Sample records for gas reduction scenarios

  1. Inventories and reduction scenarios of urban waste-related greenhouse gas emissions for management potential.

    PubMed

    Yang, Dewei; Xu, Lingxing; Gao, Xueli; Guo, Qinghai; Huang, Ning

    2018-06-01

    Waste-related greenhouse gas (GHG) emissions have been recognized as one of the prominent contributors to global warming. Current urban waste regulations, however, face increasing challenges from stakeholders' trade-offs and hierarchic management. A combined method, i.e., life cycle inventories and scenario analysis, was employed to investigate waste-related GHG emissions during 1995-2015 and to project future scenarios of waste-driven carbon emissions by 2050 in a pilot low carbon city, Xiamen, China. The process-based carbon analysis of waste generation (prevention and separation), transportation (collection and transfer) and disposal (treatment and recycling) shows that the main contributors of carbon emissions are associated with waste disposal processes, solid waste, the municipal sector and Xiamen Mainland. Significant spatial differences of waste-related CO 2e emissions were observed between Xiamen Island and Xiamen Mainland using the carbon intensity and density indexes. An uptrend of waste-related CO 2e emissions from 2015 to 2050 is identified in the business as usual, waste disposal optimization, waste reduction and the integrated scenario, with mean annual growth rates of 8.86%, 8.42%, 6.90% and 6.61%, respectively. The scenario and sensitivity analysis imply that effective waste-related carbon reduction requires trade-offs among alternative strategies, actions and stakeholders in a feasible plan, and emphasize a priority of waste prevention and collection in Xiamen. Our results could benefit to the future modeling of urban multiple wastes and life-cycle carbon control in similar cities within and beyond China. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Emissions reduction scenarios in the Argentinean Energy Sector

    DOE PAGES

    Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco; ...

    2016-04-14

    Here in this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO 2 emission savings of the energy sector in Argentina over the 2010-2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic costmore » of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO 2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO 2 price leverages additional investments in hydropower. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO 2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts a 11.3% reduction under the ‘high’ carbon tax. The main reasons for this difference are differences in assumptions about technology cost and availability, CO 2 storage capacity, and the ability to

  3. Natural gas network resiliency to a "shakeout scenario" earthquake.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellison, James F.; Corbet, Thomas Frank,; Brooks, Robert E.

    2013-06-01

    A natural gas network model was used to assess the likely impact of a scenario San Andreas Fault earthquake on the natural gas network. Two disruption scenarios were examined. The more extensive damage scenario assumes the disruption of all three major corridors bringing gas into southern California. If withdrawals from the Aliso Canyon storage facility are limited to keep the amount of stored gas within historical levels, the disruption reduces Los Angeles Basin gas supplies by 50%. If Aliso Canyon withdrawals are only constrained by the physical capacity of the storage system to withdraw gas, the shortfall is reduced tomore » 25%. This result suggests that it is important for stakeholders to put agreements in place facilitating the withdrawal of Aliso Canyon gas in the event of an emergency.« less

  4. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035.

    PubMed

    Clark, Nigel N; Johnson, Derek R; McKain, David L; Wayne, W Scott; Li, Hailin; Rudek, Joseph; Mongold, Ronald A; Sandoval, Cesar; Covington, April N; Hailer, John T

    2017-12-01

    Today's heavy-duty natural gas-fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas-fueled vehicles has been identified as a concern. Since today's heavy-duty natural gas-fueled fleet penetration is low, today's total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas-fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These "pump-to-wheels"(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions. Newly collected pump-to-wheels methane emissions data for current natural gas technologies

  5. Role of fuel carbon intensity in achieving 2050 greenhouse gas reduction goals within the light-duty vehicle sector.

    PubMed

    Melaina, M; Webster, K

    2011-05-01

    Recent U.S. climate change policy developments include aggressive proposals to reduce greenhouse gas emissions, including cap-and-trade legislation with a goal of an 83% reduction below 2005 levels by 2050. This study examines behavioral and technological changes required to achieve this reduction within the light-duty vehicle (LDV) sector. Under this "fair share" sectoral assumption, aggressive near-term actions are necessary in three areas: vehicle miles traveled (VMT), vehicle fuel economy (FE), and fuel carbon intensity (FCI). Two generic scenarios demonstrate the important role of FCI in meeting the 2050 goal. The first scenario allows deep reductions in FCI to compensate for relatively modest FE improvements and VMT reductions. The second scenario assumes optimistic improvements in FE, relatively large reductions in VMT and less aggressive FCI reductions. Each generic scenario is expanded into three illustrative scenarios to explore the theoretical implications of meeting the 2050 goal by relying exclusively on biofuels and hybrid vehicles, biofuels and plug-in hybrid vehicles, or hydrogen fuel cell electric vehicles. These scenarios inform a discussion of resource limitations, technology development and deployment challenges, and policy goals required to meet the 2050 GHG goal for LDVs.

  6. Frequency Analysis of Failure Scenarios from Shale Gas Development.

    PubMed

    Abualfaraj, Noura; Gurian, Patrick L; Olson, Mira S

    2018-04-29

    This study identified and prioritized potential failure scenarios for natural gas drilling operations through an elicitation of people who work in the industry. A list of twelve failure scenarios of concern was developed focusing on specific events that may occur during the shale gas extraction process involving an operational failure or a violation of regulations. Participants prioritized the twelve scenarios based on their potential impact on the health and welfare of the general public, potential impact on worker safety, how well safety guidelines protect against their occurrence, and how frequently they occur. Illegal dumping of flowback water, while rated as the least frequently occurring scenario, was considered the scenario least protected by safety controls and the one of most concern to the general public. In terms of worker safety, the highest concern came from improper or inadequate use of personal protective equipment (PPE). While safety guidelines appear to be highly protective regarding PPE usage, inadequate PPE is the most directly witnessed failure scenario. Spills of flowback water due to equipment failure are of concern both with regards to the welfare of the general public and worker safety as they occur more frequently than any other scenario examined in this study.

  7. Frequency Analysis of Failure Scenarios from Shale Gas Development

    PubMed Central

    Abualfaraj, Noura; Olson, Mira S.

    2018-01-01

    This study identified and prioritized potential failure scenarios for natural gas drilling operations through an elicitation of people who work in the industry. A list of twelve failure scenarios of concern was developed focusing on specific events that may occur during the shale gas extraction process involving an operational failure or a violation of regulations. Participants prioritized the twelve scenarios based on their potential impact on the health and welfare of the general public, potential impact on worker safety, how well safety guidelines protect against their occurrence, and how frequently they occur. Illegal dumping of flowback water, while rated as the least frequently occurring scenario, was considered the scenario least protected by safety controls and the one of most concern to the general public. In terms of worker safety, the highest concern came from improper or inadequate use of personal protective equipment (PPE). While safety guidelines appear to be highly protective regarding PPE usage, inadequate PPE is the most directly witnessed failure scenario. Spills of flowback water due to equipment failure are of concern both with regards to the welfare of the general public and worker safety as they occur more frequently than any other scenario examined in this study. PMID:29710821

  8. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’smore » and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing

  9. Development of reduction scenarios for criteria air pollutants emission in Tehran Traffic Sector, Iran.

    PubMed

    Mohammadiha, Amir; Malakooti, Hossein; Esfahanian, Vahid

    2018-05-01

    Transport-related pollution as the main source of air pollution must be reduced in Tehran mega-city. The performance of various developed scenarios including BAU (Business As Usual) as baseline scenario, ECV (Elimination of carburetor equipped Vehicle), NEM (New Energy Motorcycles), HES (Higher Emission Standard), VCR (Vehicle Catalyst Replacement), FQE (Fuel Quality Enhancement), DPF (Diesel Particulate Filter) and TSA (Total Scenarios Aggregation) are evaluated by International Vehicle Model up to 2028. In the short term, the ECV, VCR, and FQE scenarios provided high performance in CO, VOCs and NOx emissions control. Also FQE has an excellent effect on SOx emission reduction (86%) and DPF on PM emissions (20%). In the mid-term, the VCR, ECV, and FQE scenarios were presented desirable mean emission reduction on CO, VOCs, and NOx. Moreover, NOx emission reduction of DPF scenario is the most common (14%). Again FQE scenario proves to have great effect on SOx emission reduction in mid-term (86%), DPF and HES scenarios on PM (DPF: 49% and HES: 17%). Finally for the long term, VCR, ECV, FQE, and NEM scenarios were shown good performance in emission control on CO, VOCs and NOx. For SOx only FQE has a good effect in all time periods (FQE: 86%) and DPF and HES scenarios have the best effect on PM emission reduction respectively (DPF: 51% and HES: 27%) compared with BAU scenario. However, DPF scenario increases 12% SOx emission in long-term (2028). It can be generally concluded that VCR and ECV scenarios would achieve a significant reduction on gaseous pollutants emission except for SOx in general and FQE scenarios have desirable performance for all gaseous pollutants in the short term and also for SOx and VOCs in long term. In addition, the DPF and HES would be desirable scenario for emission control on PM in Tehran Traffic Sector. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Deep Reductions in Greenhouse Gas Emissions from the California Transportation Sector: Dynamics in Vehicle Fleet and Energy Supply Transitions to Achieve 80% Reduction in Emissions from 1990 Levels by 2050

    NASA Astrophysics Data System (ADS)

    Leighty, Wayne Waterman

    California's "80in50" target for reducing greenhouse gas emissions to 80 percent below 1990 levels by the year 2050 is based on climate science rather than technical feasibility of mitigation. As such, it raises four fundamental questions: is this magnitude of reduction in greenhouse gas emissions possible, what energy system transitions over the next 40 years are necessary, can intermediate policy goals be met on the pathway toward 2050, and does the path of transition matter for the objective of climate change mitigation? Scenarios for meeting the 80in50 goal in the transportation sector are modelled. Specifically, earlier work defining low carbon transport scenarios for the year 2050 is refined by incorporating new information about biofuel supply. Then transition paths for meeting 80in50 scenarios are modelled for the light-duty vehicle sub-sector, with important implications for the timing of action, rate of change, and cumulative greenhouse gas emissions. One aspect of these transitions -- development in the California wind industry to supply low-carbon electricity for plug-in electric vehicles -- is examined in detail. In general, the range of feasible scenarios for meeting the 80in50 target is narrow enough that several common themes are apparent: electrification of light-duty vehicles must occur; continued improvements in vehicle efficiency must be applied to improving fuel economy; and energy carriers must de-carbonize to less than half of the carbon intensity of gasoline and diesel. Reaching the 80in50 goal will require broad success in travel demand reduction, fuel economy improvements and low-carbon fuel supply, since there is little opportunity to increase emission reductions in one area if we experience failure in another. Although six scenarios for meeting the 80in50 target are defined, only one also meets the intermediate target of reducing greenhouse gas emissions to 1990 levels by the year 2020. Furthermore, the transition path taken to reach any

  11. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam.

    PubMed

    Nguyen, Lan Huong; Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge.

  12. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam

    PubMed Central

    Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202

  13. Influences on Adoption of Greenhouse Gas Reduction Targets among US States, 1998-2008

    PubMed Central

    Cale, Tabitha M.; Reams, Margaret A.

    2016-01-01

    While the United States has not established federal regulations for greenhouse gas (GHG) reduction targets, many US states have adopted their own standards and guidelines. In this study we examine state adoption of targets for GHG reductions during the ten-year period of 1998–2008, and identify factors that explain variation in target adoption. Potential influences are drawn from research from the public policy formulation and diffusion literature, and from studies specific to climate policy adoption. Potential influences on GHG reduction efforts among US states include socioeconomic attributes of residents, political and ideological orientations of citizens and state government, interest group activities, environmental pressures, and proximity to other states that have adopted GHG reduction targets. The findings of the multinomial logistic regression analysis indicate that states are more likely to adopt GHG reduction targets if they share a border with another state with a similar climate program and if their citizens are more ideologically liberal. Other factors including socioeconomic resources and interest group activities were not found to be associated with policy adoption. The findings yield insights into the conditions under which states are more likely to take action to reduce GHG’s, and are relevant both to state policy makers and residents with an interest in climate planning, and for researchers attempting to estimate future greenhouse gas reduction scenarios. PMID:27471657

  14. [Reduction of meat consumption and greenhouse gas emissions associated with health benefits in Italy].

    PubMed

    Farchi, Sara; Lapucci, Enrica; Michelozzi, Paola

    2015-01-01

    the reduction in red meat consumption has been proposed as one of the climate change mitigation policies associated to health benefits. In the developed world, red meat consumption is above the recommended intake level. the aim is to evaluate health benefits, in term of mortality decline, associated to different bovine meat consumption reduction scenarios and the potential reduction in greenhouse gas (GHG) emissions. meat consumption in Italy has been estimated using the Italian National Food Consumption Survey INRAN-SCAI (2005-2006) and the Multipurpose survey on household (2012) of the Italian National Institute for Statistics. Colorectal cancer and stoke mortality data are derived from the national survey on causes of death in 2012. Bovine meat consumption risk function has been retrieved from systematic literature reviews. Mean meat consumption in Italy is equal to 770 grams/week; gender and geographical variations exist: 69 per cent of the adult population are habitual bovine meat consumers; males have an average intake of over 400 grams/week in all areas of Italy (with the exception of the South), while females have lower intakes (360 grams per week), with higher consumption in the North-West (427 gr) and lower in the South of Italy. Four scenarios of reduction of bovine meat consumption (20%, 40%, 50% e 70%, respectively) have been evaluated and the number of avoidable deaths by gender and area of residence have been estimated. GHG emissions attributed to bovine meat adult consumption have been estimated to be to 10 gigagrams CO2-eq. from low to high reduction scenario, the percentage of avoidable deaths ranged from 2.1% to 6.5% for colorectal cancer and from 1.6% to 5.6% for stroke. Health benefits were greatest for males and for people living in the North-Western regions of Italy. in Italy, in order to adhere to bovine meat consumption recommendations and to respect EU GHG emission reduction targets, scenarios between 50% and 70% need to be adopted.

  15. Scenarios reducing greenhouse gas emission from motor vehicles in State University of Malang

    NASA Astrophysics Data System (ADS)

    Agustin, I. W.; Meidiana, C.

    2018-04-01

    State University of Malang (UM) is one of the universities in Malang city. It has the second largest number of student after Brawijaya University (UB) with the growing number of students each year, resulting in increase the amount of motorized vehicle usage on campus. The State University of Malang condition shows the number of motorcycles in the provided parking area exceeded the capacity, causing the emergence of the improperly parking area. The condition causes the increase of mileage for vehicles that do not get a parking space. They must find and move to another parking area were still empty. The movement to another parking area resulted in the increase of exhaust emissions from motorized vehicles into the air. The main purpose of the research was to create alternative scenario of greenhouse gas emissions reduction in the State University of Malang. Alternative emission reduction based on strategies of Avoid-Shift-Improve (A-S-I), and the importance level of alternative determined with Multi Criteria Analysis (MCA). The result showed that selected alternative in emission reduction with the highest score of 40 per cent was centralized parking management.

  16. Aerosol effect on climate extremes in Europe under different future scenarios

    NASA Astrophysics Data System (ADS)

    Sillmann, J.; Pozzoli, L.; Vignati, E.; Kloster, S.; Feichter, J.

    2013-05-01

    This study investigates changes in extreme temperature and precipitation events under different future scenarios of anthropogenic aerosol emissions (i.e., SO2 and black and organic carbon) simulated with an aerosol-climate model (ECHAM5-HAM) with focus on Europe. The simulations include a maximum feasible aerosol reduction (MFR) scenario and a current legislation emission (CLEmod) scenario where Europe implements the MFR scenario, but the rest of the world follows the current legislation scenario and a greenhouse gas scenario. The strongest changes relative to the year 2000 are projected for the MFR scenario, in which the global aerosol reduction greatly enforces the general warming effect due to greenhouse gases and results in significant increases of temperature and precipitation extremes in Europe. Regional warming effects can also be identified from aerosol reductions under the CLEmodscenario. This becomes most obvious in the increase of the hottest summer daytime temperatures in Northern Europe.

  17. Greenhouse Gas Reductions: SF6

    ScienceCinema

    Anderson, Diana

    2018-05-18

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  18. The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Ross, Stephanie L.; Jones, Lucile M.

    2013-01-01

    The Science Application for Risk Reduction (SAFRR) tsunami scenario depicts a hypothetical but plausible tsunami created by an earthquake offshore from the Alaska Peninsula and its impacts on the California coast. The tsunami scenario is a collaboration between the U.S. Geological Survey (USGS), the California Geological Survey (CGS), the California Governor’s Office of Emergency Services (Cal OES), the National Oceanic and Atmospheric Administration (NOAA), other Federal, State, County, and local agencies, private companies, and academic and other institutions. This document presents evidence for past tsunamis, the scientific basis for the source, likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental and ecological impacts, social vulnerability, emergency management and evacuation challenges, and policy implications for California associated with this hypothetical tsunami. We also discuss ongoing mitigation efforts by the State of California and new communication products. The intended users are those who need to make mitigation decisions before future tsunamis, and those who will need to make rapid decisions during tsunami events. The results of the tsunami scenario will help managers understand the context and consequences of their decisions and how they may improve preparedness and response. An evaluation component will assess the effectiveness of the scenario process for target stakeholders in a separate report to improve similar efforts in the future.

  19. Benefits of improved municipal solid waste management on greenhouse gas reduction in Luangprabang, Laos.

    PubMed

    Vilaysouk, Xaysackda; Babel, Sandhya

    2017-07-01

    Climate change is a consequence of greenhouse gas emissions. Greenhouse gas (GHG) emissions from the waste sector contribute to 3% of total anthropogenic emissions. In this study, applicable solutions for municipal solid waste (MSW) management in Luangprabang (LPB) and Laos were examined. Material flow analysis of MSW was performed to estimate the amount of MSW generated in 2015. Approximately 29,419 tonnes of MSW is estimated for 2015. Unmanaged landfilling was the main disposal method, while MSW open burning was also practiced to some extent. The International Panel on Climate Change 2006 model and the Atmospheric Brown Clouds Emission Inventory Manual were used to estimate GHG emissions from existing MSW management, and total emissions are 33,889 tonnes/year carbon dioxide-equivalents (CO 2 -eq). Three scenarios were developed in order to reduce GHG emissions and environmental problems. Improvement of the MSW management by expanding MSW collection services, introducing composting and recycling, and avoiding open burning, can be considered as solutions to overcome the problems for LPB. The lowest GHG emissions are achieved in the scenario where composting and recycling are proposed, with the total GHG emissions reduction by 18,264 tonnes/year CO 2 -eq.

  20. Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production

    NASA Astrophysics Data System (ADS)

    Scown, Corinne D.; Nazaroff, William W.; Mishra, Umakant; Strogen, Bret; Lobscheid, Agnes B.; Masanet, Eric; Santero, Nicholas J.; Horvath, Arpad; McKone, Thomas E.

    2012-03-01

    The Energy Independence and Security Act of 2007 set an annual US national production goal of 39.7 billion l of cellulosic ethanol by 2020. This paper explores the possibility of meeting that target by growing and processing Miscanthus × giganteus. We define and assess six production scenarios in which active cropland and/or Conservation Reserve Program land are used to grow to Miscanthus. The crop and biorefinery locations are chosen with consideration of economic, land-use, water management and greenhouse gas (GHG) emissions reduction objectives. Using lifecycle assessment, the net GHG footprint of each scenario is evaluated, providing insight into the climate costs and benefits associated with each scenario’s objectives. Assuming that indirect land-use change is successfully minimized or mitigated, the results suggest two major drivers for overall GHG impact of cellulosic ethanol from Miscanthus: (a) net soil carbon sequestration or emissions during Miscanthus cultivation and (b) GHG offset credits for electricity exported by biorefineries to the grid. Without these factors, the GHG intensity of bioethanol from Miscanthus is calculated to be 11-13 g CO2-equivalent per MJ of fuel, which is 80-90% lower than gasoline. Including soil carbon sequestration and the power-offset credit results in net GHG sequestration up to 26 g CO2-equivalent per MJ of fuel.

  1. Agricultural conservation planning framework: 1. Developing multipractice watershed planning scenarios and assessing nutrient reduction potential.

    PubMed

    Tomer, M D; Porter, S A; Boomer, K M B; James, D E; Kostel, J A; Helmers, M J; Isenhart, T M; McLellan, E

    2015-05-01

    Spatial data on soils, land use, and topography, combined with knowledge of conservation effectiveness, can be used to identify alternatives to reduce nutrient discharge from small (hydrologic unit code [HUC]12) watersheds. Databases comprising soil attributes, agricultural land use, and light detection and ranging-derived elevation models were developed for two glaciated midwestern HUC12 watersheds: Iowa's Beaver Creek watershed has an older dissected landscape, and Lime Creek in Illinois is young and less dissected. Subsurface drainage is common in both watersheds. We identified locations for conservation practices, including in-field practices (grassed waterways), edge-of-field practices (nutrient-removal wetlands, saturated buffers), and drainage-water management, by applying terrain analyses, geographic criteria, and cross-classifications to field- and watershed-scale geographic data. Cover crops were randomly distributed to fields without geographic prioritization. A set of alternative planning scenarios was developed to represent a variety of extents of implementation among these practices. The scenarios were assessed for nutrient reduction potential using a spreadsheet approach to calculate the average nutrient-removal efficiency required among the practices included in each scenario to achieve a 40% NO-N reduction. Results were evaluated in the context of the Iowa Nutrient Reduction Strategy, which reviewed nutrient-removal efficiencies of practices and established the 40% NO-N reduction as Iowa's target for Gulf of Mexico hypoxia mitigation by agriculture. In both test watersheds, planning scenarios that could potentially achieve the targeted NO-N reduction but remove <5% of cropland from production were identified. Cover crops and nutrient removal wetlands were common to these scenarios. This approach provides an interim technology to assist local watershed planning and could provide planning scenarios to evaluate using watershed simulation models. A set

  2. Greenhouse Gas Reductions: SF6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Diana

    2012-04-20

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we savemore » taxpayers over $208,000 each year.« less

  3. Transportation futures : policy scenarios for achieving greenhouse gas reduction targets.

    DOT National Transportation Integrated Search

    2014-03-01

    It is well established that GHG emissions must be reduced by 50% to 80% by 2050 in order to limit global temperature increase : to 2C. Achieving reductions of this magnitude in the transportation sector is a challenge and requires a multitude of po...

  4. A modeling comparison of deep greenhouse gas emissions reduction scenarios by 2030 in California

    DOE PAGES

    Yeh, Sonia; Yang, Christopher; Gibbs, Michael; ...

    2016-10-21

    California aims to reduce greenhouse gas (GHG) emissions to 40% below 1990 levels by 2030. We compare six energy models that have played various roles in informing the state policymakers in setting climate policy goals and targets. These models adopt a range of modeling structures, including stock-turnover back-casting models, a least-cost optimization model, macroeconomic/macro-econometric models, and an electricity dispatch model. Results from these models provide useful insights in terms of the transformations in the energy system required, including efficiency improvements in cars, trucks, and buildings, electrification of end-uses, low- or zero-carbon electricity and fuels, aggressive adoptions of zero-emission vehicles (ZEVs),more » demand reduction, and large reductions of non-energy GHG emissions. Some of these studies also suggest that the direct economic costs can be fairly modest or even generate net savings, while the indirect macroeconomic benefits are large, as shifts in employment and capital investments could have higher economic returns than conventional energy expenditures. These models, however, often assume perfect markets, perfect competition, and zero transaction costs. They also do not provide specific policy guidance on how these transformative changes can be achieved. Greater emphasis on modeling uncertainty, consumer behaviors, heterogeneity of impacts, and spatial modeling would further enhance policymakers' ability to design more effective and targeted policies. Here, this paper presents an example of how policymakers, energy system modelers and stakeholders interact and work together to develop and evaluate long-term state climate policy targets. Lastly, even though this paper focuses on California, the process of dialogue and interactions, modeling results, and lessons learned can be generally adopted across different regions and scales.« less

  5. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium

    NASA Astrophysics Data System (ADS)

    Van Uytven, E.; Willems, P.

    2018-03-01

    Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.

  6. SAFRR (Science Application for Risk Reduction) Tsunami Scenario--Executive Summary and Introduction: Chapter A in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Ross, Stephanie L.; Jones, Lucile M.; Miller, Kevin H.; Porter, Keith A.; Wein, Anne; Wilson, Rick I.; Bahng, Bohyun; Barberopoulou, Aggeliki; Borrero, Jose C.; Brosnan, Deborah M.; Bwarie, John T.; Geist, Eric L.; Johnson, Laurie A.; Kirby, Stephen H.; Knight, William R.; Long, Kate; Lynett, Patrick; Mortensen, Carl E.; Nicolsky, Dmitry J.; Perry, Suzanne C.; Plumlee, Geoffrey S.; Real, Charles R.; Ryan, Kenneth; Suleimani, Elena; Thio, Hong Kie; Titov, Vasily V.; Whitmore, Paul M.; Wood, Nathan J.

    2013-01-01

    The Science Application for Risk Reduction (SAFRR) tsunami scenario depicts a hypothetical but plausible tsunami created by an earthquake offshore from the Alaska Peninsula and its impacts on the California coast. The tsunami scenario is a collaboration between the U.S. Geological Survey (USGS), the California Geological Survey, the California Governor’s Office of Emergency Services (Cal OES), the National Oceanic and Atmospheric Administration (NOAA), other Federal, State, County, and local agencies, private companies, and academic and other institutions. This document presents evidence for past tsunamis, the scientific basis for the source, likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental and ecological impacts, social vulnerability, emergency management and evacuation challenges, and policy implications for California associated with this hypothetical tsunami. We also discuss ongoing mitigation efforts by the State of California and new communication products. The intended users are those who need to make mitigation decisions before future tsunamis, and those who will need to make rapid decisions during tsunami events. The results of the tsunami scenario will help managers understand the context and consequences of their decisions and how they may improve preparedness and response. An evaluation component will assess the effectiveness of the scenario process for target stakeholders in a separate report to improve similar efforts in the future.

  7. Natural Hazards Risk Reduction and the ARkStorm Scenario

    NASA Astrophysics Data System (ADS)

    Cox, D. A.; Dettinger, M. D.; Ralph, F. M.

    2016-12-01

    The ARkStorm Scenario project began in 2008, led by the USGS Multi-Hazards Demonstration Project (now Science Application for Risk Reduction) in an effort to innovate the application of science to reduce natural-hazard risk associated with large atmospheric-river (AR) storms on the West Coast of the US. The effort involved contributions from many federal, state and academic organizations including NOAA's Environmental Systems Laboratory. The ARkStorm project used new understanding of atmospheric river physics, combined with downscaled meteorological data from two recent ARs (in 1969 and 1986), to describe and model a prolonged sequence of back-to-back storms similar to those that bankrupted California in 1862. With this scientifically plausible (but not worst-case) scenario, the ARkStorm team engaged flood and levee experts to identify plausible flooding extents and durations, created a coastal-storm inundation model (CoSMoS), and California's first landslide susceptibility map, to better understand secondary meteorological and geophysical hazards (flood, wind, landslide, coastal erosion and inundation) across California. Physical damages to homes, infrastructure, agriculture, and the environment were then estimated to calculate the likely social and economic impact to California and the nation. Across California, property damage from the ARkStorm scenario was estimated to exceed 300 billion, mostly from flooding. Including damage and losses, lifeline damages and business interruptions, the total cost of an ARkStorm-sized series of storms came to nearly 725 billion, nearly three times the losses estimated from another SAFRR scenario describing a M7.8 earthquake in southern California. Thus, atmospheric rivers have the potential to be California's other "Big One." Since its creation, the ARkStorm scenario has been used in preparedness exercises by NASA, the US Navy, the State of California, the County of Ventura, and cities and counties in the Tahoe Basin and

  8. Sustainability of UK shale gas in comparison with other electricity options: Current situation and future scenarios.

    PubMed

    Cooper, Jasmin; Stamford, Laurence; Azapagic, Adisa

    2018-04-01

    Many countries are considering exploitation of shale gas but its overall sustainability is currently unclear. Previous studies focused mainly on environmental aspects of shale gas, largely in the US, with scant information on socio-economic aspects. To address this knowledge gap, this paper integrates for the first time environmental, economic and social aspects of shale gas to evaluate its overall sustainability. The focus is on the UK which is on the cusp of developing a shale gas industry. Shale gas is compared to other electricity options for the current situation and future scenarios up to the year 2030 to investigate whether it can contribute towards a more sustainable electricity mix in the UK. The results obtained through multi-criteria decision analysis suggest that, when equal importance is assumed for each of the three sustainability aspects shale gas ranks seventh out of nine electricity options, with wind and solar PV being the best and coal the worst options. However, it outranks biomass and hydropower. Changing the importance of the sustainability aspects widely, the ranking of shale gas ranges between fourth and eighth. For shale gas to become the most sustainable option of those assessed, large improvements would be needed, including a 329-fold reduction in environmental impacts and 16 times higher employment, along with simultaneous large changes (up to 10,000 times) in the importance assigned to each criterion. Similar changes would be needed if it were to be comparable to conventional or liquefied natural gas, biomass, nuclear or hydropower. The results also suggest that a future electricity mix (2030) would be more sustainable with a lower rather than a higher share of shale gas. These results serve to inform UK policy makers, industry and non-governmental organisations. They will also be of interest to other countries considering exploitation of shale gas. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Reduction of Greenhouse Gas and Criteria Pollutant Emissions by Direct Conversion of Associated Flare Gas to Synthetic Fuels at Oil Wellheads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C; Zhang, Yi Min; Schuetzle, Dennis

    This study describes the results of a 'well-to-wheel' life cycle assessment (LCA) carried out to determine the potential greenhouse gas and criteria pollutant emission reductions that could be achieved by converting associated flare gas directly to synthetic fuels at oil wellheads in the US and globally. A Greyrock Flare Gas-to-Fuels(TM) conversion process at an Ohio oil well was used as the base case for this LCA. The liquid fuel produced directly from associated gas is comprised primarily of premium synthetic diesel with a small amount of synthetic gasoline. In this LCA scenario, the synthetic diesel and synthetic gasoline are blendedmore » at 20 and 10 vol% with petroleum diesel and gasoline, respectively. While the synthetic diesel fuel can be used as is (100%), the 20 vol% synthetic diesel blend (with petroleum diesel) was found to significantly improve engine performance, increase fuel economy, and reduce emissions. The direct conversion of associated gas to synthetic diesel fuels globally could reduce emissions of CO2 and CH4 by up to 356 and 5.96 million metric tons/year, respectively, resulting in the reduction of greenhouse gases (GHGs) by about 113.3 and 92.2% (20 year global warming potential) and 73.8 and 50.7% (100 year global warming potential) for synthetic diesel and gasoline fuels when compared to petroleum-derived gasoline fuels, respectively. Likewise, diesel criteria emissions could be reduced globally by up to 23.3, 0.374, 42.4, and 61.3 million metric tons/year globally for CO, particulates, NOx, and hydrocarbons, respectively. The potential economic benefit of this approach is that up to 5.30 and 71.1 billion liters of synthetic fuels could be produced each year in the US and globally from associated gas, respectively.« less

  10. Decommissioning of offshore oil and gas facilities: a comparative assessment of different scenarios.

    PubMed

    Ekins, Paul; Vanner, Robin; Firebrace, James

    2006-06-01

    A material and energy flow analysis, with corresponding financial flows, was carried out for different decommissioning scenarios for the different elements of an offshore oil and gas structure. A comparative assessment was made of the non-financial (especially environmental) outcomes of the different scenarios, with the reference scenario being to leave all structures in situ, while other scenarios envisaged leaving them on the seabed or removing them to shore for recycling and disposal. The costs of each scenario, when compared with the reference scenario, give an implicit valuation of the non-financial outcomes (e.g. environmental improvements), should that scenario be adopted by society. The paper concludes that it is not clear that the removal of the topsides and jackets of large steel structures to shore, as currently required by regulations, is environmentally justified; that concrete structures should certainly be left in place; and that leaving footings, cuttings and pipelines in place, with subsequent monitoring, would also be justified unless very large values were placed by society on a clear seabed and trawling access.

  11. Public-policy issues associated with the SAFRR Tsunami Scenario: Chapter M in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Johnson, Laurie; Real, Chuck

    2013-01-01

    The SAFRR (Science Application for Risk Reduction) tsunami scenario simulates a tsunami generated by a hypothetical magnitude 9.1 earthquake that occurs offshore of the Alaska Peninsula (Kirby and others, 2013). In addition to the work performed by the authors on public-policy issues associated with the SAFRR tsunami scenario, this section of the scenario also reflects the policy discussions of the State of California’s Tsunami Policy Work Group, a voluntary advisory body formed in October 2011, which operates under the California Natural Resources Agency (CNRA), Department of Conservation, and is charged with identifying, evaluating, and making recommendations to resolve issues that are preventing full and effective implementation of tsunami hazard mitigation and risk reduction throughout California’s coastal communities. It also presents the analyses of plans and hazard policies of California’s coastal counties, incorporated cities, and major ports performed by the staff of the California Geological Survey (CGS) and Lauren Prehoda, Office of Environmental and Government Affairs, California Department of Conservation. It also draws on the policy framework and assessment prepared for the ARkStorm Pacific Coast winter storm and catastrophic flooding (Topping and others, 2010).

  12. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.

    PubMed

    Liu, Yili; Sun, Weixin; Liu, Jianguo

    2017-10-01

    Waste management is a major source of global greenhouse gas (GHG) emissions and many opportunities exist to reduce these emissions. To identify the GHG emissions from waste management in China, the characteristics of MSW and the current and future treatment management strategies, five typical management scenarios were modeled by EaseTech software following the principles of life cycle inventory and analyzed based on the carbon and energy flows. Due to the high organic fraction (50-70%) and moisture content (>50%) of Chinese municipal solid waste (MSW), the net GHG emissions in waste management had a significant difference from the developed countries. It was found that the poor landfill gas (LFG) collection efficiency and low carbon storage resulted landfilling with flaring and landfilling with biogas recovery scenarios were the largest GHG emissions (192 and 117 kgCO 2 -Eq/t, respectively). In contrast, incineration had the best energy recovery rate (19%), and, by grid emissions substitution, led to a substantial decrease in net GHG emissions (-124 kgCO 2 -Eq/t). Due to the high energy consumption in operation, the unavoidable leakage of CH 4 and N 2 O in treatment, and the further release of CH 4 in disposing of the digested residue or composted product, the scenarios with biological treatment of the organic fractions after sorting, such as composting or anaerobic digestion (AD), did not lead to the outstanding GHG reductions (emissions of 32 and -36 kgCO 2 -Eq/t, respectively) as expected. Copyright © 2017. Published by Elsevier Ltd.

  13. The contribution of waste management to the reduction of greenhouse gas emissions with applications in the city of Bucharest.

    PubMed

    Sandulescu, Elena

    2004-12-01

    Waste management is a key process to protect the environment and conserve resources. The contribution of appropriate waste management measures to the reduction of greenhouse gas (GHG) emissions from the city of Bucharest was studied. An analysis of the distribution of waste flows into various treatment options was conducted using the material flows and stocks analysis (MFSA). An optimum scenario (i.e. municipal solid waste stream managed as: recycling of recoverable materials, 8%; incineration of combustibles, 60%; landfilling of non-combustibles, 32%) was modelled to represent the future waste management in Bucharest with regard to its relevance towards the potential for GHG reduction. The results indicate that it can contribute by 5.5% to the reduction of the total amount of GHGs emitted from Bucharest.

  14. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilello, D.; Katz, J.; Esterly, S.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers asmore » they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.« less

  15. Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios

    NASA Technical Reports Server (NTRS)

    Kanter, David R.; McDermid, Sonali P.

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.

  16. Apparatus and method to inject a reductant into an exhaust gas feedstream

    DOEpatents

    Viola, Michael B [Macomb Township, MI

    2009-09-22

    An exhaust aftertreatment system for an internal combustion engine is provided including an apparatus and method to inject a reductant into the exhaust gas feedstream. Included is a fuel metering device adapted to inject reductant into the exhaust gas feedstream and a controllable pressure regulating device. A control module is operatively connected to the reductant metering device and the controllable pressure regulating device, and, adapted to effect flow of reductant into the exhaust gas feedstream over a controllable flow range.

  17. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    PubMed

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  18. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    PubMed Central

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  19. Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.

    PubMed

    Meischen, Sandra J; Van Pelt, Vincent J; Zarate, Eugene A; Stephens, Edward A

    2004-01-01

    Gaseous elemental and total (elemental + oxidized) mercury (Hg) in the flue gas from a coal-fired boiler was measured by a modified ultraviolet (UV) spectrometer. Challenges to Hg measurement were the spectral interferences from other flue gas components and that UV measures only elemental Hg. To eliminate interference from flue gas components, a cartridge filled with gold-coated sand removed elemental Hg from a flue gas sample. The Hg-free flue gas was the reference gas, eliminating the spectral interferences. To measure total Hg by UV, oxidized Hg underwent a gas-phase, thermal-reduction in a quartz cell heated to 750 degrees C. Simultaneously, hydrogen was added to flash react with the oxygen present forming water vapor and preventing Hg re-oxidation as it exits the cell. Hg concentration results are in parts per billion by volume Hg at the flue gas oxygen concentration. The modified Hg analyzer and the Ontario Hydro method concurrently measured Hg at a field test site. Measurements were made at a 700-MW steam turbine plant with scrubber units and selective catalytic reduction. The flue gas sampled downstream of the selective catalytic reduction contained 2100 ppm SO2 and 75 ppm NOx. Total Hg measured by the Hg analyzer was within 20% of the Ontario Hydro results.

  20. Mortality, greenhouse gas emissions and consumer cost impacts of combined diet and physical activity scenarios: a health impact assessment study

    PubMed Central

    Monsivais, Pablo; Jones, Nicholas RV; Brand, Christian; Woodcock, James

    2017-01-01

    Objective To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. Design For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1–5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Setting Working age population for England. Participants Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Primary outcomes measured Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Results Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO2e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO2e/year for the diet scenarios. Conclusions Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs. PMID:28399514

  1. Mortality, greenhouse gas emissions and consumer cost impacts of combined diet and physical activity scenarios: a health impact assessment study.

    PubMed

    Tainio, Marko; Monsivais, Pablo; Jones, Nicholas Rv; Brand, Christian; Woodcock, James

    2017-02-22

    To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1-5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Working age population for England. Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO 2 e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO 2 e/year for the diet scenarios. Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Emissions from residential combustion considering end-uses and spatial constraints: Part II, emission reduction scenarios

    NASA Astrophysics Data System (ADS)

    Winijkul, Ekbordin; Bond, Tami C.

    2016-01-01

    Cooking, heating, and other activities in the residential sector are major sources of indoor and outdoor air pollution, especially when solid fuels are used to provide energy. Because of their deleterious effects on the atmosphere and human health, multinational strategies to reduce emissions have been proposed. This study examines the effects of some possible policies, considering realistic factors that constrain mitigation: end-uses, spatial constraints involving proximity to forest or electricity, existing technology, and assumptions about user behavior. Reduction scenarios are applied to a year-2010, spatially distributed baseline of emissions of particulate matter, black carbon, organic carbon, nitrogen oxides, methane, non-methane hydrocarbons, carbon monoxide, and carbon dioxide. Scenarios explored are: (1) cleanest current stove, where we assume that existing technology in each land type is applied to burn existing fuels; (2) stove standards, where we assume that stoves are designed to meet performance standards; and (3) clean fuels, where users adopt the cleanest fuels plausible in each land type. We assume that people living in forest access areas continue to use wood regardless of available fuels, so the clean-fuels scenario leads to a reduction in emissions of 18-25%, depending on the pollutant, across the study region. Cleaner stoves preferentially affect land types with forest access, where about half of the fuel is used; emission reductions range from 25 to 82%, depending on the pollutant. If stove performance standards can be met, particulate matter emissions are reduced by 62% for the loosest standards and 95% for the tightest standards, and carbon monoxide is reduced by 40% and 62% for the loosest and tightest standards. Reductions in specific regions and countries depend on the existing fuel mixture and the population division among land types, and are explored for Latin America, Africa, East Asia, South Asia, and Southeast Asia.

  3. Greenhouse gas reduction through state and local transportation

    DOT National Transportation Integrated Search

    2003-09-01

    This report will improve understanding of how states and localities might contribute to greenhouse gas (GHG) emissions : reduction through transportation planning. Transportation is a major contributor to GHG emissions. State and local transportation...

  4. DEMONSTRATION BULLETIN: GAS-PHASE CHEMICAL REDUCTION - ECO LOGIC INTERNATIONAL, INC.

    EPA Science Inventory

    The patented Eco Logic Process employs a gas-phase reduction reaction of hydrogen with organic and chlorinated organic compounds at elevated temperatures to convert aqueous and oily hazardous contaminants into a hydrocarbon-rich gas product. After passing through a scrubber, the ...

  5. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    NASA Astrophysics Data System (ADS)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production

  6. Kinetic modeling of liquefied petroleum gas (LPG) reduction of titania in MATLAB

    NASA Astrophysics Data System (ADS)

    Yin, Tan Wei; Ramakrishnan, Sivakumar; Rezan, Sheikh Abdul; Noor, Ahmad Fauzi Mohd; Izah Shoparwe, Noor; Alizadeh, Reza; Roohi, Parham

    2017-04-01

    In the present study, reduction of Titania (TiO2) by liquefied petroleum gas (LPG)-hydrogen-argon gas mixture was investigated by experimental and kinetic modelling in MATLAB. The reduction experiments were carried out in the temperature range of 1100-1200°C with a reduction time from 1-3 hours and 10-20 minutes of LPG flowing time. A shrinking core model (SCM) was employed for the kinetic modelling in order to determine the rate and extent of reduction. The highest experimental extent of reduction of 38% occurred at a temperature of 1200°C with 3 hours reduction time and 20 minutes of LPG flowing time. The SCM gave a predicted extent of reduction of 82.1% due to assumptions made in the model. The deviation between SCM and experimental data was attributed to porosity, thermodynamic properties and minute thermal fluctuations within the sample. In general, the reduction rates increased with increasing reduction temperature and LPG flowing time.

  7. Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs

    PubMed Central

    Tack, Jesse; Lingenfelser, Jane; Jagadish, S. V. Krishna

    2017-01-01

    Historical adaptation of sorghum production to arid and semiarid conditions has provided promise regarding its sustained productivity under future warming scenarios. Using Kansas field-trial sorghum data collected from 1985 to 2014 and spanning 408 hybrid cultivars, we show that sorghum productivity under increasing warming scenarios breaks down. Through extensive regression modeling, we identify a temperature threshold of 33 °C, beyond which yields start to decline. We show that this decline is robust across both field-trial and on-farm data. Moderate and higher warming scenarios of 2 °C and 4 °C resulted in roughly 17% and 44% yield reductions, respectively. The average reduction across warming scenarios from 1 to 5 °C is 10% per degree Celsius. Breeding efforts over the last few decades have developed high-yielding cultivars with considerable variability in heat resilience, but even the most tolerant cultivars did not offer much resilience to warming temperatures. This outcome points to two concerns regarding adaption to global warming, the first being that adaptation will not be as simple as producers’ switching among currently available cultivars and the second being that there is currently narrow genetic diversity for heat resilience in US breeding programs. Using observed flowering dates and disaggregating heat-stress impacts, both pre- and postflowering stages were identified to be equally important for overall yields. These findings suggest the adaptation potential for sorghum under climate change would be greatly facilitated by introducing wider genetic diversity for heat resilience into ongoing breeding programs, and that there should be additional efforts to improve resilience during the preflowering phase. PMID:28808013

  8. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    PubMed

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  9. Considering the Role of Natural Gas in the Deep Decarbonization of the U.S. Electricity Sector. Natural Gas and the Evolving U.S. Power Sector Monograph Series: Number 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley; Beppler, Ross; Zinaman, Owen

    Natural gas generation in the U.S. electricity sector has grown substantially in recent years, while the sector's carbon dioxide (CO2) emissions have generally declined. This relationship highlights the concept of natural gas as a potential enabler of a transition to a lower-carbon future. This work considers that concept by using the National Renewable Energy Laboratory (NREL) Renewable Energy Deployment System (ReEDS) model. ReEDS is a long-term capacity expansion model of the U.S. electricity sector. We examine the role of natural gas within the ReEDS modeling framework as increasingly strict carbon emission targets are imposed on the electricity sector. In additionmore » to various natural gas price futures, we also consider scenarios that emphasize a low-carbon technology in order to better understand the role of natural gas if that low-carbon technology shows particular promise. Specifically, we consider scenarios with high amounts of energy efficiency (EE), low nuclear power costs, low renewable energy (RE) costs, and low carbon capture and storage (CCS) costs. Within these scenarios we find that requiring the electricity sector to lower CO2 emissions over time increases near-to-mid-term (through 2030) natural gas generation (see Figure 1 - left). The long-term (2050) role of natural gas generation in the electricity sector is dependent on the level of CO2 emission reduction required. Moderate reductions in long-term CO2 emissions have relatively little impact on long-term natural gas generation, while more stringent CO2 emission limits lower long-term natural gas generation (see Figure 1 - right). More stringent carbon targets also impact other generating technologies, with the scenarios considered here seeing significant decreases in coal generation, and new capacity of nuclear and renewable energy technologies over time. Figure 1 also demonstrates the role of natural gas in the context of scenarios where a specific low-carbon technology is advantaged

  10. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    PubMed

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  11. Kinetic Equation for a Soliton Gas and Its Hydrodynamic Reductions

    NASA Astrophysics Data System (ADS)

    El, G. A.; Kamchatnov, A. M.; Pavlov, M. V.; Zykov, S. A.

    2011-04-01

    We introduce and study a new class of kinetic equations, which arise in the description of nonequilibrium macroscopic dynamics of soliton gases with elastic collisions between solitons. These equations represent nonlinear integro-differential systems and have a novel structure, which we investigate by studying in detail the class of N-component `cold-gas' hydrodynamic reductions. We prove that these reductions represent integrable linearly degenerate hydrodynamic type systems for arbitrary N which is a strong evidence in favour of integrability of the full kinetic equation. We derive compact explicit representations for the Riemann invariants and characteristic velocities of the hydrodynamic reductions in terms of the `cold-gas' component densities and construct a number of exact solutions having special properties (quasiperiodic, self-similar). Hydrodynamic symmetries are then derived and investigated. The obtained results shed light on the structure of a continuum limit for a large class of integrable systems of hydrodynamic type and are also relevant to the description of turbulent motion in conservative compressible flows.

  12. Assessing the co-benefits of greenhouse gas reduction: health benefits of particulate matter related inspection and maintenance programs in Bangkok, Thailand.

    PubMed

    Li, Ying; Crawford-Brown, Douglas J

    2011-04-15

    Since the 1990s, the capital city of Thailand, Bangkok has been suffering from severe ambient particulate matter (PM) pollution mainly attributable to its wide use of diesel-fueled vehicles and motorcycles with poor emission performance. While the Thai government strives to reduce emissions from transportation through enforcing policy measures, the link between specific control policies and associated health impacts is inadequately studied. This link is especially important in exploring the co-benefits of greenhouse gas emissions reductions, which often brings reduction in other pollutants such as PM. This paper quantifies the health benefits potentially achieved by the new PM-related I/M programs targeting all diesel vehicles and motorcycles in the Bangkok Metropolitan Area (BMA). The benefits are estimated by using a framework that integrates policy scenario development, exposure assessment, exposure-response assessment and economic valuation. The results indicate that the total health damage due to the year 2000 PM emissions from vehicles in the BMA was equivalent to 2.4% of Thailand's GDP. Under the business-as-usual (BAU) scenario, total vehicular PM emissions in the BMA will increase considerably over time due to the rapid growth in vehicle population, even if the fleet average emission rates are projected to decrease over time as the result of participation of Thailand in post-Copenhagen climate change strategies. By 2015, the total health damage is estimated to increase by 2.5 times relative to the year 2000. However, control policies targeting PM emissions from automobiles, such as the PM-oriented I/M programs, could yield substantial health benefits relative to the BAU scenario, and serve as co-benefits of greenhouse gas control strategies. Despite uncertainty associated with the key assumptions used to estimate benefits, we find that with a high level confidence, the I/M programs will produce health benefits whose economic impacts considerably outweigh

  13. Role of natural gas in meeting an electric sector emissions ...

    EPA Pesticide Factsheets

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  14. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America using the Switch Electric Power Sector Planning Model: California's Carbon Challenge Phase II, Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, James; Mileva, Ana; Johnston, Josiah

    2014-01-01

    This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to themore » present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and

  15. Upgraded biogas from municipal solid waste for natural gas substitution and CO{sub 2} reduction – A case study of Austria, Italy, and Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starr, Katherine; Villalba, Gara, E-mail: gara.villalba@uab.es; Sostenipra, Institute de Ciencia i Technologia Ambientals

    2015-04-15

    Highlights: • Biogas can be upgraded to create biomethane, a substitute to natural gas. • Biogas upgrading was applied to landfills and anaerobic digestors in 3 countries. • Up to 0.6% of a country’s consumption of natural gas could be replaced by biomethane. • Italy could save 46% of the national CO{sub 2} emissions attributed to the waste sector. • Scenarios were created to increase biomethane production. - Abstract: Biogas is rich in methane and can be further purified through biogas upgrading technologies, presenting a viable alternative to natural gas. Landfills and anaerobic digestors treating municipal solid waste are amore » large source of such biogas. They therefore offer an attractive opportunity to tap into this potential source of natural gas while at the same time minimizing the global warming impact resulting from methane emissions in waste management schemes (WMS) and fossil fuel consumption reduction. This study looks at the current municipal solid waste flows of Spain, Italy, and Austria over one year (2009), in order to determine how much biogas is generated. Then it examines how much natural gas could be substituted by using four different biogas upgrading technologies. Based on current waste generation rates, exploratory but realistic WMS were created for each country in order to maximize biogas production and potential for natural gas substitution. It was found that the potential substitution of natural gas by biogas resulting from the current WMS seems rather insignificant: 0.2% for Austria, 0.6% for Italy and 0.3% for Spain. However, if the WMS is redesigned to maximize biogas production, these figures can increase to 0.7% for Austria, 1% for Italy and 2% for Spain. Furthermore, the potential CO{sub 2} reduction as a consequence of capturing the biogas and replacing fossil fuel can result in up to a 93% reduction of the annual national waste greenhouse gas emissions of Spain and Italy.« less

  16. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector

    NASA Technical Reports Server (NTRS)

    O'Hara, Dean; Singh, Hanwant B.

    1988-01-01

    The response of a newly available mercuric oxide Reduction Gas Detector (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more sensitive than an FID (Flame Ionization Detector) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more sensitive than an FID. The detector is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.

  17. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    DOEpatents

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  18. Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network

    NASA Astrophysics Data System (ADS)

    Zulfikar, Can; Kariptas, Cagatay; Biyikoglu, Hikmet; Ozarpa, Cevat

    2017-04-01

    Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network Istanbul Natural Gas Distribution Corporation (IGDAS) is one of the end users of the Istanbul Earthquake Early Warning (EEW) signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867km of gas lines with 750 district regulators and 474,000 service boxes. The natural gas comes to Istanbul city borders with 70bar in 30inch diameter steel pipeline. The gas pressure is reduced to 20bar in RMS stations and distributed to district regulators inside the city. 110 of 750 district regulators are instrumented with strong motion accelerometers in order to cut gas flow during an earthquake event in the case of ground motion parameters exceeds the certain threshold levels. Also, state of-the-art protection systems automatically cut natural gas flow when breaks in the gas pipelines are detected. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 750 district regulator sites. IGDAS Real-time Earthquake Risk Reduction algorithm follows 4 stages as below: 1) Real-time ground motion data transmitted from 110 IGDAS and 110 KOERI (Kandilli Observatory and Earthquake Research Institute) acceleration stations to the IGDAS Scada Center and KOERI data center. 2) During an earthquake event EEW information is sent from IGDAS Scada Center to the IGDAS stations. 3) Automatic Shut-Off is applied at IGDAS district regulators, and calculated parameters are sent from stations to the IGDAS Scada Center and KOERI. 4) Integrated building and gas pipeline damage maps are prepared immediately after the earthquake event. The today's technology allows to rapidly estimate the

  19. Generalized hydrodynamic reductions of the kinetic equation for a soliton gas

    NASA Astrophysics Data System (ADS)

    Pavlov, M. V.; Taranov, V. B.; El, G. A.

    2012-05-01

    We derive generalized multiflow hydrodynamic reductions of the nonlocal kinetic equation for a soliton gas and investigate their structure. These reductions not only provide further insight into the properties of the new kinetic equation but also could prove to be representatives of a novel class of integrable systems of hydrodynamic type beyond the conventional semi-Hamiltonian framework.

  20. Scenario Analysis of the Impact on Drinking Water Intakes from Bromide in the Discharge of Treated Oil and Gas Wastewater

    EPA Pesticide Factsheets

    EPA scientists created different scenarios for conventional commercial wastewater treatment plants that treat oil and gas wastewaters to evaluate the impact from bromide in discharges by the CWTP plants.

  1. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.

    PubMed

    Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko

    2012-03-01

    Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Intertemporal Regulatory Tasks and Responsibilities for Greenhouse Gas Reductions

    ERIC Educational Resources Information Center

    Deason, Jeffrey A.; Friedman, Lee S.

    2010-01-01

    Jurisdictions are in the process of establishing regulatory systems to control greenhouse gas emissions. Short-term and sometimes long-term emissions reduction goals are established, as California does for 2020 and 2050, but little attention has yet been focused on annual emissions targets for the intervening years. We develop recommendations for…

  3. Increased productivity through waste reduction effort in oil and gas company

    NASA Astrophysics Data System (ADS)

    Hidayati, J.; Silviana, NA; Matondang, RA

    2018-02-01

    National companies engaged in oil and gas activities in the upstream sector. In general, the on going operations include drilling, exploration, and production activities with the result being crude oil channelled for shipment. Production activities produce waste gas (flare) of 0.58 MMSCFD derived from 17.05% of natural gas produced. Gas flares are residual gases that have been burning through flare stacks to avoid toxic gases such as H2S and CO that are harmful to human health and the environment. Therefore, appropriate environmental management is needed; one of them is by doing waste reduction business. Through this approach, it is expected that waste reduction efforts can affect the improvement of environmental conditions while increasing the productivity of the company. In this research begins by identifying the existence of problems on the company related to the amount of waste that is excessive and potentially to be reduced. Alternative improvements are then formulated and selected by their feasibility to be implemented through financial analysis, and the estimation of alternative contributions to the level of productivity. The result of this research is an alternative solution to solve the problem of the company by doing technological based engineering by reusing gas flare into fuel for incinerator machine. This alternative contributes to the increased productivity of material use by 23.32%, humans 83.8%, capital 10.13 %, and waste decreased by 0.11%.

  4. Economic impacts of the SAFRR tsunami scenario in California: Chapter H in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Wein, Anne; Rose, Adam; Sue Wing, Ian; Wei, Dan

    2013-01-01

    This study evaluates the hypothetical economic impacts of the SAFRR (Science Application for Risk Reduction) tsunami scenario to the California economy. The SAFRR scenario simulates a tsunami generated by a hypothetical magnitude 9.1 earthquake that occurs offshore of the Alaska Peninsula (Kirby and others, 2013). Economic impacts are measured by the estimated reduction in California’s gross domestic product (GDP), the standard economic measure of the total value of goods and services produced. Economic impacts are derived from the physical damages from the tsunami as described by Porter and others (2013). The principal physical damages that result in disruption of the California economy are (1) about $100 million in damages to the twin Ports of Los Angeles (POLA) and Long Beach (POLB), (2) about $700 million in damages to marinas, and (3) about $2.5 billion in damages to buildings and contents (properties) in the tsunami inundation zone on the California coast. The study of economic impacts does not include the impacts from damages to roads, bridges, railroads, and agricultural production or fires in fuel storage facilities because these damages will be minimal with respect to the California economy. The economic impacts of damage to other California ports are not included in this study because detailed evaluation of the physical damage to these ports was not available in time for this report. The analysis of economic impacts is accomplished in several steps. First, estimates are made for the direct economic impacts that result in immediate business interruption losses in individual sectors of the economy due to physical damage to facilities or to disruption of the flow of production units (commodities necessary for production). Second, the total economic impacts (consisting of both direct and indirect effects) are measured by including the general equilibrium (essentially quantity and price multiplier effects) of lost production in other sectors by ripple

  5. Electrochemical CO2 Reduction via Gas-Phase Catholyte

    NASA Astrophysics Data System (ADS)

    Carter, Brittany E.; Nesbitt, Nathan T.; D'Imperio, Luke A.; Naughton, Jeffrey R.; Courtney, Dave T.; Shepard, Steve; Burns, Michael J.; Vermaas, David A.; Smith, Wilson A.; Naughton, Michael J.

    Reducing CO2 to CO through electrolysis, for the eventual conversion to hydrocarbons, provides a path towards utility-scale seasonal storage of renewable energy. Electrochemical reduction of CO2 has previously been achieved using a two chamber system. The chambers are typically separated by a semipermeable Nafion membrane, with an oxygen evolution catalyst anode on one side, a gold cathode on the other, and a solution containing CO2 on both sides. If instead, CO2 gas was in the second chamber, the reaction should yield more CO formed from CO2 at a given overpotential; this would result from the increased concentration of CO2 at the cathode surface and more facile mass transport of the CO and CO2. With liquid in one chamber and gas in the other, electrolysis is performed by integrating the cathode onto the semipermeable Nafion membrane. This membrane electrode assembly is fabricated via nanoimprint lithography (NIL), simultaneously achieving high active surface area and permeability. Challenges to the Nafion NIL process, and the performance of the system in CO2 reduction, will be presented. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  6. Gas turbine exhaust nozzle. [for noise reduction

    NASA Technical Reports Server (NTRS)

    Straight, D. M. (Inventor)

    1973-01-01

    An elongated hollow string is disposed in an exhaust nozzle combustion chamber and communicates with an air source through hollow struts at one end. The other end of the string is bell-mouth shaped and extends over the front portion of a nozzle plug. The bell-mouth may be formed by pivotally mounted flaps or leaves which are used to vary the exhaust throat area and the area between the plug and the leaves. Air from the engine inlet flows into the string and also between the combustion chamber and a housing disposed around the chamber. The air cools the plug and serves as a low velocity inner core of secondary gas to provide noise reduction for the primary exhaust gas while the other air, when it exits from the nozzle, forms an outer low velocity layer to further reduce noise. The structure produces increased thrust in a turbojet or turbofan engine.

  7. Effect of Slotted Anode on Gas Bubble Behaviors in Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Sun, Meijia; Li, Baokuan; Li, Linmin; Wang, Qiang; Peng, Jianping; Wang, Yaowu; Cheung, Sherman C. P.

    2017-12-01

    In the aluminum reduction cells, gas bubbles are generated at the bottom of the anode which eventually reduces the effective current contact area and the system efficiency. To encourage the removal of gas bubbles, slotted anode has been proposed and increasingly adopted by some industrial aluminum reduction cells. Nonetheless, the exact gas bubble removal mechanisms are yet to be fully understood. A three-dimensional (3D) transient, multiphase flow mathematical model coupled with magnetohydrodynamics has been developed to investigate the effect of slotted anode on the gas bubble movement. The Eulerian volume of fluid approach is applied to track the electrolyte (bath)-molten aluminum (metal) interface. Meanwhile, the Lagrangian discrete particle model is employed to handle the dynamics of gas bubbles with considerations of the buoyancy force, drag force, virtual mass force, and pressure gradient force. The gas bubble coalescence process is also taken into account based on the O'Rourke's algorithm. The two-way coupling between discrete bubbles and fluids is achieved by the inter-phase momentum exchange. Numerical predictions are validated against the anode current variation in an industrial test. Comparing the results using slotted anode with the traditional one, the time-averaged gas bubble removal rate increases from 36 to 63 pct; confirming that the slotted anode provides more escaping ways and shortens the trajectories for gas bubbles. Furthermore, the slotted anode also reduces gas bubble's residence time and the probability of coalescence. Moreover, the bubble layer thickness in aluminum cell with slotted anode is reduced about 3.5 mm (17.4 pct), so the resistance can be cut down for the sake of energy saving and the metal surface fluctuation amplitude is significantly reduced for the stable operation due to the slighter perturbation with smaller bubbles.

  8. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not

  9. Transit investments for greenhouse gas and energy reduction program : second assessment report.

    DOT National Transportation Integrated Search

    2014-08-01

    This report is the second assessment of the U.S. Department of Transportation, Federal Transit Administrations Transit Investments for : Greenhouse Gas and Energy Reduction (TIGGER) Program. The TIGGER Program provides capital funds to transit age...

  10. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

    PubMed

    Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule

    2014-08-19

    Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in

  11. A novel additive for the reduction of acid gases and NO(x) in municipal waste incinerator flue gas.

    PubMed

    Hall, William J; Williams, Paul T

    2006-08-01

    The reduction of SO2, HCl, and NO(x) concentrations using calcium magnesium acetate (CMA) as a novel sorbent in a simulated municipal waste incinerator flue gas was investigated. The reduction of individual SO2, HCl, and NO(x) concentrations was tested at 850 degrees C and it was found that CMA could reduce the SO2 concentration by 74%, HCl concentration by 64%, or NO(x) concentration by 94%. It was observed that individual SO2 or HCl capture increased with increasing initial oxygen concentration in the reacting gas or increasing sorbent input. NO(x) reduction decreased with increasing initial oxygen concentration in the reacting gas. The simultaneous reduction of SO2, HCl, and NO(x) concentrations by CMA was also investigated. It was found that CMA could simultaneously capture 60% SO2 and 61% HCl and reduce NO(x) concentrations by 26%, when the initial oxygen concentration in the reacting gas was 4%. During the simultaneous reduction of SO2, HCl, and NO(x), it was noted that as the initial oxygen concentration in the reacting gas increased, the efficiency of SO2 capture increased too, but the efficiency of HCl capture and the efficiency of NO(x) destruction decreased.

  12. Calculation of greenhouse gas emissions of jatropha oil and jatropha biodiesel as alternative fuels for electricity production in Côte d'Ivoire

    NASA Astrophysics Data System (ADS)

    Atta, Pascal Atta; N'guessan, Yao; Morin, Celine; Voirol, Anne Jaecker; Descombes, Georges

    2017-02-01

    The electricity in Côte d'Ivoire is mainly produced from fossil energy sources. This causes damages on environment due to greenhouse gas emissions (GHG). The aim of this paper is to calculate the greenhouse gas (GHG) emissions of jatropha oil and jatropha biodiesel as alternative fuels for electricity production in Côte d'Ivoire by using Life Cycle Assessment (LCA) methodology. The functional unit in this LCA is defined as 1 kWh of electricity produced by the combustion of jatropha oil or jatropha biodiesel in the engine of a generator. Two scenarios, called short chain and long chain, were examined in this LCA. The results show that 0.132 kg CO2 equivalent is emitted for the scenario 1 with jatropha oil as an alternative fuel against 0.6376 kg CO2 equivalent for the scenario 2 with jatropha biodiesel as an alternative fuel. An 87 % reduction of kg CO2 equivalent is observed in scenario 1 and a 37 % reduction of kg CO2 equivalent is observed in the scenario 2, when compared with a Diesel fuel.

  13. Developing a dynamic life cycle greenhouse gas emission inventory for wood construction for two different end-of-life scenarios

    Treesearch

    Richard D. Bergman; James Salazar; Scott Bowe

    2012-01-01

    Static life cycle assessment does not fully describe the carbon footprint of construction wood because of carbon changes in the forest and product pools over time. This study developed a dynamic greenhouse gas (GHG) inventory approach using US Forest Service and life-cycle data to estimate GHG emissions on construction wood for two different end-of-life scenarios....

  14. Scenarios of global mercury emissions from anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Rafaj, P.; Bertok, I.; Cofala, J.; Schöpp, W.

    2013-11-01

    This paper discusses the impact of air quality and climate policies on global mercury emissions in the time horizon up to 2050. Evolution of mercury emissions is based on projections of energy consumption for a scenario without any global greenhouse gas mitigation efforts, and for a 2 °C climate policy scenario, which assumes internationally coordinated action to mitigate climate change. The assessment takes into account current air quality legislation in each country, as well as provides estimates of maximum feasible reductions in mercury through 2050. Results indicate significant scope for co-benefits of climate policies for mercury emissions. Atmospheric releases of mercury from anthropogenic sources under the global climate mitigation regime are reduced in 2050 by 45% when compared to the case without climate measures. Around one third of world-wide co-benefits for mercury emissions by 2050 occur in China. An annual Hg-abatement of about 800 tons is estimated for the coal combustion in power sector if the current air pollution legislation and climate policies are adopted in parallel.

  15. Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study-Croatia (EU).

    PubMed

    Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Stankov, Mirjana Novak; Rogošić, Marko

    2017-07-01

    This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using artificial neural networks (ANNs). The case study of Croatia was elaborated. Two different energy consumption scenarios were used as a base for calculations and predictions of GHG emissions: the business as usual (BAU) scenario and sustainable scenario. Both of them are based on predicted energy consumption using different growth rates; the growth rates within the second scenario resulted from the implementation of corresponding energy efficiency measures in final energy consumption and increasing share of renewable energy sources. Both ANN architecture and training methodology were optimized to produce network that was able to successfully describe the existing data and to achieve reliable prediction of emissions in a forward time sense. The BAU scenario was found to produce continuously increasing emissions of all GHGs. The sustainable scenario was found to decrease the GHG emission levels of all gases with respect to BAU. The observed decrease was attributed to the group of measures termed the reduction of final energy consumption through energy efficiency measures.

  16. Reduction of prostate intrafraction motion using gas-release rectal balloons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Zhong; Zhao Tianyu; Li Zuofeng

    2012-10-15

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated withmore » the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.« less

  17. Reduction of Hematite to Magnetite in CO/CO2 Gas Mixtures Under Carbon Looping Combustion Conditions

    NASA Astrophysics Data System (ADS)

    Simmonds, Tegan; Hayes, Peter C.

    2017-12-01

    Iron oxides have been identified as promising materials for use as oxygen carriers in chemical looping combustion technologies as there are abundant resources available in the form of ore and in industrial wastes. The isothermal reduction of hematite (Fe2O3) in the fuel reactor and the subsequent oxidation of magnetite (Fe3O4) in air are the principal reactions of interest for these applications. Experimental investigations have been carried out to characterize the microstructural changes taking place as a result of the reduction reactions for a range of CO/CO2 gas compositions at temperatures between 1073 K and 1373 K (800 °C and 1100 °C). It has been shown that magnetite spinel is formed directly from hematite under these conditions and that porous magnetite or dense platelet or "lath" type morphologies can be formed depending on gas composition and reaction temperature. The conditions for the lath/pore transition are established. Dendritic gas pores are formed during the creation of the porous magnetite. This morphology allows continuous contact between the gas reactant and reaction interface and results in high reduction reaction rates.

  18. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    PubMed

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase

  19. Calculation of energy recovery and greenhouse gas emission reduction from palm oil mill effluent treatment by an anaerobic granular-sludge process.

    PubMed

    Show, K Y; Ng, C A; Faiza, A R; Wong, L P; Wong, L Y

    2011-01-01

    Conventional aerobic and low-rate anaerobic processes such as pond and open-tank systems have been widely used in wastewater treatment. In order to improve treatment efficacy and to avoid greenhouse gas emissions, conventional treatment can be upgraded to a high performance anaerobic granular-sludge system. The anaerobic granular-sludge systems are designed to capture the biogas produced, rendering a potential for claims of carbon credits under the Kyoto Protocol for reducing emissions of greenhouse gases. Certified Emission Reductions (CERs) would be issued, which can be exchanged between businesses or bought and sold in international markets at the prevailing market prices. As the advanced anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they render more carbon credits than other conventional anaerobic systems. In addition to efficient waste degradation, the carbon credits can be used to generate revenue and to finance the project. This paper presents a scenario on emission avoidance based on a methane recovery and utilization project. An example analysis on emission reduction and an overview of the global emission market are also outlined.

  20. Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

    NASA Astrophysics Data System (ADS)

    Carlson, Henrik; Caballero, Rodrigo

    2017-08-01

    Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2-thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has ˜ 11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

  1. Risk reduction in road and rail LPG transportation by passive fire protection.

    PubMed

    Paltrinieri, Nicola; Landucci, Gabriele; Molag, Menso; Bonvicini, Sarah; Spadoni, Gigliola; Cozzani, Valerio

    2009-08-15

    The potential reduction of risk in LPG (Liquefied Petroleum Gas) road transport due to the adoption of passive fire protections was investigated. Experimental data available for small scale vessels fully engulfed by a fire were extended to real scale road and rail tankers through a finite elements model. The results of mathematical simulations of real scale fire engulfment scenarios that may follow accidents involving LPG tankers proved the effectiveness of the thermal protections in preventing the "fired" BLEVE (Boiling Liquid Expanding Vapour Explosion) scenario. The presence of a thermal coating greatly increases the "time to failure", providing a time lapse that in the European experience may be considered sufficient to allow the start of effective mitigation actions by fire brigades. The results obtained were used to calculate the expected reduction of individual and societal risk due to LPG transportation in real case scenarios. The analysis confirmed that the introduction of passive fire protections turns out in a significant reduction of risk, up to an order of magnitude in the case of individual risk and of about 50% if the expectation value is considered. Thus, the adoption of passive fire protections, not compulsory in European regulations, may be an effective technical measure for risk reduction, and may contribute to achieve the control of "major accidents hazards" cited by the European legislation.

  2. Uncertainty in Bioenergy Scenarios for California: Lessons Learned in Communicating with Different Stakeholder Groups

    NASA Astrophysics Data System (ADS)

    Youngs, H.

    2013-12-01

    Projecting future bioenergy use involves incorporating several critical inter-related parameters with high uncertainty. Among these are: technology adoption, infrastructure and capacity building, investment, political will, and public acceptance. How, when, where, and to what extent the various bioenergy options are implemented has profound effects on the environmental impacts incurred. California serves as an interesting case study for bioenergy implementation because it has very strong competing forces that can influence these critical factors. The state has aggressive greenhouse gas reduction goals, which will require some biofuels, and has invested accordingly on new technology. At the same time, political will and public acceptance of bioenergy has wavered, seriously stalling bioenergy expansion efforts. We have constructed scenarios for bioenergy implementation in California to 2050, in conjunction with efforts to reach AB32 GHG reduction goals of 80% below 1990 emissions. The state has the potential to produce 3 to 10 TJ of biofuels and electricity; however, this potential will be severely limited in some scenarios. This work examines sources of uncertainty in bioenergy implementation, how uncertainty is or is not incorporated into future bioenergy scenarios, and what this means for assessing environmental impacts. How uncertainty is communicated and perceived also affects future scenarios. Often, there is a disconnect between scenarios for widespread implementation and the actual development of individual projects, resulting in "artificial uncertainty" with very real impacts. Bringing stakeholders to the table is only the first step. Strategies to tailor and stage discussions of uncertainty to stakeholder groups is equally important. Lessons learned in the process of communicating the Calfornia's Energy Future biofuels assessment will be discussed.

  3. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, W.; Heath, Garvin; Sandor, Debra

    2013-04-01

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect tomore » four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.« less

  4. Aerosol reductions could dominate regional climate responses in low GHG emission scenarios

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S.; Forster, P.; Fuglestvedt, J. S.; Osprey, S. M.; Schleussner, C. F.

    2017-12-01

    Limiting global warming to current political goals requires strong, rapid mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline sharply, due to co-emission with greenhouse gases, and future measures to improve air quality. As the net climate effect of GHG and aerosol emissions over the industrial era is poorly constrained, predicting the impact of strong aerosol emission reductions remains challenging. Here we investigate the isolated and compound climate impacts from removing present day anthropogenic emissions of black carbon (BC), organic carbon (OC) and SO2, and moderate, near term GHG dominated global warming, using four coupled climate models. As the dominating effect of aerosol emission reduction is a removal of cooling from sulphur, the resulting climate impacts amplify those of GHG induced warming. BC emissions contribute little to reducing surface warming, but have stronger regional impacts. For the major aerosol emission regions, extreme weather indices are more sensitive to aerosol removal than to GHG increases, per degree of surface warming. East Asia in particular stands out, mainly due to the high present regional aerosol emissions. We show how present climate models indicate that future regional climate change will depend strongly on changes in loading and distribution of aerosols in the atmosphere, in addition to surface temperature change.

  5. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China

    PubMed Central

    DHINGRA, RADHIKA; CHRISTENSEN, ERICK R.; LIU, YANG; ZHONG, BO; WU, CHANG-FU; YOST, MICHAEL G.; REMAIS, JUSTIN V.

    2013-01-01

    Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than non-biogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than non-biogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton−1 CO2-eq.), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health co-benefits, are discussed. PMID:21348471

  6. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China.

    PubMed

    Dhingra, Radhika; Christensen, Erick R; Liu, Yang; Zhong, Bo; Wu, Chang-Fu; Yost, Michael G; Remais, Justin V

    2011-03-15

    Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than nonbiogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than nonbiogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton(-1) CO(2)-eq), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health cobenefits are discussed.

  7. Greenhouse gas emissions from the waste sector in Argentina in business-as-usual and mitigation scenarios.

    PubMed

    Santalla, Estela; Córdoba, Verónica; Blanco, Gabriel

    2013-08-01

    The objective of this work was the application of 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for the estimation of methane and nitrous oxide emissions from the waste sector in Argentina as a preliminary exercise for greenhouse gas (GHG) inventory development and to compare with previous inventories based on 1996 IPCC Guidelines. Emissions projections to 2030 were evaluated under two scenarios--business as usual (BAU), and mitigation--and the calculations were done by using the ad hoc developed IPCC software. According to local activity data, in the business-as-usual scenario, methane emissions from solid waste disposal will increase by 73% by 2030 with respect to the emissions of year 2000. In the mitigation scenario, based on the recorded trend of methane captured in landfills, a decrease of 50% from the BAU scenario should be achieved by 2030. In the BAU scenario, GHG emissions from domestic wastewater will increase 63% from 2000 to 2030. Methane emissions from industrial wastewater, calculated from activity data of dairy, swine, slaughterhouse, citric, sugar, and wine sectors, will increase by 58% from 2000 to 2030 while methane emissions from domestic will increase 74% in the same period. Results show that GHG emissions calculated from 2006 IPCC Guidelines resulted in lower levels than those reported in previous national inventories for solid waste disposal and domestic wastewater categories, while levels were 18% higher for industrial wastewater. The implementation of the 2006 IPCC Guidelines for National Greenhouse Inventories is now considering by the UNFCCC for non-Annex I countries in order to enhance the compilation of inventories based on comparable good practice methods. This work constitutes the first GHG emissions estimation from the waste sector of Argentina applying the 2006 IPCC Guidelines and the ad doc developed software. It will contribute to identifying the main differences between the models applied in the estimation of

  8. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: a case study of Ribeirão Pires, Brazil.

    PubMed

    King, Megan F; Gutberlet, Jutta

    2013-12-01

    Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A perspective on cost-effectiveness of greenhouse gas reduction solutions in water distribution systems

    NASA Astrophysics Data System (ADS)

    Hendrickson, Thomas P.; Horvath, Arpad

    2014-01-01

    Water distribution systems (WDSs) face great challenges as aging infrastructures require significant investments in rehabilitation, replacement, and expansion. Reducing environmental impacts as WDSs develop is essential for utility managers and policy makers. This study quantifies the existing greenhouse gas (GHG) footprint of common WDS elements using life-cycle assessment (LCA) while identifying the greatest opportunities for emission reduction. This study addresses oversights of the related literature, which fails to capture several WDS elements and to provide detailed life-cycle inventories. The life-cycle inventory results for a US case study utility reveal that 81% of GHGs are from pumping energy, where a large portion of these emissions are a result of distribution leaks, which account for 270 billion l of water losses daily in the United States. Pipe replacement scheduling is analyzed from an environmental perspective where, through incorporating leak impacts, a tool reveals that optimal replacement is no more than 20 years, which is in contrast to the US average of 200 years. Carbon abatement costs (CACs) are calculated for different leak reduction scenarios for the case utility that range from -130 to 35 t-1 CO2(eq). Including life-cycle modeling in evaluating pipe materials identified polyvinyl chloride (PVC) and cement-lined ductile iron (DICL) as the Pareto efficient options, however; utilizing PVC presents human health risks. The model developed for the case utility is applied to California and Texas to determine the CACs of reducing leaks to 5% of distributed water. For California, annual GHG savings from reducing leaks alone (3.4 million tons of CO2(eq)) are found to exceed California Air Resources Board’s estimate for energy efficiency improvements in the state’s water infrastructure.

  10. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In ordermore » to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.« less

  11. Assessment of Co-benefits of vehicle emission reduction measures for 2015-2020 in the Pearl River Delta region, China.

    PubMed

    Liu, Yong-Hong; Liao, Wen-Yuan; Lin, Xiao-Fang; Li, Li; Zeng, Xue-Lan

    2017-04-01

    Vehicle emissions have become one of the key factors affecting the urban air quality and climate change in the Pearl River Delta (PRD) region, so it is important to design policies of emission reduction based on quantitative Co-benefits for air pollutants and greenhouse gas (GHG). Emissions of air pollutants and GHG by 2020 was predicted firstly based on the no-control scenario, and five vehicle emissions reduction scenarios were designed in view of the economy, technology and policy, whose emissions reduction were calculated. Then Co-benefits between air pollutants and GHG were quantitatively analyzed by the methods of coordinate system and cross-elasticity. Results show that the emissions reduction effects and the Co-benefits of different measures vary greatly in 2015-2020. If no control scheme was applied, most air pollutants and GHG would increase substantially by 20-64% by 2020, with the exception of CO, VOC and PM 2.5 . Different control measures had different reduction effects for single air pollutant and GHG. The worst reduction measure was Eliminating Motorcycles with average reducing rate 0.09% for air pollutants and GHG, while the rate from Updated Emission Standard was 41.74%. Eliminating Yellow-label Vehicle scenario had an obvious reduction effect for every single pollutant in the earlier years, but Co-benefits would descent to zero in later by 2020. From the perspective of emission reductions and co-control effect, Updated Emission Standard scenario was best for reducing air pollutants and GHG substantially (tanα=1.43 and Els=1.77). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    NASA Astrophysics Data System (ADS)

    Blackhurst, Michael F.

    2011-12-01

    In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings

  13. Simulating post-wildfire forest trajectories under alternative climate and management scenarios.

    PubMed

    Tarancón, Alicia Azpeleta; Fulé, Peter Z; Shive, Kristen L; Sieg, Carolyn H; Meador, Andrew Sánchez; Strom, Barbara

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multispecies forest of Arizona, USA. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) predictions of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon stock. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon stock relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S. forest management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate

  14. Investigating GHGs and VOCs emissions from a shale gas industry in Germany and the UK

    NASA Astrophysics Data System (ADS)

    Cremonese, L.; Weger, L.; Denier Van Der Gon, H.; Bartels, M. P.; Butler, T. M.

    2017-12-01

    The shale gas and shale oil production boom experienced in the US led the country to a significant reduction of foreign fuel imports and an increase in domestic energy security. Several European countries are considering to extract domestic shale gas reserves that might serve as a bridge in the transition to renewables. Nevertheless, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact local and regional air quality and climate. Results from numerous studies investigating greenhouse gas and pollutant emissions from shale oil and shale gas extraction in North America can help in estimating the impact of such industrial activity elsewhere, when local regulations are taken into consideration. In order to investigate the extent of emissions and their distribution from a potential shale gas industry in Germany and the United Kingdom, we develop three drilling scenarios compatible with desired national gas outputs based on available geological information on potential productivity ranges of the reservoirs. Subsequently we assign activity data and emissions factors to wells under development, as well as to producing wells (from activities at the well site up until processing plants) to enable emissions quantification. We then define emissions scenarios to explore different shale gas development pathways: 1) implementation of "high-technology" devices and recovery practices (low emissions); 2) implementation of "low-technology" devices and recovery practices (high emissions), and 3) intermediate scenarios reflecting assumptions on local and national settings, or extremely high emission events (e.g. super-emitters); all with high and low boundaries of confidence driven by uncertainties. A comparison of these unconventional gas production scenarios to conventional natural gas production in Germany and the United Kingdom is also planned. The aim of this work is to highlight important variables and their ranges, to

  15. Role of the Freight Sector in Future Climate Change Mitigation Scenarios

    DOE PAGES

    Muratori, Matteo; Smith, Steven J.; Kyle, Page; ...

    2017-02-27

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less

  16. Role of the Freight Sector in Future Climate Change Mitigation Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratori, Matteo; Smith, Steven J.; Kyle, Page

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less

  17. Role of the Freight Sector in Future Climate Change Mitigation Scenarios.

    PubMed

    Muratori, Matteo; Smith, Steven J; Kyle, Page; Link, Robert; Mignone, Bryan K; Kheshgi, Haroon S

    2017-03-21

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that apply a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. By contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.

  18. Reduction Kinetics of Wüstite Scale on Pure Iron and Steel Sheets in Ar and H2 Gas Mixture

    NASA Astrophysics Data System (ADS)

    Mao, Weichen; Sloof, Willem G.

    2017-10-01

    A dense and closed Wüstite scale is formed on pure iron and Mn alloyed steel after oxidation in Ar + 33 vol pct CO2 + 17 vol pct CO gas mixture. Reducing the Wüstite scale in Ar + H2 gas mixture forms a dense and uniform iron layer on top of the remaining Wüstite scale, which separates the unreduced scale from the gas mixture. The reduction of Wüstite is controlled by the bulk diffusion of dissolved oxygen in the formed iron layer and follows parabolic growth rate law. The reduction kinetics of Wüstite formed on pure iron and on Mn alloyed steel are the same. The parabolic rate constant of Wüstite reduction obeys an Arrhenius relation with an activation energy of 104 kJ/mol if the formed iron layer is in the ferrite phase. However, at 1223 K (950 °C) the parabolic rate constant of Wüstite reduction drops due to the phase transformation of the iron layer from ferrite to austenite. The effect of oxygen partial pressure on the parabolic rate constant of Wüstite reduction is negligible when reducing in a gas mixture with a dew point below 283 K (10 °C). During oxidation of the Mn alloyed steel, Mn is dissolved in the Wüstite scale. Subsequently, during reduction of the Wüstite layer, Mn diffuses into the unreduced Wüstite. Ultimately, an oxide-free iron layer is obtained at the surface of the Mn alloyed steel, which is beneficial for coating application.

  19. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    PubMed

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO 2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP 20 and GWP 100 ). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP 20 . To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP 20 . We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  20. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Megan F., E-mail: mfking@uvic.ca; Gutberlet, Jutta, E-mail: gutber@uvic.ca

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in São Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solidmore » waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.« less

  1. Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Cheng, H.; Wang, C.

    2014-12-01

    Projections of anthropogenic aerosol emissions are uncertain. In Asia, it is possible that emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly due to the widespread adoption of cleaner technology or a shift towards non-coal fuels, such as natural gas. In this study, the transient climate impacts of three aerosol emissions scenarios are investigated: an RCP4.5 (Representative Concentration Pathway 4.5) control; a scenario with reduced Asian anthropogenic aerosol emissions; and a scenario with enhanced Asian anthropogenic aerosol emissions. A coupled atmosphere-ocean configuration of CESM (Community Earth System Model), including CAM5 (Community Atmosphere Model version 5), is used. Enhanced Asian aerosol emissions are found to delay global mean warming by one decade at the end of the century. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world: over the Sahel, West African monsoon precipitation is suppressed; and over Australia, austral summer monsoon precipitation is enhanced. These remote impacts on precipitation are associated with a southward shift of the ITCZ. The aerosol-induced sea surface temperature (SST) response appears to play an important role in the precipitation changes over South Asia and Australia, but not over East Asia. These results indicate that energy production in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.

  2. Lake Energy Budget and Temperature Profiles Under Future Greenhouse Gas Scenarios

    NASA Astrophysics Data System (ADS)

    Lofgren, B. M.; Xiao, C.

    2017-12-01

    Future climates under higher concentrations of greenhouse gases are expected to feature higher air and water temperatures, and shifts in surface heat fluxes. We investigate in greater detail the evolution of this in terms of the annual cycle of lake temperature profiles, stratification, and ice formation. Other work has found that, although shallower water promotes more rapid changes in surface water temperature within a season, change in surface water temperature across decades is more prominent in locations with greater water depth. Our simulations using the Weather Research and Forecasting (WRF) model and its lake module, WRF-Lake, show a trend toward longer periods of summer stratification, both through earlier onset in the spring and later decay of stratification in the fall. They also show a general increase in temperature throughout the water column, but most pronounced near the surface during the summer. Likewise, ice duration is much shorter and more restricted to shallow embayments. High latent and sensible heat flux during the fall and winter are less intense but longer lasting under the future scenario. Sources of uncertainty are cumulative—actual future greenhouse gas concentrations, global sensitivity of climate change, cloud feedbacks, the combined formulation of the regional climate model (WRF) and its global driving model, and more.

  3. Rate theory scenarios study on fission gas behavior of U 3 Si 2 under LOCA conditions in LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David

    Fission gas behavior of U3Si2 under various loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs) was simulated using rate theory. A rate theory model for U3Si2 that covers both steady-state operation and power transients was developed for the GRASS-SST code based on existing research reactor/ion irradiation experimental data and theoretical predictions of density functional theory (DFT) calculations. The steady-state and LOCA condition parameters were either directly provided or inspired by BISON simulations. Due to the absence of in-pile experiment data for U3Si2's fuel performance under LWR conditions at this stage of accident tolerant fuel (ATF) development, a variety ofmore » LOCA scenarios were taken into consideration to comprehensively and conservatively evaluate the fission gas behavior of U3Si2 during a LOCA.« less

  4. Arctic shipping emissions inventories and future scenarios

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Lack, D. A.; Winebrake, J. J.; Harder, S.; Silberman, J. A.; Gold, M.

    2010-10-01

    This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow), aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams) by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  5. Near-Roadway Air Pollution and Coronary Heart Disease: Burden of Disease and Potential Impact of a Greenhouse Gas Reduction Strategy in Southern California

    PubMed Central

    Ghosh, Rakesh; Lurmann, Frederick; Perez, Laura; Penfold, Bryan; Brandt, Sylvia; Wilson, John; Milet, Meredith; Künzli, Nino; McConnell, Rob

    2015-01-01

    Background Several studies have estimated the burden of coronary heart disease (CHD) mortality from ambient regional particulate matter ≤ 2.5 μm (PM2.5). The burden of near-roadway air pollution (NRAP) generally has not been examined, despite evidence of a causal link with CHD. Objective We investigated the CHD burden from NRAP and compared it with the PM2.5 burden in the California South Coast Air Basin for 2008 and under a compact urban growth greenhouse gas reduction scenario for 2035. Methods We estimated the population attributable fraction and number of CHD events attributable to residential traffic density, proximity to a major road, elemental carbon (EC), and PM2.5 compared with the expected disease burden if the population were exposed to background levels of air pollution. Results In 2008, an estimated 1,300 CHD deaths (6.8% of the total) were attributable to traffic density, 430 deaths (2.4%) to residential proximity to a major road, and 690 (3.7%) to EC. There were 1,900 deaths (10.4%) attributable to PM2.5. Although reduced exposures in 2035 should result in smaller fractions of CHD attributable to traffic density, EC, and PM2.5, the numbers of estimated deaths attributable to each of these exposures are anticipated to increase to 2,500, 900, and 2,900, respectively, due to population aging. A similar pattern of increasing NRAP-attributable CHD hospitalizations was estimated to occur between 2008 and 2035. Conclusion These results suggest that a large burden of preventable CHD mortality is attributable to NRAP and is likely to increase even with decreasing exposure by 2035 due to vulnerability of an aging population. Greenhouse gas reduction strategies developed to mitigate climate change offer unexploited opportunities for air pollution health co-benefits. Citation Ghosh R, Lurmann F, Perez L, Penfold B, Brandt S, Wilson J, Milet M, Künzli N, McConnell R. 2016. Near-roadway air pollution and coronary heart disease: burden of disease and potential

  6. Long-term projections and acclimatization scenarios of temperature-related mortality in Europe.

    PubMed

    Ballester, Joan; Robine, Jean-Marie; Herrmann, François Richard; Rodó, Xavier

    2011-06-21

    The steady increase in greenhouse gas concentrations is inducing a detectable rise in global temperatures. The sensitivity of human societies to warming temperatures is, however, a transcendental question not comprehensively addressed to date. Here we show the link between temperature, humidity and daily numbers of deaths in nearly 200 European regions, which are subsequently used to infer transient projections of mortality under state-of-the-art high-resolution greenhouse gas scenario simulations. Our analyses point to a change in the seasonality of mortality, with maximum monthly incidence progressively shifting from winter to summer. The results also show that the rise in heat-related mortality will start to completely compensate the reduction of deaths from cold during the second half of the century, amounting to an average drop in human lifespan of up 3-4 months in 2070-2100. Nevertheless, projections suggest that human lifespan might indeed increase if a substantial degree of adaptation to warm temperatures takes place.

  7. Unexpected mechanochemical complexity in the mechanistic scenarios of disulfide bond reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Dopieralski, Przemyslaw; Ribas-Arino, Jordi; Anjukandi, Padmesh; Krupicka, Martin; Marx, Dominik

    2017-02-01

    The reduction of disulfides has a broad importance in chemistry, biochemistry and materials science, particularly those methods that use mechanochemical activation. Here we show, using isotensional simulations, that strikingly different mechanisms govern disulfide cleavage depending on the external force. Desolvation and resolvation processes are found to be crucial, as they have a direct impact on activation free energies. The preferred pathway at moderate forces, a bimolecular SN2 attack of OH- at sulfur, competes with unimolecular C-S bond rupture at about 2 nN, and the latter even becomes barrierless at greater applied forces. Moreover, our study unveils a surprisingly rich reactivity scenario that also includes the transformation of concerted SN2 reactions into pure bond-breaking processes at specific forces. Given that these forces are easily reached in experiments, these insights will fundamentally change our understanding of mechanochemical activation in general, which is now expected to be considerably more intricate than previously thought.

  8. CFD analysis of NOx reduction by domestic natural gas added to coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar-Ziv, E.; Yasur, Y.; Chudnovsky, B.

    2004-07-01

    To date, Israel's electrical energy has been based only on imported fuels. However, with the recently discovered natural gas in the Ashqulon shores, Israel can examine the benefits to its energy resources, environment, and economy of blending its domestic natural gas with imported coal. As for using natural gas, the proposal is to burn it in existing IEC coal-fired boilers in order to significantly reduce NOx emission by reburning. An important aspect is to provide retrofitting in existing IEC boilers by replacing a fraction of the coal by natural gas. This would allow the purchase of coal with a widemore » range of parameters, which is less expensive. Hence, mixed gas-coal burning would benefit Israel. The authors have made numerical simulations in order to study the optimal conditions of operation and evaluate the economic as well as environmental benefits. Indeed, extensive simulations have shown that there is a significant reduction of NOx emission, as expected, with the addition of relatively small amounts of natural gas. Experiments will now be carried out in a test facility that will provide accurate physicochemical properties of the mixed fuel for more reliable simulations. 19 refs., 6 figs., 1 tab.« less

  9. Strengthening Borehole Configuration from the Retaining Roadway for Greenhouse Gas Reduction: A Case Study

    PubMed Central

    Xue, Fei; Zhang, Nong; Feng, Xiaowei; Zheng, Xigui; Kan, Jiaguang

    2015-01-01

    A monitoring trial was carried out to investigate the effect of boreholes configuration on the stability and gas production rate. These boreholes were drilled from the retaining roadway at longwall mining panel 1111(1) of the Zhuji Coalmine, in China. A borehole camera exploration device and multiple gas parameter measuring device were adopted to monitor the stability and gas production rate. Research results show that boreholes 1~8 with low intensity and thin casing thickness were broken at the depth of 5~10 m along the casing and with a distance of 2~14 m behind the coal face, while boreholes 9~11 with a special thick-walled high-strength oil casing did not fracture during the whole extraction period. The gas extraction volume is closely related to the boreholes stability. After the stability of boreholes 9~11 being improved, the average gas flow rate increased dramatically 16-fold from 0.13 to 2.21 m3/min, and the maximum gas flow rate reached 4.9 m3/min. Strengthening boreholes configuration is demonstrated to be a good option to improve gas extraction effect. These findings can make a significant contribution to the reduction of greenhouse gas emissions from the coal mining industry. PMID:25633368

  10. A climate-change scenario for the Columbia River Basin.

    Treesearch

    Sue A. Ferguson

    1997-01-01

    This work describes the method used to generate a climate-change scenario for the Columbia River basin. The scenario considers climate patterns that may change if the atmospheric concentration of carbon dioxide (C02), or its greenhouse gas equivalent, were to double over pre-Industrial Revolution values. Given the current rate of increase in...

  11. Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas

    DOE PAGES

    Grandey, Benjamin S.; Cheng, Haiwen; Wang, Chien

    2016-04-06

    Fuel usage is an important driver of anthropogenic aerosol emissions. In Asia, it is possible that aerosol emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly as a result of the widespread adoption of cleaner technologies or a shift toward noncoal fuels, such as natural gas. In this study, the transient climate impacts of two aerosol emissions scenarios are investigated: a representative concentration pathway 4.5 (RCP4.5) control, which projects a decrease in anthropogenic aerosol emissions, and a scenario with enhanced anthropogenic aerosolmore » emissions from Asia. A coupled atmosphere–ocean configuration of the Community Earth System Model (CESM), including the Community Atmosphere Model, version 5 (CAM5), is used. Three sets of initial conditions are used to produce a three-member ensemble for each scenario. Enhanced Asian aerosol emissions are found to exert a large cooling effect across the Northern Hemisphere, partially offsetting greenhouse gas–induced warming. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world. Over Australia, austral summer monsoon precipitation is enhanced, an effect associated with a southward shift of the intertropical convergence zone, driven by the aerosol-induced cooling of the Northern Hemisphere. Over the Sahel, West African monsoon precipitation is suppressed, likely via a weakening of the West African westerly jet. These results indicate that fuel usage in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.« less

  12. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  13. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  14. Rate Controlling Step in the Reduction of Iron Oxides; Kinetics and Mechanism of Wüstite-Iron Step in H2, CO and H2/CO Gas Mixtures

    NASA Astrophysics Data System (ADS)

    El-Geassy, Abdel-Hady A.

    2017-09-01

    Wüstite (W1 and W2) micropellets (150-50 μm) were prepared from the reduction of pure Fe2O3 and 2.1% SiO2-doped Fe2O3 in 40%CO/CO2 gas mixture at 1000°C which were then isothermally reduced in H2, CO and H2/CO gas mixtures at 900-1100°C. The reduction reactions was followed by Thermogravimetric Analysis (TG) technique. The effect of gas composition, gas pressure and temperature on the rate of reduction was investigated. The different phases formed during the reduction were chemically and physically characterized. In SiO2-doped wüstite, fayalite (Fe2SiO3) was identified. At the initial reduction stages, the highest rate was obtained in H2 and the lowest was in CO gas. In H2/CO gas mixtures, the measured rate did not follow a simple additive equation. The addition of 5% H2 to CO led to a measurable increase in the rate of reduction compared with that in pure CO. Incubation periods were observed at the early reduction stages of W1 in CO at lower gas pressure (<0.25 atm). In SiO2-doped wüstite, reaction rate minimum was detected in H2 and H2-rich gas mixtures at 925-950°C. The influence of addition of H2 to CO or CO to H2 on the reduction reactions, nucleation and grain growth of iron was intensively studied. Unlike in pure wüstite, the presence of fayalite enhances the reduction reactions with CO and CO-rich gas mixtures. The chemical reaction equations of pure wüstite with CO are given showing the formation of carbonyl-like compound [Fem(CO2)n]*. The apparent activation energy values, at the initial stages, ranged from 53.75 to 133.97 kJ/mole indicating different reaction mechanism although the reduction was designed to proceed by the interfacial chemical reaction.

  15. Prospective scenarios of nuclear energy evolution over the 21. century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massara, S.; Tetart, P.; Garzenne, C.

    2006-07-01

    In this paper, different world scenarios of nuclear energy development over the 21. century are analyzed, by means of the EDF fuel cycle simulation code for nuclear scenario studies, TIRELIRE - STRATEGIE. Three nuclear demand scenarios are considered, and the performance of different nuclear strategies in satisfying these scenarios is analyzed and discussed, focusing on natural uranium consumption and industrial requirements related to the nuclear reactors and the associated fuel cycle facilities. Both thermal-spectrum systems (Pressurized Water Reactor and High Temperature Gas-cooled Reactor) and Fast Reactors are investigated. (authors)

  16. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  17. What strategy is needed for attaining the EU air quality regulations under future climate change scenarios? A sensitivity analysis over Europe

    NASA Astrophysics Data System (ADS)

    Jiménez-Guerrero, P.; Baró, R.; Gómez-Navarro, J. J.; Lorente-Plazas, R.; García-Valero, J. A.; Hernández, Z.; Montávez, J. P.

    2012-04-01

    A wide number of studies show that several areas over Europe exceed some of the air quality thresholds established in the legislation. These exceedances will become more frequent under future climate change scenarios, since the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone will influence the future concentrations of atmospheric pollutants through modifications of gas-phase chemistry, transport, removal, and natural emissions. In this sense, chemistry transport models (CTMs) play a key role in assessing and understanding the emissions abatement plans through the use of sensitivity analysis strategies. These sensitivity analyses characterize the change in model output due to variations in model input parameters. Since the management strategies of air pollutant emission is one of the predominant factors for controlling urban air quality, this work assesses the impact of various emission reduction scenarios in air pollution levels over Europe under two climate change scenarios. The methodology includes the use of a climate version of the meteorological model MM5 coupled with the CHIMERE chemistry transport model. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as two future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have an horizontal resolution of 25 km and 23 vertical layers up to 100 hPa, and are driven by the global climate model ECHO-G . In order to represent the sensitivity of the chemistry and transport of aerosols, tropospheric ozone and other photochemical species, several hypothetical scenarios of emission control have been implemented to quantify the influence of diverse emission sources in the area, such as on-road traffic, port and industrial emissions, among others. The modeling strategy lies on a sensitivity analysis to determine the emission reduction and strategy needed in the target area in

  18. Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile.

    PubMed

    Mena-Carrasco, Marcelo; Oliva, Estefania; Saide, Pablo; Spak, Scott N; de la Maza, Cristóbal; Osses, Mauricio; Tolvett, Sebastián; Campbell, J Elliott; Tsao, Tsao Es Chi-Chung; Molina, Luisa T

    2012-07-01

    Chilean law requires the assessment of air pollution control strategies for their costs and benefits. Here we employ an online weather and chemical transport model, WRF-Chem, and a gridded population density map, LANDSCAN, to estimate changes in fine particle pollution exposure, health benefits, and economic valuation for two emission reduction strategies based on increasing the use of compressed natural gas (CNG) in Santiago, Chile. The first scenario, switching to a CNG public transportation system, would reduce urban PM2.5 emissions by 229 t/year. The second scenario would reduce wood burning emissions by 671 t/year, with unique hourly emission reductions distributed from daily heating demand. The CNG bus scenario reduces annual PM2.5 by 0.33 μg/m³ and up to 2 μg/m³ during winter months, while the residential heating scenario reduces annual PM2.5 by 2.07 μg/m³, with peaks exceeding 8 μg/m³ during strong air pollution episodes in winter months. These ambient pollution reductions lead to 36 avoided premature mortalities for the CNG bus scenario, and 229 for the CNG heating scenario. Both policies are shown to be cost-effective ways of reducing air pollution, as they target high-emitting area pollution sources and reduce concentrations over densely populated urban areas as well as less dense areas outside the city limits. Unlike the concentration rollback methods commonly used in public policy analyses, which assume homogeneous reductions across a whole city (including homogeneous population densities), and without accounting for the seasonality of certain emissions, this approach accounts for both seasonality and diurnal emission profiles for both the transportation and residential heating sectors. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Polyethylene recycling: Waste policy scenario analysis for the EU-27.

    PubMed

    Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter

    2015-08-01

    This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Inventories and scenarios of nitrous oxide emissions

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.; Kanter, David

    2014-10-01

    Effective mitigation for N2O emissions, now the third most important anthropogenic greenhouse gas and the largest remaining anthropogenic source of stratospheric ozone depleting substances, requires understanding of the sources and how they may increase this century. Here we update estimates and their uncertainties for current anthropogenic and natural N2O emissions and for emissions scenarios to 2050. Although major uncertainties remain, ‘bottom-up’ inventories and ‘top-down’ atmospheric modeling yield estimates that are in broad agreement. Global natural N2O emissions are most likely between 10 and 12 Tg N2O-N yr-1. Net anthropogenic N2O emissions are now about 5.3 Tg N2O-N yr-1. Gross anthropogenic emissions by sector are 66% from agriculture, 15% from energy and transport sectors, 11% from biomass burning, and 8% from other sources. A decrease in natural emissions from tropical soils due to deforestation reduces gross anthropogenic emissions by about 14%. Business-as-usual emission scenarios project almost a doubling of anthropogenic N2O emissions by 2050. In contrast, concerted mitigation scenarios project an average decline of 22% relative to 2005, which would lead to a near stabilization of atmospheric concentration of N2O at about 350 ppb. The impact of growing demand for biofuels on future projections of N2O emissions is highly uncertain; N2O emissions from second and third generation biofuels could remain trivial or could become the most significant source to date. It will not be possible to completely eliminate anthropogenic N2O emissions from agriculture, but better matching of crop N needs and N supply offers significant opportunities for emission reductions.

  1. Multiscale model reduction for shale gas transport in poroelastic fractured media

    NASA Astrophysics Data System (ADS)

    Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe

    2018-01-01

    Inherently coupled flow and geomechanics processes in fractured shale media have implications for shale gas production. The system involves highly complex geo-textures comprised of a heterogeneous anisotropic fracture network spatially embedded in an ultra-tight matrix. In addition, nonlinearities due to viscous flow, diffusion, and desorption in the matrix and high velocity gas flow in the fractures complicates the transport. In this paper, we develop a multiscale model reduction approach to couple gas flow and geomechanics in fractured shale media. A Discrete Fracture Model (DFM) is used to treat the complex network of fractures on a fine grid. The coupled flow and geomechanics equations are solved using a fixed stress-splitting scheme by solving the pressure equation using a continuous Galerkin method and the displacement equation using an interior penalty discontinuous Galerkin method. We develop a coarse grid approximation and coupling using the Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM constructs the multiscale basis functions in a systematic way to capture the fracture networks and their interactions with the shale matrix. Numerical results and an error analysis is provided showing that the proposed approach accurately captures the coupled process using a few multiscale basis functions, i.e. a small fraction of the degrees of freedom of the fine-scale problem.

  2. Reduction on NOx emissions on urban areas by changing specific vehicle fleets: effects on NO2 and O3 concentration

    NASA Astrophysics Data System (ADS)

    Goncalves, M.; Jimenez, P.; Baldasano, J.

    2007-12-01

    The largest amount of NOx emissions in urban areas comes from on-road traffic, which is the largest contributor to urban air pollution (Colvile et al., 2001). Currently different strategies are being tested in order to reduce its effects; many of them oriented to the reduction of the unitary vehicles emissions, by alternative fuels use (such as biofuels, natural gas or hydrogen) or introduction of new technologies (such as hybrid electric vehicles or fuel cells). Atmospheric modelling permits to predict their consequences on tropospheric chemistry (Vautard et al., 2007). Hence, this work assesses the changes on NO2 and O3 concentrations when substituting a 10 per cent of the urban private cars fleets by petrol hybrid electric cars (HEC) or by natural gas cars (NGC) in Madrid and Barcelona urban areas (Spain). These two cities are selected in order to highlight the different patterns of pollutants transport (inland vs. coastal city) and the different responses to emissions reductions. The results focus on a typical summertime episode of air pollution, by means of the Eulerian air quality model ARW- WRF/HERMES/CMAQ, applied with high resolution (1-hr, 1km2) since of the complexity of both areas under study. The detailed emissions scenarios are implemented in the HERMES traffic emissions module, based on the Copert III-EEA/EMEP-CORINAIR (Nztiachristos and Samaras, 2000) methodology. The HEC introduction reduces NOx emissions from on-road traffic in a 10.8 per cent and 8.2 per cent; and the NGC introduction in a 10.3 per cent and 7.8 per cent, for Madrid and Barcelona areas, respectively. The scenarios also affect the NMVOCs reduction (ranging from -3.1 to -6.9 per cent), influencing the tropospheric photochemistry through the NOx/NMVOCs ratio. The abatement of the NO photooxidation but also to the reduction on primary NO2 involves a decrease on NO2 levels centred on urban areas. For example, the NO2 24-hr average concentration in downtown areas reduces up to 8 per

  3. Emissions Scenarios and Fossil-fuel Peaking

    NASA Astrophysics Data System (ADS)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  4. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    EPA Science Inventory

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  5. Emissions implications of downscaled electricity generation scenarios for the western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsanzineza, Rene; O’Connell, Matthew; Brinkman, Gregory

    This study explores how emissions from electricity generation in the Western Interconnection region of the U.S. might respond in circa 2030 to contrasting scenarios for fuel prices and greenhouse gas (GHG) emissions fees. We examine spatial and temporal variations in generation mix across the region and year using the PLEXOS unit commitment and dispatch model with a production cost model database adapted from the Western Electricity Coordinating Council. Emissions estimates are computed by combining the dispatch model results with unit-specific, emissions-load relationships. Wind energy displaces natural gas and coal in scenarios with relatively expensive natural gas or with GHG fees.more » Correspondingly, annual emissions of NOx, SO2, and CO2 are reduced by 20-40% in these cases. NOx emissions, which are a concern as a precursor of ground-level ozone, are relatively high and consistent across scenarios during summer, when peak electricity loads occur and wind resources in the region are comparatively weak. Accounting for the difference in start-up versus stabilized NOx emissions rates for natural gas plants had little impact on region-wide emissions estimates due to the dominant contribution from coal-fired plants, but would be more important in the vicinity of the natural gas units.« less

  6. Impacts of potential CO2-reduction policies on air quality in the United States.

    PubMed

    Trail, Marcus A; Tsimpidi, Alexandra P; Liu, Peng; Tsigaridis, Kostas; Hu, Yongtao; Rudokas, Jason R; Miller, Paul J; Nenes, Athanasios; Russell, Armistead G

    2015-04-21

    Impacts of emissions changes from four potential U.S. CO2 emission reduction policies on 2050 air quality are analyzed using the community multiscale air quality model (CMAQ). Future meteorology was downscaled from the Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM) to the regional scale using the Weather Research Forecasting (WRF) model. We use emissions growth factors from the EPAUS9r MARKAL model to project emissions inventories for two climate tax scenarios, a combined transportation and energy scenario, a biomass energy scenario and a reference case. Implementation of a relatively aggressive carbon tax leads to improved PM2.5 air quality compared to the reference case as incentives increase for facilities to install flue-gas desulfurization (FGD) and carbon capture and sequestration (CCS) technologies. However, less capital is available to install NOX reduction technologies, resulting in an O3 increase. A policy aimed at reducing CO2 from the transportation sector and electricity production sectors leads to reduced emissions of mobile source NOX, thus reducing O3. Over most of the U.S., this scenario leads to reduced PM2.5 concentrations. However, increased primary PM2.5 emissions associated with fuel switching in the residential and industrial sectors leads to increased organic matter (OM) and PM2.5 in some cities.

  7. 2017 Standard Scenarios Report: A U.S. Electricity Sector Outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J.; Mai, Trieu T.; Richards, James

    The 2017 Standard Scenarios includes a suite of U.S. electricity sector scenarios. The report explores four power sector storylines, including the growth in natural gas and renewable energy, the relative competitiveness of wind and solar PV, the potential impact of low-cost battery storage, and the impact of nuclear lifetimes on the capacity expansion of the power sector.

  8. Decadal application of WRF/chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 2: Current vs. future simulations

    NASA Astrophysics Data System (ADS)

    Yahya, Khairunnisa; Campbell, Patrick; Zhang, Yang

    2017-03-01

    Following a comprehensive model evaluation, this Part II paper presents projected changes in future (2046-2055) climate, air quality, and their interactions under the RCP4.5 and RCP8.5 scenarios using the Weather, Research and Forecasting model with Chemistry (WRF/Chem). In general, both WRF/Chem RCP4.5 and RCP8.5 simulations predict similar increases on average (∼2 °C) for 2-m temperature (T2) but different spatial distributions of the projected changes in T2, 2-m relative humidity, 10-m wind speed, precipitation, and planetary boundary layer height, due to differences in the spatial distributions of projected emissions, and their feedbacks into climate. Future O3 mixing ratios will decrease for most parts of the U.S. under the RCP4.5 scenario but increase for all areas under the RCP8.5 scenario due to higher projected temperature, greenhouse gas concentrations and biogenic volatile organic compounds (VOC) emissions, higher O3 values for boundary conditions, and disbenefit of NOx reduction and decreased NO titration over VOC-limited O3 chemistry regions. Future PM2.5 concentrations will decrease for both RCP4.5 and RCP8.5 scenarios with different trends in projected concentrations of individual PM species. Total cloud amounts decrease under both scenarios in the future due to decreases in PM and cloud droplet number concentration thus increased radiation. Those results illustrate the impacts of carbon policies with different degrees of emission reductions on future climate and air quality. The WRF/Chem and WRF simulations show different spatial patterns for projected changes in T2 for future decade, indicating different impacts of prognostic and prescribed gas/aerosol concentrations, respectively, on climate change.

  9. Study of Eu{sup 3+} → Eu{sup 2+} reduction in BaAl{sub 2}O{sub 4}:Eu prepared in different gas atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezende, Marcos V. dos S., E-mail: mvsrezende@gmail.com; Valerio, Mário E.G.; Jackson, Robert A.

    2015-01-15

    Highlights: • The effect of different gas atmospheres on the Eu reduction process was studied. • The Eu reduction was monitored analyzing XANES region at the Eu L{sub III}-edge. • Hydrogen reducing agent are the most appropriate gas for Eu{sup 2+} stabilization. • Only a part of the Eu ions can be stabilized in the divalent state. • A model of Eu reduction process is proposed. - Abstract: The effect of different gas atmospheres such as H{sub 2}(g), synthetic air, carbon monoxide (CO) and nitrogen (N{sub 2}) on the Eu{sup 3+} → Eu{sup 2+} reduction process during the synthesis ofmore » Eu-doped BaAl{sub 2}O{sub 4} was studied using synchrotron radiation. The Eu{sup 3+} → Eu{sup 2+} reduction was monitored analyzing XANES region when the sample are excited at the Eu L{sub III}-edge. The results show that the hydrogen reducing agent are the most appropriate gas for Eu{sup 2+} stabilization in BaAl{sub 2}O{sub 4} and that only a part of the Eu ions can be stabilized in the divalent state. A model of Eu reduction process, based on the incorporation of charge compensation defects, is proposed.« less

  10. Greenhouse gas emissions during plantation stage of palm oil-based biofuel production addressing different land conversion scenarios in Malaysia.

    PubMed

    Kusin, Faradiella Mohd; Akhir, Nurul Izzati Mat; Mohamat-Yusuff, Ferdaus; Awang, Muhamad

    2017-02-01

    The environmental impacts with regard to agro-based biofuel production have been associated with the impact of greenhouse gas (GHG) emissions. In this study, field GHG emissions during plantation stage of palm oil-based biofuel production associated with land use changes for oil palm plantation development have been evaluated. Three different sites of different land use changes prior to oil palm plantation were chosen; converted land-use (large and small-scales) and logged-over forest. Field sampling for determination of soil N-mineralisation and soil organic carbon (SOC) was undertaken at the sites according to the age of palm, i.e. <5 years (immature), 5-20 and >21 years (mature oil palms). The field data were incorporated into the estimation of nitrous oxide (N 2 O) and the resulting CO 2 -eq emissions as well as for estimation of carbon stock changes. Irrespective of the land conversion scenarios, the nitrous oxide emissions were found in the range of 6.47-7.78 kg N 2 O-N/ha resulting in 498-590 kg CO 2 -eq/ha. On the other hand, the conversion of tropical forest into oil palm plantation has resulted in relatively higher GHG emissions (i.e. four times higher and carbon stock reduction by >50%) compared to converted land use (converted rubber plantation) for oil palm development. The conversion from previously rubber plantation into oil palm plantation would increase the carbon savings (20% in increase) thus sustaining the environmental benefits from the palm oil-based biofuel production.

  11. Near-Roadway Air Pollution and Coronary Heart Disease: Burden of Disease and Potential Impact of a Greenhouse Gas Reduction Strategy in Southern California.

    PubMed

    Ghosh, Rakesh; Lurmann, Frederick; Perez, Laura; Penfold, Bryan; Brandt, Sylvia; Wilson, John; Milet, Meredith; Künzli, Nino; McConnell, Rob

    2016-02-01

    Several studies have estimated the burden of coronary heart disease (CHD) mortality from ambient regional particulate matter ≤ 2.5 μm (PM2.5). The burden of near-roadway air pollution (NRAP) generally has not been examined, despite evidence of a causal link with CHD. We investigated the CHD burden from NRAP and compared it with the PM2.5 burden in the California South Coast Air Basin for 2008 and under a compact urban growth greenhouse gas reduction scenario for 2035. We estimated the population attributable fraction and number of CHD events attributable to residential traffic density, proximity to a major road, elemental carbon (EC), and PM2.5 compared with the expected disease burden if the population were exposed to background levels of air pollution. In 2008, an estimated 1,300 CHD deaths (6.8% of the total) were attributable to traffic density, 430 deaths (2.4%) to residential proximity to a major road, and 690 (3.7%) to EC. There were 1,900 deaths (10.4%) attributable to PM2.5. Although reduced exposures in 2035 should result in smaller fractions of CHD attributable to traffic density, EC, and PM2.5, the numbers of estimated deaths attributable to each of these exposures are anticipated to increase to 2,500, 900, and 2,900, respectively, due to population aging. A similar pattern of increasing NRAP-attributable CHD hospitalizations was estimated to occur between 2008 and 2035. These results suggest that a large burden of preventable CHD mortality is attributable to NRAP and is likely to increase even with decreasing exposure by 2035 due to vulnerability of an aging population. Greenhouse gas reduction strategies developed to mitigate climate change offer unexploited opportunities for air pollution health co-benefits.

  12. Disruption mitigation by injection of small quantities of noble gas in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Bernert, M.; Dibon, M.; Duval, B.; Dux, R.; Fable, E.; Fuchs, J. C.; Conway, G. D.; Giannone, L.; Gude, A.; Herrmann, A.; Hoelzl, M.; McCarthy, P. J.; Mlynek, A.; Maraschek, M.; Nardon, E.; Papp, G.; Potzel, S.; Rapson, C.; Sieglin, B.; Suttrop, W.; Treutterer, W.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-01-01

    The most recent experiments of disruption mitigation by massive gas injection in ASDEX Upgrade have concentrated on small—relatively to the past—quantities of noble gas injected, and on the search for the minimum amount of gas necessary for the mitigation of the thermal loads on the divertor and for a significant reduction of the vertical force during the current quench. A scenario for the generation of a long-lived runaway electron beam has been established; this allows the study of runaway current dissipation by moderate quantities of argon injected. This paper presents these recent results and discusses them in the more general context of physical models and extrapolation, and of the open questions, relevant for the realization of the ITER disruption mitigation system.

  13. Importance sampling variance reduction for the Fokker–Planck rarefied gas particle method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collyer, B.S., E-mail: benjamin.collyer@gmail.com; London Mathematical Laboratory, 14 Buckingham Street, London WC2N 6DF; Connaughton, C.

    The Fokker–Planck approximation to the Boltzmann equation, solved numerically by stochastic particle schemes, is used to provide estimates for rarefied gas flows. This paper presents a variance reduction technique for a stochastic particle method that is able to greatly reduce the uncertainty of the estimated flow fields when the characteristic speed of the flow is small in comparison to the thermal velocity of the gas. The method relies on importance sampling, requiring minimal changes to the basic stochastic particle scheme. We test the importance sampling scheme on a homogeneous relaxation, planar Couette flow and a lid-driven-cavity flow, and find thatmore » our method is able to greatly reduce the noise of estimated quantities. Significantly, we find that as the characteristic speed of the flow decreases, the variance of the noisy estimators becomes independent of the characteristic speed.« less

  14. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  15. Gas dynamic improvement of the axial compressor design for reduction of the flow non-uniformity level

    NASA Astrophysics Data System (ADS)

    Matveev, V. N.; Baturin, O. V.; Kolmakova, D. A.; Popov, G. M.

    2017-01-01

    Circumferential nonuniformity of gas flow is one of the main problems in the gas turbine engine. Usually, the flow circumferential nonuniformity appears near the annular frame located in the flow passage of the engine. The presence of circumferential nonuniformity leads to the increased dynamic stresses in the blade rows and the blade damage. The goal of this research was to find the ways of the flow non-uniformity reduction, which would not require a fundamental changing of the engine design. A new method for reducing the circumferential nonuniformity of the gas flow was proposed that allows the prediction of the pressure peak values of the rotor blades without computationally expensive CFD calculations.

  16. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  17. Considerations for the development of shale gas in the United Kingdom.

    PubMed

    Hays, Jake; Finkel, Madelon L; Depledge, Michael; Law, Adam; Shonkoff, Seth B C

    2015-04-15

    The United States shale gas boom has precipitated global interest in the development of unconventional oil and gas resources. Recently, government ministers in the United Kingdom started granting licenses that will enable companies to begin initial exploration for shale gas. Meanwhile, concern is increasing among the scientific community about the potential impacts of shale gas and other types of unconventional natural gas development (UGD) on human health and the environment. Although significant data gaps remain, there has been a surge in the number of articles appearing in the scientific literature, nearly three-quarters of which has been published since the beginning of 2013. Important lessons can be drawn from the UGD experience in the United States. Here we explore these considerations and argue that shale gas development policies in the UK and elsewhere should be informed by empirical evidence generated on environmental, public health, and social risks. Additionally, policy decisions should take into account the measured effectiveness of harm reduction strategies as opposed to hypothetical scenarios and purported best practices that lack empirical support. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A hybrid scenario for gas giant planet formation in rings

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.; Cai, Kai; Mejía, Annie C.; Pickett, Megan K.

    2005-02-01

    The core-accretion mechanism for gas giant formation may be too slow to create all observed gas giant planets during reasonable gas disk lifetimes, but it has yet to be firmly established that the disk instability model can produce permanent bound gaseous protoplanets under realistic conditions. Based on our recent simulations of gravitational instabilities in disks around young stars, we suggest that, even if instabilities due to disk self-gravity do not produce gaseous protoplanets directly, they may create persistent dense rings that are conducive to accelerated growth of gas giants through core accretion. The rings occur at and near the boundary between stable and unstable regions of the disk and appear to be produced by resonances with discrete spiral modes on the unstable side.

  19. National housing and impervious surface scenarios for integrated climate impact assessments

    PubMed Central

    Bierwagen, Britta G.; Theobald, David M.; Pyke, Christopher R.; Choate, Anne; Groth, Philip; Thomas, John V.; Morefield, Philip

    2010-01-01

    Understanding the impacts of climate change on people and the environment requires an understanding of the dynamics of both climate and land use/land cover changes. A range of future climate scenarios is available for the conterminous United States that have been developed based on widely used international greenhouse gas emissions storylines. Climate scenarios derived from these emissions storylines have not been matched with logically consistent land use/cover maps for the United States. This gap is a critical barrier to conducting effective integrated assessments. This study develops novel national scenarios of housing density and impervious surface cover that are logically consistent with emissions storylines. Analysis of these scenarios suggests that combinations of climate and land use/cover can be important in determining environmental conditions regulated under the Clean Air and Clean Water Acts. We found significant differences in patterns of habitat loss and the distribution of potentially impaired watersheds among scenarios, indicating that compact development patterns can reduce habitat loss and the number of impaired watersheds. These scenarios are also associated with lower global greenhouse gas emissions and, consequently, the potential to reduce both the drivers of anthropogenic climate change and the impacts of changing conditions. The residential housing and impervious surface datasets provide a substantial first step toward comprehensive national land use/land cover scenarios, which have broad applicability for integrated assessments as these data and tools are publicly available. PMID:21078956

  20. Simultaneous removal of NOx and SO2 from flue gas using combined Na2SO3 assisted electrochemical reduction and direct electrochemical reduction.

    PubMed

    Guo, Qingbin; He, Yi; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2014-07-15

    A method combining Na2SO3 assisted electrochemical reduction and direct electrochemical reduction using Fe(II)(EDTA) solution was proposed to simultaneously remove NOx and SO2 from flue gas. Activated carbon was used as catalyst to accelerate the process. This new system features (a) direct conversion of NOx and SO2 to harmless N2 and SO4(2-); (b) fast regeneration of Fe(II)(EDTA); (c) minimum use of chemical reagents; and (d) recovery of the reduction by-product (Na2SO4). Fe(II)(EDTA) solution was continuously recycled and reused during entire process, and no harmful waste was generated. Approximately 99% NOx and 98% SO2 were removed under the optimal condition. The stability test showed that the system operation was reliable. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods

    NASA Astrophysics Data System (ADS)

    Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.

    2017-08-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  2. High-resolution interpolation of climate scenarios for Canada derived from general circulation model simulations

    Treesearch

    D. T. Price; D. W. McKenney; L. A. Joyce; R. M. Siltanen; P. Papadopol; K. Lawrence

    2011-01-01

    Projections of future climate were selected for four well-established general circulation models (GCMs) forced by each of three greenhouse gas (GHG) emissions scenarios recommended by the Intergovernmental Panel on Climate Change (IPCC), namely scenarios A2, A1B, and B1 of the IPCC Special Report on Emissions Scenarios. Monthly data for the period 1961-2100 were...

  3. Mexican demand for US natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992more » level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000.« less

  4. Emissions Scenario Portal for Visualization of Low Carbon Pathways

    NASA Astrophysics Data System (ADS)

    Friedrich, J.; Hennig, R. J.; Mountford, H.; Altamirano, J. C.; Ge, M.; Fransen, T.

    2016-12-01

    This proposal for a presentation is centered around a new project which is developed collaboratively by the World Resources Institute (WRI), Google Inc., and Deep Decarbonization Pathways Project (DDPP). The project aims to develop an online, open portal, the Emissions Scenario Portal (ESP),to enable users to easily visualize a range of future greenhouse gas emission pathways linked to different scenarios of economic and energy developments, drawing from a variety of modeling tools. It is targeted to users who are not modelling experts, but instead policy analysts or advisors, investment analysts, and similar who draw on modelled scenarios to inform their work, and who can benefit from better access to, and transparency around, the wide range of emerging scenarios on ambitious climate action. The ESP will provide information from scenarios in a visually appealing and easy-to-understand manner that enable these users to recognize the opportunities to reduce GHG emissions, the implications of the different scenarios, and the underlying assumptions. To facilitate the application of the portal and tools in policy dialogues, a series of country-specific and potentially sector-specific workshops with key decision-makers and analysts, supported by relevant analysis, will be organized by the key partners and also in broader collaboration with others who might wish to convene relevant groups around the information. This project will provide opportunities for modelers to increase their outreach and visibility in the public space and to directly interact with key audiences of emissions scenarios, such as policy analysts and advisors. The information displayed on the portal will cover a wide range of indicators, sectors and important scenario characteristics such as macroeconomic information, emission factors and policy as well as technology assumptions in order to facilitate comparison. These indicators have been selected based on existing standards (such as the IIASA AR5

  5. SITE PROGRAM DEMONSTRATION ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS, BAY CITY, MICHIGAN TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The SITE Program funded a field demonstration to evaluate the Eco Logic Gas-Phase Chemical Reduction Process developed by ELI Eco Logic International Inc. (ELI), Ontario, Canada. The Demonstration took place at the Middleground Landfill in Bay City, Michigan using landfill wa...

  6. SCENARIOS FOR MEETING CALIFORNIA'S 2050 CLIMATE GOALS California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Max; Greenblatt, Jeffrey; Donovan, Sally

    2014-06-01

    This study provides an updated analysis of long-term energy system scenarios for California consistent with the State meeting its 2050 climate goal, including detailed analysis and assessment of electricity system build-out, operation, and costs across the Western Electricity Coordinating Council (WECC) region. Four key elements are found to be critical for the State to achieve its 2050 goal of 80 percent greenhouse (GHG) reductions from the 1990 level: aggressive energy efficiency; clean electricity; widespread electrification of passenger vehicles, building heating, and industry heating; and large-scale production of low-carbon footprint biofuels to largely replace petroleum-based liquid fuels. The approach taken heremore » is that technically achievable energy efficiency measures are assumed to be achieved by 2050 and aggregated with the other key elements mentioned above to estimate resultant emissions in 2050. The energy and non-energy sectors are each assumed to have the objective of meeting an 80 percent reduction from their respective 1990 GHG levels for the purposes of analysis. A different partitioning of energy and non-energy sector GHG greenhouse reductions is allowed if emission reductions in one sector are more economic or technically achievable than in the other. Similarly, within the energy or non-energy sectors, greater or less than 80 percent reduction from 1990 is allowed for sub-sectors within the energy or non-energy sectors as long as the overall target is achieved. Overall emissions for the key economy-wide scenarios are considered in this report. All scenarios are compliant or nearly compliant with the 2050 goal. This finding suggests that multiple technical pathways exist to achieve the target with aggressive policy support and continued technology development of largely existing technologies.« less

  7. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE PAGES

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli; ...

    2018-02-04

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  8. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  9. The SAFRR tsunami scenario-physical damage in California: Chapter E in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Porter, Keith; Byers, William; Dykstra, David; Lim, Amy; Lynett, Patrick; Ratliff, Jaime; Scawthorn, Charles; Wein, Anne; Wilson, Rick

    2013-01-01

    his chapter attempts to depict a single realistic outcome of the SAFRR (Science Application for Risk Reduction) tsunami scenario in terms of physical damage to and recovery of various aspects of the built environment in California. As described elsewhere in this report, the tsunami is generated by a hypothetical magnitude 9.1 earthquake seaward of the Alaska Peninsula on the Semidi Sector of the Alaska–Aleutian Subduction Zone, 495 miles southwest of Anchorage, at 11:50 a.m. Pacific Daylight Time (PDT) on Thursday March 27, 2014, and arriving at the California coast between 4:00 and 5:40 p.m. (depending on location) the same day. Although other tsunamis could have locally greater impact, this source represents a substantial threat to the state as a whole. One purpose of this chapter is to help operators and users of coastal assets throughout California to develop emergency plans to respond to a real tsunami. Another is to identify ways that operators or owners of these assets can think through options for reducing damage before a future tsunami. A third is to inform the economic analyses for the SAFRR tsunami scenario. And a fourth is to identify research needs to better understand the possible consequences of a tsunami on these assets. The asset classes considered here include the following: Piers, cargo, buildings, and other assets at the Ports of Los Angeles and Long Beach Large vessels in the Ports of Los Angeles and Long Beach Marinas and small craft Coastal buildings Roads and roadway bridges Rail, railway bridges, and rolling stock Agriculture Fire following tsunami Each asset class is examined in a subsection of this chapter. In each subsection, we generally attempt to offer a historical review of damage. We characterize and quantify the assets exposed to loss and describe the modes of damage that have been observed in past tsunamis or are otherwise deemed likely to occur in the SAFRR tsunami scenario. Where practical, we offer a mathematical model of the

  10. Influence of gas compressibility on a burning accident in a mining passage

    NASA Astrophysics Data System (ADS)

    Demir, Sinan; Calavay, Anish Raman; Akkerman, V'yacheslav

    2018-03-01

    A recent predictive scenario of a methane/air/coal dust fire in a mining passage is extended by incorporating the effect of gas compressibility into the analysis. The compressible and incompressible formulations are compared, qualitatively and quantitatively, in both the two-dimensional planar and cylindrical-axisymmetric geometries, and a detailed parametric study accounting for coal-dust combustion is performed. It is shown that gas compression moderates flame acceleration, and its impact depends on the type of the fuel, its various thermal-chemical parameters as well as on the geometry of the problem. While the effect of gas compression is relatively minor for the lean and rich flames, providing 5-25% reduction in the burning velocity and thereby justifying the incompressible formulation in that case, such a reduction appears significant, up to 70% for near-stoichiometric methane-air combustion, and therefore it should be incorporated into a rigorous formulation. It is demonstrated that the flame tip velocity remains noticeably subsonic in all the cases considered, which is opposite to the prediction of the incompressible formulation, but qualitatively agrees with the experimental predictions from the literature.

  11. The Value of CCS under Current Policy Scenarios: NDCs and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Dahowski, Robert T.; McJeon, Haewon C.

    This paper describes preliminary results of analysis using the Global Change Assessment Model (GCAM) to evaluate the potential role of CCS in addressing emissions reduction targets. Scenarios are modelled using the Paris-Increased Ambition (PIA) case developed by Fawcett et al. (2015), and a more aggressive Paris Two-Degree Ambition (P2A) case. Both cases are based upon nationally determined contributions (NDCs) agreed to at the UNFCCC Conference of Parties (COP-21) in December 2015, coupled with additional mitigation effort beyond the 2030 Paris timeframe, through the end of the century. Analysis of CCS deployment and abatement costs under both policy scenarios suggests that,more » as modelled, having CCS in the technological portfolio could reduce the global cost of addressing emissions reduction targets specified under the policy scenario by trillions of dollars, primarily by enabling a smoother and lower-cost transition to next-generation technologies. Through the end of the century, total global abatement costs associated with the PIA case – with five percent annual reduction in emission intensity and reaching 2.2 degrees by 2100 – are reduced by $15 trillion USD in the scenario where CCS is available to deploy by 2025 and remains available through 2100, reflecting a 47 percent savings in the cost of climate change abatement. Under the more ambitious P2A case, with 8 percent annual reduction in emission intensity and reaching 1.9 degrees by 2100, the availability of CCS reduces global abatement costs by $22 trillion USD through the end of the century, again nearly halving the costs of addressing the policy, relative to achieving the same target using an energy portfolio that does not include CCS. PIA and P2A scenarios with CCS result in 1,250 and 1,580 GtCO2 of global geologic storage by the end of the century, respectively.« less

  12. Multi-period natural gas market modeling Applications, stochastic extensions and solution approaches

    NASA Astrophysics Data System (ADS)

    Egging, Rudolf Gerardus

    This dissertation develops deterministic and stochastic multi-period mixed complementarity problems (MCP) for the global natural gas market, as well as solution approaches for large-scale stochastic MCP. The deterministic model is unique in the combination of the level of detail of the actors in the natural gas markets and the transport options, the detailed regional and global coverage, the multi-period approach with endogenous capacity expansions for transportation and storage infrastructure, the seasonal variation in demand and the representation of market power according to Nash-Cournot theory. The model is applied to several scenarios for the natural gas market that cover the formation of a cartel by the members of the Gas Exporting Countries Forum, a low availability of unconventional gas in the United States, and cost reductions in long-distance gas transportation. 1 The results provide insights in how different regions are affected by various developments, in terms of production, consumption, traded volumes, prices and profits of market participants. The stochastic MCP is developed and applied to a global natural gas market problem with four scenarios for a time horizon until 2050 with nineteen regions and containing 78,768 variables. The scenarios vary in the possibility of a gas market cartel formation and varying depletion rates of gas reserves in the major gas importing regions. Outcomes for hedging decisions of market participants show some significant shifts in the timing and location of infrastructure investments, thereby affecting local market situations. A first application of Benders decomposition (BD) is presented to solve a large-scale stochastic MCP for the global gas market with many hundreds of first-stage capacity expansion variables and market players exerting various levels of market power. The largest problem solved successfully using BD contained 47,373 variables of which 763 first-stage variables, however using BD did not result in

  13. Greenhouse gas emission reduction: A case study of Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, P.; Munasinghe, M.

    1995-12-31

    In this paper we describe a case study for Sri Lanka that explores a wide range of options for reducing greenhouse gas (GHG) emissions. Options range from renewable technologies to carbon taxes and transportation sector initiatives. We find that setting electricity prices to reflect long-run marginal cost has a significant beneficial impact on the environment, and the expected benefits predicted on theoretical grounds are confirmed by the empirical results. Pricing reform also has a much broader impact than physical approaches to demand side management, although several options such as compact fluorescent lighting appear to have great potential. Options to reducemore » GHG emissions are limited as Sri Lanka lacks natural gas, and nuclear power is not practical until the system reaches a much larger size. Building the few remaining large hydro facilities would significantly reduce GHG emissions, but these would require costly resettlement programs. Given the inevitability for fossil-fuel base load generation, both clean coal technologies such as pressurized fluidized bed combustion, as well as steam-cycle residual oil fueled plants merit consideration as alternatives to the conventional pulverized coal-fired plants currently being considered. Transportation sector measures necessary to ameliorate local urban air pollution problems, such as vehicle inspection and maintenance programs, also bring about significant reductions of GHG emissions. 51 refs., 10 figs., 3 tabs.« less

  14. Scenarios for Low Carbon and Low Water Electric Power Plant Operations: Implications for Upstream Water Use.

    PubMed

    Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H

    2016-11-01

    Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.

  15. Population vulnerability and evacuation challenges in California for the SAFRR tsunami scenario: Chapter I in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Wood, Nathan; Ratliff, Jamie; Peters, Jeff; Shoaf, Kimberley

    2013-01-01

    The SAFRR tsunami scenario models the impacts of a hypothetical yet plausible tsunami associated with a magnitude 9.1 megathrust earthquake east of the Alaska Peninsula. This report summarizes community variations in population vulnerability and potential evacuation challenges to the tsunami. The most significant public-health concern for California coastal communities during a distant-source tsunami is the ability to evacuate people out of potential inundation zones. Fatalities from the SAFRR tsunami scenario could be low if emergency managers can implement an effective evacuation in the time between tsunami generation and arrival, as well as keep people from entering tsunami-prone areas until all-clear messages can be delivered. This will be challenging given the estimated 91,956 residents, 81,277 employees, as well as numerous public venues, dependent-population facilities, community-support businesses, and high-volume beaches that are in the 79 incorporated communities and 17 counties that have land in the scenario tsunami-inundation zone. Although all coastal communities face some level of threat from this scenario, the highest concentrations of people in the scenario tsunami-inundation zone are in Long Beach, San Diego, Newport Beach, Huntington Beach, and San Francisco. Communities also vary in the prevalent categories of populations that are in scenario tsunami-inundation zones, such as residents in Long Beach, employees in San Francisco, tourists at public venues in Santa Cruz, and beach or park visitors in unincorporated Los Angeles County. Certain communities have higher percentages of groups that may need targeted outreach and preparedness training, such as renters, the very young and very old, and individuals with limited English-language skills or no English-language skills at all. Sustained education and targeted evacuation messaging is also important at several high-occupancy public venues in the scenario tsunami-inundation zone (for example, city

  16. Upgraded biogas from municipal solid waste for natural gas substitution and CO2 reduction--a case study of Austria, Italy, and Spain.

    PubMed

    Starr, Katherine; Villalba, Gara; Gabarrell, Xavier

    2015-04-01

    Biogas is rich in methane and can be further purified through biogas upgrading technologies, presenting a viable alternative to natural gas. Landfills and anaerobic digestors treating municipal solid waste are a large source of such biogas. They therefore offer an attractive opportunity to tap into this potential source of natural gas while at the same time minimizing the global warming impact resulting from methane emissions in waste management schemes (WMS) and fossil fuel consumption reduction. This study looks at the current municipal solid waste flows of Spain, Italy, and Austria over one year (2009), in order to determine how much biogas is generated. Then it examines how much natural gas could be substituted by using four different biogas upgrading technologies. Based on current waste generation rates, exploratory but realistic WMS were created for each country in order to maximize biogas production and potential for natural gas substitution. It was found that the potential substitution of natural gas by biogas resulting from the current WMS seems rather insignificant: 0.2% for Austria, 0.6% for Italy and 0.3% for Spain. However, if the WMS is redesigned to maximize biogas production, these figures can increase to 0.7% for Austria, 1% for Italy and 2% for Spain. Furthermore, the potential CO2 reduction as a consequence of capturing the biogas and replacing fossil fuel can result in up to a 93% reduction of the annual national waste greenhouse gas emissions of Spain and Italy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Does extreme precipitation intensity depend on the emissions scenario?

    NASA Astrophysics Data System (ADS)

    Pendergrass, Angeline; Lehner, Flavio; Sanderson, Benjamin; Xu, Yangyang

    2016-04-01

    The rate of increase of global-mean precipitation per degree surface temperature increase differs for greenhouse gas and aerosol forcings, and therefore depends on the change in composition of the emissions scenario used to drive climate model simulations for the remainder of the century. We investigate whether or not this is also the case for extreme precipitation simulated by a multi-model ensemble driven by four realistic emissions scenarios. In most models, the rate of increase of maximum annual daily rainfall per degree global warming in the multi-model ensemble is statistically indistinguishable across the four scenarios, whether this extreme precipitation is calculated globally, over all land, or over extra-tropical land. These results indicate that, in most models, extreme precipitation depends on the total amount of warming and does not depend on emissions scenario, in contrast to mean precipitation.

  18. Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.

    PubMed

    Babel, Sandhya; Vilaysouk, Xaysackda

    2016-01-01

    Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill. © The Author(s) 2015.

  19. Reductant injection and mixing system

    DOEpatents

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  20. The SAFRR Tsunami Scenario

    USGS Publications Warehouse

    Porter, K.; Jones, Lucile M.; Ross, Stephanie L.; Borrero, J.; Bwarie, J.; Dykstra, D.; Geist, Eric L.; Johnson, L.; Kirby, Stephen H.; Long, K.; Lynett, P.; Miller, K.; Mortensen, Carl E.; Perry, S.; Plumlee, G.; Real, C.; Ritchie, L.; Scawthorn, C.; Thio, H.K.; Wein, Anne; Whitmore, P.; Wilson, R.; Wood, Nathan J.; Ostbo, Bruce I.; Oates, Don

    2013-01-01

    The U.S. Geological Survey and several partners operate a program called Science Application for Risk Reduction (SAFRR) that produces (among other things) emergency planning scenarios for natural disasters. The scenarios show how science can be used to enhance community resiliency. The SAFRR Tsunami Scenario describes potential impacts of a hypothetical, but realistic, tsunami affecting California (as well as the west coast of the United States, Alaska, and Hawaii) for the purpose of informing planning and mitigation decisions by a variety of stakeholders. The scenario begins with an Mw 9.1 earthquake off the Alaska Peninsula. With Pacific basin-wide modeling, we estimate up to 5m waves and 10 m/sec currents would strike California 5 hours later. In marinas and harbors, 13,000 small boats are damaged or sunk (1 in 3) at a cost of $350 million, causing navigation and environmental problems. Damage in the Ports of Los Angeles and Long Beach amount to $110 million, half of it water damage to vehicles and containerized cargo. Flooding of coastal communities affects 1800 city blocks, resulting in $640 million in damage. The tsunami damages 12 bridge abutments and 16 lane-miles of coastal roadway, costing $85 million to repair. Fire and business interruption losses will substantially add to direct losses. Flooding affects 170,000 residents and workers. A wide range of environmental impacts could occur. An extensive public education and outreach program is underway, as well as an evaluation of the overall effort.

  1. Arctic shipping emissions inventories and future scenarios

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Lack, D. A.; Winebrake, J. J.; Harder, S.; Silberman, J. A.; Gold, M.

    2010-04-01

    The Arctic is a sensitive region in terms of climate change and a rich natural resource for global economic activity. Arctic shipping is an important contributor to the region's anthropogenic air emissions, including black carbon - a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow. These emissions are projected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. To understand the impacts of these increased emissions, scientists and modelers require high-resolution, geospatial emissions inventories that can be used for regional assessment modeling. This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. Short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing; a first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing due to Arctic ships by at least 17% compared to warming from these vessels' CO2 emissions (~42 000 gigagrams). The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  2. Computational Study of Scenarios Regarding Explosion Risk Mitigation

    NASA Astrophysics Data System (ADS)

    Vlasin, Nicolae-Ioan; Mihai Pasculescu, Vlad; Florea, Gheorghe-Daniel; Cornel Suvar, Marius

    2016-10-01

    Exploration in order to discover new deposits of natural gas, upgrading techniques to exploit these resources and new ways to convert the heat capacity of these gases into industrial usable energy is the research areas of great interest around the globe. But all activities involving the handling of natural gas (exploitation, transport, combustion) are subjected to the same type of risk: the risk to explosion. Experiments carried out physical scenarios to determine ways to reduce this risk can be extremely costly, requiring suitable premises, equipment and apparatus, manpower, time and, not least, presenting the risk of personnel injury. Taking in account the above mentioned, the present paper deals with the possibility of studying the scenarios of gas explosion type events in virtual domain, exemplifying by performing a computer simulation of a stoichiometric air - methane explosion (methane is the main component of natural gas). The advantages of computer-assisted imply are the possibility of using complex virtual geometries of any form as the area of deployment phenomenon, the use of the same geometry for an infinite number of settings of initial parameters as input, total elimination the risk of personnel injury, decrease the execution time etc. Although computer simulations are hardware resources consuming and require specialized personnel to use the CFD (Computational Fluid Dynamics) techniques, the costs and risks associated with these methods are greatly diminished, presenting, in the same time, a major benefit in terms of execution time.

  3. Linked Analysis of East Asia Emission Reduction Pathways

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Woo, J. H.; Bu, C.; Lee, Y.; Kim, J.; Jang, Y.; Park, M.

    2017-12-01

    Air pollution and its impacts over the Northeast Asia are very severe because of the massive pollutant emissions and high population. Korea has been trying to improve air quality with the enhanced environmental legislation. The air quality over Korea, however, does not entirely dependent on its local emissions. Transboundary air pollution from China highly affects Korean atmosphere. The purpose of this research is to understand role of local and transbounday efforts to improve air quality changes over Korea. In this research, we have tried to set up the multiple emission scenario pathways for Korea and China using IIASA's GAINS (Greenhouse gas - Air pollution Interactions aNd Synergies) modeling framework. More up-to-date growth factors and control policy packets were made using regional socio-economic data and control policy information from local governments and international statistics. Four major scenario pathways, 1) Base (Baseline: current legislation), 2) OTB/OTB(On the book/On the way : existing control measure/planed control measure), 3) BOTW_GHG(Beyond on the way : OTW with GHG reduction plan), 4) BOTW_NH3 (OTW with additional NH3 reduction measure) were developed to represent air quality improvement pathways in consideration of both Korean and Chinese efforts. Strict ambient PM2.5 standards from Seoul metropolitan Air quality Improvement Plan(SAIP) seems too enthusiastic without linking air quality control efforts of China. Step-by-step emission controls and following air quality, control cost, health impact from each scenario will be presented at the conference. This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program". And This work was supported under the framework of national strategy project on fine particulate matters by Ministry of Science, ICT and Future Planning.

  4. Electrification of the transportation sector offers limited country-wide greenhouse gas reductions

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2014-03-01

    Compared with conventional propulsion, plugin and hybrid vehicles may offer reductions in greenhouse gas (GHG) emissions, regional air/noise pollution, petroleum dependence, and ownership cost. Comparing only plugins and hybrids amongst themselves, and focusing on GHG, relative merits of different options have been shown to be more nuanced, depending on grid-carbon-intensity, range and thus battery manufacturing and weight, and trip patterns. We present a life-cycle framework to compare GHG emissions for three drivetrains (plugin-electricity-only, gasoline-only-hybrid, and plugin-hybrid) across driving ranges and grid-carbon-intensities, for passenger cars, vans, buses, or trucks (well-to-wheel plus storage manufacturing). Parameter and model uncertainties are quantified via sensitivity analyses. We find that owing to the interplay of range, GHG/km, and portions of country-wide kms accessible to electrification, GHG reductions achievable from plugins (whether electricity-only or hybrids) are limited even when assuming low-carbon future grids. Furthermore, for policy makers considering GHG from electricity and transportation sectors combined, plugin technology may in fact increase GHG compared to gasoline-only-hybrids, regardless of grid-carbon-intensity.

  5. Modeling the greenhouse gas budget of straw returning in China: feasibility of mitigation and countermeasures.

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Zheng, Hua

    2010-05-01

    Straw returning is considered to be one of the most promising carbon sequestration measures in China's cropland. A compound model, namely "Straw Returning and Burning Model-Expansion" (SRBME), was built to estimate the net mitigation potential, economic benefits, and air pollutant reduction of straw returning. Three scenarios, that is, baseline, "full popularization of straw returning (FP)," and "full popularization of straw returning and precision fertilization (FP + P)," were set to reflect popularization of straw returning. The results of the SRBME indicated that (1) compared with the soil carbon sequestration of 13.37 Tg/yr, the net mitigation potentials, which were 6.328 Tg/yr for the FP scenario and 9.179 Tg/yr for the FP + P scenario, had different trends when the full budget of the greenhouse gases was considered; (2) when the feasibility in connection with greenhouse gas (GHG) mitigation, economic benefits, and environmental benefits was taken into consideration, straw returning was feasible in 15 provinces in the FP scenario, with a total net mitigation potential of 7.192 TgCe/yr and the total benefits of CNY 1.473 billion (USD 216.6 million); (3) in the FP + P scenario, with the implementation of precision fertilization, straw returning was feasible in 26 provinces with a total net mitigation potential of 10.39 TgCe/yr and the total benefits of CNY 5.466 billion (USD 803.8 million); (4) any extent of change in the treatment of straw from being burnt to being returned would contribute to air pollution reduction; (5) some countermeasures, such as CH(4) reduction in rice paddies, precision fertilization, financial support, education and propaganda, would promote the feasibility of straw returning as a mitigation measure.

  6. Valuating Indonesian upstream oil management scenario through system dynamics modelling

    NASA Astrophysics Data System (ADS)

    Ketut Gunarta, I.; Putri, F. A.

    2018-04-01

    Under the existing regulation in Constitution Number 22 Year 2001 (UU No 22 Tahun 2001), Production Sharing Contract (PSC) continues to be the scenario in conducting oil and gas upstream mining activities as the previous regulation (UU No. 8 Tahun 1971). Because of the high costs and risks in upstream mining activities, the contractors are dominated by foreign companies, meanwhile National Oil Company (NOC) doesn’t act much. The domination of foreign contractor companies also warned Indonesia in several issues addressing to energy independence and energy security. Therefore, to achieve the goals of energy which is independence and security, there need to be a revision in upstream oil activities regulating scenario. The scenarios will be comparing the current scenario, which is PSC, with the “full concession” scenario for National Oil Company (NOC) in managing oil upstream mining activities. Both scenario will be modelled using System Dynamics methodology and assessed furthermore using financial valuation method of income approach. Under the 2 scenarios, the author will compare which scenario is better for upstream oil management in reaching the goals mentioned before and more profitable in financial aspect. From the simulation, it is gathered that concession scenario offers better option than PSC in reaching energy independence and energy security.

  7. Regional-scale carbon and greenhouse gas dynamics of organic matter amendments on grassland soils

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Silver, W. L.

    2017-12-01

    While progress is being made toward emissions reductions, achieving the international warming target of no more than 2 °C by 2100 will require active removal of carbon dioxide from the atmosphere. This research explores the potential for grassland ecosystems to sequester soil carbon (C) and mitigate climate change over time. We parameterized a site-level biogeochemical model (DayCent) to predict the effect of compost applications on grassland net primary productivity, greenhouse gas emissions, and soil C storage and loss. We compare the results of the DayCent model from seven grassland regions across a broad climate gradient in CA. We also modeled the impact of climate change under a high emissions scenario (RCP 8.5) and reduced emissions scenario (RCP 4.5). Model results show that a single application of compost leads to a large net increase in soil C over several decades across all sites. Maximum soil C sequestration relative to control simulations occurred approximately 15 years after a ¼ inch compost was applied to the land, resulting in a maximum net C drawdown of approximately 6.6 Mg C/ha (Mendocino) by 2030 and a continued climate benefit from enhanced C storage through the end of the century. Compost application resulted in enhanced soil C in both climate scenarios, but the reduced emissions climate scenario resulted in greater net C storage than the high emissions scenario by 2100. This points to a virtuous cycle of simultaneous emissions reductions leading to enhanced climate change mitigation potential from land management strategies.

  8. Assessing global fossil fuel availability in a scenario framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Nico; Hilaire, Jérôme; Brecha, Robert J.

    This study assesses global, long-term economic availability of coal, oil and gas within the Shared Socio-economic Pathway (SSP) scenario framework considering alternative assumptions as to highly uncertain future developments of technology, policy and the economy. Diverse sets of trajectories are formulated varying the challenges to mitigation and adaptation of climate change. The potential CO2 emissions from fossil fuels make it a crucial element subject to deep uncertainties. The analysis is based on a well-established data set of cost-quantity combinations that assumes favorable techno-economic developments, but ignores additional constraints on the extraction sector. This study significantly extends that analysis to includemore » alternative assumptions for the fossil fuel sector consistent with the SSP scenario families and applies these filters to the original data set, thus resulting in alternative cumulative fossil fuel availability curves. In a Middle-of-the-Road scenario, low cost fossil fuels embody carbon consistent with a RCP6.0 emission profile, if all the CO2 were emitted freely during the 21st century. In scenarios with high challenges to mitigation, the assumed embodied carbon in low-cost fossil fuels can trigger a RCP8.5 scenario; low mitigation challenges scenarios are still consistent with a RCP4.5 scenario.« less

  9. Natural Gas Value-Chain and Network Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobos, Peter H.; Outkin, Alexander V.; Beyeler, Walter E.

    2015-09-01

    The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. Tomore » illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less

  10. Water use competition scenarios during the upcoming development of shale gas reserves across the Mexican Eagle Ford play Image already added

    NASA Astrophysics Data System (ADS)

    Arciniega, S.; Breña-Naranjo, J. A.; Hernaández Espriú, A.; Pedrozo-Acuña, A.

    2017-12-01

    Mexico has significant shale oil and gas resources mainly contained within the Mexican part of the Eagle Ford play (Mex-EF), in the Burgos Basin located in northern Mexico. Over the last years, concerns about the water use associated to shale gas development using hydraulic fracturing (HF) have been increasing in the United States and Canada. In Mexico, the recent approval of a new energy bill allows the exploration, development and production of shale gas reserves. However, several of the Mexican shale gas resources are located in water-limited environments, such as the Mex-EF. The lack of climate and hydrological gauging stations across this region constrains information about how much freshwater from surface and groundwater sources is available and whether its interannual water availability is sufficient to satisfy the water demand by other users (agricultural, urban) of the region This work projects the water availability across the Mex-EF and its water use derived from the expansion of unconventional gas developments over the next 15 years. Water availability is estimated using a water balance approach, where the irrigation's groundwater withdrawals time series were reconstructed using remote sensing products (vegetation index and hydrological outputs from LSMs) and validated with in situ observed water use at three different irrigation districts of the region. Water use for HF is inferred using type curves of gas production, flowback and produced (FP) water and curves of drilled wells per year from the US experience, mainly from the Texas-EF play. Scenarios that combine freshwater use and FP water use for HF are developed and the spatial distribution of HF well pads is projected using random samples with a range of wells' horizontal length. This proposed methodology can be applied in other shale formations of the world under water stress and it also helps to determine whether water scarcity can be a limiting factor for the shale gas industry over the next

  11. Life cycle assessment of four municipal solid waste management scenarios in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Jinglan, E-mail: hongjing@sdu.edu.c; Li Xiangzhi; Zhaojie Cui

    2010-11-15

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment wasmore » ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.« less

  12. Role of a gas phase in the kinetics of zinc and iron reduction with carbon from slag melts

    NASA Astrophysics Data System (ADS)

    Chumarev, V. M.; Selivanov, E. N.

    2013-03-01

    The influence of the mass transfer conditions in the gas phase having formed at the carbon-slag melt interface on CO regeneration is approximately estimated in the framework of a two-stage scheme of metal reduction from slag melts by carbon. The effect of zinc vapors on the combined reduction of iron and zinc from slags is considered. The influence of the slag composition and temperature on the critical concentration of zinc oxide above which no iron forms as an individual phase is explained.

  13. Assessment of biodiesel scenarios for Midwest freight transport emission reduction.

    DOT National Transportation Integrated Search

    2010-04-01

    There are trade-offs when attempting to reduce both greenhouse gas and criteria air pollutants for freight transport, as the control : strategies are not necessarily complimentary. While emission controls can remove ozone precursors and particulate f...

  14. Dynamic safety assessment of natural gas stations using Bayesian network.

    PubMed

    Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj

    2017-01-05

    Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Environmental impacts of high penetration renewable energy scenarios for Europe

    NASA Astrophysics Data System (ADS)

    Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.

    2016-01-01

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.

  16. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Urgun Demirtas, Meltem

    -stage mesophilic digester with biogas flaring. Along with the alternative HTL process, four types of AD technologies with fuel production—single-stage mesophilic, mesophilic 2-stage, single-stage mesophilic with thermohydrolysis treatment, and mesophilicmesophilic acid/gas phase—are studied. Results show that the sludge-to-CNG pathway via AD and the sludge-to-liquid pathway via HTL reduce GHG emissions consumptions significantly. When we compare the GHG emissions of the alternative fuel production pathways to that of the counterfactual case in terms of the amount of sludge treated, reductions in GHG emissions are 39%–80% and 87% for alternative AD and HTL, respectively. Compared to petroleum gasoline and diesel GHG emission results in terms of MJ, the renewable CNG production pathway via AD and the renewable diesel production pathway via HTL reduce GHG emissions by 193% and 46%, respectively. These large reductions are mainly due to GHG credits from avoiding GHGs under the counterfactual scenario, and/or fertilizer displacement credits. Similarly, reductions in fossil fuel use for sludge-based fuels are huge. However, well-defined counterfactual scenarios are needed because the results of the study depend on the counterfactual scenario, which might vary over time.« less

  17. Assessment of a Hybrid Retrofit Gas Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeschele, Marc; Weitzel, Elizabeth; Backman, Christine

    2017-02-28

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unitmore » with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less

  18. Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment

    PubMed Central

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin

    2018-01-01

    As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8–61.1%, followed by SpoPerf (53.9–58.3%) and EcoPerf (42.3–45.4%), and the costs of the three scenarios were 3.74, 3.47 and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security. PMID:29401747

  19. Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment.

    PubMed

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin

    2018-02-05

    As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8-61.1%, followed by SpoPerf (53.9-58.3%) and EcoPerf (42.3-45.4%), and the costs of the three scenarios were 3.74, 3.47, and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security.

  20. Climate and health implications of future aerosol emission scenarios

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Landry, Jean-Sébastien; Damon Matthews, H.

    2018-02-01

    Anthropogenic aerosols have a net cooling effect on climate and also cause adverse health effects by degrading air quality. In this global-scale sensitivity study, we used a combination of the aerosol-climate model ECHAM-HAMMOZ and the University of Victoria Earth System Climate Model to assess the climate and health effects of aerosols emissions from three Representative Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5) and two new (LOW and HIGH) aerosol emission scenarios derived from RCP4.5, but that span a wider spectrum of possible future aerosol emissions. All simulations had CO2 emissions and greenhouse gas forcings from RCP4.5. Aerosol forcing declined similarly in the standard RCP aerosol emission scenarios: the aerosol effective radiative forcing (ERF) decreased from -1.3 W m-2 in 2005 to between -0.1 W m-2 and -0.4 W m-2 in 2100. The differences in ERF were substantially larger between LOW (-0.02 W m-2 in 2100) and HIGH (-0.8 W m-2) scenarios. The global mean temperature difference between the simulations with standard RCP aerosol emissions was less than 0.18 °C, whereas the difference between LOW and HIGH reached 0.86 °C in 2061. In LOW, the rate of warming peaked at 0.48 °C per decade in the 2030s, whereas in HIGH it was the lowest of all simulations and never exceeded 0.23 °C per decade. Using present-day population density and baseline mortality rates for all scenarios, PM2.5-induced premature mortality was 2 371 800 deaths per year in 2010 and 525 700 in 2100 with RCP4.5 aerosol emissions; in HIGH, the premature mortality reached its maximum value of 2 780 800 deaths per year in 2030, whereas in LOW the premature mortality at 2030 was below 299 900 deaths per year. Our results show potential trade-offs in aerosol mitigation with respect to climate change and public health as ambitious reduction of aerosol emissions considerably increased warming while decreasing mortality.

  1. Electrochemical Reduction of CO2 to Organic Acids by a Pd-MWNTs Gas-Diffusion Electrode in Aqueous Medium

    PubMed Central

    Lu, Guang; Bian, Zhaoyong; Liu, Xin

    2013-01-01

    Pd-multiwalled carbon nanotubes (Pd-MWNTs) catalysts for the conversion of CO2 to organic acids were prepared by the ethylene glycol reduction and fully characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) technologies. The amorphous Pd particles with an average size of 5.7 nm were highly dispersed on the surface of carbon nanotubes. Functional groups of the MWNTs played a key role in the palladium deposition. The results indicated that Pd-MWNTs could transform CO2 into organic acid with high catalytic activity and CO2 could take part in the reduction reaction directly. Additionally, the electrochemical reduction of CO2 was investigated by a diaphragm electrolysis device, using a Pd-MWNTs gas-diffusion electrode as a cathode and a Ti/RuO2 net as an anode. The main products in present system were formic acid and acetic acid identified by ion chromatograph. The selectivity of the products could be achieved by reaction conditions changing. The optimum faraday efficiencies of formic and acetic acids formed on the Pd-MWNTs gas-diffusion electrode at 4 V electrode voltages under 1 atm CO2 were 34.5% and 52.3%, respectively. PMID:24453849

  2. An Experimental Investigation into NO sub X Control of a Gas Turbine Combustor and Augmentor Tube Incorporating a Catalytic Reduction System

    DTIC Science & Technology

    1990-03-01

    An initial experimental investigation was conducted to examine the feasibility of NOx emission control using catalytic reduction techniques in the ...current configuration impractical. Recommendations for alternative configurations are presented. The results of the investigation have proven that further study is warranted....used as a gas generator and catalytic reduction system. Four data runs were made. Three runs were completed without the catalyst installed

  3. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    NASA Astrophysics Data System (ADS)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  4. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M. W.; Heath, G.; Sandor, D.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehiclesmore » in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.« less

  5. One-Pot Synthesis of GeAs Ultrafine Particles from Coal Fly Ash by Vacuum Dynamic Flash Reduction and Inert Gas Condensation.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2017-06-16

    Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO 2 and As 2 O 3 , the gas-solid phase reaction of GeO 2 , As 2 O 3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.

  6. Health benefit evaluation of the energy use scenarios in Beijing, China.

    PubMed

    Pan, Xiaochuan; Yue, Wei; He, Kebin; Tong, Shilu

    2007-03-15

    Air pollution is one of the important causal factors for excess cardiorespiratory deaths and diseases. However, little information is available on health gains from clean energy usage in developing countries. In this study the expected population exposed to air pollutants was estimated under the different energy use scenarios by the year 2010, 2020 and 2030, respectively, in the urban area of Beijing, China. The concentration-response functions between air pollutants and the health endpoints were established using meta-analysis and regression models. The decreased cardiorespiratory deaths and diseases of the exposed population were predicted as the health benefits from air pollution reduction. We used daily measurements of particulate matter less than 10 mum in aerodynamic diameter (PM(10)) and sulphate dioxide (SO(2)) as air pollution indicators. The percentage of population exposed to higher level of PM(10) will be decreased significantly under the clean energy use scenario than that under the Baseline Scenario (i.e., business-as-usual scenario). Compared with the Baseline Scenario there will be, by 2010, 2020, and 2030, respectively, a decrease of 29-152, 30-212 and 39-287 acute excess deaths; and 340-1811, 356-2529 and 462-3424 chronic excess deaths associated with the reduction of PM(10) level; also a decrease of 237-331, 285-371 and 400-554 short-term excess deaths associated with the decrease of SO(2) level. Meanwhile, the number of respiratory and cardiovascular hospital admissions, outpatient visits to internal and paediatrics departments, total emergency room visits and asthma attacks will be remarkably reduced with the reduction of air pollution. Energy structure improvement could reduce ambient air pollution and produce substantial health benefits to the population in Beijing. These findings may have significant implications for other metropolitan cities, particularly in developing countries.

  7. Prospects for energy efficiency improvement and reduction of emissions and life cycle costs for natural gas vehicles

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.

    2017-01-01

    This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.

  8. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    DOEpatents

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  9. Intelligent and integrated techniques for coalbed methane (CBM) recovery and reduction of greenhouse gas emission.

    PubMed

    Qianting, Hu; Yunpei, Liang; Han, Wang; Quanle, Zou; Haitao, Sun

    2017-07-01

    Coalbed methane (CBM) recovery is a crucial approach to realize the exploitation of a clean energy and the reduction of the greenhouse gas emission. In the past 10 years, remarkable achievements on CBM recovery have been obtained in China. However, some key difficulties still exist such as long borehole drilling in complicated geological condition, and poor gas drainage effect due to low permeability. In this study, intelligent and integrated techniques for CBM recovery are introduced. These integrated techniques mainly include underground CBM recovery techniques and ground well CBM recovery techniques. The underground CBM recovery techniques consist of the borehole formation technique, gas concentration improvement technique, and permeability enhancement technique. According to the division of mining-induced disturbance area, the ground well arrangement area and well structure type in mining-induced disturbance developing area and mining-induced disturbance stable area are optimized to significantly improve the ground well CBM recovery. Besides, automatic devices such as drilling pipe installation device are also developed to achieve remote control of data recording, which makes the integrated techniques intelligent. These techniques can provide key solutions to some long-term difficulties in CBM recovery.

  10. Semiempirical limits on the thermal conductivity of intracluster gas

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Hughes, John P.; Tucker, Wallace H.

    1992-01-01

    A semiempirical method for establishing lower limits on the thermal conductivity of hot gas in clusters of galaxies is described. The method is based on the observation that the X-ray imaging data (e.g., Einstein IPC) for clusters are well described by the hydrostatic-isothermal beta model, even for cooling flow clusters beyond about one core radius. In addition, there are strong indications that noncooling flow clusters (like the Coma Cluster) have a large central region (up to several core radii) of nearly constant gas temperature. This suggests that thermal conduction is an effective means of transporting and redistributing the thermal energy of the gas. This in turn has implications for the extent to which magnetic fields in the cluster are effective in reducing the thermal conductivity of the gas. Time-dependent hydrodynamic simulations for the gas in the Coma Cluster under two separate evolutionary scenarios are presented. One scenario assumes that the cluster potential is static and that the gas has an initial adiabatic distribution. The second scenario uses an evolving cluster potential. These models along with analytic results show that the thermal conductivity of the gas in the Coma Cluster cannot be less than 0.1 of full Spitzer conductivity. These models also show that high gas conductivity assists rather than hinders the development of radiative cooling in the central regions of clusters.

  11. Effect of Precursor Selection on the Photocatalytic Performance of Indium Oxide Nanomaterials for Gas-Phase CO 2 Reduction

    DOE PAGES

    Hoch, Laura B.; He, Le; Qiao, Qiao; ...

    2016-06-01

    Nonstoichiometric indium oxide nanoparticles, In 2O 3–x(OH)y, have been shown to function as active photocatalysts for gas-phase CO 2 reduction under simulated solar irradiation. We demonstrate that the choice of starting material has a strong effect on the photocatalytic activity of indium oxide nanoparticles. We also examine three indium oxide materials prepared via the thermal decomposition of either indium(III) hydroxide or indium(III) nitrate and correlate their stability and photocatalytic activity to the number and type of defect present in the material. Furthermore, we use 13CO 2 isotope-tracing experiments to clearly identify the origins of the observed carbon-containing products. Significantly, wemore » find that the oxidizing nature of the precursor anion has a substantial impact on the defect formation within the sample. Our study demonstrates the importance of surface defects in designing an active heterogeneous photocatalyst and provides valuable insight into key parameters for the precursor design, selection, and performance optimization of materials for gas-phase CO 2 reduction.« less

  12. Greenhouse gas and criteria emission benefits through reduction of vessel speed at sea.

    PubMed

    Khan, M Yusuf; Agrawal, Harshit; Ranganathan, Sindhuja; Welch, William A; Miller, J Wayne; Cocker, David R

    2012-11-20

    Reducing emissions from ocean-going vessels (OGVs) as they sail near populated areas is a widely recognized goal, and Vessel Speed Reduction (VSR) is one of several strategies that is being adopted by regulators and port authorities. The goal of this research was to measure the emission benefits associated with greenhouse gas and criteria pollutants by operating OGVs at reduced speed. Emissions were measured from one Panamax and one post-Panamax class container vessels as their vessel speed was reduced from cruise to 15 knots or below. VSR to 12 knots yielded carbon dioxide (CO(2)) and nitrogen oxides (NO(x)) emissions reductions (in kg/nautical mile (kg/nmi)) of approximately 61% and 56%, respectively, as compared to vessel cruise speed. The mass emission rate (kg/nmi) of PM(2.5) was reduced by 69% with VSR to 12 knots alone and by ~97% when coupled with the use of the marine gas oil (MGO) with 0.00065% sulfur content. Emissions data from vessels while operating at sea are scarce and measurements from this research demonstrated that tidal current is a significant parameter affecting emission factors (EFs) at lower engine loads. Emissions factors at ≤20% loads calculated by methodology adopted by regulatory agencies were found to underestimate PM(2.5) and NO(x) by 72% and 51%, respectively, when compared to EFs measured in this study. Total pollutant emitted (TPE) in the emission control area (ECA) was calculated, and emission benefits were estimated as the VSR zone increased from 24 to 200 nmi. TPE(CO2) and TPE(PM2.5) estimated for large container vessels showed benefits for CO(2) (2-26%) and PM(2.5) (4-57%) on reducing speeds from 15 to 12 knots, whereas TPE(CO2) and TPE(PM2.5) for small and medium container vessels were similar at 15 and 12 knots.

  13. Structural safety assessment for FLNG-LNGC system during offloading operation scenario

    NASA Astrophysics Data System (ADS)

    Hu, Zhi-qiang; Zhang, Dong-wei; Zhao, Dong-ya; Chen, Gang

    2017-04-01

    The crashworthiness of the cargo containment systems (CCSs) of a floating liquid natural gas (FLNG) and the side structures in side-by-side offloading operations scenario are studied in this paper. An FLNG vessel is exposed to potential threats from collisions with a liquid natural gas carrier (LNGC) during the offloading operations, which has been confirmed by a model test of FLNG-LNGC side-by-side offloading operations. A nonlinear finite element code LS-DYNA is used to simulate the collision scenarios during the offloading operations. Finite element models of an FLNG vessel and an LNGC are established for the purpose of this study, including a detailed LNG cargo containment system in the FLNG side model. Based on the parameters obtained from the model test and potential dangerous accidents, typical collision scenarios are defined to conduct a comprehensive study. To evaluate the safety of the FLNG vessel, a limit state is proposed based on the structural responses of the LNG CCS. The different characteristics of the structural responses for the primary structural components, energy dissipation and collision forces are obtained for various scenarios. Deformation of the inner hull is found to have a great effect on the responses of the LNG CCS, with approximately 160 mm deformation corresponding to the limit state. Densely arranged web frames can absorb over 35% of the collision energy and be proved to greatly enhance the crashworthiness of the FLNG side structures.

  14. Absolute Standard Hydrogen Electrode Potential Measured by Reduction of Aqueous Nanodrops in the Gas Phase

    PubMed Central

    Donald, William A.; Leib, Ryan D.; O'Brien, Jeremy T.; Bush, Matthew F.; Williams, Evan R.

    2008-01-01

    In solution, half-cell potentials are measured relative to those of other half cells, thereby establishing a ladder of thermochemical values that are referenced to the standard hydrogen electrode (SHE), which is arbitrarily assigned a value of exactly 0 V. Although there has been considerable interest in, and efforts toward, establishing an absolute electrochemical half-cell potential in solution, there is no general consensus regarding the best approach to obtain this value. Here, ion-electron recombination energies resulting from electron capture by gas-phase nanodrops containing individual [M(NH3)6]3+, M = Ru, Co, Os, Cr, and Ir, and Cu2+ ions are obtained from the number of water molecules that are lost from the reduced precursors. These experimental data combined with nanodrop solvation energies estimated from Born theory and solution-phase entropies estimated from limited experimental data provide absolute reduction energies for these redox couples in bulk aqueous solution. A key advantage of this approach is that solvent effects well past two solvent shells, that are difficult to model accurately, are included in these experimental measurements. By evaluating these data relative to known solution-phase reduction potentials, an absolute value for the SHE of 4.2 ± 0.4 V versus a free electron is obtained. Although not achieved here, the uncertainty of this method could potentially be reduced to below 0.1 V, making this an attractive method for establishing an absolute electrochemical scale that bridges solution and gas-phase redox chemistry. PMID:18288835

  15. Multiple greenhouse gas feedbacks from the land biosphere under future climate change scenarios

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri, Xu-Ri; Prentice, Colin

    2013-04-01

    Atmospheric concentrations of the three important greenhouse gases (GHG) CO2, CH4, and N2O are mediated by processes in the terrestrial biosphere. The sensitivity of terrestrial GHG emissions to climate and CO2 contributed to the sharp rise in atmospheric GHG concentrations since preindustrial times and leads to multiple feedbacks between the terrestrial biosphere and the climate system. The strength of these feedbacks is determined by (i) the sensitivity of terrestrial GHG emissions to climate and CO2 and (ii) the greenhouse warming potential of the respective gas. Here, we quantify feedbacks from CO2, CH4, N2O, and land surface albedo in a consistent and comprehensive framework based on a large set of simulations conducted with an Earth System Model of Intermediate Complexity. The modeled sensitivities of CH4 and N2O emissions are tested, demonstrating that independent data for non-land (anthropogenic, oceanic, etc.) GHG emissions, combined with simulated emissions from natural and agricultural land reproduces historical atmospheric budgets within their uncertainties. 21st-century scenarios for climate, land use change and reactive nitrogen inputs (Nr) are applied to investigate future GHG emissions. Results suggest that in a business-as-usual scenario, terrestrial N2O emissions increase from 9.0 by today to 9.8-11.1 (RCP 2.6) and 14.2-17.0 TgN2O-N/yr by 2100 (RCP 8.5). Without anthropogenic Nr inputs, the amplification is reduced by 24-32%. Soil CH4 emissions increase from 221 at present to 228-245 in RCP 2.6 and to 303-343 TgCH4/yr in RCP 8.5, and the land becomes a net source of C by 2100 AD. Feedbacks from land imply an additional warming of 1.3-1.5°C by 2300 in RCP 8.5, 0.4-0.5°C of which are due to N2O and CH4. The combined effect of multiple GHGs and albedo represents an increasingly positive total feedback to anthropogenic climate change with positive individual feedbacks from CH4, N2O, and albedo outweighing the diminishing negative feedback from CO2

  16. Global Emissions of Nitrous Oxide: Key Source Sectors, their Future Activities and Technical Opportunities for Emission Reduction

    NASA Astrophysics Data System (ADS)

    Winiwarter, W.; Höglund-Isaksson, L.; Klimont, Z.; Schöpp, W.; Amann, M.

    2017-12-01

    Nitrous oxide originates primarily from natural biogeochemical processes, but its atmospheric concentrations have been strongly affected by human activities. According to IPCC, it is the third largest contributor to the anthropogenic greenhouse gas emissions (after carbon dioxide and methane). Deep decarbonization scenarios, which are able to constrain global temperature increase within 1.5°C, require strategies to cut methane and nitrous oxide emissions on top of phasing out carbon dioxide emissions. Employing the Greenhouse gas and Air pollution INteractions and Synergies (GAINS) model, we have estimated global emissions of nitrous oxide until 2050. Using explicitly defined emission reduction technologies we demonstrate that, by 2030, about 26% ± 9% of the emissions can be avoided assuming full implementation of currently existing reduction technologies. Nearly a quarter of this mitigation can be achieved at marginal costs lower than 10 Euro/t CO2-eq with the chemical industry sector offering important reductions. Overall, the largest emitter of nitrous oxide, agriculture, also provides the largest emission abatement potentials. Emission reduction may be achieved by precision farming methods (variable rate technology) as well as by agrochemistry (nitrification inhibitors). Regionally, the largest emission reductions are achievable where intensive agriculture and industry are prevalent (production and application of mineral fertilizers): Centrally Planned Asia including China, North and Latin America, and South Asia including India. Further deep cuts in nitrous oxide emissions will require extending reduction efforts beyond strictly technological solutions, i.e., considering behavioral changes, including widespread adoption of "healthy diets" minimizing excess protein consumption.

  17. Setting an Upper Limit on Gas Exchange Through Sea-Spray

    NASA Astrophysics Data System (ADS)

    Vlahos, P.; Monahan, E. C.; Andreas, E. L.

    2016-02-01

    Air-sea gas exchange parameterization is critical to understanding both climate forcing and feedbacks and is key in biogeochemistry cycles. Models based on wind speed have provided empirical estimates of gas exchange that are useful though it is likely that at high wind speeds of over 10 m/s there are important gas exchange parameters including bubbles and sea spray that have not been well constrained. Here we address the sea-spray component of gas exchange at these high wind speeds to set sn upper boundary condition for the gas exchange of the six model gases including; nobel gases helium, neon and argon, diatomic gases nitrogen and oxygen and finally, the more complex gas carbon dioxide. Estimates are based on the spray generation function of Andreas and Monahan and the gases are tested under three scenarios including 100 percent saturation and complete droplet evaporation, 100 percent saturation and a more realistic scenario in which a fraction of droplets evaporate completely, a fraction evaporate to some degree and a fraction returns to the water side without significant evaporation. Finally the latter scenario is applied to representative under saturated concentrations of the gases.

  18. Subsurface Noble Gas Sampling Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, C. R.; Sun, Y.

    2017-09-18

    The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that allmore » sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.« less

  19. Scenarios for exercising technical approaches to verified nuclear reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, James

    2010-01-01

    Presidents Obama and Medvedev in April 2009 committed to a continuing process of step-by-step nuclear arms reductions beyond the new START treaty that was signed April 8, 2010 and to the eventual goal of a world free of nuclear weapons. In addition, the US Nuclear Posture review released April 6, 2010 commits the US to initiate a comprehensive national research and development program to support continued progress toward a world free of nuclear weapons, including expanded work on verification technologies and the development of transparency measures. It is impossible to predict the specific directions that US-RU nuclear arms reductions willmore » take over the 5-10 years. Additional bilateral treaties could be reached requiring effective verification as indicated by statements made by the Obama administration. There could also be transparency agreements or other initiatives (unilateral, bilateral or multilateral) that require monitoring with a standard of verification lower than formal arms control, but still needing to establish confidence to domestic, bilateral and multilateral audiences that declared actions are implemented. The US Nuclear Posture Review and other statements give some indication of the kinds of actions and declarations that may need to be confirmed in a bilateral or multilateral setting. Several new elements of the nuclear arsenals could be directly limited. For example, it is likely that both strategic and nonstrategic nuclear warheads (deployed and in storage), warhead components, and aggregate stocks of such items could be accountable under a future treaty or transparency agreement. In addition, new initiatives or agreements may require the verified dismantlement of a certain number of nuclear warheads over a specified time period. Eventually procedures for confirming the elimination of nuclear warheads, components and fissile materials from military stocks will need to be established. This paper is intended to provide useful background

  20. Replacing coal with natural gas would reduce warming

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-08-01

    A debate has raged in the past couple of years as to whether natural gas is better or worse overall than coal and oil from a global warming perspective. The back-and-forth findings have been due to the timelines taken into consideration, the details of natural gas extraction, and the electricity-generating efficiency of various fuels. An analysis by Cathles, which focuses exclusively on potential warming and ignores secondary considerations, such as economic, political, or other environmental concerns, finds that natural gas is better for electricity generation than coal and oil under all realistic circumstances. To come to this conclusion, the author considered three different future fuel consumption scenarios: (1) a business-as-usual case, which sees energy generation capacity continue at its current pace with its current energy mix until the middle of the century, at which point the implementation of low-carbon energy sources dominates and fossil fuel-derived energy production declines; (2) a gas substitution scenario, where natural gas replaces all coal power production and any new oil-powered facilities, with the same midcentury shift; and (3) a low-carbon scenario, where all electricity generation is immediately and aggressively switched to non-fossil fuel sources such as solar, wind, and nuclear.

  1. Road traffic noise abatement scenarios in Gothenburg 2015 - 2035.

    PubMed

    Ögren, Mikael; Molnár, Peter; Barregard, Lars

    2018-07-01

    Exposure to high levels of road traffic noise at the most exposed building facade is increasing, both due to urbanization and due to overall traffic increase. This study investigated how different noise reduction measures would influence the noise exposure on a city-wide scale in Gothenburg, a city in Sweden with approximately 550,000 inhabitants. Noise exposure was estimated under several different scenarios for the period 2015-2035, using the standardized Nordic noise prediction method together with traffic flow measurements and population statistics. The scenarios were based on reducing speed limits, reducing traffic flows, introducing more electrically powered vehicles and introducing low-noise tires and pavements. The most effective measures were introducing low-noise tires or pavements, which in comparison to business as usual produced between 13% and 29% reduction in the number of inhabitants exposed above 55 dB equivalent level. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Adjustment of the flue gas path in small combustion appliances with regard to particulate matter reduction

    NASA Astrophysics Data System (ADS)

    Sulovcová, Katarína; Jandačka, Jozef; Nosek, Radovan

    2014-08-01

    Concentration of solid particles in ambient atmosphere is increasing in many countries nowadays. Particulate matter pollution in higher concentration has harmful impact on human and animal health. Source of particulate matter are not only industry and traffic. Small heat sources with biomass combustion, especially during winter heating season, are also significant producer of particulate matter emission. There is a huge importance to decrease quantities of solid particles which are getting into the atmosphere in every region of their production in order to decrease environmental pollution and improve air quality. The ability of flue gas emission elimination can influence future using of biomass combustion. Therefore effective and affordable solutions are searching for. The paper deals with the reduction of particulate matter in small heat source with biomass combustion by modification of geometric parameters in flue gas path.

  3. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  4. Reduction of aircraft gas turbine engine pollutant emissions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.

    1978-01-01

    To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.

  5. The Air-Carbon-Water Synergies and Trade-Offs in China's Natural Gas Industry

    NASA Astrophysics Data System (ADS)

    Qin, Yue

    China's coal-dominated energy structure is partly responsible for its domestic air pollution, local water stress, and the global climate change. Primarily to tackle the haze issue, China has been actively promoting a nationwide coal to natural gas end-use switch. My dissertation focuses on evaluating the air quality, carbon, and water impacts and their interactions in China's natural gas industry. Chapter 2 assesses the lifecycle climate performance of China's shale gas in comparison to coal based on stage-level energy consumption and methane leakage rates. I find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the lifecycle carbon footprint of shale gas in China could be 15-60% higher than that of coal across sectors under GWP20. Chapter 3 evaluates the air quality, human health, and the climate impacts of China's coal-based synthetic natural gas (SNG) development. Based on earlier 2020 SNG production targets, I conduct an integrated assessment to identify production technologies and end-use applications that will bring as large air quality and health benefits as possible while keeping carbon penalties as small as possible. I find that, due to inefficient and uncontrolled coal combustion in households, allocating currently available SNG to the residential sector proves to be the best SNG allocation option. Chapter 4 compares the air quality, carbon, and water impacts of China's six major gas sources under three end-use substitution scenarios, which are focused on maximizing air pollutant emission reductions, CO 2 emission reductions, and water stress index (WSI)-weighted water consumption reductions, respectively. I find striking national air-carbon/water trade-offs due to SNG, which also significantly increases water demands and carbon emissions in regions already suffering from

  6. Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025.

    PubMed

    Islas, Jorge; Manzini, Fabio; Martínez, Manuel

    2002-02-01

    This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).

  7. Global Sensitivity Analysis for Identifying Important Parameters of Nitrogen Nitrification and Denitrification under Model and Scenario Uncertainties

    NASA Astrophysics Data System (ADS)

    Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.

    2017-12-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.

  8. The Impact of a Potential Shale Gas Development in Germany and the United Kingdom on Pollutant and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Weger, L.; Cremonese, L.; Bartels, M. P.; Butler, T. M.

    2016-12-01

    Several European countries with domestic shale gas reserves are considering extracting this natural gas resource to complement their energy transition agenda. Natural gas, which produces lower CO2 emissions upon combustion compared to coal or oil, has the potential to serve as a bridge in the transition from fossil fuels to renewables. However, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact climate as well as local and regional air quality. In this study, we explore the impact of a potential shale gas development in Europe, specifically in Germany and the United Kingdom, on emissions of greenhouse gases and pollutants. In order to investigate the effect on emissions, we first estimate a range of wells drilled per year and production volume for the two countries under examination based on available geological information and on regional infrastructural and economic limitations. Subsequently we assign activity data and emissions factors to the well development, gas production and processing stages of shale gas generation to enable emissions quantification. We then define emissions scenarios to explore different storylines of potential shale gas development, including low emissions (high level of regulation), high emissions (low level of regulation) and middle emissions scenarios, which influence fleet make-up, emission factor and activity data choices for emissions quantification. The aim of this work is to highlight important variables and their ranges, to promote discussion and communication of potential impacts, and to construct possible visions for a future shale gas development in the two study countries. In a follow-up study, the impact of pollutant emissions from these scenarios on air quality will be explored using the Weather Research and Forecasting model with chemistry (WRF-Chem) model.

  9. USGS Multi-Hazards Winter Storm Scenario

    NASA Astrophysics Data System (ADS)

    Cox, D. A.; Jones, L. M.; Perry, S. C.

    2008-12-01

    The USGS began an inter-disciplinary effort, the Multi Hazards Demonstration Project (MHDP), in 2007 to demonstrate how hazards science can improve a community's resiliency to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages the user community in setting research goals and directs efforts towards research products that can be applied to loss reduction and improved resiliency. The first public product of the MHDP was the ShakeOut Earthquake Scenario published in May 2008. It detailed the realistic outcomes of a hypothetical, but plausible, magnitude 7.8 earthquake on the San Andreas Fault in southern California. Over 300 scientist and experts contributed to designing the earthquake and understanding the impacts of such a disaster, including the geotechnical, engineering, social, cultural, environmental, and economic consequences. The scenario advanced scientific understanding and exposed numerous vulnerabilities related to emergency response and lifeline continuity management. The ShakeOut Scenario was the centerpiece of the Nation's largest-ever emergency response exercise in November 2008, dubbed "The Great Southern California ShakeOut" (www.shakeout.org). USGS Multi-Hazards is now preparing for its next major public project, a Winter Storm Scenario. Like the earthquake scenario, experts will be brought together to examine in detail the possibility, cost and consequences of a winter storm disaster including floods, landslides, coastal erosion and inundation; debris flows; biologic consequences like extirpation of endangered species; physical damages like bridge scour, road closures, dam failure, property loss, and water system collapse. Consideration will be given to the vulnerabilities associated with a catastrophic disruption to the water supply to southern California; the resulting impacts on ground water pumping, seawater intrusion, water supply degradation, and land subsidence; and a

  10. Kinetics of Reduction of CaO-FeO x -MgO-PbO-SiO2 Slags by CO-CO2 Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Jahanshahi, Sharif; Wright, Steven

    2017-08-01

    Kinetics of the reaction of lead slags (PbO-CaO-SiO2-FeO x -MgO) with CO-CO2 gas mixtures was studied by monitoring the changes in the slag composition when a stream of CO-CO2 gas mixture was blown on the surface of thin layers of slags (3 to 10 mm) at temperatures in the range of 1453 K to 1593 K (1180 °C to 1320 °C). These measurements were carried out under conditions where mass transfer in the gas phase was not the rate-limiting step and the reduction rates were insensitive to factors affecting mass transfer in the slag phase. The results show simultaneous reduction of PbO and Fe2O3 in the slag. The measured specific rate of oxygen removal from the melts varied from about 1 × 10-6 to 4 × 10-5 mol O cm-2 s-1 and was strongly dependent on the slag chemistry and its oxidation state, partial pressure of CO in the reaction gas mixture, and temperature. The deduced apparent first-order rate constant increased with increasing iron oxide content, oxidation state of the slag, and temperature. The results indicate that under the employed experimental conditions, the rate of formation of CO2 at the gas-slag interface is likely to be the rate-limiting step.

  11. Conformational reduction of DOPA in the gas phase studied by laser desorption supersonic jet laser spectroscopy.

    PubMed

    Ishiuchi, Shun-ichi; Mitsuda, Haruhiko; Asakawa, Toshiro; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2011-05-07

    The conformational reduction in catecholamine neurotransmitters was studied by resonance enhanced multi photon ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and infrared (IR) dip spectroscopy with applying a laser desorption supersonic jet technique to DOPA, which is one of the catecholamine neurotransmitters and has one more phenolic OH group than tyrosine. It is concluded that DOPA has a single observable conformer in the gas phase at low temperature. Quantum chemical calculations at several levels with or without the dispersion correction were also carried out to study stable conformations. From the comparison between the computational IR spectra and the experimental ones, the most stable structure was determined. It is strongly suggested that the conformational reduction is caused by electrostatic interactions, such as a dipole-dipole interaction, between the chain and OH groups. This journal is © the Owner Societies 2011

  12. Alaska North Slope regional gas hydrate production modeling forecasts

    USGS Publications Warehouse

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  13. Based on user interest level of modeling scenarios and browse content

    NASA Astrophysics Data System (ADS)

    Zhao, Yang

    2017-08-01

    User interest modeling is the core of personalized service, taking into account the impact of situational information on user preferences, the user behavior days of financial information. This paper proposes a method of user interest modeling based on scenario information, which is obtained by calculating the similarity of the situation. The user's current scene of the approximate scenario set; on the "user - interest items - scenarios" three-dimensional model using the situation pre-filtering method of dimension reduction processing. View the content of the user interested in the theme, the analysis of the page content to get each topic of interest keywords, based on the level of vector space model user interest. The experimental results show that the user interest model based on the scenario information is within 9% of the user's interest prediction, which is effective.

  14. Natural Gas Exports from Iran

    EIA Publications

    2012-01-01

    This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  15. Alternative technologies for the reduction of greenhouse gas emissions from palm oil mills in Thailand.

    PubMed

    Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun

    2013-01-01

    Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved.

  16. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  17. Dark scenarios

    NASA Astrophysics Data System (ADS)

    Ahonen, Pasi; Alahuhta, Petteri; Daskala, Barbara; Delaitre, Sabine; Hert, Paul De; Lindner, Ralf; Maghiros, Ioannis; Moscibroda, Anna; Schreurs, Wim; Verlinden, Michiel

    In this chapter, we present four "dark scenarios" that highlight the key socio-economic, legal, technological and ethical risks to privacy, identity, trust, security and inclusiveness posed by new AmI technologies. We call them dark scenarios, because they show things that could go wrong in an AmI world, because they present visions of the future that we do not want to become reality. The scenarios expose threats and vulnerabilities as a way to inform policy-makers and planners about issues they need to take into account in developing new policies or updating existing legislation. Before presenting the four scenarios and our analysis of each, we describe the process of how we created the scenarios as well as the elements in our methodology for analysing the scenarios.

  18. Simulating fuel reduction scenarios on a wildland-urban interface in northeastern Oregon.

    Treesearch

    Alan A. Ager; R. James Barbour; Jane L. Hayes

    2005-01-01

    We analyzed the long-term effects of fuels reduction treatments around a wildland-urban interface located in the Blue Mountains near La Grande, Oregon. The study area is targeted for fuels reduction treatments on both private and federal lands to reduce the risk of severe wildfire and associated damage to property and homes. We modeled a number of hypothetical fuel...

  19. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  20. Participative Spatial Scenario Analysis for Alpine Ecosystems

    NASA Astrophysics Data System (ADS)

    Kohler, Marina; Stotten, Rike; Steinbacher, Melanie; Leitinger, Georg; Tasser, Erich; Schirpke, Uta; Tappeiner, Ulrike; Schermer, Markus

    2017-10-01

    Land use and land cover patterns are shaped by the interplay of human and ecological processes. Thus, heterogeneous cultural landscapes have developed, delivering multiple ecosystem services. To guarantee human well-being, the development of land use types has to be evaluated. Scenario development and land use and land cover change models are well-known tools for assessing future landscape changes. However, as social and ecological systems are inextricably linked, land use-related management decisions are difficult to identify. The concept of social-ecological resilience can thereby provide a framework for understanding complex interlinkages on multiple scales and from different disciplines. In our study site (Stubai Valley, Tyrol/Austria), we applied a sequence of steps including the characterization of the social-ecological system and identification of key drivers that influence farmers' management decisions. We then developed three scenarios, i.e., "trend", "positive" and "negative" future development of farming conditions and assessed respective future land use changes. Results indicate that within the "trend" and "positive" scenarios pluri-activity (various sources of income) prevents considerable changes in land use and land cover and promotes the resilience of farming systems. Contrarily, reductions in subsidies and changes in consumer behavior are the most important key drivers in the negative scenario and lead to distinct abandonment of grassland, predominantly in the sub-alpine zone of our study site. Our conceptual approach, i.e., the combination of social and ecological methods and the integration of local stakeholders' knowledge into spatial scenario analysis, resulted in highly detailed and spatially explicit results that can provide a basis for further community development recommendations.

  1. Participative Spatial Scenario Analysis for Alpine Ecosystems.

    PubMed

    Kohler, Marina; Stotten, Rike; Steinbacher, Melanie; Leitinger, Georg; Tasser, Erich; Schirpke, Uta; Tappeiner, Ulrike; Schermer, Markus

    2017-10-01

    Land use and land cover patterns are shaped by the interplay of human and ecological processes. Thus, heterogeneous cultural landscapes have developed, delivering multiple ecosystem services. To guarantee human well-being, the development of land use types has to be evaluated. Scenario development and land use and land cover change models are well-known tools for assessing future landscape changes. However, as social and ecological systems are inextricably linked, land use-related management decisions are difficult to identify. The concept of social-ecological resilience can thereby provide a framework for understanding complex interlinkages on multiple scales and from different disciplines. In our study site (Stubai Valley, Tyrol/Austria), we applied a sequence of steps including the characterization of the social-ecological system and identification of key drivers that influence farmers' management decisions. We then developed three scenarios, i.e., "trend", "positive" and "negative" future development of farming conditions and assessed respective future land use changes. Results indicate that within the "trend" and "positive" scenarios pluri-activity (various sources of income) prevents considerable changes in land use and land cover and promotes the resilience of farming systems. Contrarily, reductions in subsidies and changes in consumer behavior are the most important key drivers in the negative scenario and lead to distinct abandonment of grassland, predominantly in the sub-alpine zone of our study site. Our conceptual approach, i.e., the combination of social and ecological methods and the integration of local stakeholders' knowledge into spatial scenario analysis, resulted in highly detailed and spatially explicit results that can provide a basis for further community development recommendations.

  2. Carbothermal Reduction of Quartz with Carbon from Natural Gas

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    2017-04-01

    Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.

  3. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.

    PubMed

    Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott

    2015-03-03

    This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports.

  4. Implications of Abundant Gas and Oil for Climate Forcing

    NASA Astrophysics Data System (ADS)

    Edmonds, J.

    2015-12-01

    Perhaps the most important development in the field of energy over the past decade has been the advent of technologies that enable the production of larger volumes of natural gas and oil at lower cost. The availability of more abundant gas and oil is reshaping the global energy system, with implications for both evolving emissions of CO2 and other climate forcers. More abundant gas and oil will also transform the character of greenhouse gas emissions mitigation. We review recent findings regarding the impact of abundant gas and oil for climate forcing and the challenge of emissions mitigation. We find strong evidence that, absent policies to limits its penetration against renewable energy, abundant gas has little observable impact on CO2 emissions, and tends to increase overall climate forcing, though the latter finding is subject to substantial uncertainty. The presence of abundant gas also affects emissions mitigation. There is relatively little literature exploring the implication of expanded gas availability on the difficulty in meeting emissions mitigation goals. However, preliminary results indicate that on global scales abundant gas does not substantially affect the cost of emissions mitigation, even though natural gas could have an expanded role in emissions mitigation scenarios as compared with scenarios in which natural gas is less abundant.

  5. Collapse scenarios in magnetized star-forming regions

    NASA Astrophysics Data System (ADS)

    Juarez, Carmen

    2017-04-01

    -forming regions. During the project we studied the magnetic field from the polarized emission of the dust and also the kinematics of the gas from the molecular line emission of the different tracers of dense gas. From the molecular emission of the gas tracing the envelope of the dense core, we see two different velocity structures separated by 2 km/s and converging towards the potential well in the region. In addition, the magnetic field also presents a bimodal pattern following the distribution of the two velocity structures. Finally, we compared the observational results with 3D magnetohydrodynamic simulations of star-forming regions dominated by gravity. The last project is the study of a lower-mass star-forming region, L1287. From the data obtained with the SMA, the dust continuum structure shows six main dense cores with masses between 0.4 and 4 solar masses. The dense gas tracer DCN(3- 2) shows two velocity structures separated by 2-3 km/s, converging towards the highest-density region, the young stellar object IRAS 00338+6312, in a similar scenario to the one observed in the higher-mass case of NGC6334V. Finally, the studies of the pre-stellar core FeSt1-457 and the massive region NGC6334V, show how the magnetic field has been overcome by gravity and is not enough to avoid the gravitational collapse. In addition, NGC6334V and the lower- mass region L1287 present very similar scenarios with the material converging from large scales ( 0.1 pc) to the potential wells of both regions at smaller scales ( 0.02 pc) through two dense gas flows separated by 2-3 km/s. In a similar scenario, FeSt1-457 is located just in the region where two dense gas structures separated by 3 km/s appear to converge.

  6. Scenario planning.

    PubMed

    Enzmann, Dieter R; Beauchamp, Norman J; Norbash, Alexander

    2011-03-01

    In facing future developments in health care, scenario planning offers a complementary approach to traditional strategic planning. Whereas traditional strategic planning typically consists of predicting the future at a single point on a chosen time horizon and mapping the preferred plans to address such a future, scenario planning creates stories about multiple likely potential futures on a given time horizon and maps the preferred plans to address the multiple described potential futures. Each scenario is purposefully different and specifically not a consensus worst-case, average, or best-case forecast; nor is scenario planning a process in probabilistic prediction. Scenario planning focuses on high-impact, uncertain driving forces that in the authors' example affect the field of radiology. Uncertainty is the key concept as these forces are mapped onto axes of uncertainty, the poles of which have opposed effects on radiology. One chosen axis was "market focus," with poles of centralized health care (government control) vs a decentralized private market. Another axis was "radiology's business model," with one pole being a unified, single specialty vs a splintered, disaggregated subspecialty. The third axis was "technology and science," with one pole representing technology enabling to radiology vs technology threatening to radiology. Selected poles of these axes were then combined to create 3 scenarios. One scenario, termed "entrepreneurialism," consisted of a decentralized private market, a disaggregated business model, and threatening technology and science. A second scenario, termed "socialized medicine," had a centralized market focus, a unified specialty business model, and enabling technology and science. A third scenario, termed "freefall," had a centralized market focus, a disaggregated business model, and threatening technology and science. These scenarios provide a range of futures that ultimately allow the identification of defined "signposts" that can

  7. Alaska earthquake source for the SAFRR tsunami scenario: Chapter B in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Kirby, Stephen; Scholl, David; von Huene, Roland E.; Wells, Ray

    2013-01-01

    Tsunami modeling has shown that tsunami sources located along the Alaska Peninsula segment of the Aleutian-Alaska subduction zone have the greatest impacts on southern California shorelines by raising the highest tsunami waves for a given source seismic moment. The most probable sector for a Mw ~ 9 source within this subduction segment is between Kodiak Island and the Shumagin Islands in what we call the Semidi subduction sector; these bounds represent the southwestern limit of the 1964 Mw 9.2 Alaska earthquake rupture and the northeastern edge of the Shumagin sector that recent Global Positioning System (GPS) observations indicate is currently creeping. Geological and geophysical features in the Semidi sector that are thought to be relevant to the potential for large magnitude, long-rupture-runout interplate thrust earthquakes are remarkably similar to those in northeastern Japan, where the destructive Mw 9.1 tsunamigenic earthquake of 11 March 2011 occurred. In this report we propose and justify the selection of a tsunami source seaward of the Alaska Peninsula for use in the Tsunami Scenario that is part of the U.S. Geological Survey (USGS) Science Application for Risk Reduction (SAFRR) Project. This tsunami source should have the potential to raise damaging tsunami waves on the California coast, especially at the ports of Los Angeles and Long Beach. Accordingly, we have summarized and abstracted slip distribution from the source literature on the 2011 event, the best characterized for any subduction earthquake, and applied this synoptic slip distribution to the similar megathrust geometry of the Semidi sector. The resulting slip model has an average slip of 18.6 m and a moment magnitude of Mw = 9.1. The 2011 Tohoku earthquake was not anticipated, despite Japan having the best seismic and geodetic networks in the world and the best historical record in the world over the past 1,500 years. What was lacking was adequate paleogeologic data on prehistoric earthquakes

  8. Scenario management and automated scenario generation

    NASA Astrophysics Data System (ADS)

    McKeever, William; Gilmour, Duane; Lehman, Lynn; Stirtzinger, Anthony; Krause, Lee

    2006-05-01

    The military planning process utilizes simulation to determine the appropriate course of action (COA) that will achieve a campaign end state. However, due to the difficulty in developing and generating simulation level COAs, only a few COAs are simulated. This may have been appropriate for traditional conflicts but the evolution of warfare from attrition based to effects based strategies, as well as the complexities of 4 th generation warfare and asymmetric adversaries have placed additional demands on military planners and simulation. To keep pace with this dynamic, changing environment, planners must be able to perform continuous, multiple, "what-if" COA analysis. Scenario management and generation are critical elements to achieving this goal. An effects based scenario generation research project demonstrated the feasibility of automated scenario generation techniques which support multiple stove-pipe and emerging broad scope simulations. This paper will discuss a case study in which the scenario generation capability was employed to support COA simulations to identify plan effectiveness. The study demonstrated the effectiveness of using multiple simulation runs to evaluate the effectiveness of alternate COAs in achieving the overall campaign (metrics-based) objectives. The paper will discuss how scenario generation technology can be employed to allow military commanders and mission planning staff to understand the impact of command decisions on the battlespace of tomorrow.

  9. Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO 2 reduction

    DOE PAGES

    Hoch, Laura B.; Szymanski, Paul; Ghuman, Kulbir Kaur; ...

    2016-11-28

    In 2O 3-x(OH) y nanoparticles have been shown to function as an effective gas-phase photocatalyst for the reduction of CO 2 to CO via the reverse water–gas shift reaction. Their photocatalytic activity is strongly correlated to the number of oxygen vacancy and hydroxide defects present in the system. To better understand how such defects interact with photogenerated electrons and holes in these materials, we have studied the relaxation dynamics of In 2O 3-x(OH) y nanoparticles with varying concentration of defects using two different excitation energies corresponding to above-band-gap (318-nm) and near-band-gap (405-nm) excitations. Our results demonstrate that defects play amore » significant role in the excited-state, charge relaxation pathways. Higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation. This correlates well with the observed trends in the photocatalytic activity. These results are further supported by density-functional theory calculations, which confirm the positions of oxygen vacancy and hydroxide defect states within the optical band gap of indium oxide. This enhanced understanding of the role these defects play in determining the optoelectronic properties and charge carrier dynamics can provide valuable insight toward the rational development of more efficient photocatalytic materials for CO 2 reduction.« less

  10. Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO 2 reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoch, Laura B.; Szymanski, Paul; Ghuman, Kulbir Kaur

    In 2O 3-x(OH) y nanoparticles have been shown to function as an effective gas-phase photocatalyst for the reduction of CO 2 to CO via the reverse water–gas shift reaction. Their photocatalytic activity is strongly correlated to the number of oxygen vacancy and hydroxide defects present in the system. To better understand how such defects interact with photogenerated electrons and holes in these materials, we have studied the relaxation dynamics of In 2O 3-x(OH) y nanoparticles with varying concentration of defects using two different excitation energies corresponding to above-band-gap (318-nm) and near-band-gap (405-nm) excitations. Our results demonstrate that defects play amore » significant role in the excited-state, charge relaxation pathways. Higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation. This correlates well with the observed trends in the photocatalytic activity. These results are further supported by density-functional theory calculations, which confirm the positions of oxygen vacancy and hydroxide defect states within the optical band gap of indium oxide. This enhanced understanding of the role these defects play in determining the optoelectronic properties and charge carrier dynamics can provide valuable insight toward the rational development of more efficient photocatalytic materials for CO 2 reduction.« less

  11. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Aharon, Paul; Fu, Baoshun

    2000-01-01

    Sulfate reduction and anaerobic methane oxidation are the dominant microbial processes occurring in hydrate-bearing sediments at bathyal depths in the Gulf of Mexico where crude oil and methane are advecting through fault conduits to the seafloor. The oil and gas seeps are typically overlain by chemosynthetic communities consisting of thiotrophic bacterial mats (Beggiatoa spp.) and methanotrophic mussels (Bathymodiolus spp.), respectively. Cores were recovered with a manned submersible from fine-grained sediments containing dispersed gas hydrates at the threshold of stability. Estimated sulfate reduction rates are variable but generally are substantially higher in crude oil seeps (up to 50 times) and methane seeps (up to 600 times) relative to a non-seep reference sediment (0.0043 μmol SO 42- cm -3 day -1). Sulfur and oxygen isotope fractionation factors are highest in the reference sediment (α S = 1.027; α O = 1.015) but substantially lower in the seep sediments (α S = 1.018 to 1.009; α O = 1.006 to 1.002) and are controlled primarily by kinetic factors related to sulfate reduction rates. Kinetic effects also control the δ 34S/δ 18O ratios such that slow microbial rates yield low ratios whereas faster rates yield progressively higher ratios. The seep data contradict previous claims that δ 34S/δ 18O ratios are diagnostic of either microbial sulfate reduction at a fixed δ 34S/δ 18O ratio of 4/1 or lower ratios caused by SO 4-H 2O equilibration at ambient temperatures. The new results offer a better understanding of methane removal via anaerobic oxidation in the sulfate reduction zone of hydrate-bearing sediments and have significant implications regarding the origin and geochemical history of sedimentary sulfate reconstructed on the basis of δ 34S and δ 18O compositions.

  12. Towards the new CH2018 climate scenarios for Switzerland

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Schär, Christoph; Croci-Maspoli, Mischa; Knutti, Reto; Liniger, Mark; Strassmann, Kuno

    2017-04-01

    There is a growing demand for regional assessments of future climate change and its impacts on society and ecosystems to inform and facilitate appropriate adaptation strategies. The basis for such assessments are consistent and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). Since then, new climate model simulations have become available and the scientific understanding has improved. It is hence desirable to update these national scenarios. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS), a network consisting of several federal offices and academic partners. The CH2018 scenarios will build primarily upon the latest Euro-CORDEX regional climate model simulations assuming different pathways of future greenhouse gas concentrations. Compared to CH2011, more emphasis will be put on changes in extremes and in putting the projected changes in the context of observed variability. Results of a recently conducted survey on end-user needs in Switzerland will guide the development process toward the CH2018 scenarios. It ensures that the scenarios are presented and communicated in a user-oriented format and find a wide applicability across different sectors in Switzerland. In the presentation we will show the full methodological setup to generate the CH2018 scenarios and how consistency across the methods and products is maximized. First results on mean changes and selected indices will be presented. In terms of dissemination, the results of the user survey show the necessity to address all different user types of climate scenarios, especially the non-experts. Compared to CH2011, this implies a stronger focus on consulting, condensing complex information and providing tutorials. In the presentation, we will outline our plans on dissemination in order to adequately

  13. From "farm to fork" strawberry system: current realities and potential innovative scenarios from life cycle assessment of non-renewable energy use and green house gas emissions.

    PubMed

    Girgenti, Vincenzo; Peano, Cristiana; Baudino, Claudio; Tecco, Nadia

    2014-03-01

    In this study, we analysed the environmental profile of the strawberry industry in Northern Italy. The analysis was conducted using two scenarios as reference systems: strawberry crops grown in unheated plastic tunnels using currently existing cultivation techniques, post-harvest management practices and consumption patterns (scenario 1) and the same strawberry cultivation chain in which some of the materials used were replaced with bio-based materials (scenario 2). In numerous studies, biodegradable polymers have been shown to be environmentally friendly, thus potentially reducing environmental impacts. These materials can be recycled into carbon dioxide and water through composting. Many materials, such as Mater-BI® and PLA®, are also derived from renewable resources. The methodology chosen for the environmental analysis was a life cycle assessment (LCA) based on a consequential approach developed to assess a product's overall environmental impact from the production system to its usage and disposal. In the field stage, a traditional mulching film (non-biodegradable) could be replaced with a biodegradable product. This change would result in waste production of 0 kg/ha for the bio-based product compared to 260 kg/ha of waste for polyethylene (PE). In the post-harvest stage, the issue addressed was the use and disposal of packaging materials. The innovative scenario evaluated herein pertains to the use of new packaging materials that increase the shelf life of strawberries, thereby decreasing product losses while increasing waste management efficiency at the level of a distribution platform and/or sales outlet. In the event of product deterioration or non-sale of the product, the packaging and its contents could be collected together as organic waste without any additional processes because the packaging is compostable according to EN13432. Scenario 2 would achieve reductions of 20% in the global warming potential and non-renewable energy impact categories

  14. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    NASA Astrophysics Data System (ADS)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  15. Establishing the common patterns of future tropospheric ozone under diverse climate change scenarios

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Gómez-Navarro, Juan J.; Jerez, Sonia; Lorente-Plazas, Raquel; Baro, Rocio; Montávez, Juan P.

    2013-04-01

    The impacts of climate change on air quality may affect long-term air quality planning. However, the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone influences future air quality through modifications of gas-phase chemistry, transport, removal, and natural emissions. As such, the aim of this work is to check whether the projected changes in gas-phase air pollution over Europe depends on the scenario driving the regional simulation. For this purpose, two full-transient regional climate change-air quality projections for the first half of the XXI century (1991-2050) have been carried out with MM5+CHIMERE system, including A2 and B2 SRES scenarios. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have a horizontal resolution of 25 km and 23 vertical layers up to 100 mb, and were driven by ECHO-G global climate model outputs. The analysis focuses on the connection between meteorological and air quality variables. Our simulations suggest that the modes of variability for tropospheric ozone and their main precursors hardly change under different SRES scenarios. The effect of changing scenarios has to be sought in the intensity of the changing signal, rather than in the spatial structure of the variation patterns, since the correlation between the spatial patterns of variability in A2 and B2 simulation is r > 0.75 for all gas-phase pollutants included in this study. In both cases, full-transient simulations indicate an enhanced enhanced chemical activity under future scenarios. The causes for tropospheric ozone variations have to be sought in a multiplicity of climate factors, such as increased temperature, different distribution of precipitation patterns across Europe, increased photolysis of primary and secondary pollutants due to lower cloudiness, etc

  16. Sustainable Solution for Crude Oil and Natural Gas Separation using Concentrated Solar Power Technology

    NASA Astrophysics Data System (ADS)

    Choudhary, Piyush; Srivastava, Rakesh K.; Nath Mahendra, Som; Motahhir, Saad

    2017-08-01

    In today’s scenario to combat with climate change effects, there are a lot of reasons why we all should use renewable energy sources instead of fossil fuels. Solar energy is one of the best options based on features like good for the environment, independent of electricity prices, underutilized land, grid security, sustainable growth, etc. This concept paper is oriented primarily focused on the use of Solar Energy for the crude oil heating purpose besides other many prospective industrial applications to reduce cost, carbon footprint and moving towards a sustainable and ecologically friendly Oil & Gas Industry. Concentrated Solar Power technology based prototype system is proposed to substitute the presently used system based on natural gas burning method. The hybrid system which utilizes the solar energy in the oil and gas industry would strengthen the overall field working conditions, safety measures and environmental ecology. 40% reduction on natural gas with this hybrid system is estimated. A positive implication for an environment, working conditions and safety precautions is the additive advantage. There could also decrease air venting of CO2, CH4 and N2O by an average of 30-35%.

  17. The influence of biopreparations on the reduction of energy consumption and CO2 emissions in shallow and deep soil tillage.

    PubMed

    Naujokienė, Vilma; Šarauskis, Egidijus; Lekavičienė, Kristina; Adamavičienė, Aida; Buragienė, Sidona; Kriaučiūnienė, Zita

    2018-06-01

    The application of innovation in agriculture technologies is very important for increasing the efficiency of agricultural production, ensuring the high productivity of plants, production quality, farm profitability, the positive balance of used energy, and the requirements of environmental protection. Therefore, it is a scientific problem that solid and soil surfaces covered with plant residue have a negative impact on the work, traction resistance, energy consumption, and environmental pollution of tillage machines. The objective of this work was to determine the dependence of the reduction of energy consumption and CO 2 gas emissions on different biopreparations. Experimental research was carried out in a control (SC1) and seven different biopreparations using scenarios (SC2-SC8) using bacterial and non-bacterial biopreparations in different consistencies (with essential and mineral oils, extracts of various grasses and sea algae, phosphorus, potassium, humic and gibberellic acids, copper, zinc, manganese, iron, and calcium), estimating discing and plowing as the energy consumption parameters of shallow and deep soil tillage machines, respectively. CO 2 emissions were determined by evaluating soil characteristics (such as hardness, total porosity and density). Meteorological conditions such average daily temperatures (2015-20.3 °C; 2016-16.90 °C) and precipitations (2015-6.9 mm; 2016-114.9 mm) during the month strongly influenced different results in 2015 and 2016. Substantial differences between the averages of energy consumption identified in approximately 62% of biological preparation combinations created usage scenarios. Experimental research established that crop field treatments with biological preparations at the beginning of vegetation could reduce the energy consumption of shallow tillage machines by up to approximately 23%, whereas the energy consumption of deep tillage could be reduced by up to approximately 19.2% compared with the control

  18. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udomsri, Seksan, E-mail: seksan.udomsri@energy.kth.s; Martin, Andrew R.; Fransson, Torsten H.

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessmentmore » of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO{sub 2} levels by 3% in comparison with current thermal power plants.« less

  19. Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh.

    PubMed

    Islam, K M Nazmul

    2017-02-15

    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) and associated climate change consequences are gripping attention globally, while MSW management as a vital subsystem of urban metabolism significantly influences the urban carbon cycles. This study evaluates the GHG emissions and carbon flow of existing and proposed MSW management in Bangladesh through scenario analysis, including landfill with landfill gas (LFG) recovery, waste to energy (WtE), and material recovery facility (MRF). The analysis indicates that, scenario H 2 and H 5 emitted net GHGs -152.20kg CO 2 eq. and -140.32kg CO 2 eq., respectively, in comparison with 420.88kg CO 2 eq. of scenario H 1 for managing per ton of wastes during the reference year 2015. The annual horizontal carbon flux of the waste input was 319Gg and 158Gg during 2015 in Dhaka and Chittagong, respectively. An integrated strategy of managing the wastes in the urban areas of Bangladesh involving WtE incineration plant and LFG recovery to generate electricity as well as MRF could reverse back 209.46Gg carbon and 422.29Gg carbon to the Chittagong and Dhaka urban system, respectively. This study provides valuable insights for the MSW policy framework and revamp of existing MSW management practices with regards to reduction of GHGs emissions from the waste sector in Bangladesh. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Feasibility and Costs of Natural Gas as a Bridge to Deep Decarbonization in the United States

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; McJeon, H. C.; Muratori, M.; Shi, W.

    2015-12-01

    Achieving emissions reductions consistent with a 2 degree Celsius global warming target requires nearly complete replacement of traditional fossil fuel combustion with near-zero carbon energy technologies in the United States by 2050. There are multiple technological change pathways consistent with this deep decarbonization, including strategies that rely on renewable energy, nuclear, and carbon capture and storage (CCS) technologies. The replacement of coal-fired power plants with natural gas-fired power plants has also been suggested as a bridge strategy to achieve near-term emissions reduction targets. These gas plants, however, would need to be replaced by near-zero energy technologies or retrofitted with CCS by 2050 in order to achieve longer-term targets. Here we examine the costs and feasibility of a natural gas bridge strategy. Using the Global Change Assessment (GCAM) model, we develop multiple scenarios that each meet the recent US Intended Nationally Determined Contribution (INDC) to reduce GHG emissions by 26%-28% below its 2005 levels in 2025, as well as a deep decarbonization target of 80% emissions reductions below 1990 levels by 2050. We find that the gas bridge strategy requires that gas plants be retired on average 20 years earlier than their designed lifetime of 45 years, a potentially challenging outcome to achieve from a policy perspective. Using a more idealized model, we examine the net energy system costs of this gas bridge strategy compared to one in which near-zero energy technologies are deployed in the near tem. We explore the sensitivity of these cost results to four factors: the discount rate applied to future costs, the length (or start year) of the gas bridge, the relative capital cost of natural gas vs. near-zero energy technology, and the fuel price of natural gas. The discount rate and cost factors are found to be more important than the length of the bridge. However, we find an important interaction as well. At low discount rates

  1. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    PubMed

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  2. Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit withmore » lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less

  3. Open Scenario Study: IDA Open Scenario Repository User’s Manual

    DTIC Science & Technology

    2010-01-01

    Thomason, Study Co-Lead Zachary S. Rabold, Sub-Task Lead Ylli Bajraktari Rachel D. Dubin Mary Catherine Flythe Open Scenario Study: IDA Open Scenario... Bajraktari Rachel D. Dubin Mary Catherine Flythe Open Scenario Study: IDA Open Scenario Repository User’s Manual iii Preface This document reports the...vii Appendices A. Identifying Scenario Components...........................................................A-1 B . Acronyms

  4. Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures

    DOE PAGES

    Zlotnik, Anatoly; Roald, Line; Backhaus, Scott; ...

    2016-03-24

    The extensive installation of gas-fired power plants in many parts of the world has led electric systems to depend heavily on reliable gas supplies. The use of gas-fired generators for peak load and reserve provision causes high intraday variability in withdrawals from high-pressure gas transmission systems. Such variability can lead to gas price fluctuations and supply disruptions that affect electric generator dispatch, electricity prices, and threaten the security of power systems and gas pipelines. These infrastructures function on vastly different spatio-temporal scales, which prevents current practices for separate operations and market clearing from being coordinated. Here in this article, wemore » apply new techniques for control of dynamic gas flows on pipeline networks to examine day-ahead scheduling of electric generator dispatch and gas compressor operation for different levels of integration, spanning from separate forecasting, and simulation to combined optimal control. We formulate multiple coordination scenarios and develop tractable physically accurate computational implementations. These scenarios are compared using an integrated model of test networks for power and gas systems with 24 nodes and 24 pipes, respectively, which are coupled through gas-fired generators. The analysis quantifies the economic efficiency and security benefits of gas-electric coordination and dynamic gas system operation.« less

  5. Generating moment matching scenarios using optimization techniques

    DOE PAGES

    Mehrotra, Sanjay; Papp, Dávid

    2013-05-16

    An optimization based method is proposed to generate moment matching scenarios for numerical integration and its use in stochastic programming. The main advantage of the method is its flexibility: it can generate scenarios matching any prescribed set of moments of the underlying distribution rather than matching all moments up to a certain order, and the distribution can be defined over an arbitrary set. This allows for a reduction in the number of scenarios and allows the scenarios to be better tailored to the problem at hand. The method is based on a semi-infinite linear programming formulation of the problem thatmore » is shown to be solvable with polynomial iteration complexity. A practical column generation method is implemented. The column generation subproblems are polynomial optimization problems; however, they need not be solved to optimality. It is found that the columns in the column generation approach can be efficiently generated by random sampling. The number of scenarios generated matches a lower bound of Tchakaloff's. The rate of convergence of the approximation error is established for continuous integrands, and an improved bound is given for smooth integrands. Extensive numerical experiments are presented in which variants of the proposed method are compared to Monte Carlo and quasi-Monte Carlo methods on both numerical integration problems and stochastic optimization problems. The benefits of being able to match any prescribed set of moments, rather than all moments up to a certain order, is also demonstrated using optimization problems with 100-dimensional random vectors. Here, empirical results show that the proposed approach outperforms Monte Carlo and quasi-Monte Carlo based approaches on the tested problems.« less

  6. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  7. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany.

    PubMed

    Helftewes, Markus; Flamme, Sabine; Nelles, Michael

    2012-04-01

    This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO₂-equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for co-incineration in cement kilns. Across all industries, emissions of approximately 680 kg CO₂-eq. Mg⁻¹ C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO₂-eq. Mg⁻¹ C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO₂-eq. Mg⁻¹ C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO₂-eq. Mg⁻¹ C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO₂-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO₂-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO₂-eq. Mg⁻¹ in waste incineration plants and approximately 90 kg CO₂-eq. Mg⁻¹ in the case of cement kilns.

  8. Stabilization of atmospheric carbon dioxide via zero emissions—An alternative way to a stable global environment. Part 2: A practical zero-emissions scenario

    PubMed Central

    MATSUNO, Taroh; MARUYAMA, Koki; TSUTSUI, Junichi

    2012-01-01

    Following Part 1, a comparison of CO2-emissions pathways between “zero-emissions stabilization (Z-stabilization)” and traditional stabilization is made under more realistic conditions that take into account the radiative forcings of other greenhouse gases and aerosols with the constraint that the temperature rise must not exceed 2 ℃ above the preindustrial level. It is shown that the findings in Part 1 on the merits of Z-stabilization hold under the more realistic conditions. The results clarify the scientific basis of the policy claim of 50% reduction of the world CO2 emissions by 2050. Since the highest greenhouse gas (GHG) concentration and temperature occur only temporarily in Z-stabilization pathways, we may slightly relax the upper limit of the temperature rise. We can then search for a scenario with larger emissions in the 21st century; such a scenario may have potential for practical application. It is suggested that in this Z-stabilization pathway, larger emissions in the near future may be important from a socioeconomic viewpoint. PMID:22850728

  9. Stabilization of atmospheric carbon dioxide via zero emissions--an alternative way to a stable global environment. Part 2: a practical zero-emissions scenario.

    PubMed

    Matsuno, Taroh; Maruyama, Koki; Tsutsui, Junichi

    2012-01-01

    Following Part 1, a comparison of CO(2)-emissions pathways between "zero-emissions stabilization (Z-stabilization)" and traditional stabilization is made under more realistic conditions that take into account the radiative forcings of other greenhouse gases and aerosols with the constraint that the temperature rise must not exceed 2 °C above the preindustrial level. It is shown that the findings in Part 1 on the merits of Z-stabilization hold under the more realistic conditions. The results clarify the scientific basis of the policy claim of 50% reduction of the world CO(2) emissions by 2050. Since the highest greenhouse gas (GHG) concentration and temperature occur only temporarily in Z-stabilization pathways, we may slightly relax the upper limit of the temperature rise. We can then search for a scenario with larger emissions in the 21st century; such a scenario may have potential for practical application. It is suggested that in this Z-stabilization pathway, larger emissions in the near future may be important from a socioeconomic viewpoint.

  10. Urban traffic pollution reduction for sedan cars using petrol engines by hydro-oxide gas inclusion.

    PubMed

    Al-Rousan, Ammar A; Alkheder, Sharaf; Musmar, Sa'ed A

    2015-12-01

    Petrol cars, in particular nonhybrid cars, contribute significantly to the pollution problem as compared with other types of cars. The originality of this article falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/hr). Results indicated that through using hydro-oxy gas, a noticeable reduction in pollution was recorded. Oxygen (O2) percentage has increased by about 2.5%, and nitric oxide (NO) level has been reduced by about 500 ppm. Carbon monoxide (CO) has decreased by about 2.2%, and also CO2 has decreased by 2.1%. It's worth mentioning that for hybrid system in cars at speeds between 10 and 50 km/hr, the emission percentage change is zero. However, hybrid cars are less abundant than petrol cars. The originality of this paper falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/h).

  11. Life cycle and economic assessment of source-separated MSW collection with regard to greenhouse gas emissions: a case study in China.

    PubMed

    Dong, Jun; Ni, Mingjiang; Chi, Yong; Zou, Daoan; Fu, Chao

    2013-08-01

    In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and -86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.

  12. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE PAGES

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; ...

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore » general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  13. Projecting the environmental profile of Singapore's landfill activities: Comparisons of present and future scenarios based on LCA.

    PubMed

    Khoo, Hsien H; Tan, Lester L Z; Tan, Reginald B H

    2012-05-01

    This article aims to generate the environmental profile of Singapore's Semakau landfill by comparing three different operational options associated with the life cycle stages of landfilling activities, against a 'business as usual' scenario. Before life cycle assessment or LCA is used to quantify the potential impacts from landfilling activities, an attempt to incorporate localized and empirical information into the amounts of ash and MSW sent to the landfill was made. A linear regression representation of the relationship between the mass of waste disposed and the mass of incineration ash generated was modeled from waste statistics between years 2004 and 2009. Next, the mass of individual MSW components was projected from 2010 to 2030. The LCA results highlighted that in a 'business as usual' scenario the normalized total impacts of global warming, acidification and human toxicity increased by about 2% annually from 2011 to 2030. By replacing the 8000-tonne barge with a 10000-tonne coastal bulk carrier or freighter (in scenario 2) a grand total reduction of 48% of both global warming potential and acidification can be realized by year 2030. Scenario 3 explored the importance of having a Waste Water Treatment Plant in place to reduce human toxicity levels - however, the overall long-term benefits were not as significant as scenario 2. It is shown in scenario 4 that the option of increased recycling championed over all other three scenarios in the long run, resulting in a total 58% reduction in year 2030 for the total normalized results. A separate comparison of scenarios 1-4 is also carried out for energy utilization and land use in terms of volume of waste occupied. Along with the predicted reductions in environmental burdens, an additional bonus is found in the expanded lifespan of Semakau landfill from year 2032 (base case) to year 2039. Model limitations and suggestions for improvements were also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Emission reduction potential of using gas-to-liquid and dimethyl ether fuels on a turbocharged diesel engine.

    PubMed

    Xinling, Li; Zhen, Huang

    2009-03-15

    A study of engine performance characteristics and both of regulated (CO, HC, NO(x), and smoke) and unregulated (ultrafine particle number, mass concentrations and size distribution) emissions for a turbocharged diesel engine fueled with conventional diesel, gas-to-liquid (GTL) and dimethyl ether (DME) fuels respectively at different engine loads and speeds have been carried out. The results indicated that fuel components significantly affected the engine performance and regulated/unregulated emissions. GTL exhibited almost the same power and torque output as diesel, while improved fuel economy. GTL significantly reduced regulated emissions with average reductions of 21.2% in CO, 15.7% in HC, 15.6% in NO(x) and 22.1% in smoke in comparison to diesel, as well as average reductions in unregulated emissions of total ultrafine particle number (N(tot)) and mass (M(tot)) emissions by 85.3% and 43.9%. DME can significantly increase torque and power, compared with the original diesel engine, as well as significantly reduced regulated emissions of 40.1% in HC, 48.2% in NO(x) and smoke free throughout all the engine conditions. However, N(tot) for DME is close to that for diesel. The reason is that the accumulation mode particle number emissions for DME are very low due to the characteristics of oxygen content and no C-C bond, which promotes the processes of nucleation and condensation of the semi-volatile compounds in the exhaust gas, as a result, a lot of nucleation mode particles produce.

  15. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy.

    PubMed

    Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2011-10-01

    Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a

  16. Tradeoffs between costs and greenhouse gas emissions in the design of urban transit systems

    NASA Astrophysics Data System (ADS)

    Griswold, Julia B.; Madanat, Samer; Horvath, Arpad

    2013-12-01

    Recent investments in the transit sector to address greenhouse gas emissions have concentrated on purchasing efficient replacement vehicles and inducing mode shift from the private automobile. There has been little focus on the potential of network and operational improvements, such as changes in headways, route spacing, and stop spacing, to reduce transit emissions. Most models of transit system design consider user and agency cost while ignoring emissions and the potential environmental benefit of operational improvements. We use a model to evaluate the user and agency costs as well as greenhouse gas benefit of design and operational improvements to transit systems. We examine how the operational characteristics of urban transit systems affect both costs and greenhouse gas emissions. The research identifies the Pareto frontier for designing an idealized transit network. Modes considered include bus, bus rapid transit (BRT), light rail transit (LRT), and metro (heavy) rail, with cost and emissions parameters appropriate for the United States. Passenger demand follows a many-to-many travel pattern with uniformly distributed origins and destinations. The approaches described could be used to optimize the network design of existing bus service or help to select a mode and design attributes for a new transit system. The results show that BRT provides the lowest cost but not the lowest emissions for our large city scenarios. Bus and LRT systems have low costs and the lowest emissions for our small city scenarios. Relatively large reductions in emissions from the cost-optimal system can be achieved with only minor increases in user travel time.

  17. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Jason; Smith, Steven J.; Silva, Raquel

    2013-10-01

    Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.5±0.2, 1.3±0.6, and 2.2±1.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range ofmore » costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.« less

  18. Reduction in greenhouse gas emissions from sludge biodrying instead of heat drying combined with mono-incineration in China.

    PubMed

    Liu, Hong-Tao; Wang, Yan-Wen; Liu, Xiao-Jie; Gao, Ding; Zheng, Guo-di; Lei, Mei; Guo, Guang-Hui; Zheng, Hai-Xia; Kong, Xiang-Juan

    2017-02-01

    Sludge is an important source of greenhouse gas (GHG) emissions, both in the form of direct process emissions and as a result of indirect carbon-derived energy consumption during processing. In this study, the carbon budgets of two sludge disposal processes at two well-known sludge disposal sites in China (for biodrying and heat-drying pretreatments, both followed by mono-incineration) were quantified and compared. Total GHG emissions from heat drying combined with mono-incineration was 0.1731 tCO 2 e t -1 , while 0.0882 tCO 2 e t -1 was emitted from biodrying combined with mono-incineration. Based on these findings, a significant reduction (approximately 50%) in total GHG emissions was obtained by biodrying instead of heat drying prior to sludge incineration. Sludge treatment results in direct and indirect greenhouse gas (GHG) emissions. Moisture reduction followed by incineration is commonly used to dispose of sludge in China; however, few studies have compared the effects of different drying pretreatment options on GHG emissions during such processes. Therefore, in this study, the carbon budgets of sludge incineration were analyzed and compared following different pretreatment drying technologies (biodrying and heat drying). The results indicate that biodrying combined with incineration generated approximately half of the GHG emissions compared to heat drying followed by incineration. Accordingly, biodrying may represent a more environment-friendly sludge pretreatment prior to incineration.

  19. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  20. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or 'NEMS' model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  1. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. Lastly, we explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  2. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE PAGES

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances; ...

    2017-11-01

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or 'NEMS' model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  3. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE PAGES

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances; ...

    2017-09-07

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. Lastly, we explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  4. Ferric iron-bearing sediments as a mineral trap for CO2 sequestration: Iron reduction using sulfur-bearing waste gas

    USGS Publications Warehouse

    Palandri, J.L.; Kharaka, Y.K.

    2005-01-01

    We present a novel method for geologic sequestration of anthropogenic CO2 in ferrous carbonate, using ferric iron present in widespread redbeds and other sediments. Iron can be reduced by SO2 that is commonly a component of flue gas produced by combustion of fossil fuel, or by adding SO2 or H2S derived from other industrial processes to the injected waste gas stream. Equilibrium and kinetically controlled geochemical simulations at 120 bar and 50 and 100 ??C with SO2 or H2S show that iron can be transformed almost entirely to siderite thereby trapping CO2, and simultaneously, that sulfur can be converted predominantly to dissolved sulfate. If there is an insufficient amount of sulfur-bearing gas relative to CO2 as for typical flue gas, then some of the iron is not reduced, and some of the CO2 is not sequestered. If there is an excess of sulfur-bearing gas, then complete iron reduction is ensured, and some of the iron precipitates as pyrite or other solid iron sulfide, depending on their relative precipitation kinetics. Gas mixtures with insufficient sulfur relative to CO2 can be used in sediments containing Ca, Mg, or other divalent metals capable of precipitating carbonate minerals. For quartz arenite with an initial porosity of 21% and containing 0.25 wt.% Fe2O3, approximately 0.7 g of CO2 is sequestered per kg of rock, and the porosity decrease is less than 0.03%. Sequestration of CO2 using ferric iron has the advantage of disposing of SO2 that may already be present in the combustion gas. ?? 2005 Published by Elsevier B.V.

  5. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    DOE PAGES

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; ...

    2016-09-28

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. Here, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide rangemore » of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. Furthermore, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2°C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. In order to serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit

  6. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.

    2016-01-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate amore » wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially

  7. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; Eyring, Veronika; Friedlingstein, Pierre; Hurtt, George; Knutti, Reto; Kriegler, Elmar; Lamarque, Jean-Francois; Lowe, Jason; Meehl, Gerald A.; Moss, Richard; Riahi, Keywan; Sanderson, Benjamin M.

    2016-09-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit

  8. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    EPA Science Inventory

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  9. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.

    PubMed

    Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H

    2010-07-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.

    PubMed

    Kelly, Jarod C; Sullivan, John L; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.

  11. High resolution interpolation of climate scenarios for the conterminous USA and Alaska derived from general circulation model simulations

    Treesearch

    Linda A. Joyce; David T. Price; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin Lawrence; David P. Coulson

    2011-01-01

    Projections of future climate were selected for four well-established general circulation models (GCM) forced by each of three greenhouse gas (GHG) emissions scenarios, namely A2, A1B, and B1 from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES). Monthly data for the period 1961-2100 were downloaded mainly from the web...

  12. Investigation of iron oxide reduction by TEM

    NASA Astrophysics Data System (ADS)

    Rau, Mann-Fu; Rieck, David; Evans, James W.

    1987-03-01

    An “environmental cell” located in a high voltage transmission electron microscope has been used to study the reduction of single crystal iron oxides by hydrogen and hydrogen-argon mixtures. The cell enables a direct observation of the solid during reaction, thus permitting the nucleation and growth of solid reaction products to be observed. Hematite was reduced at temperatures in the range 387 to 610°C with gas pressures up to 5.3 kP. Reduction with pure hydrogen was considerably faster than when argon was present. Lath magnetite which rapidly transforms to porous magnetite and thence (more slowly) to porous iron was observed. The reduction of magnetite and of wustite single crystals was observed in the temperature range 300 to 514°C using both hydrogen and hydrogen-argon mixtures at gas pressures up to 6.6 kP. Incubation periods were found for magnetite reduction; during these periods faceted pits formed in the oxide. Iron formed in the early stages was epitaxial with the host magnetite; at later stages the epitaxy was lost and fissures frequently formed in the metal. The morphology of the iron differed between the gas mixtures. Disproportionation accompanied the reduction of wustite, producing intermediate polycrystalline magnetite despite reducing conditions. The disproportionation appeared to be promoted by the reduction reaction. For both oxides, reduction in the hydrogen-argon mixture was slower than in pure hydrogen.

  13. Discrete velocity computations with stochastic variance reduction of the Boltzmann equation for gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Peter; Varghese, Philip; Goldstein, David

    We extend a variance reduced discrete velocity method developed at UT Austin [1, 2] to gas mixtures with large mass ratios and flows with trace species. The mixture is stored as a collection of independent velocity distribution functions, each with a unique grid in velocity space. Different collision types (A-A, A-B, B-B, etc.) are treated independently, and the variance reduction scheme is formulated with different equilibrium functions for each separate collision type. The individual treatment of species enables increased focus on species important to the physics of the flow, even if the important species are present in trace amounts. Themore » method is verified through comparisons to Direct Simulation Monte Carlo computations and the computational workload per time step is investigated for the variance reduced method.« less

  14. Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzau Subcarpathians, Romania

    NASA Astrophysics Data System (ADS)

    Malek, Žiga; Boerboom, Luc; Glade, Thomas

    2015-11-01

    This study focuses on future forest cover change in Buzau Subcarpathians, a landslide prone region in Romania. Past and current trends suggest that the area might expect a future increase in deforestation. We developed spatially explicit scenarios until 2040 to analyze the spatial pattern of future forest cover change and potential changes to landslide risk. First, we generated transition probability maps using the weights of evidence method, followed by a cellular automata allocation model. We performed expert interviews, to develop two future forest management scenarios. The Alternative scenario (ALT) was defined by 67 % more deforestation than the Business as Usual scenario (BAU). We integrated the simulated scenarios with a landslide susceptibility map. In both scenarios, most of deforestation was projected in areas where landslides are less likely to occur. Still, 483 (ALT) and 276 (BAU) ha of deforestation were projected on areas with a high-landslide occurrence likelihood. Thus, deforestation could lead to a local-scale increase in landslide risk, in particular near or adjacent to forestry roads. The parallel process of near 10 % forest expansion until 2040 was projected to occur mostly on areas with high-landslide susceptibility. On a regional scale, forest expansion could so result in improved slope stability. We modeled two additional scenarios with an implemented landslide risk policy, excluding high-risk zones. The reduction of deforestation on high-risk areas was achieved without a drastic decrease in the accessibility of the areas. Together with forest expansion, it could therefore be used as a risk reduction strategy.

  15. Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzau Subcarpathians, Romania.

    PubMed

    Malek, Žiga; Boerboom, Luc; Glade, Thomas

    2015-11-01

    This study focuses on future forest cover change in Buzau Subcarpathians, a landslide prone region in Romania. Past and current trends suggest that the area might expect a future increase in deforestation. We developed spatially explicit scenarios until 2040 to analyze the spatial pattern of future forest cover change and potential changes to landslide risk. First, we generated transition probability maps using the weights of evidence method, followed by a cellular automata allocation model. We performed expert interviews, to develop two future forest management scenarios. The Alternative scenario (ALT) was defined by 67% more deforestation than the Business as Usual scenario (BAU). We integrated the simulated scenarios with a landslide susceptibility map. In both scenarios, most of deforestation was projected in areas where landslides are less likely to occur. Still, 483 (ALT) and 276 (BAU) ha of deforestation were projected on areas with a high-landslide occurrence likelihood. Thus, deforestation could lead to a local-scale increase in landslide risk, in particular near or adjacent to forestry roads. The parallel process of near 10% forest expansion until 2040 was projected to occur mostly on areas with high-landslide susceptibility. On a regional scale, forest expansion could so result in improved slope stability. We modeled two additional scenarios with an implemented landslide risk policy, excluding high-risk zones. The reduction of deforestation on high-risk areas was achieved without a drastic decrease in the accessibility of the areas. Together with forest expansion, it could therefore be used as a risk reduction strategy.

  16. Quantifying climate change mitigation potential in Great Plains wetlands for three greenhouse gas emission scenarios

    USGS Publications Warehouse

    Byrd, Kristin B.; Ratliff, Jamie L.; Wein, Anne; Bliss, Norman B.; Sleeter, Benjamin M.; Sohl, Terry L.; Li, Zhengpeng

    2015-01-01

    We examined opportunities for avoided loss of wetland carbon stocks in the Great Plains of the United States in the context of future agricultural expansion through analysis of land-use land-cover (LULC) change scenarios, baseline carbon datasets and biogeochemical model outputs. A wetland map that classifies wetlands according to carbon pools was created to describe future patterns of carbon loss and potential carbon savings. Wetland avoided loss scenarios, superimposed upon LULC change scenarios, quantified carbon stocks preserved under criteria of carbon densities or land value plus cropland suitability. Up to 3420 km2 of wetlands may be lost in the region by 2050, mainly due to conversion of herbaceous wetlands in the Temperate Prairies where soil organic carbon (SOC) is highest. SOC loss would be approximately 0.20 ± 0.15 megagrams of carbon per hectare per year (MgC ha−1 yr−1), depending upon tillage practices on converted wetlands, and total ecosystem carbon loss in woody wetlands would be approximately 0.81 ± 0.41 MgC ha−1 yr−1, based on biogeochemical model results. Among wetlands vulnerable to conversion, wetlands in the Northern Glaciated Plains and Lake Agassiz Plains ecoregions exhibit very high mean SOC and on average, relatively low land values, potentially creating economically competitive opportunities for avoided carbon loss. This mitigation scenarios approach may be adapted by managers using their own preferred criteria to select sites that best meet their objectives. Results can help prioritize field-based assessments, where site-level investigations of carbon stocks, land value, and consideration of local priorities for climate change mitigation programs are needed.

  17. On the physics-based processes behind production-induced seismicity in natural gas fields

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan

    2017-05-01

    Induced seismicity due to natural gas production is observed at different sites worldwide. Common understanding states that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations and hence reactivates preexisting faults and induces earthquakes. In this study, we show that the multiphase fluid flow involved in natural gas extraction activities should be included. We use a fully coupled fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, divided into two compartments that are offset by a normal fault. Results show that fluid flow plays a major role in pore pressure and stress evolution within the fault. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighboring reservoir compartment and other formations. We also analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas reinjection. In the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production has ceased, although on average the shut-in results in a reduction in seismicity. In the case of gas reinjection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, gas reinjection into a neighboring compartment does not stop the fault from being reactivated.

  18. Future Scenarios of Livestock and Land Use in Brazil

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Abrahão, G. M.

    2016-12-01

    Brazil currently has about 213 M cattle heads in 151 M ha of pastures. In the last 40 years, both the top 5% and the average stocking rate are increasing exponentially in Brazil, while the relative yield gap has been constant. Using these historical relationships, we estimate future scenarios of livestock and land use in Brazil. We assume a reference scenario for the top 5%, in which pasturelands are adequately fertilized, soil is not compacted and well drained, grasses are never burned, pastures are divided in 8 subdivisions of regular area, are cattle is rotated through the subdivisions. The reference scenario does not consider irrigation or feed supplementation. We calibrate a computer model and run it for the pasturelands throughout the entire country. We conclude that current pastures have about 20% efficiency to raise cattle compared to the reference scenario. Considering the reference scenario, we predict an equilibrium will be reached in about 100 years, with top 5% with about 9.3 heads per ha and the average 4.3 heads per ha, or 600 M heads of livestock. Considering a more pessimistic scenario, which considers an inflection of the curve in present times, we predict an equilibrium will be reached in about 60 years, with the top 5% stocking rate equal to 4.3 heads per ha and the average equal to 2.2 heads per ha, or 300 M heads of livestock. Both cases represent a considerable expansion of the livestock, maybe even higher than the growth of the global demands for beef. These scenarios indicate that not all existing pasturelands need to be used in the future - a significant part of them may be converted to croplands, which will also contribute to the reduction of deforestation.

  19. AgMIP Climate Data and Scenarios for Integrated Assessment. Chapter 3

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; Winter, Jonathan M.; McDermid, Sonali P.; Hudson, Nicholas I.

    2015-01-01

    Climate change presents a great challenge to the agricultural sector as changes in precipitation, temperature, humidity, and circulation patterns alter the climatic conditions upon which many agricultural systems rely. Projections of future climate conditions are inherently uncertain owing to a lack of clarity on how society will develop, policies that may be implemented to reduce greenhouse-gas (GHG) emissions, and complexities in modeling the atmosphere, ocean, land, cryosphere, and biosphere components of the climate system. Global climate models (GCMs) are based on well-established physics of each climate component that enable the models to project climate responses to changing GHG concentration scenarios (Stocker et al., 2013).The most recent iteration of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) utilized representative concentration pathways (RCPs) to cover the range of plausible GHG concentrations out past the year 2100, with RCP8.5 representing an extreme scenario and RCP4.5 representing a lower concentrations scenario (Moss et al., 2010).

  20. Scenario analysis of the benefit of municipal organic-waste composting over landfill, Cambodia.

    PubMed

    Seng, Bunrith; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Ochiai, Satoru; Kaneko, Hidehiro

    2013-01-15

    This paper presents insight into the benefits of organic waste recycling through composting over landfill, in terms of landfill life extension, compost product, and mitigation of greenhouse gases (GHGs). Future waste generation from 2003 to 2020 was forecast, and five scenarios of organic waste recycling in the municipality of Phnom Penh (MPP), Cambodia, were carried out. Organic waste-specifically food and garden waste-was used for composting, and the remaining waste was landfilled. The recycling scenarios were set based on organic waste generated from difference sources: households, restaurants, shops, markets, schools, hotels, offices, and street sweeping. Through the five scenarios, the minimum volume reductions of waste disposal were about 56, 123, and 219 m(3) d(-1) in 2003, 2012, and 2020, respectively, whereas the maximum volume reductions in these years were about 325, 643, and 1025 m(3) d(-1). These volume reductions reflect a landfill life extension of a minimum of half a year and a maximum of about four years. Compost product could be produced at a minimum of 14, 30, and 54 tons d(-1) in 2003, 2012, and 2020, respectively, and at a maximum in those years of about 80, 158, and 252 tons d(-1). At the same time benefit is gained in compost product, GHG emissions could be reduced by a minimum of 12.8% and a maximum of 65.0% from 2003 to 2020. This means about 3.23 (minimum) and 5.79 million tons CO(2)eq (maximum) contributed to GHG mitigation. In this regard, it is strongly recommended that MPP should try to initiate an organic-waste recycling strategy in a best fit scenario. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; O'Neill, B. C.

    2014-12-01

    Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S

  2. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    EPA Science Inventory

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but unce...

  3. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, Rebecca Ann; Langholtz, Matthew H.

    With the goal of understanding environmental effects of a growing bioeconomy, the U.S. Department of Energy (DOE), national laboratories, and U.S. Forest Service research laboratories, together with academic and industry collaborators, undertook a study to estimate environmental effects of potential biomass production scenarios in the United States, with an emphasis on agricultural and forest biomass. Potential effects investigated include changes in soil organic carbon (SOC), greenhouse gas (GHG) emissions, water quality and quantity, air emissions, and biodiversity. Effects of altered land-management regimes were analyzed based on select county-level biomass-production scenarios for 2017 and 2040 taken from the 2016 Billion-Ton Report:more » Advancing Domestic Resources for a Thriving Bioeconomy (BT16), volume 1, which assumes that the land bases for agricultural and forestry would not change over time. The scenarios reflect constraints on biomass supply (e.g., excluded areas; implementation of management practices; and consideration of food, feed, forage, and fiber demands and exports) that intend to address sustainability concerns. Nonetheless, both beneficial and adverse environmental effects might be expected. To characterize these potential effects, this research sought to estimate where and under what modeled scenarios or conditions positive and negative environmental effects could occur nationwide. The report also includes a discussion of land-use change (LUC) (i.e., land management change) assumptions associated with the scenario transitions (but not including analysis of indirect LUC [ILUC]), analyses of climate sensitivity of feedstock productivity under a set of potential scenarios, and a qualitative environmental effects analysis of algae production under carbon dioxide (CO2) co-location scenarios. Because BT16 biomass supplies are simulated independent of a defined end use, most analyses do not include benefits from displacing fossil fuels or other

  4. Scenarios Based on Shared Socioeconomic Pathway Assumptions

    NASA Astrophysics Data System (ADS)

    Edmonds, J.

    2013-12-01

    A set of new scenarios is being developed by the international scientific community as part of a larger program that was articulated in Moss, et al. (2009), published in Nature. A long series of meetings including climate researchers drawn from the climate modeling, impacts, adaptation and vulnerability (IAV) and integrated assessment modeling (IAM) communities have led to the development of a set of five Shared Socioeconomic Pathways (SSPs), which define the state of human and natural societies at a macro scale over the course of the 21st century without regard to climate mitigation or change. SSPs were designed to explore a range of possible futures consistent with greater or lesser challenges to mitigation and challenges to adaptation. They include a narrative storyline and a set of quantified measures--e.g. demographic and economic profiles--that define the high-level state of society as it evolves over the 21st century under the assumption of no significant climate feedback. SSPs can be used to develop quantitative scenarios of human Earth systems using IAMs. IAMs produce information about greenhouse gas emissions, energy systems, the economy, agriculture and land use. Each set of SSPs will have a different human Earth system realization for each IAM. Five groups from the IAM community have begun to explore the implications of SSP assumptions for emissions, energy, economy, agriculture and land use. We report the quantitative results of initial experiments from those groups. A major goal of the Moss, et al. strategy was to enable the use of CMIP5 climate model ensemble products for IAV research. CMIP5 climate scenarios used four Representative Concentration Pathway (RCP) scenarios, defined in terms of radiative forcing in the year 2100: 2.6, 4.5, 6.0, and 8.5 Wm-2. There is no reason to believe that the SSPs will generate year 2100 levels of radiative forcing that correspond to the four RCP levels, though it is important that at least one SSP produce a

  5. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  6. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  7. Demand charge reduction with digester gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-02-01

    This paper examines a rather sophisticated treatment system in the city of Whitewater, Wisconsin. The power generated is used to trim utility peak power loads and demand charges. Power is derived from four Waukesha VHP 3600G engine generator sets with provisions for a fifth as growth requires. The engine is a Waukesha F3521GU spark ignited, six-cylinder gas engine with 9.375 in. x 8.50 bore and stroke driving a Kato 350 kW generator rated at 480/277 volts and 1200 rpm. Normal operation is to reduce the peak demand.

  8. Benefits of using biogas technology in rural area: karo district on supporting local action plan for greenhouse gas emission reduction of north sumatera province 2010-2020

    NASA Astrophysics Data System (ADS)

    Ginting, N.

    2017-05-01

    Indonesia committed to reduce its greenhouse gas (GHG) by 26% in 2020. At the UNFCCC (Conference of the United Nation Framework Convention on Climate Change) held in Paris in December 2015 Indonesia committed to reduce GHG; one way by promoting clean energy use for example biogas. Agricultural industry produces organic waste which contributes to global warming and climate change. In Karo District, mostly the people were farmers, either horticulture or fruit and produces massive organic waste. Biogas research was conducted in Karo District in May until July 2016 used 5 biodigesters. The purpose was to determine benefits of using biogas technology in order to reduct GHG emissions. The used design was Completely Randomized Design (CRD) with treatments: T1 (100% cow feces), T2 (75% cow feces + 25% horticultural waste), T3 (50% cow feces + 50% horticultural waste), T4 (25% cow feces + 75% horticultural waste) and T5 (100% horticultural waste). Parameter research were gas production, pH and temperature. The research result showed that T1 produced the highest methane ( P<0.05) compared to other treatments while T2 produced methane higher (P<0.05) compared to T4 or T5. There was no difference on methane production between T4 and T5. As conclusion application of biogas on agricultural waste supported local action plan for greenhouse gas emission reduction of North Sumatera Province 2010-2020. From horticultural waste, there were 2.1 × 106 ton CO2 eq in 2014 which were not calculated in RAD GRK (Regional Action Plan for Greenhouse Gas Emissions Reduction).

  9. Dying scenarios improve recall as much as survival scenarios.

    PubMed

    Burns, Daniel J; Hart, Joshua; Kramer, Melanie E

    2014-01-01

    Merely contemplating one's death improves retention for entirely unrelated material learned subsequently. This "dying to remember" effect seems conceptually related to the survival processing effect, whereby processing items for their relevance to being stranded in the grasslands leads to recall superior to that of other deep processing control conditions. The present experiments directly compared survival processing scenarios with "death processing" scenarios. Results showed that when the survival and dying scenarios are closely matched on key dimensions, and possible congruency effects are controlled, the dying and survival scenarios produced equivalently high recall levels. We conclude that the available evidence (cf. Bell, Roer, & Buchner, 2013; Klein, 2012), while not definitive, is consistent with the possibility of overlapping mechanisms.

  10. How low can dietary greenhouse gas emissions be reduced without impairing nutritional adequacy, affordability and acceptability of the diet? A modelling study to guide sustainable food choices.

    PubMed

    Perignon, Marlène; Masset, Gabriel; Ferrari, Gaël; Barré, Tangui; Vieux, Florent; Maillot, Matthieu; Amiot, Marie-Josèphe; Darmon, Nicole

    2016-10-01

    To assess the compatibility between reduction of diet-related greenhouse gas emissions (GHGE) and nutritional adequacy, acceptability and affordability dimensions of diet sustainability. Dietary intake, nutritional composition, GHGE and prices were combined for 402 foods selected among those most consumed by participants of the Individual National Study on Food Consumption. Linear programming was used to model diets with stepwise GHGE reductions, minimized departure from observed diet and three scenarios of nutritional constraints: none (FREE), on macronutrients (MACRO) and for all nutrient recommendations (ADEQ). Nutritional quality was assessed using the mean adequacy ratio (MAR) and solid energy density (SED). France. Adults (n 1899). In FREE and MACRO scenarios, imposing up to 30 % GHGE reduction did not affect the MAR, SED and food group pattern of the observed diet, but required substitutions within food groups; higher GHGE reductions decreased diet cost, but also nutritional quality, even with constraints on macronutrients. Imposing all nutritional recommendations (ADEQ) increased the fruits and vegetables quantity, reduced SED and slightly increased diet cost without additional modifications induced by the GHGE constraint up to 30 % reduction; higher GHGE reductions decreased diet cost but required non-trivial dietary shifts from the observed diet. Not all the nutritional recommendations could be met for GHGE reductions ≥70 %. Moderate GHGE reductions (≤30 %) were compatible with nutritional adequacy and affordability without adding major food group shifts to those induced by nutritional recommendations. Higher GHGE reductions either impaired nutritional quality, even when macronutrient recommendations were imposed, or required non-trivial dietary shifts compromising acceptability to reach nutritional adequacy.

  11. Landfill Gas Energy Benefits Calculator

    EPA Pesticide Factsheets

    This page contains the LFG Energy Benefits Calculator to estimate direct, avoided, and total greenhouse gas reductions, as well as environmental and energy benefits, for a landfill gas energy project.

  12. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    Scenarios have become a standard tool in the portfolio of techniques that scientists and policy-makers use to envision and plan for the future. Defined as plausible, challenging and relevant stories about how the future might unfold that integrate quantitative models with qualitative assessments of social and political trends, scenarios are a central component in assessment processes for a range of global issues, including climate change, biodiversity, agriculture, and energy. Yet, despite their prevalence, systematic analysis of scenarios is in its beginning stages. Fundamental questions remain about both the epistemology and scientific credibility of scenarios and their roles in policymaking and social change. Answers to these questions have the potential to determine the future of scenario analyses. Is scenario analysis moving in the direction of earth system governance informed by global scenarios generated through increasingly complex and comprehensive models integrating socio-economic and earth systems? Or will global environmental scenario analyses lose favour compared to more focused, policy-driven, regionally specific modelling? These questions come at an important time for the climate change issue, given that the scenario community, catalyzed by the Intergovernmental Panel on Climate Change (IPCC), is currently preparing to embark on a new round of scenario development processes aimed at coordinating research and assessment, and informing policy, over the next five to ten years. These and related questions about where next to go with global environmental scenarios animated a workshop held at Brown University (Note1) that brought together leading practitioners and scholars of global environmental change scenarios from research, policy-making, advocacy, and business settings. The workshop aimed to provide an overview of current practices/best practices in scenario production and scenario use across a range of global environmental change arenas. Participants

  13. Integrated control of emission reductions, energy-saving, and cost-benefit using a multi-objective optimization technique in the pulp and paper industry.

    PubMed

    Wen, Zongguo; Xu, Chang; Zhang, Xueying

    2015-03-17

    Reduction of water pollutant emissions and energy consumption is regarded as a key environmental objective for the pulp and paper industry. The paper develops a bottom-up model called the Industrial Water Pollutant Control and Technology Policy (IWPCTP) based on an industrial technology simulation system and multiconstraint technological optimization. Five policy scenarios covering the business as usual (BAU) scenario, the structural adjustment (SA) scenario, the cleaner technology promotion (CT) scenario, the end-treatment of pollutants (EOP) scenario, and the coupling measures (CM) scenario have been set to describe future policy measures related to the development of the pulp and paper industry from 2010-2020. The outcome of this study indicates that the energy saving amount under the CT scenario is the largest, while that under the SA scenario is the smallest. Under the CT scenario, savings by 2020 include 70 kt/year of chemical oxygen demand (COD) emission reductions and savings of 7443 kt of standard coal, 539.7 ton/year of ammonia nitrogen (NH4-N) emission reductions, and savings of 7444 kt of standard coal. Taking emission reductions, energy savings, and cost-benefit into consideration, cleaner technologies like highly efficient pulp washing, dry and wet feedstock preparation, and horizontal continuous cooking, medium and high consistency pulping and wood dry feedstock preparation are recommended.

  14. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport.

    PubMed

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces.

  15. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    PubMed Central

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  16. SDSS-IV MaNGA: modelling the metallicity gradients of gas and stars - radially dependent metal outflow versus IMF

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin

    2018-05-01

    In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.

  17. Up to what point is loss reduction environmentally friendly?: The LCA of loss reduction scenarios in drinking water networks.

    PubMed

    Pillot, Julie; Catel, Laureline; Renaud, Eddy; Augeard, Bénédicte; Roux, Philippe

    2016-11-01

    In a context of increasing water shortage all over the world, water utilities must minimise losses in their distribution networks and draw up water loss reduction action plans. While leak reduction is clearly an important part of sustainable water management, its impacts have to be reconsidered in a broader objective of environmental protection than strictly the avoided losses in cubic metres of water. Reducing the volume of water abstracted reduces also environmental impacts associated to water production (the operation and infrastructure needed for abstraction, treatment, supply). In the mean time, activities for reducing water losses generate their own environmental impacts, notably as a result of the work, equipment, and infrastructures used for this purpose. In this study, Life Cycle Assessment (LCA) was used to assess and compare two sets of environmental impacts: those resulting from the production and supply of water which will never reach subscribers, and those caused by water loss reduction activities. This information can then be used to establish whether or not there is a point beyond which loss reduction is no longer effective in reducing the environmental impacts of drinking water supply. Results show that the improvement actions that start from a low water supply efficiency are clearly beneficial for ecosystems, human health and preservation of resources. When seeking to improve the efficiency beyond certain values (about 65%), the uncertainty makes it impossible to conclude for an environmental benefit on all impact categories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Comparing population exposure to multiple Washington earthquake scenarios for prioritizing loss estimation studies

    USGS Publications Warehouse

    Wood, Nathan J.; Ratliff, Jamie L.; Schelling, John; Weaver, Craig S.

    2014-01-01

    Scenario-based, loss-estimation studies are useful for gauging potential societal impacts from earthquakes but can be challenging to undertake in areas with multiple scenarios and jurisdictions. We present a geospatial approach using various population data for comparing earthquake scenarios and jurisdictions to help emergency managers prioritize where to focus limited resources on data development and loss-estimation studies. Using 20 earthquake scenarios developed for the State of Washington (USA), we demonstrate how a population-exposure analysis across multiple jurisdictions based on Modified Mercalli Intensity (MMI) classes helps emergency managers understand and communicate where potential loss of life may be concentrated and where impacts may be more related to quality of life. Results indicate that certain well-known scenarios may directly impact the greatest number of people, whereas other, potentially lesser-known, scenarios impact fewer people but consequences could be more severe. The use of economic data to profile each jurisdiction’s workforce in earthquake hazard zones also provides additional insight on at-risk populations. This approach can serve as a first step in understanding societal impacts of earthquakes and helping practitioners to efficiently use their limited risk-reduction resources.

  19. Three case studies of the GasNet model in discrete domains.

    PubMed

    Santos, C L; de Oliveira, P P; Husbands, P; Souza, C R

    2001-06-01

    A new neural network model - the GasNet - has been recently reported in the literature, which, in addition to the traditional electric type, point-to-point communication between units, also uses communication through a diffilsable chemical modulator. Here we assess the applicability of this model in three different scenarios, the XOR problem, a food gathering task for a simulated robot, and a docking task for a virtual spaceship. All of them represent discrete domains, a contrast with the one where the GasNet was originally introduced, which had an essentially continuous nature. These scenarios are well-known benchmark problems from the literature and, since they exhibit varying degrees of complexity, they impose distinct performance demands on the GasNet. The experiments were primarily intended to better understand the model, by extending the original problem domain where GasNet was introduced. The results reported point at some difficulties with the current GasNet model.

  20. Estimating Greenhouse Gas (GHG) Emissions in 2050 from New Buildings in California

    NASA Astrophysics Data System (ADS)

    Beardsley, K.; Thorne, J. H.; Quinn, J. F.

    2009-12-01

    A major contributor to global warming is Greenhouse Gas (GHG) emissions, with carbon dioxide (CO2) as the lead constituent. While the United States has failed to take a leadership role in worldwide efforts to reduce global warming, California has implemented some of the strictest reduction goals in the country. Recent legislation in California requires significant GHG emission reductions in the coming decades to meet state-mandated targets. To better understand the relative contribution of urban growth to these emissions, we applied an Energy and GHG Impacts Calculator (referred to as “GHG Calculator”) to estimate GHG contributions for two statewide population growth scenarios for the year 2050. Implemented as part of the UPlan urban growth model, the GHG Calculator allows users to predict and compare GHG output from new development. In this paper, two scenarios, differing only in the spatial allocation of housing among zoning categories, are developed and tested for the year 2050 in California. The difference in total GHG emissions between these scenarios was less than 1%. Thus, while “smart growth” may be desirable for a variety of other reasons, the policy impact of the sprawl footprint per se on fixed-source GHG emissions is likely to be far less than effects from other factors, such as insulation and household energy efficiency. The GHG Calculator allows alternative emission-reducing measures to be tested, including modified energy mixes (e.g. a greater percent of renewable sources and lower carbon-based fuels) and conservation measures. The goal is to approximate 2050 emissions and determine what measures are needed to achieve the 2050 goal set by the Governor of California to help decrease the State’s overall contribution to global warming.

  1. Renewable energy scenario in India: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Sen, Souvik; Ganguly, Sourav; Das, Ayanangshu; Sen, Joyjeet; Dey, Sourav

    2016-10-01

    Majority of the power generation in India is carried out by conventional energy sources, coal and fossil fuels being the primary ones, which contribute heavily to greenhouse gas emission and global warming. The Indian power sector is witnessing a revolution as excitement grips the nation about harnessing electricity from various renewable energy sources. Electricity generation from renewable sources is increasingly recognized to play an important role for the achievement of a variety of primary and secondary energy policy goals, such as improved diversity and security of energy supply, reduction of local pollutant and global greenhouse gas emissions, regional and rural development, and exploitation of opportunities for fostering social cohesion, value addition and employment generation at the local and regional level. This focuses the solution of the energy crisis on judicious utilization of abundant the renewable energy resources, such as biomass, solar, wind, geothermal and ocean tidal energy. This paper reviews the renewable energy scenario of India as well as extrapolates the future developments keeping in view the consumption, production and supply of power. Research, development, production and demonstration have been carried out enthusiastically in India to find a feasible solution to the perennial problem of power shortage for the past three decades. India has obtained application of a variety of renewable energy technologies for use in different sectors too. There are ample opportunities with favorable geology and geography with huge customer base and widening gap between demand and supply. Technological advancement, suitable regulatory policies, tax rebates, efficiency improvement in consequence to R&D efforts are the few pathways to energy and environment conservation and it will ensure that these large, clean resource bases are exploited as quickly and cost effectively as possible. This paper gives an overview of the potential renewable energy resources

  2. Valve for gas centrifuges

    DOEpatents

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  3. Valve for gas centrifuges

    DOEpatents

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  4. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulatemore » and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.« less

  5. Improved confinement in highly powered high performance scenarios on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrie, Thomas W.; Osborne, Thomas; Fenstermacher, Max E.

    DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4–1.8, and β N = 2.5–4.0. The ion B xmore » $$\\triangledown$$B direction is away from the primary X-point. While plasma conditions at lower to moderate power input (e.g., 11 MW) are shown to be favorable to successful puff-and-pump radiating divertor applications, particularly when using argon seeds, plasma behavior at higher powers (e.g., ≥14 MW) may make successful puff-and-pump operation more problematic. In contrast to lower powered high performance plasmas, both $$\\tau$$ E and β N in the high power cases (≥14 MW) increased and ELM frequency decreased, as density was raised by deuterium gas injection. Improved performance in the higher power plasmas was tied to higher pedestal pressure, which according to peeling-ballooning mode stability analysis using the ELITE code could increase with density along the kink/peeling stability threshold, while the pedestal pressure gradient in the lower power discharges were limited by the ballooning threshold. This resulted in improved fueling efficiency and ≈10% higher $$\\tau$$ E and β N than is normally observed in comparable high performance plasmas on DIII-D. Applying the puff-and-pump radiating divertor approach at moderate versus high power input is shown to result in a much different evolution in core and pedestal plasma behavior. In conclusion, we find that injecting deuterium gas into these highly powered DND plasmas may open up a new avenue for achieving elevated plasma performance, including better fueling, but the resulting higher density may also complicate application of a radiating divertor approach to heat flux reduction in present-day tokamaks, if scenarios involving second-harmonic electron cyclotron heating are used.« less

  6. Improved confinement in highly powered high performance scenarios on DIII-D

    DOE PAGES

    Petrie, Thomas W.; Osborne, Thomas; Fenstermacher, Max E.; ...

    2017-06-09

    DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4–1.8, and β N = 2.5–4.0. The ion B xmore » $$\\triangledown$$B direction is away from the primary X-point. While plasma conditions at lower to moderate power input (e.g., 11 MW) are shown to be favorable to successful puff-and-pump radiating divertor applications, particularly when using argon seeds, plasma behavior at higher powers (e.g., ≥14 MW) may make successful puff-and-pump operation more problematic. In contrast to lower powered high performance plasmas, both $$\\tau$$ E and β N in the high power cases (≥14 MW) increased and ELM frequency decreased, as density was raised by deuterium gas injection. Improved performance in the higher power plasmas was tied to higher pedestal pressure, which according to peeling-ballooning mode stability analysis using the ELITE code could increase with density along the kink/peeling stability threshold, while the pedestal pressure gradient in the lower power discharges were limited by the ballooning threshold. This resulted in improved fueling efficiency and ≈10% higher $$\\tau$$ E and β N than is normally observed in comparable high performance plasmas on DIII-D. Applying the puff-and-pump radiating divertor approach at moderate versus high power input is shown to result in a much different evolution in core and pedestal plasma behavior. In conclusion, we find that injecting deuterium gas into these highly powered DND plasmas may open up a new avenue for achieving elevated plasma performance, including better fueling, but the resulting higher density may also complicate application of a radiating divertor approach to heat flux reduction in present-day tokamaks, if scenarios involving second-harmonic electron cyclotron heating are used.« less

  7. The Use of Cryogenically Cooled 5A Molecular Sieves for Large Volume Reduction of Tritiated Hydrogen Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniazzi, A.B.; Bartoszek, F.E.; Sherlock, A.M.

    2006-07-01

    A commercial hydrogen isotope separation system based on gas chromatography (AGC-ISS) has been built. The system operates in two modes: stripping and volume reduction. The purpose of the stripping mode is to reduce a large volume of tritiated hydrogen gas to a small volume of tritium rich hydrogen gas. The results here illustrate the effectiveness of the AGC-ISS in the stripping and volume reduction phases. Column readiness for hydrogen isotope separation is confirmed by room temperature air separation tests. Production runs were initially carried out using natural levels of deuterium (110-160 ppm) in high purity hydrogen. After completion of themore » deuterium/hydrogen runs the system began operations with tritiated hydrogen. The paper presents details of the AGC-ISS design and results of tritium tests. The heart of the AGC-ISS consists of two packed columns (9 m long, 3.8 cm OD) containing 5A molecular sieve material of 40/60 mesh size. Each column has 5 individually controlled heaters along the length of the column and is coiled around an inverted inner dewar. The coiled column and inner dewar are both contained within an outer dewar. In this arrangement liquid nitrogen, used to cryogenically cool the columns, flows into and out off the annular space defined by the two dewars, allowing for alternate heating and cooling cycles. Tritiated hydrogen feed is injected in batch quantities. The batch size is variable with the maximum quantity restricted by the tritium concentration in the exhausted hydrogen. The stripping operations can be carried out in full automated mode or in full manual mode. The average cycle time between injections is about 75 minutes. To date, the maximum throughput achieved is 10.5 m{sup 3}/day. A total of 37.8 m{sup 3} of tritiated hydrogen has been processed during commissioning. The system has demonstrated that venting of >99.95% of the feed gas is possible while retaining 99.98% of the tritium. At a maximum tritium concentration of

  8. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    differences between gaseous and dissolved methane (Zimmer et al., 2011). Gas hydrate is formed using a confined pressure of 12-15 MPa and a fluid pressure of 8-11 MPa with a set temperature of 275 K. The duration of the formation process depends on the required hydrate saturation and is usually in a range of several weeks. The subsequent decomposition experiments aiming at testing innovative production scenarios such as the application of a borehole tool for thermal stimulation of hydrate via catalytic oxidation of methane within an autothermal catalytic reactor (Schicks et al. 2011). Furthermore, experiments on hydrate decomposition via pressure reduction are performed to mimic realistic scenarios such as found during the production test in Mallik (Yasuda and Dallimore, 2007). In the near future it is planned to scale up existing results on CH4-CO2 exchange efficiency (e.g. Strauch and Schicks, 2012) by feeding CO2 to the hydrate reservoir. All experiments are due to the gain of high-resolution spatial and temporal data predestined as a base for numerical modeling. References Schicks, J. M., Spangenberg, E., Giese, R., Steinhauer, B., Klump, J., Luzi, M., 2011. Energies, 4, 1, 151-172. Zimmer, M., Erzinger, J., Kujawa, C., 2011. Int. J. of Greenhouse Gas Control, 5, 4, 995-1001. Yasuda, M., Dallimore, S. J., 2007. Jpn. Assoc. Pet. Technol., 72, 603-607. Beeskow-Strauch, B., Schicks, J.M., 2012. Energies, 5, 420-437.

  9. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    NASA Astrophysics Data System (ADS)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  10. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rassat, Scot D.; Stewart, Charles W.; Wells, Beric E.

    2000-01-24

    Due primarily to an increase in floating crust thickness, the waste level in Tank 241-SY-101 has grown appreciably and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconvective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. The plan is to transfer some waste out and back-dilute with water in several steps. In this work, mechanisms and rates of waste solidsmore » dissolution and gas releases are evaluated theoretically and experimentally. Particular emphasis is given to crust dissolution processes and associated gas releases, although dissolution and gas release from the mixed-slurry and nonconvective layers are also considered. The release of hydrogen gas to the tank domespace is modeled for a number of scenarios. Under the tank conditions expected at the time of back-dilution, no plausible continuous or sudden gas release scenarios resulting in flammable hydrogen concentrations were identified.« less

  11. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs.

    PubMed

    Douskova, I; Doucha, J; Livansky, K; Machat, J; Novak, P; Umysova, D; Zachleder, V; Vitova, M

    2009-02-01

    A flue gas originating from a municipal waste incinerator was used as a source of CO(2) for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO(2) simultaneously. The utilization of the flue gas containing 10-13% (v/v) CO(2) and 8-10% (v/v) O(2) for the photobioreactor agitation and CO(2) supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO(2) and air (11% (v/v) CO(2)). Correspondingly, the CO(2) fixation rate was also higher when using the flue gas (4.4 g CO(2) l(-1) 24 h(-1)) than using the control gas (3.0 g CO(2) l(-1) 24 h(-1)). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements.

  12. Dual path mechanism in the thermal reduction of graphene oxide.

    PubMed

    Larciprete, Rosanna; Fabris, Stefano; Sun, Tao; Lacovig, Paolo; Baraldi, Alessandro; Lizzit, Silvano

    2011-11-02

    Graphene is easily produced by thermally reducing graphene oxide. However, defect formation in the C network during deoxygenation compromises the charge carrier mobility in the reduced material. Understanding the mechanisms of the thermal reactions is essential for defining alternative routes able to limit the density of defects generated by carbon evolution. Here, we identify a dual path mechanism in the thermal reduction of graphene oxide driven by the oxygen coverage: at low surface density, the O atoms adsorbed as epoxy groups evolve as O(2) leaving the C network unmodified. At higher coverage, the formation of other O-containing species opens competing reaction channels, which consume the C backbone. We combined spectroscopic tools and ab initio calculations to probe the species residing on the surface and those released in the gas phase during heating and to identify reaction pathways and rate-limiting steps. Our results illuminate the current puzzling scenario of the low temperature gasification of graphene oxide.

  13. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  14. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  15. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  16. NOx reduction methods and apparatuses

    DOEpatents

    Tonkyn, Russell G.; Barlow, Stephan E.; Balmer, M. Lou; Maupin, Gary D.

    2004-10-26

    A NO.sub.x reduction method includes treating a first gas containing NO.sub.x, producing a second gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the second gas to N.sub.2, and producing a third gas containing less NO.sub.x than the first gas, substantially all of the third gas NO.sub.x being NO. The method also includes treating the third gas, producing a fourth gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the fourth gas to N.sub.2, and producing a fifth gas containing less NO.sub.x than the third gas, substantially all of the fifth gas NO.sub.x being NO. Treating the first and/or third gas can include treatment with a plasma. Reducing a portion of the NO.sub.2 in the second and/or fourth gas can include reducing with a catalyst. The method can further include controlling energy consumption of the plasmas independent of each other.

  17. Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

    PubMed Central

    Carbajo, Aníbal E; Vera, Carolina; González, Paula LM

    2009-01-01

    Background Oligoryzomys longicaudatus (colilargo) is the rodent responsible for hantavirus pulmonary syndrome (HPS) in Argentine Patagonia. In past decades (1967–1998), trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent distribution in an equivalent

  18. Interpreting energy scenarios

    NASA Astrophysics Data System (ADS)

    Iyer, Gokul; Edmonds, James

    2018-05-01

    Quantitative scenarios from energy-economic models inform decision-making about uncertain futures. Now, research shows the different ways these scenarios are subsequently used by users not involved in their initial development. In the absence of clear guidance from modellers, users may place too much or too little confidence in scenario assumptions and results.

  19. Toxics and combustibles: Designing gas-detection systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, L.P.; Pryor, D.A.

    1998-07-01

    When a plant decides to install a gas-detection system, several questions come to mind: How many detectors are needed and where should they go? Simple questions--but unfortunately ones without a simple answer. However, there are some general considerations that plant personnel can use to rough out a gas-monitoring installation. Any evaluation process should include the following five steps. Each is discussed: (1) Understand the application; (2) Identify potential danger points; (3) Establish design goals; (4) Determine gas characteristics; and (5) Profile the plant and potential release scenarios.

  20. Effect of temperature on reduction of CaSO{sub 4} oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Q.L.; Xiao, R.; Deng, Z.Y.

    2008-12-15

    Chemical-looping combustion (CLC) is a promising combustion technology for gaseous and solid fuel with efficient use of energy and inherent separation of CO{sub 2}. The concept of a coal-fueled CLC system using, calcium sulfate (CaSO{sub 4}) as oxygen carrier is proposed in this study. Reduction tests of CaSO{sub 4} oxygen carrier with simulated coal gas were performed in a laboratory-scale fluidized bed reactor in the temperature range of 890-950{degree}C. A high concentration of CO{sub 2} was obtained at the initial reduction period. CaSO{sub 4} oxygen carrier exhibited high reactivity initially and decreased gradually at the late period of reduction. Themore » sulfur release during the reduction of CaSO{sub 4} as oxygen carrier was also observed and analyzed. H{sub 2} and CO{sub 2} conversions were greatly influenced by reduction temperature. The oxygen carrier conversion and mass-based reaction rates during the reduction at typical temperatures were compared. Higher temperatures would enhance reaction rates and result in high conversion of oxygen carrier. An XRD patterns study indicated that CaS was the dominant product of reduction and the variation of relative intensity with temperature is in agreement with the solid conversion. ESEM analysis indicated that the surface structure of oxygen carrier particles changed significantly from impervious to porous after reduction. EDS analysis also demonstrated the transfer of oxygen from the oxygen carrier to the fuel gas and a certain amount of sulfur loss and CaO formation on the surface at higher temperatures. The reduction kinetics of CaSO{sub 4} oxygen carrier was explored with the shrinking unreacted-core model. The apparent kinetic parameters were obtained, and the kinetic equation well predicted the experimental data. Finally, some basic considerations on the use of CaSO{sub 4} oxygen carrier in a CLC system for solid fuels were discussed.« less

  1. Magnetic Tracking of Gas Hydrate Deposits.

    NASA Astrophysics Data System (ADS)

    Lowe, C.; Enkin, R. J.; Judith, B.; Dallimore, S. R.

    2005-12-01

    Analysis of recovered core from the Mallik gas hydrate field in the Mackenzie Delta, Northwest Territories, Canada demonstrates that the magnetic properties of hydrate-bearing strata differ significantly from those strata lacking gas hydrate. The recovered core, which extends from just above (885 m) to just below (1152 m) observed gas hydrate occurrences (891-1107 m), comprises a series of six stratigraphic units that are either sand or silt dominated. Gas hydrate is preferentially concentrated in the higher porosity, sand-dominated units. Although the sediment source region for the Mackenzie Delta is sufficiently large that silts and sands have similar primary mineralogy, their magnetic properties are distinct. Magnetite, apparent in silt units with porosities too low to accommodate significant gas hydrate deposits, is reduced to iron sulphide in the gas hydrate-bearing sand horizons. The degree of the observed magnetic reduction increases with increasing gas hydrate concentration. Furthermore, silts retain their primary magnetism, whereas sands are remagnetized. Two independent investigations of marine gas hydrate occurrences (Blake Ridge, offshore eastern USA and Cascadia, offshore western Canada) demonstrate similar magnetic reduction within known gas hydrate fields, and an even larger depletion of magnetic minerals in vent zones where methane is actively fluxing to surface. Collectively, the findings from these three regions indicate that porosity and structure are fundamental controls on methane pathways. Investigations are presently underway to determine the precise triggers and chemical pathways of the observed magnetic reductions. However, findings to date indicate that magnetic studies of host sediments in gas hydrate systems provide a powerful lithologic correlation tool, a window into the processes associated with gas hydrate formation, and form the basis of quantitative analysis of magnetic surveys over gas hydrate deposits.

  2. The Benefits of Internalizing Air Quality and Greenhouse Gas Externalities in the US Energy System

    NASA Astrophysics Data System (ADS)

    Brown, Kristen E.

    The emission of pollutants from energy use has effects on both local air quality and the global climate, but the price of energy does not reflect these externalities. This study aims to analyze the effect that internalizing these externalities in the cost of energy would have on the US energy system, emissions, and human health. In this study, we model different policy scenarios in which fees are added to emissions related to generation and use of energy. The fees are based on values of damages estimated in the literature and are applied to upstream and combustion emissions related to electricity generation, industrial energy use, transportation energy use, residential energy use, and commercial energy use. The energy sources and emissions are modeled through 2055 in five-year time steps. The emissions in 2045 are incorporated into a continental-scale atmospheric chemistry and transport model, CMAQ, to determine the change in air quality due to different emissions reduction scenarios. A benefit analysis tool, BenMAP, is used with the air quality results to determine the monetary benefit of emissions reductions related to the improved air quality. We apply fees to emissions associated with health impacts, climate change, and a combination of both. We find that the fees we consider lead to reductions in targeted emissions as well as co-reducing non-targeted emissions. For fees on the electric sector alone, health impacting pollutant (HIP) emissions reductions are achieved mainly through control devices while Greenhouse Gas (GHG) fees are addressed through changes in generation technologies. When sector specific fees are added, reductions come mainly from the industrial and electricity generation sectors, and are achieved through a mix of energy efficiency, increased use of renewables, and control devices. Air quality is improved in almost all areas of the country with fees, including when only GHG fees are applied. Air quality tends to improve more in regions with

  3. Requirements for a Global Greenhouse Gas Information System

    NASA Astrophysics Data System (ADS)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  4. Transit Greenhouse Gas Management Compendium

    DOT National Transportation Integrated Search

    2011-01-12

    This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...

  5. A novel method for energy harvesting simulation based on scenario generation

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Li, Taoshen; Xiao, Nan; Ye, Jin; Wu, Min

    2018-06-01

    Energy harvesting network (EHN) is a new form of computer networks. It converts ambient energy into usable electric energy and supply the electrical energy as a primary or secondary power source to the communication devices. However, most of the EHN uses the analytical probability distribution function to describe the energy harvesting process, which cannot accurately identify the actual situation for the lack of authenticity. We propose an EHN simulation method based on scenario generation in this paper. Firstly, instead of setting a probability distribution in advance, it uses optimal scenario reduction technology to generate representative scenarios in single period based on the historical data of the harvested energy. Secondly, it uses homogeneous simulated annealing algorithm to generate optimal daily energy harvesting scenario sequences to get a more accurate simulation of the random characteristics of the energy harvesting network. Then taking the actual wind power data as an example, the accuracy and stability of the method are verified by comparing with the real data. Finally, we cite an instance to optimize the network throughput, which indicate the feasibility and effectiveness of the method we proposed from the optimal solution and data analysis in energy harvesting simulation.

  6. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas

    2015-08-18

    A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.

  7. The potential for land sparing to offset greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Lamb, Anthony; Green, Rhys; Bateman, Ian; Broadmeadow, Mark; Bruce, Toby; Burney, Jennifer; Carey, Pete; Chadwick, David; Crane, Ellie; Field, Rob; Goulding, Keith; Griffiths, Howard; Hastings, Astley; Kasoar, Tim; Kindred, Daniel; Phalan, Ben; Pickett, John; Smith, Pete; Wall, Eileen; Zu Ermgassen, Erasmus K. H. J.; Balmford, Andrew

    2016-05-01

    Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing--increasing agricultural yields, reducing farmland area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the UK as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential--however, economic and implementation considerations might limit the degree to which this technical potential could be realized in practice.

  8. Stabilizing Gas Bearings In Free-Piston Machines

    NASA Technical Reports Server (NTRS)

    Dhar, Manmohan

    1995-01-01

    Gas bearings and clearance seals between pistons and cylinders in free-piston machines designed to reduce undesired dynamic forces and torques on pistons, gas bearings, and cylinders. Circumferential grooves and drain galleries added to piston or cylinder in improved design. Provides stabilization without significant reduction in length of seal, or significant increase in leakage and consequent reduction of efficiency.

  9. Effect of different scenarios for selective dry-cow therapy on udder health, antimicrobial usage, and economics.

    PubMed

    Scherpenzeel, C G M; den Uijl, I E M; van Schaik, G; Riekerink, R G M Olde; Hogeveen, H; Lam, T J G M

    2016-05-01

    The goal of dry-cow therapy (DCT) is to reduce the prevalence of intramammary infections (IMI) by eliminating existing IMI at drying off and preventing new IMI from occurring during the dry period. Due to public health concerns, however, preventive use of antimicrobials has become questionable. In this study, we evaluated the effects of 8 scenarios for selecting animals for DCT, taking into account variation in parity and cow-level somatic cell count (SCC) at drying off. The aim of this study was to evaluate udder health, antimicrobial usage, and economics at the herd level when using different scenarios for selecting cows for DCT. To enable calculation and comparison of the effects of different scenarios to select cows for DCT in an "average" herd, we created an example herd, with a virtual herd size of 100 dairy cows to be calving during a year. Udder health, antimicrobial usage, and economics were evaluated during the dry period and the first 100 d in lactation, the period during which the greatest effect of DCT is expected. This leads to an estimated 13,551 cow-days at risk during a year in a 100-cow dairy herd. In addition to a blanket DCT (BDCT) scenario, we developed 7 scenarios to select cows for DCT based on SCC. The scenarios covered a range of possible approaches to select low-SCC cows for DCT, all based on cow-level SCC thresholds on the last milk recording before drying off. The incidence rate of clinical mastitis in the example herd varied from 11.6 to 14.5 cases of clinical mastitis per 10,000 cow-days at risk in the different scenarios, and the prevalence of subclinical mastitis varied from 38.8% in scenario 1 (BDCT) to 48.3% in scenario 8. Total antimicrobial usage for DCT and clinical mastitis treatment varied over the scenarios from 1.27 (scenario 8) to 3.15 animal daily dosages (BDCT), leading to a maximum reduction in antimicrobial usage of 60% for scenario 8 compared with BDCT. The total costs for each of the scenarios showed little variation

  10. SAFRR AND Physics-Based Scenarios: The Power of Scientifically Credible Stories

    NASA Astrophysics Data System (ADS)

    Cox, D. A.; Jones, L.

    2015-12-01

    USGS's SAFRR (Science Application for Risk Reduction) Project and its predecessor, the Multi Hazards Demonstration Project, uses the latest earth science to develop scenarios so that communities can improve disaster resilience. SAFRR has created detailed physics-based natural-disaster scenarios of a M7.8 San Andreas earthquake in southern California (ShakeOut), atmospheric-river storms rivaling the Great California Flood of 1862 (ARkStorm), a Tohoku-sized earthquake and tsunami in the eastern Aleutians (SAFRR Tsunami), and now a M7.05 quake on the Hayward Fault in the San Francisco Bay area (HayWired), as novel ways of providing science for decision making. Each scenario is scientifically plausible, deterministic, and large enough to demand attention but not too large to be believable. The scenarios address interacting hazards, requiring involvement of multiple science disciplines and user communities. The scenarios routinely expose hitherto unknown or ignored vulnerabilities, most often in cascading effects missed when impacts are considered in isolation. They take advantage of story telling to provide decision makers with clear explanations and justifications for mitigation and preparedness actions, and have been used for national-to-local disaster response exercises and planning. Effectiveness is further leveraged by downscaling the scenarios to local levels. For example, although the ARkStorm scenario describes state-scale events and has been used that way by NASA and the Navy, SAFRR also partnered with FEMA to focus on two local areas, Ventura County in the coastal plain and the mountain setting of Lake Tahoe with downstream impacts in Reno, Sparks and Carson City. Downscaling and focused analyses increased usefulness to user communities, drawing new participants into the study. SAFRR scenarios have also motivated new research to answer questions uncovered by stakeholders, closing the circle of co-evolving disaster-science and disaster-response improvements.

  11. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel.

    PubMed

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2012-01-01

    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Assessment of riverine load of contaminants to European seas under policy implementation scenarios: an example with 3 pilot substances.

    PubMed

    Marinov, Dimitar; Pistocchi, Alberto; Trombetti, Marco; Bidoglio, Giovanni

    2014-01-01

    An evaluation of conventional emission scenarios is carried out targeting a possible impact of European Union (EU) policies on riverine loads to the European seas for 3 pilot pollutants: lindane, trifluralin, and perfluorooctane sulfonate (PFOS). The policy scenarios are investigated to the time horizon of year 2020 starting from chemical-specific reference conditions and considering different types of regulatory measures including business as usual (BAU), current trend (CT), partial implementation (PI), or complete ban (PI ban) of emissions. The scenario analyses show that the model-estimated lindane load of 745 t to European seas in 1995, based on the official emission data, would be reduced by 98.3% to approximately 12.5 t in 2005 (BAU scenario), 10 years after the start of the EU regulation of this chemical. The CT and PI ban scenarios indicate a reduction of sea loads of lindane in 2020 by 74% and 95%, respectively, when compared to the BAU estimate. For trifluralin, an annual load of approximately 61.7 t is estimated for the baseline year 2003 (BAU scenario), although the applied conservative assumptions related to pesticide use data availability in Europe. Under the PI (ban) scenario, assuming only small residual emissions of trifluralin, we estimate a sea loading of approximately 0.07 t/y. For PFOS, the total sea load from all European countries is estimated at approximately 5.8 t/y referred to 2007 (BAU scenario). Reducing the total load of PFOS below 1 t/y requires emissions to be reduced by 84%. The analysis of conventional scenarios or scenario typologies for emissions of contaminants using simple spatially explicit GIS-based models is suggested as a viable, affordable exercise that may support the assessment of implementation of policies and the identification or negotiation of emission reduction targets. © 2013 SETAC.

  13. Development of flood regressions and climate change scenarios to explore estimates of future peak flows

    USGS Publications Warehouse

    Burns, Douglas A.; Smith, Martyn J.; Freehafer, Douglas A.

    2015-12-31

    The application uses predictions of future annual precipitation from five climate models and two future greenhouse gas emissions scenarios and provides results that are averaged over three future periods—2025 to 2049, 2050 to 2074, and 2075 to 2099. Results are presented in ensemble form as the mean, median, maximum, and minimum values among the five climate models for each greenhouse gas emissions scenario and period. These predictions of future annual precipitation are substituted into either the precipitation variable or a water balance equation for runoff to calculate potential future peak flows. This application is intended to be used only as an exploratory tool because (1) the regression equations on which the application is based have not been adequately tested outside the range of the current climate and (2) forecasting future precipitation with climate models and downscaling these results to a fine spatial resolution have a high degree of uncertainty. This report includes a discussion of the assumptions, uncertainties, and appropriate use of this exploratory application.

  14. SAFRR tsunami scenario: Impacts on California ecosystems, species, marine natural resources, and fisheries: Chapter G in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Brosnan, Deborah; Wein, Anne; Wilson, Rick; Ross, Stephanie L.; Jones, Lucile

    2014-01-01

    We evaluate the effects of the SAFRR Tsunami Scenario on California’s ecosystems, species, natural resources, and fisheries. We discuss mitigation and preparedness approaches that can be useful in Tsunami planning. The chapter provides an introduction to the role of ecosystems and natural resources in tsunami events (Section 1). A separate section focuses on specific impacts of the SAFRR Tsunami Scenario on California’s ecosystems and endangered species (Section 2). A section on commercial fisheries and the fishing fleet (Section 3) documents the plausible effects on California’s commercial fishery resources, fishing fleets, and communities. Sections 2 and 3 each include practical preparedness options for communities and suggestions on information needs or research.Our evaluation indicates that many low-lying coastal habitats, including beaches, marshes and sloughs, rivers and waterways connected to the sea, as well as nearshore submarine habitats will be damaged by the SAFRR Tsunami Scenario. Beach erosion and complex or high volumes of tsunami-generated debris would pose major challenges for ecological communities. Several endangered species and protected areas are at risk. Commercial fisheries and fishing fleets will be affected directly by the tsunami and indirectly by dependencies on infrastructure that is damaged. There is evidence that in some areas intact ecosystems, notably sand dunes, will act as natural defenses against the tsunami waves. However, ecosystems do not provide blanket protection against tsunami surge. The consequences of ecological and natural resource damage are estimated in the millions of dollars. These costs are driven partly by the loss of ecosystem services, as well as cumulative and follow-on impacts where, for example, increased erosion during the tsunami can in turn lead to subsequent damage and loss to coastal properties. Recovery of ecosystems, natural resources and fisheries is likely to be lengthy and expensive

  15. The flux of radionuclides in flowback fluid from shale gas exploitation.

    PubMed

    Almond, S; Clancy, S A; Davies, R J; Worrall, F

    2014-11-01

    This study considers the flux of radioactivity in flowback fluid from shale gas development in three areas: the Carboniferous, Bowland Shale, UK; the Silurian Shale, Poland; and the Carboniferous Barnett Shale, USA. The radioactive flux from these basins was estimated, given estimates of the number of wells developed or to be developed, the flowback volume per well and the concentration of K (potassium) and Ra (radium) in the flowback water. For comparative purposes, the range of concentration was itself considered within four scenarios for the concentration range of radioactive measured in each shale gas basin, the groundwater of the each shale gas basin, global groundwater and local surface water. The study found that (i) for the Barnett Shale and the Silurian Shale, Poland, the 1 % exceedance flux in flowback water was between seven and eight times that would be expected from local groundwater. However, for the Bowland Shale, UK, the 1 % exceedance flux (the flux that would only be expected to be exceeded 1 % of the time, i.e. a reasonable worst case scenario) in flowback water was 500 times that expected from local groundwater. (ii) In no scenario was the 1 % exceedance exposure greater than 1 mSv-the allowable annual exposure allowed for in the UK. (iii) The radioactive flux of per energy produced was lower for shale gas than for conventional oil and gas production, nuclear power production and electricity generated through burning coal.

  16. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space

    NASA Astrophysics Data System (ADS)

    Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.

    2018-02-01

    Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.

  17. Neon reduction program on Cymer ArF light sources

    NASA Astrophysics Data System (ADS)

    Kanawade, Dinesh; Roman, Yzzer; Cacouris, Ted; Thornes, Josh; O'Brien, Kevin

    2016-03-01

    In response to significant neon supply constraints, Cymer has responded with a multi-part plan to support its customers. Cymer's primary objective is to ensure that reliable system performance is maintained while minimizing gas consumption. Gas algorithms were optimized to ensure stable performance across all operating conditions. The Cymer neon support plan contains four elements: 1. Gas reduction program to reduce neon by >50% while maintaining existing performance levels and availability; 2. short-term containment solutions for immediate relief. 3. qualification of additional gas suppliers; and 4. long-term recycling/reclaim opportunity. The Cymer neon reduction program has shown excellent results as demonstrated through the comparison on standard gas use versus the new >50% reduced neon performance for ArF immersion light sources. Testing included stressful conditions such as repetition rate, duty cycle and energy target changes. No performance degradation has been observed over typical gas lives.

  18. Scenarios of future lung cancer incidence by educational level: Modelling study in Denmark.

    PubMed

    Menvielle, Gwenn; Soerjomataram, Isabelle; de Vries, Esther; Engholm, Gerda; Barendregt, Jan J; Coebergh, Jan Willem; Kunst, Anton E

    2010-09-01

    To model future trends in lung cancer incidence in Denmark by education under different scenarios for cigarette smoking. Lung cancer incidence until 2050 was modelled using Prevent software. We estimated lung cancer incidence under a baseline scenario and under four alternative scenarios for smoking reduction: decreasing initiation rates among the young, increasing cessation rates among smokers, a scenario combining both changes and a levelling-up scenario in which people with low and medium levels of education acquired the smoking prevalence of the highly educated. Danish National Health Interview Surveys (1987-2005) and cancer registry data combined with individual education status from Statistics Denmark were used for empirical input. Under the baseline scenario, lung cancer rates are expected to decrease for most educational groups during the next few decades, but educational inequalities will increase further. Under the alternative scenarios, an additional decrease in lung cancer rates will be observed from 2030 onwards, but only from 2050 onwards it will be observed under the initiation scenario. The cessation and the combined scenarios show the largest decrease in lung cancer rates for all educational groups. However, in none of these scenarios would the relative differences between educational groups be reduced. A modest decrease in these inequalities will be observed under the levelling-up scenario. Our analyses show that relative inequalities in lung cancer incidence rates will tend to increase. They may be reduced to a small extent if the smoking prevalence of people with a low level of education was to converge towards those more highly educated people. An important decrease in lung cancer rates will be observed in all educational groups, however, especially when focusing on both initiation and cessation strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The future of scenarios: issues in developing new climate change scenarios

    NASA Astrophysics Data System (ADS)

    Pitcher, Hugh M.

    2009-04-01

    In September, 2007, the IPCC convened a workshop to discuss how a new set of scenarios to support climate model runs, mitigation analyses, and impact, adaptation and vulnerability research might be developed. The first phase of the suggested new approach is now approaching completion. This article discusses some of the issues raised by scenario relevant research and analysis since the last set of IPCC scenarios were created (IPCC SRES, 2000) that will need to be addressed as new scenarios are developed by the research community during the second phase. These include (1) providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, (2) long-term economic growth issues, (3) the appropriate GDP metric to use (purchasing power parity or market exchange rates), (4) ongoing issues with moving from the broad geographic and time scales of the emission scenarios to the finer scales needed for impacts, adaptation and vulnerability analyses and (5) some possible ways to handle the urgent request from the policy community for some guidance on scenario likelihoods. The challenges involved in addressing these issues are manifold; the reward is greater credibility and deeper understanding of an analytic tool that does much to form the context within which many issues in addition to the climate problem will need to be addressed.

  20. Implications of low natural gas prices on life cycle greenhouse gas emissions in the U.S. electricity sector

    NASA Astrophysics Data System (ADS)

    Jaramillo, P.; Venkatesh, A.; Griffin, M.; Matthews, S.

    2012-12-01

    Increased production of unconventional natural gas resources in the U.S. has drastically reduced the price of natural gas. While in 2005 prices went above 10/MMBtu, since 2011 they have been below 3/MMBtu. These low prices have encouraged the increase of natural gas utilization in the United States electricity sector. Natural gas can offset coal for power generation, reducing emissions such as greenhouse gases, sulfur and nitrogen oxides. In quantifying the benefit of offsetting coal by using natural gas, life cycle assessment (LCA) studies have shown up to 50% reductions in life cycle greenhouse gas (GHG) emissions can be expected. However, these studies predominantly use limited system boundaries that contain single individual coal and natural gas power plants. They do not consider (regional) fleets of power plants that are dispatched on the basis of their short-run marginal costs. In this study, simplified economic dispatch models (representing existing power plants in a given region) are developed for three U.S. regions - ERCOT, MISO and PJM. These models, along with historical load data are used to determine how natural gas utilization will increase in the short-term due to changes in natural gas price. The associated changes in fuel mix and life cycle GHG emissions are estimated. Results indicate that life cycle GHG emissions may, at best, decrease by 5-15% as a result of low natural gas prices, compared to almost 50% reductions estimated by previous LCAs. This study thus provides more reasonable estimates of potential reductions in GHG emissions from using natural gas instead of coal in the electricity sector in the short-term.

  1. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  2. Influence of V2O5 Content on the Gas-Based Direct Reduction of Hongge Vanadium Titanomagnetite Pellets with Simulated Shaft Furnace Gases

    NASA Astrophysics Data System (ADS)

    Li, Wei; Fu, Guiqin; Chu, Mansheng; Zhu, Miaoyong

    2018-01-01

    The influence of V2O5 content on the gas-based direct reduction of Hongge vanadium titanomagnetite pellets (HVTMP) was investigated with simulated shaft furnace gases, and the content levels were selected as 0 wt.%, 2 wt.%, 4 wt.%, and 6 wt.%, respectively. The results indicated that, with the increase of V2O5 content, the reduction was accelerated at an early stage due to the increase of the original porosity of the HVTMP. However, as the reduction proceeded, a slowing down in the reduction rate was observed, which was attributed to the formation of hardly reducible Fe2VO4. Major phases of reduced HVTMP were Fe2VO4, FeTiO3, and metallic iron. The morphology showed that the size of metallic iron particles of reduced HVTMP decreased with the increase of V2O5 content, V-bearing oxides embedded into the Ti-rich phases, and further reduction was restricted. This study not only established a relationship between the V2O5 content of HVTMP and its reduction behavior but could also contribute greatly to the effective utilization of Hongge vanadium titanomagnetite in shaft furnace.

  3. Critique of analyses of natural gas pricing alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemon, R.

    The Administration has predicted that deregulation would add $210 billion to gas producers' profits over the next eight years; by contrast, a study done for the Natural Gas Supply Committee by Edward Erickson concludes that deregulation would mean a $126 billion savings to consumers over the same period. This article examines the analyses done in the past year by nine organizations. By examining the assumptions and projections of each analysis on wellhead prices, gas supplies, retail gas prices, and alternative energy costs and mixes, an attempt is made to explain divergent projections of the costs of energy under the threemore » alternative natural-gas-pricing scenarios: continuance under FPC's Opinion 770-A; National Energy Plan (NEP); and deregulation of new gas.« less

  4. Ratcheting ambition to limit warming to 1.5 °C–trade-offs between emission reductions and carbon dioxide removal

    NASA Astrophysics Data System (ADS)

    Holz, Christian; Siegel, Lori S.; Johnston, Eleanor; Jones, Andrew P.; Sterman, John

    2018-06-01

    Mitigation scenarios to limit global warming to 1.5 °C or less in 2100 often rely on large amounts of carbon dioxide removal (CDR), which carry significant potential social, environmental, political and economic risks. A precautionary approach to scenario creation is therefore indicated. This letter presents the results of such a precautionary modelling exercise in which the models C-ROADS and En-ROADS were used to generate a series of 1.5 °C mitigation scenarios that apply increasingly stringent constraints on the scale and type of CDR available. This allows us to explore the trade-offs between near-term stringency of emission reductions and assumptions about future availability of CDR. In particular, we find that regardless of CDR assumptions, near-term ambition increase (‘ratcheting’) is required for any 1.5 °C pathway, making this letter timely for the facilitative, or Talanoa, dialogue to be conducted by the UNFCCC in 2018. By highlighting the difference between net and gross reduction rates, often obscured in scenarios, we find that mid-term gross CO2 emission reduction rates in scenarios with CDR constraints increase to levels without historical precedence. This in turn highlights, in addition to the need to substantially increase CO2 reduction rates, the need to improve emission reductions for non-CO2 greenhouse gases. Further, scenarios in which all or part of the CDR is implemented as non-permanent storage exhibit storage loss emissions, which partly offset CDR, highlighting the importance of differentiating between net and gross CDR in scenarios. We find in some scenarios storage loss trending to similar values as gross CDR, indicating that gross CDR would have to be maintained simply to offset the storage losses of CO2 sequestered earlier, without any additional net climate benefit.

  5. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    The report details an investigation on the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury at power plants. If SCR and/or SNCR systems enhance mercury conversion/capture, t...

  6. Industrial research for transmutation scenarios

    NASA Astrophysics Data System (ADS)

    Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

    2011-04-01

    This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

  7. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin D.; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri; Prentice, Iain Colin

    2013-07-01

    Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4-0.5°C by AD 2300; on top of 0.8-1.0°C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22-27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.

  8. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  9. Understanding high wintertime ozone pollution events in an oil and natural gas producing region of the western US

    NASA Astrophysics Data System (ADS)

    Ahmadov, R.; McKeen, S.; Trainer, M.; Banta, R.; Brewer, A.; Brown, S.; Edwards, P. M.; de Gouw, J. A.; Frost, G. J.; Gilman, J.; Helmig, D.; Johnson, B.; Karion, A.; Koss, A.; Langford, A.; Lerner, B.; Olson, J.; Oltmans, S.; Peischl, J.; Pétron, G.; Pichugina, Y.; Roberts, J. M.; Ryerson, T.; Schnell, R.; Senff, C.; Sweeney, C.; Thompson, C.; Veres, P.; Warneke, C.; Wild, R.; Williams, E. J.; Yuan, B.; Zamora, R.

    2014-08-01

    Recent increases in oil and natural gas (NG) production throughout the western US have come with scientific and public interest in emission rates, air quality and climate impacts related to this industry. This study uses a regional scale air quality model WRF-Chem to simulate high ozone (O3) episodes during the winter of 2013 over the Uinta Basin (UB) in northeastern Utah, which is densely populated by thousands of oil and NG wells. The high resolution meteorological simulations are able to qualitatively reproduce the wintertime cold pool conditions that occurred in 2013, allowing the model to reproduce the observed multi-day buildup of atmospheric pollutants and accompanying rapid photochemical ozone formation in the UB. Two different emission scenarios for the oil and NG sector were employed in this study. The first emission scenario (bottom-up) was based on the US EPA National Emission Inventory (NEI) (2011, version 1) for the oil and NG sector for the UB. The second emission scenario (top-down) was based on the previously derived estimates of methane (CH4) emissions and a regression analysis for multiple species relative to CH4 concentration measurements in the UB. WRF-Chem simulations using the two emission data sets resulted in significant differences for concentrations of most gas-phase species. Evaluation of the model results shows greater underestimates of CH4 and other volatile organic compounds (VOCs) in the simulation with the NEI-2011 inventory than the case when the top-down emission scenario was used. Unlike VOCs, the NEI-2011 inventory significantly overestimates the emissions of nitrogen oxides (NOx), while the top-down emission scenario results in a moderate negative bias. Comparison of simulations using the two emission data sets reveals that the top-down case captures the high O3 episodes. In contrast, the simulation case using the bottom-up inventory is not able to reproduce any of the observed high O3 concentrations in the UB. A sensitivity

  10. Optimizing Decision Preparedness by Adapting Scenario Complexity and Automating Scenario Generation

    NASA Technical Reports Server (NTRS)

    Dunne, Rob; Schatz, Sae; Flore, Stephen M.; Nicholson, Denise

    2011-01-01

    Klein's recognition-primed decision (RPD) framework proposes that experts make decisions by recognizing similarities between current decision situations and previous decision experiences. Unfortunately, military personnel arQ often presented with situations that they have not experienced before. Scenario-based training (S8T) can help mitigate this gap. However, SBT remains a challenging and inefficient training approach. To address these limitations, the authors present an innovative formulation of scenario complexity that contributes to the larger research goal of developing an automated scenario generation system. This system will enable trainees to effectively advance through a variety of increasingly complex decision situations and experiences. By adapting scenario complexities and automating generation, trainees will be provided with a greater variety of appropriately calibrated training events, thus broadening their repositories of experience. Preliminary results from empirical testing (N=24) of the proof-of-concept formula are presented, and future avenues of scenario complexity research are also discussed.

  11. CO2 Reduction Effect of the Utilization of Waste Heat and Solar Heat in City Gas System

    NASA Astrophysics Data System (ADS)

    Okamura, Tomohito; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Hasegawa, Hideo; Ishitani, Hisashi

    We evaluate total energy consumption and CO2 emissions in the phase of the city gas utilization system from obtaining raw materials to consuming the product. First, we develop a simulation model which calculates CO2 emissions for monthly and hourly demands of electricity, heats for air conditioning and hot-water in a typical hospital. Under the given standard capacity and operating time of CGS, energy consumption in the equipments is calculated in detail considering the partial load efficiency and the control by the temperature of exhaust heat. Then, we explored the optimal size and operation of city gas system that minimizes the life cycle CO2 emissions or total cost. The cost-effectiveness is compared between conventional co-generation, solar heat system, and hybrid co-generation utilizing solar heat. We formulate a problem of mixed integer programming that includes integral parameters that express the state of system devices such as on/off of switches. As a result of optimization, the hybrid co-generation can reduce annual CO2 emissions by forty-three percent compared with the system without co-generation. Sensitivity for the scale of CGS on CO2 reduction and cost is also analyzed.

  12. Reduction of the Powerful Greenhouse Gas N2O in the South-Eastern Indian Ocean.

    PubMed

    Raes, Eric J; Bodrossy, Levente; Van de Kamp, Jodie; Holmes, Bronwyn; Hardman-Mountford, Nick; Thompson, Peter A; McInnes, Allison S; Waite, Anya M

    2016-01-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a key catalyst of stratospheric ozone depletion. Yet, little data exist about the sink and source terms of the production and reduction of N2O outside the well-known oxygen minimum zones (OMZ). Here we show the presence of functional marker genes for the reduction of N2O in the last step of the denitrification process (nitrous oxide reductase genes; nosZ) in oxygenated surface waters (180-250 O2 μmol.kg(-1)) in the south-eastern Indian Ocean. Overall copy numbers indicated that nosZ genes represented a significant proportion of the microbial community, which is unexpected in these oxygenated waters. Our data show strong temperature sensitivity for nosZ genes and reaction rates along a vast latitudinal gradient (32°S-12°S). These data suggest a large N2O sink in the warmer Tropical waters of the south-eastern Indian Ocean. Clone sequencing from PCR products revealed that most denitrification genes belonged to Rhodobacteraceae. Our work highlights the need to investigate the feedback and tight linkages between nitrification and denitrification (both sources of N2O, but the latter also a source of bioavailable N losses) in the understudied yet strategic Indian Ocean and other oligotrophic systems.

  13. Identifying regions vulnerable to habitat degradation under future irrigation scenarios

    NASA Astrophysics Data System (ADS)

    Terrado, Marta; Sabater, Sergi; Acuña, Vicenç

    2016-11-01

    The loss and degradation of natural habitats is a primary cause of biodiversity decline. The increasing impacts of climate and land use change affect water availability, ultimately decreasing agricultural production. Areas devoted to irrigation have been increased to compensate this reduction, causing habitat and biodiversity losses, especially in regions undergoing severe water stress. These effects might intensify under global change, probably contributing to a decrease in habitat quality. We selected four European river basins across a gradient of water scarcity and irrigation agriculture. The habitat quality in the basins was assessed as a function of habitat suitability and threats under current and future global change scenarios of irrigation. Results revealed that the most threatened regions under future scenarios of global change were among those suffering of water scarcity and with bigger areas devoted to irrigation. Loss of habitat quality reached 10% in terrestrial and 25% in aquatic ecosystems under climate change scenarios involving drier conditions. The aquatic habitats were the most degraded in all scenarios, since they were affected by threats from both the terrestrial and the aquatic parts of the basin. By identifying in advance the regions most vulnerable to habitat and biodiversity loss, our approach can assist decision makers in deciding the conservation actions to be prioritized for mitigation and adaptation to the effects of climate change, particularly front the development of irrigation plans.

  14. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  15. Aligning corporate greenhouse-gas emissions targets with climate goals

    NASA Astrophysics Data System (ADS)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis; Crijns-Graus, Wina; van Vuuren, Detlef P.; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-12-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of clear methods to derive consistent corporate target setting that keeps cumulative corporate GHG emissions within a specific carbon budget (for example, 550-1,300 GtCO2 between 2011 and 2050 for the 2 °C target). Here we propose a method for corporate emissions target setting that derives carbon intensity pathways for companies based on sectoral pathways from existing mitigation scenarios: the Sectoral Decarbonization Approach (SDA). These company targets take activity growth and initial performance into account. Next to target setting on company level, the SDA can be used by companies, policymakers, investors or other stakeholders as a benchmark for tracking corporate climate performance and actions, providing a mechanism for corporate accountability.

  16. A framework to predict the impacts of shale gas infrastructures on the forest fragmentation of an agroforest region.

    PubMed

    Racicot, Alexandre; Babin-Roussel, Véronique; Dauphinais, Jean-François; Joly, Jean-Sébastien; Noël, Pascal; Lavoie, Claude

    2014-05-01

    We propose a framework to facilitate the evaluation of the impacts of shale gas infrastructures (well pads, roads, and pipelines) on land cover features, especially with regards to forest fragmentation. We used a geographic information system and realistic development scenarios largely inspired by the PA (United States) experience, but adapted to a region of QC (Canada) with an already fragmented forest cover and a high gas potential. The scenario with the greatest impact results from development limited by regulatory constraints only, with no access to private roads for connecting well pads to the public road network. The scenario with the lowest impact additionally integrates ecological constraints (deer yards, maple woodlots, and wetlands). Overall the differences between these two scenarios are relatively minor, with <1 % of the forest cover lost in each case. However, large areas of core forests would be lost in both scenarios and the number of forest patches would increase by 13-21 % due to fragmentation. The pipeline network would have a much greater footprint on the land cover than access roads. Using data acquired since the beginning of the shale gas industry, we show that it is possible, within a reasonable time frame, to produce a robust assessment of the impacts of shale gas extraction. The framework we propose could easily be applied to other contexts or jurisdictions.

  17. Direct Reduction of Ferrous Oxides to form an Iron-Rich Alternative Charge Material

    NASA Astrophysics Data System (ADS)

    Ünal, H. İbrahim; Turgut, Enes; Atapek, Ş. H.; Alkan, Attila

    2015-12-01

    In this study, production of sponge iron by direct reduction of oxides and the effect of reductant on metallization were investigated. In the first stage of the study, scale formed during hot rolling of slabs was reduced in a rotating furnace using solid and gas reductants. Coal was used as solid reductant and hydrogen released from the combustion reaction of LNG was used as the gas one. The sponge iron produced by direct reduction was melted and solidified. In the second stage, Hematite ore in the form of pellets was reduced using solid carbon in a furnace heated up to 1,100°C for 60 and 120 minutes. Reduction degree of process was evaluated as a function of time and the ratio of Cfix/Fetotal. In the third stage, final products were examined using scanning electron microscope and microanalysis was carried out by energy dispersive x-ray spectrometer attached to the electron microscope. It is concluded that (i) direct reduction using both solid and gas reductants caused higher metallization compared to using only solid reductant, (ii) as the reduction time and ratio of Cfix/Fetotal increased %-reduction of ore increased.

  18. Voluntary GHG reduction of industrial sectors in Taiwan.

    PubMed

    Chen, Liang-Tung; Hu, Allen H

    2012-08-01

    The present paper describes the voluntary greenhouse gas (GHG) reduction agreements of six different industrial sectors in Taiwan, as well as the fluorinated gases (F-gas) reduction agreement of the semiconductor and Liquid Crystal Display (LCD) industries. The operating mechanisms, GHG reduction methods, capital investment, and investment effectiveness are also discussed. A total of 182 plants participated in the voluntary energy saving and GHG reduction in six industrial sectors (iron and steel, petrochemical, cement, paper, synthetic fiber, and textile printing and dyeing), with 5.35 Mt reduction from 2004 to 2008, or 33% higher than the target goal (4.02 Mt). The reduction accounts for 1.6% annual emission or 7.8% during the 5-yr span. The petrochemical industry accounts for 49% of the reduction, followed by the cement sector (21%) and the iron and steel industry (13%). The total investment amounted to approximately USD 716 million, in which, the majority of the investment went to the modification of the manufacturing process (89%). The benefit was valued at around USD 472 million with an average payback period of 1.5 yr. Moreover, related energy saving was achieved through different approaches, e.g., via electricity (iron and steel), steam and oil consumption (petrochemical) and coal usage (cement). The cost for unit CO(2) reduction varies per industry, with the steel and iron industrial sector having the highest cost (USD 346 t(-1) CO(2)) compared with the average cost of the six industrial sectors (USD 134 t(-1) CO(2)). For the semiconductor and Thin-Film Transistor LCD industries, F-gas emissions were reduced from approximately 4.1 to about 1.7 Mt CO(2)-eq, and from 2.2 to about 1.1 Mt CO(2)-eq, respectively. Incentive mechanisms for participation in GHG reduction are also further discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Major study reveals EEC gas oil desulfurization costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waller, G.J.; Conrad, M.C.; Cremer, G.

    1985-01-21

    The interest of the European Economic Community (EEC) Commission in the issue of acid rain has prompted a Concawe working group to make an independent study of the cost of achieving a reduction of average sulfur levels for gas oils consumed in the EEC. The need for desulfurization of gas oils should be seen in the context of their overall contribution to SO/sub 2/ emissions. The removal of sulfur from gas oil is apparently one of the most costly ways to reduce SO/sub 2/ emissions. The overall effect is apparently the smallest. A reduction of 0.1% sulfur for all gasmore » oil produced in the EEC would result in a reduction of only about 140,000 tons/year of sulfur, corresponding to less than 2% of the present total SO/sub 2/ emissions. The cost of the incremental ton of sulfur removed from the gas oil pool increases significantly for lower sulfur specifications. The overall conclusion is that sulfur reduction between 0.43% and 0.2% is comparable in cost to other methods of reducing SO/sub 2/ emissions. For a reduction below 0.2%, excessive costs can be expected and it would be more economical in most cases to consider another means.« less

  20. Tsunami mitigation and preparedness activities in California: Chapter L in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Wilson, Rick; Miller, Kevin H.

    2013-01-01

    scenario-specific, tsunami evacuation “playbook” maps and guidance in-harbor hazard maps and offshore safety zones for potential boat evacuation during future distant source events; “probability-based” products for land-use planning under the California Seismic Hazard Mapping Act; and an expansion of real-time and post-tsunami field reconnaissance teams and information sharing through a state-wide clearinghouse. The state tsunami program has benefitted greatly from participation in the SAFRR tsunami scenario process, and hopes to continue this relationship with the U.S. Geological Survey to help improve tsunami preparedness in California.

  1. Assessment of emission scenarios for 2030 and impacts of black carbon emission reduction measures on air quality and radiative forcing in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Agustian Permadi, Didin; Oanh, Nguyen Thi Kim; Vautard, Robert

    2018-03-01

    Our previously published paper (Permadi et al. 2018) focused on the preparation of emission input data and evaluation of WRF-CHIMERE performance in 2007. This paper details the impact assessment of the future (2030) black carbon (BC) emission reduction measures for Southeast Asia (SEA) countries on air quality, health and BC direct radiative forcing (DRF). The business as usual (BAU2030) projected emissions from the base year of 2007 (BY2007), assuming no intervention with the linear projection of the emissions based on the past activity data for Indonesia and Thailand and the sectoral GDP growth for other countries. The RED2030 featured measures to cut down emissions in major four source sectors in Indonesia and Thailand (road transport, residential cooking, industry, biomass open burning) while for other countries the Representative Concentration Pathway 8.5 (RCP8.5) emissions were assumed. WRF-CHIMERE simulated levels of aerosol species under BAU2030 and RED2030 for the modeling domain using the base year meteorology and 2030 boundary conditions from LMDZ-INCA. The extended aerosol optical depth module (AODEM) calculated the total columnar AOD and BC AOD for all scenarios with an assumption on the internal mixing state. Under RED2030, the health benefits were analyzed in terms of the number of avoided premature deaths associated with ambient PM2.5 reduction along with BC DRF reduction. Under BAU2030, the average number of the premature deaths per 100 000 people in the SEA domain would increase by 30 from BY2007 while under RED2030 the premature deaths would be cut down (avoided) by 63 from RED2030. In 2007, the maximum annual average BC DRF in the SEA countries was 0.98 W m-2, which would increase to 2.0 W m-2 under BAU2030 and 1.4 W m-2 under RED2030. Substantial impacts on human health and BC DRF reduction in SEA could result from the emission measures incorporated in RED2030. Future works should consider other impacts, such as for agricultural crop

  2. Defining climate change scenario characteristics with a phase space of cumulative primary energy and carbon intensity

    NASA Astrophysics Data System (ADS)

    Ritchie, Justin; Dowlatabadi, Hadi

    2018-02-01

    Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing. Scenarios of socio-technical development consistent with end-of-century forcing levels are commonly produced by integrated assessment models. However, outlooks for forcing from fossil energy combustion can also be presented and defined in terms of two essential components: total energy use this century and the carbon intensity of that energy. This formulation allows a phase space diagram to succinctly describe a broad range of possible outcomes for carbon emissions from the future energy system. In the following paper, we demonstrate this phase space method with the Representative Concentration Pathways (RCPs) as used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The resulting RCP phase space is applied to map IPCC Working Group III (WGIII) reference case ‘no policy’ scenarios. Once these scenarios are described as coordinates in the phase space, data mining techniques can readily distill their core features. Accordingly, we conduct a k-means cluster analysis to distinguish the shared outlooks of these scenarios for oil, gas and coal resource use. As a whole, the AR5 database depicts a transition toward re-carbonization, where a world without climate policy inevitably leads to an energy supply with increasing carbon intensity. This orientation runs counter to the experienced ‘dynamics as usual’ of gradual decarbonization, suggesting climate change targets outlined in the Paris Accord are more readily achievable than projected to date.

  3. Exploring the biogeophysical limits of global food production under different climate change scenarios

    NASA Astrophysics Data System (ADS)

    de Vrese, Philipp; Stacke, Tobias; Hagemann, Stefan

    2018-04-01

    An adapted Earth system model is used to investigate the limitations that future climate and water availability impose on the potential expansion and productivity of croplands. The model maximizes the cropland area under prevailing climate conditions and accounts for an optimized, sustainable irrigation practice, thus allowing us to consider the two-way feedback between climate and agriculture. For three greenhouse gas concentration scenarios (RCP2.6, RCP4.5, RCP8.5), we show that the total cropland area could be extended substantially throughout the 21st century, especially in South America and sub-Saharan Africa, where the rising water demand resulting from increasing temperatures can largely be met by increasing precipitation and irrigation rates. When accounting for the CO2 fertilization effect, only a few agricultural areas have to be abandoned owing to declines in productivity, while increasing temperatures allow for the expansion of croplands even into high northern latitudes. Without the CO2 fertilization effect there is no increase in the overall cropland fraction during the second half of the century but areal losses in increasingly water-stressed regions can be compensated for by an expansion in regions that were previously too cold. However, global yields are more sensitive and, without the benefits of CO2 fertilization, they may decrease when greenhouse gas concentrations exceed the RCP4.5 scenario. For certain regions the situation is even more concerning and guaranteeing food security in dry areas in Northern Africa, the Middle East and South Asia will become increasingly difficult, even for the idealized scenarios investigated in this study.

  4. Scenario analysis of fertilizer management practices for N2O mitigation from corn systems in Canada.

    PubMed

    Abalos, Diego; Smith, Ward N; Grant, Brian B; Drury, Craig F; MacKell, Sarah; Wagner-Riddle, Claudia

    2016-12-15

    Effective management of nitrogen (N) fertilizer application by farmers provides great potential for reducing emissions of the potent greenhouse gas nitrous oxide (N 2 O). However, such potential is rarely achieved because our understanding of what practices (or combination of practices) lead to N 2 O reductions without compromising crop yields remains far from complete. Using scenario analysis with the process-based model DNDC, this study explored the effects of nine fertilizer practices on N 2 O emissions and crop yields from two corn production systems in Canada. The scenarios differed in: timing of fertilizer application, fertilizer rate, number of applications, fertilizer type, method of application and use of nitrification/urease inhibitors. Statistical analysis showed that during the initial calibration and validation stages the simulated results had no significant total error or bias compared to measured values, yet grain yield estimations warrant further model improvement. Sidedress fertilizer applications reduced yield-scaled N 2 O emissions by c. 60% compared to fall fertilization. Nitrification inhibitors further reduced yield-scaled N 2 O emissions by c. 10%; urease inhibitors had no effect on either N 2 O emissions or crop productivity. The combined adoption of split fertilizer application with inhibitors at a rate 10% lower than the conventional application rate (i.e. 150kgNha -1 ) was successful, but the benefits were lower than those achieved with single fertilization at sidedress. Our study provides a comprehensive assessment of fertilizer management practices that enables policy development regarding N 2 O mitigation from agricultural soils in Canada. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Model and Scenario Variations in Predicted Number of Generations of Spodoptera litura Fab. on Peanut during Future Climate Change Scenario

    PubMed Central

    Srinivasa Rao, Mathukumalli; Swathi, Pettem; Rama Rao, Chitiprolu Anantha; Rao, K. V.; Raju, B. M. K.; Srinivas, Karlapudi; Manimanjari, Dammu; Maheswari, Mandapaka

    2015-01-01

    The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM) of future data on daily maximum (T.max), minimum (T.min) air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1). This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF) -2020, Distant future (DF)-2050 and Very Distant future (VDF)—2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1–2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18–22% over baseline. Analysis of variance (ANOVA) was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%), model (1.74%) and scenario (0.74%). The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods. PMID:25671564

  6. A view to the future of natural gas and electricity: An integrated modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J.; Medlock, Kenneth B.; Jani, Aditya

    This paper demonstrates the value of integrating two highly spatially resolved models: the Rice World Gas Trade Model (RWGTM) of the natural gas sector and the Regional Energy Deployment System (ReEDS) model of the U.S. electricity sector. The RWGTM passes electricity-sector natural gas prices to the ReEDS model, while the ReEDS model returns electricity-sector natural gas demand to the RWGTM. The two models successfully converge to a solution under reference scenario conditions. We present electricity-sector and natural gas sector evolution using the integrated models for this reference scenario. This paper demonstrates that the integrated models produced similar national-level results asmore » when running in a stand-alone form, but that regional and state-level results can vary considerably. As we highlight, these regional differences have potentially significant implications for electric sector planners especially in the wake of substantive policy changes for the sector (e.g., the Clean Power Plan).« less

  7. A view to the future of natural gas and electricity: An integrated modeling approach

    DOE PAGES

    Cole, Wesley J.; Medlock, Kenneth B.; Jani, Aditya

    2016-03-17

    This paper demonstrates the value of integrating two highly spatially resolved models: the Rice World Gas Trade Model (RWGTM) of the natural gas sector and the Regional Energy Deployment System (ReEDS) model of the U.S. electricity sector. The RWGTM passes electricity-sector natural gas prices to the ReEDS model, while the ReEDS model returns electricity-sector natural gas demand to the RWGTM. The two models successfully converge to a solution under reference scenario conditions. We present electricity-sector and natural gas sector evolution using the integrated models for this reference scenario. This paper demonstrates that the integrated models produced similar national-level results asmore » when running in a stand-alone form, but that regional and state-level results can vary considerably. As we highlight, these regional differences have potentially significant implications for electric sector planners especially in the wake of substantive policy changes for the sector (e.g., the Clean Power Plan).« less

  8. Alaska OCS socioeconomic studies program: St. George basin petroleum development scenarios, Anchorage impact analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ender, R.L.; Gorski, S.

    1981-10-01

    The report consists of an update to the Anchorage socioeconomic and physical baseline and infrastructure standards used to forecast impacts with and without OCS oil and gas development in Alaska. This material is found in Technical Report 43, Volumes 1 and 2 entitled 'Gulf of Alaska and Lower Cook Inlet Petroleum Development Scenarios, Anchorage Socioeconomic and Physical Baseline and Anchorage Impact Analysis.' These updates should be read in conjunction with the above report. In addition, the Anchorage base case and petroleum development scenarios for the St. George Basin are given. These sections are written to stand alone without reference.

  9. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    NASA Astrophysics Data System (ADS)

    West, J. Jason; Smith, Steven J.; Silva, Raquel A.; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zachariah; Fry, Meridith M.; Anenberg, Susan; Horowitz, Larry W.; Lamarque, Jean-Francois

    2013-10-01

    Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants, long-term demographic changes, and the influence of climate change on air quality. Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: reducing co-emitted air pollutants, and slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter and ozone, global modelling methods and new future scenarios. Relative to a reference scenario, global GHG mitigation avoids 0.5+/-0.2, 1.3+/-0.5 and 2.2+/-0.8 million premature deaths in 2030, 2050 and 2100. Global average marginal co-benefits of avoided mortality are US$50-380 per tonne of CO2, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.

  10. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    NASA Astrophysics Data System (ADS)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  11. Optimization of gas condensate Field A development on the basis of "reservoir - gathering facilities system" integrated model

    NASA Astrophysics Data System (ADS)

    Demidova, E. A.; Maksyutina, O. V.

    2015-02-01

    It is known that many gas condensate fields are challenged with liquid loading and condensate banking problems. Therefore, gas production is declining with time. In this paper hydraulic fracturing treatment was considered as a method to improve the productivity of wells and consequently to exclude the factors that lead to production decline. This paper presents the analysis of gas condensate Field A development optimization with the purpose of maintaining constant gas production at the 2013 level for 8 years taking into account mentioned factors . To optimize the development of the filed, an integrated model was created. The integrated model of the field implies constructing the uniform model of the field consisting of the coupling models of the reservoir, wells and surface facilities. This model allowed optimizing each of the elements of the model separately and also taking into account the mutual influence of these elements. Using the integrated model, five development scenarios were analyzed and an optimal scenario was chosen. The NPV of this scenario equals 7,277 mln RUR, cumulative gas production - 12,160.6 mln m3, cumulative condensate production - 1.8 mln tons.

  12. Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines. This report describes the scenarios and models used to generate national-scale housing density scenarios for the con...

  13. Comparison of the results of climate change impact assessment between RCP8.5 and SSP2 scenarios

    NASA Astrophysics Data System (ADS)

    Lee, D. K.; Park, J. H.; Park, C.; Kim, S.

    2017-12-01

    Climate change scenarios are mainly published by the Intergovernmental Panel on Climate Change (IPCC), and include SRES (Special Report on Emission Scenario) scenarios (IPCC Third Report), RCP (Representative Concentration Pathways) scenarios (IPCC 5th Report), and SSP (Shared Socioeconomic Pathways) scenarios. Currently widely used RCP scenarios are based on how future greenhouse gas concentrations will change. In contrast, SSP scenarios are that predict how climate change will change in response to socio-economic indicators such as population, economy, land use, and energy change. In this study, based on RCP 8.5 climate data, we developed a new Korean scenario using the future social and economic scenarios of SSP2. In the development of the scenario, not only Korea's emissions but also China and Japan's emissions were considered in terms of space. In addition, GHG emissions and air pollutant emissions were taken into consideration. Using the newly developed scenarios, the impacts assessments of the forest were evaluated and the impacts were evaluated using the RCP scenarios. The average precipitation is similar to the SSP2 scenario and the RCP8.5 scenario, but the SSP2 scenario shows the maximum value is lower than RCP8.5 scenario. This is because the SSP2 scenario simulates the summer precipitation weakly. The temperature distribution is similar for both scenarios, and it can be seen that the average temperature in the 2090s is higher than that in the 2050s. At present, forest net primary productivity of Korea is 693 tC/km2, and it is 679 tC/km2 when SSP2 scenario is applied. Also, the damage of forest by ozone is about 4.1-5.1%. On the other hand, when SSP2 scenario is applied, the forest net primary productivity of Korea is 607 tC/km2 and the forest net primary productivity of RCP8.5 scenario is 657 tC/km2. The analysis shows that the damage caused by climate change is reduced by 14.2% for the SSP2 scenario and 6.9% for the RCP8.5 scenario. The damage caused

  14. Impact of Shale Gas Development on Water Resources: A Case Study in Northern Poland

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86 % of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  15. Impact of shale gas development on water resources: a case study in northern poland.

    PubMed

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86% of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  16. Scenario analysis of energy-based low-carbon development in China.

    PubMed

    Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng

    2014-08-01

    China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. Copyright © 2014. Published by Elsevier B.V.

  17. Energy Structure and Energy Security under Climate Mitigation Scenarios in China

    PubMed Central

    Matsumoto, Ken’ichi

    2015-01-01

    This study investigates how energy structure and energy security in China will change in the future under climate mitigation policy scenarios using Representative Concentration Pathways in a computable general equilibrium model. The findings suggest that to reduce greenhouse gas emissions, China needs to shift its energy structure from fossil fuel dominance to renewables and nuclear. The lower the allowable emissions, the larger the shifts required. Among fossil fuels, coal use particularly must significantly decrease. Such structural shifts will improve energy self-sufficiency, thus enhancing energy security. Under the policy scenarios, energy-source diversity as measured by the Herfindahl Index improves until 2050, after which diversity declines because of high dependence on a specific energy source (nuclear and biomass). Overall, however, it is revealed that energy security improves along with progress in climate mitigation. These improvements will also contribute to the economy by reducing energy procurement risks. PMID:26660094

  18. Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050

    NASA Astrophysics Data System (ADS)

    Eyring, V.; KöHler, H. W.; Lauer, A.; Lemper, B.

    2005-09-01

    In this study the today's fleet-average emission factors of the most important ship exhausts are used to calculate emission scenarios for the future. To develop plausible future technology scenarios, first upcoming regulations and compliance with future regulations through technological improvements are discussed. We present geographically resolved emission inventory scenarios until 2050, based on a mid-term prognosis for 2020 and a long-term prognosis for 2050. The scenarios are based on some very strict assumptions on future ship traffic demands and technological improvements. The four future ship traffic demand scenarios are mainly determined by the economic growth, which follows the IPCC SRES storylines. The resulting fuel consumption is projected through extrapolations of historical trends in economic growth, total seaborne trade and number of ships, as well as the average installed power per ship. For the future technology scenarios we assume a diesel-only fleet in 2020 resulting in fuel consumption between 382 and 409 million metric tons (Mt). For 2050 one technology scenario assumes that 25% of the fuel consumed by a diesel-only fleet can be saved by applying future alternative propulsion plants, resulting in a fuel consumption that varies between 402 and 543 Mt. The other scenario is a business-as-usual scenario for a diesel-only fleet even in 2050 and gives an estimate between 536 and 725 Mt. Dependent on how rapid technology improvements for diesel engines are introduced, possible technology reduction factors are applied to the today's fleet-average emission factors of all important species to estimate future ship emissions. Combining the four traffic demand scenarios with the four technology scenarios, our results suggest emissions between 8.8 and 25.0 Tg (NO2) in 2020, and between 3.1 to 38.8 Tg (NO2) in 2050. The development of forecast scenarios for CO2, NOx, SOx, CO, hydrocarbons, and particulate matter is driven by the requirements for global model

  19. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  20. Aircraft gas-turbine engines: Noise reduction and vibration control. (Latest citations from Information Services in Mechanical Engineering data base). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    The bibliography contains citations concerning the design and analysis of aircraft gas turbine engines with respect to noise and vibration control. Included are studies regarding the measurement and reduction of noise at its source, within the aircraft, and on the ground. Inlet, nozzle and core aerodynamic studies are cited. Propfan, turbofan, turboprop engines, and applications in short take-off and landing (STOL) aircraft are included. (Contains a minimum of 202 citations and includes a subject term index and title list.)

  1. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.

    PubMed

    Park, Min; Shim, Sung Hoon; Jeong, Sang Hyun; Oh, Kwang-Joong; Lee, Sang-Sup

    2017-04-01

    The nitrogen oxides (NO x ) reduction technology by combustion modification which has economic benefits as a method of controlling NO x emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NO x reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NO x in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N 2 ), carbon dioxide (CO 2 ) and steam (H 2 O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NO x concentration greatly. We investigated the influence of factors determining the nitrogen oxides (NO x ) reduction efficiency in MILD coal combustion, which applied high-temperature flue gas recirculation. Using a lab-scale drop tube furnace and simulated recirculation gas, we conducted combustion testing changing the recirculation gas conditions. We found that the flue gas recirculation ratio influences the reduction of NO x emissions the most.

  2. A Survey on Gas Sensing Technology

    PubMed Central

    Liu, Xiao; Cheng, Sitian; Liu, Hong; Hu, Sha; Zhang, Daqiang; Ning, Huansheng

    2012-01-01

    Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches. PMID:23012563

  3. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  4. Evaluation of costs associated with atmospheric mercury emission reductions from coal combustion in China in 2010 and projections for 2020.

    PubMed

    Zhang, Yue; Ye, Xuejie; Yang, Tianjun; Li, Jinling; Chen, Long; Zhang, Wei; Wang, Xuejun

    2018-01-01

    Coal combustion is the most significant anthropogenic mercury emission source in China. In 2013, China signed the Minamata Convention affirming that mercury emissions should be controlled more strictly. Therefore, an evaluation of the costs associated with atmospheric mercury emission reductions from China's coal combustion is essential. In this study, we estimated mercury abatement costs for coal combustion in China for 2010, based on a provincial technology-based mercury emission inventory. In addition, four scenarios were used to project abatement costs for 2020. Our results indicate that actual mercury emission related to coal combustion in 2010 was 300.8Mg, indicating a reduction amount of 174.7Mg. Under a policy-controlled scenario for 2020, approximately 49% of this mercury could be removed using air pollution control devices, making mercury emissions in 2020 equal to or lower than in 2010. The total abatement cost associated with mercury emissions in 2010 was 50.2×10 9 RMB. In contrast, the total abatement costs for 2020 under baseline versus policy-controlled scenarios, having high-energy and low-energy consumption, would be 32.0×10 9 versus 51.2×10 9 , and 27.4×10 9 versus 43.9×10 9 RMB, respectively. The main expense is associated with flue gas desulfurization. The unit abatement cost of mercury emissions in 2010 was 288×10 3 RMB/(kgHg). The unit abatement costs projected for 2020 under a baseline, a policy-controlled, and an United Nations Environmental Programme scenario would be 143×10 3 , 172×10 3 and 1066×10 3 RMB/(kgHg), respectively. These results are much lower than other international ones. However, the relative costs to China in terms of GPD are higher than in most developed countries. We calculated that abatement costs related to mercury emissions accounted for about 0.14% of the GDP of China in 2010, but would be between 0.03% and 0.06% in 2020. This decrease in abatement costs in terms of GDP suggests that various policy

  5. Performance of a biotrickling filter for the anaerobic utilization of gas-phase methanol coupled to thiosulphate reduction and resource recovery through volatile fatty acids production.

    PubMed

    Eregowda, Tejaswini; Matanhike, Luck; Rene, Eldon R; Lens, Piet N L

    2018-04-25

    The anaerobic removal of continuously fed gas-phase methanol (2.5-30 g/m 3 .h) and the reduction of step-fed thiosulphate (1000 mg/L) was investigated in a biotrickling filter (BTF) operated for 123 d at an empty bed residence time (EBRT) of 4.6 and 2.3 min. The BTF performance during steady step-feed and special operational phases like intermittent liquid trickling in 6 and 24 h cycles and operation without pH regulation were evaluated. Performance of the BTF was not affected and nearly 100% removal of gas-phase methanol was achieved with an EC max of 21 g/m 3 .h. Besides, >99% thiosulphate reduction was achieved, in all the phases of operation. The production of sulphate, H 2 S and volatile fatty acids (VFA) was monitored and a maximum of 2500 mg/L of acetate, 200 mg/L of propionate, 150 mg/L of isovalerate and 100 mg/L isobutyrate was produced. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    DOE PAGES

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridiamore » demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production.« less

  7. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    DOE PAGES

    Kim, John B.; Monier, Erwan; Sohngen, Brent; ...

    2017-03-28

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less

  8. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    NASA Astrophysics Data System (ADS)

    Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson

    2017-04-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.

  9. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, John B.; Monier, Erwan; Sohngen, Brent

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less

  10. Practical Applications for Earthquake Scenarios Using ShakeMap

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Worden, B.; Quitoriano, V.; Goltz, J.

    2001-12-01

    In planning and coordinating emergency response, utilities, local government, and other organizations are best served by conducting training exercises based on realistic earthquake situations-ones that they are most likely to face. Scenario earthquakes can fill this role; they can be generated for any geologically plausible earthquake or for actual historic earthquakes. ShakeMap Web pages now display selected earthquake scenarios (www.trinet.org/shake/archive/scenario/html) and more events will be added as they are requested and produced. We will discuss the methodology and provide practical examples where these scenarios are used directly for risk reduction. Given a selected event, we have developed tools to make it relatively easy to generate a ShakeMap earthquake scenario using the following steps: 1) Assume a particular fault or fault segment will (or did) rupture over a certain length, 2) Determine the magnitude of the earthquake based on assumed rupture dimensions, 3) Estimate the ground shaking at all locations in the chosen area around the fault, and 4) Represent these motions visually by producing ShakeMaps and generating ground motion input for loss estimation modeling (e.g., FEMA's HAZUS). At present, ground motions are estimated using empirical attenuation relationships to estimate peak ground motions on rock conditions. We then correct the amplitude at that location based on the local site soil (NEHRP) conditions as we do in the general ShakeMap interpolation scheme. Finiteness is included explicitly, but directivity enters only through the empirical relations. Although current ShakeMap earthquake scenarios are empirically based, substantial improvements in numerical ground motion modeling have been made in recent years. However, loss estimation tools, HAZUS for example, typically require relatively high frequency (3 Hz) input for predicting losses, above the range of frequencies successfully modeled to date. Achieving full-synthetic ground motion

  11. Achieving CO 2 reductions in Colombia: Effects of carbon taxes and abatement targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria

    In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increasemore » in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.« less

  12. Achieving CO 2 reductions in Colombia: Effects of carbon taxes and abatement targets

    DOE PAGES

    Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria; ...

    2015-06-03

    In this paper we investigate CO 2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increasemore » in the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO 2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO 2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO 2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.« less

  13. Scenario-Led Habitat Modelling of Land Use Change Impacts on Key Species

    PubMed Central

    Geary, Matthew; Fielding, Alan H.; McGowan, Philip J. K.; Marsden, Stuart J.

    2015-01-01

    Accurate predictions of the impacts of future land use change on species of conservation concern can help to inform policy-makers and improve conservation measures. If predictions are spatially explicit, predicted consequences of likely land use changes could be accessible to land managers at a scale relevant to their working landscape. We introduce a method, based on open source software, which integrates habitat suitability modelling with scenario-building, and illustrate its use by investigating the effects of alternative land use change scenarios on landscape suitability for black grouse Tetrao tetrix. Expert opinion was used to construct five near-future (twenty years) scenarios for the 800 km2 study site in upland Scotland. For each scenario, the cover of different land use types was altered by 5–30% from 20 random starting locations and changes in habitat suitability assessed by projecting a MaxEnt suitability model onto each simulated landscape. A scenario converting grazed land to moorland and open forestry was the most beneficial for black grouse, and ‘increased grazing’ (the opposite conversion) the most detrimental. Positioning of new landscape blocks was shown to be important in some situations. Increasing the area of open-canopy forestry caused a proportional decrease in suitability, but suitability gains for the ‘reduced grazing’ scenario were nonlinear. ‘Scenario-led’ landscape simulation models can be applied in assessments of the impacts of land use change both on individual species and also on diversity and community measures, or ecosystem services. A next step would be to include landscape configuration more explicitly in the simulation models, both to make them more realistic, and to examine the effects of habitat placement more thoroughly. In this example, the recommended policy would be incentives on grazing reduction to benefit black grouse. PMID:26569604

  14. Development of a comprehensive plan for utilization of digester gas moves towards energy self-sufficiency in Chicago, USA.

    PubMed

    Kunetz, Thomas E; Fink-Finowicki, Jarek; McGowan, Steve; Auerbach, Eric

    2012-01-01

    The Metropolitan Water Reclamation District (MWRD) of Greater Chicago's Stickney Water Reclamation Plant (SWRP) anaerobically digests approximately 430 dry tons per day (dtpd) (390 dry metric tons per day) of solids and produces 3.4 million ft(3)/day (96 thousand m(3)/day) of biogas from the anaerobic digesters, making it one of the largest municipal digester gas complexes in the world. Installation of new treatment processes, as well as future increases in flows and loads to the plant, are expected to significantly increase production of biologically degradable sludge and biogas. This paper presents a comprehensive planning study that was completed to identify and evaluate alternatives for utilization of this biogas. The best, sustainable approach was identified, taking into consideration economics, social impacts, and environmental impacts. The model results indicate that the most economically favorable scenario involves installing a cogeneration facility to produce electricity on-site, and operating it in conjunction with the plant's existing boilers to satisfy the heating needs of the plant. This scenario also provides the greatest reduction in GHG offsets at the power plants.

  15. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.

    PubMed

    Koga, Nobuhisa; Tajima, Ryosuke

    2011-03-01

    To establish energetically and environmentally viable paddy rice-based bioethanol production systems in northern Japan, it is important to implement appropriately selected agronomic practice options during the rice cultivation step. In this context, effects of rice variety (conventional vs. high-yielding) and rice straw management (return to vs. removal from the paddy field) on energy inputs from fuels and consumption of materials, greenhouse gas emissions (fuel and material consumption-derived CO(2) emissions as well as paddy soil CH(4) and N(2)O emissions) and ethanol yields were assessed. The estimated ethanol yield from the high-yielding rice variety, "Kita-aoba" was 2.94 kL ha(-1), a 32% increase from the conventional rice variety, "Kirara 397". Under conventional rice production in northern Japan (conventional rice variety and straw returned to the paddy), raising seedlings, mechanical field operations, transportation of harvested unhulled brown rice and consumption of materials (seeds, fertilizers, biocides and agricultural machinery) amounted to 28.5 GJ ha(-1) in energy inputs. The total energy input was increased by 14% by using the high-yielding variety and straw removal, owing to increased requirements for fuels in harvesting and transporting harvested rice as well as in collecting, loading and transporting rice straw. In terms of energy efficiency, the variation among rice variety and straw management scenarios regarding rice varieties and rice straw management was small (28.5-32.6 GJ ha(-1) or 10.1-14.0 MJ L(-1)). Meanwhile, CO(2)-equivalent greenhouse gas emissions varied considerably from scenario to scenario, as straw management had significant impacts on CH(4) emissions from paddy soils. When rice straw was incorporated into the soil, total CO(2)-equivalent greenhouse gas emissions for "Kirara 397" and "Kita-aoba" were 25.5 and 28.2 Mg CO(2) ha(-1), respectively; however, these emissions were reduced notably for the two varieties when rice straw

  16. Healthy diets with reduced environmental impact? - The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines.

    PubMed

    van de Kamp, Mirjam E; van Dooren, Corné; Hollander, Anne; Geurts, Marjolein; Brink, Elizabeth J; van Rossum, Caroline; Biesbroek, Sander; de Valk, Elias; Toxopeus, Ido B; Temme, Elisabeth H M

    2018-02-01

    To determine the differences in environmental impact and nutrient content of the current Dutch diet and four healthy diets aimed at lowering greenhouse gas (GHG) emissions. GHG emissions (as proxy for environmental impact) and nutrient content of the current Dutch diet and four diets adhering to the Dutch food based dietary guidelines (Wheel of Five), were compared in a scenario study. Scenarios included a healthy diet with or without meat, and the same diets in which only foods with relatively low GHG emissions are chosen. For the current diet, data from the Dutch National Food Consumption Survey 2007-2010 were used. GHG emissions (in kg CO 2 -equivalents) were based on life cycle assessments. Results are reported for men and women aged 19-30years and 31-50years. The effect on GHG emissions of changing the current Dutch diet to a diet according to the Wheel of Five (corresponding with the current diet as close as possible), ranged from -13% for men aged 31-50years to +5% for women aged 19-30years. Replacing meat in this diet and/or consuming only foods with relatively low GHG emissions resulted in average GHG emission reductions varying from 28-46%. In the scenarios in which only foods with relatively low GHG emissions are consumed, fewer dietary reference intakes (DRIs) were met than in the other healthy diet scenarios. However, in all healthy diet scenarios the number of DRIs being met was equal to or higher than that in the current diet. Diets adhering to food based dietary guidelines did not substantially reduce GHG emissions compared to the current Dutch diet, when these diets stayed as close to the current diet as possible. Omitting meat from these healthy diets or consuming only foods with relatively low associated GHG emissions both resulted in GHG emission reductions of around a third. These findings may be used to expand food based dietary guidelines with information on how to reduce the environmental impact of healthy diets. Copyright © 2017 The

  17. Development of an open-path gas analyser for plume detection in security applications

    NASA Astrophysics Data System (ADS)

    Hay, Kenneth G.; Norberg, Ola; Normand, Erwan; Önnerud, Hans; Black, Paul

    2017-04-01

    We present here an open-path analyser, initially intended for security applications, specifically for the detection of gas plumes from illicit improvised explosive device (IED) manufacturing. Subsequently, the analysers were adapted for methane measurement and used to investigate its applicability for leak detection in different scenarios (e.g. unconventional gas extraction sites). Preliminary results showed consistent measurements of gas plumes in the open path.

  18. Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes.

    PubMed

    Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I

    2006-04-07

    We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.

  19. Ultrafiltration Membrane Module Virus Reduction at Different Fluxes, and with a Cut Fiber

    EPA Science Inventory

    NSF International evaluated The Dow Chemical Company SFD-2880 UF membrane module for MS2 reduction at four different fluxes, and also with and without a cut fiber, to compare MS2 log reduction under the different scenarios. All tests were conducted in accordance with the U.S. En...

  20. Force Reduction Impacts on Resourcing Army Operational Requirements

    DTIC Science & Technology

    2017-03-10

    scenarios involving parametric changes to demand for and supply of manpower and equipment from the institutional Army. This type of mission- based ...i SPECIAL REPORT Force Reduction Impacts on Resourcing Army Operational Requirements By Dynamics Research Corporation In Partial... Research .................................................................................................. 12 2.1.2 Identifying and Collecting Unit

  1. Motor Vehicle Exhaust Gas Suicide.

    PubMed

    Routley, Virginia

    2007-01-01

    In many motorized countries, inhalation of carbon monoxide from motor vehicle exhaust gas (MVEG) has been one of the leading methods of suicide. In some countries it remains so (e.g., Australia 16.0% of suicides in 2005). Relative to other methods it is a planned method and one often used by middle-aged males. The study provides a review of countermeasures aimed at restricting this method of suicide. The prevention measures identified were catalytic converters (introduced to reduce carbon monoxide for environmental reasons); in-cabin sensors; exhaust pipe modification; automatic idling stops; and helpline signage at suicide "hotspots." Catalytic converters are now in 90% of new vehicles worldwide and literature supports them being associated with a reduction in exhaust-gassing suicides. There remain, however, accounts of exhaust-gas fatalities in modern vehicles, whether accidentally or by suicide. These deaths and also crashes from fatigue could potentially be prevented by in-cabin multi-gas sensors, these having been developed to the prototype stage. Helpline signage at an exhaust-gassing suicide "hotspot" had some success in reducing suicides. The evidence on method substitution and whether a reduction in MVEG suicides causes a reduction in total suicides is inconsistent.

  2. 77 FR 75119 - Dakota Prairie Grasslands, North Dakota; Oil and Gas Development Supplemental Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Dakota Prairie Grasslands, North Dakota; Oil and Gas... Prairie Grasslands Record of Decision for Oil and Gas Leasing on the Little Missouri and Cedar River... Management Plans Revision FEIS which included a Reasonably Foreseeable Development Scenario (RFDS) for Oil...

  3. Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century

    DOE PAGES

    Kriegler, Elmar; Bauer, Nico; Popp, Alexander; ...

    2016-08-18

    Here, this paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, markingmore » the upper end of the scenario literature in several dimensions. The SSP5 marker scenario results in a radiative forcing pathway close to the highest Representative Concentration Pathway (RCP8.5), and represents currently the only socio-economic scenario family that can be combined with climate model projections based on RCP8.5. This paper further investigates the direct impact of mitigation policies on the energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. Finally, the SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.« less

  4. Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegler, Elmar; Bauer, Nico; Popp, Alexander

    Here, this paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, markingmore » the upper end of the scenario literature in several dimensions. The SSP5 marker scenario results in a radiative forcing pathway close to the highest Representative Concentration Pathway (RCP8.5), and represents currently the only socio-economic scenario family that can be combined with climate model projections based on RCP8.5. This paper further investigates the direct impact of mitigation policies on the energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. Finally, the SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.« less

  5. Nonisothermal Carbothermal Reduction Kinetics of Titanium-Bearing Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Hu, Mengjun; Wei, Ruirui; Hu, Meilong; Wen, Liangying; Ying, Fangqing

    2018-05-01

    The kinetics of carbothermal reduction of titanium-bearing blast furnace (BF) slag has been studied by thermogravimetric analysis and quadrupole mass spectrometry. The kinetic parameters (activation energy, preexponential factor, and reaction model function) were determined using the Flynn-Wall-Ozawa and Šatava-Šesták methods. The results indicated that reduction of titanium-bearing BF slag can be divided into two stages, namely reduction of phases containing iron and gasification of carbon (< 1095°C), followed by reduction of phases containing titanium (> 1095°C). CO2 was the main off-gas in the temperature range of 530-700°C, whereas CO became the main off-gas when the temperature was greater than 900°C. The activation energy calculated using the Flynn-Wall-Ozawa method was 221.2 kJ/mol. D4 is the mechanism function for carbothermal reduction of titanium-bearing BF slag. Meanwhile, a nonisothermal reduction model is proposed based on the obtained kinetic parameters.

  6. Research to Support California Greenhouse Gas Reduction Programs

    NASA Astrophysics Data System (ADS)

    Croes, B. E.; Charrier-Klobas, J. G.; Chen, Y.; Duren, R. M.; Falk, M.; Franco, G.; Gallagher, G.; Huang, A.; Kuwayama, T.; Motallebi, N.; Vijayan, A.; Whetstone, J. R.

    2016-12-01

    Since the passage of the California Global Warming Solutions Act in 2006, California state agencies have developed comprehensive programs to reduce both long-lived and short-lived climate pollutants. California is already close to achieving its goal of reducing greenhouse (GHG) emissions to 1990 levels by 2020, about a 30% reduction from business as usual. In addition, California has developed strategies to reduce GHG emissions another 40% by 2030, which will put the State on a path to meeting its 2050 goal of an 80% reduction. To support these emission reduction goals, the California Air Resources Board (CARB) and the California Energy Commission have partnered with NASA's Carbon Monitoring System (CMS) program on a comprehensive research program to identify and quantify the various GHG emission source sectors in the state. These include California-specific emission studies and inventories for carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emission sources; a Statewide GHG Monitoring Network for these pollutants integrated with the Los Angeles Megacities Carbon Project funded by several federal agencies; efforts to verify emission inventories using inversion modeling and other techniques; mobile measurement platforms and flux chambers to measure local and source-specific emissions; and a large-scale statewide methane survey using a tiered monitoring and measurement program, which will include satellite, airborne, and ground-level measurements of the various regions and source sectors in the State. In addition, there are parallel activities focused on black carbon (BC) and fluorinated gases (F-gases) by CARB. This presentation will provide an overview of results from inventory, monitoring, data analysis, and other research efforts on Statewide, regional, and local sources of GHG emissions in California.

  7. Radon depletion in xenon boil-off gas

    NASA Astrophysics Data System (ADS)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  8. Ecosystem Services in Lakes of the Northeastern United States: Upstream Benefits from Estuarine Nitrogen Reduction Scenarios

    EPA Science Inventory

    Reduction of nitrogen inputs to estuaries can be achieved by the control of agricultural, atmospheric, and urban sources. We use the USGS MRB1 SPARROW model to estimate reductions necessary to reduce nitrogen loads to estuaries by 10%. If only agricultural inputs are reduced, ...

  9. Mapping Oil and Gas Development Potential in the US Intermountain West and Estimating Impacts to Species

    PubMed Central

    Copeland, Holly E.; Doherty, Kevin E.; Naugle, David E.; Pocewicz, Amy; Kiesecker, Joseph M.

    2009-01-01

    Background Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence. Methodology/Principal Findings We propose a systematic way to forecast patterns of future energy development and calculate impacts to species using spatially-explicit predictive modeling techniques to estimate oil and gas potential and create development build-out scenarios by seeding the landscape with oil and gas wells based on underlying potential. We illustrate our approach for the greater sage-grouse (Centrocercus urophasianus) in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area. Conclusions/Significance Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation. PMID:19826472

  10. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    PubMed

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  11. Stochastic Multi-Commodity Facility Location Based on a New Scenario Generation Technique

    NASA Astrophysics Data System (ADS)

    Mahootchi, M.; Fattahi, M.; Khakbazan, E.

    2011-11-01

    This paper extends two models for stochastic multi-commodity facility location problem. The problem is formulated as two-stage stochastic programming. As a main point of this study, a new algorithm is applied to efficiently generate scenarios for uncertain correlated customers' demands. This algorithm uses Latin Hypercube Sampling (LHS) and a scenario reduction approach. The relation between customer satisfaction level and cost are considered in model I. The risk measure using Conditional Value-at-Risk (CVaR) is embedded into the optimization model II. Here, the structure of the network contains three facility layers including plants, distribution centers, and retailers. The first stage decisions are the number, locations, and the capacity of distribution centers. In the second stage, the decisions are the amount of productions, the volume of transportation between plants and customers.

  12. The Variation of Catalyst and Carrier Gas on Anisole Deoxygenation Reaction

    NASA Astrophysics Data System (ADS)

    Ariyani, D.; Dwi Nugrahaningtyas, Khoirina; Heraldy, E.

    2018-03-01

    This research aims to determine the best catalyst and carrier gas in anisole deoxygenation reaction. The reaction was carried out over a flow system with a variation of catalyst CoMo A (CoMo/USY reduction), CoMo B (CoMo/USY oxidation-reduction), and CoMo C (CoMo/ZAA oxidation-reduction). In addition, variation of carrier gas nitrogen and hydrogen was investigated. The result was analyzed using Gas Chromatography-Mass Spectroscopy (GC-MS). The deoxygenation anisole result showed that CoMo A catalyst with hydrogen as the carrier gas has the highest total product yield (50.72 %), intermediate product yield (38.49 % in phenol and 6.99 % in benzaldehyde), and deoxygenation yield (5.24 %). The CoMo C catalyst exhibited the most selective deoxygenation product. The nitrogen carrier gas with the CoMo C catalyst has the best selectivity of benzene product (93.92 %).

  13. Development and analysis of SCR requirements tables for system scenarios

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Morrison, Jeffery L.

    1995-01-01

    We describe the use of scenarios to develop and refine requirement tables for parts of the Earth Observing System Data and Information System (EOSDIS). The National Aeronautics and Space Administration (NASA) is developing EOSDIS as part of its Mission-To-Planet-Earth (MTPE) project to accept instrument/platform observation requests from end-user scientists, schedule and perform requested observations of the Earth from space, collect and process the observed data, and distribute data to scientists and archives. Current requirements for the system are managed with tools that allow developers to trace the relationships between requirements and other development artifacts, including other requirements. In addition, the user community (e.g., earth and atmospheric scientists), in conjunction with NASA, has generated scenarios describing the actions of EOSDIS subsystems in response to user requests and other system activities. As part of a research effort in verification and validation techniques, this paper describes our efforts to develop requirements tables from these scenarios for the EOSDIS Core System (ECS). The tables specify event-driven mode transitions based on techniques developed by the Naval Research Lab's (NRL) Software Cost Reduction (SCR) project. The SCR approach has proven effective in specifying requirements for large systems in an unambiguous, terse format that enhance identification of incomplete and inconsistent requirements. We describe development of SCR tables from user scenarios and identify the strengths and weaknesses of our approach in contrast to the requirements tracing approach. We also evaluate the capabilities of both approach to respond to the volatility of requirements in large, complex systems.

  14. Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds.

    PubMed

    Bennetts, Victor Hernandez; Schaffernicht, Erik; Pomareda, Victor; Lilienthal, Achim J; Marco, Santiago; Trincavelli, Marco

    2014-09-17

    In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.

  15. Plant growth and mineral recycle trade-offs in different scenarios for a CELSS. [Closed Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wydeven, T.; Spitze, L. A.

    1982-01-01

    Data for hydroponic plant growth in a manned system test is combined with nutritional recommendations to suport trade-off calculations for closed and partially closed life support system scenarios. Published data are used as guidelines for the masses of mineral nutrients needed for higher plant production. The results of calculations based on various scenarios are presented for various combinations of plant growth chamber utilization and fraction of mineral recycle. Estimates are made of the masses of material needed to meet human nutritional requirements in the various scenarios. It appears that food production from a plant growth chamber with mineral recycle is favorable to reduction of the total launch weight in missions exceeding 3 years.

  16. Reference scenarios for deforestation and forest degradation in support of REDD: a review of data and methods

    NASA Astrophysics Data System (ADS)

    Olander, Lydia P.; Gibbs, Holly K.; Steininger, Marc; Swenson, Jennifer J.; Murray, Brian C.

    2008-04-01

    Global climate policy initiatives are now being proposed to compensate tropical forest nations for reducing carbon emissions from deforestation and forest degradation (REDD). These proposals have the potential to include developing countries more actively in international greenhouse gas mitigation and to address a substantial share of the world's emissions which come from tropical deforestation. For such a policy to be viable it must have a credible benchmark against which emissions reduction can be calculated. This benchmark, sometimes termed a baseline or reference emissions scenario, can be based directly on historical emissions or can use historical emissions as input for business as usual projections. Here, we review existing data and methods that could be used to measure historical deforestation and forest degradation reference scenarios including FAO (Food and Agricultural Organization of the United Nations) national statistics and various remote sensing sources. The freely available and corrected global Landsat imagery for 1990, 2000 and soon to come for 2005 may be the best primary data source for most developing countries with other coarser resolution high frequency or radar data as a valuable complement for addressing problems with cloud cover and for distinguishing larger scale degradation. While sampling of imagery has been effectively useful for pan-tropical and continental estimates of deforestation, wall-to-wall (or full coverage) allows more detailed assessments for measuring national-level reference emissions. It is possible to measure historical deforestation with sufficient certainty for determining reference emissions, but there must be continued calls at the international level for making high-resolution imagery available, and for financial and technical assistance to help countries determine credible reference scenarios. The data available for past years may not be sufficient for assessing all forms of forest degradation, but new data sources

  17. Topology optimization of a gas-turbine engine part

    NASA Astrophysics Data System (ADS)

    Faskhutdinov, R. N.; Dubrovskaya, A. S.; Dongauzer, K. A.; Maksimov, P. V.; Trufanov, N. A.

    2017-02-01

    One of the key goals of aerospace industry is a reduction of the gas turbine engine weight. The solution of this task consists in the design of gas turbine engine components with reduced weight retaining their functional capabilities. Topology optimization of the part geometry leads to an efficient weight reduction. A complex geometry can be achieved in a single operation with the Selective Laser Melting technology. It should be noted that the complexity of structural features design does not affect the product cost in this case. Let us consider a step-by-step procedure of topology optimization by an example of a gas turbine engine part.

  18. The Asymptotic Safety Scenario in Quantum Gravity.

    PubMed

    Niedermaier, Max; Reuter, Martin

    2006-01-01

    The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  19. Bridging Scales: Developing a Framework to Build a City-Scale Environmental Scenario for Japanese Municipalities

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Fujita, T.; Nakayama, T.; Xu, K.

    2007-12-01

    There is an ongoing project on establishing environmental scenarios in Japan to evaluate middle to long-term environmental policy and technology options toward low carbon society. In this project, the time horizon of the scenarios is set for 2050 on the ground that a large part of social infrastructure in Japan is likely to be renovated by that time, and cities are supposed to play important roles in building low carbon society in Japan. This belief is held because cities or local governments could implement various policies and programs, such as land use planning and promotion of new technologies with low GHG emissions, which produce an effect in an ununiform manner, taking local socio-economic conditions into account, while higher governments, either national or prefectural, could impose environmental tax on electricity and gas to alleviate ongoing GHG emissions, which uniformly covers their jurisdictions. In order for local governments to devise and implement concrete administrative actions equipped with rational policies and technologies, referring the environmental scenarios developed for the entire nation, we need to localize the national scenarios, both in terms of spatial and temporal extent, so that they could better reflect local socio-economic and institutional conditions. In localizing the national scenarios, the participation of stakeholders is significant because they play major roles in shaping future society. Stakeholder participation in the localization process would bring both creative and realistic inputs on how future unfolds on a city scale. In this research, 1) we reviewed recent efforts on international and domestic scenario development to set a practical time horizon for a city-scale environmental scenario, which would lead to concrete environmental policies and programs, 2) designed a participatory scenario development/localization process, drawing on the framework of the 'Story-and-Simulation' or SAS approach, which Alcamo(2001) proposed

  20. H2 enrichment from synthesis gas by Desulfotomaculum carboxydivorans for potential applications in synthesis gas purification and biodesulfurization.

    PubMed

    Sipma, Jan; Osuna, M Begoña; Parshina, Sofiya N; Lettinga, Gatze; Stams, Alfons J M; Lens, Piet N L

    2007-08-01

    Desulfotomaculum carboxydivorans, recently isolated from a full-scale anaerobic wastewater treatment facility, is a sulfate reducer capable of hydrogenogenic growth on carbon monoxide (CO). In the presence of sulfate, the hydrogen formed is used for sulfate reduction. The organism grows rapidly at 200 kPa CO, pH 7.0, and 55 degrees C, with a generation time of 100 min, producing nearly equimolar amounts of H(2) and CO(2) from CO and H(2)O. The high specific CO conversion rates, exceeding 0.8 mol CO (g protein)(-1) h(-1), makes this bacterium an interesting candidate for a biological alternative of the currently employed chemical catalytic water-gas shift reaction to purify synthesis gas (contains mainly H(2), CO, and CO(2)). Furthermore, as D. carboxydivorans is capable of hydrogenotrophic sulfate reduction at partial CO pressures exceeding 100 kPa, it is also a good candidate for biodesulfurization processes using synthesis gas as electron donor at elevated temperatures, e.g., in biological flue gas desulfurization. Although high maximal specific sulfate reduction rates (32 mmol (g protein)(-1) h(-1)) can be obtained, its sulfide tolerance is rather low and pH dependent, i.e., maximally 9 and 5 mM sulfide at pH 7.2 and pH 6.5, respectively.

  1. Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole Regions of the Dakotas, USA

    USGS Publications Warehouse

    Gascoigne, William R.; Hoag, Dana; Koontz, Lynne; Tangen, Brian A.; Shaffer, Terry L.; Gleason, Robert A.

    2011-01-01

    This study uses biophysical values derived for the Prairie Pothole Region (PPR) of North and South Dakota, in conjunction with value transfer methods, to assess environmental and economic tradeoffs under different policy-relevant land-use scenarios over a 20-year period. The ecosystem service valuation is carried out by comparing the biophysical and economic values of three focal services (i.e. carbon sequestration, reduction in sedimentation, and waterfowl production) across three focal land uses in the region [i.e. native prairie grasslands, lands enrolled in the Conservation Reserve and Wetlands Reserve Programs (CRP/WRP), and cropland]. This study finds that CRP/WRP lands cannot mitigate (hectare for hectare) the loss of native prairie from a social welfare standpoint. Land use scenarios where native prairie loss was minimized, and CRP/WRP lands were increased, provided the most societal benefit. The scenario modeling projected native prairie conversion to cropland over the next 20 years would result in a social welfare loss valued at over $4 billion when considering the study's three ecosystem services, and a net loss of about $3.4 billion when reductions in commodity production are accounted for.

  2. Supply Chain Vulnerability Analysis Using Scenario-Based Input-Output Modeling: Application to Port Operations.

    PubMed

    Thekdi, Shital A; Santos, Joost R

    2016-05-01

    Disruptive events such as natural disasters, loss or reduction of resources, work stoppages, and emergent conditions have potential to propagate economic losses across trade networks. In particular, disruptions to the operation of container port activity can be detrimental for international trade and commerce. Risk assessment should anticipate the impact of port operation disruptions with consideration of how priorities change due to uncertain scenarios and guide investments that are effective and feasible for implementation. Priorities for protective measures and continuity of operations planning must consider the economic impact of such disruptions across a variety of scenarios. This article introduces new performance metrics to characterize resiliency in interdependency modeling and also integrates scenario-based methods to measure economic sensitivity to sudden-onset disruptions. The methods will be demonstrated on a U.S. port responsible for handling $36.1 billion of cargo annually. The methods will be useful to port management, private industry supply chain planning, and transportation infrastructure management. © 2015 Society for Risk Analysis.

  3. Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US

    NASA Astrophysics Data System (ADS)

    Ahmadov, R.; McKeen, S.; Trainer, M.; Banta, R.; Brewer, A.; Brown, S.; Edwards, P. M.; de Gouw, J. A.; Frost, G. J.; Gilman, J.; Helmig, D.; Johnson, B.; Karion, A.; Koss, A.; Langford, A.; Lerner, B.; Olson, J.; Oltmans, S.; Peischl, J.; Pétron, G.; Pichugina, Y.; Roberts, J. M.; Ryerson, T.; Schnell, R.; Senff, C.; Sweeney, C.; Thompson, C.; Veres, P. R.; Warneke, C.; Wild, R.; Williams, E. J.; Yuan, B.; Zamora, R.

    2015-01-01

    Recent increases in oil and natural gas (NG) production throughout the western US have come with scientific and public interest in emission rates, air quality and climate impacts related to this industry. This study uses a regional-scale air quality model (WRF-Chem) to simulate high ozone (O3) episodes during the winter of 2013 over the Uinta Basin (UB) in northeastern Utah, which is densely populated by thousands of oil and NG wells. The high-resolution meteorological simulations are able qualitatively to reproduce the wintertime cold pool conditions that occurred in 2013, allowing the model to reproduce the observed multi-day buildup of atmospheric pollutants and the accompanying rapid photochemical ozone formation in the UB. Two different emission scenarios for the oil and NG sector were employed in this study. The first emission scenario (bottom-up) was based on the US Environmental Protection Agency (EPA) National Emission Inventory (NEI) (2011, version 1) for the oil and NG sector for the UB. The second emission scenario (top-down) was based on estimates of methane (CH4) emissions derived from in situ aircraft measurements and a regression analysis for multiple species relative to CH4 concentration measurements in the UB. Evaluation of the model results shows greater underestimates of CH4 and other volatile organic compounds (VOCs) in the simulation with the NEI-2011 inventory than in the case when the top-down emission scenario was used. Unlike VOCs, the NEI-2011 inventory significantly overestimates the emissions of nitrogen oxides (NOx), while the top-down emission scenario results in a moderate negative bias. The model simulation using the top-down emission case captures the buildup and afternoon peaks observed during high O3 episodes. In contrast, the simulation using the bottom-up inventory is not able to reproduce any of the observed high O3 concentrations in the UB. Simple emission reduction scenarios show that O3 production is VOC sensitive and NOx

  4. Steps Towards Understanding Large-scale Deformation of Gas Hydrate-bearing Sediments

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Deusner, C.; Haeckel, M.; Kossel, E.

    2016-12-01

    Marine sediments bearing gas hydrates are typically characterized by heterogeneity in the gas hydrate distribution and anisotropy in the sediment-gas hydrate fabric properties. Gas hydrates also contribute to the strength and stiffness of the marine sediment, and any disturbance in the thermodynamic stability of the gas hydrates is likely to affect the geomechanical stability of the sediment. Understanding mechanisms and triggers of large-strain deformation and failure of marine gas hydrate-bearing sediments is an area of extensive research, particularly in the context of marine slope-stability and industrial gas production. The ultimate objective is to predict severe deformation events such as regional-scale slope failure or excessive sand production by using numerical simulation tools. The development of such tools essentially requires a careful analysis of thermo-hydro-chemo-mechanical behavior of gas hydrate-bearing sediments at lab-scale, and its stepwise integration into reservoir-scale simulators through definition of effective variables, use of suitable constitutive relations, and application of scaling laws. One of the focus areas of our research is to understand the bulk coupled behavior of marine gas hydrate systems with contributions from micro-scale characteristics, transport-reaction dynamics, and structural heterogeneity through experimental flow-through studies using high-pressure triaxial test systems and advanced tomographical tools (CT, ERT, MRI). We combine these studies to develop mathematical model and numerical simulation tools which could be used to predict the coupled hydro-geomechanical behavior of marine gas hydrate reservoirs in a large-strain framework. Here we will present some of our recent results from closely co-ordinated experimental and numerical simulation studies with an objective to capture the large-deformation behavior relevant to different gas production scenarios. We will also report on a variety of mechanically relevant

  5. Selective catalytic reduction manages ships' emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, K.R.

    1994-10-01

    Ships employed by USS-Posco Industries are the first seagoing vessels that use selective catalytic reduction in marine diesel engine design, resulting in a 90 percent reduction of nitrogen oxide emissions. The vessels, which deliver semifinished steel coils, or hot bands'', to the company's terminal in the San Francisco Bay area, were commissioned for $120 million by Pohang Iron and Steel Co. Ltd., one of UPI's parent companies. Installing the catalytic reduction equipment cost $12 million. As anticipated, NOx concentrations were reduced between 90 percent and 95 percent. However, achieving high mass NOx reduction proved more difficult, because exhaust gas hadmore » to be maintained within the desired temperature range.« less

  6. Role of future scenarios in understanding deep uncertainty in long-term air quality management.

    PubMed

    Gamas, Julia; Dodder, Rebecca; Loughlin, Dan; Gage, Cynthia

    2015-11-01

    The environment and its interactions with human systems, whether economic, social, or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of "deep uncertainty" presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be "technological development" and "change in societal paradigms." These drivers were used as a basis to develop four distinct scenario storylines. The energy and emissions implications of each storyline were then modeled using the MARKAL energy system model. NOx emissions were found to decrease for all scenarios, largely a response to existing air quality regulations, whereas SO2 emissions ranged from 12% greater to 7% lower than 2015 emissions levels. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition to cleaner fuels and energy demand reductions. Application of scenarios in air quality management provides a structured means of sifting through and understanding the dynamics of the many complex driving forces affecting future air quality. Further, scenarios provide a means to identify opportunities and challenges for future air quality management, as well as a platform for testing the efficacy and robustness of particular management

  7. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  8. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  9. Earthquake scenarios based on lessons from the past

    NASA Astrophysics Data System (ADS)

    Solakov, Dimcho; Simeonova, Stella; Aleksandrova, Irena; Popova, Iliana

    2010-05-01

    Earthquakes are the most deadly of the natural disasters affecting the human environment; indeed catastrophic earthquakes have marked the whole human history. Global seismic hazard and vulnerability to earthquakes are increasing steadily as urbanization and development occupy more areas that are prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The implementation of the earthquake scenarios into the policies for seismic risk reduction will allow focusing on the prevention of earthquake effects rather than on intervention following the disasters. The territory of Bulgaria (situated in the eastern part of the Balkan Peninsula) represents a typical example of high seismic risk area. Over the centuries, Bulgaria has experienced strong earthquakes. At the beginning of the 20-the century (from 1901 to 1928) five earthquakes with magnitude larger than or equal to MS=7.0 occurred in Bulgaria. However, no such large earthquakes occurred in Bulgaria since 1928, which may induce non-professionals to underestimate the earthquake risk. The 1986 earthquake of magnitude MS=5.7 occurred in the central northern Bulgaria (near the town of Strazhitsa) is the strongest quake after 1928. Moreover, the seismicity of the neighboring countries, like Greece, Turkey, former Yugoslavia and Romania (especially Vrancea-Romania intermediate earthquakes), influences the seismic hazard in Bulgaria. In the present study deterministic scenarios (expressed in seismic intensity) for two Bulgarian cities (Rouse and Plovdiv) are presented. The work on

  10. Emissions control for ground power gas turbines

    NASA Technical Reports Server (NTRS)

    Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.

    1977-01-01

    The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.

  11. Airport noise impact reduction through operations

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1981-01-01

    The airport-noise levels and annoyance model (ALAMO) developed at NASA Langley Research Center is comprised of a system of computer programs which is capable of quantifying airport community noise impact in terms of noise level, population distribution, and human subjective response to noise. The ALAMO can be used to compare the noise impact of an airport's current operating scenario with the noise impact which would result from some proposed change in airport operations. The relative effectiveness of number of noise-impact reduction alternatives is assessed for a major midwest airport. Significant reductions in noise impact are predicted for certain noise abatement strategies while others are shown to result in relatively little noise relief.

  12. Nitrite therapy improves survival postexposure to chlorine gas.

    PubMed

    Honavar, Jaideep; Doran, Stephen; Oh, Joo-Yeun; Steele, Chad; Matalon, Sadis; Patel, Rakesh P

    2014-12-01

    Exposure to relatively high levels of chlorine (Cl₂) gas can occur in mass-casualty scenarios associated with accidental or intentional release. Recent studies have shown a significant postexposure injury phase to the airways, pulmonary, and systemic vasculatures mediated in part by oxidative stress, inflammation, and dysfunction in endogenous nitric oxide homeostasis pathways. However, there is a need for therapeutics that are amenable to rapid and easy administration in the field and that display efficacy toward toxicity after chlorine exposure. In this study, we tested whether nitric oxide repletion using nitrite, by intramuscular injection after Cl₂ exposure, could prevent Cl₂ gas toxicity. C57bl/6 male mice were exposed to 600 parts per million Cl₂ gas for 45 min, and 24-h survival was determined with or without postexposure intramuscular nitrite injection. A single injection of nitrite (10 mg/kg) administered either 30 or 60 min postexposure significantly improved 24-h survival (from ∼20% to 50%). Survival was associated with decreased neutrophil accumulation in the airways. Rendering mice neutropenic before Cl₂ exposure improved survival and resulted in loss of nitrite-dependent survival protection. Interestingly, female mice were more sensitive to Cl₂-induced toxicity compared with males and were also less responsive to postexposure nitrite therapy. These data provide evidence for efficacy and define therapeutic parameters for a single intramuscular injection of nitrite as a therapeutic after Cl₂ gas exposure that is amenable to administration in mass-casualty scenarios. Copyright © 2014 the American Physiological Society.

  13. Pre-converted nitric oxide gas in catalytic reduction system

    DOEpatents

    Hsiao, Mark C.; Merritt, Bernard T.; Penetrante, Bernardino M.; Vogtlin, George E.

    1999-01-01

    A two-stage catalyst comprises an oxidative first stage and a reductive second stage. The first stage is intended to convert NO to NO.sub.2 in the presence of O.sub.2. The second stage serves to convert NO.sub.2 to environmentally benign gases that include N2, CO2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber. An oxidizing first catalyst converts NO to NO.sub.2 in the presence of O.sub.2 and includes platinum/alumina, e.g., Pt/Al.sub.2 O.sub.3 catalyst. A flow of hydrocarbons (C.sub.x H.sub.y) is input from a pipe into a second chamber. For example, propene can be used as a source of hydrocarbons. The NO.sub.2 from the first catalyst mixes with the hydrocarbons in the second chamber. The mixture proceeds to a second reduction catalyst that converts NO.sub.2 to N2, CO2, and H.sub.2 O, and includes a gamma-alumina .gamma.-Al.sub.2 O.sub.3. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the second catalyst.

  14. Pre-converted nitric oxide gas in catalytic reduction system

    DOEpatents

    Hsiao, M.C.; Merritt, B.T.; Penetrante, B.M.; Vogtlin, G.E.

    1999-04-06

    A two-stage catalyst comprises an oxidative first stage and a reductive second stage. The first stage is intended to convert NO to NO{sub 2} in the presence of O{sub 2}. The second stage serves to convert NO{sub 2} to environmentally benign gases that include N{sub 2}, CO{sub 2}, and H{sub 2}O. By preconverting NO to NO{sub 2} in the first stage, the efficiency of the second stage for NO{sub x} reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber. An oxidizing first catalyst converts NO to NO{sub 2} in the presence of O{sub 2} and includes platinum/alumina, e.g., Pt/Al{sub 2}O{sub 3} catalyst. A flow of hydrocarbons (C{sub x}H{sub y}) is input from a pipe into a second chamber. For example, propene can be used as a source of hydrocarbons. The NO{sub 2} from the first catalyst mixes with the hydrocarbons in the second chamber. The mixture proceeds to a second reduction catalyst that converts NO{sub 2} to N{sub 2}, CO{sub 2}, and H{sub 2}O, and includes a {gamma}-Al{sub 2}O{sub 3}. The hydrocarbons and NO{sub x} are simultaneously reduced while passing through the second catalyst. 9 figs.

  15. Conventional armed forces in Europe: Technology scenario development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houser, G.M.

    1990-07-01

    In January 1986, the Soviet Union's Mikhail Gorbachev proposed elimination of all nuclear weapons by the year 2000. In April of that year, Mr. Gorbachev proposed substantial reductions of conventional weapons in Europe, from the Atlantic Ocean to the Ural Mountains, including reductions in operational-tactical nuclear weapons. In May 1986, the North Atlantic Treaty Organization (NATO) responded with the Brussels Declaration on Conventional Arms Control,'' which indicated readiness to open East/West discussions on establishing a mandate for negotiating conventional arms control throughout Europe. The Group of 23,'' which met in Vienna beginning in February 1987, concluded the meeting in Januarymore » 1989 with a mandate for the Conventional Armed Forced in Europe (CFE) negotiations. On 6 March 1989, CFE talks began, and these talks have continued through six rounds (as of April 1990). Although US President George Bush, on 30 May 1989, called for agreement within six months to a year, and the Malta meeting of December 1989 called for completion of a CFE agreement by the end of 1990, much remains to be negotiated. This report provides three types of information. First, treaty provisions brought to the table by both sides are compared. Second, on the basis of these provisions, problem areas for each of the provision elements are postulated and possible scenarios for resolving these problem areas are developed. Third, the scenarios are used as requirements for tasks assigned program elements for possible US implementation of a CFE treaty. As progress is achieved during the negotiations, this report could be updated, as necessary, in each of the areas to provide a continuing systematic basis for program implementation and technology development. 8 refs.« less

  16. Non-absorbable antibiotics for managing intestinal gas production and gas-related symptoms.

    PubMed

    Di Stefano, M; Strocchi, A; Malservisi, S; Veneto, G; Ferrieri, A; Corazza, G R

    2000-08-01

    Simethicone, activated charcoal and antimicrobial drugs have been used to treat gas-related symptoms with conflicting results. To study the relationship between gaseous symptoms and colonic gas production and to test the efficacy of rifaximin, a new non-absorbable antimicrobial agent, on these symptoms. Intestinal gas production was measured by hydrogen (H2) and methane (CH4) breath testing after lactulose in 21 healthy volunteers and 34 functional patients. Only the 34 functional patients took part in a double-blind, double-dummy controlled trial, receiving, at random, rifaximin (400 mg b.d per 7 days), or activated charcoal (400 mg b.d per 7 days). The following parameters were evaluated at the start of the study and 1 and 10 days after therapy: bloating, abdominal pain, number of flatus episodes, abdominal girth, and cumulative breath H2 excretion. Hydrogen excretion was greater in functional patients than in healthy volunteers. Rifaximin, but not activated charcoal, led to a significant reduction in H2 excretion and overall severity of symptoms. In particular, in patients treated with rifaximin, a significant reduction in the mean number of flatus episodes and of mean abdominal girth was evident. In patients with gas-related symptoms the colonic production of H2 is increased. Rifaximin significantly reduces this production and the excessive number of flatus episodes.

  17. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  18. Gas Stripping in the Simulated Pegasus Galaxy

    NASA Astrophysics Data System (ADS)

    Mercado, Francisco Javier; Samaniego, Alejandro; Wheeler, Coral; Bullock, James

    2017-01-01

    We utilize the hydrodynamic simulation code GIZMO to construct a non-cosmological idealized dwarf galaxy built to match the parameters of the observed Pegasus dwarf galaxy. This simulated galaxy will be used in a series of tests in which we will implement different methods of removing the dwarf’s gas in order to emulate the ram pressure stripping mechanism encountered by dwarf galaxies as they fall into more massive companion galaxies. These scenarios will be analyzed in order to determine the role that the removal of gas plays in rotational vs. dispersion support (Vrot/σ) of our galaxy.

  19. Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks

    DOT National Transportation Integrated Search

    2016-05-01

    Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...

  20. Crossing the Barriers: An Analysis of Permitting Barriers to Geothermal Development and Potential Improvement Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L; Young, Katherine R

    Developers have identified many non-technical barriers to geothermal power development, including permitting. Activities required for permitting, such as the associated environmental reviews, can take a considerable amount of time and delay project development. This paper discusses the impacts to geothermal development timelines due to the permitting challenges, including the regulatory framework, environmental review process, and ancillary permits. We identified barriers that have the potential to prevent geothermal development or delay timelines and defined improvement scenarios that could assist in expediting geothermal development and permitting timelines and lead to the deployment of additional geothermal resources by 2030 and 2050: (1) themore » creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices as well as (2) an expansion of existing categorical exclusions applicable to geothermal development on Bureau of Land Management public lands to include the oil and gas categorical exclusions passed as part of the Energy Policy Act of 2005. We utilized the Regional Energy Deployment System (ReEDS) and the Geothermal Electricity Technology Evaluation Model (GETEM) to forecast baseline geothermal deployment based on previous analysis of geothermal project development and permitting timelines. The model results forecast that reductions in geothermal project timelines can have a significant impact on geothermal deployment. For example, using the ReEDS model, we estimated that reducing timelines by two years, perhaps due to the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices, could result in deployment of an additional 204 MW by 2030 and 768 MW by 2050 - a 13% improvement when compared to the business as usual scenario. The model results forecast that a timeline improvement of four years - for example with an expansion of existing

  1. METHOD FOR THE REDUCTION OF URANIUM COMPOUNDS

    DOEpatents

    Cooke, W.H.; Crawford, J.W.C.

    1959-05-12

    An improved technique of preparing massive metallic uranium by the reaction at elevated temperature between an excess of alkali in alkaline earth metal and a uranium halide, such ss uranium tetrafluoride is presented. The improvement comprises employing a reducing atmosphere of hydrogen or the like, such as coal gas, in the vessel during the reduction stage and then replacing the reducing atmosphere with argon gas prior to cooling to ambient temperature.

  2. FHWA scenario planning guidebook

    DOT National Transportation Integrated Search

    2011-02-01

    The purpose of this guidebook is to assist transportation agencies with carrying out a scenario planning process from start to finish. Transportation agencies can use the guidebook as a framework to develop a scenario planning approach tailored to th...

  3. Gas Retention, Gas Release, and Fluidization of Spherical Resorcinol-Formaldehyde (sRF) Ion Exchange Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Rassat, Scot D.; Linn, Diana

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. When loaded with radioactive Cs, radiolysis of water in the LAW liquid will generate hydrogen gas. In normal operations, the generated hydrogen is expected to remainmore » dissolved in the liquid and be continuously removed by liquid flow. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin bed and below the bottom screen that supports the resin within the column, which creates a hydrogen flammability hazard. Because there is a potential for a large fraction of the retained hydrogen to be released over a short duration as a gas release event, there is a need to quantify the size and rate of potential gas release events. Due to the potential for a large, rapid gas release event, an evaluation of mitigation methods to eliminate the hydrogen hazard is also needed. One method being considered for mitigating the hydrogen hazard during a loss of flow accident is to have a secondary flow system, with two redundant pumps operating in series, that re-circulates liquid upwards through the bed and into a vented break tank where hydrogen gas is released from the liquid and removed by venting the headspace of the break tank. The mechanism for inducing release of gas from the sRF bed is to fluidize the bed, which should allow

  4. Selective autocatalytic reduction of NO from sintering flue gas by the hot sintered ore in the presence of NH3.

    PubMed

    Chen, Wangsheng; Luo, Jing; Qin, Linbo; Han, Jun

    2015-12-01

    In this paper, the selective autocatalytic reduction of NO by NH3 combined with multi-metal oxides in the hot sintered ore was studied, and the catalytic activity of the hot sintered ore was investigated as a function of temperature, NH3/NO ratio, O2 content, H2O and SO2. The experimental results indicated that the hot sintered ore, when combined with NH3, had a maximum denitration efficiency of 37.67% at 450 °C, 3000 h(-1) gas hourly space velocity (GHSV) and a NH3/NO ratio of 0.4/1. Additionally, it was found that O2 played an important role in removing NOx. However, high O2 content had a negative effect on NO reduction. H2O was found to promote the denitration efficiency in the absence of SO2, while SO2 inhibited the catalytic activity of the sintered ore. In the presence of H2O and SO2, the catalytic activity of the sintered ore was dramatically suppressed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Potential reduction in terrestrial salamander ranges associated with Marcellus shale development

    USGS Publications Warehouse

    Brand, Adrianne B,; Wiewel, Amber N. M.; Grant, Evan H. Campbell

    2014-01-01

    Natural gas production from the Marcellus shale is rapidly increasing in the northeastern United States. Most of the endemic terrestrial salamander species in the region are classified as ‘globally secure’ by the IUCN, primarily because much of their ranges include state- and federally protected lands, which have been presumed to be free from habitat loss. However, the proposed and ongoing development of the Marcellus gas resources may result in significant range restrictions for these and other terrestrial forest salamanders. To begin to address the gaps in our knowledge of the direct impacts of shale gas development, we developed occurrence models for five species of terrestrial plethodontid salamanders found largely within the Marcellus shale play. We predicted future Marcellus shale development under several scenarios. Under scenarios of 10,000, 20,000, and 50,000 new gas wells, we predict 4%, 8%, and 20% forest loss, respectively, within the play. Predictions of habitat loss vary among species, but in general, Plethodon electromorphus and Plethodonwehrlei are predicted to lose the greatest proportion of forested habitat within their ranges if future Marcellus development is based on characteristics of the shale play. If development is based on current well locations,Plethodonrichmondi is predicted to lose the greatest proportion of habitat. Models showed high uncertainty in species’ ranges and emphasize the need for distribution data collected by widespread and repeated, randomized surveys.

  6. Air-quality in the mid-21st century for the city of Paris under two climate scenarios; from regional to local scale

    NASA Astrophysics Data System (ADS)

    Markakis, K.; Valari, M.; Colette, A.; Sanchez, O.; Perrussel, O.; Honore, C.; Vautard, R.; Klimont, Z.; Rao, S.

    2014-01-01

    Ozone and PM2.5 concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. High-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10 yr control simulation. Ozone is in very good agreement with measurements while PM2.5 is underestimated by 20% over the urban area mainly due to a large wet bias in wintertime precipitation. A significant increase of maximum ozone relative to present time levels over Paris is modeled under the "business as usual" scenario (+7 ppb) while a more optimistic mitigation scenario leads to moderate ozone decrease (-3.5 ppb) in year 2050. These results are substantially different to previous regional scale projections where 2050 ozone is found to decrease under both future scenarios. A sensitivity analysis showed that this difference is due to the fact that ozone formation over Paris at the current, urban scale study, is driven by VOC-limited chemistry, whereas at the regional scale ozone formation occurs under NOx-sensitive conditions. This explains why the sharp NOx reductions implemented in the future scenarios have a different effect on ozone projections at different scales. In rural areas projections at both scales yield similar results showing that the longer time-scale processes of emission transport and ozone formation are less sensitive to model resolution. PM2.5 concentrations decrease by 78% and 89% under "business as usual" and "mitigation" scenarios respectively compared to present time period. The reduction is much more prominent over the urban part of the domain due to the effective reductions of road transport and residential emissions resulting in the smoothing of the large urban increment

  7. NASA/Navy lift/cruise fan cost reduction studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Cost reduction studies were performed for the LCF459 turbotip fan for application with the YJ97-GE-100 gas generator in a multimission V/STOL research and technology aircraft. A 20 percent cost reduction of the research configuration based on the original preliminary design was achieved. The trade studies performed and the results in the area of cost reduction and weight are covered. A fan configuration is defined for continuation of the program through the detailed design phase.

  8. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, W.J.; Brown, W.R.; Siwajek, L.

    1998-09-01

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfillmore » gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.« less

  9. Numerical modeling of fracking fluid and methane migration through fault zones in shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Taherdangkoo, Reza; Tatomir, Alexandru; Sauter, Martin

    2017-04-01

    Hydraulic fracturing operation in shale gas reservoir has gained growing interest over the last few years. Groundwater contamination is one of the most important environmental concerns that have emerged surrounding shale gas development (Reagan et al., 2015). The potential impacts of hydraulic fracturing could be studied through the possible pathways for subsurface migration of contaminants towards overlying aquifers (Kissinger et al., 2013; Myers, 2012). The intent of this study is to investigate, by means of numerical simulation, two failure scenarios which are based on the presence of a fault zone that penetrates the full thickness of overburden and connect shale gas reservoir to aquifer. Scenario 1 addresses the potential transport of fracturing fluid from the shale into the subsurface. This scenario was modeled with COMSOL Multiphysics software. Scenario 2 deals with the leakage of methane from the reservoir into the overburden. The numerical modeling of this scenario was implemented in DuMux (free and open-source software), discrete fracture model (DFM) simulator (Tatomir, 2012). The modeling results are used to evaluate the influence of several important parameters (reservoir pressure, aquifer-reservoir separation thickness, fault zone inclination, porosity, permeability, etc.) that could affect the fluid transport through the fault zone. Furthermore, we determined the main transport mechanisms and circumstances in which would allow frack fluid or methane migrate through the fault zone into geological layers. The results show that presence of a conductive fault could reduce the contaminant travel time and a significant contaminant leakage, under certain hydraulic conditions, is most likely to occur. Bibliography Kissinger, A., Helmig, R., Ebigbo, A., Class, H., Lange, T., Sauter, M., Heitfeld, M., Klünker, J., Jahnke, W., 2013. Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environ Earth Sci 70, 3855

  10. Benefits on public health from transport-related greenhouse gas mitigation policies in Southeastern European cities.

    PubMed

    Sarigiannis, D A; Kontoroupis, P; Nikolaki, S; Gotti, A; Chapizanis, D; Karakitsios, S

    2017-02-01

    Climate change is a major environmental threat of our time. Cities have a significant impact on greenhouse gas emissions as most of the traffic, industry, commerce and more than 50% of world population is situated in urban areas. Southern Europe is a region that faces financial turmoil, enhanced migratory fluxes and climate change pressure. The case study of Thessaloniki is presented, one of the only two cities in Greece with established climate change action plans. The effects of feasible traffic policies in year 2020 are assessed and their potential health impact is compared to a business as usual scenario. Two types of measures are investigated: operation of underground rail in the city centre and changes in fleet composition. Potential co-benefits from reduced greenhouse gas emissions on public health by the year 2020 are computed utilizing state-of-the-art concentration response functions for PM x , NO 2 and C 6 H 6 . Results show significant environmental health and monetary co-benefits when the city metro is coupled with appropriate changes in the traffic composition. Monetary savings due to avoided mortality or leukaemia incidence corresponding to the reduction in PM 10 , PM 2.5, NO 2 and C 6 H 6 exposure will be 56.6, 45, 37.7 and 1.0 million Euros respectively. Promotion of 'green' transportation in the city (i.e. the wide use of electric vehicles), will provide monetary savings from the reduction in PM 10 , PM 2.5 , NO 2 and C 6 H 6 exposure up to 60.4, 49.1, 41.2 and 1.08 million Euros. Overall, it was shown that the respective GHG emission reduction policies resulted in clear co-benefits in terms of air quality improvement, public health protection and monetary loss mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Investigation of industrial-scale carbon dioxide reduction using pulsed electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, G. M.; Apruzese, J. P.; Petrova, Tz. B.

    Carbon dioxide is the most important greenhouse gas contributing to global warming. To help mitigate increasing CO{sub 2} concentrations, we investigate a method of carbon dioxide reduction using high-power electron beams, which can be used on an industrial scale. A series of experiments are conducted in which the reduction of CO{sub 2} is measured for different gas compositions and power deposition rates. An electron beam deposition model is applied to compute reduction rates of CO{sub 2} and energy cost for breaking a CO{sub 2} molecule in flue gas and pure carbon dioxide at atmospheric pressure. For flue gas consisting ofmore » 82% N{sub 2}, 6% O{sub 2}, and 12% CO{sub 2}, the calculated energy cost is 85 eV per molecule. In order to dissociate 50% of the CO{sub 2} molecules, beam energy density deposition on the order of 20 J/cm{sup 3} is required. Electron beam irradiation of 12.6 liter gas volume containing 90% CO{sub 2} and 10% CH{sub 4} at beam energy density deposition of 4.2 J/cm{sup 3}, accumulated over 43 shots in a 20 min interval, reduced the CO{sub 2} concentration to 78%. Analogous experiments with a gas mixture containing 11.5% CO{sub 2}, 11.5% CH{sub 4}, and balance of Ar, reduced the CO{sub 2} concentration to below 11% with energy deposition 0.71 J/cm{sup 3}, accumulated over 10 shots in a 5 min interval. The experimental data and the theoretical predictions of CO{sub 2} reduction using pulsed electron beams are in agreement within the experimental error. Other techniques to enhance the removal of CO{sub 2} with pulsed electron beams are also explored, yielding new possible avenues of research.« less

  12. Modeling travel choices to assess potential greenhouse gas emissions reductions.

    DOT National Transportation Integrated Search

    2015-06-01

    The transportation sector is the source of approximately 27% of total U.S. greenhouse gas : (GHG) emissions (EPA, 2015), and these emissions are projected to increase in the future : (NHTSA, 2011). Given the potentially severe impacts of climate chan...

  13. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    PubMed

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  14. Projections of temperature-related excess mortality under climate change scenarios.

    PubMed

    Gasparrini, Antonio; Guo, Yuming; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Huber, Veronika; Tong, Shilu; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Matus Correa, Patricia; Valdes Ortega, Nicolas; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Jaakkola, Jouni J K; Ryti, Niilo R I; Pascal, Mathilde; Goodman, Patrick G; Zeka, Ariana; Michelozzi, Paola; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Diaz, Magali; Cesar Cruz, Julio; Seposo, Xerxes; Kim, Ho; Tobias, Aurelio; Iñiguez, Carmen; Forsberg, Bertil; Åström, Daniel Oudin; Ragettli, Martina S; Guo, Yue Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L; Dang, Tran Ngoc; Van, Dung Do; Heaviside, Clare; Vardoulakis, Sotiris; Hajat, Shakoor; Haines, Andy; Armstrong, Ben

    2017-12-01

    Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes. Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat

  15. Assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Stackpoole, Sarah

    2011-01-01

    The Energy Independence and Security Act of 2007 (EISA) requires the U.S. Department of the Interior (DOI) to develop a methodology and conduct an assessment of carbon storage, carbon sequestration, and greenhouse-gas (GHG) fluxes in the Nation's ecosystems. The U.S. Geological Survey (USGS) has developed and published the methodology (U.S. Geological Survey Scientific Investigations Report 2010-5233) and has assembled an interdisciplinary team of scientists to conduct the assessment over the next three to four years, commencing in October 2010. The assessment will fulfill specific requirements of the EISA by (1) quantifying, measuring, and monitoring carbon sequestration and GHG fluxes using national datasets and science tools such as remote sensing, and biogeochemical and hydrological models, (2) evaluating a range of management and restoration activities for their effects on carbon-sequestration capacity and the reduction of GHG fluxes, and (3) assessing effects of climate change and other controlling processes (including wildland fires) on carbon uptake and GHG emissions from ecosystems.

  16. Effect of Increased Natural Gas Exports on Domestic Energy Markets

    EIA Publications

    2012-01-01

    This report responds to an August 2011 request from the Department of Energy's Office of Fossil Energy (DOE\\/FE) for an analysis of "the impact of increased domestic natural gas demand, as exports." Appendix A provides a copy of the DOE\\/FE request letter. Specifically, DOE\\/FE asked the U.S. Energy Information Administration (EIA) to assess how specified scenarios of increased natural gas exports could affect domestic energy markets, focusing on consumption, production, and prices.

  17. Getting the gas out - developing gas networks in magmatic systems

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine; Rust, Alison; Oppenheimer, Julie; Belien, Isolde

    2015-04-01

    Volcanic eruption style, and explosive potential, are strongly controlled by the pre-eruptive history of the magmatic volatiles: specifically, the more efficient the gas loss prior to eruption, the lower the likelihood of primary (magmatic) explosive activity. Commonly considered gas loss mechanisms include separated flow, where individual bubbles (or bubble clouds) travel at a rate that is faster than the host magma, and permeable flow, where gas escapes through permeable (connected) pathways developed within a (relatively) static matrix. Importantly, gas loss via separated flow is episodic, while gas loss via permeable flow is likely to be continuous. Analogue experiments and numerical models on three phase (solid-liquid-gas) systems also suggest a third mechanism of gas loss that involves the opening and closing of 'pseudo fractures'. Pseudo fractures form at a critical crystallinity that is close to the maximum particle packing. Fractures form by local rearrangement of solid particles and liquid to form a through-going gas fracture; gas escape is episodic, and modulated by the available gas volume and the rate of return flow of interstitial liquid back into the fracture. In all of the gas escape scenarios described above, a fundamental control on gas behaviour is the melt viscosity, which affects the rate of individual bubble rise, the rate of bubble expansion, the rate of film thinning (required for bubble coalescence), and the rate of melt flow into gas-generated fractures. From the perspective of magma degassing, rates of gas expansion and film thinning are key to the formation of an interconnected (permeable) gas pathway. Experiments with both analogue and natural materials show that bubble coalescence is relatively slow, and, in particle-poor melts, does not necessarily create permeable gas networks. As a result, degassing efficiency is modulated by the time scales required either (1) to produce large individual bubbles or bubble clouds (in low viscosity

  18. Innovations in science and scenarios for assessment.

    PubMed

    Kunkel, Kenneth E; Moss, Richard; Parris, Adam

    Scenarios for the Third National Climate Assessment (NCA3) were produced for physical climate and sea level rise with substantial input from disciplinary and regional experts. These scenarios underwent extensive review and were published as NOAA Technical Reports. For land use/cover and socioeconomic conditions, scenarios already developed by other agencies were specified for use in the NCA3. Efforts to enhance participatory scenario planning as an assessment activity were pursued, but with limited success. Issues and challenges included the timing of availability of scenarios, the need for guidance in use of scenarios, the need for approaches to nest information within multiple scales and sectors, engagement and collaboration of end users in scenario development, and development of integrated scenarios. Future assessments would benefit from an earlier start to scenarios development, the provision of training in addition to guidance documents, new and flexible approaches for nesting information, ongoing engagement and advice from both scientific and end user communities, and the development of consistent and integrated scenarios.

  19. Scenario Development for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Mahmoud, M.; Gupta, H.; Stewart, S.; Liu, Y.; Hartmann, H.; Wagener, T.

    2006-12-01

    The primary goal of employing a scenario development approach for the U.S. southwest is to inform regional policy by examining future possibilities related to regional vegetation change, water-leasing, and riparian restoration. This approach is necessary due to a lack of existing explicit water resources application of scenarios to the entire southwest region. A formal approach for scenario development is adopted and applied towards water resources issues within the arid and semi-arid regions of the U.S. southwest following five progressive and reiterative phases: scenario definition, scenario construction, scenario analysis, scenario assessment, and risk management. In the scenario definition phase, the inputs of scientists, modelers, and stakeholders were collected in order to define and construct relevant scenarios to the southwest and its water sustainability needs. From stakeholder-driven scenario workshops and breakout sessions, the three main axes of principal change were identified to be climate change, population development patterns, and quality of information monitoring technology. Based on the extreme and varying conditions of these three main axes, eight scenario narratives were drafted to describe the state of each scenario's respective future and the events which led to it. Events and situations are described within each scenario narrative with respect to key variables; variables that are both important to regional water resources (as distinguished by scientists and modelers), and are good tracking and monitoring indicators of change. The current phase consists of scenario construction, where the drafted scenarios are re-presented to regional scientists and modelers to verify that proper key variables are included (or excluded) from the eight narratives. The next step is to construct the data sets necessary to implement the eight scenarios on the respective computational models of modelers investigating vegetation change, water-leasing, and riparian

  20. Capital requirements for the transportation of energy materials based on PIES Scenario estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gezen, A.; Kendrick, M.J.; Khan, S.S.

    In May 1978, Transportation and Economic Research Associates (TERA), Inc. completed a study in which information and methodologies were developed for the determination of capital requirements in the transportation of energy materials. This work was designed to aid EIA in the analysis of PIES solutions. The work consisted of the development of five algorithms which are used to estimate transportation-investment requirements associated with energy commodities and transportation modes. For the purpose of this analysis, TERA was provided with three PIES-solution scenarios for 1985. These are: Scenario A which assumes a high domestic economic rate of growth along with its correspondingmore » high demand for petroleum, as well as a high domestic supply of petroleum; Scenario C which assumes a medium level of economic growth and petroleum demand and supply; and Scenario E which assumes a low level of economic growth and domestic demand and supply for petroleum. Two PIES-related outputs used in TERA's analysis are the ''COOKIE'' reports which present activity summaries by region and ''PERUSE'' printouts of solution files which give interregional flows by energy material. Only the transportation of four energy materials, crude oil, petroleum products, natural gas, and coal is considered. In estimating the capital costs of new or expanded capacity for the transportation of these materials, three transportation modes were examined: pipelines, water carriers (inland barge and deep draft vessels), and railroads. (MCW)« less

  1. Potential future scenarios for Australia's native biodiversity given on-going increases in human population.

    PubMed

    Pepper, D A; Lada, Hania; Thomson, James R; Bakar, K Shuvo; Lake, P S; Mac Nally, Ralph

    2017-01-15

    Most natural assets, including native biodiversity (our focus), are under increasing threat from direct (loss of habitat, hunting) and indirect (climate change) human actions. Most human impacts arise from increasing human populations coupled with rises in per capita resource use. The rates of change of human actions generally outpace those to which the biota can respond or adapt. If we are to maintain native biodiversity, then we must develop ways to envisage how the biota may be affected over the next several decades to guide management and policy responses. We consider the future for Australia's native biodiversity in the context of two assumptions. First, the human population in Australia will be 40million by 2050, which has been mooted by federal government agencies. Second, greenhouse gas emissions will track the highest rates considered by the Intergovernmental Panel on Climate Change. The scenarios are based on major drivers of change, which were constructed from seven key drivers of change pertinent to native biodiversity. Five scenarios deal with differing distributions of the human population driven by uncertainties in climate change and in the human responses to climate change. Other scenarios are governed largely by global change and explore different rates of resource use, unprecedented rates of technological change, capabilities and societal values. A narrative for each scenario is provided. The set of scenarios spans a wide range of possible future paths for Australia, with different implications for the future of native biodiversity. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    PubMed

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-05

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.

  3. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation

    PubMed Central

    Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan

    2014-01-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  4. Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios.

    PubMed

    Chowdhury, Sourangsu; Dey, Sagnik; Smith, Kirk R

    2018-01-22

    Premature mortality from current ambient fine particulate (PM 2.5 ) exposure in India is large, but the trend under climate change is unclear. Here we estimate ambient PM 2.5 exposure up to 2100 by applying the relative changes in PM 2.5 from baseline period (2001-2005) derived from Coupled Model Inter-comparison Project 5 (CMIP5) models to the satellite-derived baseline PM 2.5 . We then project the mortality burden using socioeconomic and demographic projections in the Shared Socioeconomic Pathway (SSP) scenarios. Ambient PM 2.5 exposure is expected to peak in 2030 under the RCP4.5 and in 2040 under the RCP8.5 scenario. Premature mortality burden is expected to be 2.4-4 and 28.5-38.8% higher under RCP8.5 scenario relative to the RCP4.5 scenario in 2031-2040 and 2091-2100, respectively. Improved health conditions due to economic growth are expected to compensate for the impact of changes in population and age distribution, leading to a reduction in per capita health burden from PM 2.5 for all scenarios except the combination of RCP8.5 exposure and SSP3.

  5. Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions.

    PubMed

    Farchi, Sara; De Sario, Manuela; Lapucci, Enrica; Davoli, Marina; Michelozzi, Paola

    2017-01-01

    Animal agriculture has exponentially grown in recent decades in response to the rise in global demand for meat, even in countries like Italy that traditionally eat a Mediterranean, plant-based diet. Globalization related dietary changes are contributing to the epidemic of non-communicable diseases and to the global climate crisis, and are associated with huge carbon and water footprints. The objective of the study is to assess inequalities in health impacts and in attributable greenhouse gases-GHG emissions in Italy by hypothesizing different scenarios of reduction in red and processed meat consumption towards healthier consumption patterns more compliant with the recommendations of the Mediterranean food pyramid. We used demographic and food consumption patterns from national surveys and risk relationships between meat intake and cardiovascular and colorectal cancer mortality from IARC and other meta-analyses. From the baseline data (year 2005-2006, average 406 gr/week beef and 245 gr/week processed meat), we considered hypothetical meat reduction scenarios according to international dietary guidelines such as the Mediterranean pyramid targets. For each geographical area (Northwest, Northeast, Centre, and South) and gender, we calculated the number of avoidable deaths from colorectal cancer, and cardiovascular disease among the adult population. Moreover, years of life gained by the adult population from 2012 to 2030 and changes in life expectancy of the 2012 birth cohort were quantified using gender-specific life tables. GHG emission reductions under Mediterranean scenario were estimated only for beef by applying the Global Warming Potential (GWP) coefficient to total consumption and to a low carbon food substitution in adult diet. The deaths avoidable (as percentage change compared to baseline) according to the three reduction scenarios for beef consumption were between 2.3% and 4.5% for colorectal cancer, and between 2.1% and 4.0% for cardiovascular disease

  6. Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions

    PubMed Central

    Farchi, Sara; De Sario, Manuela; Lapucci, Enrica; Davoli, Marina; Michelozzi, Paola

    2017-01-01

    Introduction Animal agriculture has exponentially grown in recent decades in response to the rise in global demand for meat, even in countries like Italy that traditionally eat a Mediterranean, plant-based diet. Globalization related dietary changes are contributing to the epidemic of non-communicable diseases and to the global climate crisis, and are associated with huge carbon and water footprints. The objective of the study is to assess inequalities in health impacts and in attributable greenhouse gases-GHG emissions in Italy by hypothesizing different scenarios of reduction in red and processed meat consumption towards healthier consumption patterns more compliant with the recommendations of the Mediterranean food pyramid. Methods We used demographic and food consumption patterns from national surveys and risk relationships between meat intake and cardiovascular and colorectal cancer mortality from IARC and other meta-analyses. From the baseline data (year 2005–2006, average 406 gr/week beef and 245 gr/week processed meat), we considered hypothetical meat reduction scenarios according to international dietary guidelines such as the Mediterranean pyramid targets. For each geographical area (Northwest, Northeast, Centre, and South) and gender, we calculated the number of avoidable deaths from colorectal cancer, and cardiovascular disease among the adult population. Moreover, years of life gained by the adult population from 2012 to 2030 and changes in life expectancy of the 2012 birth cohort were quantified using gender-specific life tables. GHG emission reductions under Mediterranean scenario were estimated only for beef by applying the Global Warming Potential (GWP) coefficient to total consumption and to a low carbon food substitution in adult diet. Results The deaths avoidable (as percentage change compared to baseline) according to the three reduction scenarios for beef consumption were between 2.3% and 4.5% for colorectal cancer, and between 2.1% and 4

  7. An approach for estimating toxic releases of H2S-containing natural gas.

    PubMed

    Jianwen, Zhang; Da, Lei; Wenxing, Feng

    2014-01-15

    China is well known being rich in sulfurous natural gas with huge deposits widely distributed all over the country. Due to the toxic nature, the release of hydrogen sulfide-containing natural gas from the pipelines intends to impose serious threats to the human, society and environment around the release sources. CFD algorithm is adopted to simulate the dispersion process of gas, and the results prove that Gaussian plume model is suitable for determining the affected region of the well blowout of sulfide hydrogen-containing natural gas. In accordance with the analysis of release scenarios, the present study proposes a new approach for estimating the risk of hydrogen sulfide poisoning hazards, as caused by sulfide-hydrogen-containing natural gas releases. Historical accident-statistical data from the EGIG (European Gas Pipeline Incident Data Group) and the Britain Gas Transco are integrated into the approach. Also, the dose-load effect is introduced to exploit the hazards' effects by two essential parameters - toxic concentration and exposure time. The approach was applied to three release scenarios occurring on the East-Sichuan Gas Transportation Project, and the individual risk and societal risk are classified and discussed. Results show that societal risk varies significantly with different factors, including population density, distance from pipeline, operating conditions and so on. Concerning the dispersion process of hazardous gas, available safe egress time was studied from the perspective of individual fatality risks. The present approach can provide reliable support for the safety management and maintenance of natural gas pipelines as well as evacuations that may occur after release incidents. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazardsmore » from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.« less

  9. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.

    PubMed

    El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D

    2018-06-04

    Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.

  10. Analysis of plasma termination in the JET hybrid scenario

    NASA Astrophysics Data System (ADS)

    Hobirk, J.; Bernert, M.; Buratti, P.; Challis, C. D.; Coffey, I.; Drewelow, P.; Joffrin, E.; Mailloux, J.; Nunes, I.; Pucella, G.; Pütterich, T.; de Vries, P. C.; Contributors, JET

    2018-07-01

    This paper analyses the final phase of hybrid scenario discharges at JET, the reduction of auxiliary heating towards finally the Ohmic phase. The here considered Ohmic phase is mostly still in the current flattop but may also be in the current ramp down. For this purpose a database is created of 54 parameters in 7 phases distributed in time of the discharge. It is found that the occurrence of a locked mode is in most cases preceded by a radiation peaking after the main heating phase either in a low power phase and/or in the Ohmic phase. To gain insight on the importance of different parameters in this process a correlation analysis to the radiation peaking in the Ohmic phase is done. The first finding is that the further away in time the analysed phases are the less the correlation is. This means in the end that a good termination scenario might also be able to terminate unhealthy plasmas safely. The second finding is that remaining impurities in the plasma after reducing the heating power in the termination phase are the most important reason for generating a locked mode which can lead to a disruption.

  11. Combinatorial structure of genome rearrangements scenarios.

    PubMed

    Ouangraoua, Aïda; Bergeron, Anne

    2010-09-01

    In genome rearrangement theory, one of the elusive questions raised in recent years is the enumeration of rearrangement scenarios between two genomes. This problem is related to the uniform generation of rearrangement scenarios and the derivation of tests of statistical significance of the properties of these scenarios. Here we give an exact formula for the number of double-cut-and-join (DCJ) rearrangement scenarios between two genomes. We also construct effective bijections between the set of scenarios that sort a component as well studied combinatorial objects such as parking functions, labeled trees, and prüfer codes.

  12. STELLAR POPULATION AND GAS KINEMATICS OF POST-STARBURST QUASARS

    NASA Astrophysics Data System (ADS)

    Sanmartim, David; Storchi-Bergmann, Thaisa

    2018-01-01

    Post-Starburst Quasars (PSQs) are an intriguing set of galaxies that simultaneously host AGNs and post-starburst stellar populations, making them one of the most suitable objects to investigate the nature of the connection between these two components. The simultaneous presence of a post-starburst population and nuclear activity may be explained by two possible scenarios. In the secular evolutionary scenario star formation may cease due to exhaustion of the gas, while in the quenching one it may cease abruptly when the nuclear activity is triggered. In order to test these scenarios we have mapped the star formation history, manifestations of nuclear activity and excitation mechanisms in the central kpc of two nearby PSQs by using GMOS-IFU observations. In these two first exploratory studies, we have found that the young and intermediate age populations are located in a ring at ≈300-500 kpc, with some contribution of the intermediate age component also in the central region. In both of them, the gas outflow does not coincide with the young stellar population ring, which suggests that the ring is not being affected by the AGN feedback, but only the innermost regions. The individual study one of the PSQs of the sample has supported the evolutionary scenario, since the post-starburst population is not located close enough to the nucleus, where the outflow is observed. As a general behaviour, we found that outflows velocity are on the order of ~600-800 km/s and the mass outflow rates of ≈0.03-0.1 M⊙/yr, one order of magnitude greater than the AGN accretion rate, which suggests a scenario where the AGN-driven wind has entrained material from the circumnuclear region. In order to increase the statistical significance of our previous results and to distinguish between the proposed scenarios, we are conducting the same analysis to a wider sample of PSQs, which we hope will indicate more conclusively which is the favored scenario. During the meeting, we will present

  13. Web Based Tool for Mission Operations Scenarios

    NASA Technical Reports Server (NTRS)

    Boyles, Carole A.; Bindschadler, Duane L.

    2008-01-01

    A conventional practice for spaceflight projects is to document scenarios in a monolithic Operations Concept document. Such documents can be hundreds of pages long and may require laborious updates. Software development practice utilizes scenarios in the form of smaller, individual use cases, which are often structured and managed using UML. We have developed a process and a web-based scenario tool that utilizes a similar philosophy of smaller, more compact scenarios (but avoids the formality of UML). The need for a scenario process and tool became apparent during the authors' work on a large astrophysics mission. It was noted that every phase of the Mission (e.g., formulation, design, verification and validation, and operations) looked back to scenarios to assess completeness of requirements and design. It was also noted that terminology needed to be clarified and structured to assure communication across all levels of the project. Attempts to manage, communicate, and evolve scenarios at all levels of a project using conventional tools (e.g., Excel) and methods (Scenario Working Group meetings) were not effective given limitations on budget and staffing. The objective of this paper is to document the scenario process and tool created to offer projects a low-cost capability to create, communicate, manage, and evolve scenarios throughout project development. The process and tool have the further benefit of allowing the association of requirements with particular scenarios, establishing and viewing relationships between higher- and lower-level scenarios, and the ability to place all scenarios in a shared context. The resulting structured set of scenarios is widely visible (using a web browser), easily updated, and can be searched according to various criteria including the level (e.g., Project, System, and Team) and Mission Phase. Scenarios are maintained in a web-accessible environment that provides a structured set of scenario fields and allows for maximum

  14. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide.

    PubMed

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J N; Pant, Deepak; Strik, David P B T B

    2016-11-01

    Microbial catalysis of carbon dioxide (CO 2 ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO 2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO 2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO 2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO 2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO 2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO 2 reduction. Bioelectrochemical CO 2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO 2 gas mixture feed were achieved with 10 cm 2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO 2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO 2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO 2 . Graphical abstract ᅟ.

  15. The Impact of a Potential Shale Gas Development in Germany and the United Kingdom on Local and Regional Air Quality

    NASA Astrophysics Data System (ADS)

    Weger, L.; Lupascu, A.; Cremonese, L.; Butler, T. M.

    2017-12-01

    Numerous countries in Europe that possess domestic shale gas reserves are considering exploiting this unconventional gas resource as part of their energy transition agenda. While natural gas generates less CO2 emissions upon combustion compared to coal or oil, making it attractive as a bridge in the transition from fossil fuels to renewables, production of shale gas leads to emissions of CH4 and air pollutants such as NOx, VOCs and PM. These gases in turn influence the climate as well as air quality. In this study, we investigate the impact of a potential shale gas development in Germany and the United Kingdom on local and regional air quality. This work builds on our previous study in which we constructed emissions scenarios based on shale gas utilization in these counties. In order to explore the influence of shale gas production on air quality, we investigate emissions predicted from our shale gas scenarios with the Weather Research and Forecasting model with chemistry (WRF-Chem) model. In order to do this, we first design a model set-up over Europe and evaluate its performance for the meteorological and chemical parameters. Subsequently we add shale gas emissions fluxes based on the scenarios over the area of the grid in which the shale gas activities are predicted to occur. Finally, we model these emissions and analyze the impact on air quality on both a local and regional scale. The aims of this work are to predict the range of adverse effects on air quality, highlight the importance of emissions control strategies in reducing air pollution, to promote further discussion, and to provide policy makers with information for decision making on a potential shale gas development in the two study countries.

  16. Techno-economics of integrating bioethanol production from spent sulfite liquor for reduction of greenhouse gas emissions from sulfite pulping mills.

    PubMed

    Petersen, Abdul M; Haigh, Kate; Görgens, Johann F

    2014-01-01

    Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source. Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility. High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions

  17. Innovations in science and scenarios for assessment

    DOE PAGES

    Kunkel, Kenneth E.; Moss, Richard; Parris, Adam

    2015-08-29

    Scenarios for the Third National Climate Assessment (NCA3) were produced for physical climate and sea level rise with substantial input from disciplinary and regional experts. These scenarios underwent extensive review and were published as NOAA Technical Reports. For land use/cover and socioeconomic conditions, scenarios already developed by other agencies were specified for use in the NCA3. Efforts to enhance participatory scenario planning as an assessment activity were pursued, but with limited success. Issues and challenges included the timing of availability of scenarios, the need for guidance in use of scenarios, the need for approaches to nest information within multiple scalesmore » and sectors, engagement and collaboration of end users in scenario development, and development of integrated scenarios. Future assessments would benefit from an earlier start to scenarios development, the provision of training in addition to guidance documents, new and flexible approaches for nesting information, ongoing engagement and advice from both scientific and end user communities, and the development of consistent and integrated scenarios.« less

  18. Cost effectiveness of universal umbilical cord blood gas and lactate analysis in a tertiary level maternity unit.

    PubMed

    White, Christopher R H; Doherty, Dorota A; Cannon, Jeffrey W; Kohan, Rolland; Newnham, John P; Pennell, Craig E

    2016-07-01

    There is an increasing body of literature supporting universal umbilical cord blood gas analysis (UCBGA) into all maternity units. A significant impediment to UCBGA's introduction is the perceived expense of the introduction and associated ongoing costs. Consequently, this study set out to conduct the first cost-effectiveness analysis of introducing universal UCBGA. Analysis was based on 42,100 consecutive deliveries ≥23 weeks of gestation at a single tertiary obstetric unit. Within 4 years of UCBGA's introduction there was a 45% reduction in term special care nursery (SCN) admissions >2499 g. Incurred costs included initial and ongoing costs associated with universal UCBGA. Averted costs were based on local diagnosis-related grouping costs for reduction in term SCN admissions. Incremental cost-effectiveness ratio (ICER) and sensitivity analysis results were reported. Under the base-case scenario, the adoption of universal UCBGA was less costly and more effective than selective UCBGA over 4 years and resulted in saving of AU$641,532 while adverting 376 SCN admissions. Sensitivity analysis showed that UCBGA was cost-effective in 51.8%, 83.3%, 99.6% and 100% of simulations in years 1, 2, 3 and 4. These conclusions were not sensitive to wide, clinically possible variations in parameter values for neonatal intensive care unit and SCN admissions, magnitude of averted SCN admissions, cumulative delivery numbers, and SCN admission costs. Universal UCBGA is associated with significant initial and ongoing costs; however, potential averted costs (due to reduced SCN admissions) exceed incurred costs in most scenarios.

  19. Air quality in the mid-21st century for the city of Paris under two climate scenarios; from the regional to local scale

    NASA Astrophysics Data System (ADS)

    Markakis, K.; Valari, M.; Colette, A.; Sanchez, O.; Perrussel, O.; Honore, C.; Vautard, R.; Klimont, Z.; Rao, S.

    2014-07-01

    Ozone and PM2.5 concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. A high-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional-scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10-year control simulation. Ozone is in very good agreement with measurements while PM2.5 is underestimated by 20% over the urban area mainly due to a large wet bias in wintertime precipitation. A significant increase of maximum ozone relative to present-day levels over Paris is modeled under the "business-as-usual" scenario (+7 ppb) while a more optimistic "mitigation" scenario leads to a moderate ozone decrease (-3.5 ppb) in year 2050. These results are substantially different to previous regional-scale projections where 2050 ozone is found to decrease under both future scenarios. A sensitivity analysis showed that this difference is due to the fact that ozone formation over Paris at the current urban-scale study is driven by volatile organic compound (VOC)-limited chemistry, whereas at the regional-scale ozone formation occurs under NOx-sensitive conditions. This explains why the sharp NOx reductions implemented in the future scenarios have a different effect on ozone projections at different scales. In rural areas, projections at both scales yield similar results showing that the longer timescale processes of emission transport and ozone formation are less sensitive to model resolution. PM2.5 concentrations decrease by 78% and 89% under business-as-usual and mitigation scenarios, respectively, compared to the present-day period. The reduction is much more prominent over the urban part of the domain due to the effective reductions of road transport and residential emissions resulting in the

  20. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    PubMed

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.

  1. Mars base buildup scenarios

    NASA Technical Reports Server (NTRS)

    Blacic, J. D.

    1986-01-01

    Two Mars surface based build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second senario, Earth development of an infrastructure to exploit the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first in this scenario relative to the first, but once begun develops rapidly, aided by the presence of a permanently manned orbital station.

  2. Nitrite therapy improves survival postexposure to chlorine gas

    PubMed Central

    Honavar, Jaideep; Doran, Stephen; Oh, Joo-Yeun; Steele, Chad; Matalon, Sadis

    2014-01-01

    Exposure to relatively high levels of chlorine (Cl2) gas can occur in mass-casualty scenarios associated with accidental or intentional release. Recent studies have shown a significant postexposure injury phase to the airways, pulmonary, and systemic vasculatures mediated in part by oxidative stress, inflammation, and dysfunction in endogenous nitric oxide homeostasis pathways. However, there is a need for therapeutics that are amenable to rapid and easy administration in the field and that display efficacy toward toxicity after chlorine exposure. In this study, we tested whether nitric oxide repletion using nitrite, by intramuscular injection after Cl2 exposure, could prevent Cl2 gas toxicity. C57bl/6 male mice were exposed to 600 parts per million Cl2 gas for 45 min, and 24-h survival was determined with or without postexposure intramuscular nitrite injection. A single injection of nitrite (10 mg/kg) administered either 30 or 60 min postexposure significantly improved 24-h survival (from ∼20% to 50%). Survival was associated with decreased neutrophil accumulation in the airways. Rendering mice neutropenic before Cl2 exposure improved survival and resulted in loss of nitrite-dependent survival protection. Interestingly, female mice were more sensitive to Cl2-induced toxicity compared with males and were also less responsive to postexposure nitrite therapy. These data provide evidence for efficacy and define therapeutic parameters for a single intramuscular injection of nitrite as a therapeutic after Cl2 gas exposure that is amenable to administration in mass-casualty scenarios. PMID:25326579

  3. Modeling for the SAFRR Tsunami Scenario-generation, propagation, inundation, and currents in ports and harbors: Chapter D in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    ,

    2013-01-01

    This U.S. Geological Survey (USGS) Open-File report presents a compilation of tsunami modeling studies for the Science Application for Risk Reduction (SAFRR) tsunami scenario. These modeling studies are based on an earthquake source specified by the SAFRR tsunami source working group (Kirby and others, 2013). The modeling studies in this report are organized into three groups. The first group relates to tsunami generation. The effects that source discretization and horizontal displacement have on tsunami initial conditions are examined in section 1 (Whitmore and others). In section 2 (Ryan and others), dynamic earthquake rupture models are explored in modeling tsunami generation. These models calculate slip distribution and vertical displacement of the seafloor as a result of realistic fault friction, physical properties of rocks surrounding the fault, and dynamic stresses resolved on the fault. The second group of papers relates to tsunami propagation and inundation modeling. Section 3 (Thio) presents a modeling study for the entire California coast that includes runup and inundation modeling where there is significant exposure and estimates of maximum velocity and momentum flux at the shoreline. In section 4 (Borrero and others), modeling of tsunami propagation and high-resolution inundation of critical locations in southern California is performed using the National Oceanic and Atmospheric Administration’s (NOAA) Method of Splitting Tsunami (MOST) model and NOAA’s Community Model Interface for Tsunamis (ComMIT) modeling tool. Adjustments to the inundation line owing to fine-scale structures such as levees are described in section 5 (Wilson). The third group of papers relates to modeling of hydrodynamics in ports and harbors. Section 6 (Nicolsky and Suleimani) presents results of the model used at the Alaska Earthquake Information Center for the Ports of Los Angeles and Long Beach, as well as synthetic time series of the modeled tsunami for other selected

  4. Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas.

    PubMed

    Laurenzi, Ian J; Jersey, Gilbert R

    2013-05-07

    We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. Results indicate that a typical Marcellus gas life cycle yields 466 kg CO2eq/MWh (80% confidence interval: 450-567 kg CO2eq/MWh) of greenhouse gas (GHG) emissions and 224 gal/MWh (80% CI: 185-305 gal/MWh) of freshwater consumption. Operations associated with hydraulic fracturing constitute only 1.2% of the life cycle GHG emissions, and 6.2% of the life cycle freshwater consumption. These results are influenced most strongly by the estimated ultimate recovery (EUR) of the well and the power plant efficiency: increase in either quantity will reduce both life cycle freshwater consumption and GHG emissions relative to power generated at the plant. We conclude by comparing the life cycle impacts of Marcellus gas and U.S. coal: The carbon footprint of Marcellus gas is 53% (80% CI: 44-61%) lower than coal, and its freshwater consumption is about 50% of coal. We conclude that substantial GHG reductions and freshwater savings may result from the replacement of coal-fired power generation with gas-fired power generation.

  5. Combustor concepts for aircraft gas turbine low-power emissions reduction

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Gleason, C. C.; Dodds, W. J.

    1978-01-01

    Several combustor concepts were designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the hot wall combustor employs a thermal barrier coating and impingement cooled liners; the recuperative cooling combustor preheats the air before entering the combustion chamber; and the catalytic converter combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultralow levels of unburned hydrocarbons and carbon monoxide emissions can be achieved.

  6. Regional scale temperature and circulation impacts of short-lived climate pollutants reductions

    NASA Astrophysics Data System (ADS)

    Oudar, T.; Kushner, P. J.; Fyfe, J. C.; von Salzen, K.; Shrestha, R.

    2017-12-01

    The role of anthropogenic aerosols on climate is still not clearly understood. Aerosol forcing is spatially heterogeneous and their emissions are controlled by regional economic and regulatory factors. For example, it is known that black carbon is responsible for a global net warming but its regional impacts are less understood. We evaluate the regional climate impacts of anthropogenic aerosol emission changes over the recent past and near future. Specifically, we report on numerical experiments using aerosol emissions from the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants (ECLIPSE, Stohl et al., 2015) project. These scenarios are alternative mitigation pathways for black carbon and organic aerosol over the period from 1990 to 2050. With these scenarios, we carried out three sets of simulation using the second generation Canadian Earth System Model (CanESM2): 1) A current legislation emission (CLE) scenario for black carbon and organic aerosols; 2) A mitigation (MIT) scenario for black carbon and organic aerosols, and; 3) A black carbon only mitigation scenario (MIT-BC). Five simulations were carried out for each scenario and the response analyzed in the context of a large fifty-member initial condition ensemble of simulations using historical anthropogenic aerosol forcings to 2005 as well as those forcing from the RCP8.5 scenario to 2020. Our main finding is a significant springtime cooling over the Northern midlatitudes that attributable to black carbon. Other cooling signals attributable to black carbon reductions are found in the boreal summer over Southern Europe as well as over the Northern Hemisphere midlatitudes and tropical troposphere in boreal summer and fall. All of these cooling signals are to some degree offset by simultaneous reductions in organic aerosols. As a check on the robustness, we will also report on results of five-member draws from the large ensemble over periods of comparably strong radiative forcing changes, to

  7. Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

    2012-12-01

    US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some

  8. Gas sensor with attenuated drift characteristic

    DOEpatents

    Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  9. The effect of future reduction in aerosol emissions on climate extremes in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Yang, Meilin; Xu, Yangyang

    2016-11-01

    This study investigates the effect of reduced aerosol emissions on projected temperature and precipitation extremes in China during 2031-2050 and 2081-2100 relative to present-day conditions using the daily data output from the Community Earth System Model ensemble simulations under the Representative Concentration Pathway (RCP) 8.5 with an applied aerosol reduction and RCP8.5 with fixed 2005 aerosol emissions (RCP8.5_FixA) scenarios. The reduced aerosol emissions of RCP8.5 magnify the warming effect due to greenhouse gases (GHG) and lead to significant increases in temperature extremes, such as the maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), and tropical nights (TR), and precipitation extremes, such as the maximum 5-day precipitation amount, number of heavy precipitation days, and annual total precipitation from days ˃95th percentile, in China. The projected TXx, TNn, and TR averaged over China increase by 1.2 ± 0.2 °C (4.4 ± 0.2 °C), 1.3 ± 0.2 °C (4.8 ± 0.2 °C), and 8.2 ± 1.2 (30.9 ± 1.4) days, respectively, during 2031-2050 (2081-2100) under the RCP8.5_FixA scenario, whereas the corresponding values are 1.6 ± 0.1 °C (5.3 ± 0.2 °C), 1.8 ± 0.2 °C (5.6 ± 0.2 °C), and 11.9 ± 0.9 (38.4 ± 1.0) days under the RCP8.5 scenario. Nationally averaged increases in all of those extreme precipitation indices above due to the aerosol reduction account for more than 30 % of the extreme precipitation increases under the RCP8.5 scenario. Moreover, the aerosol reduction leads to decreases in frost days and consecutive dry days averaged over China. There are great regional differences in changes of climate extremes caused by the aerosol reduction. When normalized by global mean surface temperature changes, aerosols have larger effects on temperature and precipitation extremes over China than GHG.

  10. Scenarios for low carbon and low water electric power plant ...

    EPA Pesticide Factsheets

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  11. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  12. DEVELOPMENT OF IMPACT ORIENTED CLIMATE SCENARIOS

    EPA Science Inventory

    Appropriate scenarios of future climate must be developed prior to any assessment of the impacts of climate change. he information needed by impact assessors was examined in consultation with those having experience in scenario use. ost assessors require regional scenarios with a...

  13. Swirling flow of a dissociated gas

    NASA Technical Reports Server (NTRS)

    Wolfram, W. R., Jr.; Walker, W. F.

    1975-01-01

    Most physical applications of the swirling flow, defined as a vortex superimposed on an axial flow in the nozzle, involve high temperatures and the possibility of real gas effects. The generalized one-dimensional swirling flow in a converging-diverging nozzle is analyzed for equilibrium and frozen dissociation using the ideal dissociating gas model. Numerical results are provided to illustrate the major effects and to compare with results obtained for a perfect gas with constant ratio of specific heats. It is found that, even in the case of real gases, perfect gas calculations can give a good estimate of the reduction in mass flow due to swirl.

  14. Numerical Modeling of Methane Leakage from a Faulty Natural Gas Well into Fractured Tight Formations.

    PubMed

    Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.

  15. Developing Shipping Emissions Assessments, Inventories and Scenarios (Invited)

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.

    2010-12-01

    Inventories of shipping have been important contributions to scientific understanding of regional pollution and transboundary transport. These inventories have also been used to evaluate global scale environmental and climate effects and trends. However, these inventories also inform policy making decisions and this role is increasingly occurring within the timescale of scientific assessment. Shipping exhibits a growth trend for uncontrolled pollutants that is highly coupled to economic activity, and historically increasing faster than many other anthropogenic sources on a global and regional scale. Shipping emissions are being regulated asymmetrically in various dimensions. Some pollutants are being controlled more than others, some regions are subject to stricter controls, and correlated changes in operations are affecting unregulated pollutant emissions. Shipping inventories require more than current assessments, including historic and future scenarios. Generally conceived as sets of business-as-usual (BAU) and high-growth scenarios, ship inventories now also need regulatory control pathways and maximum feasible reduction (MFR) scenarios. In this context, shipping inventories also present other challenges to both scientists and policymakers. Systemic bias can occur in non-shipping assessments when emissions along well-traveled shipping lanes are ignored by far offshore scientific studies, even some campaigns that control very carefully the potential influence of the shipping platforms for their measurements. Examples where shipping may contribute understood and potential biases include: a. Health impacts from transboundary pollution b. Ozone trends over the Pacific c. Sulfur emissions from biogenic sources in Northern hemisphere d. Acidification of coastal waters (potential) e. Arctic impacts on snow and ice Other challenges exist. The fuels and technology used by ships are unique from other transportation, from other stationary sources - and these are changing

  16. Representative concentration pathways and mitigation scenarios for nitrous oxide

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.

    2012-06-01

    The challenges of mitigating nitrous oxide (N2O) emissions are substantially different from those for carbon dioxide (CO2) and methane (CH4), because nitrogen (N) is essential for food production, and over 80% of anthropogenic N2O emissions are from the agricultural sector. Here I use a model of emission factors of N2O to demonstrate the magnitude of improvements in agriculture and industrial sectors and changes in dietary habits that would be necessary to match the four representative concentration pathways (RCPs) now being considered in the fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Stabilizing atmospheric N2O by 2050, consistent with the most aggressive of the RCP mitigation scenarios, would require about 50% reductions in emission factors in all sectors and about a 50% reduction in mean per capita meat consumption in the developed world. Technologies exist to achieve such improved efficiencies, but overcoming social, economic, and political impediments for their adoption and for changes in dietary habits will present large challenges.

  17. Scenario Based Approach for Multiple Source Tsunami Hazard Assessment for Sines, Portugal

    NASA Astrophysics Data System (ADS)

    Wronna, Martin; Omira, Rachid; Baptista, Maria Ana

    2015-04-01

    In this paper, we present a scenario-based approach for tsunami hazard assessment for the city and harbour of Sines, Portugal one the test-sites of project ASTARTE. Sines holds one of the most important deep-water ports which contains oil-bearing, petrochemical, liquid bulk, coal and container terminals. The port and its industrial infrastructures are facing the ocean to the southwest facing the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, a total of five scenarios were selected to assess tsunami impact at the test site. These scenarios correspond to the worst-case credible scenario approach based upon the largest events of the historical and paleo tsunami catalogues. The tsunami simulations from the source area towards the coast is carried out using NSWING a Non-linear Shallow Water Model With Nested Grids. The code solves the non-linear shallow water equations using the discretization and explicit leap-frog finite difference scheme, in a Cartesian or Spherical frame. The initial sea surface displacement is assumed to be equal to the sea bottom deformation that is computed by Okada equations. Both uniform and non-uniform slip conditions are used. The presented results correspond to the models using non-uniform slip conditions. In this study, the static effect of tides is analysed for three different tidal stages MLLW (mean lower low water) MSL (mean sea level) and MHHW (mean higher high water). For each scenario, inundation is described by maximum values of wave height, flow depth, drawdown, run-up and inundation distance. Synthetic waveforms are computed at virtual tide gages at specific locations outside and inside the harbour. The final results consist of Aggregate Scenario Maps presented for the different inundation parameters. This work is funded by ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839

  18. Potential biomass and logs from fire-hazard-reduction treatments in Southwest Oregon and Northern California

    Treesearch

    R. James Barbour; Jeremy Fried; Peter J. Daugherty; Glenn Christensen; Roger. Fight

    2008-01-01

    The FIA BioSum model was used to simulate three fire-hazard-reduction policies in an area comprising northern California, southwestern Oregon, and the east slopes of the Cascade Mountains in Oregon. The policy scenarios, all subject to a stand-scale fire-hazard-reduction effectiveness constraint, included maximize torching index improvement (Max TI), maximize net...

  19. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, Rebecca Ann; Langholtz, Matthew H.; Johnson, Kristen

    With the goal of understanding environmental effects of a growing bioeconomy, the U.S. Department of Energy (DOE), national laboratories, and U.S. Forest Service research laboratories, together with academic and industry collaborators, undertook a study to estimate environmental effects of potential biomass production scenarios in the United States, with an emphasis on agricultural and forest biomass. Potential effects investigated include changes in soil organic carbon (SOC), greenhouse gas (GHG) emissions, water quality and quantity, air emissions, and biodiversity. Effects of altered land-management regimes were analyzed based on select county-level biomass-production scenarios for 2017 and 2040 taken from the 2016 Billion-Ton Report:more » Advancing Domestic Resources for a Thriving Bioeconomy (BT16), volume 1, which assumes that the land bases for agricultural and forestry would not change over time. The scenarios reflect constraints on biomass supply (e.g., excluded areas; implementation of management practices; and consideration of food, feed, forage, and fiber demands and exports) that intend to address sustainability concerns. Nonetheless, both beneficial and adverse environmental effects might be expected. To characterize these potential effects, this research sought to estimate where and under what modeled scenarios or conditions positive and negative environmental effects could occur nationwide. The report also includes a discussion of land-use change (LUC) (i.e., land management change) assumptions associated with the scenario transitions (but not including analysis of indirect LUC [ILUC]), analyses of climate sensitivity of feedstock productivity under a set of potential scenarios, and a qualitative environmental effects analysis of algae production under carbon dioxide (CO 2) co-location scenarios. Because BT16 biomass supplies are simulated independent of a defined end use, most analyses do not include benefits from displacing fossil fuels or

  20. Project identification for methane reduction options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of themore » projects, and additional gains which come from the projects.« less