natural gas having potential for additions to reserves in the Mississippian Barnett Shale of the Fort Worth Basin, north-central Texas, was assessed using the total petroleum system assessment unit concept and a cell-based methodology for continuous-type (Unconventional) resources. The Barnett-Paleozoic total petroleum system is defined in the Bend arch-Fort Worth Basin as encompassing the area in which the organic-rich Barnett is the primary source rock for oil and gas produced from Paleozoic carbonate and clastic reservoirs. Exploration, technology, and drilling in the Barnett Shale play have rapidly evolved in recent years, with about 3500 vertical and 1000 horizontal wells completed in the Barnett through 2005 and more than 85% of the them completed since 1999. Using framework geology and historical production data, assessment of the Barnett Shale was performed by the U.S. Geological Survey using vertical wells at the peak of vertical well completions and before a transition to completions with horizontal wells. The assessment was performed after (1) mapping critical geological and geochemical parameters to define assessment unit areas with future potential, (2) defining distributions of drainage area (cell size) and estimating ultimate recovery per cell, and (3) estimating future success rates. Two assessment units are defined and assessed for the Barnett Shale continuous gas accumulation, resulting in a total mean undiscovered volume having potential for additions to reserves of 26.2 TCFG. The greater Newark East fracture-barrier continuous Barnett Shale gas assessment unit represents a core-producing area where thick, organic-rich, siliceous Barnett Shale is within the thermal window for gas generation (Ro ??? 1.1%) and is overlain and underlain by impermeable limestone barriers (Pennsylvanian Marble Falls Limestone and Ordovician Viola Limestone, respectively) that serve to confine induced fractures during well completion to maximize gas recovery. The extended continuous Barnett Shale gas assessment unit, which had been less explored, defines a geographic area where Barnett Shale is (1) within the thermal window for gas generation, (2) greater than 100 ft (30 m) thick, and (3) where at least one impermeable limestone barrier is absent. Mean undiscovered gas having potential for additions to reserves in the greater Newark East assessment unit is estimated at 14.6 tcf, and in the less tested extended assessment unit, a mean resource is estimated at 11.6 TCFG. A third hypothetical basin-arch Barnett Shale oil assessment unit was defined but not assessed because of a lack of production data. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  8. The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives

    PubMed Central

    2012-01-01

    Natural gas comprises about a quarter of the United States’ energy use. It is more environmentally friendly than oil and coal due to lower carbon dioxide (CO2) emissions per unit, less costly per unit of energy and more readily available domestically in abundant supply. However, due to a number of barriers in the political, infrastructural, pricing and other arenas, the use of natural gas as a significant energy source in the United States has been limited. In our paper, we highlight the favorable qualities of natural gas and its benefits for the consumer, producer, and environment, having compared the costs of the various components of the natural gas business such as drilling and transport to that of coal and oil. Moreover, we touch upon the major issues that have prevented a more prevalent use of the gas, such as the fact that the infrastructure of natural gas is more costly since it is transported though pipelines whereas other energy sources such as oil and coal have flexible systems that use trains, trucks and ships. In addition, the powerful lobbies of the coal and oil businesses, along with the inertia in the congress to pass a national climate change bill further dampens incentives for these industries to invest in natural gas, despite its various attractive qualities. We also include discussions of policy proposals to incentive greater use of natural gas in the future. PMID:22540989

  9. Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery

    DOEpatents

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.

  10. Monitoring of energy efficiency of technological modes of gas transport using modern gas-turbine equipment

    NASA Astrophysics Data System (ADS)

    Golik, V. V.; Zemenkova, M. Yu; Shipovalov, A. N.; Akulov, K. A.

    2018-05-01

    The paper presents calculations and an example of energy efficiency justification of the regimes of the equipment used. The engineering design of the gas pipeline in the part of monitoring the energy efficiency of a gas compressor unit (GCU) is considered. The results of the GCU characteristics and its components evaluation are described. The evaluation results of the energy efficiency indicators of the gas pipeline are presented. As an example of the result of the analysis, it is proposed to use gas compressor unit GCU-32 "Ladoga" because of its efficiency and cost effectiveness, in comparison with analogues.

  11. Improved system integration for integrated gasification combined cycle (IGCC) systems.

    PubMed

    Frey, H Christopher; Zhu, Yunhua

    2006-03-01

    Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility via improved process integration. A process simulation model was developed for IGCC systems with alternative types of ASU and gas turbine integration. The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. The optimal combination of air extraction coupled with nitrogen injection had slightly worse efficiency, power output, and emissions than the optimal nitrogen injection only case. Air extraction alone typically produced lower efficiency, lower power output, and higher emissions than all other cases. The recommended nitrogen injection only case is estimated to provide annualized cost savings compared to a nonintegrated design. Process simulation modeling is shown to be a useful tool for evaluation and screening of technology options.

  12. Commercial-scale demonstration of the Liquid Phase Methanol process. Technical progress report number 8, April 1--June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The original concept envisioned for the use of Fischer-Tropsch processing (FTP) of United States associated natural gas in this study was to provide a way of utilizing gas which could not be brought to market because a pipeline was not available or for which there was no local use. Conversion of gas by FTP could provide a means of utilizing offshore associated gas which would not require installation of a pipeline or re-injection. The premium quality F-T hydrocarbons produced by conversion of the gas can be transported in the same way as the crude oil or in combination (blended) withmore » it, eliminating the need for a separate gas transport system. FTP will produce a synthetic crude oil, thus increasing the effective size of the resource. The two conventional approaches currently used in US territory for handling of natural gas associated with crude petroleum production are re-injection and pipelining. Conversion of natural gas to a liquid product which can be transported to shore by tanker can be accomplished by FTP to produce hydrocarbons, or by conversion to chemical products such as methanol or ammonia, or by cryogenic liquefaction (LNG). This study considers FTP and briefly compares it to methanol and LNG. The Energy International Corporation cobalt catalyst, ratio adjusted, slurry bubble column F-T process was used as the basis for the study and the comparisons. An offshore F-T plant can best be accommodated by an FPSO (Floating Production, Storage, Offloading vessel) based on a converted surplus tanker, such as have been frequently used around the world recently. Other structure types used in deep water (platforms) are more expensive and cannot handle the required load.« less

  14. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... TOWER 9 CEN ILLINOIS PUB SER. INDIANA CULLEY 2 STHERN IND GAS & EL. INDIANA CULLEY 3 STHERN IND GAS & EL...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.

    This collaborative joint research project is in the area of advanced gasification and conversion, within the Chinese Academy of Sciences (CAS)-National Energy Technology Laboratory (NETL)-Pacific Northwest National Laboratory (PNNL) Memorandum of Understanding. The goal for this subtask is the development of advanced syngas conversion technologies. Two areas of investigation were evaluated: Sorption-Enhanced Synthetic Natural Gas Production from Syngas The conversion of synthetic gas (syngas) to synthetic natural gas (SNG) is typically catalyzed by nickel catalysts performed at moderate temperatures (275 to 325°C). The reaction is highly exothermic and substantial heat is liberated, which can lead to process thermal imbalance andmore » destruction of the catalyst. As a result, conversion per pass is typically limited, and substantial syngas recycle is employed. Commercial methanation catalysts and processes have been developed by Haldor Topsoe, and in some reports, they have indicated that there is a need and opportunity for thermally more robust methanation catalysts to allow for higher per-pass conversion in methanation units. SNG process requires the syngas feed with a higher H2/CO ratio than typically produced from gasification processes. Therefore, the water-gas shift reaction (WGS) will be required to tailor the H2/CO ratio. Integration with CO2 separation could potentially eliminate the need for a separate WGS unit, thereby integrating WGS, methanation, and CO2 capture into one single unit operation and, consequently, leading to improved process efficiency. The SNG process also has the benefit of producing a product stream with high CO2 concentrations, which makes CO2 separation more readily achievable. The use of either adsorbents or membranes that selectively separate the CO2 from the H2 and CO would shift the methanation reaction (by driving WGS for hydrogen production) and greatly improve the overall efficiency and economics of the process. The scope of this activity was to develop methods and enabling materials for syngas conversion to SNG with readily CO2 separation. Suitable methanation catalyst and CO2 sorbent materials were developed. Successful proof-of-concept for the combined reaction-sorption process was demonstrated, which culminated in a research publication. With successful demonstration, a decision was made to switch focus to an area of fuels research of more interest to all three research institutions (CAS-NETL-PNNL). Syngas-to-Hydrocarbon Fuels through Higher Alcohol Intermediates There are two types of processes in syngas conversion to fuels that are attracting R&D interest: 1) syngas conversion to mixed alcohols; and 2) syngas conversion to gasoline via the methanol-to-gasoline process developed by Exxon-Mobil in the 1970s. The focus of this task was to develop a one-step conversion technology by effectively incorporating both processes, which is expected to reduce the capital and operational cost associated with the conversion of coal-derived syngas to liquid fuels. It should be noted that this work did not further study the classic Fischer-Tropsch reaction pathway. Rather, we focused on the studies for unique catalyst pathways that involve the direct liquid fuel synthesis enabled by oxygenated intermediates. Recent advances made in the area of higher alcohol synthesis including the novel catalytic composite materials recently developed by CAS using base metal catalysts were used.« less

  16. Future petroleum energy resources of the world

    USGS Publications Warehouse

    Ahlbrandt, T.S.

    2002-01-01

    Is the world running out of oil? Where will future oil and gas supplies come from? To help answer these questions, in 2000 the U.S. Geological Survey completed a new world assessment, exclusive of the United States, of the undiscovered conventional oil and gas resources and potential additions to reserves from field growth.2 One hundred and twenty-eight provinces were assessed in a 100 man-year effort from 1995-2000. The assessed provinces included 76 priority provinces containing 95% of the world's discovered oil and gas and an additional 52 "boutique" provinces, many of which may be highly prospective. Total Petroleum Systems (TPS) were identified and described for each of these provinces along with associated Assessment Units (AU) that are the basic units for assessing undiscovered petroleum. The assessment process coupled geologic analysis with a probabilistic methodology to estimate remaining potential. Within the 128 assessed provinces were 159 TPS and 274 AU. For these provinces, the endowment of recoverable oil-which includes cumulative production, remaining reserves, reserve growth, and undiscovered resources-is estimated at about 3 trillion barrels of oil (TBO). The natural gas endowment is estimated at 2.6 trillion barrels of oil equivalent (TBOE). Oil reserves are currently 1.1 TBO; world consumption is about .028 TBO per year. Natural gas reserves are about 0.8 TBOE; world consumption is about 0.014 TBOE per year. Thus, without any additional discoveries of oil, gas or natural gas liquids, we have about 2 TBOE of proved petroleum reserves. Of the oil and gas endowment of about 5.6 TBOE, we estimate that the world has consumed about 1 TBOE, or 18%, leaving about 82% of the endowment to be utilized or found. Half of the world's undiscovered potential is offshore. Arctic basins with about 25% of undiscovered petroleum resources make up the next great frontier. An additional 279 provinces contain some oil and gas and, if considered, would increase the oil and gas endowment estimates. Whereas petroleum resources in the world appear to be significant, certain countries such as the United States may run into import deficits, particularly oil imports from Mexico and natural gas from both Canada and Mexico. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as those at Stanford University, Massachusetts Institute of Technology, and others have also used USGS estimates in global climate models. Many of these models using the USGS estimates converge on potential oil shortfalls in 2036-2040. However, recent articles using the USGS (2000) estimates suggest peaking of oil in 2020-2035 and peaking of non-OPEC (Organization of Petroleum-Exporting Countries) oil in 2015-2020. Such a short time framework places greater emphasis on a transition to increased use of natural gas; i.e., a methane economy. Natural gas in turn may experience similar supply concerns in the 2050-2060 time frame according to some authors. Coal resources are considerable and provide significant petroleum potential either by extracting natural gas from them, by directly converting them into petroleum products, or by utilizing them to generate electricity, thereby reducing natural gas and oil requirements by fuel substitution. Non-conventional oil and gas are quite common in petroleum provinces of the world and represent a significant resources yet to be fully studied and developed. Seventeen non-conventional AU including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits also are under way.

  17. Paleozoic shale gas resources in the Sichuan Basin, China

    USGS Publications Warehouse

    Potter, Christopher J.

    2018-01-01

    The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.

  18. Removal of mercury from coal via a microbial pretreatment process

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  19. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... electricity, natural gas, No. 2 heating oil, propane, and kerosene. DATES: The representative average unit... for electricity, natural gas, No. 2 heating oil, and propane are based on simulations used to produce... required by test procedure Electricity $35.46 12.1[cent]/kWh 2 3..... $0.121/kWh Natural Gas 10.87 $1.087...

  20. Managed forest carbon estimates for the US greenhouse gas inventory, 1990-2008

    Treesearch

    Linda S. Heath; James E. Smith; Kenneth E. Skog; David J. Nowak; Christopher W. Woodall

    2011-01-01

    Land-use change and forestry is the major category featuring carbon sequestration in the annual US Greenhouse Gas Inventory, required by the United Nations Framework Convention on Climate Change. We describe the National Greenhouse Gas Inventory and present the sources of our data and methods and the most recent results. Forests and forest products in the United States...

  1. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  2. Assessment of the impact of TOA partitioning on DWPF off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-06-01

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in themore » effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.« less

  3. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph Rabovitser

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half ofmore » the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.« less

  4. Development of gas-phase metallized plaques for electrodes of storage batteries, in particular for nickel oxide electrodes

    NASA Astrophysics Data System (ADS)

    Linkohr, R.; Schladitz, H.

    1982-08-01

    Nickel oxide-electrode plaques for alkaline batteries have been developed by carbon vapor deposition plating fiber plaque substrates with nickel from nickelcarbonyo. Carbon felt proved to be a suitable substrate and large (22 x sq 15 sq cm) and thick 3 - 5 mm) plaques could be made from this material. Three metallization devices were constructed, one of which allowed continuous processing with carbonyl gas flowing through the felt; this improved evenness of nickel distribution. The physical properties of the plaques - structure, electric resistance, heat conduction, gas permeation - approximated by simple models and the corresponding calculations were compared with measurements. Nickel oxide electrodes were made from the plaques and were cycled in half-cell arrangements. The project goals concerning nickel sayings, capacity per unit area and current capability were reached.

  5. The influence of perforation of foil reactors on greenhouse gas emission rates during aerobic biostabilization of the undersize fraction of municipal wastes.

    PubMed

    Stegenta, Sylwia; Dębowski, Marcin; Bukowski, Przemysław; Randerson, Peter F; Białowiec, Andrzej

    2018-02-01

    The opinion, that the use of foil reactors for the aerobic biostabilization of municipal wastes is not a valid method, due to vulnerability to perforation, and risk of uncontrolled release of exhaust gasses, was verified. This study aimed to determine the intensity of greenhouse gas (GHG) emissions to the atmosphere from the surface of foil reactors in relation to the extent of foil surface perforation. Three scenarios were tested: intact (airtight) foil reactor, perforated foil reactor, and torn foil reactor. Each experimental variant was triplicated, and the duration of each experiment cycle was 5 weeks. Temperature measurements demonstrated a significant decrease in temperature of the biostabilization in the torn reactor. The highest emissions of CO 2 , CO and SO 2 were observed at the beginning of the process, and mostly in the torn reactor. During the whole experiment, observed emissions of CO, H 2 S, NO, NO 2 , and SO 2 were at a very low level which in extreme cases did not exceed 0.25 mg t -1 .h -1 (emission of gasses mass unit per waste mass unit per unit time). The lowest average emissions of greenhouse gases were determined in the case of the intact reactor, which shows that maintaining the foil reactors in an airtight condition during the process is extremely important. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    NASA Astrophysics Data System (ADS)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  7. Additives and method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle Dendy; Christiansen, Richard Lee; Lederhos, Joseph P.; Long, Jin Ping; Panchalingam, Vaithilingam; Du, Yahe; Sum, Amadeu Kun Wan

    1997-01-01

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hinderance and/or charge repulsion. Also, polymers having an amide on which a C.sub.1 -C.sub.4 group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  8. Additives and method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, E.D. Jr.; Christiansen, R.L.; Lederhos, J.P.; Long, J.P.; Panchalingam, V.; Du, Y.; Sum, A.K.W.

    1997-06-17

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hindrance and/or charge repulsion. Also, polymers having an amide on which a C{sub 1}-C{sub 4} group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  9. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOEpatents

    Cohen, Mitchell R.; Gal, Eli

    1993-01-01

    A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

  10. 77 FR 24940 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... electricity, natural gas, No. 2 heating oil, propane, and kerosene. DATES: The representative average unit... unit after-tax costs for electricity, natural gas, No. 2 heating oil, and propane are based on...\\ In commonly used terms As required by test procedure Electricity $34.70 11.84[cent]/kWh 2 3...

  11. 46 CFR 153.12 - IMO Certificates for United States Ships.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false IMO Certificates for United States Ships. 153.12 Section 153.12 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.12 IMO Certificates for United States Ships....

  12. 30 CFR 250.403 - What drilling unit movements must I report?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What drilling unit movements must I report? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a) You must...

  13. 30 CFR 250.403 - What drilling unit movements must I report?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What drilling unit movements must I report? 250..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a...

  14. 30 CFR 250.403 - What drilling unit movements must I report?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What drilling unit movements must I report? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a) You must...

  15. 30 CFR 250.403 - What drilling unit movements must I report?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What drilling unit movements must I report? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.403 What drilling unit movements must I report? (a) You must...

  16. 43 CFR 3109.2 - Units of the National Park System.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Leasing Under Special Acts § 3109.2 Units of the National Park System. (a) Oil and gas leasing in units of the National Park... office of the State Directors, Bureau of Land Management, Arizona and Utah. [48 FR 33662, July 22, 1983...

  17. 43 CFR 3109.2 - Units of the National Park System.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Leasing Under Special Acts § 3109.2 Units of the National Park System. (a) Oil and gas leasing in units of the National Park... office of the State Directors, Bureau of Land Management, Arizona and Utah. [48 FR 33662, July 22, 1983...

  18. 43 CFR 3109.2 - Units of the National Park System.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Leasing Under Special Acts § 3109.2 Units of the National Park System. (a) Oil and gas leasing in units of the National Park... office of the State Directors, Bureau of Land Management, Arizona and Utah. [48 FR 33662, July 22, 1983...

  19. 43 CFR 3109.2 - Units of the National Park System.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Leasing Under Special Acts § 3109.2 Units of the National Park System. (a) Oil and gas leasing in units of the National Park... office of the State Directors, Bureau of Land Management, Arizona and Utah. [48 FR 33662, July 22, 1983...

  20. Toxic legacy: the environmental impact of the manufactured gas industry in the United States.

    PubMed

    Tarr, Joel A

    2014-01-01

    The manufactured gas industry provided cities in the United States with energy for light and power during much of the period from approximately 1850 to 1950. This article explores the history of the effects of this industry on air, land, and water environments; it also examines attempts by the courts and municipal and state governments to regulate gas-waste pollution and the industry's response. The article concludes by exploring the heritage of badly contaminated sites that the manufactured gas industry left to the nation after it was replaced by natural gas after World War II.

  1. Assessment of potential additions to conventional oil and gas resources of the world (outside the United States) from reserve growth, 2012

    USGS Publications Warehouse

    Klett, Timothy R.; Cook, Troy A.; Charpentier, Ronald R.; Tennyson, Marilyn E.; Attanasi, E.D.; Freeman, Phil A.; Ryder, Robert T.; Gautier, Donald L.; Verma, Mahendra K.; Le, Phuong A.; Schenk, Christopher J.

    2012-01-01

    The U.S. Geological Survey estimated volumes of technically recoverable, conventional petroleum resources resulting from reserve growth for discovered fields outside the United States that have reported in-place oil and gas volumes of 500 million barrels of oil equivalent or greater. The mean volumes were estimated at 665 billion barrels of crude oil, 1,429 trillion cubic feet of natural gas, and 16 billion barrels of natural gas liquids. These volumes constitute a significant portion of the world's oil and gas resources.

  2. Underground Injection Control, Hydraulic Fracturing, and Sources of Drinking Water in the Western United States

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Kang, M.

    2016-12-01

    Oil and gas extraction is expanding in the United States, attributable to the success of high-volume hydraulic fracturing, and associated wastewater disposal is increasing as a result. The United States currently has approximately 180,000 Class II injection wells associated with the oil and gas industry, more than 50,000 of them in California. Hydraulic fracturing and underground injection often occur many thousands of feet belowground. Previously, however, we documented shallow hydraulic fracturing and other oil and gas activities across the western United States in particular, including California and Wyoming. In eight CA counties, for example, as many as 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively (Kang and Jackson 2016 PNAS). Here we expand this analysis to examine the underground injection control program and accompanying hydrogeologic variables found in California and elsewhere.

  3. The NOXSO clean coal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% ofmore » the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).« less

  4. Air pollution control systems in WtE units: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J., E-mail: juergen.vehlow@partner.kit.edu

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removalmore » of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.« less

  5. Shallow Aquifer Methane Gas Source Assessment

    NASA Astrophysics Data System (ADS)

    Coffin, R. B.; Murgulet, D.; Rose, P. S.; Hay, R.

    2014-12-01

    Shale gas can contribute significantly to the world's energy demand. Hydraulic fracturing (fracking) on horizontal drill lines developed over the last 15 years makes formerly inaccessible hydrocarbons economically available. From 2000 to 2035 shale gas is predicted to rise from 1% to 46% of the total natural gas for the US. A vast energy resource is available in the United States. While there is a strong financial advantage to the application of fracking there is emerging concern about environmental impacts to groundwater and air quality from improper shale fracking operations. Elevated methane (CH4) concentrations have been observed in drinking water throughout the United States where there is active horizontal drilling. Horizontal drilling and hydraulic-fracturing can increase CH4 transport to aquifers, soil and the vadose zone. Seepage can also result from casing failure in older wells. However, there is strong evidence that elevated CH4 concentrations can be associated with topographic and hydrogeologic features, rather than shale-gas extraction processes. Carbon isotope geochemistry can be applied to study CH4source(s) in shallow vadose zone and groundwater systems. A preliminary TAMU-CC isotope data set from samples taken at different locations in southern Texas shows a wide range of CH4 signatures suggesting multiple sources of methane and carbon dioxide. These data are interpreted to distinguish regions with methane contributions from deep-sourced horizontal drilling versus shallow system microbial production. Development of a thorough environmental assessment using light isotope analysis can provide understanding of shallow anthropogenic versus natural CH4sources and assist in identifying regions that require remedial actions.

  6. Portable tester for determining gas content within a core sample

    DOEpatents

    Garcia, Jr., Fred; Schatzel, Steven J.

    1998-01-01

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas- a selector valve connected to the low and high range pressure transducers, a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container, and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use.

  7. Portable tester for determining gas content within a core sample

    DOEpatents

    Garcia, F. Jr.; Schatzel, S.J.

    1998-04-21

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas; a selector valve connected to the low and high range pressure transducers and a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container; and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use. 5 figs.

  8. Chapter 5. Assessment of undiscovered conventional oil and gas resources-Lower Cretaceous Travis Peak and Hosston formations, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The petroleum assessment of the Travis Peak and Hosston Formations was conducted by using a total petroleum system model. A total petroleum system includes all of the important elements of a hydrocarbon fluid system needed to develop oil and gas accumulations, including source and reservoir rocks, hydrocarbon generation, migration, traps and seals, and undiscovered accumulations. A total petroleum system is mappable and may include one or more assessment units. For each assessment unit, reservoir rocks contain similar geology, exploration characteristics, and risk. The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover carbonates and calcareous shales and organic-rich shales of the Upper Jurassic Bossier Shale of the Cotton Valley Group and (2) Lower Cretaceous Travis Peak and Hosston Formations. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes three conventional Travis Peak-Hosston assessment units: Travis Peak-Hosston Gas and Oil (AU 50490205), Travis Peak-Hosston Updip Oil (AU 50490206), and Travis Peak-Hosston Hypothetical Updip Oil (AU 50490207). A fourth assessment unit, the Hosston Hypothetical Slope-Basin Gas Assessment Unit, was named and numbered (AU 50490208) but not geologically defined or quantitatively assessed owing to a lack of data. Together, assessment units 50490205 to 50490207 are estimated to contain a mean undiscovered conventional resource of 29 million barrels of oil, 1,136 billion cubic feet of gas, and 22 million barrels of natural gas liquids.

  9. Factors Of Environmental Safety And Environmentally Efficient Technologies Transportation Facilities Gas Transportation Industry

    NASA Astrophysics Data System (ADS)

    Vasiliev, Bogdan U.

    2017-01-01

    The stable development of the European countries depends on a reliable and efficient operation of the gas transportation system (GTS). With high reliability of GTS it is necessary to ensure its industrial and environmental safety. In this article the major factors influencing on an industrial and ecological safety of GTS are analyzed, sources of GTS safety decreasing is revealed, measures for providing safety are proposed. The article shows that use of gas-turbine engines of gas-compressor units (GCU) results in the following phenomena: emissions of harmful substances in the atmosphere; pollution by toxic waste; harmful noise and vibration; thermal impact on environment; decrease in energy efficiency. It is shown that for the radical problem resolution of an industrial and ecological safety of gas-transmission system it is reasonable to use gas-compressor units driven by electric motors. Their advantages are shown. Perspective technologies of these units and experience of their use in Europe and the USA are given in this article.

  10. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1967-01-01

    The oxygen production of a photosynthetic gas exchanger containing Chlorella pyrenoidosa (1% packed cell volume) was measured when various concentrations of carbon dioxide were present within the culture unit. The internal carbon dioxide concentrations were obtained by manipulating the entrance gas concentration and the flow rate. Carbon dioxide percentages were monitored by means of electrodes placed directly in the nutrient medium. The concentration of carbon dioxide in the nutrient medium which produced maximal photosynthesis was in the range of 1.5 to 2.5% by volume. Results were unaffected by either the level of carbon dioxide in the entrance gas or the rate of gas flow. Entrance gases containing 2% carbon dioxide flowing at 320 ml/min, 3% carbon dioxide at 135 ml/min, and 4% carbon dioxide at 55 ml/min yielded optimal carbon dioxide concentrations in the particular unit studied. By using carbon dioxide electrodes implanted directly in the gas exchanger to optimize the carbon dioxide concentration throughout the culture medium, it should be possible to design more efficient large-scale units. PMID:4382391

  11. Petroleum Systems and Geologic Assessment of Undiscovered Oil and Gas, Navarro and Taylor Groups, Western Gulf Province, Texas

    USGS Publications Warehouse

    ,

    2006-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Late Cretaceous Navarro and Taylor Groups in the Western Gulf Province in Texas (USGS Province 5047). The Navarro and Taylor Groups have moderate potential for undiscovered oil resources and good potential for undiscovered gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and five assessment units. Five assessment units were quantitatively assessed for undiscovered oil and gas resources.

  12. National Assessment of Oil and Gas Project: Geologic Assessment of Undiscovered Oil and Gas Resources of the Eastern Great Basin Province, Nevada, Utah, Idaho, and Arizona

    USGS Publications Warehouse

    ,

    2007-01-01

    Introduction The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Eastern Great Basin Province of eastern Nevada, western Utah, southeastern Idaho, and northwestern Arizona. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and three assessment units. All three assessment units were quantitatively assessed for undiscovered oil and gas resources.

  13. KSC-2013-4439

    NASA Image and Video Library

    2013-12-19

    VANDENBERG AIR FORCE BASE, Calif. -- A solid rocket motor is rolled into the Solid Rocket Motor Processing Facility at Vandenberg Air Force Base in California. The motor will be attached to the United Launch Alliance Delta II rocket slated to launch NASA's Orbiting Carbon Observatory-2, or OCO-2, spacecraft in July 2014. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. Photo credit: NASA/Randy Beaudoin

  14. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  15. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  16. A biofilter integrated with gas membrane separation unit for the treatment of fluctuating styrene loads.

    PubMed

    Li, Lin; Lian, Jing; Han, Yunping; Liu, Junxin

    2012-05-01

    Biofiltration for volatile organic compound control in waste gas streams is best operated at steady contaminant loadings. To provide long-term stable operation of a biofilter under adverse contaminant feeding conditions, an integrated bioreactor system with a gas separation membrane module installed after a biofilter was proposed for styrene treatment. Styrene was treated effectively, with average styrene effluent concentrations maintained at less than 50 mg m(-3) and a total removal efficiency of over 96% achieved when the biofiltration column faced fluctuating loads. The maximum elimination capacity of the integrated bioreactor system was 93.8 g m(-3)h(-1), which was higher than that obtained with the biofiltration column alone. The combination of these two processes (microbial and chemical) led to more efficient elimination of styrene and buffering of the fluctuating loads. The factors on gas membrane separation, microbial characteristics in the integrated bioreactor and membrane fouling were also investigated in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Modeling Total Dissolved Gas for Optimal Operation of Multireservoir Systems

    DOE PAGES

    Politano, Marcela; Castro, Alejandro; Hadjerioua, Boualem

    2017-02-09

    One important environmental issue of hydropower in the Columbia and Snake River Basins (Pacific Northwest region of United States) is elevated total dissolved gas (TDG) downstream of a dam, which has the potential to cause gas bubble disease in affected fish. Gas supersaturation in the Columbia River Basin primarily occurs due to dissolution of bubbles entrained during spill events. This paper presents a physically based TDG model that can be used to optimize spill operations in multireservoir hydropower systems. Independent variables of the model are forebay TDG, tailwater elevation, spillway and powerhouse discharges, project head, and environmental parameters such asmore » temperature and atmospheric pressure. The model contains seven physically meaningful experimental parameters, which were calibrated and validated against TDG data collected downstream of Rock Island Dam (Washington) from 2008 to 2012. In conclusion, a sensitivity analysis was performed to increase the understanding of the relationships between TDG downstream of the dam and processes such as air entrainment, lateral powerhouse flow, and dissolution.« less

  18. Use Of limestone resources in flue-gas desulfurization power plants in the Ohio River Valley

    USGS Publications Warehouse

    Foose, M.P.; Barsotti, A.F.

    1999-01-01

    In 1994, more than 41 of the approximately 160 coal-fired, electrical- power plants within the six-state Ohio River Valley region used flue-gas desulfurization (FGD) units to desulfurize their emissions, an approximately 100% increase over the number of plants using FGD units in 1989. This increase represents a trend that may continue with greater efforts to meet Federal Clean Air Act standards. Abundant limestone resources exist in the Ohio River Valley and are accessed by approximately 975 quarries. However, only 35 of these are believed to have supplied limestone for FGD electrical generating facilities. The locations of these limestone suppliers do not show a simple spatial correlation with FGD facilities, and the closest quarries are not being used in most cases. Thus, reduction in transportation costs may be possible in some cases. Most waste generated by FGD electrical-generating plants is not recycled. However, many FGD sites are relatively close to gypsum wallboard producers that may be able to process some of their waste.

  19. Performance and Operational Characteristics for a Dual Brayton Space Power System With Common Gas Inventory

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Mason, Lee S.

    2006-01-01

    This paper provides an analytical evaluation on the operation and performance of a dual Brayton common gas system. The NASA Glenn Research Center in-house computer program Closed Cycle System Simulation (CCSS) was used to construct a model of two identical 50 kWe-class recuperated closed-Brayton-cycle (CBC) power conversion units that share a common gas inventory and single heat source. As operating conditions for each CBC change, the total gas inventory is redistributed between the two units and overall system performance is affected. Several steady-state off-design operating points were analyzed by varying turbine inlet temperature and turbo-alternator shaft rotational speed to investigate the interaction of the two units.

  20. Trends in U.S. Residential Natural Gas Consumption

    EIA Publications

    2010-01-01

    This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census division (1998 through 2009).

Top