Sample records for gas results showed

  1. Test 6, Test 7, and Gas Standard Analysis Results

    NASA Technical Reports Server (NTRS)

    Perez, Horacio, III

    2007-01-01

    This viewgraph presentation shows results of analyses on odor, toxic off gassing and gas standards. The topics include: 1) Statistical Analysis Definitions; 2) Odor Analysis Results NASA Standard 6001 Test 6; 3) Toxic Off gassing Analysis Results NASA Standard 6001 Test 7; and 4) Gas Standard Results NASA Standard 6001 Test 7;

  2. Visual detection of gas shows from coal core and cuttings using liquid leak detector

    USGS Publications Warehouse

    Barker, C.E.

    2006-01-01

    Portions of core or cutting samples that have active gas shows can be identified by applying a liquid leak detector to the core surface. Although these gas shows can be caused by manmade changes to the coals' internal structure and surface of the core during the coring process, in many cases, the marked gas shows overlie changes in maceral composition, subtle fractures or coal, coal structure and so forth that seemingly are places where natural primary permeability is higher and gas shows would be favored. Given the limited time available for core description before a core is closed in a canister, using the liquid leak detector method to mark gas shows enhances core description by providing a photographic record of places of apparently increased gas flow likely related to enhanced coal permeability that cannot be easily detected otherwise.

  3. 77. Detail view looking east showing Dovel horizontal gas washer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. Detail view looking east showing Dovel horizontal gas washer in foreground, Rust Co. boilers and blowing engine house at left, and Babcock & Wilcox type boilers at right. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  4. New Images Show Unprecedented Detail of Neighbor Galaxy's Gas

    NASA Astrophysics Data System (ADS)

    2001-01-01

    Using radio telescopes in the United States and Europe, astronomers have made the most detailed images ever of Hydrogen gas in a spiral galaxy other than the Milky Way. The scientists used the National Science Foundation's Very Large Array (VLA) radio telescope in New Mexico and the Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands to produce an image of the galaxy M33, known to amateur astronomers as the Pinwheel Galaxy. Doppler-Shift Image of M33's Gas "An image with the level of detail we have achieved opens the door to learning fundamental new facts about the relationship between massive stars and the galaxy's complicated gaseous environment. This, in turn, will help us better understand how galaxies age," said David Thilker, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Thilker worked with Robert Braun of the Netherlands Foundation for Research in Astronomy and Rene Walterbos of New Mexico State University in Las Cruces. The scientists reported their findings today at the American Astronomical Society's meeting in San Diego, CA. The VLA and WSRT received radio waves at a wavelength of 21 centimeters that are naturally emitted by Hydrogen atoms. Using this data, the astronomers produced images showing the distribution of neutral atomic Hydrogen in M33. In addition, because the atoms emit at a very specific wavelength, the scientists could detect the galaxy's rotation by tuning the telescopes' radio receivers to receive radio waves whose length has been changed by Doppler shifting. The new images show details of the galaxy smaller than 130 light-years. "With more computer processing, we will be able to see features as small as 65 light-years," Thilker said. "This, we believe, will allow us to see 'bubbles' in the galaxy's gas that have been inflated as the result of one or more supernova explosions," Thilker added. At a distance from Earth of about 2.7 million light-years, M33 is a member of the Local Group of galaxies, which

  5. Preliminary Results of Solid Gas Generator Micropropulsion

    NASA Technical Reports Server (NTRS)

    deGroot, Wilhelmus A.; Reed, Brian D.; Brenizer, Marshall

    1999-01-01

    A decomposing solid thruster concept, which creates a more benign thermal and chemical environment than solid propellant combustion, while maintaining, performance similar to solid combustion, is described. A Micro-Electro-Mechanical (MEMS) thruster concept with diode laser and fiber-optic initiation is proposed, and thruster components fabricated with MEMS technology are presented. A high nitrogen content solid gas generator compound is evaluated and tested in a conventional axisymmetric thrust chamber with nozzle throat area ratio of 100. Results show incomplete decomposition of this compound in both low pressure (1 kPa) and high pressure (1 MPa) environments, with decomposition of up to 80% of the original mass. Chamber pressures of 1.1 MPa were obtained, with maximum calculated thrust of approximately 2.7 N. Resistively heated wires and resistively heated walls were used to initiate decomposition. Initiation tests using available lasers were unsuccessful, but infrared spectra of the compound show that the laser initiation tests used inappropriate wavelengths for optimal propellant absorption. Optimal wavelengths for laser ignition were identified. Data presented are from tests currently in progress. Alternative solid gas generator compounds are being evaluated for future tests.

  6. IET exhaust gas duct, system layout, plan, and section. shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET exhaust gas duct, system layout, plan, and section. shows mounting brackets, concrete braces, divided portion of duct, other details. Ralph M. Parsons 902-5-ANP-712-S 429. Date: May 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0712-60-693-106980 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. Test results for fuel cell operation on anaerobic digester gas

    NASA Astrophysics Data System (ADS)

    Spiegel, R. J.; Preston, J. L.

    EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (<0.5%). Additionally, ADG contains trace amounts of fuel cell catalyst contaminants consisting of sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.

  8. Enhanced atomic gas fractions in recently merged galaxies: quenching is not a result of post-merger gas exhaustion.

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Catinella, Barbara; Cortese, Luca

    2018-05-01

    We present a detailed assessment of the global atomic hydrogen gas fraction (fgas=log[MHI/M⋆]) in a sample of post-merger galaxies identified in the Sloan Digital Sky Survey (SDSS). Archival H I measurements of 47 targets are combined with new Arecibo observations of a further 51 galaxies. The stellar mass range of the post-merger sample, our observing strategy, detection thresholds and data analysis procedures replicate those of the extended GALEX Arecibo SDSS Survey (xGASS) which can therefore be used as a control sample. Our principal results are: 1) The post-merger sample shows a ˜ 50 per cent higher H I detection fraction compared with xGASS; 2) Accounting for non-detections, the median atomic gas fraction of the post-merger sample is larger than the control sample by 0.3 - 0.6 dex; 3) The median atomic gas fraction enhancement (Δfgas), computed on a galaxy-by-galaxy basis at fixed stellar mass, is 0.51 dex. Our results demonstrate that recently merged galaxies are typically a factor of ˜ 3 more H I rich than control galaxies of the same M⋆. If the control sample is additionally matched in star formation rate, the median H I excess is reduced to Δfgas = 0.2 dex, showing that the enhanced atomic gas fractions in post-mergers are not purely a reflection of changes in star formation activity. We conclude that merger-induced starbursts and outflows do not lead to prompt quenching via exhaustion/expulsion of the galactic gas reservoirs. Instead, we propose that if star formation ceases after a merger, it is more likely due to an enhanced turbulence which renders the galaxy unable to effectively form new stars.

  9. LaRC results on nuclear pumped noble gas lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1979-01-01

    The recent experiment and theoretical results obtained for noble gas nuclear laser systems are presented. It is shown that the noble gas lasers are among the easiest systems to pump by nuclear excitation and as a result, all of the noble gases except He have lased under nuclear excitation. The noble gas systems are not ideal for high-power applications but they do give valuable insight into the operation and pumping mechanisms associated with nuclear lasers. At present, the Ar-Xe system is the best noble gas candidate for (U-235)F6 pumping. It appears that the quenching of Ar-Xe lasing is a result of the fluorine and not the uranium or fission fragments themselves. Thus, to achieve lasing with UF6, a fluorine compatible system must be found.

  10. Element variations in rhyolitic magma resulting from gas transport

    NASA Astrophysics Data System (ADS)

    Berlo, K.; Tuffen, H.; Smith, V. C.; Castro, J. M.; Pyle, D. M.; Mather, T. A.; Geraki, K.

    2013-11-01

    Tuffisite veins are glass-filled fractures formed when magma fragments during degassing within the conduit. These veins form transient channels through which exsolved gases can escape from magma. The purpose of this study is to determine the extent to which chemical heterogeneity within the melt results from gas transport, and assess how this can be used to study magma degassing. Two tuffisite veins from contrasting rhyolitic eruptions at Torfajökull (Iceland) and Chaitén (Chile) were studied in detail. The tuffisite vein from Torfajökull is from a shallow dissected conduit (∼70 ka) that fed a degassed lava flow, while the sample from Chaitén was a bomb ejected during the waning phases of Plinian activity in May 2008. The results of detailed in situ chemical analyses (synchrotron XRF, FTIR, LA-ICP-MS) show that in both veins larger vesiculated fragments are enriched in volatile elements (Torfajökull: H, Li, Cl; Chaitén: Li, Cl, Cu, Zn, As, Sn, Sb) compared to the host, while the surrounding smaller particles are depleted in the Torfajökull vein (Li, Cl, Zn, Br, Rb, Pb), but enriched in the Chaitén vein (K, Cu, Zn, As, Mo, Sb, Pb). The lifespans of both veins and the fluxes of gas and particles through them can be estimated using diffusion profiles and enrichment factors. The Torfajökull vein had a longer lifespan (∼a day) and low particle velocities (∼cm/s), while the Chaitén vein was shorter lived (<1 h) with a high gas velocity (∼m/s). These differences are consistent with the contrasting eruption mechanisms (effusive vs. explosive). The amount of magma that degassed through the Chaitén vein is more than ten times the volume of the vein itself, requiring the vein to tap into pre-exsolved gas pockets. This study highlights that tuffisite veins are highly efficient gas pathways and thereby impart chemical diversity in volatile elements on the melt.

  11. Why do high-redshift galaxies show diverse gas-phase metallicity gradients?

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan

    2017-04-01

    Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments project, which include physically motivated models of the multiphase interstellar medium, star formation and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disc, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disc, drive strong outflows and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.

  12. Laser Spectroscopy Multi-Gas Monitor: Results of Technology Demonstration on ISS

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2015-01-01

    Tunable diode laser spectroscopy (TDLS) is an up and coming trace and major gas monitoring technology with unmatched selectivity, range and stability. The technology demonstration of the 4 gas Multi-Gas Monitor (MGM), reported at the 2014 ICES conference, operated continuously on the International Space Station (ISS) for nearly a year. The MGM is designed to measure oxygen, carbon dioxide, ammonia and water vapor in ambient cabin air in a low power, relatively compact device. While on board, the MGM experienced a number of challenges, unplanned and planned, including a test of the ammonia channel using a commercial medical ammonia inhalant. Data from the unit was downlinked once per week and compared with other analytical resources on board, notably the Major Constituent Analyzer (MCA), a magnetic sector mass spectrometer. MGM spent the majority of the time installed in the Nanoracks Frame 2 payload facility in front breathing mode (sampling the ambient environment of the Japanese Experiment Module), but was also used to analyze recirculated rack air. The capability of the MGM to be operated in portable mode (via internal rechargeable lithium ion polymer batteries or by plugging into any Express Rack 28VDC connector) was a part of the usability demonstration. Results to date show unprecedented stability and accuracy of the MGM vs. the MCA for oxygen and carbon dioxide. The ammonia challenge (approx. 75 ppm) was successful as well, showing very rapid response time in both directions. Work on an expansion of capability in a next generation MGM has just begun. Combustion products and hydrazine are being added to the measurable target analytes. An 8 to 10 gas monitor (aka Gas Tricorder 1.0) is envisioned for use on ISS, Orion and Exploration missions.

  13. TEST RESULTS FOR FUEL-CELL OPERATION ON LANDFILL GAS

    EPA Science Inventory

    Test results from a demonstration of fuel-cell (FC) energy recovery and control of landfill gas emissions are presented. The project addressed two major issues: (i) the design, construction, and testing of a landfill-gas cleanup system; and (ii) a field test of a commercial phos...

  14. Evolution of gas saturation and relative permeability during gas production from hydrate-bearing sediments: Gas invasion vs. gas nucleation

    NASA Astrophysics Data System (ADS)

    Jang, Jaewon; Santamarina, J. Carlos

    2014-01-01

    Capillarity and both gas and water permeabilities change as a function of gas saturation. Typical trends established in the discipline of unsaturated soil behavior are used when simulating gas production from hydrate-bearing sediments. However, the evolution of gas saturation and water drainage in gas invasion (i.e., classical soil behavior) and gas nucleation (i.e., gas production) is inherently different: micromodel experimental results show that gas invasion forms a continuous flow path while gas nucleation forms isolated gas clusters. Complementary simulations conducted using tube networks explore the implications of the two different desaturation processes. In spite of their distinct morphological differences in fluid displacement, numerical results show that the computed capillarity-saturation curves are very similar in gas invasion and nucleation (the gas-water interface confronts similar pore throat size distribution in both cases); the relative water permeability trends are similar (the mean free path for water flow is not affected by the topology of the gas phase); and the relative gas permeability is slightly lower in nucleation (delayed percolation of initially isolated gas-filled pores that do not contribute to gas conductivity). Models developed for unsaturated sediments can be used for reservoir simulation in the context of gas production from hydrate-bearing sediments, with minor adjustments to accommodate a lower gas invasion pressure Po and a higher gas percolation threshold.

  15. Measurements of pulmonary gas exchange efficiency using expired gas and oximetry: results in normal subjects.

    PubMed

    West, John B; Wang, Daniel L; Prisk, G Kim

    2018-04-01

    We are developing a novel, noninvasive method for measuring the efficiency of pulmonary gas exchange in patients with lung disease. The patient wears an oximeter, and we measure the partial pressures of oxygen and carbon dioxide in inspired and expired gas using miniature analyzers. The arterial Po 2 is then calculated from the oximeter reading and the oxygen dissociation curve, using the end-tidal Pco 2 to allow for the Bohr effect. This calculation is only accurate when the oxygen saturation is <94%, and therefore, these normal subjects breathed 12.5% oxygen. When the procedure is used in patients with hypoxemia, they breathe air. The Po 2 difference between the end-tidal and arterial values is called the "oxygen deficit." Preliminary data show that this index increases substantially in patients with lung disease. Here we report measurements of the oxygen deficit in 20 young normal subjects (age 19 to 31 yr) and 11 older normal subjects (47 to 88 yr). The mean value of the oxygen deficit in the young subjects was 2.02 ± 3.56 mmHg (means ± SD). This mean is remarkably small. The corresponding value in the older group was 7.53 ± 5.16 mmHg (means ± SD). The results are consistent with the age-related trend of the traditional alveolar-arterial difference, which is calculated from the calculated ideal alveolar Po 2 minus the measured arterial Po 2 . That measurement requires an arterial blood sample. The present study suggests that this noninvasive procedure will be valuable in assessing the degree of impaired gas exchange in patients with lung disease.

  16. Maps showing geology, oil and gas fields, and geological provinces of South America

    USGS Publications Warehouse

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  17. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas

    PubMed Central

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J.; Lang, Walter

    2017-01-01

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system. PMID:28991173

  18. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas.

    PubMed

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J; Lang, Walter

    2017-10-07

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system.

  19. Stability investigations of relaxing molecular gas flows. Results and perspectives

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yurii N.; Ershov, Igor V.

    2017-10-01

    This article presents results of systematic investigations of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The effect can be a new way for control stability and laminar turbulent transition in aerodynamic flows. The consideration of suppression of inviscid acoustic waves in 2D shear flows is presented. Nonlinear evolution of large-scale vortices and Kelvin — Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both classical linear and nonlinear energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of this article is to show the new dissipative effect, which can be used for flow control and laminarization.

  20. Btu accounting: Showing results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, K.E.

    1994-10-01

    In the preceding article in this series last month, the author showed how to calculate the energy consumed to make a pound of product. To realize a payoff, however, the results must be presented in graphs or tables that clearly display what has happened. They must call attention to plant performance and ultimately lead to more efficient use of energy. Energy-consumption reporting is particularly valuable when viewed over a period of time. The author recommend compiling data annually and maintaining a ten-year performance history. Four cases are considered: individual plant performance; site performance for sites having more than one plant;more » company performance, for companies having more than one site; and performance based on product, for identical or similar products made at different plants or sites. Of these, individual plant performance is inherently the most useful. It also serves as the best basis for site, company and product performance reports. A key element in energy accounting is the relating of all energy consumption to a common basis. As developed last month in Part 1 in this series, the author chose Btu[sub meth] (i.e., Btu of methane equivalent, expressed as its higher heating value) for this purpose. It represents the amount of methane that would be needed to replace (in the case of fuels) or generate (in the case of steam and power) the energy being used.« less

  1. Test results of low NO(x) catalytic combustors for gas turbines

    NASA Astrophysics Data System (ADS)

    Ozawa, Y.; Hirano, J.; Sato, M.; Saiga, M.; Watanabe, S.

    1994-07-01

    Catalytic combustion is an ultralow NO(x) combustion method, so it is expected that this method will be applied to a gas turbine combustor. However, it is difficult to develop a catalytic combustor because catalytic reliability at high temperature is still insufficient. To overcome this difficulty, we designed a catalytic combust gas at a combustion temperature of 1300 C while keeping the catalytic temperature below 1000 C. After performing preliminary tests using LPG, we designed two types of combustor for natural gas with a capacity equivalent to one combustor used in a 20 MW class multican-type gas turbine. Combustion tests were conducted at atmospheric pressure using natural gas. As a result, it was confirmed that a combustor in which catalytic combustor segments were arranged alternately with premixing nozzles could achieve low NO(x) and high combustion efficiency in the range from 1000 C to 1300 C of the combustor exit gas temperature.

  2. GAS in Protoplanetary Systems (GASPS). I. First results

    NASA Astrophysics Data System (ADS)

    Mathews, G. S.; Dent, W. R. F.; Williams, J. P.; Howard, C. D.; Meeus, G.; Riaz, B.; Roberge, A.; Sandell, G.; Vandenbussche, B.; Duchêne, G.; Kamp, I.; Ménard, F.; Montesinos, B.; Pinte, C.; Thi, W. F.; Woitke, P.; Alacid, J. M.; Andrews, S. M.; Ardila, D. R.; Aresu, G.; Augereau, J. C.; Barrado, D.; Brittain, S.; Ciardi, D. R.; Danchi, W.; Eiroa, C.; Fedele, D.; Grady, C. A.; de Gregorio-Monsalvo, I.; Heras, A.; Huelamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mendigutía, I.; Mora, A.; Morales-Calderon, M.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Podio, L.; Poelman, D. R.; Ramsay, S.; Rice, K.; Riviere-Marichalar, P.; Solano, E.; Tilling, I.; Walker, H.; White, G. J.; Wright, G.

    2010-07-01

    Context. Circumstellar discs are ubiquitous around young stars, but rapidly dissipate their gas and dust on timescales of a few Myr. The Herschel Space Observatory allows for the study of the warm disc atmosphere, using far-infrared spectroscopy to measure gas content and excitation conditions, and far-IR photometry to constrain the dust distribution. Aims: We aim to detect and characterize the gas content of circumstellar discs in four targets as part of the Herschel science demonstration phase. Methods: We carried out sensitive medium resolution spectroscopy and high sensitivity photometry at λ ~ 60-190 μm using the Photodetector Array Camera and Spectrometer instrument on the Herschel Space Observatory. Results: We detect [OI] 63 μm emission from the young stars HD 169142, TW Hydrae, and RECX 15, but not HD 181327. No other lines, including [CII] 158 and [OI] 145, are significantly detected. All four stars are detected in photometry at 70 and 160 μm. Extensive models are presented in associated papers. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Controlling mechanism and resulting spray characteristics of injection of fuel containing dissolved gas

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Shao, Yiming; Shiga, Seiichi; Nakamura, Hisao

    1994-09-01

    This paper presents a recent advance in the study of injection of fuel containing dissolved gas (IFCDG). Using diesel fuel containing dissolved CO2, experiments were performed under atmospheric conditions on a diesel hole-type nozzle and simple nozzles. The effects of gas concentration in the fuel, injection pressure and the nozzle L/D ratio were examined. In order to reveal the controlling mechanism of IFCDG, the orifice flow pattern, pressure characteristics and their effects were also investigated. The result shows that IFCDG can produce a parabolic-shaped spray pattern with good atomization, which suggests the existence of a new atomization mechanism. In terms of atomization, the beneficial effect of the IFCDG is obtained at the dissolved gas concentration above the transition and in the region of larger nozzle L/D ratio. However, under unfavorable conditions, IFCDG will lead to deterioration of atomization with coarse fuel droplets. It is found that the big difference of the orifice pressure characteristics caused by the variation of the nozzle L/D ratio has a dominant influence on the separation of the dissolved gas from the fuel inside the orifice and is verified to account for a dramatic change in the spray pattern and determine the effect of IFCDG. It is considered that the concept of IFCDG could be attractive in producing more efficient, clean engine and find use in a wide range of application.

  4. ALMA Shows that Gas Reservoirs of Star-forming Disks over the Past 3 Billion Years Are Not Predominantly Molecular

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortese, Luca; Catinella, Barbara; Janowiecki, Steven, E-mail: luca.cortese@uwa.edu.au

    Cold hydrogen gas is the raw fuel for star formation in galaxies, and its partition into atomic and molecular phases is a key quantity for galaxy evolution. In this Letter, we combine Atacama Large Millimeter/submillimeter Array and Arecibo single-dish observations to estimate the molecular-to-atomic hydrogen mass ratio for massive star-forming galaxies at z ∼ 0.2 extracted from the HIGHz survey, i.e., some of the most massive gas-rich systems currently known. We show that the balance between atomic and molecular hydrogen in these galaxies is similar to that of local main-sequence disks, implying that atomic hydrogen has been dominating the coldmore » gas mass budget of star-forming galaxies for at least the past three billion years. In addition, despite harboring gas reservoirs that are more typical of objects at the cosmic noon, HIGHz galaxies host regular rotating disks with low gas velocity dispersions suggesting that high total gas fractions do not necessarily drive high turbulence in the interstellar medium.« less

  5. Maps showing gas-hydrate distribution off the east coast of the United States

    USGS Publications Warehouse

    Dillon, William P.; Fehlhaber, Kristen L.; Coleman, Dwight F.; Lee, Myung W.; Hutchinson, Deborah R.

    1995-01-01

    These maps present the inferred distribution of natural-gas hydrate within the sediments of the eastern United States continental margin (Exclusive Economic Zone) in the offshore region from Georgia to New Jersey (fig. 1). The maps, which were created on the basis of seismic interpretations, represent the first attempt to map volume estimates for gas hydrate. Gas hydrate forms a large reservoir for methane in oceanic sediments. Therefore it potentially may represent a future source of energy and it may influence climate change because methane is a very effective greenhouse gas. Hydrate breakdown probably is a controlling factor for sea-floor landslides, and its presence has significant effect on the acoustic velocity of sea-floor sediments.

  6. Neutron detection with noble gas scintillation: a review of recent results

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Coplan, Michael; Miller, Eric C.; Thompson, Alan K.; Kowler, Alex; Vest, Rob; Yue, Andrew; Koeth, Tim; Al-Sheikhly, Mohammad; Clark, Charles

    2015-08-01

    Thermal neutron detection is of vital importance to many disciplines, including neutron scattering, workplace monitoring, and homeland protection. We survey recent results from our collaboration which couple low-pressure noble gas scintillation with novel approaches to neutron absorbing materials and geometries to achieve potentially advantageous detector concepts. Noble gas scintillators were used for neutron detection as early as the late 1950's. Modern use of noble gas scintillation includes liquid and solid forms of argon and xenon in the dark matter and neutron physics experiments and commercially available high pressure applications have achieved high resolution gamma ray spectroscopy. Little attention has been paid to the overlap between low pressure noble gas scintillation and thermal neutron detection, for which there are many potential benefits.

  7. First results of ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong

    2014-11-01

    The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.

  8. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring.

    PubMed

    Rahimpour, Mohammad Reaza; Jokar, Seyyed Mohammad

    2012-03-30

    A suggested method for controlling the level of hazardous materials in the atmosphere is prevention of combustion in flare. In this work, three methods are proposed to recover flare gas instead of conventional gas-burning in flare at the Farashband gas refinery. These methods aim to minimize environmental and economical disadvantages of burning flare gas. The proposed methods are: (1) gas to liquid (GTL) production, (2) electricity generation with a gas turbine and, (3) compression and injection into the refinery pipelines. To find the most suitable method, the refinery units that send gas to the flare as well as the required equipment for the three aforementioned methods are simulated. These simulations determine the amount of flare gas, the number of GTL barrels, the power generated by the gas turbine and the required compression horsepower. The results of simulation show that 563 barrels/day of valuable GTL products is produced by the first method. The second method provides 25 MW electricity and the third method provides a compressed natural gas with 129 bar pressure for injection to the refinery pipelines. In addition, the economics of flare gas recovery methods are studied and compared. The results show that for the 4.176MMSCFD of gas flared from the Farashband gas refinery, the electricity production gives the highest rate of return (ROR), the lowest payback period, the highest annual profit and mild capital investment. Therefore, the electricity production is the superior method economically. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Huygens Gas Chromatograph Mass Spectrometer Results from Titan

    NASA Technical Reports Server (NTRS)

    Niemann, Hasso

    2008-01-01

    The Huygens Probe executed a successful entry, descent and impact on the Saturnian moon of Titan on January 14, 2005. Gas Chromatograph Mass Spectrometer (GCMS) instrument conducted isotopic and compositional measurements throughout the two and one half hour descent from 146 km altitude, and on the surface for 69 minutes until loss of signal from the orbiting Cassini spacecraft. The GCMS incorporated a quadrupole mass filter with a secondary electron multiplier detection system. The gas sampling system provided continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the surface after impact. Data products from the GCMS included altitude profiles of the major atmospheric constituents dinitrogen (N2) and methane (CH4), isotope ratios of N-14/N-15, C-12/C-13, and D/H, mole fractions of radiogenic argon (Ar-40)and primordial argon Ar-36), and upper limits on the mole fractions of neon, krypton and xenon, which were found to be below the detection limit of the instrument or absent. Surface measurements confirmed the presence of ethane (C2H6) and cyanogen (C2N2). Later data products include the instrument response to surface outgassing of C2N2, C2H6, acetylene (C2H2),and carbon dioxide (CO2). More recent results include the detection of benzene (C6H6) and height profiles of molecular hydrogen (H2). Numerous other trace species evaporating from the surface were also identified using the GCMS data.

  10. NOx results from two combustors tested on medium BTU coal gas

    NASA Technical Reports Server (NTRS)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  11. Seismo-Geochemical Variations in SW Taiwan: Multi-Parameter Automatic Gas Monitoring Results

    NASA Astrophysics Data System (ADS)

    Yang, T. F.; Fu, C.-C.; Walia, V.; Chen, C.-H.; Chyi, L. L.; Liu, T.-K.; Song, S.-R.; Lee, M.; Lin, C.-W.; Lin, C.-C.

    2006-04-01

    Gas variations of many mud volcanoes and hot springs distributed along the tectonic sutures in southwestern Taiwan are considered to be sensitive to the earthquake activity. Therefore, a multi-parameter automatic gas station was built on the bank of one of the largest mud-pools at an active fault zone of southwestern Taiwan, for continuous monitoring of CO2, CH4, N2 and H2O, the major constituents of its bubbling gases. During the year round monitoring from October 2001 to October 2002, the gas composition, especially, CH4 and CO2, of the mud pool showed significant variations. Taking the CO2/CH4 ratio as the main indicator, anomalous variations can be recognized from a few days to a few weeks before earthquakes and correlated well with those with a local magnitude >4.0 and local intensities >2. It is concluded that the gas composition in the area is sensitive to the local crustal stress/strain and is worthy to conduct real-time monitoring for the seismo-geochemical precursors.

  12. Why different gas flux velocity parameterizations result in so similar flux results in the North Atlantic?

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; Wróbel, Iwona

    2016-04-01

    The North Atlantic is a crucial region for both ocean circulation and the carbon cycle. Most of ocean deep waters are produced in the basin making it a large CO2 sink. The region, close to the major oceanographic centres has been well covered with cruises. This is why we have performed a study of net CO2 flux dependence upon the choice of gas transfer velocity k parameterization for this very region: the North Atlantic including European Arctic Seas. The study has been a part of a ESA funded OceanFlux GHG Evolution project and, at the same time, a PhD thesis (of I.W) funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science). Early results have been presented last year at EGU 2015 as a PICO presentation EGU2015-11206-1. We have used FluxEngine, a tool created within an earlier ESA funded project (OceanFlux Greenhouse Gases) to calculate the North Atlantic and global fluxes with different gas transfer velocity formulas. During the processing of the data, we have noticed that the North Atlantic results for different k formulas are more similar (in the sense of relative error) that global ones. This was true both for parameterizations using the same power of wind speed and when comparing wind squared and wind cubed parameterizations. This result was interesting because North Atlantic winds are stronger than the global average ones. Was the flux result similarity caused by the fact that the parameterizations were tuned to the North Atlantic area where many of the early cruises measuring CO2 fugacities were performed? A closer look at the parameterizations and their history showed that not all of them were based on North Atlantic data. Some of them were tuned to the South Ocean with even stronger winds while some were based on global budgets of 14C. However we have found two reasons, not reported before in the literature, for North Atlantic fluxes being more similar than global ones for different gas transfer velocity parametrizations

  13. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003more » and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.« less

  14. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  15. Gas potential of the Rome Trough in Kentucky: Results of recent Cambrian exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, D.C.; Drahovzal, J.A.

    1996-09-01

    A recent gas discovery in the Rome Trough suggests the need to re-evaluate the deep Cambrian potential of eastern Kentucky. A new phase of Cambrian exploration began in mid-1994 with a new pool discovery by the Carson Associates No. 1 Kazee well in Elliott County, Ky. This well blew out and initially flowed 11 MMcfd of gas from the upper Conasauga Group/Rome Formation at 6,258 to 6,270 feet. After this discovery, a second exploratory well (the Blue Ridge No. 1Greene) was drilled on a separate structure in Elliott County in late 1995. The Blue Ridge well was temporarily abandoned, butmore » had shows of gas and condensate. In early 1996, Carson Associates offset their initial discovery well with the No. 33 Lawson Heirs well. This activity follows a frustrating exploration history in the Rome Trough that is marked by numerous gas and oil shows, but rare commercial production. Only three single-well pools have produced commercial gas from the trough, including the recent Kazee well. Stratigraphic units below the Cambrian-Ordovician Knox Group in the Rome Trough are dramatically thicker than their equivalents on the shelf to the north. The interval in the trough is thought to include rocks as old as Early Cambrian, consisting of a basal sandstone, equivalents of the Shady/Tomstown Dolomite, the Rome Formation, and the Conasauga Formation. Sandstones and fractured shales have been responsible for most of the production to date, but dolostone intervals may also have potential. Limited seismic data indicate possible fan-delta and basin-floor fan deposits that may have reservoir potential.« less

  16. Point-of-care testing of electrolytes and calcium using blood gas analysers: it is time we trusted the results.

    PubMed

    Mirzazadeh, Mehdi; Morovat, Alireza; James, Tim; Smith, Ian; Kirby, Justin; Shine, Brian

    2016-03-01

    Point-of-care testing allows rapid analysis of samples to facilitate prompt clinical decisions. Electrolyte and calcium abnormalities are common in acutely ill patients and can be associated with life-threatening consequences. There is uncertainty whether clinical decisions can be based on the results obtained from blood gas analysers or if laboratory results should be awaited. To assess the agreement between sodium, potassium and calcium results from blood gas and laboratory mainstream analysers in a tertiary centre, with a network consisting of one referral and two peripheral hospitals, consisting of three networked clinical biochemistry laboratories. Using the laboratory information management system database and over 11 000 paired samples in three hospital sites, the results of sodium, potassium and ionised calcium on blood gas analysers were studied over a 5-year period and compared with the corresponding laboratory results from the same patients booked in the laboratory within 1 h. The Pearson's linear correlation coefficient between laboratory and blood gas results for sodium, potassium and calcium were 0.92, 0.84 and 0.78, respectively. Deming regression analysis showed a slope of 1.04 and an intercept of -5.7 for sodium, slope of 0.93 and an intercept of 0.22 for potassium and a slope of 1.23 with an intercept of -0.55 for calcium. With some strict statistical assumptions, percentages of results lying outside the least significant difference were 9%, 26.7% and 20.8% for sodium, potassium and calcium, respectively. Most clinicians wait for the laboratory confirmation of results generated by blood gas analysers. In a large retrospective study we have shown that there is sufficient agreement between the results obtained from the blood gas and laboratory analysers to enable prompt clinical decisions to be made. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  18. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)

    NASA Astrophysics Data System (ADS)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.

    2017-10-01

    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  19. Experimental Results from a Laser-Triggered, Gas-Insulated, Spark-Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.

    2017-10-01

    We are performing experiments on a laser-triggered spark-gap switch with the goal of studying the transition from photoionization to current conduction. The discharge of current through the switch is triggered by a focused 532-nm wavelength beam from a Q-switched Nd:YAG laser with a pulse duration of about 10 ns. The trigger pulse is delivered along the longitudinal axis of the switch, and the focal spot can be placed anywhere along the axis of the 5-mm, gas-insulated gap between the switch electrodes. The switch test bed is designed to support a variety of working gases (e.g., Ar, N2) over a range of pressures. Electrical and optical diagnostics are used to measure switch performance as a function of parameters such as charge voltage, trigger pulse energy, insulating gas pressure, and gas species. A Mach-Zehnder imaging interferometer system operating at 532 nm is being used to obtain interferograms of the discharge plasma in the switch. We are also developing a 1064-nm interferometry diagnostic in an attempt to measure plasma free electron and neutral gas density profiles simultaneously within the switch gap. Results from our most recent experiments will be presented.

  20. Greenhouse gas measurements from a UK network of tall towers: technical description and first results

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran M.; Grant, Aoife; O'Doherty, Simon; Young, Dickon; Manning, Alistair J.; Stavert, Ann R.; Spain, T. Gerard; Salameh, Peter K.; Harth, Christina M.; Simmonds, Peter G.; Sturges, William T.; Oram, David E.; Derwent, Richard G.

    2018-03-01

    operators when instrumental parameters are not within defined set ranges. Automated instrument shutdowns occur for critical errors such as carrier gas flow rate deviations. Results from the network give good spatial and temporal coverage of atmospheric mixing ratios within the UK since early 2012. Results also show that all measured GHGs are increasing in mole fraction over the selected reporting period and, except for SF6, exhibit a seasonal trend. CO2 and CH4 also show strong diurnal cycles, with night-time maxima and daytime minima in mole fractions.

  1. Gas, slumps and faulting in the Marmara Sea: new results from TAMAM high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Dondurur, D.; Seeber, L.; Steckler, M. S.; Sorlien, C. C.; Diebold, J. B.; Cifci, G.; Gurcay, S.; Okay, S.; Imren, C.; Kurt, H.; Timur, D.; Demirbag, E.

    2009-12-01

    wide range of sizes, forms, and ages. Possible slumps are observed in our data in the southern portions of the Tekirdag and Cinarcik basins, on both flanks of the Central High, and north of Kumburgaz Basin. Some are clearly non-tectonic, but others may be, and their significance is controversial. Preliminary results from our work suggest that shallow subsurface gas is particularly prevalent in sediments on the Central and Western Highs and in the North Imrali Basin. It occurs in gravitational structures as amplitude anomalies at the apices of waves or blocks. Furthermore, our initial results show abundant gas north of the Imrali Fault and along thrusts associated with the Central and Western highs. Gas is also observed near the NAF. However, gas also occurs away from faults and possible slumps. Our new constraints on the spatial distribution of gas, slumps and shallow faulting from MCS and Chirp data will be used to test competing models for the relationship between these features.

  2. Critical behavior of a relativistic Bose gas.

    PubMed

    Pandita, P N

    2014-03-01

    We show that the thermodynamic behavior of relativistic ideal Bose gas, recently studied numerically by Grether et al., can be obtained analytically. Using the analytical results, we obtain the critical behavior of the relativistic Bose gas exactly for all the regimes. We show that these analytical results reduce to those of Grether et al. in different regimes of the Bose gas. Furthermore, we also obtain an analytically closed-form expression for the energy density for the Bose gas that is valid in all regimes.

  3. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in whichmore » hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.« less

  4. Air-gas exchange reevaluated: clinically important results of a computer simulation.

    PubMed

    Shunmugam, Manoharan; Shunmugam, Sudhakaran; Williamson, Tom H; Laidlaw, D Alistair

    2011-10-21

    The primary aim of this study was to evaluate the efficiency of air-gas exchange techniques and the factors that influence the final concentration of an intraocular gas tamponade. Parameters were varied to find the optimum method of performing an air-gas exchange in ideal circumstances. A computer model of the eye was designed using 3D software with fluid flow analysis capabilities. Factors such as angular distance between ports, gas infusion gauge, exhaust vent gauge and depth were varied in the model. Flow rate and axial length were also modulated to simulate faster injections and more myopic eyes, respectively. The flush volume of gas required to achieve a 97% intraocular gas fraction concentration were compared. Modulating individual factors did not reveal any clinically significant difference in the angular distance between ports, exhaust vent size, and depth or rate of gas injection. In combination, however, there was a 28% increase in air-gas exchange efficiency comparing the most efficient with the least efficient studied parameters in this model. The gas flush volume required to achieve a 97% gas fill also increased proportionately at a ratio of 5.5 to 6.2 times the volume of the eye. A 35-mL flush is adequate for eyes up to 25 mm in axial length; however, eyes longer than this would require a much greater flush volume, and surgeons should consider using two separate 50-mL gas syringes to ensure optimal gas concentration for eyes greater than 25 mm in axial length.

  5. Gas-cell atomic clocks for space: new results and alternative schemes

    NASA Astrophysics Data System (ADS)

    Affolderbach, C.; Breschi, E.; Schori, C.; Mileti, G.

    2017-11-01

    We present our development activities on compact Rubidium gas-cell atomic frequency standards, for use in space-borne and ground-based applications. We experimentally demonstrate a high-performance laser optically-pumped Rb clock for space applications such as telecommunications, science missions, and satellite navigation systems (e.g. GALILEO). Using a stabilised laser source and optimized gas cells, we reach clock stabilities as low as 1.5·10-12 τ-1/2 up to 103 s and 4·10-14 at 104 s. The results demonstrate the feasibility of a laser-pumped Rb clock reaching < 1·10-12 τ-1/2 in a compact device (<2 liters, 2 kg, 20 W), given optimization of the implemented techniques. A second activity concerns more radically miniaturized gas-cell clocks, aiming for low power consumption and a total volume around 1 cm3 , at the expense of relaxed frequency stability. Here miniaturized "chip-scale" vapour cells and use of coherent laser interrogation techniques are at the heart of the investigations.

  6. Quantum gas-liquid condensation in an attractive Bose gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, Shun-ichiro

    Gas-liquid condensation (GLC) in an attractive Bose gas is studied on the basis of statistical mechanics. Using some results in combinatorial mathematics, the following are derived. (1) With decreasing temperature, the Bose-statistical coherence grows in the many-body wave function, which gives rise to the divergence of the grand partition function prior to Bose-Einstein condensation. It is a quantum-mechanical analogue to the GLC in a classical gas (quantum GLC). (2) This GLC is triggered by the bosons with zero momentum. Compared with the classical GLC, an incomparably weaker attractive force creates it. For the system showing the quantum GLC, we discussmore » a cold helium 4 gas at sufficiently low pressure.« less

  7. Comparison of simulation and experimental results for a gas puff nozzle on Ambiorix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnier, J-N.; Chevalier, J-M.; Dubroca, B.

    One of source term of Z-Pinch experiments is the gas puff density profile. In order to characterize the gas jet, an experiment based on interferometry has been performed. The first study was a point measurement (a section density profile) which led us to develop a global and instantaneous interferometry imaging method. In order to optimise the nozzle, we simulated the experiment with a flow calculation code (ARES). In this paper, the experimental results are compared with simulations. The different gas properties (He, Ne, Ar) and the flow duration lead us to take care, on the one hand, of the gasmore » viscosity, and on the other, of modifying the code for an instationary flow.« less

  8. Correlation Between Geological Stuctures and Gas Hydrate amount Offshore the South Shetland Island — Preliminary Results

    NASA Astrophysics Data System (ADS)

    Loreto, M. F.; Tinivella, U.; Accaino, F.; Giustiniani, M.

    2010-05-01

    Sediments of the accretionary prism, present along the continental margin of the Peninsula Antarctica SW of Elephant Island, are filled by gas hydrates as evidenced by a strong BSR. A multidisciplinary geophysical dataset, represented by seismic data, multibeam, chirp profiles, CTD and core samples, was acquired during three oceanographic cruises. The estimation of gas hydrate and free gas concentrations is based on the P-wave velocity analysis. In order to extract a detailed and reliable velocity field, we have developed and optimized a procedure that includes the pre-stack depth migration to determine, iteratively and with a layer stripping approach method, the velocity field and the depth-migrated seismic section. The final velocity field is then translated in terms of gas hydrate and free gas amounts by using theoretical approaches. Several seismic sections have been processed in the investigated area. The final 2D velocity sections have been translated in gas-phase concentration sections, considering the gas distribution within sediments both uniformly and patchly distributed. The free gas layer is locally present and, consequently, the base of the free gas reflector was identified only in some lines or part of them. The hydrate layer shows important lateral variations of hydrate concentration in correspondence of geological features, such as faults and folds. The intense fluid migration along faults and different fluid accumulation in correspondence of geological structures can control the gas hydrate concentration and modify the geothermal field in the surrounding area.

  9. Maps showing geology, oil and gas fields and geological provinces of Africa

    USGS Publications Warehouse

    Persits, Feliks M.; Ahlbrandt, T.S.; Tuttle, Michele L.W.; Charpentier, R.R.; Brownfield, M.E.; Takahashi, Kenneth

    1997-01-01

    The CD-ROM was compiled according to the methodology developed by the U.S. Geological Survey's World Energy Project . The goal of the project was to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. A worldwide series of geologic maps, published on CD-ROMs, was released by the U.S. Geological Survey's World Energy Project during 1997 - 2000. Specific details of the data sources and map compilation are given in the metadata files on this CD-ROM. These maps were compiled using Environmental Systems Research Institute Inc. (ESRI) ARC/INFO software. Political boundaries and cartographic representations on this map are shown (with permission) from ESRI's ArcWorld 1:3M digital coverage: they have no political significance and are displayed as general reference only. Portions of this database covering the coastline and country boundaries contain proprietary property of ESRI. (Copyright 1992 and 1996, Environmental Systems Research Institute Inc. All rights reserved.)

  10. Study on cyclic injection gas override in condensate gas reservoir

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu

    2018-02-01

    Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.

  11. 13. DETAIL VIEW OF BUTTRESS 4 SHOWING THE RESULTS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL VIEW OF BUTTRESS 4 SHOWING THE RESULTS OF POOR CONSTRUCTION WORK. THOUGH NOT A SERIOUS STRUCTURAL DEFICIENCY, THE 'HONEYCOMB' TEXTURE OF THE CONCRETE SURFACE WAS THE RESULT OF INADEQUATE TAMPING AT THE TIME OF THE INITIAL 'POUR'. - Hume Lake Dam, Sequioa National Forest, Hume, Fresno County, CA

  12. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, T.

    2000-01-01

    Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.

  13. Integral Transport Analysis Results for Ions Flowing Through Neutral Gas

    NASA Astrophysics Data System (ADS)

    Emmert, Gilbert; Santarius, John

    2017-10-01

    Results of a computational model for the flow of energetic ions and neutrals through a background neutral gas will be presented. The method models reactions as creating a new source of ions or neutrals if the energy or charge state of the resulting particle is changed. For a given source boundary condition, the creation and annihilation of the various species is formulated as a 1-D Volterra integral equation that can quickly be solved numerically by finite differences. The present work focuses on multiple-pass, 1-D ion flow through neutral gas and a nearly transparent, concentric anode and cathode pair in spherical, cylindrical, or linear geometry. This has been implemented as a computer code for atomic (3He, 3He +, 3He + +) and molecular (D, D2, D-, D +, D2 +, D3 +) ion and neutral species, and applied to modeling inertial-electrostatic connement (IEC) devices. The code yields detailed energy spectra of the various ions and energetic neutral species. Calculations for several University of Wisconsin IEC and ion implantation devices will be presented. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-ARI095, Dept. of Energy Grant DE-FG02-04ER54745, and the Grainger Foundation.

  14. Experimental and analytical results of a liquid-gas separator in microgravity

    NASA Astrophysics Data System (ADS)

    Best, Frederick; Ellis, Michael

    1999-01-01

    The microgravity phase separator designed and fabricated at Texas A&M University relies on centripetally driven buoyancy forces to form a gas-liquid vortex within a fixed, right-circular cylinder. Two phase flow is injected tangentially along the inner wall of this cylinder. Centripetal acceleration is produced from the intrinsic momentum of the resulting rotating flow and drives the buoyancy process. Gas travels under density gradients through the rotating liquid, eventually forming a gaseous core along the centerline of the cylinder. Gas core stability, the presence of liquid in the air line, and the presence of air in the liquid line determine whether a successful core results. To predict separation failure, these three factors were examined both analytically and empirically with the goal of determining what operating circumstances would generate them. The centripetal acceleration profile was determined from angular velocity measurements taken using a paddle wheel assembly. To aid in understanding the nature of the rotating flow, these results were compared to analytical results provided by solving simplified Navier-Stokes equations. The theoretical velocity profile indicated a linear dependence on radius, which with the experimental data agreed, although two distinctly different slopes were observed. As injection nozzle width increased, the difference between the slopes lessened. For all three nozzles tested, the discontinuity between the linear sections occurred at a radius of approximately 3.8 cm. The maximum centripetal acceleration generated by the flow was greatest for the 0.0635 cm wide, 0.516 cm tall injection nozzle and least for the 0.102 cm wide, 1.02 cm tall injection nozzle. The circumstances leading to carry-under are dictated by the relationship between axial and radial bubble transit times. To determine the radial and axial transit times, the radial velocity profile was solved analytically by relating the buoyancy and drag forces for a 0.0635 cm

  15. Talk Show Science.

    ERIC Educational Resources Information Center

    Moore, Mitzi Ruth

    1992-01-01

    Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)

  16. 14. DETAIL VIEW OF BUTTRESS 4 SHOWING THE RESULTS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL VIEW OF BUTTRESS 4 SHOWING THE RESULTS OF INADEQUATE TAMPING. THE SIZE OF THE GRANITE AGGREGATE USED IN THE DAMS CONCRETE IS CLEARLY SHOWN. - Hume Lake Dam, Sequioa National Forest, Hume, Fresno County, CA

  17. Industry shows faith in deep Anadarko

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wroblewski, E.F.

    1973-10-08

    The shallow shelf of the Anadarko Basin furnished much gas from the Pennsylvanian and Mississippian reservoirs during the 1950s and 1960s. The search for gas reserves on the shelf will continue to go on for many years, because of the relatively low drilling cost even though the reserves per well on the shelf tend to be limited to about 1 to 3 billion cu ft/well. The much greater reserves of up to 50 billion cu ft/well found in the deeper part of the Anadarko Basin have made the deep Anadarko Basin an enticing area to look for major gas reserves.more » A regional Hunton map of the deep Anadarko Basin is presented showing fields that are producing from the Hunton and Simpson at depths of more than 15,000 ft. The fields shown on this map represent about 5 trillion cu ft of gas reserve. A generalized section showing only the major features and gross stratigraphic intervals also is presented. A seismic interpretation of the N. Carter structure on which the Lone Star l Baden is drilled is shown, one the seismic Springer structure and the other the seismic Hunton structure. The latter shows the faulting that exists below the Springer level.« less

  18. 10 CFR 590.401 - Orders to show cause.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Opinions and Orders § 590.401 Orders to show cause... the import or export of natural gas, or for any other alleged wrong involving importation or...

  19. Applications of UT results to confirm defects findings by utilization of relevant metallurgical investigations techniques on gas/condensate pipeline working in wet sour gas environment

    NASA Astrophysics Data System (ADS)

    El-Azhari, O. A.; Gajam, S. Y.

    2015-03-01

    The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.

  20. Recent Results on Microstrip Gas Chambers at Purdue

    NASA Astrophysics Data System (ADS)

    Menon, Naresh; Shipsey, Ian

    1997-04-01

    The performance of Micrstrip Gas Chambers fabricated on polymide, with a segmented backplane providing two-dimensional position information, will be presented. MSGC Research at Purdue

  1. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    USGS Publications Warehouse

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    One of the specific objectives of this expedition was to test gas hydrate formation models and constrain model parameters, especially those that account for the formation of concentrated gas hydrate accumulations. The necessary data for characterizing the occurrence of in situ gas hydrate, such as interstitial water chlorinities, core-derived gas chemistry, physical and sedimentological properties, thermal images of the recovered cores, and downhole measured logging data (LWD and/or conventional wireline log data), were obtained from most of the drill sites established during NGHP-01. Almost all of the drill sites yielded evidence for the occurrence of gas hydrate; however, the inferred in situ concentration of gas hydrate varied substantially from site to site. For the most part, the interpretation of downhole logging data, core thermal images, interstitial water analyses, and pressure core images from the sites drilled during NGHP-01 indicate that the occurrence of concentrated gas hydrate is mostly associated with the presence of fractures in the sediments, and in some limited cases, by coarser grained (mostly sand-rich) sediments.

  2. Gas flaring and resultant air pollution: A review focusing on black carbon.

    PubMed

    Fawole, Olusegun G; Cai, X-M; MacKenzie, A R

    2016-09-01

    Gas flaring is a prominent source of VOCs, CO, CO2, SO2, PAH, NOX and soot (black carbon), all of which are important pollutants which interact, directly and indirectly, in the Earth's climatic processes. Globally, over 130 billion cubic metres of gas are flared annually. We review the contribution of gas flaring to air pollution on local, regional and global scales, with special emphasis on black carbon (BC, "soot"). The temporal and spatial characteristics of gas flaring distinguishes it from mobile combustion sources (transport), while the open-flame nature of gas flaring distinguishes it from industrial point-sources; the high temperature, flame control, and spatial compactness distinguishes gas flaring from both biomass burning and domestic fuel-use. All of these distinguishing factors influence the quantity and characteristics of BC production from gas flaring, so that it is important to consider this source separately in emissions inventories and environmental field studies. Estimate of the yield of pollutants from gas flaring have, to date, paid little or no attention to the emission of BC with the assumption often being made that flaring produces a smokeless flame. In gas flares, soot yield is known to depend on a number of factors, and there is a need to develop emission estimates and modelling frameworks that take these factors into consideration. Hence, emission inventories, especially of the soot yield from gas flaring should give adequate consideration to the variation of fuel gas composition, and to combustion characteristics, which are strong determinants of the nature and quantity of pollutants emitted. The buoyant nature of gas flaring plume, often at temperatures in the range of 2000 K, coupled with the height of the stack enables some of the pollutants to escape further into the free troposphere aiding their long-range transport, which is often not well-captured by model studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Greenhouse Gas Sensing Using Small Unmanned Aerial Systems - Field Experiment Results and Future Directions

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Christensen, L. E.; Brockers, R.; Thompson, D. R.

    2014-12-01

    Requirements for greenhouse gas point source detection and quantification often require high spatial resolution on the order of meters. These applications, which help close the gap in emissions estimate uncertainties, also demand sensing with high sensitivity and in a fashion that accounts for spatiotemporal variability on the order of seconds to minutes. Low-cost vertical takeoff and landing (VTOL) small unmanned aerial systems (sUAS) provide a means to detect and identify the location of point source gas emissions while offering ease of deployment and high maneuverability. Our current fielded gas sensing sUAS platforms are able to provide instantaneous in situ concentration measurements at locations within line of sight of the operator. Recent results from field experiments demonstrating methane detection and plume characterization will be discussed here, including performance assessment conducted via a controlled release experiment in 2013. The logical extension of sUAS gas concentration measurement is quantification of flux rate. We will discuss the preliminary strategy for quantitative flux determination, including intrinsic challenges and heritage from airborne science campaigns, associated with this point source flux quantification. This system approach forms the basis for intelligent autonomous quantitative characterization of gas plumes, which holds great value for applications in commercial, regulatory, and safety environments.

  4. Initial Results of Gulf of Mexico Gas Hydrate Joint Industry Program Leg II Logging-While-Drilling Operations

    NASA Astrophysics Data System (ADS)

    Boswell, R. M.; Collett, T. S.; Frye, M.; McConnell, D.; Shedd, W.; Shelander, D.; Dai, J.; Mrozewski, S.; Guerin, G.; Cook, A.; Dufrene, R.; Godfriaux, P. D.; Roy, R.; Jones, E.

    2009-12-01

    The Gulf of Mexico gas hydrates Joint Industry Project (the JIP), a cooperative research program between the US Department of Energy and an international industrial consortium under the leadership of Chevron, conducted its “Leg II” logging-while-drilling operations in April and May of 2009. JIP Leg II was intended to expand the existing JIP work from previous emphasis on fine-grained sedimentary systems to the direct evaluation of gas hydrate in sand-dominated reservoirs. The selection of the locations for the JIP Leg II drilling were the result of a geological and geophysical prospecting approach that integrated direct geophysical evidence of gas hydrate-bearing strata with evidence of gas sourcing and migration and occurrence of sand reservoirs within the gas hydrate stability zone. Logging-while-drilling operations included the drilling of seven wells at three sites. The expedition experienced minimal operational problems with the advanced LWD tool string, and successfully managed a number of shallow drilling challenges, including borehole breakouts, and shallow gas and water flows. Two wells drilled in Walker Ridge block 313 (WR-313) confirmed the pre-drill predictions by discovering gas hydrates at high saturations in multiple sand horizons with reservoir thicknesses up to 50 ft. In addition, drilling in WR-313 discovered a thick, strata-bound interval of grain-displacing gas hydrate in shallow fine-grained sediments. Two of three wells drilled in Green Canyon block 955 (GC-955) confirmed the pre-drill prediction of extensive sand occurrence with gas hydrate fill along the crest of a structure with positive indications of gas source and migration. In particular, well GC955-H discovered ~100 ft of gas hydrate in sand at high saturations. Two wells drilled in Alaminos Canyon block 21 (AC-21) confirmed the pre-drill prediction of potential extensive occurrence of gas hydrates in shallow sand reservoirs at low to moderate saturations; however, further data

  5. Modelling observations of the inner gas and dust coma of comet 67P/Churyumov-Gerasimenko using ROSINA/COPS and OSIRIS data: First results

    NASA Astrophysics Data System (ADS)

    Marschall, R.; Su, C. C.; Liao, Y.; Thomas, N.; Altwegg, K.; Sierks, H.; Ip, W.-H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Lai, I. L.; Rubin, M.; Skorov, Y.; Wu, J. S.; Jorda, L.; Preusker, F.; Scholten, F.; Gracia-Berná, A.; Gicquel, A.; Naletto, G.; Shi, X.; Vincent, J.-B.

    2016-05-01

    Context. This paper describes the initial modelling of gas and dust data acquired in August and September 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko. Aims: This work is an attempt to provide a self-consistent model of the innermost gas and dust coma of the comet, as constrained by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) data set for the gas and by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) data set for the dust. Methods: The model uses a previously developed shape model for the nucleus, and from this the water sublimation rate and gas temperatures at the surface are computed with a simple thermal model. The gas expansion is modelled with a 3D parallel implementation of a Direct Simulation Monte Carlo algorithm. A dust drag algorithm is then used to produce dust densities in the coma, which are then converted to brightnesses using Mie theory and a line-of-sight integration. Results: We show that a purely insolation-driven model for surface outgassing does not produce a reasonable fit to ROSINA/COPS data. A stronger source in the "neck" region of the nucleus (region Hapi) is needed to match the observed modulation of the gas density in detail. This agrees with OSIRIS data, which shows that the dust emission from the "neck" was dominant in the August-September 2014 time frame. The current model matches this observation reasonably if a power index of 2-3 for the dust size distribution is used. A better match to the OSIRIS data is seen by using a single large particle size for the coma. Conclusions: We have shown possible solutions to the gas and dust distributions in the inner coma, which are consistent with ROSINA and OSIRIS data.

  6. Results of the GCMS Effluent Gas Analysis for the Brine Processing Test

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Lee, Jeffrey; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Harris, Linden

    2015-01-01

    The effluent gas for the Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB) were analyzed using Headspace GCMS Analysis in the recent AES FY14 Brine Processing Test. The results from the analysis describe the number and general chemical species of the chemicals produced. Comparisons were also made between the different chromatograms for each system, and an explanation of the differences in the results is reported.

  7. First Results from the Herschel and ALMA Spectroscopic Surveys of the SMC: The Relationship between [C II]-bright Gas and CO-bright Gas at Low Metallicity

    NASA Astrophysics Data System (ADS)

    Jameson, Katherine E.; Bolatto, Alberto D.; Wolfire, Mark; Warren, Steven R.; Herrera-Camus, Rodrigo; Croxall, Kevin; Pellegrini, Eric; Smith, John-David; Rubio, Monica; Indebetouw, Remy; Israel, Frank P.; Meixner, Margaret; Roman-Duval, Julia; van Loon, Jacco Th.; Muller, Erik; Verdugo, Celia; Zinnecker, Hans; Okada, Yoko

    2018-02-01

    The Small Magellanic Cloud (SMC) provides the only laboratory to study the structure of molecular gas at high resolution and low metallicity. We present results from the Herschel Spectroscopic Survey of the SMC (HS3), which mapped the key far-IR cooling lines [C II], [O I], [N II], and [O III] in five star-forming regions, and new ALMA 7 m array maps of {}12{CO} and {}13{CO} (2-1) with coverage overlapping four of the five HS3 regions. We detect [C II] and [O I] throughout all of the regions mapped. The data allow us to compare the structure of the molecular clouds and surrounding photodissociation regions using {}13{CO}, {}12{CO}, [C II], and [O I] emission at ≲ 10\\prime\\prime (< 3 pc) scales. We estimate {A}V using far-IR thermal continuum emission from dust and find that the CO/[C II] ratios reach the Milky Way value at high {A}V in the centers of the clouds and fall to ∼ 1/5{--}1/10× the Milky Way value in the outskirts, indicating the presence of translucent molecular gas not traced by bright {}12{CO} emission. We estimate the amount of molecular gas traced by bright [C II] emission at low {A}V and bright {}12{CO} emission at high {A}V. We find that most of the molecular gas is at low {A}V and traced by bright [C II] emission, but that faint {}12{CO} emission appears to extend to where we estimate that the {{{H}}}2-to-H I transition occurs. By converting our {{{H}}}2 gas estimates to a CO-to-{{{H}}}2 conversion factor (X CO), we show that X CO is primarily a function of {A}V, consistent with simulations and models of low-metallicity molecular clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. U.S. Natural Gas Storage Risk-Based Ranking Methodology and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folga, Steve; Portante, Edgar; Shamsuddin, Shabbir

    2016-10-01

    This report summarizes the methodology and models developed to assess the risk to energy delivery from the potential loss of underground gas storage (UGS) facilities located within the United States. The U.S. has a total of 418 existing storage fields, of which 390 are currently active. The models estimate the impacts of a disruption of each of the active UGS facilities on their owners/operators, including (1) local distribution companies (LDCs), (2) directly connected transporting pipelines and thus on the customers in downstream States, and (3) third-party entities and thus on contracted customers expecting the gas shipment. Impacts are measured acrossmore » all natural gas customer classes. For the electric sector, impacts are quantified in terms of natural gas-fired electric generation capacity potentially affected from the loss of a UGS facility. For the purpose of calculating the overall supply risk, the overall consequence of the disruption of an UGS facility across all customer classes is expressed in terms of the number of expected equivalent residential customer outages per year, which combines the unit business interruption cost per customer class and the estimated number of affected natural gas customers with estimated probabilities of UGS disruptions. All models and analyses are based on publicly available data. The report presents a set of findings and recommendations in terms of data, further analyses, regulatory requirements and standards, and needs to improve gas/electric industry coordination for electric reliability.« less

  9. Interaction between gas cooking and GSTM1 null genotype in bronchial responsiveness: results from the European Community Respiratory Health Survey

    PubMed Central

    Amaral, André F S; Ramasamy, Adaikalavan; Castro-Giner, Francesc; Minelli, Cosetta; Accordini, Simone; Sørheim, Inga-Cecilie; Pin, Isabelle; Kogevinas, Manolis; Jõgi, Rain; Balding, David J; Norbäck, Dan; Verlato, Giuseppe; Olivieri, Mario; Probst-Hensch, Nicole; Janson, Christer; Zock, Jan-Paul; Heinrich, Joachim; Jarvis, Deborah L

    2014-01-01

    Background Increased bronchial responsiveness is characteristic of asthma. Gas cooking, which is a major indoor source of the highly oxidant nitrogen dioxide, has been associated with respiratory symptoms and reduced lung function. However, little is known about the effect of gas cooking on bronchial responsiveness and on how this relationship may be modified by variants in the genes GSTM1, GSTT1 and GSTP1, which influence antioxidant defences. Methods The study was performed in subjects with forced expiratory volume in one second at least 70% of predicted who took part in the multicentre European Community Respiratory Health Survey, had bronchial responsiveness assessed by methacholine challenge and had been genotyped for GSTM1, GSTT1 and GSTP1-rs1695. Information on the use of gas for cooking was obtained from interviewer-led questionnaires. Effect modification by genotype on the association between the use of gas for cooking and bronchial responsiveness was assessed within each participating country, and estimates combined using meta-analysis. Results Overall, gas cooking, as compared with cooking with electricity, was not associated with bronchial responsiveness (β=−0.08, 95% CI −0.40 to 0.25, p=0.648). However, GSTM1 significantly modified this effect (β for interaction=−0.75, 95% CI −1.16 to −0.33, p=4×10−4), with GSTM1 null subjects showing more responsiveness if they cooked with gas. No effect modification by GSTT1 or GSTP1-rs1695 genotypes was observed. Conclusions Increased bronchial responsiveness was associated with gas cooking among subjects with the GSTM1 null genotype. This may reflect the oxidant effects on the bronchi of exposure to nitrogen dioxide. PMID:24613990

  10. Cold gas properties of the Herschel Reference Survey. III. Molecular gas stripping in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Cortese, L.; Boquien, M.; Boissier, S.; Catinella, B.; Gavazzi, G.; Lagos, C.; Saintonge, A.

    2014-04-01

    The Herschel Reference Survey is a complete volume-limited, K-band-selected sample of nearby objects including Virgo cluster and isolated objects. Using a recent compilation of Hi and CO data for this sample we study the effects of the cluster environment on the molecular gas content of spiral galaxies. With the subsample of unperturbed field galaxies, we first identify the stellar mass as the scaling variable that traces the total molecular gas mass of galaxies better. We show that, on average, Hi-deficient galaxies are significantly offset (4σ) from the M(H2) vs. Mstar relation for Hi-normal galaxies. We use the M(H2) vs. Mstar scaling relation to define the H2-deficiency parameter as the difference, on logarithmic scale, between the expected and observed molecular gas mass for a galaxy of given stellar mass. The H2-deficiency parameter shows a weak and scattered relation with the Hi-deficiency parameter, here taken as a proxy for galaxy interactions with the surrounding cluster environment. We also show that, as for the atomic gas, the extent of the molecular disc decreases with increasing Hi-deficiency. All together, these results show that cluster galaxies have, on average, a lower molecular gas content than similar objects in the field. Our analysis indicates that ram pressure stripping is the physical process responsible for this molecular gas deficiency. The slope of the H2 - def vs. Hi - def relation is less than unity, while the D(Hi)/D(i) vs. Hi - def relation is steeper than the D(CO)/D(i) vs. Hi - def relation, thereby indicating that the molecular gas is removed less efficiently than the atomic gas. This result can be understood if the atomic gas is distributed on a relatively flat disc that is more extended than the stellar disc. It is thus less anchored to the gravitational potential well of the galaxy than the molecular gas phase, which is distributed on an exponential disc with a scalelength rCO ≃ 0.2r24.5(g). There is a clear trend between the

  11. Mathematical modeling of non-stationary gas flow in gas pipeline

    NASA Astrophysics Data System (ADS)

    Fetisov, V. G.; Nikolaev, A. K.; Lykov, Y. V.; Duchnevich, L. N.

    2018-03-01

    An analysis of the operation of the gas transportation system shows that for a considerable part of time pipelines operate in an unsettled regime of gas movement. Its pressure and flow rate vary along the length of pipeline and over time as a result of uneven consumption and selection, switching on and off compressor units, shutting off stop valves, emergence of emergency leaks. The operational management of such regimes is associated with difficulty of reconciling the operating modes of individual sections of gas pipeline with each other, as well as with compressor stations. Determining the grounds that cause change in the operating mode of the pipeline system and revealing patterns of these changes determine the choice of its parameters. Therefore, knowledge of the laws of changing the main technological parameters of gas pumping through pipelines in conditions of non-stationary motion is of great importance for practice.

  12. Geometry and Simulation Results for a Gas Turbine Representative of the Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.

    2015-01-01

    This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.

  13. Gun Shows and Gun Violence: Fatally Flawed Study Yields Misleading Results

    PubMed Central

    Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A.

    2010-01-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled “The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas” outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors’ prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  14. Gun shows and gun violence: fatally flawed study yields misleading results.

    PubMed

    Wintemute, Garen J; Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A

    2010-10-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled "The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas" outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors' prior research. The study should not be used as evidence in formulating gun policy.

  15. No Sign of Strong Molecular Gas Outflow in an Infrared-bright Dust-obscured Galaxy with Strong Ionized-gas Outflow

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Komugi, Shinya; Nagao, Tohru; Yamashita, Takuji; Wang, Wei-Hao; Imanishi, Masatoshi; Sun, Ai-Lei

    2017-12-01

    We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detailed analysis of their optical spectra, we found some peculiar IR-bright DOGs that show strong ionized-gas outflow ([O III] λ5007) from the central active galactic nucleus (AGN). For one of these DOGs (WISE J102905.90+050132.4) at z spec = 0.493, we performed follow-up observations using ALMA to investigate their CO molecular gas properties. As a result, we successfully detected 12CO(J = 2–1) and 12CO(J = 4–3) lines and the continuum of this DOG. The intensity-weighted velocity map of both lines shows a gradient, and the line profile of those CO lines is well-fitted by a single narrow Gaussian, meaning that this DOG has no sign of strong molecular gas outflow. The IR luminosity of this object is log (L IR/L ⊙) = 12.40, which is classified as an ultraluminous IR galaxy (ULIRG). We found that (i) the stellar mass and star formation rate relation and (ii) the CO luminosity and far-IR luminosity relation are consistent with those of typical ULIRGs at similar redshifts. These results indicate that the molecular gas properties of this DOG are normal despite the fact that its optical spectrum shows a powerful AGN outflow. We conclude that a powerful ionized-gas outflow caused by the AGN does not necessarily affect the cold interstellar medium in the host galaxy, at least for this DOG.

  16. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.

    PubMed

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-08-01

    (WAG) processes. This study shows that using the concentration of 1500 ppm of surfactant solution is practical and economical. Results also show that the SAG ratio of 1:1 with 0.2 cm 3 /min at temperature and pressure of 70 °C and 144.74×10 5  Pa, has the maximum oil removal efficiency. In this SAG ratio, stable foam was formed and viscous fingering delayed in comparison to other ratios. Finally, the results demonstrated that SAG injection has higher oil recovery in comparison to other displacement methods (water flooding, gas flooding and WAG).

  17. Metal powder production by gas atomization

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  18. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  19. Results at Mallik highlight progress in gas hydrate energy resource research and development

    USGS Publications Warehouse

    Collett, T.S.

    2005-01-01

    The recent studies that project the role of gas hydrates in the future energy resource management are reviewed. Researchers have long speculated that gas hydrates could eventually be a commercial resource for the future. A Joint Industry Project led by ChevronTexaco and the US Department of Energy is designed to characterize gas hydrates in the Gulf of Mexico. Countries including Japan, canada, and India have established large gas hydrate research and development projects, while China, Korea and Mexico are investigating the viability of forming government-sponsored gas hydrate research projects.

  20. Uniform pressures in gas fields (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravo, G.

    1966-08-01

    Throughout the huge Reynosa Field, petroleos Mexicanos (Pemex) is equalizing gas-well pressures to reduce the expense of gas-compressing equipment. This solution was proposed by the Department of Gas and Gasoline. Tests were taken on 4 specially selected wells. The results show production to be much less than the potential; by equalizing pressure, production is increased at less cost.

  1. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)

    USGS Publications Warehouse

    Ryu, Byong-Jae; Collett, Timothy S.; Riedel, Michael; Kim, Gil-Young; Chun, Jong-Hwa; Bahk, Jang-Jun; Lee, Joo Yong; Kim, Ji-Hoon; Yoo, Dong-Geun

    2013-01-01

    As a part of Korean National Gas Hydrate Program, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas hydrates as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas hydrate-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two phases. The first phase included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second phase, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both phases of the expedition. Recovered gas hydrates occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas hydrates is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.

  2. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  3. Attenuation in gas-charged magma

    NASA Astrophysics Data System (ADS)

    Collier, L.; Neuberg, J. W.; Lensky, N.; Lyakhovsky, V.; Navon, O.

    2006-05-01

    Low frequency seismic events observed on volcanoes, such as Soufriere Hills Volcano, Montserrat, are thought to be caused by a resonating system. The modelling of seismic waves in gas-charged magma is critical for the understanding of seismic resonance effects in conduits, dykes and cracks. Seismic attenuation, which depends mainly on magma viscosity, gas and crystal content, is an essential factor in such modelling attempts. So far only two-phase gas-melt systems with the assumption of no diffusion and transport of volatiles between the melt and the gas bubbles have been considered. In this study, we develop a method of quantifying attenuation within gas-charged magma, including the effects of diffusion and exsolution of gas into the bubbles. The results show that by including such bubble growth processes attenuation levels are increased within magma. The resulting complex behaviour of attenuation with pressure and frequency indicates that two factors are controlling attenuation, the first due to viscous hindrance or the melt, and the second due diffusion processes. The level of attenuation within a gas-charged magma conduit suggests an upper limit on the length of a resonating conduit section of just a few hundred meters.

  4. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R.; Borio, R.W.; Liljedahl, G.

    1995-12-31

    The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronizedmore » coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.« less

  5. Characterizing Circumgalactic Gas around Massive Ellipticals at z ˜ 0.4 I. Initial Results

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen; Zahedy, Fakhri S.; Johnson, Sean D.; Pierce, Rebecca M.; Huang, Yun-Hsin; Weiner, Benjamin J.; Gauthier, Jean-René

    2018-06-01

    We present a new Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) absorption-line survey to study halo gas around 16 luminous red galaxies (LRGs) at z = 0.21 - 0.55. The LRGs are selected uniformly with stellar mass {{M_star}}>10^{11} M_{⊙} and no prior knowledge of the presence/absence of any absorption features. Based on observations of the full Lyman series, we obtain accurate measurements of neutral hydrogen column density N(H I) and find that high-N(H I) gas is common in these massive quiescent halos with a median of ⟨ log N(H I)> = 16.6 at projected distances d<_{˜ }160 kpc. We measure a mean covering fraction of optically-thick gas with log N(H I)>_{˜ }17.2 of < κ > _LLS=0.44^{+0.12}_{-0.11} at d<_{˜ }160 kpc and < κ > _LLS=0.71^{+0.11}_{-0.20} at d<_{˜ }100 kpc. The line-of-sight velocity separations between the H I absorbing gas and LRGs are characterized by a mean and dispersion of ⟨ vgas - gal> = 29 km s-1 and σ _{< v_{gas-gal}> }=171 km s-1. Combining COS FUV and ground-based echelle spectra provides an expanded spectral coverage for multiple ionic transitions, from low-ionization Mg II and Si II, to intermediate ionization Si III and C III, and to high-ionization O VI absorption lines. We find that intermediate ions probed by C III and Si III are the most prominent UV metal lines in LRG halos with a mean covering fraction of < κ (C III)> _{0.1}=0.75^{+0.08}_{-0.13} for Wr(977) ≥ 0.1 Å at d < 160 kpc, comparable to what is seen for C III in L* and sub-L* star-forming and red galaxies but exceeding Mg II or O VI in quiescent halos. The COS-LRG survey shows that massive quiescent halos contain widespread chemically-enriched cool gas and that little distinction between LRG and star-forming halos is found in their H I and C III content.

  6. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Suckling, D. H.; Copper, C. G.

    1972-01-01

    Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.

  7. Pressureless sintering and gas flux properties of porous ceramic membranes for gas applications

    NASA Astrophysics Data System (ADS)

    Obada, David O.; Dodoo-Arhin, David; Dauda, Muhammad; Anafi, Fatai O.; Ahmed, Abdulkarim S.; Ajayi, Olusegun A.

    The preparation and characterization of kaolin based ceramic membranes using styrofoam (STY) and sawdust (SD) as pore formers have been prepared by mechano-chemical synthesis using pressureless sintering technique with porogen content between (0-20) wt% by die pressing. Pellets were fired at 1150 °C and soaking time of 4 h. The membranes cast as circular disks were subjected to characterization studies to evaluate the effect of the sintering temperature and pore former content on porosity, density, water absorption and mechanical strength. Obtained membranes show effective porosity with maximum at about 43 and 47% respectively for membranes formulated with styrofoam and sawdust porogens but with a slightly low mechanical strength that does not exceed 19 MPa. The resultant ceramic bodies show a fine porous structure which is mainly caused by the volatilization of the porogens. The fabricated membrane exhibited high N2 gas flux, hence, these membranes can be considered as efficient for potential application for gas separation by reason of the results shown in the gas flux tests.

  8. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. II. SEARCH FOR COLD GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe, E-mail: wreach@sofia.usra.edu

    2017-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M {sub ⊙} in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that theremore » is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.« less

  9. A bubble-based microfluidic gas sensor for gas chromatographs.

    PubMed

    Bulbul, Ashrafuzzaman; Kim, Hanseup

    2015-01-07

    We report a new proof-of-concept bubble-based gas sensor for a gas chromatography system, which utilizes the unique relationship between the diameters of the produced bubbles with the gas types and mixture ratios as a sensing element. The bubble-based gas sensor consists of gas and liquid channels as well as a nozzle to produce gas bubbles through a micro-structure. It utilizes custom-developed software and an optical camera to statistically analyze the diameters of the produced bubbles in flow. The fabricated gas sensor showed that five types of gases (CO2, He, H2, N2, and CH4) produced (1) unique volumes of 0.44, 0.74, 1.03, 1.28, and 1.42 nL (0%, 68%, 134%, 191%, and 223% higher than that of CO2) and (2) characteristic linear expansion coefficients (slope) of 1.38, 2.93, 3.45, 5.06, and 5.44 nL/(kPa (μL s(-1))(-1)). The gas sensor also demonstrated that (3) different gas mixture ratios of CO2 : N2 (100 : 0, 80 : 20, 50 : 50, 20 : 80 and 0 : 100) generated characteristic bubble diameters of 48.95, 77.99, 71.00, 78.53 and 99.50 μm, resulting in a linear coefficient of 10.26 μm (μL s(-1))(-1). It (4) successfully identified an injection (0.01 μL) of pentane (C5) into a continuous carrier gas stream of helium (He) by monitoring bubble diameters and creating a chromatogram and demonstrated (5) the output stability within only 5.60% variation in 67 tests over a month.

  10. 10 CFR 590.401 - Orders to show cause.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Opinions and Orders § 590.401 Orders to show cause... contravention or violation of any authorization, statute, rule, order, or law administered by FE applicable to...

  11. 10 CFR 590.401 - Orders to show cause.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Opinions and Orders § 590.401 Orders to show cause... contravention or violation of any authorization, statute, rule, order, or law administered by FE applicable to...

  12. 10 CFR 590.401 - Orders to show cause.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Opinions and Orders § 590.401 Orders to show cause... contravention or violation of any authorization, statute, rule, order, or law administered by FE applicable to...

  13. 10 CFR 590.401 - Orders to show cause.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Opinions and Orders § 590.401 Orders to show cause... contravention or violation of any authorization, statute, rule, order, or law administered by FE applicable to...

  14. Low-temperature gas from marine shales: wet gas to dry gas over experimental time.

    PubMed

    Mango, Frank D; Jarvie, Daniel M

    2009-11-09

    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 degrees below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100 degrees C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  15. Effect of depletion rate on solution gas drive in shale

    NASA Astrophysics Data System (ADS)

    Zhang, Mingshan; Sang, Qian; Gong, Houjian; Li, Yajun; Dong, Mingzhe

    2018-01-01

    Solution gas drive process has been studied extensively in sand rocks and heavy oil reservoirs for a long time. Oil recovery is affected by several factors, such as depletion rate, initial GOR (gas oil ratio), oil viscosity, and temperature and so on. Before the solution gas drive tests, elastic drive without dissolved gas was carried out as a reference, which shows a limited oil recovery. Solution gas drive experiments were conducted in shale to study oil recovery with various depletion rates. Results show that oil recovery increases with the decrease of depletion rates because of the low permeability and desorption of methane.

  16. Ink dating using thermal desorption and gas chromatography/mass spectrometry: comparison of results obtained in two laboratories.

    PubMed

    Koenig, Agnès; Bügler, Jürgen; Kirsch, Dieter; Köhler, Fritz; Weyermann, Céline

    2015-01-01

    An ink dating method based on solvent analysis was recently developed using thermal desorption followed by gas chromatography/mass spectrometry (GC/MS) and is currently implemented in several forensic laboratories. The main aims of this work were to implement this method in a new laboratory to evaluate whether results were comparable at three levels: (i) validation criteria, (ii) aging curves, and (iii) results interpretation. While the results were indeed comparable in terms of validation, the method proved to be very sensitive to maintenances. Moreover, the aging curves were influenced by ink composition, as well as storage conditions (particularly when the samples were not stored in "normal" room conditions). Finally, as current interpretation models showed limitations, an alternative model based on slope calculation was proposed. However, in the future, a probabilistic approach may represent a better solution to deal with ink sample inhomogeneity. © 2014 American Academy of Forensic Science.

  17. EVALUATION OF VAPOR EQUILIBRATION AND IMPACT OF PURGE VOLUME ON SOIL-GAS SAMPLING RESULTS

    EPA Science Inventory

    Sequential sampling was utilized at the Raymark Superfund site to evaluate attainment of vapor equilibration and the impact of purge volume on soil-gas sample results. A simple mass-balance equation indicates that removal of three to five internal volumes of a sample system shou...

  18. On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate

    NASA Astrophysics Data System (ADS)

    Brandt, A. D.; Settles, G. S.; Scroggs, S. D.

    1996-11-01

    Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)

  19. Experimental study on steam condensation with non-condensable gas in horizontal microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Jiang, Rui; Tao, Bai

    2013-07-01

    This paper experimentally studied steam condensation with non-condensable gas in trapezoidal microchannels. The effect of noncondensable gas on condensation two-phase flow patterns and the characteristics of heat transfer and frictional pressure drop were investigated. The visualization study results showed that the special intermittent annular flow was found in the microchannel under the condition of larger mole fraction of noncondensable gas and lower steam mass flux; the apical area of injection was much larger and the neck of injection was longer for mixture gas with lower mole fraction of noncondensable gas in comparison with pure steam condensation; meanwhile, the noncondensable gas resulted in the decrease of flow patterns transitional steam mass flux and quality. The experimental results also indicated that the frictional pressure drop increased with the increasing mole fraction of noncondensable gas when the steam mass flux was fixed. Unlike nature convective condensation heat transfer, the mole fraction of noncondensable gas had little effect on Nusselt number. Based on experimental data, the predictive correlation of Nusselt number for mixture gas condensation in microchannels was established showed good agreement with experimental data.

  20. A Noise Spectroscopy-Based Selective Gas Sensing with MOX Gas Sensors

    NASA Astrophysics Data System (ADS)

    Gomri, S.; Seguin, J.; Contaret, T.; Fiorido, T.; Aguir, K.

    We propose a new method for obtaining a fluctuation-enhanced sensing (FES) signature of a gas using a single metal oxide (MOX) gas micro sensor. Starting from our model of adsorption-desorption (A-D) noise previously developed, we show theoretically that the product of frequency by the power spectrum density (PSD) of the gas sensing layer resistance fluctuations often has a maximum which is characteristic of the gas. This property was experimentally confirmed in the case of the detection of NO2 and O3 using a WO3 sensing layer. This method could be useful for classifying gases. Furthermore, our noise measurements confirm our previous model showing that PSD of the A-Dnoise in MOX gas sensor is a combination of Lorentzians having a low frequency magnitude and a cut-off frequency which depends on the nature of the detected gas.

  1. Lattice gas methods for computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1995-01-01

    This paper presents the lattice gas solution to the category 1 problems of the ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics. The first and second problems were solved for Delta t = Delta x = 1, and additionally the second problem was solved for Delta t = 1/4 and Delta x = 1/2. The results are striking: even for these large time and space grids the lattice gas numerical solutions are almost indistinguishable from the analytical solutions. A simple bug in the Mathematica code was found in the solutions submitted for comparison, and the comparison plots shown at the end of this volume show the bug. An Appendix to the present paper shows an example lattice gas solution with and without the bug.

  2. Constraints of gas venting activity for the interstitial water geochemistry at the shallow gas hydrate site, eastern margin of the Japan Sea; results from high resolution time-series fluid sampling by OsmoSampler

    NASA Astrophysics Data System (ADS)

    Owari, S.; Tomaru, H.; Matsumoto, R.

    2016-12-01

    We have conducted ROV researches in the eastern margin of the Japan Sea where active gas venting and outcropping of gas hydrates were observed near the seafloor and have found the strength and location of venting had changed within a few days. These observations indicate the seafloor environments with the shallow gas hydrate system could have changed for short period compared to a geological time scale. We have applied a long-term osmotic fluid sampling system "OsmoSampler" on the active gas hydrate system for one year in order to document how the gas venting and gas hydrate activity have changed the geochemical environments near the seafloor. All the major ion concentrations in the interstitial water show synchronous increase and decrease repeatedly in three to five days, reflecting the incorporation and release of fresh water in gas hydrates in response to the gas concentration change near the sampling site. Dissolved methane concentration increases rapidly and excessively (over several mM) in the first 40 days corresponding to the active gas venting. The increases of methane concentration are often associated with high ion concentration during high water pressure period, indicating excess gas release from shallow gas pockets. Contrarily, enhanced gas hydrate growth may plug the fluid-gas paths in shallow sediment, reducing gas hydrate formation due to the decrease of methane flux. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  3. Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Jiang, Jinbo; Peng, Xudong

    2016-08-01

    The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.

  4. Modeling soil gas dynamics in the context of noble gas tracer applications

    NASA Astrophysics Data System (ADS)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Peregovich, Bernhard; Machado, Carlos

    2017-04-01

    Noble gas tracer applications show a particular relevance for the investigation of gas dynamics in the unsaturated zone, but also for a treatment of soil contamination as well as concerning exchange processes between soil and atmosphere. In this context, reliable conclusions require a profound understanding of underlying biogeochemical processes. With regard to noble gas tracer applications, the dynamics of reactive and inert gases in the unsaturated zone is investigated. Based on long-term trends and varying climatic conditions, this is the first study providing general insights concerning the role of unsaturated zone processes. Modeling approaches are applied, in combination with an extensive set of measured soil air composition data from appropriate sampling sites. On the one hand, a simple modeling approach allows to identify processes which predominantly determine inert gas mixing ratios in soil air. On the other hand, the well-proven and sophisticated modeling routine Min3P is applied to describe the measured data by accounting for the complex nature of subsurface gas dynamics. Both measured data and model outcomes indicate a significant deviation of noble gas mixing ratios in soil air from the respective atmospheric values, occurring on seasonal scale. Observed enhancements of noble gas mixing ratios are mainly caused by an advective balancing of depleted sum values of O2+CO2, resulting from microbial oxygen depletion in combination with a preferential dissolution of CO2. A contrary effect, meaning an enhanced sum value of O2+CO2, is shown to be induced at very dry conditions due to the different diffusivities of O2 and CO2. Soil air composition data show a yearlong mass-dependent fractionation, occurring as a relative enhancement of heavier gas species with respect to lighter ones. The diffusive balancing of concentration gradients between soil air and atmosphere is faster for lighter gas species compared to heavier ones. The rather uniform fractionation is

  5. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  6. A Census of X-Ray Gas in NGC 1068: Results from 450ks of Chandra HETG Observations

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Evans, Daniel A.; Marshall, H.; Canizares, C.; Longinotti, A.; Nowak, M.; Schulz, N.

    2013-01-01

    We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating (HETG) on the Chandra X-ray observatory. The data show line and radiative recombination continuum (RRC) emission from a broad range of ions and elements. The models explore the importance of excitation processes for these lines including photoionization followed by recombination, radiative excitation by absorption of continuum radiation and inner shell fluorescence. The models show that the relative importance of these processes depends on the conditions in the emitting gas, and that no single emitting component can fit the entire spectrum. In particular, the relative importance of radiative excitation and photoionization/recombination differs according to the element and ion stage emitting the line. This in turn implies a diversity of values for the ionization parameter of the various components of gas responsible for the emission, ranging from log(Epsilon)=1 - 3. Using this, we obtain an estimate for the total amount of gas responsible for the observed emission. The mass flux through the region included in the HETG extraction region is approximately 0.3 Solar Mass/yr assuming ordered flow at the speed characterizing the line widths. This can be compared with what is known about this object from other techniques.

  7. A Census of X-ray gas in NGC 1068: Results from 450ks of Chandra HETG Observations.

    PubMed

    Kallman, T; Evans, Daniel A; Marshall, H; Canizares, C; Longinotti, A; Nowak, M; Schulz, N

    2014-01-10

    We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating (HETG) on the Chandra X-ray observatory. The data show line and radiative recombination continuum (RRC) emission from a broad range of ions and elements. The models explore the importance of excitation processes for these lines including photoionization followed by recombination, radiative excitation by absorption of continuum radiation and inner shell fluorescence. The models show that the relative importance of these processes depends on the conditions in the emitting gas, and that no single emitting component can fit the entire spectrum. In particular, the relative importance of radiative excitation and photoionization/recombination differs according to the element and ion stage emitting the line. This in turn implies a diversity of values for the ionization parameter of the various components of gas responsible for the emission, ranging from log(ξ)=1 - 3. Using this, we obtain an estimate for the total amount of gas responsible for the observed emission. The mass flux through the region included in the HETG extraction region is approximately 0.3 M ⊙ yr -1 assuming ordered flow at the speed characterizing the line widths. This can be compared with what is known about this object from other techniques.

  8. Effects of Activation Energy to Transient Response of Semiconductor Gas Sensor

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akira; Ohtani, Tatsuki

    The smell classifiable gas sensor will be desired for many applications such as gas detection alarms, process controls for food production and so on. We have tried to realize the sensor using transient responses of semiconductor gas sensor consisting of tin dioxide and pointed out that the sensor gave us different transient responses for kinds of gas. Results of model calculation showed the activation energy of chemical reaction on the sensor surface strongly depended on the transient response. We tried to estimate the activation energies by molecular orbital calculation with SnO2 Cluster. The results show that there is a liner relationship between the gradient of the transient responses and activation energies for carboxylic and alcoholic gases. Transient response will be predicted from activation energy in the same kind of gas and the smell discrimination by single semiconductor gas sensor will be realized by this relationship.

  9. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  10. Ca(2+) -complex stability of GAPAGPLIVPY peptide in gas and aqueous phase, investigated by affinity capillary electrophoresis and molecular dynamics simulations and compared to mass spectrometric results.

    PubMed

    Nachbar, Markus; El Deeb, Sami; Mozafari, Mona; Alhazmi, Hassan A; Preu, Lutz; Redweik, Sabine; Lehmann, Wolf Dieter; Wätzig, Hermann

    2016-03-01

    Strong, sequence-specific gas-phase bindings between proline-rich peptides and alkaline earth metal ions in nanoESI-MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404-2410), however its relevance for physiological-like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide-metal ion adducts in the gas phase by ESI-MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide-metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Emission quantification using the tracer gas dispersion method: The influence of instrument, tracer gas species and source simulation.

    PubMed

    Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker; Fredenslund, Anders M; Scheutz, Charlotte

    2018-09-01

    The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument and tracer gas combinations. Analytical instruments with a high detection frequency and good precision were established as the most suitable for successful TDM application. The application of an instrument with a poor precision could only to some extent be overcome by applying a higher tracer gas release rate. A sideward misplacement of the tracer gas release point of about 250m resulted in an emission rate comparable to those obtained using a tracer gas correctly simulating the methane emission. Conversely, an upwind misplacement of about 150m resulted in an emission rate overestimation of almost 50%, showing the importance of proper emission source simulation when applying the TDM. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Solar-pumped gas laser development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1980-01-01

    A survey of gas properties through detailed kinetic models led to the identification of critical gas parameters for use in choosing appropriate gas combinations for solar pumped lasers. Broadband photoabsorption in the visible or near UV range is required to excite large volumes of gas and to insure good solar absorption efficiency. The photoexcitation density is independent of the absorption bandwidth. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than 10 A to insure lasing threshold over reasonable gain lengths. The system should show a high degree of chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. Although photoexcitation of electronic vibrational transitions is considered as a possible system if the emission bands sufficiently narrow, it appears that photodissociation into atomic metastables is more likely to result in a successful solar pumped laser system.

  13. Upscaling gas permeability in tight-gas sandstones

    NASA Astrophysics Data System (ADS)

    Ghanbarian, B.; Torres-Verdin, C.; Lake, L. W.; Marder, M. P.

    2017-12-01

    Klinkenberg-corrected gas permeability (k) estimation in tight-gas sandstones is essential for gas exploration and production in low-permeability porous rocks. Most models for estimating k are a function of porosity (ϕ), tortuosity (τ), pore shape factor (s) and a characteristic length scale (lc). Estimation of the latter, however, has been the subject of debate in the literature. Here we invoke two different upscaling approaches from statistical physics: (1) the EMA and (2) critical path analysis (CPA) to estimate lc from pore throat-size distribution derived from mercury intrusion capillary pressure (MICP) curve. τ is approximated from: (1) concepts of percolation theory and (2) formation resistivity factor measurements (F = τ/ϕ). We then estimate k of eighteen tight-gas sandstones from lc, τ, and ϕ by assuming two different pore shapes: cylindrical and slit-shaped. Comparison with Klinkenberg-corrected k measurements showed that τ was estimated more accurately from F measurements than from percolation theory. Generally speaking, our results implied that the EMA estimated k within a factor of two of the measurements and more precisely than CPA. We further found that the assumption of cylindrical pores yielded more accurate k estimates when τ was estimated from concepts of percolation theory than the assumption of slit-shaped pores. However, the EMA with slit-shaped pores estimated k more precisely than that with cylindrical pores when τ was estimated from F measurements.

  14. 1995 National assessment of United States oil and gas resources; results, methodology, and supporting data

    USGS Publications Warehouse

    Gautier, Donald L.; Dolton, G.L.; Takahashi, K.I.; Varnes, K.L.

    1995-01-01

    This report summarizes the results of a 3-year study of the oil and gas resources of the onshore and state waters of the United States by the U.S. Geological Survey. A parallel study of the Federal offshore is being conducted by the Minerals Management Service. Estimates are made of technically recoverable oil, including measured (proved) reserves, future additions to reserves in existing fields, and undiscovered resources. Estimates are also made of the technically recoverable conventional resources of natural gas in measured reserves, in anticipated growth of reserves in existing fields, and in undiscovered resources. Additionally, an assessment is made of recoverable resources in continuous-type (largely unconventional) accumulations in sandstones, shales, chalks, and coal beds.

  15. The results of pre-design studies on the development of a new design of gas turbine compressor package of GPA-C-16 type

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.; Chobenko, V. M.; Shcherbakov, O. M.; Ushakov, S. M.; Parafiynyk, V. P.; Sereda, R. M.

    2017-08-01

    The article summarizes the results of analysis of data concerning the operation of turbocompressor packages at compressor stations for the natural gas transmission system of Ukraine. The basic requirements for gas turbine compressor packages used for modernization and reconstruction of compressor stations are considered. Using a 16 MW gas turbine package GPA-C-16S/76-1,44M1 as an example, the results of pre-design studies and some technical solutions that improve the energy efficiency of gas turbine compressor packages and their reliability, as well as its environmental performance are given. In particular, the article deals with the matching of performance characteristics of a centrifugal compressor (hereinafter compressor) and gas turbine drive to reduce fuel gas consumption; as well as application of energy efficient technologies, in particular, exhaust gas heat recovery units and gas-oil heat exchangers in turbocompressor packages oil system; as well as reducing emissions of carbon monoxide into the atmosphere using a catalytic exhaust system. Described technical solutions can be used for development of other types of gas turbine compressor packages.

  16. Gas exchange at whole plant level shows that a less conservative water use is linked to a higher performance in three ecologically distinct pine species

    NASA Astrophysics Data System (ADS)

    Salazar-Tortosa, D.; Castro, J.; Rubio de Casas, R.; Viñegla, B.; Sánchez-Cañete, E. P.; Villar-Salvador, P.

    2018-04-01

    Increasing temperatures and decreasing precipitation in large areas of the planet as a consequence of global warming will affect plant growth and survival. However, the impact of climatic conditions will differ across species depending on their stomatal response to increasing aridity, as this will ultimately affect the balance between carbon assimilation and water loss. In this study, we monitored gas exchange, growth and survival in saplings of three widely distributed European pine species (Pinus halepensis, P. nigra and P. sylvestris) with contrasting distribution and ecological requirements in order to ascertain the relationship between stomatal control and plant performance. The experiment was conducted in a common garden environment resembling rainfall and temperature conditions that two of the three species are expected to encounter in the near future. In addition, gas exchange was monitored both at the leaf and at the whole-plant level using a transient-state closed chamber, which allowed us to model the response of the whole plant to increased air evaporative demand (AED). P. sylvestris was the species with lowest survival and performance. By contrast, P. halepensis showed no mortality, much higher growth (two orders of magnitude), carbon assimilation (ca. 14 fold higher) and stomatal conductance and water transpiration (ca. 4 fold higher) than the other two species. As a consequence, P. halepensis exhibited higher values of water-use efficiency than the rest of the species even at the highest values of AED. Overall, the results strongly support that the weaker stomatal control of P. halepensis, which is linked to lower stem water potential, enabled this species to maximize carbon uptake under drought stress and ultimately outperform the more water conservative P. nigra and P. sylvestris. These results suggest that under a hotter drought scenario P. nigra and P. sylvestris would very likely suffer increased mortality, whereas P. halepensis could maintain

  17. Recovery of Water from Boiler Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending stronglymore » on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.« less

  18. Characterization of a hydro-pneumatic suspension strut with gas-oil emulsion

    NASA Astrophysics Data System (ADS)

    Yin, Yuming; Rakheja, Subhash; Yang, Jue; Boileau, Paul-Emile

    2018-06-01

    The nonlinear stiffness and damping properties of a simple and low-cost design of a hydro-pneumatic suspension (HPS) strut that permits entrapment of gas into the hydraulic oil are characterized experimentally and analytically. The formulation of gas-oil emulsion is studied in the laboratory, and the variations in the bulk modulus and mass density of the emulsion are formulated as a function of the gas volume fraction. An analytical model of the HPS is formulated considering polytropic change in the gas state, seal friction, and the gas-oil emulsion flows through orifices and valves. The model is formulated considering one and two bleed orifices configurations of the strut. The measured data acquired under a nearly constant temperature are used to identify gas volume fraction of the emulsion, and friction and flow discharge coefficients as functions of the strut velocity and fluid pressure. The results suggested that single orifice configuration, owing to high fluid pressure, causes greater gas entrapment within the oil and thus significantly higher compressibility of the gas-oil emulsion. The model results obtained under different excitations in the 0.1-8 Hz frequency range showed reasonably good agreements with the measured stiffness and damping properties of the HPS strut. The results show that the variations in fluid compressibility and free gas volume cause increase in effective stiffness but considerable reduction in the damping in a highly nonlinear manner. Increasing the gas volume fraction resulted in substantial hysteresis in the force-deflection and force-velocity characteristics of the strut.

  19. Detail exterior view looking north showing piping system adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail exterior view looking north showing piping system adjacent to engine house. Gas cooling system is on far right. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  20. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    NASA Astrophysics Data System (ADS)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  1. Ceramic regenerator systems development program. [for automobile gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1977-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  2. Evaluation results of the 700 deg C Chinese strain gauges. [for gas turbine engine

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1985-01-01

    Gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire in the Republic of China were evaluated for use in static strain measurement of hot gas turbine engines. Gauge factor variation with temperature, apparent strain, and drift were included. Results of gauge factor versus temperature tests show gauge factor decreasing with increasing temperature. The average slope is -3-1/2 percent/100 K, with an uncertainty band of + or - 8 percent. Values of room temperature gauge factor for the Chinese and Kanthal A-1 gauges averaged 2.73 and 2.12, respectively. The room temperature gauge factor of the Chinese gauges was specified to be 2.62. The apparent strain data for both the Chinese alloy and Kanthal A-1 showed large cycle to cycle nonrepeatability. All apparent strain curves had a similar S-shape, first going negative and then rising to positive value with increasing temperatures. The mean curve for the Chinese gauges between room temperature and 100 K had a total apparent strain of 1500 microstrain. The equivalent value for Kanthal A-1 was about 9000 microstrain. Drift tests at 950 K for 50 hr show an average drift rate of about -9 microstrain/hr. Short-term (1 hr) rates are higher, averaging about -40 microstrain for the first hour. In the temperature range 700 to 870 K, however, short-term drift rates can be as high as 1700 microstrain for the first hour. Therefore, static strain measurements in this temperature range should be avoided.

  3. Getting the gas out - developing gas networks in magmatic systems

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine; Rust, Alison; Oppenheimer, Julie; Belien, Isolde

    2015-04-01

    Volcanic eruption style, and explosive potential, are strongly controlled by the pre-eruptive history of the magmatic volatiles: specifically, the more efficient the gas loss prior to eruption, the lower the likelihood of primary (magmatic) explosive activity. Commonly considered gas loss mechanisms include separated flow, where individual bubbles (or bubble clouds) travel at a rate that is faster than the host magma, and permeable flow, where gas escapes through permeable (connected) pathways developed within a (relatively) static matrix. Importantly, gas loss via separated flow is episodic, while gas loss via permeable flow is likely to be continuous. Analogue experiments and numerical models on three phase (solid-liquid-gas) systems also suggest a third mechanism of gas loss that involves the opening and closing of 'pseudo fractures'. Pseudo fractures form at a critical crystallinity that is close to the maximum particle packing. Fractures form by local rearrangement of solid particles and liquid to form a through-going gas fracture; gas escape is episodic, and modulated by the available gas volume and the rate of return flow of interstitial liquid back into the fracture. In all of the gas escape scenarios described above, a fundamental control on gas behaviour is the melt viscosity, which affects the rate of individual bubble rise, the rate of bubble expansion, the rate of film thinning (required for bubble coalescence), and the rate of melt flow into gas-generated fractures. From the perspective of magma degassing, rates of gas expansion and film thinning are key to the formation of an interconnected (permeable) gas pathway. Experiments with both analogue and natural materials show that bubble coalescence is relatively slow, and, in particle-poor melts, does not necessarily create permeable gas networks. As a result, degassing efficiency is modulated by the time scales required either (1) to produce large individual bubbles or bubble clouds (in low viscosity

  4. Density-driven transport of gas phase chemicals in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai

    2018-01-01

    Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions

  5. Results of a Long-Term Demonstration of an Optical Multi-Gas Monitor on ISS

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul; Pilgrim, Jeffrey S.

    2015-01-01

    Previously at SAMAP we reported on the development of tunable diode laser spectroscopy (TDLS) based instruments for measuring small gas molecules in real time. TDLS technology has matured rapidly over the last 5 years as a result of advances in low power diode lasers as well as better detection schemes. In collaboration with two small businesses Vista Photonics, Inc. and Nanoracks LLC, NASA developed a 4 gas TDLS based monitor for an experimental demonstration of the technology on the International Space Station (ISS). Vista invented and constructed the core TDLS sensor. Nanoracks designed and built the enclosure, and certified the integrated monitor as a payload. The device, which measures oxygen, carbon dioxide, ammonia and water vapor, is called the Multi-Gas Monitor (MGM). MGM measures the 4 gases every few seconds and records a 30 second moving average of the concentrations. The relatively small unit draws only 2.5W. MGM was calibrated at NASA-Johnson Space Center in July 2013 and launched to ISS on a Soyuz vehicle in November 2013. Installation and activation of MGM occurred in February 2014, and the unit has been operating nearly continuously ever since in the Japanese Experiment Module. Data is downlinked from ISS about once per week. Oxygen and carbon dioxide data is compared with that from the central Major Constituents Analyzer. Water vapor data is compared with dew point measurements made by sensors in the Columbus module. The ammonia channel was tested by the crew using a commercial ammonia inhalant. MGM is remarkably stable to date. Results of 18 months of operation are presented and future applications including combustion product monitoring are discussed.

  6. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.

    PubMed

    Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M

    2018-02-20

    In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.

  7. Thermodynamic DFT analysis of natural gas.

    PubMed

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  8. Mechanical Properties of Gas Shale During Drilling Operations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Cheng, Yuanfang; Li, Menglai; Feng, Yongcun; Li, Xiaorong

    2017-07-01

    The mechanical properties of gas shale significantly affect the designs of drilling, completion, and hydraulic fracturing treatments. In this paper, the microstructure characteristics of gas shale from southern China containing up to 45.1% clay were analyzed using a scanning electron microscope. The gas shale samples feature strongly anisotropic characteristics and well-developed bedding planes. Their strength is controlled by the strength of both the matrix and the bedding planes. Conventional triaxial tests and direct shear tests are further used to study the chemical effects of drilling fluids on the strength of shale matrix and bedding planes, respectively. The results show that the drilling fluid has a much larger impact on the strength of the bedding plane than that of the shale matrix. The impact of water-based mud (WBM) is much larger compared with oil-based mud. Furthermore, the borehole collapse pressure of shale gas wells considering the effects of drilling fluids are analyzed. The results show that the collapse pressure increases gradually with the increase of drilling time, especially for WBM.

  9. shock driven instability of a multi-phase particle-gas system

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob; Black, Wolfgang; Dahal, Jeevan; Morgan, Brandon

    2015-11-01

    A computational study of a shock driven instability of a multiphse particle-gas system is presented. This instability can evolve in a similar fashion to the Richtmyer-Meshkov (RM) instability, but has addition parameters to be considered. Particle relaxation times, and density differences of the gas and particle-gas system can be adjusted to produce results which are different from the classical RM instability. We will show simulation results from the Ares code, developed at Lawrence Livermore National Laboratory, which uses a particle-in-cell approach to study the effects of the particle-gas system parameters. Mixing parameters will be presented to highlight the suppression of circulation and gas mixing by the particle phase.

  10. CO 2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE PAGES

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; ...

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO 2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO 2 emissions involves coupling CO 2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO 2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gasesmore » (CH 4 and CO 2) and associated economic consequences. Where enhanced condensation of CO 2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH 4. Volumetric changes to montmorillonites occur during exposure to CO 2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO 2 intercalation. Thus, experimental evidence suggests CH 4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH 4:CO 2 gas systems, where CH 4 concentrations prevail, indicate preferential CO 2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO 2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH 4/CO 2 exchange rates to obtain peak natural gas production.« less

  11. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    NASA Astrophysics Data System (ADS)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas

  12. Geostatistical modeling of the gas emission zone and its in-place gas content for Pittsburgh-seam mines using sequential Gaussian simulation

    USGS Publications Warehouse

    Karacan, C.O.; Olea, R.A.; Goodman, G.

    2012-01-01

    Determination of the size of the gas emission zone, the locations of gas sources within, and especially the amount of gas retained in those zones is one of the most important steps for designing a successful methane control strategy and an efficient ventilation system in longwall coal mining. The formation of the gas emission zone and the potential amount of gas-in-place (GIP) that might be available for migration into a mine are factors of local geology and rock properties that usually show spatial variability in continuity and may also show geometric anisotropy. Geostatistical methods are used here for modeling and prediction of gas amounts and for assessing their associated uncertainty in gas emission zones of longwall mines for methane control.This study used core data obtained from 276 vertical exploration boreholes drilled from the surface to the bottom of the Pittsburgh coal seam in a mining district in the Northern Appalachian basin. After identifying important coal and non-coal layers for the gas emission zone, univariate statistical and semivariogram analyses were conducted for data from different formations to define the distribution and continuity of various attributes. Sequential simulations performed stochastic assessment of these attributes, such as gas content, strata thickness, and strata displacement. These analyses were followed by calculations of gas-in-place and their uncertainties in the Pittsburgh seam caved zone and fractured zone of longwall mines in this mining district. Grid blanking was used to isolate the volume over the actual panels from the entire modeled district and to calculate gas amounts that were directly related to the emissions in longwall mines.Results indicated that gas-in-place in the Pittsburgh seam, in the caved zone and in the fractured zone, as well as displacements in major rock units, showed spatial correlations that could be modeled and estimated using geostatistical methods. This study showed that GIP volumes may

  13. Geostatistical modeling of the gas emission zone and its in-place gas content for Pittsburgh-seam mines using sequential Gaussian simulation

    PubMed Central

    Karacan, C. Özgen; Olea, Ricardo A.; Goodman, Gerrit

    2015-01-01

    Determination of the size of the gas emission zone, the locations of gas sources within, and especially the amount of gas retained in those zones is one of the most important steps for designing a successful methane control strategy and an efficient ventilation system in longwall coal mining. The formation of the gas emission zone and the potential amount of gas-in-place (GIP) that might be available for migration into a mine are factors of local geology and rock properties that usually show spatial variability in continuity and may also show geometric anisotropy. Geostatistical methods are used here for modeling and prediction of gas amounts and for assessing their associated uncertainty in gas emission zones of longwall mines for methane control. This study used core data obtained from 276 vertical exploration boreholes drilled from the surface to the bottom of the Pittsburgh coal seam in a mining district in the Northern Appalachian basin. After identifying important coal and non-coal layers for the gas emission zone, univariate statistical and semivariogram analyses were conducted for data from different formations to define the distribution and continuity of various attributes. Sequential simulations performed stochastic assessment of these attributes, such as gas content, strata thickness, and strata displacement. These analyses were followed by calculations of gas-in-place and their uncertainties in the Pittsburgh seam caved zone and fractured zone of longwall mines in this mining district. Grid blanking was used to isolate the volume over the actual panels from the entire modeled district and to calculate gas amounts that were directly related to the emissions in longwall mines. Results indicated that gas-in-place in the Pittsburgh seam, in the caved zone and in the fractured zone, as well as displacements in major rock units, showed spatial correlations that could be modeled and estimated using geostatistical methods. This study showed that GIP volumes may

  14. Life-cycle analysis of shale gas and natural gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.E.; Han, J.; Burnham, A.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results showmore » that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.« less

  15. A 3D Model for Gas Transfer, Storage and Resulting Displacement in a Permeable Volcanic Edifice

    NASA Astrophysics Data System (ADS)

    Collinson, Amy; Neuberg, Jurgen

    2014-05-01

    The total volume of gas in a magma, dissolved and subsequently exsolved, greatly influences the degree of explosiveness of a volcanic system. There is a marked contrast between the behaviour of a volcano in an open system compared to one which is closed. Whilst gas release is evident from surface gas emission measurements, gas storage is also thought to play an important role, as evidenced by large gas emissions after some large dome collapse events, suggesting gas may be stored in large volumes at shallow depths within the dome and edifice. Consequently, it is essential to understand degassing, to appreciate how much gas may be stored and where, and under what conditions it may be transferred or emitted to the atmosphere. We use previous experimental data on permeabilities to create 3D numerical models to investigate gas transport and storage in a permeable volcanic edifice. We combine the continuity equation, Darcy's law and the ideal gas law to derive a partial differential equation which is solved using a finite element method to obtain the gas pressure. The associated pressure gradient is then used within Darcy's law to calculate the gas velocity. In addition, we use the momentum equation to investigate how the presence of gas and variations in permeability influence the rate and degree of deformation in the volcanic edifice. Hence this provides two important surface constraints: gas emissions and surface displacement. Geometries are created to simulate the topography of actual volcanoes and the pressure and permeabilities incorporated into the model as boundary and domain conditions, respectively. This method is applied to investigate a variety of volcanological phenomena affecting gas, for example regions of high permeability due to fractures, or low permeability due to sealing.

  16. The Viking gas exchange experiment results from Chryse and Utopia surface samples

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Berdahl, B. J.

    1977-01-01

    Immediate gas changes occurred when untreated Martian surface samples were humidified and/or wet by an aqueous nutrient medium in the Viking lander gas exchange experiment. The evolutions of N2, CO2, and Ar are mainly associated with soil surface desorption caused by water vapor, while O2 evolution is primarily associated with decomposition of superoxides inferred to be present on Mars. On recharges with fresh nutrient and test gas, only CO2 was given off, and its rate of evolution decreased with each recharge. This CO2 evolution is thought to come from the oxidation of organics present in the nutrient by gamma Fe2O3 in the surface samples. Atmospheric analyses were also performed at both sites. The mean atmospheric composition from four analyses is N2, 2.3%; O2, not greater than 0.15%; Ar, 1.5% and CO2, 96.2%.

  17. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  18. 1995 National Assessment of United States Oil and Gas Resources: Results, Methodology, and Supporting Data

    USGS Publications Warehouse

    Gautier, Donald L.; Dolton, Gordon L.; Takahashi, Kenneth I.; Varnes, Katharine L.

    1996-01-01

    This revised CD-ROM summarizes the results, released in 1995, of the 3-year study of the oil and gas resources of the onshore and state waters of the United States. Minor errors in the original DDS-30 (listed in DDS-35 and DDS-36) are corrected in this revised version and in the data files now released in DDS-35 and DDS-36. Estimates are made of technically recoverable oil, including measured (proved) reserves, future additions to reserves in existing fields, and undiscovered resources. Estimates are also made of the technically recoverable conventional resources of natural gas in measured reserves, in anticipated growth of reserves in existing fields, and in undiscovered resources. Additionally, an assessment is made of recoverable resources in continuous-type (largely unconventional) accumulations in sandstones, shales, chalks, and coal beds.

  19. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  20. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  1. Proximity to natural gas wells and reported health status: results of a household survey in Washington County, Pennsylvania.

    PubMed

    Rabinowitz, Peter M; Slizovskiy, Ilya B; Lamers, Vanessa; Trufan, Sally J; Holford, Theodore R; Dziura, James D; Peduzzi, Peter N; Kane, Michael J; Reif, John S; Weiss, Theresa R; Stowe, Meredith H

    2015-01-01

    Little is known about the environmental and public health impact of unconventional natural gas extraction activities, including hydraulic fracturing, that occur near residential areas. Our aim was to assess the relationship between household proximity to natural gas wells and reported health symptoms. We conducted a hypothesis-generating health symptom survey of 492 persons in 180 randomly selected households with ground-fed wells in an area of active natural gas drilling. Gas well proximity for each household was compared with the prevalence and frequency of reported dermal, respiratory, gastrointestinal, cardiovascular, and neurological symptoms. The number of reported health symptoms per person was higher among residents living < 1 km (mean ± SD, 3.27 ± 3.72) compared with > 2 km from the nearest gas well (mean ± SD, 1.60 ± 2.14; p = 0.0002). In a model that adjusted for age, sex, household education, smoking, awareness of environmental risk, work type, and animals in house, reported skin conditions were more common in households < 1 km compared with > 2 km from the nearest gas well (odds ratio = 4.1; 95% CI: 1.4, 12.3; p = 0.01). Upper respiratory symptoms were also more frequently reported in persons living in households < 1 km from gas wells (39%) compared with households 1-2 km or > 2 km from the nearest well (31 and 18%, respectively) (p = 0.004). No equivalent correlation was found between well proximity and other reported groups of respiratory, neurological, cardiovascular, or gastrointestinal conditions. Although these results should be viewed as hypothesis generating, and the population studied was limited to households with a ground-fed water supply, proximity of natural gas wells may be associated with the prevalence of health symptoms including dermal and respiratory conditions in residents living near natural gas extraction activities. Further study of these associations, including the role of specific air and water exposures, is warranted.

  2. Chemo-mechanical coupling in kerogen gas adsorption/desorption.

    PubMed

    Ho, Tuan Anh; Wang, Yifeng; Criscenti, Louise J

    2018-05-09

    Kerogen plays a central role in hydrocarbon generation in an oil/gas reservoir. In a subsurface environment, kerogen is constantly subjected to stress confinement or relaxation. The interplay between mechanical deformation and gas adsorption of the materials could be an important process for shale gas production but unfortunately is poorly understood. Using a hybrid Monte Carlo/molecular dynamics simulation, we show here that a strong chemo-mechanical coupling may exist between gas adsorption and mechanical strain of a kerogen matrix. The results indicate that the kerogen volume can expand by up to 5.4% and 11% upon CH4 and CO2 adsorption at 192 atm, respectively. The kerogen volume increases with gas pressure and eventually approaches a plateau as the kerogen becomes saturated. The volume expansion appears to quadratically increase with the amount of gas adsorbed, indicating a critical role of the surface layer of gas adsorbed in the bulk strain of the material. Furthermore, gas uptake is greatly enhanced by kerogen swelling. Swelling also increases the surface area, porosity, and pore size of kerogen. Our results illustrate the dynamic nature of kerogen, thus questioning the validity of the current assumption of a rigid kerogen molecular structure in the estimation of gas-in-place for a shale gas reservoir or gas storage capacity for subsurface carbon sequestration. The coupling between gas adsorption and kerogen matrix deformation should be taken into consideration.

  3. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, Alexander K.; Pokroy, Boaz; Seminara, Agnese

    2011-09-28

    Most of the world's bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severelymore » compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.« less

  4. Post-Explosion Tracer Gas Study in Fractured Granite

    NASA Astrophysics Data System (ADS)

    Avendano, S.; Horne, M.; Herrera, C.; Person, M. A.; Gorman, E.; Stroujkova, A. F.; Gomez-Velez, J. D.

    2017-12-01

    Radioactive noble gas detection at suspected underground nuclear test sites is the only proven way to confirm that a nuclear test has occurred. However, the migration of gas effluent through fracture networks is still poorly understood. A pilot field study of the gas migration through rock damaged by explosions was conducted in a rock quarry in New Hampshire in the summer of 2017. Tracer gas (SF6), used as a proxy for the noble gas, was released into a cavity created by an explosion (63 kg of TNT at a depth of 13 m) conducted during the summer of 2016. The upper 5 m of borehole were grouted with stainless steel tubing sealed in the concrete and the gas was pumped through the tubing. Before the gas release, we conducted a series of geophysical and hydrologic tests: a pump test, several slug tests, a salt tracer release in two boreholes, and TEM and ERT surveys. Pressure and electrical conductivity transducers were placed in the surrounding boreholes to monitor the pressure changes and tracer arrival during the pumping. The results of the pump test show that the rock is well connected and has high permeability. Interestingly, the injection of gas resulted in a substantial increase of the local hydraulic conductivity, as evidenced by slug test results before and after injection. The pressure changes in the surrounding boreholes were also monitored during the gas release. We observed gas breakthrough immediately after the release. During the first minute after injection, a pressure wave was observed in two boreholes suggestive of inertial effects and hydraulic fracturing after gas release. The concentrations observed at each monitoring site are consistent with the pump testing. The results of this study will be used in our upcoming experiments and to test detailed mathematical models.

  5. PIV Measurements of Gas Flow Fields from Burning End

    NASA Astrophysics Data System (ADS)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  6. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: Introduction and overview

    USGS Publications Warehouse

    Ruppel, C.; Boswell, R.; Jones, E.

    2008-01-01

    The Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) is a consortium of production and service companies and some government agencies formed to address the challenges that gas hydrates pose for deepwater exploration and production. In partnership with the U.S. Department of Energy and with scientific assistance from the U.S. Geological Survey and academic partners, the JIP has focused on studies to assess hazards associated with drilling the fine-grained, hydrate-bearing sediments that dominate much of the shallow subseafloor in the deepwater (>500 m) Gulf of Mexico. In preparation for an initial drilling, logging, and coring program, the JIP sponsored a multi-year research effort that included: (a) the development of borehole stability models for hydrate-bearing sediments; (b) exhaustive laboratory measurements of the physical properties of hydrate-bearing sediments; (c) refinement of new techniques for processing industry-standard 3-D seismic data to constrain gas hydrate saturations; and (d) construction of instrumentation to measure the physical properties of sediment cores that had never been removed from in situ hydrostatic pressure conditions. Following review of potential drilling sites, the JIP launched a 35-day expedition in Spring 2005 to acquire well logs and sediment cores at sites in Atwater Valley lease blocks 13/14 and Keathley Canyon lease block 151 in the northern Gulf of Mexico minibasin province. The Keathley Canyon site has a bottom simulating reflection at ???392 m below the seafloor, while the Atwater Valley location is characterized by seafloor mounds with an underlying upwarped seismic reflection consistent with upward fluid migration and possible shoaling of the base of the gas hydrate stability (BGHS). No gas hydrate was recovered at the drill sites, but logging data, and to some extent cores, suggest the occurrence of gas hydrate in inferred coarser-grained beds and fractures, particularly between 220 and 330 m below the seafloor

  7. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas

    PubMed Central

    Kuo, Chin-Guo; Chen, Jung-Hsuan; Chao, Yi-Chieh; Chen, Po-Lin

    2017-01-01

    In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO) nanowire array produced by atomic layer deposition (ALD) while an organic material was a p-type semiconductor, poly(3-hexylthiophene) (P3HT). P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 1019 cm−3 and 24.7 cm2∙V−1∙s−1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm. PMID:29295573

  8. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas.

    PubMed

    Kuo, Chin-Guo; Chen, Jung-Hsuan; Chao, Yi-Chieh; Chen, Po-Lin

    2017-12-25

    In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO) nanowire array produced by atomic layer deposition (ALD) while an organic material was a p-type semiconductor, poly(3-hexylthiophene) (P3HT). P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 10 19 cm -3 and 24.7 cm²∙V -1 ∙s -1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

  9. Upscaling pore pressure-dependent gas permeability in shales

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Javadpour, Farzam

    2017-04-01

    Upscaling pore pressure dependence of shale gas permeability is of great importance and interest in the investigation of gas production in unconventional reservoirs. In this study, we apply the Effective Medium Approximation, an upscaling technique from statistical physics, and modify the Doyen model for unconventional rocks. We develop an upscaling model to estimate the pore pressure-dependent gas permeability from pore throat size distribution, pore connectivity, tortuosity, porosity, and gas characteristics. We compare our adapted model with six data sets: three experiments, one pore-network model, and two lattice-Boltzmann simulations. Results showed that the proposed model estimated the gas permeability within a factor of 3 of the measurements/simulations in all data sets except the Eagle Ford experiment for which we discuss plausible sources of discrepancies.

  10. Analysis of gob gas venthole production performances for strata gas control in longwall mining.

    PubMed

    Karacan, C Özgen

    2015-10-01

    Longwall mining of coal seams affects a large area of overburden by deforming it and creating stress-relief fractures, as well as bedding plane separations, as the mining face progresses. Stress-relief fractures and bedding plane separations are recognized as major pathways for gas migration from gas-bearing strata into sealed and active areas of the mines. In order for strata gas not to enter and inundate the ventilation system of a mine, gob gas ventholes (GGVs) can be used as a methane control measure. The aim of this paper is to analyze production performances of GGVs drilled over a longwall panel. These boreholes were drilled to control methane emissions from the Pratt group of coals due to stress-relief fracturing and bedding plane separations into a longwall mine operating in the Mary Lee/Blue Creek coal seam of the Upper Pottsville Formation in the Black Warrior Basin, Alabama. During the course of the study, Pratt coal's reservoir properties were integrated with production data of the GGVs. These data were analyzed by using material balance techniques to estimate radius of influence of GGVs, gas-in-place and coal pressures, as well as their variations during mining. The results show that the GGVs drilled to extract gas from the stress-relief zone of the Pratt coal interval is highly effective in removing gas from the Upper Pottsville Formation. The radii of influence of the GGVs were in the order of 330-380 m, exceeding the widths of the panels, due to bedding plane separations and stress relieved by fracturing. Material balance analyses indicated that the initial pressure of the Pratt coals, which was around 648 KPa when longwall mining started, decreased to approximately 150 KPa as the result of strata fracturing and production of released gas. Approximately 70% of the initial gas-in-place within the area of influence of the GGVs was captured during a period of one year.

  11. Gas Classification Using Deep Convolutional Neural Networks.

    PubMed

    Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin

    2018-01-08

    In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP).

  12. Gas Classification Using Deep Convolutional Neural Networks

    PubMed Central

    Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin

    2018-01-01

    In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP). PMID:29316723

  13. Liquid propellant gas generators

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design of gas generators intended to provide hot gases for turbine drive is discussed. Emphasis is placed on the design and operation of bipropellant gas generators because of their wider use. Problems and limitations involved in turbine operation due to temperature effects are analyzed. Methods of temperature control of gas turbines and combustion products are examined. Drawings of critical sections of gas turbines to show their operation and areas of stress are included.

  14. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  15. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  16. Gas-hydrate-bearing sand reservoir systems in the offshore of India: Results of the India National Gas Hydrate Program Expedition 02

    USGS Publications Warehouse

    Kumar, P.; Collett, Timothy S.; Vishwanath, K.; Shukla, K.M.; Nagalingam, J.; Lall, M.V.; Yamada, Y; Schultheiss, P.; Holland, M.

    2016-01-01

    The India National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India using the deepwater drilling vessel Chikyu. The primary goal of this expedition was to explore for highly saturated gas hydrate occurrences in sand reservoirs that would become targets for future production tests. The first two months of the expedition were dedicated to logging-whiledrilling (LWD) operations, with a total of 25 holes drilled and logged. The next three months were dedicated to coring operations at 10 of the most promising sites. With a total of five months of continuous field operations, the expedition was the most comprehensive dedicated gas hydrate investigation ever undertaken.

  17. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qazi, H. I. A.; Li, He-Ping, E-mail: liheping@tsinghua.edu.cn; Zhang, Xiao-Fei

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up themore » generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.« less

  18. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Day, D. E.; Evanoski-Cole, A. R.; Sive, B. C.; Hecobian, A.; Zhou, Y.; Gebhart, K. A.; Hand, J. L.; Sullivan, A. P.; Li, Y.; Schurman, M. I.; Desyaterik, Y.; Malm, W. C.; Schichtel, B. A.; Collett, J. L., Jr.

    2015-10-01

    The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013-2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than four months.

  19. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Day, D. E.; Evanoski-Cole, A. R.; Sive, B. C.; Hecobian, A.; Zhou, Y.; Gebhart, K. A.; Hand, J. L.; Sullivan, A. P.; Li, Y.; Schurman, M. I.; Desyaterik, Y.; Malm, W. C.; Collett, J. L., Jr.; Schichtel, B. A.

    2016-02-01

    The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013-2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long-term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than 4 months.

  20. Numerical simulation of gas distribution in goaf under Y ventilation mode

    NASA Astrophysics Data System (ADS)

    Li, Shengzhou; Liu, Jun

    2018-04-01

    Taking the Y type ventilation of the working face as the research object, diffusion equation is introduced to simulate the diffusion characteristics of gas, using Navier-Stokes equation and Brinkman equation to simulate the gas flow in working face and goaf, the physical model of gas flow in coal mining face was established. With numerical simulation software COMSOL multiphysics methods, gas distribution in goaf under Y ventilation mode is simulated and gas distribution of the working face, the upper corner and goaf is analysised. The results show that the Y type ventilation system can effectively improve the corner gas accumulation and overrun problem.

  1. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOEpatents

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  2. NGVLA Observations of Dense Gas Filaments in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Di Francesco, James; Chen, Mike; Keown, Jared; GAS Team, KEYSTONE Team

    2018-01-01

    Recent observations of continuum emission from nearby star-forming regions with Herschel and JCMT have revealed that filaments are ubiquitous structures within molecular clouds. Such filaments appear to be intimately connected to star formation, with those having column densities of AV > 8 hosting the majority of prestellar cores and young protostars in clouds. Indeed, this “threshold” can be explained simply as the result of supercritical cylinder fragmentation. How specifically star-forming filaments form in molecular clouds, however, remains unclear, though gravity and turbulence are likely involved. Observations of their kinematics are needed to understand how mass flows both onto and through these filaments. We show here results from two recent surveys, the Green Bank Ammonia Survey (GAS) and the K-band Examinations of Young Stellar Object Natal Environments (KEYSTONE) that have used the Green Bank Telescope’s K-band Focal Plane Array instrument to map NH3 (1,1) emission from dense gas in nearby star-forming regions. Data from both surveys show that NH3 emission traces extremely well the high column density gas across these star-forming regions. In particular, the GAS results for NGC 1333 show NH3-based velocity gradients either predominantly parallel or perpendicular to the filament spines. Though the GAS and KEYSTONE data are vital for probing filaments, higher resolutions than possible with the GBT alone are needed to examine the kinematic patterns on the 0.1-pc scales of star-forming cores within filaments. We describe how the Next Generation Very Large Array (NGVLA) will uniquely provide the key wide-field data of high sensitivity needed to explore how ambient gas in molecular clouds forms filaments that evolve toward star formation.

  3. Simplified conditions holding at the gas-liquid interface during evaporation

    NASA Astrophysics Data System (ADS)

    Morris, S. J. S.

    2017-11-01

    We show that on the gas side of the interface between a pure liquid and a binary mixture of its vapour with an insoluble gas, the normal derivative of vapour partial pressure pv satisfies ∂pv/∂n +αc/2 πpD (P -pv) (p -pv) = 0 . Constants α, c, D denote the dimensionless accommodation coefficient, a molecular speed and the diffusivity. Provided the continuum approximation holds within the gas, and α = O(1) , this boundary condition implies that evaporation can take one of two forms. (a) If the coexistence pressure P evaluated at the interface is less than the constant total gas pressure p, liquid at the interface is in local thermodynamic equilibrium with its vapour, and the evaporation rate is determined by diffusion through the gas. (b) Conversely, if P > p , gas at the interface consists of pure vapour, and the evaporation rate is determined by processes within the liquid. In the Wayner theory of the heated evaporating meniscus, such as that in a heat pipe, case (b) is assumed. As an application of our result, we show that some of the published experiments intended to test the Wayner theory instead operate under conditions in which case (a) holds. As a result, they do not perform the test intended.

  4. Gas loss in simulated galaxies as they fall into clusters

    PubMed Central

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.

    2014-01-01

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167

  5. Gas loss in simulated galaxies as they fall into clusters.

    PubMed

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A

    2014-06-03

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.

  6. A Census of X-ray Gas in NGC 1068: Results From 450 ks of CHANDRA High Energy Transmisson Grating Observations

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Evans, Daniel A.; Marshall, H.; Canizares, C.; Longinotti, A.; Nowak, M.; Schulz, N.

    2013-01-01

    We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating on Chandra. The data show line and radiative recombination continuum emission from a broad range of ions and elements. The models explore the importance of excitation processes for these lines including photoionization followed by recombination, radiative excitation by absorption of continuum radiation, and inner shell fluorescence. The models show that the relative importance of these processes depends on the conditions in the emitting gas and that no single emitting component can fit the entire spectrum. In particular, the relative importance of radiative excitation and photoionization/recombination differs according to the element and ion stage emitting the line. This in turn implies a diversity of values for the ionization parameter of the various components of gas responsible for the emission, ranging from log(E ) = 1 to 3. Using this, we obtain an estimate for the total amount of gas responsible for the observed emission. The mass flux through the region included in the HETG extraction region is approximately 0.3M/yr, assuming ordered flow at the speed characterizing the line widths. This can be compared with what is known about this object from other techniques.

  7. New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning

    NASA Astrophysics Data System (ADS)

    Mylläri, Fanni; Asmi, Eija; Anttila, Tatu; Saukko, Erkka; Vakkari, Ville; Pirjola, Liisa; Hillamo, Risto; Laurila, Tuomas; Häyrinen, Anna; Rautiainen, Jani; Lihavainen, Heikki; O'Connor, Ewan; Niemelä, Ville; Keskinen, Jorma; Dal Maso, Miikka; Rönkkö, Topi

    2016-06-01

    Atmospheric emissions, including particle number and size distribution, from a 726 MWth coal-fired power plant were studied experimentally from a power plant stack and flue-gas plume dispersing in the atmosphere. Experiments were conducted under two different flue-gas cleaning conditions. The results were utilized in a plume dispersion and dilution model taking into account particle formation precursor (H2SO4 resulted from the oxidation of emitted SO2) and assessment related to nucleation rates. The experiments showed that the primary emissions of particles and SO2 were effectively reduced by flue-gas desulfurization and fabric filters, especially the emissions of particles smaller than 200 nm in diameter. Primary pollutant concentrations reached background levels in 200-300 s. However, the atmospheric measurements indicated that new particles larger than 2.5 nm are formed in the flue-gas plume, even in the very early phases of atmospheric ageing. The effective number emission of nucleated particles were several orders of magnitude higher than the primary particle emission. Modelling studies indicate that regardless of continuing dilution of the flue gas, nucleation precursor (H2SO4 from SO2 oxidation) concentrations remain relatively constant. In addition, results indicate that flue-gas nucleation is more efficient than predicted by atmospheric aerosol modelling. In particular, the observation of the new particle formation with rather low flue-gas SO2 concentrations changes the current understanding of the air quality effects of coal combustion. The results can be used to evaluate optimal ways to achieve better air quality, particularly in polluted areas like India and China.

  8. Gas hydrate occurrences in the Danube Delta, Western Black Sea: Results from 2D and 3D controlled source electromagnetics

    NASA Astrophysics Data System (ADS)

    Schwalenberg, Katrin; Hölz, Sebastian; Gehrmann, Romina; Rippe, Dennis; Dannowski, Anke; Zander, Timo; Duan, Shuangmin; Jegen, Marion; Bialas, Jörg

    2017-04-01

    Marine controlled source electromagnetic (CSEM) data have been collected over gas hydrate targets in the Danube Delta off the coasts of Bulgaria and Romania in early 2014 during voyage MSM35 on R/V Maria S. MERIAN. The cruise was part of the German SUGAR Project, a joint venture project with the goal to study submarine gas hydrates as a source of methane. Within European waters the Black Sea is one of the most prospective hydrocarbon areas. Thick sedimentary basins, the existence of an extended gas hydrate stability zone and the observation of multiple bottom simulating reflectors (BSR) in the western part indicate a huge gas hydrate potential in sandy sediments. Low pore-water salinities between 1 and 4 ppt have been observed in borehole data at depths below 30 mbsf, and are attributed to sea level low stands in the past. 2D and 3D CSEM data sets have been collected over one of the channel levee systems of the Danube Delta fan. High-resolution 2D and 3D seismic, and OBS data are available in the same target area providing structural information and porosity profiles from seismic velocity data. Analysis of subsets of the 3D CSEM data reveal pore-water salinities around 4 ppt for the shallow sediment section, thus are not as low as suggested by the borehole data. The inversion of both 2D and 3D CSEM data sets reveal highly anomalous resistivities within the gas hydrate stability field. We believe that high gas hydrate saturations are the likely cause, as low pore-water salinities are not sufficient to explain the high resistivities, seismic data indicate no clear gas migration pathways through the stability field, nor do hydro-acoustic data show areas of gas seepage which are confined to the landward edge of the stability field. Estimates of the gas hydrate saturation are commonly derived from Archie's Law, and strongly depend on the proper choice of input parameters. We apply porosities from seismic velocity profiles, pore-water resistivities derived from salinity

  9. THE INERT GAS PURIFIER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Rapacki, H.; Slapa, M.

    1961-01-01

    A device used for purmfication of inert gases used nkn nuclear detectors such as grid ionization chambers, proportional, and gas scintillation counters is described. Gas to be purifnked cireulates in a svstem containing a column consisting of trays with Ca and Mg shavings, horizontal pipes, valves, and a detector to be filled with a pure gas. The device is designed to work at up to 10 atm. The apparatus ts out-gassed very carefully. lt is filled with argon, which ps cnkrculated for 5 hours and then pumped out. Operation is based on the thermal circulation principle. The process depends onmore » the filter temperature and purification time, which in turn, are function of the gas pressure and the chemical composition of the filter. The best resolution obtained for alpha particles from natural uranium at 4.20 and 4.76 Mev was 6%. Commercial argon at 6 atm was used. Curves obtained show that the filter temperature cannot be lower than 210 deg C and that the one containing calcium mixed with magnesium gives better results than that containing pure calcium only. (L.N.N.)« less

  10. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  11. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  12. Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas.

    PubMed

    Laurenzi, Ian J; Jersey, Gilbert R

    2013-05-07

    We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. Results indicate that a typical Marcellus gas life cycle yields 466 kg CO2eq/MWh (80% confidence interval: 450-567 kg CO2eq/MWh) of greenhouse gas (GHG) emissions and 224 gal/MWh (80% CI: 185-305 gal/MWh) of freshwater consumption. Operations associated with hydraulic fracturing constitute only 1.2% of the life cycle GHG emissions, and 6.2% of the life cycle freshwater consumption. These results are influenced most strongly by the estimated ultimate recovery (EUR) of the well and the power plant efficiency: increase in either quantity will reduce both life cycle freshwater consumption and GHG emissions relative to power generated at the plant. We conclude by comparing the life cycle impacts of Marcellus gas and U.S. coal: The carbon footprint of Marcellus gas is 53% (80% CI: 44-61%) lower than coal, and its freshwater consumption is about 50% of coal. We conclude that substantial GHG reductions and freshwater savings may result from the replacement of coal-fired power generation with gas-fired power generation.

  13. Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.

    PubMed

    Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky

    2018-05-01

    Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  15. Continuum Model of Gas Uptake for Inhomogeneous Fluids

    DOE PAGES

    Ihm, Yungok; Cooper, Valentino R.; Vlcek, Lukas; ...

    2017-07-20

    We describe a continuum model of gas uptake for inhomogeneous fluids (CMGIF) and use it to predict fluid adsorption in porous materials directly from gas-substrate interaction energies determined by first principles calculations or accurate effective force fields. The method uses a perturbation approach to correct bulk fluid interactions for local inhomogeneities caused by gas substrate interactions, and predicts local pressure and density of the adsorbed gas. The accuracy and limitations of the model are tested by comparison with the results of Grand Canonical Monte Carlo simulations of hydrogen uptake in metal-organic frameworks (MOFs). We show that the approach provides accuratemore » predictions at room temperature and at low temperatures for less strongly interacting materials. As a result, the speed of the CMGIF method makes it a promising candidate for high-throughput materials discovery in connection with existing databases of nano-porous materials.« less

  16. New approach in direct-simulation of gas mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren

    1991-01-01

    Results are reported for an investigation of a new direct-simulation Monte Carlo method by which energy transfer and chemical reactions are calculated. The new method, which reduces to the variable cross-section hard sphere model as a special case, allows different viscosity-temperature exponents for each species in a gas mixture when combined with a modified Larsen-Borgnakke phenomenological model. This removes the most serious limitation of the usefulness of the model for engineering simulations. The necessary kinetic theory for the application of the new method to mixtures of monatomic or polyatomic gases is presented, including gas mixtures involving chemical reactions. Calculations are made for the relaxation of a diatomic gas mixture, a plane shock wave in a gas mixture, and a chemically reacting gas flow along the stagnation streamline in front of a hypersonic vehicle. Calculated results show that the introduction of different molecular interactions for each species in a gas mixture produces significant differences in comparison with a common molecular interaction for all species in the mixture. This effect should not be neglected for accurate DSMC simulations in an engineering context.

  17. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model

    PubMed Central

    Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen

    2016-01-01

    To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293

  18. Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania (Black Sea)

    NASA Astrophysics Data System (ADS)

    Riboulot, V.; Cattaneo, A.; Sultan, N.; Ker, S.; Scalabrin, C.; Gaillot, A.; Jouet, G.; Marsset, B.; Thomas, Y.; Ballas, G.; Marsset, T.; Garziglia, S.; Ruffine, L.; Boulart, C.

    2016-12-01

    The Romanian sector of the Black Sea deserves attention because the Danube deep-sea fan is one of the largest sediment depositional systems worldwide and is considered the world's most isolated sea, the largest anoxic water body on the planet and a unique energy-rich sea. Due to the high sediment accumulation rate, presence of organic matter and anoxic conditions, the Black sea sediment offshore the Danube delta is rich in gas and thus show BSR. The cartography of the BSR over the last 20 years, exhibits its widespread occurrence, indicative of extensive development of hydrate accumulations and a huge gas hydrate potential. By combining old and new datasets acquired in 2015 during the GHASS expedition, we performed a geomorphological analysis of the continental slope north-east of the Danube canyon that reveals the presence of several landslides inside and outside several canyons incising the seafloor. It is a complex study area presenting sedimentary processes such as seafloor erosion and instability, mass wasting, formation of gas hydrates, fluid migration, gas escape, where the imprint of geomorphology seems to dictate the location where gas seep occurs. . Some 1409 gas seeps within the water column acoustic records are observed between 200 m and 800 m water depth. No gas flares were detected in deeper areas where gas hydrates are stable. Overall, 93% of the all gas seeps observed are above geomorphological structures. 78% are right above escarpment induced by sedimentary destabilizations inside or outside canyons. The results suggest a geomorphological control of degassing at the seafloor and gas seeps are thus constrained by the gas hydrates stability zone. The stability of the gas hydrates is dependent on the salinity gradient through the sedimentary column and thus on the Black Sea recent geological history. The extent and the dynamics of gas hydrates have a probable impact on the sedimentary destabilization observed at the seafloor.

  19. Preliminary results and power analysis of the UAH SEDS G503 GAS can

    NASA Technical Reports Server (NTRS)

    Jalbert, Lyle B.; Mustaikis, Steven, II; Nerren, Philip

    1995-01-01

    The G-503 Get Away Special (GAS) Canister contained four experiments. A stainless steel corrosion experiment, and experiment to mix and cure concrete, a plant root growth chamber, and a group of 8 chambers to characterize diatom growth cycles in microgravity. As would be expected for this selection of experiments a significant amount of power was required to carry out these investigations over several days in a GAS environment. This was accomplished through the use of low power experiment control circuitry, heaters, and an estimate 3.6 kWh battery pack. The battery was designed around 120 standard Duracell Alkaline F cells. This pack weighed 29.5 kg (65 lbs) including a DC/DC converter and the power distribution bus for all of the experiments. Although not rechargeable, this configurations was a fraction of the cost of rechargeable systems and did not require venting to the outside of the can. Combining this with the long term storage performance, 85% of initial capacity after four years at 20 C (70 F), this guarantees sufficient power even with unexpected launch delays. This paper describes the experiments, there operation and initial results. Also, the performance of the power system during the STS-68 SRL2 mission will be addressed.

  20. Application of Notched Long-Period Fiber Grating Based Sensor for CO2 Gas Sensing

    NASA Astrophysics Data System (ADS)

    Wu, Chao-Wei; Chiang, Chia-Chin

    2016-01-01

    An inductively coupled plasma etching process to fabricate notched long-period fiber gratings for CO2 gas sensing is proposed in this article. In the gas sensing test, the 15% mixed CO2 gas was used for characterization of CO2 adsorption by the amine-modified nanoporous silica foams of the notched long-period fiber grating sensor. The results shows the spectra were changed with the CO2 gas flow within 13 min. During the absorption process, the transmission of the resonant dip was decreased by 2.884 dB. Therefore, the proposed notched long-period fiber grating gas sensor shows good performance and is suitable as a gas sensor for monitoring the CO2 adsorption process.

  1. 30 CFR 250.1203 - Gas measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... any changes to the previously-approved measurement and/or allocation procedures. Your application... and reflect the same degree of water saturation as in the gas volume. (8) When requested by the Regional Supervisor, submit copies of gas volume statements for each requested gas meter. Show whether gas...

  2. Toxic fluoride gas emissions from lithium-ion battery fires.

    PubMed

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik

    2017-08-30

    Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.

  3. Flow and criticality in the open cycle gas core.

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Lofthouse, J. H.

    1971-01-01

    A series of flowing gas experiments using air, argon, and freon has been conducted in Idaho. The purpose is to study methods of obtaining flow patterns which would create maximum possible system reactivity consistent with an acceptably low uranium to coolant-gas loss ratio. These have been conducted on both ?two-dimensional' and truly three-dimensional spherical configurations of diameters 18 to 42 inches. The larger diameter is that proposed for a minimum cost flowing gas critical experiment, and the size extremes make extrapolations to the large 6 and 8 foot diameter configurations more reliable. Results show that large enough inner gas (fuel) volume fractions can be achieved to attain criticality.

  4. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbingmore » liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  5. Semiempirical limits on the thermal conductivity of intracluster gas

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Hughes, John P.; Tucker, Wallace H.

    1992-01-01

    A semiempirical method for establishing lower limits on the thermal conductivity of hot gas in clusters of galaxies is described. The method is based on the observation that the X-ray imaging data (e.g., Einstein IPC) for clusters are well described by the hydrostatic-isothermal beta model, even for cooling flow clusters beyond about one core radius. In addition, there are strong indications that noncooling flow clusters (like the Coma Cluster) have a large central region (up to several core radii) of nearly constant gas temperature. This suggests that thermal conduction is an effective means of transporting and redistributing the thermal energy of the gas. This in turn has implications for the extent to which magnetic fields in the cluster are effective in reducing the thermal conductivity of the gas. Time-dependent hydrodynamic simulations for the gas in the Coma Cluster under two separate evolutionary scenarios are presented. One scenario assumes that the cluster potential is static and that the gas has an initial adiabatic distribution. The second scenario uses an evolving cluster potential. These models along with analytic results show that the thermal conductivity of the gas in the Coma Cluster cannot be less than 0.1 of full Spitzer conductivity. These models also show that high gas conductivity assists rather than hinders the development of radiative cooling in the central regions of clusters.

  6. Mutual influence of molecular diffusion in gas and surface phases

    NASA Astrophysics Data System (ADS)

    Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2018-01-01

    We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.

  7. Origins of hydrocarbon gas seeping out from offshore mud volcanoes in the Nile delta

    NASA Astrophysics Data System (ADS)

    Prinzhofer, Alain; Deville, Eric

    2013-04-01

    This paper discusses the origin of gas seepages (free gas or dissolved gas in ground water or brine) sampled with the Nautile submarine during the Nautinil cruise at the seafloor of the deep water area of the Nile turbiditic system on different mud volcanoes and brine pools. Generally, the gas is wet and includes C1, C2, C3, iC4, nC4, CO2. These gas samples show no evidence of biodegradation which is not the case of the gas present in the deep hydrocarbon accumulations at depth. It indicates that the gas expelled by the mud volcanoes is not issued from direct leakages from deep gas fields. The collected gas samples mainly have a thermogenic origin and show different maturities. Some samples show very high maturities indicating that these seepages are sourced from great depths, below the Messinian salt. Moreover, the different chemical compositions of the gas samples reflect not only differences in maturity but also the fact that the gas finds its origin in different deep source rocks. Carbon dioxide has an organic signature and cannot result from carbonate decomposition or mantle fluids. The crustal-derived radiogenic isotopes show that the analyzed gas samples have suffered a fractionation processes after the production of the radiogenic isotopes, due either to oil occurrence at depth interacting with the flux of gas, and/or fractionation during the fluid migration.

  8. Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades

    NASA Technical Reports Server (NTRS)

    Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.

    1945-01-01

    An analysis of rim cooling, which cools the blade by condition alone, was conducted. Gas temperatures ranged from 1300 degrees to 1900 degrees F and rim temperatures from 0 degrees to 1000 degrees F below gas temperatures. Results show that gas temperature increases up to 200 degrees F are permissible provided that the blades are cooled by 400 degrees to 500 degrees F below the gas temperature. Relatively small amounts of blade cooling, at constant gas temperature, give large increases in blade life. Dependence of rim cooling on heat-transfer coefficient, blade dimensions, and thermal conductivity is determined by a single parameter.

  9. Assessing sorbent injection mercury control effectiveness in flue gas streams

    USGS Publications Warehouse

    Carey, T.R.; Richardson, C.F.; Chang, R.; Meserole, F.B.; Rostam-Abadi, M.; Chen, S.

    2000-01-01

    One promising approach for removing mercury from coal-fired, utility flue gas involves the direct injection of mercury sorbents. Although this method has been effective at removing mercury in municipal waste incinerators, tests conducted to date on utility coal-fired boilers show that mercury removal is much more difficult in utility flue gas. EPRI is conducting research to investigate mercury removal using sorbents in this application. Bench-scale, pilot-scale, and field tests have been conducted to determine the ability of different sorbents to remove mercury in simulated and actual flue gas streams. This paper focuses on recent bench-scale and field test results evaluating the adsorption characteristics of activated carbon and fly ash and the use of these results to develop a predictive mercury removal model. Field tests with activated carbon show that adsorption characteristics measured in the lab agree reasonably well with characteristics measured in the field. However, more laboratory and field data will be needed to identify other gas phase components which may impact performance. This will allow laboratory tests to better simulate field conditions and provide improved estimates of sorbent performance for specific sites. In addition to activated carbon results, bench-scale and modeling results using fly ash are presented which suggest that certain fly ashes are capable of adsorbing mercury.

  10. Rotordynamic coefficients for stepped labyrinth gas seals

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph K.

    1989-01-01

    The basic equations are derived for compressible flow in a stepped labyrinth gas seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variables solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are presented in the form of a parametric study, since there are no known experimental data for the rotordynamic coefficients of stepped labyrinth gas seals. The parametric study investigates the relative rotordynamic stability of convergent, straight and divergent stepped labyrinth gas seals. The results show that, generally, the divergent seal is more stable, rotordynamically, than the straight or convergent seals. The results also show that the teeth-on-stator seals are not always more stable, rotordynamically, then the teeth-on-rotor seals as was shown by experiment by Childs and Scharrer (1986b) for a 15 tooth seal.

  11. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results

    USGS Publications Warehouse

    Coplen, Tyler B.

    2011-01-01

    To minimize confusion in the expression of measurement results of stable isotope and gas-ratio measurements, recommendations based on publications of the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) are presented. Whenever feasible, entries are consistent with the Système International d'Unités, the SI (known in English as the International System of Units), and the third edition of the International Vocabulary of Basic and General Terms in Metrology (VIM, 3rd edition). The recommendations presented herein are approved by the Commission on Isotopic Abundances and Atomic Weights and are designed to clarify expression of quantities related to measurement of isotope and gas ratios to ensure that quantity equations instead of numerical value equations are used for quantity definitions. Examples of column headings consistent with quantity calculus (also called the algebra of quantities) and examples of various deprecated usages connected with the terms recommended are presented.

  12. Multicomponent Gas Storage in Organic Cage Molecules

    DOE PAGES

    Zhang, Fei; He, Yadong; Huang, Jingsong; ...

    2017-05-18

    Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less

  13. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chin, O. H.; Jayapalan, K. K.; Wong, C. S.

    2014-08-01

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile.

  14. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  15. Testing Delays Resulting in Increased Identification Accuracy in Line-Ups and Show-Ups.

    ERIC Educational Resources Information Center

    Dekle, Dawn J.

    1997-01-01

    Investigated time delays (immediate, two-three days, one week) between viewing a staged theft and attempting an eyewitness identification. Compared lineups to one-person showups in a laboratory analogue involving 412 subjects. Results show that across all time delays, participants maintained a higher identification accuracy with the showup…

  16. The NIRIM two-stage light-gas gun: Performance test results

    NASA Astrophysics Data System (ADS)

    Sekine, T.; Tashiro, S.; Kobayashi, T.; Matsumura, T.

    1996-05-01

    A two-stage light-gun has been installed at the NIRIM in order to investigate the high pressure behavior of materials. For operation and safety test, we used helium and carried out performance test shots. Piston velocity in the pump tube and projectile velocity during free flight are measured by means of gas-pressure profile records at fixed locations and x-ray beam cutting method, respectively.

  17. Effects of gas liquid ratio on the atomization characteristics of gas-liquid swirl coaxial injectors

    NASA Astrophysics Data System (ADS)

    Kang, Zhongtao; Li, Qinglian; Zhang, Jiaqi; Cheng, Peng

    2018-05-01

    To understand the atomization characteristics and atomization mechanism of the gas-liquid swirl coaxial (GLSC) injector, a back-lighting photography technique has been employed to capture the instantaneous spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of gas liquid ratio (GLR) on the spray pattern, Sauter mean diameter (SMD), diameter-velocity distribution and mass flow rate distribution were analyzed and discussed. The results show that the atomization of the GLSC injector is dominated by the film breakup when the GLR is small, and violent gas-liquid interaction when the GLR is large enough. The film breakup dominated spray can be divided into gas acceleration region and film breakup region while the violent gas-liquid interaction dominated spray can be divided into the gas acceleration region, violent gas-liquid interaction region and big droplets breakup region. The atomization characteristics of the GLSC injector is significantly influenced by the GLR. From the point of atomization performance, the increase of GLR has positive effects. It decreases the global Sauter mean diameter (GSMD) and varies the SMD distribution from a hollow cone shape (GLR = 0) to an inverted V shape, and finally slanted N shape. However, from the point of spatial distribution, the increase of GLR has negative effects, because the mass flow rate distribution becomes more nonuniform.

  18. Radon depletion in xenon boil-off gas

    NASA Astrophysics Data System (ADS)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  19. Nitrous oxide as a tracer gas in the ASHRAE 110-1995 Standard.

    PubMed

    Burke, Martin; Wong, Larry; Gonzales, Ben A; Knutson, Gerhard

    2014-01-01

    ANSI/ASHRAE Standard 110 provides a quantitative method for testing the performance of laboratory fume hoods. Through release of a known quantity (4.0 Lpm) of a tracer gas, and subsequent monitoring of the tracer gas concentration in the "breathing zone" of a mannequin positioned in front of the hood, this method allows for evaluation of laboratory hood performance. Standard 110 specifies sulfur hexafluoride (SF6) as the tracer gas; however, suitable alternatives are allowed. Through three series of performance tests, this analysis serves to investigate the use of nitrous oxide (N2O) as an alternate tracer gas for hood performance testing. Single gas tests were performed according to ASHRAE Standard 110-1995 with each tracer gas individually. These tests showed identical results using an acceptance criterion of AU 0.1 with the sash half open, nominal 18 inches (0.46m) high, and the face velocity at a nominal 60 fpm (0.3 m/s). Most data collected in these single gas tests, for both tracer gases, were below the minimum detection limit, thus two dual gas tests were developed for simultaneous sampling of both tracer gases. Dual gas dual ejector tests were performed with both tracer gases released simultaneously through two ejectors, and the concentration measured with two detectors using a common sampling probe. Dual gas single ejector tests were performed with both tracer gases released though a single ejector, and the concentration measured in the same manner as the dual gas dual ejector tests. The dual gas dual ejector tests showed excellent correlation, with R typically greater than 0.9. Variance was observed in the resulting regression line for each hood, likely due to non-symmetry between the two challenges caused by variables beyond the control of the investigators. Dual gas single ejector tests resulted in exceptional correlation, with R>0.99 typically for the consolidated data, with a slope of 1.0. These data indicate equivalent results for ASHRAE 110

  20. Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation

    NASA Astrophysics Data System (ADS)

    Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon

    2018-02-01

    Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.

  1. Cold Gas Content and Morphology: Scaling Relationships and Gas Deficiencies

    NASA Astrophysics Data System (ADS)

    Zhang, Helen; Crocker, Alison

    2018-01-01

    Spiral arms are a key feature of spiral galaxies. They are areas of higher gas density, and thus more stars are actively being formed in these regions. Two armed spirals are commonly referred to as ‘grand design’ spirals. In constrast, many armed spirals have three or more arms that are often less distinct. Here we present the cold gas mass per unit of stellar mass (cold gas fraction) in grand design spirals versus many armed spiral galaxies using Galaxy Zoo 2 for our morphological classifications. The masses of HI and H2 gas are taken from the COLDGASS survey, which included nondetections in the form of upper limits. Through our analysis, we found that grand design galaxies have a lower cold gas fraction of both HI and H2. This is a surprising result, given that earlier studies have shown that they have comparable rates of star formation. Combined with our result, this means that grand design galaxies must be more efficient at converting H2 gas to stars.

  2. INTERIOR VIEW SHOWING QBOP FURNACE IN BLOW. OXYGEN AND NATURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING Q-BOP FURNACE IN BLOW. OXYGEN AND NATURAL GAS ARE BLOWN INTO THE FURNACE THROUGH THE TUYERES TO CHARGE 460,000 LBS. OF HOT METAL, 100,000 LBS. OF SCRAP WITH 30,000 LBS. OF LIME. BLOW TIME IS 16 MINUTES. THE TIME TO BLOW AND TAP THE FURNACES OF THE RESULTING 205,000 TONS OF STEEL AND SLAG IS 35 MINUTES. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  3. Determination of gas & liquid two-phase flow regime transitions in wellbore annulus by virtual mass force coefficient when gas cut

    NASA Astrophysics Data System (ADS)

    Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi

    2017-10-01

    With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.

  4. Methane Leaks from Natural Gas Systems Follow Extreme Distributions.

    PubMed

    Brandt, Adam R; Heath, Garvin A; Cooley, Daniel

    2016-11-15

    Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH 4 ) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ∼15 000 measurements from 18 prior studies, we show that all available natural gas leakage data sets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of the total leakage volume. While prior studies used log-normal model distributions, we show that log-normal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH 4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of data sets to increase sample size is not recommended due to apparent deviation between sampled populations. Understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.

  5. Methane Leaks from Natural Gas Systems Follow Extreme Distributions

    DOE PAGES

    Brandt, Adam R.; Heath, Garvin A.; Cooley, Daniel

    2016-10-14

    Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH 4) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ~15,000 measurements from 18 prior studies, we show that all available natural gas leakage datasets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of themore » total leakage volume. While prior studies used lognormal model distributions, we show that lognormal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH 4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of datasets to increase sample size is not recommended due to apparent deviation between sampled populations. Finally, understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.« less

  6. Methane Leaks from Natural Gas Systems Follow Extreme Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Adam R.; Heath, Garvin A.; Cooley, Daniel

    Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH 4) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ~15,000 measurements from 18 prior studies, we show that all available natural gas leakage datasets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of themore » total leakage volume. While prior studies used lognormal model distributions, we show that lognormal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH 4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of datasets to increase sample size is not recommended due to apparent deviation between sampled populations. Finally, understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.« less

  7. Evaluation production index of test well about tight gas reservoir

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoliang; Yan, Wende; Yuan, Yingzhong; Li, Jiqiang; Li, Xiaoxue

    2018-03-01

    It is important that the tight gas reservoir is developed with test wells in the first place for the reasonable development, and it is necessary evaluation production index of test well. So, the paper will evaluate gas wells capacity, reasonable production, production decline law and producing reserves. Combining with calculation theory, comparison of adjacent wells and field practice, obtained reasonable production, production decline law and production reserves about test well, and through analysis the adjacent well obtained development experience and lessons about tight gas reservoir. The results show that the gas well development should pay attention to reasonable production and prevent energy falling too fast in tight gas reservoirs, The decline rule of wells with long production time should be analyzed by two stages. Through study, it will provide some reference and guidance for the development of gas wells in tight gas reservoirs.

  8. A component prediction method for flue gas of natural gas combustion based on nonlinear partial least squares method.

    PubMed

    Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun

    2014-01-01

    Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.

  9. Cycle of a closed gas-turbine plant with a gas-dynamic energy-separation device

    NASA Astrophysics Data System (ADS)

    Leontiev, A. I.; Burtsev, S. A.

    2017-09-01

    The efficiency of closed gas-turbine space-based plants is analyzed. The weight-size characteristics of closed gas-turbine plants are shown in many respects as determined by the refrigerator-radiator parameters. The scheme of closed gas-turbine plants with a gas-dynamic temperature-stratification device is proposed, and a calculation model is developed. This model shows that the cycle efficiency decreases by 2% in comparison with that of the closed gas-turbine plants operating by the traditional scheme with increasing temperature at the output from the refrigerator-radiator by 28 K and decreasing its area by 13.7%.

  10. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    PubMed

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species. Published 2015. This article is a US Government work and is in the public domain in the USA.

  11. Flue gas desulfurization

    DOEpatents

    Im, Kwan H.; Ahluwalia, Rajesh K.

    1985-01-01

    A process and apparatus for removing sulfur oxide from combustion gas to form Na.sub.2 SO.sub.4 and for reducing the harmful effects of Na.sub.2 SO.sub.4 on auxiliary heat exchangers in which a sodium compound is injected into the hot combustion gas forming liquid Na.sub.2 SO.sub.4 in a gas-gas reaction and the resultant gas containing Na.sub.2 SO.sub.4 is cooled to below about 1150.degree. K. to form particles of Na.sub.2 SO.sub.4 prior to contact with at least one heat exchanger with the cooling being provided by the recycling of combustion gas from a cooled zone downstream from the introduction of the cooling gas.

  12. Employment Creation of Shale Gas Investment in China

    NASA Astrophysics Data System (ADS)

    Wang, Xuecheng; Zhang, Baosheng; Wu, Meiling; Li, Xiang; Lin, Yuying

    2018-01-01

    An ambitious shale gas extraction plan has been proposed. The huge investment of shale gas may put an effect on the whole China’s economy, especially for employment. However, there is few study to date has quantified these effects. The aim of this paper is to quantify these effects especially employment creation and figures out whether shale gas investment in China is a good choice or not. Input-output analysis has been utilized in this study to estimate the employment creation in four different Chinese regions. Our findings show that shale gas investment will result in creating 660000, 370000, 140000 and 58000 equivalent jobs in Sichuan, Chongqing, Inner Mongolia and Guizhou, respectively. Considering the potential risks of environmental issues, we suggest that it may be a better strategy for the government, at least in the current situation, to slow down shale gas development investment.

  13. Combustion oscillation: Chemical control showing mechanistic link to recirculation zone purge time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemmen, R.S.; Richards, G.A.; Yip, M.J.

    1995-12-01

    Active control mechanisms are being examined for lean premix combustion applications, such as gas turbine generators. Lean premix combustors are susceptible to large combustion oscillations, particularly when driven very lean to achieve low NOx. While past design work has been focussed on understanding the source of the oscillation and modifying the combustor to avoid such oscillations, commercial combustion designers have more recently considered applying new control elements. As part of the U.S. Department of Energy`s Advanced Gas Turbine Systems Program, the Morgantown Energy Technology Center is investigating various active control techniques. This paper presents results from experiments studying the effectmore » of pilot fuel modulation on combustor oscillation and pollutant emissions for a pilot stabilized dump swirl combustor, typical of gas turbine combustors. The results show that a significant level of attenuation can be achieved in the combustor pressure oscillation (50 to 90 percent) while only moderately affecting pollutant emissions. The control mechanism producing the attenuation is shown to be purely chemical in nature, rather than fluid mechanic. In addition, the frequency region over which control is obtained is shown to be related to the recirculation zone purge time. For this reason, control can be achieved at control frequencies much lower than the frequency of oscillation.« less

  14. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 312 site, northern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly

    2012-06-01

    In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from themore » Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a

  15. Results of the joint utilization of laser integrated experiments flown on payload GAS-449 aboard Columbia mission 61-C

    NASA Technical Reports Server (NTRS)

    Muckerheide, M. C.

    1987-01-01

    The high peak power neodymium YAG laser and the HeNe laser aboard GAS-449 have demonstrated the survivability of the devices in the micro-gravity, cosmic radiation, thermal, and shock environment of space. Some pharmaceuticals and other materials flown in both the active and passive status have demonstrated reduction in volume and unusual spectroscopic changes. X-ray detectors have shown cosmic particle hits with accompanying destruction at their interaction points. Some scattering in the plates is in evidence. Some results of both active and passive experiments on board the GAS-449 payload are evaluated.

  16. Assessment of porous material anisotropy and its effect on gas permeability

    NASA Astrophysics Data System (ADS)

    Wałowski, Grzegorz

    2017-10-01

    The results of experimental research upon the assessment of porous material anisotropy and its effect on gas permeability of porous materials with respect to the gas flow. The conducted research applied to natural materials with an anisotropic gap-porous structure and - for comparative purposes - to model materials such as coke, pumice and polyamide agglomerates. The research was conducted with the use of a special test stand that enables measuring the gas permeability with respect to three flow orientations compared with symmetric cubic-shaped samples. The research results show an explicit impact of the flow direction on the permeability of materials porous, which results from their anisotropic internal structures. The anisotropy coefficient and permeability effective coefficient of such materials was determined and an experimental evaluation of the value of this coefficient was conducted with respect to the gas stream and the total pressure drop across the porous deposit. The process of gas permeability was considered in the category of hydrodynamics of gas flow through porous deposits. It is important to broaden the knowledge of gas hydrodynamics assessment in porous media so far unrecognised for the development of a new generation of clean energy sources, especially in the context of biogas or raw gas production.

  17. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranesmore » provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  18. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.« less

  19. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.« less

  20. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide muchmore » greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less

  1. A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xiu-Liang; Tong, Minman; Huang, Hongliang

    2015-03-15

    Exploitation of new metal–organic framework (MOF) materials with high surface areas has been attracting great attention in related research communities due to their broad potential applications. In this work, a new Zr(IV)-based MOF, [Zr{sub 6}O{sub 4}(OH){sub 4}(eddb){sub 6}] (BUT-30, H{sub 2}eddb=4,4′-(ethyne-1,2-diyl)dibenzoic acid) has been solvothermally synthesized, characterized, and explored for gases and dyes adsorptions. Single-crystal X-ray diffraction analysis demonstrates a three-dimensional cubic framework structure of this MOF, in which each Zr{sub 6}O{sub 4}(OH){sub 4} building unit is linked by 12 linear eddb ligands. BUT-30 has been found stable up to 400 °C and has a Brunauer–Emmett–Teller (BET) surface area asmore » high as 3940.6 m{sup 2} g{sup −1} (based on the N{sub 2} adsorption at 77 K) and total pore volume of 1.55 cm{sup 3} g{sup −1}. It is more interesting that this MOF exhibits stepwise adsorption behaviors for Ar, N{sub 2}, and CO{sub 2} at low temperatures, and selective uptakes towards different ionic dyes. - Graphical abstract: A new Zr(IV)-based MOF with high surface area has been synthesized and structurally characterized, which shows stepwise gas adsorption at low temperature and selective dye uptake from solution. - Highlights: • A new Zr-based MOF was synthesized and structurally characterized. • This MOF shows a higher surface area compared with its analogous UiO-67 and 68. • This MOF shows a rare stepwise adsorption towards light gases at low temperature. • This MOF performs selective uptakes towards cationic dyes over anionic ones. • Using triple-bond spacer is confirmed feasible in enhancing MOF surface areas.« less

  2. Seafloor geomorphic manifestations of gas venting and shallow subbottom gas hydrate occurrences

    USGS Publications Warehouse

    Paull, C K; Caress, D W; Thomas, Hans; Lundsten, Eve M.; Anderson, Kayce; Gwiazda, Roberto; Riedel, M; McGann, Mary; Herguera, J C

    2015-01-01

    High-resolution multibeam bathymetry data collected with an autonomous underwater vehicle (AUV) complemented by compressed high-intensity radar pulse (Chirp) profiles and remotely operated vehicle (ROV) observations and sediment sampling reveal a distinctive rough topography associated with seafloor gas venting and/or near-subsurface gas hydrate accumulations. The surveys provide 1 m bathymetric grids of deep-water gas venting sites along the best-known gas venting areas along the Pacific margin of North America, which is an unprecedented level of resolution. Patches of conspicuously rough seafloor that are tens of meters to hundreds of meters across and occur on larger seafloor topographic highs characterize seepage areas. Some patches are composed of multiple depressions that range from 1 to 100 m in diameter and are commonly up to 10 m deeper than the adjacent seafloor. Elevated mounds with relief of >10 m and fractured surfaces suggest that seafloor expansion also occurs. Ground truth observations show that these areas contain broken pavements of methane-derived authigenic carbonates with intervening topographic lows. Patterns seen in Chirp profiles, ROV observations, and core data suggest that the rough topography is produced by a combination of diagenetic alteration, focused erosion, and inflation of the seafloor. This characteristic texture allows previously unknown gas venting areas to be identified within these surveys. A conceptual model for the evolution of these features suggests that these morphologies develop slowly over protracted periods of slow seepage and shows the impact of gas venting and gas hydrate development on the seafloor morphology.

  3. Percolation Pore Network Study on the Residue Gas Saturation of Dry Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Tang, Y. B.; Zou, G. Y.; Jiang, K.; Li, M.

    2014-12-01

    We tried to model the effect of pore size heterogeneity and pore connectivity on the residue gas saturation for dry gas reservoir rocks. If we consider that snap-off does not exist and only piston displacement takes place in all pores with the same size during imbibition process, in the extreme case, the residue gas saturation will be equal to zero. Thus we can suppose that the residue gas saturation of dry rocks is mainly controlled by the pore size distribution. To verify the assumption, percolation pore networks (i.e., three-dimensional simple cubic (SC) and body-center cubic (BCC)) were used in the study. The connectivity and the pore size distribution in percolation pore network could be changed randomly. The concept of water phase connectivity zw(i.e., water coordination number) and gas phase connectivity zg (i.e., gas coordination number) was introduced here. zw and zg will change during simulation and can be estimated numerically from the results of simulations through gradually saturated networks by water. The Simulation results show that when zg less than or equal to 1.5 during water quasi - static imbibition, the gas will be trapped in rock pores. Network simulation results also shows that the residue gas saturation Srg follows a power law relationship (i.e.,Srg∝σrα, where σr is normalized standard deviation of the pore radius distribution, and exponent α is a function of coordination number). This indicates that the residue gas saturation has no explicit relationship with porosity and permeability as it should have in light of previous study, pore radius distribution is the principal factor in determining the residue gas saturation of dry reservoir rocks.

  4. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  5. Faulting of gas-hydrate-bearing marine sediments - contribution to permeability

    USGS Publications Warehouse

    Dillon, William P.; Holbrook, W.S.; Drury, Rebecca; Gettrust, Joseph; Hutchinson, Deborah; Booth, James; Taylor, Michael

    1997-01-01

    Extensive faulting is observed in sediments containing high concentrations of methane hydrate off the southeastern coast of the United States. Faults that break the sea floor show evidence of both extension and shortening; mud diapirs are also present. The zone of recent faulting apparently extends from the ocean floor down to the base of gas-hydrate stability. We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-beating layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone. In addition to the zone of surface faults, we identified two buried zones of faulting, that may have similar origins. Subsurface faulted zones appear to act as gas traps.

  6. Theoretical versus experimental results for the rotordynamic coefficients of eccentric, smooth, gas annular seal annular gas seals

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.; Alexander, Chis

    1994-01-01

    This viewgraph presentation presents the following results: (1) The analytical results overpredict the experimental results for the direct stiffness values and incorrectly predict increasing stiffness with decreasing pressure ratios. (2) Theory correctly predicts increasing cross-coupled stiffness, K(sub YX), with increasing eccentricity and inlet preswirl. (3) Direct damping, C(sub XX), underpredicts the experimental results, but the analytical results do correctly show that damping increases with increasing eccentricity. (4) The whirl frequency values predicted by theory are insensitive to changes in the static eccentricity ratio. Although these values match perfectly with the experimental results at 16,000 rpm, the results at the lower speed do not correspond. (5) Theoretical and experimental mass flow rates match at 5000 rpm, but at 16,000 rpm the theoretical results overpredict the experimental mass flow rates. (6) Theory correctly shows the linear pressure profiles and the associated entrance losses with the specified rotor positions.

  7. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary

  8. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway

  9. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices.

    PubMed

    Lo, Justin H; Bassett, Erik K; Penson, Elliot J N; Hoganson, David M; Vacanti, Joseph P

    2015-08-01

    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m(2) of oxygen and ∼685 mL/min/m(2) of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.

  10. On the physics-based processes behind production-induced seismicity in natural gas fields

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan

    2017-04-01

    Induced seismicity due to natural gas production is observed at different sites around the world. Common understanding is that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations, hence reactivating pre-existing faults and inducing earthquakes. Previous studies have often assumed that pressure changes in the reservoir compartments and intersecting fault zones are equal, while neglecting multi-phase fluid flow. In this study, we show that disregarding fluid flow involved in natural gas extraction activities is often inappropriate. We use a fully coupled multiphase fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, cut in two compartments that are offset by a normal fault, and overlain by impermeable caprock. Results show that fluid flow plays a major role pertaining to pore pressure and stress evolution within the fault. Hydro-mechanical processes include rotation of the principal stresses due to reservoir compaction, as well as poroelastic effects caused by the pressure drop in the adjacent reservoir. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighbouring reservoir compartment and other formations. We also analyze the case of production in both compartments, and results show that simultaneous production does not prevent the fault to be reactivated, but the magnitude of the induced event is smaller. Finally, we analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas re-injection. Results show that, in the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production stop, although in average the shut-in results in reduction of seismicity

  11. Mini 3D for shallow gas reconnaissance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallieres, T. des; Enns, D.; Kuehn, H.

    1996-12-31

    The Mini 3D project was undertaken by TOTAL and ELF with the support of CEPM (Comite d`Etudes Petrolieres et Marines) to define an economical method of obtaining 3D seismic HR data for shallow gas assessment. An experimental 3D survey was carried out with classical site survey techniques in the North Sea. From these data 19 simulations, were produced to compare different acquisition geometries ranging from dual, 600 m long cables to a single receiver. Results show that short offset, low fold and very simple streamer positioning are sufficient to give a reliable 3D image of gas charged bodies. The 3Dmore » data allow a much more accurate risk delineation than 2D HR data. Moreover on financial grounds Mini-3D is comparable in cost to a classical HR 2D survey. In view of these results, such HR 3D should now be the standard for shallow gas surveying.« less

  12. Plasma deposited polymers as gas sensitive films

    NASA Astrophysics Data System (ADS)

    Radeva, E.; Georgieva, V.; Lazarov, J.; Vergov, L.; Donkov, N.

    2012-03-01

    The possibility is presented of producing thin plasma polymers with desired properties by using nanofillers. Composite films are synthesized from a mixture of hexamethyldisiloxane (HMDSO) and detonation nanodiamond particles (DNDs). The chemical structure of the composite consists of DNDs distributed in the polymer matrix. The effect of DNDs on the humidity and ammonia sorptive properties of the polymers obtained is studied by measuring the mass changes as a result of gas sorption by using a quartz crystal microbalance (QCM). The results show that, in view of building a sensing element for measuring humidity, ammonia or other gases, it is possible to maximize the sensor sensitivity to a certain gas by using an appropriate concentration of DNDs in HMDSO. Thus, a high degree of sensor sensitivity, together with short response time and minimum hysteresis, can be achieved. Composites of plasma-polymerized HMDSO with DNDs can be used as gas sensitive layers for the development of quartz resonator sensors.

  13. Healthy Efficient New Gas Homes (HENGH) Pilot Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Maddalena, Randy L; Stratton, Chris

    The Healthy Efficient New Gas Homes (HENGH) is a field study that will collect data on ventilation systems and indoor air quality (IAQ) in new California homes that were built to 2008 Title 24 standards. A pilot test was performed to help inform the most time and cost effective approaches to measuring IAQ in the 100 test homes that will be recruited for this study. Two occupied, single-family detached homes built to 2008 Title 24 participated in the pilot test. One of the test homes uses exhaust-only ventilation provided by a continuous exhaust fan in the laundry room. The othermore » home uses supply air for ventilation. Measurements of IAQ were collected for two weeks. Time-resolved concentrations of particulate matter (PM), nitrogen dioxide (NO2), carbon dioxide (CO2), carbon monoxide (CO), and formaldehyde were measured. Measurements of IAQ also included time-integrated concentrations of volatile organic compounds (VOCs), volatile aldehydes, and NO2. Three perfluorocarbon tracers (PFTs) were used to estimate the dilution rate of an indoor emitted air contaminant in the two pilot test homes. Diagnostic tests were performed to measure envelope air leakage, duct leakage, and airflow of range hood, exhaust fans, and clothes dryer vent when accessible. Occupant activities, such as cooking, use of range hood and exhaust fans, were monitored using various data loggers. This document describes results of the pilot test.« less

  14. Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Corliss, James M.; Cole, Stanley, R.

    1998-01-01

    The heavy gas test medium has recently been changed in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center. A NASA Construction of Facilities project has converted the TDT heavy gas from dichlorodifluoromethane (R12) to 1,1,1,2 tetrafluoroethane (R134a). The facility s heavy gas processing system was extensively modified to implement the conversion to R134a. Additional system modifications have improved operator interfaces, hardware reliability, and quality of the research data. The facility modifications included improvements to the heavy gas compressor and piping, the cryogenic heavy gas reclamation system, and the heavy gas control room. A series of wind tunnel characterization and calibration tests are underway. Results of the flow characterization tests show the TDT operating envelope in R134a to be very similar to the previous operating envelope in R12.

  15. Harvesting Hydrogen Gas from Air Pollutants with an Unbiased Gas Phase Photoelectrochemical Cell.

    PubMed

    Verbruggen, Sammy W; Van Hal, Myrthe; Bosserez, Tom; Rongé, Jan; Hauchecorne, Birger; Martens, Johan A; Lenaerts, Silvia

    2017-04-10

    The concept of an all-gas-phase photoelectrochemical (PEC) cell producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward PEC remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Flow dynamics of a spiral-groove dry-gas seal

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhang, Huiqiang; Cao, Hongjun

    2013-01-01

    The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.

  17. Glacigenic sedimentation pulses triggered post-glacial gas hydrate dissociation.

    PubMed

    Karstens, Jens; Haflidason, Haflidi; Becker, Lukas W M; Berndt, Christian; Rüpke, Lars; Planke, Sverre; Liebetrau, Volker; Schmidt, Mark; Mienert, Jürgen

    2018-02-12

    Large amounts of methane are stored in continental margins as gas hydrates. They are stable under high pressure and low, but react sensitively to environmental changes. Bottom water temperature and sea level changes were considered as main contributors to gas hydrate dynamics after the last glaciation. However, here we show with numerical simulations that pulses of increased sedimentation dominantly controlled hydrate stability during the end of the last glaciation offshore mid-Norway. Sedimentation pulses triggered widespread gas hydrate dissociation and explains the formation of ubiquitous blowout pipes in water depths of 600 to 800 m. Maximum gas hydrate dissociation correlates spatially and temporally with the formation or reactivation of pockmarks, which is constrained by radiocarbon dating of Isorropodon nyeggaensis bivalve shells. Our results highlight that rapid changes of sedimentation can have a strong impact on gas hydrate systems affecting fluid flow and gas seepage activity, slope stability and the carbon cycle.

  18. Results From Mars Show Electrostatic Charging of the Mars Pathfinder Sojourner Rover

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.; Siebert, Mark W.

    1998-01-01

    Indirect evidence (dust accumulation) has been obtained indicating that the Mars Pathfinder rover, Sojourner, experienced electrostatic charging on Mars. Lander camera images of the Sojourner rover provide distinctive evidence of dust accumulation on rover wheels during traverses, turns, and crabbing maneuvers. The sol 22 (22nd Martian "day" after Pathfinder landed) end-of-day image clearly shows fine red dust concentrated around the wheel edges with additional accumulation in the wheel hubs. A sol 41 image of the rover near the rock "Wedge" (see the next image) shows a more uniform coating of dust on the wheel drive surfaces with accumulation in the hubs similar to that in the previous image. In the sol 41 image, note particularly the loss of black-white contrast on the Wheel Abrasion Experiment strips (center wheel). This loss of contrast was also seen when dust accumulated on test wheels in the laboratory. We believe that this accumulation occurred because the Martian surface dust consists of clay-sized particles, similar to those detected by Viking, which have become electrically charged. By adhering to the wheels, the charged dust carries a net nonzero charge to the rover, raising its electrical potential relative to its surroundings. Similar charging behavior was routinely observed in an experimental facility at the NASA Lewis Research Center, where a Sojourner wheel was driven in a simulated Martian surface environment. There, as the wheel moved and accumulated dust (see the following image), electrical potentials in excess of 100 V (relative to the chamber ground) were detected by a capacitively coupled electrostatic probe located 4 mm from the wheel surface. The measured wheel capacitance was approximately 80 picofarads (pF), and the calculated charge, 8 x 10(exp -9) coulombs (C). Voltage differences of 100 V and greater are believed sufficient to produce Paschen electrical discharge in the Martian atmosphere. With an accumulated net charge of 8 x 10(exp

  19. Evaluation of gas production potential from gas hydrate deposits in National Petroleum Reserve Alaska using numerical simulations

    USGS Publications Warehouse

    Nandanwar, Manish S.; Anderson, Brian J.; Ajayi, Taiwo; Collett, Timothy S.; Zyrianova, Margarita V.

    2016-01-01

    An evaluation of the gas production potential of Sunlight Peak gas hydrate accumulation in the eastern portion of the National Petroleum Reserve Alaska (NPRA) of Alaska North Slope (ANS) is conducted using numerical simulations, as part of the U.S. Geological Survey (USGS) gas hydrate Life Cycle Assessment program. A field scale reservoir model for Sunlight Peak is developed using Advanced Processes & Thermal Reservoir Simulator (STARS) that approximates the production design and response of this gas hydrate field. The reservoir characterization is based on available structural maps and the seismic-derived hydrate saturation map of the study region. A 3D reservoir model, with heterogeneous distribution of the reservoir properties (such as porosity, permeability and vertical hydrate saturation), is developed by correlating the data from the Mount Elbert well logs. Production simulations showed that the Sunlight Peak prospect has the potential of producing 1.53 × 109 ST m3 of gas in 30 years by depressurization with a peak production rate of around 19.4 × 104 ST m3/day through a single horizontal well. To determine the effect of uncertainty in reservoir properties on the gas production, an uncertainty analysis is carried out. It is observed that for the range of data considered, the overall cumulative production from the Sunlight Peak will always be within the range of ±4.6% error from the overall mean value of 1.43 × 109 ST m3. A sensitivity analysis study showed that the proximity of the reservoir from the base of permafrost and the base of hydrate stability zone (BHSZ) has significant effect on gas production rates. The gas production rates decrease with the increase in the depth of the permafrost and the depth of BHSZ. From the overall analysis of the results it is concluded that Sunlight Peak gas hydrate accumulation behaves differently than other Class III reservoirs (Class III reservoirs are composed of a single layer of hydrate with no

  20. The Variation of Catalyst and Carrier Gas on Anisole Deoxygenation Reaction

    NASA Astrophysics Data System (ADS)

    Ariyani, D.; Dwi Nugrahaningtyas, Khoirina; Heraldy, E.

    2018-03-01

    This research aims to determine the best catalyst and carrier gas in anisole deoxygenation reaction. The reaction was carried out over a flow system with a variation of catalyst CoMo A (CoMo/USY reduction), CoMo B (CoMo/USY oxidation-reduction), and CoMo C (CoMo/ZAA oxidation-reduction). In addition, variation of carrier gas nitrogen and hydrogen was investigated. The result was analyzed using Gas Chromatography-Mass Spectroscopy (GC-MS). The deoxygenation anisole result showed that CoMo A catalyst with hydrogen as the carrier gas has the highest total product yield (50.72 %), intermediate product yield (38.49 % in phenol and 6.99 % in benzaldehyde), and deoxygenation yield (5.24 %). The CoMo C catalyst exhibited the most selective deoxygenation product. The nitrogen carrier gas with the CoMo C catalyst has the best selectivity of benzene product (93.92 %).

  1. Development of an open-path gas analyser for plume detection in security applications

    NASA Astrophysics Data System (ADS)

    Hay, Kenneth G.; Norberg, Ola; Normand, Erwan; Önnerud, Hans; Black, Paul

    2017-04-01

    We present here an open-path analyser, initially intended for security applications, specifically for the detection of gas plumes from illicit improvised explosive device (IED) manufacturing. Subsequently, the analysers were adapted for methane measurement and used to investigate its applicability for leak detection in different scenarios (e.g. unconventional gas extraction sites). Preliminary results showed consistent measurements of gas plumes in the open path.

  2. Limited impact on decadal-scale climate change from increased use of natural gas.

    PubMed

    McJeon, Haewon; Edmonds, Jae; Bauer, Nico; Clarke, Leon; Fisher, Brian; Flannery, Brian P; Hilaire, Jérôme; Krey, Volker; Marangoni, Giacomo; Mi, Raymond; Riahi, Keywan; Rogner, Holger; Tavoni, Massimo

    2014-10-23

    The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy-economy-climate systems, but the literature has been limited in either its geographic scope or its coverage of greenhouse gases. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models of energy-economy-climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from -0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy.

  3. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.

    PubMed

    Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui

    2018-02-08

    The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.

  4. Effects of Gas Pressure on the Failure Characteristics of Coal

    NASA Astrophysics Data System (ADS)

    Xie, Guangxiang; Yin, Zhiqiang; Wang, Lei; Hu, Zuxiang; Zhu, Chuanqi

    2017-07-01

    Several experiments were conducted using self-developed equipment for visual gas-solid coupling mechanics. The raw coal specimens were stored in a container filled with gas (99% CH4) under different initial gas pressure conditions (0.0, 0.5, 1.0, and 1.5 MPa) for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the mechanical properties, surface deformation and failure modes were recorded using strain gauges, an acoustic emission (AE) system and a camera. An analysis of the fractals of fragments and dissipated energy was performed to understand the changes observed in the stress-strain and crack propagation behaviour of the gas-containing coal specimens. The results demonstrate that increased gas pressure leads to a reduction in the uniaxial compression strength (UCS) of gas-containing coal and the critical dilatancy stress. The AE, surface deformation and fractal analysis results show that the failure mode changes during the gas state. Interestingly, a higher initial gas pressure will cause the damaged cracks and failure of the gas-containing coal samples to become severe. The dissipated energy characteristic in the failure process of a gas-containing coal sample is analysed using a combination of fractal theory and energy principles. Using the theory of fracture mechanics, based on theoretical analyses and calculations, the stress intensity factor of crack tips increases as the gas pressure increases, which is the main cause of the reduction in the UCS and critical dilatancy stress and explains the influence of gas in coal failure. More serious failure is created in gas-containing coal under a high gas pressure and low exterior load.

  5. Variability of oil and gas well productivities for continuous (unconventional) petroleum accumulations

    USGS Publications Warehouse

    Charpentier, Ronald R.; Cook, Troy A.

    2013-01-01

    can also be done by vertical versus horizontal wells, by length of horizontal completion, by distance to closest previously drilled well, by thickness of reservoir interval, or by any other variable for which one has or can calculate values for each well. The resulting plots show how one can subdivide the total range of productivity in shale-gas wells into smaller subsets that are more appropriate for use as analogs.

  6. Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach.

    PubMed

    Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan

    2011-04-01

    This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  8. Establishing Long-term Observations of Gas Hydrate Systems: Results from Ocean Networks Canada's NEPTUNE Observatory

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Riedel, M.; Roemer, M.; Heesemann, M.; Chun, J. H.; Moran, K.; Spence, G.; Thomsen, L.

    2016-12-01

    The key for a scientific understanding of natural environments and the determination of baselines is the long-term monitoring of environmental factors. For seafloor environments including gas hydrate systems, cabled ocean observatories are important platforms for the remote acquisition of a comprehensive suite of datasets. This is particularly critical for those datasets that are difficult to acquire with autonomous, battery-powered systems, such as cameras or high-bandwidth sonar because cable connections provide continuous power and communication from shore to the seafloor. Ocean Networks Canada is operating the NEPTUNE cabled undersea observatory in the Northeast Pacific with two nodes at gas hydrate sites, Barkley Canyon and Clayoquot Slope. With up to seven years of continuous data from these locations we are now beginning to understand the dynamics of the natural systems and are able to classify the variations within the gas hydrate system. For example, the long-term monitoring of gas vent activity has allowed us to classify phases of low, intermittent and high activity that seem to reoccur periodically. Or, by recording the speeds of bacterial mat growth or detecting periods of increased productivity of flora and fauna at hydrates sites we can start to classify benthic activity and relate that to outside environmental parameters. This will eventually allow us to do enhanced environmental monitoring, establish baselines, and potentially detect anthropogenic variations or events for example during gas hydrate production.

  9. Transition metal catalysis in the generation of petroleum and natural gas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalyticallymore » robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process: The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.« less

  10. The Noble Gas Record of Gas-Water Phase Interaction in the Tight-Gas-Sand Reservoirs of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Zhou, Z.; Harris, N. B.

    2015-12-01

    The mass of hydrocarbons that have migrated through tight-gas-sandstone systems before the permeability reduces to trap the hydrocarbon gases provides critical information in the hydrocarbon potential analysis of a basin. The noble gas content (Ne, Ar, Kr, Xe) of the groundwater has a unique isotopic and elemental composition. As gas migrates through the water column, the groundwater-derived noble gases partition into the hydrocarbon phase. Determination of the noble gases in the produced hydrocarbon phase then provides a record of the type of interaction (simple phase equilibrium or open system Rayleigh fractionation). The tight-gas-sand reservoirs of the Rocky Mountains represent one of the most significant gas resources in the United States. The producing reservoirs are generally developed in low permeability (averaging <0.1mD) Upper Cretaceous fluvial to marginal marine sandstones and commonly form isolated overpressured reservoir bodies encased in even lower permeability muddy sediments. We present noble gas data from producing fields in the Greater Green River Basin, Wyoming; the the Piceance Basin, Colorado; and in the Uinta Basin, Utah. The data is consistent from all three basins. We show how in each basin the noble gases record open system gas migration through a water column at maximum basin burial. The data within an open system model indicates that the gas now in-place represents the last ~10% of hydrocarbon gas to have passed through the water column, most likely prior to permeability closedown.

  11. Numerical models for the diffuse ionized gas in galaxies. I. Synthetic spectra of thermally excited gas with turbulent magnetic reconnection as energy source

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Lieb, S.; Pauldrach, A. W. A.; Lesch, H.; Hultzsch, P. J. N.; Birk, G. T.

    2012-08-01

    Aims: The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods: We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results: Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.

  12. Evolution of the Interstellar Gas Fraction Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Wiklind, Tommy; CANDELS

    2018-01-01

    Galaxies evolve by transforming gas into stars. The gas is acquired through accretion and mergers and is a highly intricate process where feed-back processes play an important role. Directly measuring the gas content in distant galaxies is, however, both complicated and time consuming. A direct observations involves either observing neutral hydrogen using the 21cm line or observing the molecular gas component using tracer molecules such as CO. The former method is impeded by man-made radio interference, and the latter is time consuming even with sensitive instruments such s ALMA. An indirect method is to observe the Raleigh-Jeans part of the dust SED and from this infer the gas mass. Here we present the results from a project using ALMA to measure the RJ part of the dust SED in a carefully selected sample of 70 galaxies at redshifts z=2-5. The galaxies are selected solely based on their redshift and stellar mass and therefore represents an unbiased sample. The stellar masses are selected using the MEAM method and thus the sample corresponds to progenitors of a z=0 galaxy of a particular stellar mass. Preliminary results show that the average gas fraction increases with redshift over the range z=2-3 in accordance with theoretical models, but at z≥4 the observed gas fraction is lower.

  13. Laboratory Connections. Gas Monitoring Transducers.

    ERIC Educational Resources Information Center

    Powers, Michael H.

    1988-01-01

    Discusses three types of sensors; pressure, gas detection, and relative humidity. Explains their use for laboratory measurements of gas pressure and detection of specific gaseous species. Shows diagrams of devices and circuits along with examples and applications including microcomputer interfacing. (RT)

  14. Lipase hydration state in the gas phase: sorption isotherm measurements and inverse gas chromatography.

    PubMed

    Marton, Zsuzsanna; Chaput, Ludovic; Pierre, Guillaume; Graber, Marianne

    2010-11-01

    The adsorption of water and substrate on immobilized Candida antarctica lipase B was studied by performing adsorption isotherm measurements and using inverse gas chromatography (IGC). Water adsorption isotherm of the immobilized enzyme showed singular profile absorption incompatible with the Brunauer-Emmet-Teller model, probably due to the hydrophobic nature of the support, leading to very low interactions with water. IGC allowed determining the evolution with water thermodynamic activity (a(W)) of both dispersive surface energies and acidity and basicity constants of immobilized enzyme. These results showed that water molecules progressively covered immobilized enzyme, when increasing a(W), leading to a saturation of polar groups above a(W) 0.1 and full coverage of the surface above a(W) 0.25. IGC also enabled relevant experiments to investigate the behavior of substrates under a(W) that they will experience, in a competitive situation with water. Results indicated that substrates had to displace water molecules in order to adsorb on the enzyme from a(W) values ranging from 0.1 to 0.2, depending on the substrate. As the conditions used for these adsorption studies resemble the ones of the continuous enzymatic solid/gas reactor, in which activity and selectivity of the lipase were extensively studied, it was possible to link adsorption results with particular effects of water on enzyme properties.

  15. A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1972-01-01

    A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.

  16. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants.

    PubMed

    Gioannis, G De; Muntoni, A; Cappai, G; Milia, S

    2009-03-01

    Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy.

  17. Noble Gas Signatures in Snow: a New Experimental Investigation.

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Hall, C. M.; Castro, C.

    2016-12-01

    Dissolved noble gases in groundwater (He, Ne, Ar, Kr, and Xe) have been widely used to improve our knowledge of surface and groundwater dynamics. However, a recent rainwater study [1] recorded noble gas concentration anomalies originating from conditions at high altitude. Potential anomaly sources might include fog, orographic rain, synoptic rain and snow, depending on the region considered. Here, we outline a methodology for measuring noble gases in freshly collected snow samples. Their fine-grained nature leads to significant experimental challenges. Overall, our results (Fig. 1) show that snow has elevated He concentrations with depleted concentrations of all other noble gases. Similar results have been recorded in ice [2, 3]. In addition, our results show relatively homogeneous (< 14%) He and Ne concentrations while Ar, Kr and Xe display large concentration variability (> 80%). These observations led us to investigate the structure of snow and potential host-sites (available empty space) within the crystal structure. Noble gases are chemically inert and do not form bonds that could affect the ice crystal structure. Therefore, host-sites control the solubility of each noble gas. Our results show that He and Ne, which are known to have small atomic radii, are likely dissolved into the ice/snow crystal lattice, while heavy noble gas (Ar, Kr and Xe) are likely accommodated into defects. Consequently, smaller variability recorded in light noble gases, may result from He and Ne being hosted within the crystal lattice, whereas heavy noble gases rely on the presence of defects, which may randomly appear within the structure during snow formation. These new results can be used to better constrain the source of ground ice [3], groundwater systems and to investigate the structural transition mechanisms from snow to firn and ice. Figure 1: Noble gas concentrations (C) in snow (filled circles symbols) and ice (half-filled square symbols) normalized to air saturated water

  18. Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region

    USGS Publications Warehouse

    French, Christopher D.; Schenk, Christopher J.

    2006-01-01

    This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.

  19. Ionization Gas Sensor using Aligned Multiwalled Carbon Nanotubes Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kermany, A. R.; Mohamed, N. M.; Singh, B. S. M.

    2011-05-25

    The challenge with current conventional gas sensors which are operating using semiconducting oxides is their size. After the introduction of nanotechnology and in order to reduce the dimension and consequently the power consumption and cost, new materials such as carbon nanotubes (CNTs) are being introduced. From previous works and characterization results, it was proven that the CNTs based gas sensor has better sensitivity, selectivity and faster response time in compared with semiconducting oxides based gas sensors. As in this work, a fabrication and successful testing of an ionization-based gas sensor using aligned Multiwalled CNTs (MWCNTs) as sensing element is discussed,more » in which MWCNTs array and Al film are used as anode and cathode plates respectively with electrode separation ranging from 80 {mu}m to 140 {mu}m. Aligned MWCNTs array was incorporated into a sensor configuration in the gas chamber for testing of gases such as argon, air, and mixed gas of 2%H{sub 2} in air. Obtained results show that among the three gases, argon has the lowest breakdown voltage whilst air has the highest value and the breakdown voltage was found to decrease as the electrode spacing was reduced from 140 {mu}m to 80 {mu}m for all three gases.« less

  20. Superdiffusive gas recovery from nanopores

    NASA Astrophysics Data System (ADS)

    Wu, Haiyi; He, Yadong; Qiao, Rui

    2016-11-01

    Understanding the recovery of gas from reservoirs featuring pervasive nanopores is essential for effective shale gas extraction. Classical theories cannot accurately predict such gas recovery and many experimental observations are not well understood. Here we report molecular simulations of the recovery of gas from single nanopores, explicitly taking into account molecular gas-wall interactions. We show that, in very narrow pores, the strong gas-wall interactions are essential in determining the gas recovery behavior both quantitatively and qualitatively. These interactions cause the total diffusion coefficients of the gas molecules in nanopores to be smaller than those predicted by kinetic theories, hence slowing down the rate of gas recovery. These interactions also lead to significant adsorption of gas molecules on the pore walls. Because of the desorption of these gas molecules during gas recovery, the gas recovery from the nanopore does not exhibit the usual diffusive scaling law (i.e., the accumulative recovery scales as R ˜t1 /2 ) but follows a superdiffusive scaling law R ˜tn (n >0.5 ), which is similar to that observed in some field experiments. For the system studied here, the superdiffusive gas recovery scaling law can be captured well by continuum models in which the gas adsorption and desorption from pore walls are taken into account using the Langmuir model.

  1. IR gas cloud imaging in oil and gas applications: immunity to false stimuli

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward; Baliga, Shakar; Park, John; Bernascolle, Philippe

    2011-05-01

    Fixed gas detection equipment for the petroleum industries is no ordinary equipment. It is designed for continued unattended surveillance in harsh environments. The equipment must be reliable and require limited field maintenance. An additional requirement is a high resistance to false alarms and interferences, which can potentially reduce the detector's efficacy and the level of protection provided. In recent years, several manufactures of IR imaging devices have launched commercial models that are applicable to a wide range of chemical species and suitable for industrial use. These cameras are rugged and sufficiently sensitive to detect low concentrations of combustible and toxic gases. Nonetheless, as users become acquainted with these imaging systems, questions of resilience to solar and flame radiation and other IR sources, interferences by fog or steam, have begun to emerge. These questions, in fact, reflect similar concerns as those raised with open path IR gas detectors when they first appeared in the market over 20 years ago. This paper examines an IR gas imager's performance when exposed to several false alarm sources. Gas detection sensitivity in the presence of false stimuli and response and recovery times under an uncontrolled outdoor environment were measured. The results show the specific model tested is reasonably immune to false alarms, while response times were unaffected by the presence of these sources.

  2. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  3. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  4. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  5. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  6. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  7. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard S. Meyer

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. A

  8. Partial wetting gas-liquid segmented flow microreactor.

    PubMed

    Kazemi Oskooei, S Ali; Sinton, David

    2010-07-07

    A microfluidic reactor strategy for reducing plug-to-plug transport in gas-liquid segmented flow microfluidic reactors is presented. The segmented flow is generated in a wetting portion of the chip that transitions downstream to a partially wetting reaction channel that serves to disconnect the liquid plugs. The resulting residence time distributions show little dependence on channel length, and over 60% narrowing in residence time distribution as compared to an otherwise similar reactor. This partial wetting strategy mitigates a central limitation (plug-to-plug dispersion) while preserving the many attractive features of gas-liquid segmented flow reactors.

  9. Gas-partitioning tracer test to qualify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, Victor M.; Kip, Solomon D.; Perkins, Kim S.; Ellett, Kevin M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  10. Gas-partitioning tracer test to quantify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, V.M.; Solomon, D.K.; Perkins, K.S.; Ellett, K.M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  11. Noble Gas Release Signal as a Precursor to Fracture

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Lee, H.; Gardner, W. P.

    2017-12-01

    We present empirical results of rock strain, microfracturing, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite, basalt, shale and bedded rock salt. Noble gases are released and measured real-time during deformation using mass spectrometry. The gas release represents a precursive signal to macrofracture. Gas release is associated with increased acoustic emissions indicating that microfracturing is required to release gas and create pathways for the gas to be sensed. The gas released depends on initial gas content, pore structure and its evolution during deformation, the deformation amount, matrix permeability, deformation style and the stress/strain history. Gases are released from inter and intracrystalline sites; release rate increases as strain and microfracturing increases. The gas composition depends on lithology, geologic history and age, fluids present, and radioisotope concentrations that affect radiogenic noble gas isotope (e.g. 4He,40Ar) production. Noble gas emission and its relationship to crustal processes such as seismicity and volcanism, tectonic velocities, qualitative estimates of deep permeability, age dating of groundwater, and a signature of nuclear weapon detonation. Our result show that mechanical deformation of crustal materials is an important process controlling gas release from rocks and minerals, and should be considered in techniques which utilize gas release and/or accumulation. We propose using noble gas release to signal rock deformation in boreholes, mines and waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress, strain, and/or permanent deformation dependent. Calibration of such relationships, for example relating gas release per rock unit volume to strain may be used to quantify rock deformation and develop predictive models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

  12. Modeling of acoustic wave dissipation in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Guerin, Gilles; Goldberg, David

    2005-07-01

    Recent sonic and seismic data in gas hydrate-bearing sediments have indicated strong waveform attenuation associated with a velocity increase, in apparent contradiction with conventional wave propagation theory. Understanding the reasons for such energy dissipation could help constrain the distribution and the amounts of gas hydrate worldwide from the identification of low amplitudes in seismic surveys. A review of existing models for wave propagation in frozen porous media, all based on Biot's theory, shows that previous formulations fail to predict any significant attenuation with increasing hydrate content. By adding physically based components to these models, such as cementation by elastic shear coupling, friction between the solid phases, and squirt flow, we are able to predict an attenuation increase associated with gas hydrate formation. The results of the model agree well with the sonic logging data recorded in the Mallik 5L-38 Gas Hydrate Research Well. Cementation between gas hydrate and the sediment grains is responsible for the increase in shear velocity. The primary mode of energy dissipation is found to be friction between gas hydrate and the sediment matrix, combined with an absence of inertial coupling between gas hydrate and the pore fluid. These results predict similar attenuation increase in hydrate-bearing formations over most of the sonic and seismic frequency range.

  13. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive.

    PubMed

    Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen

    2012-03-01

    Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.

  14. The origin of gas seeps and shallow gas in northern part of South China Sea

    NASA Astrophysics Data System (ADS)

    Li, M.; Jin, X.

    2003-04-01

    vary in different places. Gas chimneys can be found on seafloor, which show blank zone on seismic profiles, locally with pit holes. The geochemical analyses of gas samples from gas seeps indicate its composition is dominated by hydrocarbon gas, the other include CO_2, N_2 and O_2. The gas has high dry index, and heavier δ13C_1.This shows that the gas is of matured- over matured thermogenic gas. The geochemical characteristics of extracts from sediments in the area are similar to those of penetrated source rock of Neogene in the basin, indicating the gas is from the matured source rock in the basin, the diapric zone and fault act as the migration pathway. The gas samples on slope were obtained through degasification of sediments collected by SONNE. Geochemical analyses show that the gas composition is dominated by methane, with high dry index and heavier δ13C_1, belonging to typical thermogenic gas. On maturity chart, the gas samples on upper slope fall in the area near the boundary of condensate, indicating higher maturity, while those on lower slope has lower maturity and fall in the area near oil window. The gas samples from deep sea basin is mixed gas of thermogenic gas and biogas. Therefore, it is reasonable to consider the deep buried source rock as the origin of the gas, and the active faults are the migration pathway. As stated above, the gas seeps and shallow gas in northern part of South China Sea were mainly originated from deep buried source rock, migrated through diapric zone or active faults. Their distribution and occurrence have directly relation with the source rock type and maturity, and the tectonic active of the underlying basins. The petroleum exploration has proved that Yinggehai basin and Qiongdongnan basin on the western part are favored for gas generation, while the Pearl River Mouth Basin and Beibu Gulf basin on the eastern part are favored for oil generation. This may account for the distribution of gas seeps which concentrated in the

  15. Does massive intraabdominal free gas require surgical intervention?

    PubMed

    Furihata, Tadashi; Furihata, Makoto; Ishikawa, Kunibumi; Kosaka, Masato; Satoh, Naoki; Kubota, Keiichi

    2016-08-28

    We describe a rare case of an 81-year-old man who presented with severe epigastralgia. A chest radiograph showed massive free gas bilaterally in the diaphragmatic spaces. Computed tomography (CT) scan also showed massive free gas in the peritoneal cavity with portal venous gas. We used a wait-and-see approach and carefully considered surgery again when the time was appropriate. The patient received conservative therapy with fasting, an intravenous infusion of antibiotics, and nasogastric intubation. The patient soon recovered and was able to start eating meals 4 d after treatment; thus, surgical intervention was avoided. Thereafter, colonoscopy examination showed pneumatosis cystoides intestinalis in the ascending colon. On retrospective review, CT scan demonstrated sporadic air-filled cysts in the ascending colon. The present case taught us a lesson: the presence of massive intraabdominal free gas with portal venous gas does not necessarily require surgical intervention. Pneumatosis cystoides intestinalis should be considered as a potential causative factor of free gas with portal venous gas when making the differential diagnosis.

  16. Physical interactions of hyperpolarized gas in the lung

    NASA Astrophysics Data System (ADS)

    Chen, Xiu-Hao Josette

    1999-09-01

    This thesis addresses key interactions of hyperpolarized (HP) gas within the biological environment of the lung using magnetic resonance imaging (MRI). The first excised lung image was obtained in 1994 by Albert et al ., indicating the relative youth of the HP gas MRI field. Thus, there are a multitude of parameters which need to be explored to optimize contrast mechanisms and pulse sequences for in vivo applications. To perform HP gas MRI, both the production of HP gas and development of appropriate MRI pulse sequences were necessary. The apparatus for gas polarization was transferred from Princeton University, then modified and optimized to provide larger quantities and higher polarizations. It was ultimately replaced by a prototype commercial apparatus. Existing MRI pulse sequences were changed to accommodate and exploit the unique situation of non-equilibrium polarized gas. Several physical parameters of the gas relating to structure and function in the lung were investigated. It was found that using a range of excitation powers, acquisition windows, and ventilatory cycle segments yielded dramatically different types of images in the guinea pig. Spatially localized lineshapes of HP 3He showed differentiated peaks (corresponding to frequency shifts) which represent gas in major airways (2 ppm) and alveoli (1-2 ppm). Quantitative maps of the diffusion coefficient (D) showed evidence of free diffusion in the trachea (average of 2.4 cm2/s for 3He and 0.68 cm2/s for 129Xe) and restricted diffusion combined with effects of gas mixtures in the distal pulmonary airspaces (average of 0.16 cm2/s for 3He and 0.021 cm2/s for 129Xe). Experimental measurements were verified with gas mixture and porous media theory for both 3He and 129Xe. The dephasing parameter, T*2 , was mapped showing sensitivity to changes in tidal volume and oxygen level. The T*2 values ranged from 9.2 to 15.9 ms in the intrapulmonary airspaces depending on the breathing paradigm. Experimental results

  17. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  18. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen; Johnson, Sean D.; Zahedy, Fakhri S.; Rauch, Michael; Mulchaey, John S.

    2017-06-01

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  19. Equisetum species show uniform epicuticular wax structures but diverse composition patterns

    PubMed Central

    Brune, Thomas; Haas, Klaus

    2011-01-01

    Background and aims Only few data on the epicuticular waxes (EWs) of horsetails are available. This contribution therefore focuses on the wax micromorphology and chemical composition of Equisetum species of the subgenera Equisetum and Hippochaete. Methodology Distribution patterns and structural details of EW on the shoots were studied by scanning electron microscopy. After extraction with chloroform, the chemical composition of wax isolates was analysed by gas chromatography. Principal results Epicuticular wax crystals were non-oriented platelets or membraneous platelets. They were usually located on subsidiary cells of stomata and adjacent cells. Other parts of the shoots were covered mainly with a smooth wax film or small granules only. The chemical constituents found were alkanes, esters, aldehydes, primary alcohols and free fatty acids in a range of C20–C36 (in esters C36–C56). All species of the subgenus Hippochaete showed a similar pattern of fractions with high percentages of alkanes and aldehydes, whereas the subgenus Equisetum species had distinctly different wax compositions. Extracts from the internodes—surfaces without well-developed EW crystals and only few stomata—showed the lowest contents of aldehydes. Conclusions The covering with EW crystals will provide unhindered gas exchange and, combined with intracuticular wax, may prevent excess water loss during winter in the evergreen shoots of the subgenus Hippochaete. The results indicate that the Equisetum wax micromorphology and biosynthesis are comparable to EW of other pteridophyte classes and mosses. PMID:22476480

  20. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  1. Laser ablation in an ambient gas: Modelling and experiment

    NASA Astrophysics Data System (ADS)

    Moscicki, Tomasz; Hoffman, Jacek; Szymanski, Zygmunt

    2018-02-01

    The laser ablation of graphite in ambient argon is studied both experimentally and theoretically in conditions corresponding to the initial conditions of carbon nanotube synthesis by the laser vaporization method. The results of the experiment show that the maximum plasma temperature of 24 000 K is reached 25 ns after the beginning of the laser pulse and decreases to about 4000-4500 K after 10 μs. The maximum electron density of 8 × 1025 m-3 is reached 15 ns from the beginning of the laser pulse. The hydrodynamic model applied shows comparable plasma temperatures and electron densities. The model also replicates well a shock wave and plume confinement—intrinsic features of supersonic flow of the ablated plume in an ambient gas. The results show that the theoretical model can be used to simulate nanosecond laser ablation in an ambient gas from the beginning of the process up to several microseconds.

  2. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin.

    PubMed

    Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim

    2014-01-01

    Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due

  3. Noble Gas signatures of Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble

  4. Gas Hydrate Storage of Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed

  5. Relict gas hydrates as possible reason of gas emission from shallow permafrost at the northern part of West Siberia

    NASA Astrophysics Data System (ADS)

    Chuvilin, Evgeny; Bukhanov, Boris; Tumskoy, Vladimir; Istomin, Vladimir; Tipenko, Gennady

    2017-04-01

    zone) permafrost horizons. The results show that all investigated frozen hydrate-bearing sandy and silty sand samples in the temperature range from -16 °C to -2 °C are characterized by not complete decomposition of pore hydrate at relieving pressure below the equilibrium. It was observed that at typical north Western Siberian permafrost temperature of -6 ° C the safety of pore hydrate in frozen samples can reach 60% at the pressure reducing below the equilibrium. In was found that with increasing temperature and particle size (dispersity) the efficiency of pore hydrate self-preservation is decreased, but even at the temperature of -2 °C there is residual pore methane hydrate content in non-saline sandy samples. All this suggests about high preservation of methane hydrates in frozen sediments at non-equilibrium thermobaric conditions, close to reservoir conditions. Based on the results of mathematical and experimental simulations about the possibility of relic gas hydrates existence on permafrost depth up to 200 m in the northern part of Western Siberia on the less than 200 m due to geological manifestation of the self-preservation effect of gas hydrates. References. 1.Chuvilin EM, Yakushev VS, Perlova EV. Gas and gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. // Polarforschung 68: 215-219, 1998. (erschienen 2000). 2.Yakushev V.S., Chuvilin E.M. 2000. Natural gas and hydrate accumulation within permafrost in Russia. Cold Regions Science and Technology. 31: 189-197. These researches are supported by grant RSF №16-17-00051.

  6. The Physical Origin of Long Gas Depletion Times in Galaxies

    NASA Astrophysics Data System (ADS)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2017-08-01

    We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results in a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L *-sized galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.

  7. Decomposition of dimethylamine gas with dielectric barrier discharge.

    PubMed

    Ye, Zhaolian; Zhao, Jie; Huang, Hong ying; Ma, Fei; Zhang, Renxi

    2013-09-15

    The decomposition of dimethylamine (DMA) with gas under high flow rate was investigated with dielectric barrier discharge (DBD) technology. Different parameters including removal efficiency, energy yield, carbon balance and CO2 selectivity, secondary products, as well as pathways and mechanisms of DMA degradation were studied. The experimental results showed that removal efficiency of DMA depended on applied voltage and gas flow rate, but had no obvious correlation with initial concentration. Excellent energy performance was obtained using present DBD technology for DMA abatement. When experiment conditions were controlled at: gas flow rate of 14.9 m(3)/h, initial concentration of 2104 mg/m(3), applied voltage of 4.8 kV, removal efficiency of DMA and energy yield can reach 85.2% and 953.9 g/kWh, respectively. However, carbon balance (around 40%) was not ideal due to shorter residence time (about 0.1s), implying that some additional conditions should be considered to improve the total oxidation of DMA. Moreover, secondary products in outlet gas stream were detected via gas chromatogram-mass spectrum and the amounts of NO3(-) and NO2(-) were analyzed by ion chromatogram. The obtained data demonstrated that NOx might be suppressed due to reductive NH radical form DMA dissociation. The likely reaction pathways and mechanisms for the removal of DMA were suggested based on products analysis. Experimental results demonstrated the application potential of DBD as a clean technology for organic nitrogen-containing gas elimination from gas streams. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. [Poisoning by exhaust gas of the imperfect combustion of natural gas: 22 cases study].

    PubMed

    Dong, Li-Min; Zhao, Hai; Zhang, Ming-Chang; He, Meng

    2014-10-01

    To analyze the case characteristics of poisoning by exhaust gas of the imperfect combustion of natural gas and provide references for forensic identification and prevention of such accidents. Twenty-two cases of poisoning by exhaust gas of the imperfect combustion of natural gas in Minhang District during 2004 to 2013 were collected. Some aspects such as general conditions of deaths, incidence time, weather, field investigation, and autopsy were retrospectively analyzed. In the 22 cases, there were 15 males and 16 females. The age range was between 2 and 82 years old. The major occurring time was in January or February (8 cases in each) and the cases almost occurred in small area room (21 cases). There was wide crack next to the exhaust port when the gas water heater was been used in all cases. There are more prone to occurrence of exhaust gas poisoning of imperfect combustion of natural gas in small area room with a ventilation window near the exhaust port of gas water heated. It shows that the scene of combustion exhaust gas poisoning should be more concerned in the cold season.

  9. A survey of gas-side fouling measuring devices

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Henslee, S. P.

    1984-01-01

    A survey of measuring devices or probes, which were used to investigate gas side fouling, was carried out. Five different types of measuring devices are identified and discussed including: heat flux meters, mass accumulation probes, optical devices, deposition probes, and acid condensation probes. A total of 32 different probes are described in detail and summarized in matrix or tabular form. The important considerations of combustion gas characterization and deposit analysis are also given a significant amount of attention. The results show that considerable work was done in the development of gas side fouling probes. However, it is clear that the design, construction, and testing of a durable, versatile probe - capable of monitoring on-line fouling resistances - remains a formidable task.

  10. Evidence for gas accumulation associated with diapirism and gas hydrates at the head of the Cape Fear Slide

    USGS Publications Warehouse

    Schmuck, E.A.; Paull, C.K.

    1993-01-01

    Single-channel seismic reflection profiles show evidence for areas of significant gas accumulation at the head of the Cape Fear Slide on the continental rise oft North Carolina. Gas accumulation appears to occur beneath a gas hydrate seal in landward-dipping strata and in domed strata associated with diapirism. In addition, gas venting may have occurred near diapirs located at the head of the slide.

  11. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    NASA Astrophysics Data System (ADS)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  12. Monitoring of energy efficiency of technological modes of gas transport using modern gas-turbine equipment

    NASA Astrophysics Data System (ADS)

    Golik, V. V.; Zemenkova, M. Yu; Shipovalov, A. N.; Akulov, K. A.

    2018-05-01

    The paper presents calculations and an example of energy efficiency justification of the regimes of the equipment used. The engineering design of the gas pipeline in the part of monitoring the energy efficiency of a gas compressor unit (GCU) is considered. The results of the GCU characteristics and its components evaluation are described. The evaluation results of the energy efficiency indicators of the gas pipeline are presented. As an example of the result of the analysis, it is proposed to use gas compressor unit GCU-32 "Ladoga" because of its efficiency and cost effectiveness, in comparison with analogues.

  13. Noble gas trapping and fractionation during synthesis of carbonaceous matter. [in meteorites

    NASA Technical Reports Server (NTRS)

    Frick, U.; Mack, R.; Chang, S.

    1979-01-01

    An investigation of noble gas entrapment during synthesis of carbonaceous, macromolecular, and kerogen-like substances is presented. High molecular weight organic matter synthesized in aqueous condensation reactions contained little gas, and the composition was consistent with fractionation due to noble gas solubility in water; however, propane soot produced during a modified Miller-Urey experiment in an aritificial gas mixture contained high concentrations of trapped noble gases that displayed strong elemental fractionation from their reservoirs. It is concluded that theses experiemnts show that processes exist for synthesis of carbonaceous carriers that result in high noble gas concentrations and strong elemental fractionation at temperatures well above those required by absorption to achieve similar effects.

  14. Rarefied gas electro jet (RGEJ) micro-thruster for space propulsion

    NASA Astrophysics Data System (ADS)

    Blanco, Ariel; Roy, Subrata

    2017-11-01

    This article numerically investigates a micro-thruster for small satellites which utilizes plasma actuators to heat and accelerate the flow in a micro-channel with rarefied gas in the slip flow regime. The inlet plenum condition is considered at 1 Torr with flow discharging to near vacuum conditions (<0.05 Torr). The Knudsen numbers at the inlet and exit planes are ~0.01 and ~0.1, respectively. Although several studies have been performed in micro-hallow cathode discharges at constant pressure, to our knowledge, an integrated study of the glow discharge physics and resulting fluid flow of a plasma thruster under these low pressure and low Knudsen number conditions is yet to be reported. Numerical simulations of the charge distribution due to gas ionization processes and the resulting rarefied gas flow are performed using an in-house code. The mass flow rate, thrust, specific impulse, power consumption and the thrust effectiveness of the thruster are predicted based on these results. The ionized gas is modelled using local mean energy approximation. An electrically induced body force and a thermal heating source are calculated based on the space separated charge distribution and the ion Joule heating, respectively. The rarefied gas flow with these electric force and heating source is modelled using density-based compressible flow equations with slip flow boundary conditions. The results show that a significant improvement of specific impulse can be achieved over highly optimized cold gas thrusters using the same propellant.

  15. The Fate of Gas-rich Satellites in Clusters

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Scannapieco, Evan

    2017-11-01

    We investigate the stellar mass-loss of gas-rich galaxies falling into clusters due to the change in the gravitational potential caused by the ram-pressure-stripping of their gas. We model the satellites with exponential stellar and gas disk profiles, assume rapid ram-pressure-stripping, and follow the stellar orbits in the shocked potential. Due to the change of the potential, the stars move from circular orbits to elliptical orbits with apocenters that are often outside the tidal radius, causing those stars to be stripped. We explore the impact of the redshift of infall, gas fraction, satellite halo mass, and cluster mass on this process. The puffing of the satellites makes them appear as ultra-diffuse galaxies, and the stripped stars contribute to the intracluster light. Our results show that these effects are most significant for less massive satellites, which have larger gas fractions when they are accreted into clusters. The preferential destruction of low-mass systems causes the red fraction of cluster galaxies to be smaller at lower masses, an observation that is otherwise difficult to explain.

  16. Results using flue gas desulfurization gypsum in soilless substrates for greenhouse crops

    USDA-ARS?s Scientific Manuscript database

    Recent availability of Flue Gas Desulfurization gypsum (FGDG) has led to interested in its possible use in horticulture greenhouse production. Three studies were conducted to determine the effects of increasing rates of FGDG on six greenhouse crops. In the first study, substrates (6:1 pine bark:san...

  17. Gas demand forecasting by a new artificial intelligent algorithm

    NASA Astrophysics Data System (ADS)

    Khatibi. B, Vahid; Khatibi, Elham

    2012-01-01

    Energy demand forecasting is a key issue for consumers and generators in all energy markets in the world. This paper presents a new forecasting algorithm for daily gas demand prediction. This algorithm combines a wavelet transform and forecasting models such as multi-layer perceptron (MLP), linear regression or GARCH. The proposed method is applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the proposed method.

  18. 1. View looking north toward downtown, showing setting/context and south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View looking north toward downtown, showing setting/context and south approach. Showing French-Thompson (Rumford) House, gas holder, railroad switch house and bridge. - Water Street Bridge, Spanning Boston & Maine Railroad tracks at Water Street (U.S. Route 3), Concord, Merrimack County, NH

  19. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  20. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  1. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    NASA Astrophysics Data System (ADS)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  2. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

    USGS Publications Warehouse

    Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M.

    2007-01-01

    Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 ?? 109 m3/1.73 ?? 104 m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m3/m3). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  3. Gas storage, transport and pressure changes in an evolving permeable volcanic edifice

    NASA Astrophysics Data System (ADS)

    Collinson, A. S. D.; Neuberg, J. W.

    2012-10-01

    The total volume of gas in a magma, dissolved and subsequently exsolved, greatly influences the degree of explosiveness of a volcanic system. There is a marked contrast between the behaviour of a volcano in an "open" system compared to one which is "closed". It is therefore essential to understand the entire degassing process: gas transport, storage and loss. A particular focus of this study is the effect different permeabilities and pressure gradients within a volcanic edifice have on the degree and pattern of the gas velocity. Gas loss is modelled numerically in two dimensions using a finite element approach, which allows the specification of boundary conditions with respect to pressure and different permeability domains within the volcanic edifice. By combining the time-dependent continuity equation and Darcy's law, a partial differential equation is derived and solved for the pressure. The associated pressure gradient is then used within Darcy's law to determine the corresponding gas velocity distribution. This method is used not only for stationary systems in equilibrium, but also as a time-dependent progression. It permits the modelling of different situations to study how various volcanic characteristics affect the gas loss. The model is used to investigate the change in pressure and gas in response to time-dependent scenarios. These are a dome collapse or sudden increase in permeability by magma rupture at the conduit margin, the formation of cracks within the lava dome and sealing by crystallisation. Our results show that a combination of high and low permeability regions is required for effective gas storage. High permeability allows the gas to enter the system, but impermeable areas act to confine the gas, thereby increasing its pressure and consequently, increasing the amount of gas which may be dissolved in the melt. Furthermore, our results show that permeability is an essential factor influencing the response time to system changes, which could be

  4. Length scales involved in decoherence of trapped bosons by buffer-gas scattering

    NASA Astrophysics Data System (ADS)

    Gilz, Lukas; Rico-Pérez, Luis; Anglin, James R.

    2014-05-01

    We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be before an environment of thermal atoms of a different species ("buffer gas") responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, however, we show that when interactions within the buffer-gas reservoir are taken into account, an abrupt saturation of the decoherence rate does occur, exponentially on the length scale of the buffer gas's mean free path.

  5. INTERIOR VIEW OF FIRST STORY SPACE SHOWING CONCRETE BEAMS; CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FIRST STORY SPACE SHOWING CONCRETE BEAMS; CAMERA FACING NORTH - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA

  6. Evidence for gas accumulation associated with diapirism and gas hydrates at the head of the Cape Fear Slide

    USGS Publications Warehouse

    Schmuck, E.A.; Paull, C.K.

    1993-01-01

    Single-channel seismic reflection profiles show evidence for areas of significant gas accumulation at the head of the Cape Fear Slide on the continental rise off North Carolina. Gas accumulation appears to occur beneath a gas hydrate seal in landward-dipping strata and in domed strata associated with diapirism. In addition, gas venting may have occurred near diapirs located at the head of the slide. ?? 1993 Springer-Verlag.

  7. Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis.

    PubMed

    Moriaux, Anne-Laure; Vallon, Raphaël; Parvitte, Bertrand; Zeninari, Virginie; Liger-Belair, Gérard; Cilindre, Clara

    2018-10-30

    During Champagne or sparkling wine tasting, gas-phase CO 2 and volatile organic compounds invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO 2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception. Monitoring as accurately as possible the level of gas-phase CO 2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO 2 and a collection of various tasting parameters. Here, the concentration of CO 2 found in the headspace of champagne glasses served under multivariate conditions was accurately monitored, all along the 10 min following pouring, through a new combined approach by a CO 2 -Diode Laser Sensor and micro-gas chromatography. Our results show the strong impact of various tasting conditions (volume dispensed, intensity of effervescence, and glass shape) on the release of gas-phase CO 2 above the champagne surface. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Measuring gas temperature during spin-exchange optical pumping process

    NASA Astrophysics Data System (ADS)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  9. Direct monitoring of wind-induced pressure-pumping on gas transport in soil

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non

  10. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet

    2014-10-01

    displays a similar yellow shift when gas is added. Solid residues rarely form in mixtures with 42 °API oil. FT-IR spectra suggest that the decrease of fluorescence intensity of the original oil at short wavelengths to be due to the partitioning of low molecular weight aromatic molecules into the vapour phase and/or the new immiscible liquid phase. The decrease of fluorescence intensity at long wavelengths appears to be due to loss of high molecular weight aromatics during precipitation of solid residues by desorption of aromatics and resins from asphaltenes. Desorption of low molecular weight aromatics and resins from asphaltenes during precipitation can also increase the fluorescence intensity at short wavelengths of the residual oil. Water clearly affects the precipitation of semi-solid residues from the oil phase of the lowest API gravity oil. The change of hydrocarbon phase(s) in UV-visible fluorescence and FT-IR enclosed within the FSCCs were compared with the fluorescence patterns of natural fluid inclusions at Phuong Dong gas condensate field. The experimental results support the concept of gas-washing of residual oil and are consistent with the oil inclusion attributes from the current gas zone at Phuong Dong field. The hydrocarbon charge history of the fractured granite reservoir is interpreted to result from the trapping of residual oil after drainage of a palaeo-oil column by gas.

  11. Investigation of gas surface interactions at self-assembled silicon surfaces acting as gas sensors

    NASA Astrophysics Data System (ADS)

    Narducci, Dario; Bernardinello, Patrizia; Oldani, Matteo

    2003-05-01

    This paper reports the results of an investigation aimed at using self-assembled monolayers to modify the supramolecular interactions between Si surfaces and gaseous molecules. The specific goal is that of employing molecularly imprinted silicon surfaces to develop a new class of chemical sensors capable to detect species with enhanced selectivity. Single-crystal p-type (0 0 1) silicon has been modified by grafting organic molecules onto its surface by using wet chemistry synthetic methods. Silicon has been activated toward nucleophilic attack by brominating its surface using a modified version of the purple etch, and aromatic fragments have been bonded through the formation of direct Si-C bonds onto it using Grignard reagents or lithium aryl species. Formation of self-assembled monolayers (SAMs) was verified by using vibrational spectroscopy. Porous metal-SAM-Si diodes have been successfully tested as resistive chemical sensors toward NO x, SO x, CO, NH 3 and methane. Current-voltage characteristics measured at different gas compositions showed that the mechanism of surface electron density modulation involves a modification of the junction barrier height upon gas adsorption. Quantum-mechanical simulations of the interaction mechanism were carried out using different computational methods to support such an interaction mechanism. The results obtained appear to open up new relevant applications of the SAM techniques in the area of gas sensing.

  12. Gas Sensors Characterization and Multilayer Perceptron (MLP) Hardware Implementation for Gas Identification Using a Field Programmable Gate Array (FPGA)

    PubMed Central

    Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir

    2013-01-01

    This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119

  13. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: Results from the Alaminos Canyon 21 Site

    NASA Astrophysics Data System (ADS)

    Godfriaux, P. D.; Shedd, W.; Frye, M.; Collett, T. S.; Lee, M. W.; Boswell, R. M.; Cook, A.; Mrozewski, S.; Guerin, G.; McConnell, D.; Dufrene, R.; Jones, E.

    2009-12-01

    The Gulf of Mexico Gas Hydrate Joint Industry Project Leg II drilling program visited three sites in the Gulf of Mexico during a 21 day drilling program in April and May, 2009. Using both petroleum systems and seismic stratigraphic approaches, the exploration focus for Leg II was to identify sites with the potential for gas hydrate-saturated sand reservoirs. Two holes were drilled at the AC 21 site in the Diana Basin located in the western Gulf of Mexico. The data acquired consist of a comprehensive suite of high resolution LWD logs including gamma ray, density, porosity, sonic, and resistivity tools. No physical samples were taken in the field. The primary objective of each well was to determine the presence or absence of gas hydrate from the log data at the predetermined primary targets in a Pleistocene basin floor turbidite complex approximately 500 ft below seafloor. At the AC 21-A location, two high net to gross target sands were encountered that measured 15 ft and 60 ft, respectively. The AC 21-A well was drilled through the interpreted base of gas hydrate stability to a depth approximately 1500 ft below sea floor. The AC 21-B well encountered a single high net to gross target sand measuring over 120 ft thick. At both AC 21 well locations, all target sand intervals had elevated formation resistivity measurements relative to clearly wet, stratigraphically equivalent sands encountered in the region, interpreted to indicate low to moderate levels of gas hydrate saturation. The likely discovery of thick gas hydrate-filled sands at the AC 21 site validates the exploration approach, and strongly indicates that gas hydrate can be found in reservoir quality sands. The LWD acquired data provided unprecedented information on the nature of the sediments and the occurrence of gas hydrate in the Gulf of Mexico.

  14. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: Results from the Walker Ridge 313 Site

    NASA Astrophysics Data System (ADS)

    Shedd, W.; Frye, M.; Boswell, R. M.; Collett, T. S.; McConnell, D.; Jones, E.; Shelander, D.; Dai, J.; Guerin, G.; Cook, A.; Mrozewski, S.; Godfriaux, P. D.; Dufrene, R.; Hutchinson, D. R.; Roy, R.

    2009-12-01

    The Gulf of Mexico Gas Hydrate Joint Industry Project Leg II drilling program visited three sites in the Gulf of Mexico during a 21 day drilling program in April and May, 2009. Using both petroleum systems and seismic stratigraphic approaches, the exploration focus for Leg II was to identify sites with the potential for gas hydrate-saturated sand reservoirs. The data acquired consist of a comprehensive suite of high resolution LWD logs including gamma ray, density, porosity, sonic, and resistivity tools. No physical samples were taken in the field. Two holes, locations G and H, were drilled at the Walker Ridge 313 site (WR 313)in the central Gulf of Mexico, just updip of the “salt sheet province”. The primary objective of each well was to determine the presence or absence of gas hydrate from the log data at the predetermined primary targets, picked from industry 3-D seismic data, in dipping Pleistocene turbidite derived sands on the flanks of a salt withdrawal minibasin. The seismic targets were high amplitude positive reflections just updip of phase reversals at the interpreted base of hydrate stability, corresponding to the so-called bottom simulating reflector, or “BSR”. Downdip of the BSR, the sands were clearly troughs, or negative reflections, suggesting free gas charge. An existing industry well, located updip of both JIP locations, contains a slightly sandy zone in the same stratigraphic interval as the JIP targets, that has elevated resistivities correlated to the target sands, suggesting low saturation “shows” of hydrate. Stratigraphically bounded fractured fine grained sediments with probable gas hydrate fill were found in both holes between 800 ft and 1300 ft at G, and between 600 ft and 1000 ft below the seafloor at H. At the primary targets, high saturation gas hydrates in sand were interpreted from logs at both holes. LWD data indicate 50 ft of high saturation gas hydrate in sands starting at 2722 ft below seafloor at the G hole. At H, 37

  15. Multi-scale measurements show limited soil greenhouse gas emissions in Kenyan smallholder coffee-dairy systems.

    PubMed

    Ortiz-Gonzalo, Daniel; de Neergaard, Andreas; Vaast, Philippe; Suárez-Villanueva, Víctor; Oelofse, Myles; Rosenstock, Todd S

    2018-06-01

    Efforts have been made in recent years to improve knowledge about soil greenhouse gas (GHG) fluxes from sub-Saharan Africa. However, data on soil GHG emissions from smallholder coffee-dairy systems have not hitherto been measured experimentally. This study aimed to quantify soil GHG emissions at different spatial and temporal scales in smallholder coffee-dairy farms in Murang'a County, Central Kenya. GHG measurements were carried out for one year, comprising two cropping seasons, using vented static chambers and gas chromatography. Sixty rectangular frames were installed on two farms comprising the three main cropping systems found in the area: 1) coffee (Coffea arabica L.); 2) Napier grass (Pennisetum purpureum); and 3) maize intercropped with beans (Zea mays and Phaseolus vulgaris). Within these fields, chambers were allocated on fertilised and unfertilised locations to capture spatial variability. Cumulative annual fluxes in coffee plots ranged from 1 to 1.9kgN 2 O-Nha -1 , 6.5 to 7.6MgCO 2 -Cha -1 and - 3.4 to -2.2kgCH 4 -Cha -1 , with 66% to 94% of annual GHG fluxes occurring during rainy seasons. Across the farm plots, coffee received most of the N inputs and had 56% to 89% higher emissions of N 2 O than Napier grass, maize and beans. Within farm plots, two to six times higher emissions were found in fertilised hotspots - around the perimeter of coffee trees or within planted maize rows - than in unfertilised locations between trees, rows and planting holes. Background and induced soil N 2 O emissions from fertiliser and manure applications in the three cropping systems were lower than hypothesized from previous studies and empirical models. This study supplements methods and underlying data for the quantification of GHG emissions at multiple spatial and temporal scales in tropical, smallholder farming systems. Advances towards overcoming the dearth of data will facilitate the understanding of synergies and tradeoffs of climate-smart approaches for low

  16. CONTEXTUAL VIEW OF BUILDING 231 SHOWING WEST AND SOUTH ELEVATIONS; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL VIEW OF BUILDING 231 SHOWING WEST AND SOUTH ELEVATIONS; CAMERA FACING NORTHEAST. - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA

  17. CONTEXTUAL VIEW OF BUILDING 231 SHOWING EAST AND NORTH ELEVATIONS; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL VIEW OF BUILDING 231 SHOWING EAST AND NORTH ELEVATIONS; CAMERA FACING SOUTHWEST. - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA

  18. Low Permeability Oil and Gas Plays

    EIA Publications

    The map shows boundaries, structure (elevation of the top contours), and isopachs (thickness contours) for major low permeability oil and gas plays in the lower 48 States. Additionally, related oil and gas infrastructure layers are included

  19. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  20. Assessing the greenhouse impact of natural gas

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.

    2012-06-01

    The global warming impact of substituting natural gas for coal and oil is currently in debate. We address this question here by comparing the reduction of greenhouse warming that would result from substituting gas for coal and some oil to the reduction which could be achieved by instead substituting zero carbon energy sources. We show that substitution of natural gas reduces global warming by 40% of that which could be attained by the substitution of zero carbon energy sources. At methane leakage rates that are ˜1% of production, which is similar to today's probable leakage rate of ˜1.5% of production, the 40% benefit is realized as gas substitution occurs. For short transitions the leakage rate must be more than 10 to 15% of production for gas substitution not to reduce warming, and for longer transitions the leakage must be much greater. But even if the leakage was so high that the substitution was not of immediate benefit, the 40%-of-zero-carbon benefit would be realized shortly after methane emissions ceased because methane is removed quickly from the atmosphere whereas CO2 is not. The benefits of substitution are unaffected by heat exchange to the ocean. CO2 emissions are the key to anthropogenic climate change, and substituting gas reduces them by 40% of that possible by conversion to zero carbon energy sources. Gas substitution also reduces the rate at which zero carbon energy sources must eventually be introduced.

  1. Optical graphene quantum dots gas sensors: Theoretical study

    NASA Astrophysics Data System (ADS)

    Raeyani, D.; Shojaei, S.; Ahmadi-Kandjani, S.

    2018-02-01

    In this work, we theoretically studied the changes of graphene quantum dots (GQD) absorption spectra under the influence of different gases to indicate optical gas sensing features of GQDs. The adsorption of gas molecules such as CO2, N2 and Ar on GQDs have been theoretically investigated through time-dependent density functional theory (TDDFT) calculations. Our study revealed that UV-Vis absorption spectrum of GQDs in the presence of CO2 undergoes considerable changes than that of N2 and Ar. The shift of maximum absorption wavelength for adsorption of CO2, N2 and Ar in same distance from GQD in addition to density of state (DOS) and orbital analyses have been obtained. To verify our theoretical results, comparison with experimental study has been done and good agreement has been observed. Comparing with electrical property of GQD, optical properties showed an efficient tool to be implemented in gas adsorption and paves the way towards GQD optical gas sensors.

  2. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, Laura A.; Lorenson, T.D.; Pinkston, John C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA–DOE–USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70–75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20–120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas.

  3. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, L.A.; Lorenson, T.D.; Pinkston, J.C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5. m to 760.1. m depth, and sections investigated here were retrieved from 619.9. m and 661.0. m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70-75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20-120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas. ?? 2009.

  4. Turbine Inlet Air Cooling for Industrial and Aero-derivative Gas Turbine in Malaysia Climate

    NASA Astrophysics Data System (ADS)

    Nordin, A.; Salim, D. A.; Othoman, M. A.; Kamal, S. N. Omar; Tam, Danny; Yusof, M. KY

    2017-12-01

    The performance of a gas turbine is dependent on the ambient temperature. A higher temperature results in a reduction of the gas turbine’s power output and an increase in heat rate. The warm and humid climate in Malaysia with its high ambient air temperature has an adverse effect on the performance of gas turbine generators. In this paper, the expected effect of turbine inlet air cooling technology on the annual performance of an aero-derivative gas turbine (GE LM6000PD) is compared against that of an industrial gas turbine (GEFr6B.03) using GT Pro software. This study investigated the annual net energy output and the annual net electrical efficiency of a plant with and without turbine inlet air cooling technology. The results show that the aero-derivative gas turbine responds more favorably to turbine inlet air cooling technology, thereby yielding higher annual net energy output and higher net electrical efficiency when compared to the industrial gas turbine.

  5. Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: new and previous results combined

    NASA Astrophysics Data System (ADS)

    Feng, X. J.; Zhang, J. T.; Lin, H.; Gillis, K. A.; Mehl, J. B.; Moldover, M. R.; Zhang, K.; Duan, Y. N.

    2017-10-01

    We report a new determination of the Boltzmann constant k B using a cylindrical acoustic gas thermometer. We determined the length of the copper cavity from measurements of its microwave resonance frequencies. This contrasts with our previous work (Zhang et al 2011 Int. J. Thermophys. 32 1297, Lin et al 2013 Metrologia 50 417, Feng et al 2015 Metrologia 52 S343) that determined the length of a different cavity using two-color optical interferometry. In this new study, the half-widths of the acoustic resonances are closer to their theoretical values than in our previous work. Despite significant changes in resonator design and the way in which the cylinder length is determined, the value of k B is substantially unchanged. We combined this result with our four previous results to calculate a global weighted mean of our k B determinations. The calculation follows CODATA’s method (Mohr and Taylor 2000 Rev. Mod. Phys. 72 351) for obtaining the weighted mean value of k B that accounts for the correlations among the measured quantities in this work and in our four previous determinations of k B. The weighted mean {{\\boldsymbol{\\hat{k}}}{B}} is 1.380 6484(28)  ×  10-23 J K-1 with the relative standard uncertainty of 2.0  ×  10-6. The corresponding value of the universal gas constant is 8.314 459(17) J K-1 mol-1 with the relative standard uncertainty of 2.0  ×  10-6.

  6. Wave Attenuation and Gas Exchange Velocity in Marginal Sea Ice Zone

    NASA Astrophysics Data System (ADS)

    Bigdeli, A.; Hara, T.; Loose, B.; Nguyen, A. T.

    2018-03-01

    The gas transfer velocity in marginal sea ice zones exerts a strong control on the input of anthropogenic gases into the ocean interior. In this study, a sea state-dependent gas exchange parametric model is developed based on the turbulent kinetic energy dissipation rate. The model is tuned to match the conventional gas exchange parametrization in fetch-unlimited, fully developed seas. Next, fetch limitation is introduced in the model and results are compared to fetch limited experiments in lakes, showing that the model captures the effects of finite fetch on gas exchange with good fidelity. Having validated the results in fetch limited waters such as lakes, the model is next applied in sea ice zones using an empirical relation between the sea ice cover and the effective fetch, while accounting for the sea ice motion effect that is unique to sea ice zones. The model results compare favorably with the available field measurements. Applying this parametric model to a regional Arctic numerical model, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.

  7. Effect of Gas Pressure on Polarization of SOFC Cathode Prepared by Plasma Spray

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Xin; Wang, Zhun-Zhun; Liu, Shuai; Li, Chang-Jiu

    2013-06-01

    A cermet-supported tubular SOFC was fabricated using thermal spray. The cell performance was investigated at temperatures from 750 to 900 °C and pressures from 0.1 to 0.5 MPa to examine the effect of operating gas pressure on the cell performance. The influence of gas pressure on the cathodic polarization was studied through the electrochemical impedance approach to examine the controlling electrochemical processes during cell operation. Results show that increasing the operating gas pressure improves the power output performance significantly. When the gas pressure is increased from 0.1 to 0.3 MPa, the maximum power density is increased by a factor of 32% at a temperature of 800 °C. The cathode polarization decreases significantly with the increase of the gas pressure. The electrochemical analysis shows that the main control processes of the cathode reaction are the oxygen species transfer at the three-phase boundary and oxygen diffusion on the surface or in the bulk of the cathode, which are enhanced with increasing gas pressure.

  8. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study.

    PubMed

    Romero-Hermida, M I; Romero-Enrique, J M; Morales-Flórez, V; Esquivias, L

    2016-08-21

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  9. Gas-controlled seafloor doming on Opouawe Bank, offshore New Zealand

    NASA Astrophysics Data System (ADS)

    Koch, Stephanie; Berndt, Christian; Bialas, Joerg; Haeckel, Matthias; Crutchley, Gareth; Papenberg, Cord; Klaeschen, Dirk; Greinert, Jens

    2015-04-01

    The process of gas accumulation and subsequent sediment doming appears to be a precursory process in the development of methane seep sites on Opouawe Bank and might be a common characteristic for gas seeps in general. Seabed domes appear as unimpressive topographic highs with diameters ranging from 10-1000 m and exhibit small vertical displacements and layer thickness in comparison to their width. The dome-like uplift of the sediments results from an increase in pore pressure caused by gas accumulation in near-seabed sediments. In this context sediment doming is widely discussed to be a precursor of pockmark formation. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop and contrary to ongoing discussion does not necessarily lead to the formation of pockmarks. There are clear differences in individual gas migration structures that indicate a progression through different evolutionary stages, which range from channeled gas flow and associated seismic blanking, to gas trapping beneath relatively low-permeability horizons, and finally overpressure accumulation and doming. We present high resolution sub-bottom profiler (Parasound) and 2D multichannel seismic data from Opouawe Bank, an accretionary ridge at the Hikurangi Margin, offshore New Zealand's North Island. Beneath this bank, methane migrates along stratigraphic pathways from a maximum source depth of 1500-2100 mbsf (meter below seafloor) towards active cold seeps at the seafloor. We show that, in the shallow sediment of the upper 100 mbsf, this primary migration mechanism changes into a process of gas accumulation leading to sediment doming. Modeling the height of the gas column necessary to create different dome geometries, shows that doming due to gas accumulation is feasible and consistent with field observations. The well-stratified, sub-horizontal strata that exist beneath Opouawe Bank provide favorable conditions for this type of seep development because shallow

  10. DETAIL OF GABLE END WITH ARCHED WINDOW, SHOWING SOFFIT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF GABLE END WITH ARCHED WINDOW, SHOWING SOFFIT OF OVERHANG; CAMERA FACING NORTH - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA

  11. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsiao-Wen; Zahedy, Fakhri S.; Johnson, Sean D.

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition tomore » gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.« less

  12. Sterilization mechanism of nitrogen gas plasma: induction of secondary structural change in protein.

    PubMed

    Sakudo, Akikazu; Higa, Masato; Maeda, Kojiro; Shimizu, Naohiro; Imanishi, Yuichiro; Shintani, Hideharu

    2013-07-01

    The mechanism of action on biomolecules of N₂ gas plasma, a novel sterilization technique, remains unclear. Here, the effect of N₂ gas plasma on protein structure was investigated. BSA, which was used as the model protein, was exposed to N₂ gas plasma generated by short-time high voltage pulses from a static induction thyristor power supply. N₂ gas plasma-treated BSA at 1.5 kilo pulses per second showed evidence of degradation and modification when assessed by Coomassie brilliant blue staining and ultraviolet spectroscopy at 280 nm. Fourier transform infrared spectroscopy analysis was used to determine the protein's secondary structure. When the amide I region was analyzed in the infrared spectra according to curve fitting and Fourier self-deconvolution, N₂ gas plasma-treated BSA showed increased α-helix and decreased β-turn content. Because heating decreased α-helix and increased β-sheet content, the structural changes induced by N₂ gas plasma-treatment of BSA were not caused by high temperatures. Thus, the present results suggest that conformational changes induced by N₂ gas plasma are mediated by mechanisms distinct from heat denaturation. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  13. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOEpatents

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  14. Natural gas imports and exports. Fourth quarter report, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the fourth quarter of 1998 (October through December). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during themore » past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.« less

  15. Natural gas imports and exports. First quarter report, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the first quarter of 1998 (January through March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during themore » past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.« less

  16. On the physics-based processes behind production-induced seismicity in natural gas fields

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan

    2017-05-01

    Induced seismicity due to natural gas production is observed at different sites worldwide. Common understanding states that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations and hence reactivates preexisting faults and induces earthquakes. In this study, we show that the multiphase fluid flow involved in natural gas extraction activities should be included. We use a fully coupled fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, divided into two compartments that are offset by a normal fault. Results show that fluid flow plays a major role in pore pressure and stress evolution within the fault. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighboring reservoir compartment and other formations. We also analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas reinjection. In the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production has ceased, although on average the shut-in results in a reduction in seismicity. In the case of gas reinjection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, gas reinjection into a neighboring compartment does not stop the fault from being reactivated.

  17. 15. Detail of Well Head Showing Horizontal Release Pipe for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail of Well Head Showing Horizontal Release Pipe for Natural Gas, Looking North - David Renfrew Oil Rig, East side of Connoquenessing Creek, 0.4 mile North of confluence with Thorn Creek, Renfrew, Butler County, PA

  18. Preliminary report on the commercial viability of gas production from natural gas hydrates

    USGS Publications Warehouse

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  19. Gas gangrene

    MedlinePlus

    ... of shock. Tests that may be done include: Tissue and fluid cultures to test for bacteria including clostridial species Blood culture to determine the bacteria causing the infection Gram ... X-ray , CT scan, or MRI of the area may show gas in the tissues.

  20. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle.

    PubMed

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-26

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5/3, when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  1. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-01

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  2. Role of natural gas in meeting an electric sector emissions ...

    EPA Pesticide Factsheets

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  3. Relationship between wind speed and gas exchange over the ocean

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik

    1992-01-01

    A quadratic dependence of gas exchange on wind speed is employed to analyze the relationship between gas transfer and wind speed with particular emphasizing variable and/or low wind speeds. The quadratic dependence is fit through gas-transfer velocities over the ocean determined by methods based on the natural C-14 disequilibrium and the bomb C-14 inventory. The variation in the CO2 levels is related to these mechanisms, but the results show that other causes play significant roles. A weaker dependence of gas transfer on wind is suggested for steady winds, and long-term averaged winds demonstrate a stronger dependence in the present model. The chemical enhancement of CO2 exchange is also shown to play a role by increasing CO2 fluxes at low wind speeds.

  4. Characterization of Gas Transport Properties of Fractured Rocks By Borehole and Chamber Tests.

    NASA Astrophysics Data System (ADS)

    Shimo, M.; Shimaya, S.; Maejima, T.

    2014-12-01

    Gas transport characteristics of fractured rocks is a great concern to variety of engineering applications such as underground storage of LPG, nuclear waste disposal, CCS and gas flooding in the oil field. Besides absolute permeability, relative permeability and capillary pressure as a function of water saturation have direct influences to the results of two phase flow simulation. However, number of the reported gas flow tests for fractured rocks are limited, therefore, the applicability of the conventional two-phase flow functions used for porous media, such as Mualem-van Genuchten model, to prediction of the gas transport in the fractured rock mass are not well understood. The authors conducted the two types of in-situ tests, with different scales, a borehole gas-injection test and a chamber gas-injection test in fractured granitic rock. These tests were conducted in the Cretaceous granitic rocks at the Namikata underground LPG storage cavern construction site in Ehime Prefecture in Japan, preceding to the cavern scale gas-tightness test. A borehole injection test was conducted using vertical and sub-vertical boreholes drilled from the water injection tunnel nearly at the depth of the top of the cavern, EL-150m. A new type downhole gas injection equipment that is capable to create a small 'cavern' within a borehole was developed. After performing a series of preliminary tests to investigate the hydraulic conductivity and gas-tightness, i.e. threshold pressure, gas injection tests were conducted under different gas pressure. Fig.1 shows an example of the test results From a chamber test using a air pressurizing chamber with volume of approximately166m3, the gas-tightness was confirmed within the uncertainty of 22Pa under the storage pressure of 0.7MPa, however, significant air leakage occurred possibly through an open fracture intersecting the chamber just after cavern pressure exceeds the initial hydrostatic pressure at the ceiling level of the chamber. Anomalies

  5. Characterization of gas station emissions during the CAREBeijing 2008 field study

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, T.; Zhang, R.; Wang, M.; Chang, C.-C.; Shao, M.; Hu, M.

    2011-05-01

    A proton transfer-reaction mass spectrometer (PTR-MS) onboard a mobile laboratory was used to conduct emission measurements at eight gas stations in Beijing during the CAREBeijing 2008 campaign. Benzene, toluene, C8-, C9-aromatics, methanol, MTBE, butenes and pentenes were the major volatile organic compounds (VOCs) detected during the measurements. An inter-comparison between the PTR-MS and an on-line GC/MS/FID system was also conducted and the result showed good agreement between the two instruments (Interception < 0.08 ppbv, 0.72 < Slope < 0.95, and R2 > 0.92). A Gaussian point source plume model was applied to evaluate the VOCs emission rates. The results showed that on average about 4.5 mt of gasoline were emitted from gas stations in Beijing per day. The estimated emission factor (EF) for gas stations due to refueling processes was about 0.5 kg t-1, which was significantly lower than a value of 2.49 kg t-1 obtained in 2002, indicating a successful implementation of vapor recovery system in the gas stations of Beijing. On average, about 18 ppbv of benzene has been detected at one gas station, twice as much as the US Environmental Protection Agency (EPA) recommended safe chronic exposure level and implying a potential public health concern. MTBE and aromatics were found to be the major antiknocking additives used in gasoline supplied in Beijing. Our results reveal that emissions from gas stations represent an important source for VOCs in megacity Beijing and need to be properly included in emission inventories to assess their roles in photochemical ozone production and secondary organic aerosol formation. Furthermore, promoting methanol-blended fuel in Beijing can be an effective way to reduce toxic air pollutants emission.

  6. Efficacy and safety of recombinant tissue plasminogen activator and gas versus bevacizumab and gas for subretinal haemorrhage.

    PubMed

    Mayer, Wolfgang J; Hakim, Imad; Haritoglou, Christos; Gandorfer, Arnd; Ulbig, Michael; Kampik, Anselm; Wolf, Armin

    2013-05-01

    To report the 12 months efficacy of initial intravitreal bevacizumab or intravitreal recombinant tissue plasminogen activator (rtPA) combined with expansile gas in patients with subretinal haemorrhage caused by neovascular age-related macular degeneration (AMD). Forty-five eyes of 45 patients with subretinal haemorrhage (1-5 disc diameters) involving the fovea secondary to neovascular AMD were evaluated retrospectively consecutively. Thirty-two eyes underwent treatment with rtPA (50 μg/0.05 ml) combined with intravitreal sulphur hexafluoride (SF6). The other 13 eyes were treated with bevacizumab (1.25 mg/0.05 ml) and SF6. Thereafter, all patients received Vascular Endothelial Growth Factor (anti-VEGF) treatment according to modified PrONTO criteria. Main outcome was change of best-corrected visual acuity (VA) at 12 months as determined by Early Treatment Diabetic Retinopathy (ETDRS). There was more improvement in patients initially treated with rtPA and gas (14 letters; bevacizumab and gas eight letters) and not suffering from adverse events. The incidence of vitreous haemorrhages was significantly higher in the rtPA group (nine of 32 versus one of 13, p < 0.01). In both groups, an average of 3.5 anti-VEGF injections were performed per patient during 12 months (no difference between both groups). Both initial treatment regimen lead to improved functional results after 1 year. However, patients, not suffering from adverse events, who underwent initial treatment with rtPA and gas showed better results. To maintain VA, controlling neovascular AMD by anti-VEGF treatment regime after initial treatment with rtPA+gas is important for all cases. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  7. Gas expulsion in highly substructured embedded star clusters

    NASA Astrophysics Data System (ADS)

    Farias, J. P.; Fellhauer, M.; Smith, R.; Domínguez, R.; Dabringhausen, J.

    2018-06-01

    We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star-forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect the time-scale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.

  8. Dynamics of acoustic droplet vaporization in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Qamar, Adnan; Wong, Zheng Z.; Fowlkes, J. Brian; Bull, Joseph L.

    2010-04-01

    Acoustic droplet vaporization is investigated in a theoretical model. This work is motivated by gas embolotherapy, a developmental cancer treatment involving tumor infarction with gas microbubbles that are selectively formed from liquid droplets. The results indicate that there exists a threshold value for initial droplet size below which the bubble evolution is oscillatory and above which it is smooth and asymptotic, and show that the vaporization process affects the subsequent microbubble expansion. Dampening of the bubble expansion is observed for higher viscosity and surface tension, with effects more pronounced for droplet size less than 6 μm in radius.

  9. High precision optical fiber Fabry-Perot sensor for gas pressure detection

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Tong, Xing-lin

    2013-09-01

    An optical fiber Fabry-Perot (F-P) sensor with quartz diaphragm for gas pressure testing was designed and fabricated. It consisted of single-mode fiber, hollow glass tube and quartz diaphragm. It uses the double peak demodulation to obtain the initialized cavity length. The variety of cavity length can be calcultated by the single peak demodulation after changing the gas pressure. The results show that the sensor is small in size, whose sensitivity is 19 pm/kPa in the range of the 10 ~ 260 kPa gas pressure. And it has good linearity and repeatability.

  10. [Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].

    PubMed

    Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming

    2009-08-01

    The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.

  11. Improved PFB operations: 400-hour turbine test results. [coal combustion products and hot corrosion in gas turbines

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    A pressurized fluidized bed (PFB) coal-burning reactor was used to provide hot effluent gases for operation of a small gas turbine. Preliminary tests determined the optimum operating conditions that would result in minimum bed particle carryover in the combustion gases. Solids were removed from the gases before they could be transported into the test turbine by use of a modified two stage cyclone separator. Design changes and refined operation procedures resulted in a significant decrease in particle carryover, from 2800 to 93 ppm (1.5 to 0.05 grains/std cu ft), with minimal drop in gas temperature and pressure. The achievement of stable burn conditions and low solids loadings made possible a 400 hr test of small superalloy rotor, 15 cm (6 in.) in diameter, operating in the effluent. Blades removed and examined metallographically after 200 hr exhibited accelerated oxidation over most of the blade surface, with subsurface alumina penetration to 20 micron m. After 400 hours, average erosion loss was about 25 micron m (1 mil). Sulfide particles, indicating hot corrosion, were present in depletion zones, and their presence corresponded in general to the areas of adherent solids deposit. Sulfidation appears to be a materials problem equal in importance to erosion.

  12. Bull heading to kill live gas wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudeman, P.; Avest, D. ter; Grodal, E.O.

    1994-12-31

    To kill a live closed-in gas well by bull heading down the tubing, the selected pump rate should be high enough to ensure efficient displacement of the gas into the formation (i.e., to avoid the kill fluid bypassing the gas). On the other hand, the pressures that develop during bull heading at high rate must not exceed wellhead pressure rating, tubing or casing burst pressures or the formation breakdown gradient, since this will lead, at best, to a very inefficient kill job. Given these constraints, the optimum kill rate, requited hydraulic horsepower, density and type of kill fluids have tomore » be selected. For this purpose a numerical simulator has been developed, which predicts the sequence of events during bull heading. Pressures and flow rates in the well during the kill job are calculated, taking to account slip between the gas and kill fluid, hydrostatic and friction pressure drop, wellbore gas compression and leak-off to the formation. Comparison with the results of a dedicated field test demonstrates that these parameters can be estimated accurately. Example calculations will be presented to show how the simulator can be used to identify an optimum kill scenario.« less

  13. Slippage on a particle-laden liquid-gas interface in textured microchannels

    NASA Astrophysics Data System (ADS)

    Gaddam, Anvesh; Agrawal, Amit; Joshi, Suhas S.; Thompson, Mark C.

    2018-03-01

    Despite numerous investigations in the literature on slip flows in textured microchannels, experimental results were seldom in agreement with the theory. It is conjectured that contamination of the liquid-gas interface by impurities might be one of the sources of this discrepancy. However, the effect of impurities on slippage at the liquid-gas interface is neither understood nor previously reported. To this end, this work presents numerical investigation on the flow past a liquid-gas interface embedded with solid particles in textured microchannels. Initially, we present numerical simulations past transverse ribs with cylindrical particles on the liquid-gas interface. A reduction in effective slip length (or slip loss) with respect to the particle-free interface as a function of gas fraction, constriction ratio, and particle position was quantified. A significant slip loss (˜20-80%) was induced, owing to acceleration-deceleration cycles experienced by the liquid advecting across the particle-laden liquid-gas interface. Even a small number of solid particles adsorbed on a liquid-gas interface were shown to reduce the effective slip length considerably. This renders a textured microchannel with the particle-laden interface to be ineffective as compared to a completely wetted textured microchannel under certain conditions. Furthermore, a flow past two bi-dimensional textures, viz. posts and holes, with their interfaces embedded with spherical particles was also simulated. Our results show that texture configurations with an unbounded liquid-gas interface can mitigate the detrimental effects of particles adsorbed at the interface. The results presented here will help guide in designing efficient textured surfaces in future.

  14. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    NASA Astrophysics Data System (ADS)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  15. US North Slope gas and Asian LNG markets

    USGS Publications Warehouse

    Attanasi, E.D.

    1994-01-01

    Prospects for export of liquified natural gas (LNG) from Alaska's North Slope are assessed. Projected market conditions to 2010 show that new LNG capacity beyond announced expansions will be needed to meet regional demand and that supplies will probably come from outside the region. The estimated delivered costs of likely suppliers show that Alaska North Slope gas will not be competitive. The alternative North Slope gas development strategies of transport and sale to the lower 48 states and use on the North Slope for either enhanced oil recovery or conversion to liquids are examined. The alternative options require delaying development until US gas prices increase, exhaustion of certain North Slope oil fields, or advances occur in gas to liquid fuels conversion technology. ?? 1995.

  16. Design and initial results from a kilojoule level Dense Plasma Focus with hollow anode and cylindrically symmetric gas puff.

    PubMed

    Ellsworth, J L; Falabella, S; Tang, V; Schmidt, A; Guethlein, G; Hawkins, S; Rusnak, B

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10(7) per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  17. Cosmic Ornament of Gas and Dust

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] 4-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Silicon Gas Figure 2 Argon Figure 3 Dust Collection Figure 4

    This beautiful bulb might look like a Christmas ornament but it is the blown-out remains of a stellar explosion, or supernova. Called Cassiopeia A, this supernova remnant is located about 10,000 light-years away in our own Milky Way galaxy. The remains are shown here in an infrared composite from NASA's Spitzer Space Telescope. Silicon gas is blue and argon gas is green, while red represents about 10,000 Earth masses worth of dust. Yellow shows areas where red and green overlap.

    The fact that these two features line up (as seen in yellow in the combined view) tells astronomers that the dust, together with the gas, was created in the explosion. This is the best evidence yet that supernovae are a significant source of dust in the early universe something that was postulated before, but not proven. Dust in our young universe is important because it eventually made its way into future stars, planets and even people.

    In figure 1, the upper left panel is a composite made up of three infrared views shown in the remaining panels. The bottom left view (figure 3) shows argon gas (green) that was synthesized as it was ejected from the star. The upper right panel (figure 2) shows silicon gas (blue) deep in the interior of the remnant. This cooler gas, called the unshocked ejecta, was also synthesized in the supernova blast. The bottom right view (figure 4) shows a collection of dust (red), including proto-silicates, silicate dioxide and iron oxide.

    The data for these images were taken by Spitzer's infrared spectrograph, which splits light apart to reveal the fingerprints of molecules and elements. In total, Spitzer collected separate 'spectra' at more than 1,700 positions across

  18. Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations.

    PubMed

    Prasad, B Ram; Senapati, Sanjib

    2009-04-09

    Flue gas is greatly responsible for acid rain formation and global warming. New generation ionic liquids (ILs) have potential in controlling the flue gas emissions, as they acquire high absorptivity for the component gases SO(2), CO(2), etc. The association of the IL-gas interactions to the absorptivity of gas molecules in ILs is, however, poorly understood. In this paper, we present a molecular level description of the interactions of ILs with SO(2), CO(2), and N(2) and show its implications to the differential gas solubility. Our results indicate that the IL anion-gas interactions play a key role in deciding the gas solubility in ILs, particularly for polar gases such as SO(2). On the other hand, regular solution assumption applies to N(2) solubility. In accordance with the previous theoretical and experimental findings, our results also imply that the IL anions dominate the interactions with gas molecules while the cations play a secondary role and the underlying fluid structures of the ILs remain unperturbed by the addition of gas molecules.

  19. Gas Hydrate Petroleum System Analysis

    NASA Astrophysics Data System (ADS)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is

  20. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    Oxygen concentration and separation is an essential factor for air recycling in a CELSS. Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of O2 from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  1. Transient gas jets into liquids

    NASA Astrophysics Data System (ADS)

    Lin, Jane Ming-Chin

    experimentally. In particular, a quantitative measure of jet susceptibility to unsteadiness has been established. Steady jets can be achieved in two ways: by being discharged from deLaval nozzles (increasing the exit Mach number) or by being overpressured.The unsteady behavior is modeled as the collapse of a bubble in liquid; comparisons of collapse times show good agreement. A mechanism for the unsteadiness is discussed. It is proposed that the chugging is the response of the jet boundary to a pressure difference between the jet and surrounding liquid, which arises as the result of the rapid expansion of a light fluid into a dense ambient atmosphere. The flow is shown to be similar to the discharge of a gas from a nozzle into a channel of larger cross section. An upper limit to the pressure difference is determined based on estimates of the minimum base pressure for such channel flows; a lower limit is established for the collapse time. All experimental values are within the bounds. The derived values indicate that the pressure differences between the jet and liquid may be more than 90 percent of the ambient pressure.

  2. Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony Layiwola

    2001-01-01

    , Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the jet s absolute instability were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be. Experiments were carried out to observe the qualitative differences between a round low-density gas jet injected into a high-density gas (helium jet injected into air) and a round constant density jet (air jet injected into air). Flow visualizations and velocity measurements in the near-injector region of the helium jet show more mixing and spreading of the helium jet than the air jet. The vortex structures develop and contribute to the jet spreading causing the helium jet to oscillate.

  3. Air Quality Impacts of Oil and Gas Operations in the Northern Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Thompson, C. R.; Jacques, H.; Smith, K. R.; Terrell, R. M.

    2014-12-01

    Exceedences of the US EPA National Ambient Air Quality Standard (NAAQS) for surface ozone have been reported from monitoring sites in the Northern Colorado Front Range (NCFR) for more than fifteen years during summer. Comparison of ozone records from the NCFR clearly show that ozone primarily results from regional photochemical daytime production. Recent trend analyses do not show an improvement of surface ozone despite efforts by the State of Colorado to curb ozone precursor emissions. Our review of atmospheric volatile organic compound (VOC) measurements from historic and recent monitoring shows significant spatial increases of atmospheric VOC towards the oil and gas development area in Weld County, NW of the Denver-Boulder metropolitan region. Secondly, analyses of VOC trends and VOC signatures show an overall increase of oil and gas associated VOC relative to other VOC sources. These analyses suggest that oil and gas emissions are playing and increasing role in ozone production in the NCFR and that reductions of oil and gas emissions would be beneficial for lowering surface ozone and attainment of the ozone NAAQS.

  4. A method of reconstruction of clinical gas-analyzer signals corrupted by positive-pressure ventilation.

    PubMed

    Farmery, A D; Hahn, C E

    2001-04-01

    The use of sidestream infrared and paramagnetic clinical gas analyzers is widespread in anesthesiology and respiratory medicine. For most clinical applications, these instruments are entirely satisfactory. However, their ability to measure breath-by-breath volumetric gas fluxes, as required for measurement of airway dead space, oxygen uptake, and so on, is usually inferior to that of the mass spectrometer, and this is thought to be due, in part, to their slower response times. We describe how volumetric gas analysis with the Datex Ultima analyzer, although reasonably accurate for spontaneous ventilation, gives very inaccurate results in conditions of positive-pressure ventilation. We show that this problem is a property of the gas sampling system rather than the technique of gas analysis itself. We examine the source of this error and describe how cyclic changes in airway pressure result in variations in the flow rate of the gas within the sampling catheter. This results in the phenomenon of "time distortion," and the resultant gas concentration signal becomes a nonlinear time series. This corrupted signal cannot be aligned or integrated with the measured flow signal. We describe a method to correct for this effect. With the use of this method, measurements required for breath-by-breath gas-exchange models can be made easily and reliably in the clinical setting.

  5. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.

  6. INTENSE ENERGETIC GAS DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-03-01

    A method and apparatus for initiating and sustaining an energetic gas arc discharge are described. A hollow cathode and a hollow anode are provided. By regulating the rate of gas flow into the interior of the cathode, the arc discharge is caused to run from the inner surface of the cathode with the result that adequate space-charge neutralization is provided inside the cathode but not in the main arc volume. Thus, the gas fed to the cathode is substantially completely ionized before it leaves the cathode, with the result that an energetic arc discharge can be maintained at lower operating pressures.

  7. Economic Impacts Analysis of Shale Gas Investment in China

    NASA Astrophysics Data System (ADS)

    Han, Shangfeng; Zhang, Baosheng; Wang, Xuecheng

    2018-01-01

    Chinese government has announced an ambitious shale gas extraction plan, which requires significant investment. This has the potential to draw investment from other areas and may affect the whole China’s economy. There is few study to date has quantified these shale gas investment’s effects on Chinese economy. The aim of this paper is to quantify the economic effect and figures out whether shale gas investment in China is a good choice or not. Input-output analysis has been utilized in this study to estimate the economic impacts in four different Chinese regions. Our findings show that shale gas investment will result in approximately 868, 427, 115 and 42 Billion RMB economic impacts in Sichuan, Chongqing, Inner Mongolia and Guizhou, respectively. The total economic impact is only around 1453 Billion RMB, which is not significant compared to the economic impact of coalbed methane investment. Considering the potential risks of environmental issues, we suggest that it may be a better strategy for the government, at least in the current situation, to slow down shale gas development investment.

  8. The Marriage of Gas and Dust

    NASA Astrophysics Data System (ADS)

    Price, D. J.; Laibe, G.

    2015-10-01

    Dust-gas mixtures are the simplest example of a two fluid mixture. We show that when simulating such mixtures with particles or with particles coupled to grids a problem arises due to the need to resolve a very small length scale when the coupling is strong. Since this is occurs in the limit when the fluids are well coupled, we show how the dust-gas equations can be reformulated to describe a single fluid mixture. The equations are similar to the usual fluid equations supplemented by a diffusion equation for the dust-to-gas ratio or alternatively the dust fraction. This solves a number of numerical problems as well as making the physics clear.

  9. Gas Hydrate Estimation Using Rock Physics Modeling and Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Dai, J.; Dutta, N.; Xu, H.

    2006-05-01

    ABSTRACT We conducted a theoretical study of the effects of gas hydrate saturation on the acoustic properties (P- and S- wave velocities, and bulk density) of host rocks, using wireline log data from the Mallik wells in the Mackenzie Delta in Northern Canada. We evaluated a number of gas hydrate rock physics models that correspond to different rock textures. Our study shows that, among the existing rock physics models, the one that treats gas hydrate as part of the solid matrix best fits the measured data. This model was also tested on gas hydrate hole 995B of ODP leg 164 drilling at Blake Ridge, which shows adequate match. Based on the understanding of rock models of gas hydrates and properties of shallow sediments, we define a procedure that quantifies gas hydrate using rock physics modeling and seismic inversion. The method allows us to estimate gas hydrate directly from seismic information only. This paper will show examples of gas hydrates quantification from both 1D profile and 3D volume in the deepwater of Gulf of Mexico.

  10. Fuel-rich, catalytic reaction experimental results

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  11. Searching for Galactic hidden gas through interstellar scintillation: results from a test with the NTT-SOFI detector

    NASA Astrophysics Data System (ADS)

    Habibi, F.; Moniez, M.; Ansari, R.; Rahvar, S.

    2011-01-01

    Aims: Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected at a longer time scale when the light of remote stars crosses an interstellar molecular cloud, but it has never been observed at optical wavelength. In a favorable case, the light of a background star can be subject to stochastic fluctuations on the order of a few percent at a characteristic time scale of a few minutes. Our ultimate aim is to discover or exclude these scintillation effects to estimate the contribution of molecular hydrogen to the Galactic baryonic hidden mass. This feasibility study is a pathfinder toward an observational strategy to search for scintillation, probing the sensitivity of future surveys and estimating the background level. Methods: We searched for scintillation induced by molecular gas in visible dark nebulae as well as by hypothetical halo clumpuscules of cool molecular hydrogen (H2-He) during two nights. We took long series of 10 s infrared exposures with the ESO-NTT telescope toward stellar populations located behind visible nebulae and toward the Small Magellanic Cloud (SMC). We therefore searched for stars exhibiting stochastic flux variations similar to what is expected from the scintillation effect. According to our simulations of the scintillation process, this search should allow one to detect (stochastic) transverse gradients of column density in cool Galactic molecular clouds of order of ~ 3 × 10-5 g/cm2/10 000 km. Results: We found one light-curve that is compatible with a strong scintillation effect through a turbulent structure characterized by a diffusion radius Rdiff < 100 km in the B68 nebula. Complementary observations are needed to clarify the status of this candidate, and no firm conclusion can be established from this single observation. We can also infer limits on the existence of turbulent dense cores (of number density n > 109 cm-3) within the dark nebulae. Because no candidate is found toward the SMC, we

  12. Capillary and Gas Trapping Controls on Pumice Buoyancy in Water

    NASA Astrophysics Data System (ADS)

    Fauria, K. E.; Manga, M.; Wei, Z.

    2016-12-01

    Pumice can float on water for months to years. The longevity of pumice floatation is unexpected, however, because pumice pores are highly connected and water wets volcanic glass. As a result, observations of long floating times have not been reconciled with predictions of rapid sinking. We propose a mechanism to resolve this paradox - the trapping of gas bubbles by water within the pumice. Gas trapping refers to the isolation of gas by water within pore throats such that the gas becomes disconnected from the atmosphere and unable to escape. We use X-ray microtomography images of partially saturated pumice to demonstrate that gas trapping occurs in both ambient-temperature and hot (500°C) pumice. Furthermore, we show that the distribution of trapped gas clusters matches percolation theory predictions. Finally, we propose that diffusion out of trapped gaseous bubbles determines pumice floatation time. Experimental measurements of pumice floatation support a diffusion control on pumice buoyancy and we find that floatation time scales like τ L2/(Dθ2) where is the floatation time, L is the characteristic length of the pumice, D is the gas-water diffusion coefficient, and θ is pumice water saturation.

  13. GAS-ATOMIZED SPRAY SCRUBBER EVALUATION

    EPA Science Inventory

    The report gives results of fine particle collection efficiency measurements of a gas-atomized spray scrubber, cleaning effluent gas from a No. 7 gray iron cupola. Tests were made at several levels of pressure drop and liquid/gas ratio. Particle size measurements on inlet and out...

  14. Gas Removal in the Ursa Minor Galaxy: Linking Hydrodynamics and Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caproni, Anderson; Lanfranchi, Gustavo Amaral; Baio, Gabriel Henrique Campos

    2017-04-01

    We present results from a non-cosmological, three-dimensional hydrodynamical simulation of the gas in the dwarf spheroidal galaxy Ursa Minor. Assuming an initial baryonic-to-dark-matter ratio derived from the cosmic microwave background radiation, we evolved the galactic gas distribution over 3 Gyr, taking into account the effects of the types Ia and II supernovae. For the first time, we used in our simulation the instantaneous supernovae rates derived from a chemical evolution model applied to spectroscopic observational data of Ursa Minor. We show that the amount of gas that is lost in this process is variable with time and radius, being themore » highest rates observed during the initial 600 Myr in our simulation. Our results indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies), but it is ultimately the combination of galactic winds powered by these supernovae and environmental effects (e.g., ram-pressure stripping) that results in the complete removal of the gas content.« less

  15. A gas-loading system for LANL two-stage gas guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Lloyd Lee; Bartram, Brian Douglas; Dattelbaum, Dana Mcgraw

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures.The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design andmore » evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.« less

  16. A gas-loading system for LANL two-stage gas guns

    NASA Astrophysics Data System (ADS)

    Gibson, L. L.; Bartram, B. D.; Dattelbaum, D. M.; Lang, J. M.; Morris, J. S.

    2017-01-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.

  17. Surface effects in the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Salasnich, L.; Ancilotto, F.; Toigo, F.

    2010-01-01

    We study the extended Thomas-Fermi (ETF) density functional of the superfluid unitary Fermi gas. This functional includes a gradient term which is essential to describe accurately the surface effects of the system, in particular with a small number of atoms, where the Thomas-Fermi (local density) approximation fails. We find that our ETF functional gives density profiles which are in good agreement with recent Monte Carlo results and also with a more sophisticated superfluid density functional based on Bogoliubov-de Gennes equations. In addition, by using extended hydrodynamics equations of superfluids, we calculate the frequencies of collective surface oscillations of the unitary Fermi gas, showing that quadrupole and octupole modes strongly depend on the number of trapped atoms.

  18. Understanding shallow gas occurrences in the Gulf of Lions

    USGS Publications Warehouse

    Garcia-Garcia, Ana; Tesi, Tommaso; Orange, Daniel L.; Lorenson, T.; Miserocchi, Stefano; Langone, L.; Herbert, I.; Dougherty, J.

    2007-01-01

    New coring data have been acquired along the western Gulf of Lions showing anomalous concentrations of methane (up to 95,700 ppm) off the Rho??ne prodelta and the head of the southern canyons Lacaze-Duthiers and Cap de Creus. Sediment cores were acquired with box and kasten cores during 2004-2005 on several EuroSTRATAFORM cruises. Anomalous methane concentrations are discussed and integrated with organic carbon data. Sampled sites include locations where previous surveys identified acoustic anomalies in high-resolution seismic profiles, which may be related to the presence of gas. Interpretation of the collected data has enabled us to discuss the nature of shallow gas along the Gulf of Lions, and its association with recent sedimentary dynamics. The Rho??ne prodelta flood deposits deliver significant amounts of terrigenous organic matter that can be rapidly buried, effectively removing this organic matter from aerobic oxidation and biological uptake, and leading to the potential for methanogenesis with burial. Away from the flood-related sediments off the Rho??ne delta, the organic matter is being reworked and remineralized on its way along the western coast of the Gulf of Lions, with the result that the recent deposits in the canyon contain little reactive carbon. In the southernmost canyons, Lacaze-Duthiers and Cap de Creus, the gas analyses show relatively little shallow gas in the core samples. Samples with anomalous gas (up to 5,000 ppm methane) are limited to local areas where the samples also show higher amounts of organic matter. The anomalous samples at the head of the southern canyons may be related to methanogenesis of recent drape or of older sidewall canyon infills. ?? Springer-Verlag 2007.

  19. Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Kratz, Jonathan; Guo, Ten-Huei; Litt, Jonathan

    2016-01-01

    Gas turbine compressor and turbine blade tip clearance (i.e., the radial distance between the blade tip of an axial compressor or turbine and the containment structure) is a major contributing factor to gas path sealing, and can significantly affect engine efficiency and operational temperature. This paper details the creation of a generic but realistic high pressure turbine tip clearance model that may be used to facilitate active tip clearance control system research. This model uses a first principles approach to approximate thermal and mechanical deformations of the turbine system, taking into account the rotor, shroud, and blade tip components. Validation of the tip clearance model shows that the results are realistic and reflect values found in literature. In addition, this model has been integrated with a gas turbine engine simulation, creating a platform to explore engine performance as tip clearance is adjusted. Results from the integrated model explore the effects of tip clearance on engine operation and highlight advantages of tip clearance management.

  20. Analysis the potential gas production of old municipal solid waste landfill as an alternative energy source: Preliminary results

    NASA Astrophysics Data System (ADS)

    Hayati, A. P.; Emalya, N.; Munawar, E.; Schwarzböck, T.; Lederer, J.; Fellner, J.

    2018-03-01

    The MSW landfill produces gas which is represent the energy resource that lost and polluted the ambient air. The objective of this study is to evaluate the potential gas production of old landfill as an alternative energy source. The study was conducted by using 10 years old waste in landfill simulator reactor (LSR). Four Landfills Simulator Reactors (LSR) were constructed for evaluate the gas production of old MSW landfilled. The LSR was made of high density poly ethylene (HDPE) has 50 cm outside diameter and 150 cm of high. The 10 years old waste was excavated from closed landfill and subsequently separated from inorganic fraction and sieved to maximum 50 mm size particle prior emplaced into the LSR. Although quite small compare to the LSR containing fresh waste has been reported, the LRS containing 10 years old waste still produce much landfill gas. The landfill gas produced of LSR operated with and without leachate recirculation were about 29 and 21 litter. The composition of landfill gas produced was dominated by CO2 with the composition of CH4 and O2 were around 12.5% and 0.2 %, respectively.

  1. Gas Drilling, North Dakota

    NASA Image and Video Library

    2017-12-08

    Northwestern North Dakota is one of the least-densely populated parts of the United States. Cities and people are scarce, but satellite imagery shows the area has been aglow at night in recent years. The reason: the area is home to the Bakken shale formation, a site where oil production is booming. Companies hoping to extract oil from the Bakken formation have drilled hundreds of new wells in the last few years; natural gas often bubbles up to the surface as part of the process. Lacking the infrastructure to pipe the gas away, many drillers simply burn it in a practice known as flaring. On November 12, 2012, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this nighttime view of widespread gas flaring throughout the area. Many of the specks of light are evidence of gas flaring, though others may be the lights around drilling equipment. Some of the brighter areas correspond to towns and cities including Williston, Minot, and Dickinson. The image was captured by the VIIRS “day-night band,” which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe signals such as gas flares, auroras, wildfires, city lights, and reflected moonlight. When VIIRS acquired the image, the moon was in its waning crescent phase, meaning it was reflecting only a small amount of light. According to the U.S. Energy Information Administration, natural gas production from the Bakken shale has increased more than 20-fold between 2007 and 2010. Gas production averaged over 485 million cubic feet per day in September 2011, compared to the 2005 average of about 160 million cubic feet per day. Due to the lack of gas pipeline and processing facilities in the region, about 29 percent of that gas is flared. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day-Night Band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA

  2. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Hermida, M. I.; Departamento de Física Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla; Romero-Enrique, J. M.

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N{sub 2}, CO{sub 2}, and O{sub 2}, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO{sub 2} adsorption properties depend mainly on the bulk flue gas thermodynamic conditionsmore » and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO{sub 2} adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO{sub 2} adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO{sub 2} adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO{sub 2} concentrations and low temperatures, the CO{sub 2} adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.« less

  3. A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs

    NASA Astrophysics Data System (ADS)

    Chang, Ailian; Sun, HongGuang; Zheng, Chunmiao; Lu, Bingqing; Lu, Chengpeng; Ma, Rui; Zhang, Yong

    2018-07-01

    Fractional-derivative models have been developed recently to interpret various hydrologic dynamics, such as dissolved contaminant transport in groundwater. However, they have not been applied to quantify other fluid dynamics, such as gas transport through complex geological media. This study reviewed previous gas transport experiments conducted in laboratory columns and real-world oil-gas reservoirs and found that gas dynamics exhibit typical sub-diffusive behavior characterized by heavy late-time tailing in the gas breakthrough curves (BTCs), which cannot be effectively captured by classical transport models. Numerical tests and field applications of the time fractional convection-diffusion equation (fCDE) have shown that the fCDE model can capture the observed gas BTCs including their apparent positive skewness. Sensitivity analysis further revealed that the three parameters used in the fCDE model, including the time index, the convection velocity, and the diffusion coefficient, play different roles in interpreting the delayed gas transport dynamics. In addition, the model comparison and analysis showed that the time fCDE model is efficient in application. Therefore, the time fractional-derivative models can be conveniently extended to quantify gas transport through natural geological media such as complex oil-gas reservoirs.

  4. Natural Gas Imports and Exports

    EIA Publications

    2017-01-01

    Natural gas net imports set a record low of 685 billion cubic feet (Bcf) in 2016, continuing a decline for the 10th consecutive year. U.S. exports were more than three times larger than the level 10 years ago as a result of significant infrastructure improvements to natural gas pipelines and liquefied natural gas facilities. These changes are discussed in the U.S. Natural Gas Imports & Exports 2016 report.

  5. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Technical Reports Server (NTRS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    1987-01-01

    Oxygen concentration and separation is an essential factor for air recycling in a controlled ecological life support system (CELSS). Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of oxygen from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  6. GASP: Gas stripping and the outskirts of galaxies as a function of environment

    NASA Astrophysics Data System (ADS)

    Poggianti, Bianca; GASP Team

    2017-03-01

    We present GASP, an ongoing ESO Large Program with MUSE aiming to study gas removal processes from galaxies at low redshift. GASP targets 100 galaxies with tails, tentacles and one-sided debris. MUSE data allows a detailed investigation of the ionized stripped gas, as well as of the gas and stars within the galaxy out to large distances from the galaxy center. We show the first results for two of the GASP galaxies that are striking cluster jellyfish galaxies of stellar masses ~ 1011 M ⊙.

  7. Characteristics of discrete and basin-centered parts of the Lower Silurian regional oil and gas accumulation, Appalachian basin; preliminary results from a data set of 25 oil and gas fields

    USGS Publications Warehouse

    Ryder, Robert T.

    1998-01-01

    Oil and gas trapped in Lower Silurian 'Clinton' sands and Medina Group sandstone constitute a regional hydrocarbon accumulation that extends 425 mi in length from Ontario, Canada to northeastern Kentucky. The 125-mi width of the accumulation extends from central Ohio eastward to western Pennsylvania and west-central New York. Lenticular and intertonguing reservoirs, a gradual eastward decrease in reservoir porosity and permeability, and poorly segregated gas, oil, and water in the reservoirs make it very difficult to recognize clear-cut geologic- and production-based subdivisions in the accumulation that are relevant to resource assessment. However, subtle variations are recognizable that permit the regional accumulation to be subdivided into three tentative parts: a western gas-bearing part having more or less discrete fields; an eastern gas-bearing part having many characteristics of a basin-centered accumulation; and a central oil- and gas-bearing part with 'hybrid' fields that share characteristics of both discrete and basin-centered accumulation. A data set of 25 oil and gas fields is used in the report to compare selected attributes of the three parts of the regional accumulation. A fourth part of the regional accumulation, not discussed here, is an eastern extension of basin-centered accumulation having local commercial gas in the Tuscarora Sandstone, a proximal facies of the Lower Silurian depositional system. A basin-centered gas accumulation is a regionally extensive and commonly very thick zone of gas saturation that occurs in low-permeability rocks in the central, deeper part of a sedimentary basin. Another commonly used term for this type of accumulation is deep-basin gas accumulation. Basin-centered accumulation is a variety of continuous-type accumulation. The 'Clinton' sands and Medina Group sandstone part of the basin-centered gas accumulation is characterized by: a) reservoir porosity ranging from about 5 to 10 percent; b) reservoir permeability

  8. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    PubMed Central

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  9. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    PubMed

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  10. Passive gas separator and accumulator device

    DOEpatents

    Choe, Hwang; Fallas, Thomas T.

    1994-01-01

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  11. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Riedl, S.; Sánchez Guajardo, E. R.; Kohstall, C.; Hecker Denschlag, J.; Grimm, R.

    2011-03-01

    We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.

  12. Research on miniature gas analysis systems

    NASA Technical Reports Server (NTRS)

    Angell, J. B.

    1974-01-01

    Technology for fabricating very small valves, whose function will be to introduce a small sample of the gas to be analyzed into the main carrier gas stream flowing through the chromatograph column is described. In addition, some analyses were made of the factors governing the resolution of gas chromatographs, particularly those with miniature columns. These analyses show how important the column lining thickness is in governing the ability of a miniature column to separate components of an unknown gas. A brief description of column lining factors is included. Preliminary work on a super small thermistor detector is included.

  13. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    USGS Publications Warehouse

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    35.4‰ for propane suggests a thermogenic source. Gas hydrate accumulations in the Krishna-Godavari and Mahanadi Basins are the result of a microbially sourced gas hydrate system. The system is enhanced by the migration of microbial gas from surrounding areas through pathways including high-porosity delta sands, shale diapirism, faulting and folding of sediment due to the local processes associated with rapid sediment deposition, sediment overpressure, and the recycling of methane from a rapidly upward moving gas hydrate stability zone. The gas hydrate system in the Andaman Basin is less well constrained due to lack of exploration and occurs in a forearc basin. Each of these hydrate-bearing systems overlies and is likely supported by the presence and possible migration of gas from deeper gas-prone petroleum systems currently generating thermogenic hydrocarbons at much greater depths.

  14. First Results from the Dense Extragalactic GBT+ARGUS Survey (DEGAS): A Direct, Quantitative Test of the Role of Gas Density in Star Formation

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda; Bigiel, Frank; Bolatto, Alberto; Church, Sarah; Cleary, Kieran; Frayer, David; Gallagher, Molly; Gundersen, Joshua; Harris, Andrew; Hughes, Annie; Jimenez-Donaire, Maria Jesus; Kessler, Sarah; Lee, Cheoljong; Leroy, Adam; Li, Jialu; Donovan Meyer, Jennifer; Rosolowsky, Erik; Sandstrom, Karin; Schinnener, Eva; Schruba, Andreas; Sieth, Matt; Usero, Antonio

    2018-01-01

    Gas density plays a central role in all modern theories of star formation. A key test of these theories involves quantifying the resolved gas density distribution and its relationship to star formation within a wide range of galactic environments. Until recently, this experiment has been difficult to perform owing to the faint nature of key molecular gas tracers like HCN and HCO+, but the superior sensitivity of modern millimeter instruments like ALMA and the IRAM 30m make these types of experiments feasible. In particular, the sensitivity and resolution provided by large aperture of the GBT combined with fast mapping speeds made possible by its new 16-pixel, 3mm focal plane array (Argus) make the GBT an almost-ideal instrument for this type of study. The Dense Extragalactic GBT+Argus Survey (DEGAS) will leverage these capabilities to perform the largest, resolved survey of molecular gas tracers in nearby galaxies, ultimately mapping a suite of four molecular gas tracers in the inner 2’ by 2’ of 36 nearby galaxies. When complete in 2020, DEGAS will be the largest resolved survey of dense molecular gas tracers in nearby galaxies. This talk will present early results from the first observations for this Green Bank Telescope large survey and highlight some exciting future possibilities for this survey.

  15. Radio jets clearing the way through galaxies: the view from Hi and molecular gas

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella

    2015-03-01

    Massive gas outflows are considered a key component in the process of galaxy formation and evolution. Because of this, they are the topic of many studies aimed at learning more about their occurrence, location and physical conditions as well as the mechanism(s) at their origin. This contribution presents recent results on two of the best examples of jet-driven outflows traced by cold and molecular gas. Thanks to high-spatial resolution observations, we have been able to locate the region where the outflow occurs. This appears to be coincident with bright radio features and regions where the interaction between radio plasma jet and ISM is known to occur, thus strongly supporting the idea of jet-driven outflows. We have also imaged the distribution of the outflowing gas. The results clearly show the effect that expanding radio jets and lobes have on the ISM. This appears to be in good agreement with what predicted from numerical simulations. Furthermore, the results show that cold gas is associated with these powerful phenomena and can be formed - likely via efficient cooling - even after a strong interaction and fast shocks. The discovery of similar fast outflows of cold gas in weak radio sources is further increasing the relevance that the effect of the radio plasma can have on the surrounding medium and on the host galaxy.

  16. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  17. Laboratory Testing of Volcanic Gas Sampling Techniques

    NASA Astrophysics Data System (ADS)

    Kress, V. C.; Green, R.; Ortiz, M.; Delmelle, P.; Fischer, T.

    2003-12-01

    A series of laboratory experiments were performed designed to calibrate several commonly used methods for field measurement of volcanic gas composition. H2, CO2, SO2 and CHCl2F gases were mixed through carefully calibrated rotameters to form mixtures representative of the types of volcanic compositions encountered at Kilauea and Showa-Shinzan. Gas mixtures were passed through a horizontal furnace at 700oC to break down CHCl2F and form an equilibrium high-temperature mixture. With the exception of Giggenbach bottle samples, all gas sampling was performed adjacent to the furnace exit in order to roughly simulate the air-contaminated samples encountered in Nature. Giggenbach bottle samples were taken from just beyond the hot-spot 10cm down the furnace tube to minimize atmospheric contamination. Alkali-trap measurements were performed by passing gases over or bubbling gases through 6N KOH, NaOH or LiOH solution for 10 minutes. Results were highly variable with errors in measured S/Cl varying from +1600% to -19%. In general reduced Kilauea compositions showed smaller errors than the more oxidized Showa-Shinzan compositions. Results were not resolvably different in experiments where gas was bubbled through the alkaline solution. In a second set of experiments, 25mm circles of Whatman 42 filter paper were impregnated with NaHCO3or KHCO3 alkaline solutions stabilized with glycerol. Some filters also included Alizarin (5.6-7.2) and neutral red (6.8-8.0) Ph indicator to provide a visual monitor of gas absorption. Filters were mounted in individual holders and used in stacks of 3. Durations were adjusted to maximize reaction in the first filter in the stack and minimize reaction in the final filter. Errors in filter pack measurements were smaller and more systematic than the alkali trap measurements. S/Cl was overestimated in oxidized gas mixtures and underestimated in reduced mixtures. Alkali-trap methods allow extended unattended monitoring of volcanic gasses, but our

  18. Passive gas separator and accumulator device

    DOEpatents

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  19. On the Superficial Gas Velocity in Deep Gas-Solid Fluidized Beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Grace, John; Shadle, Lawrence

    2011-11-15

    The superficial gas velocity is one of the key parameters used to determine the flow hydrodynamics in gas–solids fluidized beds. However, the superficial velocity varies with height in practice, and there is no consistent basis for its specification. Different approaches to determine the superficial gas velocity in a deep gas–solids system are shown to cause difficulties in developing models and in comparing predictions with experimental results. In addition, the reference conditions for superficial gas velocity are important in modeling of deep gas–solids systems where there is a considerable pressure drop.

  20. Treatment of Oil & Gas Produced Water.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, Brian P.

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowedmore » hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.« less

  1. Ultraviolet spectroscopic breath analysis using hollow-optical fiber as gas cell

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Katagiri, T.; Matsuura, Y.

    2017-02-01

    For breath analysis on ultraviolet absorption spectroscopy, an analysis system using a hollow optical fiber as gas cell is developed. The hollow optical fiber functions as a long path and extremely small volume gas cell. Firstly, the measurement sensitivity of the system is evaluated by using NO gas as a gas sample. The result shows that NO gas with 50 ppb concentration is measured by using a system with a laser-driven, high intensity light source and a 3-meter long, aluminum-coated hollow optical fiber. Then an absorption spectrum of breath sample is measured in the wavelength region of around 200-300 nm and from the spectrum, it is found that the main absorbing components in breath were H2O, isoprene, and O3 converted from O2 by radiation of ultraviolet light. Then the concentration of isoprene in breath is estimated by using multiple linear regression analysis.

  2. AVO in North of Paria, Venezuela: Gas methane versus condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regueiro, J.; Pena, A.

    1996-07-01

    The gas fields of North of Paria, offshore eastern Venezuela, present a unique opportunity for amplitude variations with offset (AVO) characterization of reservoirs containing different fluids: gas-condensate, gas (methane) and water (brine). AVO studies for two of the wells in the area, one with gas-condensate and the other with gas (methane) saturated reservoirs, show interesting results. Water sands and a fluid contact (condensate-water) are present in one of these wells, thus providing a control point on brine-saturated properties. The reservoirs in the second well consist of sands highly saturated with methane. Clear differences in AVO response exist between hydrocarbon-saturated reservoirsmore » and those containing brine. However, it is also interesting that subtle but noticeable differences can be interpreted between condensate-and methane-saturated sands. These differences are attributed to differences in both in-situ fluid density and compressibility, and rock frame properties.« less

  3. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  4. Natural gas imports and exports, first quarter report 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent reporting quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basismore » to Canada and Mexico.« less

  5. Natural gas imports and exports, fourth quarter report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis tomore » Canada and Mexico.« less

  6. Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure

    NASA Astrophysics Data System (ADS)

    Nam, Kyungju; Kim, Hyeong-Gwan; Choi, Hyelim; Park, Hyeji; Kang, Jin Soo; Sung, Yung-Eun; Lee, Hee Chul; Choe, Heeman

    2017-06-01

    Tin oxide is a commonly used gas-sensing material, which can be applied as an n- or p-type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing `wall' pores ranging from 5.3 μm to 10.7 μm, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed p-type semiconductor behavior and was used without the addition of any catalyst.

  7. Sub-Nanoliter Spectroscopic Gas Sensor

    PubMed Central

    Alfeeli, Bassam; Pickrell, Gary; Wang, Anbo

    2006-01-01

    In this work, a new type of optical fiber based chemical sensor, the sub-nanoliter sample cell (SNSC) based gas sensor, is described and compared to existing sensors designs in the literature. This novel SNSC gas sensor is shown to have the capability of gas detection with a cell volume in the sub-nanoliter range. Experimental results for various configurations of the sensor design are presented which demonstrate the capabilities of the miniature gas sensor.

  8. Growth And Gas Sensing Properties Of Dielectrophoretically Isolated CuO-W{sub 18}O{sub 49} Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Chhavi; Mukund, Vignesh; Kaur, Manmeet

    2010-12-01

    Hierarchical heterostructures consisting of W{sub 18}O{sub 49} nanowires grown on CuO nanowires have been prepared and studied for their gas sensing properties. SEM images show that W{sub 18}O{sub 49} initially grow as an shell over core CuO nanowire with protusion like branches whose thickness depends on oxygen partial pressure. These CuO:W{sub 18}O{sub 49} structures were dielectrophoretically isolated and studied for their gas sensing properties. The results show potential of use of tailored hierarchical heterostructures for the fabrication of gas sensors.

  9. Gas hydrate in seafloor sediments: Impact on future resources and drilling safety

    USGS Publications Warehouse

    Dillon, William P.; Max, Michael D.

    2001-01-01

    Gas hydrate concentrates methane and sometimes other gases in its crystal lattice and this gas can be released intentionally creating a resource or escape accidentally forming a hazard. The densest accumulations of gas hydrate tend to occur at sites where the base of the gas hydrate stability zone (commonly the upper several hundred m of the sedimentary section) is configured to trap gas, often as a broad arch. The gas may rise from below or form by bacterial activity at shallow depth, but gas commonly is concentrated near the base of the gas hydrate stability zone by recycling. This gas accumulates in presumably leaky traps, then enriches the hydrate above as it migrates upward by diffusion, fluid movement through sedimentary pores, or flow along fracture channelways. Analysis of seismic reflection profiles is beginning to identify such concentrations and the circumstances that create them. The first attempt to explore for gas hydrate off Japan by the Japanese National Oil Corporation produced quite favorable results, showing high gas hydrate contents in permeable sediments. Gas hydrate dissociation can be a safety concern in drilling and production. The volume of water and gas released in dissociation is often greater than the volume of the hydrate, so overpressures can be created. Furthermore, the gas hydrate can provide shallow seals, so the possibility of high-pressure flows or generation of slides is apparent. 

  10. Mice repeatedly exposed to Group-A β-Haemolytic Streptococcus show perseverative behaviors, impaired sensorimotor gating, and immune activation in rostral diencephalon

    PubMed Central

    Macrì, Simone; Ceci, Chiara; Onori, Martina Proietti; Invernizzi, Roberto William; Bartolini, Erika; Altabella, Luisa; Canese, Rossella; Imperi, Monica; Orefici, Graziella; Creti, Roberta; Margarit, Immaculada; Magliozzi, Roberta; Laviola, Giovanni

    2015-01-01

    Repeated exposure to Group-A β-Haemolytic Streptococcus (GAS) may constitute a vulnerability factor in the onset and course of pediatric motor disturbances. GAS infections/colonization can stimulate the production of antibodies, which may cross the blood brain barrier, target selected brain areas (e.g. basal ganglia), and exacerbate motor alterations. Here, we exposed developing SJL male mice to four injections with a GAS homogenate and evaluated the following domains: motor coordination; general locomotion; repetitive behaviors; perseverative responses; and sensorimotor gating (pre-pulse inhibition, PPI). To demonstrate that behavioral changes were associated with immune-mediated brain alterations, we analyzed, in selected brain areas, the presence of infiltrates and microglial activation (immunohistochemistry), monoamines (HPLC), and brain metabolites (in vivo Magnetic Resonance Spectroscopy). GAS-exposed mice showed increased repetitive and perseverative behaviors, impaired PPI, and reduced concentrations of serotonin in prefrontal cortex, a brain area linked to the behavioral domains investigated, wherein they also showed remarkable elevations in lactate. Active inflammatory processes were substantiated by the observation of infiltrates and microglial activation in the white matter of the anterior diencephalon. These data support the hypothesis that repeated GAS exposure may elicit inflammatory responses in brain areas involved in motor control and perseverative behavior, and result in phenotypic abnormalities. PMID:26304458

  11. Mice repeatedly exposed to Group-A β-Haemolytic Streptococcus show perseverative behaviors, impaired sensorimotor gating, and immune activation in rostral diencephalon.

    PubMed

    Macrì, Simone; Ceci, Chiara; Onori, Martina Proietti; Invernizzi, Roberto William; Bartolini, Erika; Altabella, Luisa; Canese, Rossella; Imperi, Monica; Orefici, Graziella; Creti, Roberta; Margarit, Immaculada; Magliozzi, Roberta; Laviola, Giovanni

    2015-08-25

    Repeated exposure to Group-A β-Haemolytic Streptococcus (GAS) may constitute a vulnerability factor in the onset and course of pediatric motor disturbances. GAS infections/colonization can stimulate the production of antibodies, which may cross the blood brain barrier, target selected brain areas (e.g. basal ganglia), and exacerbate motor alterations. Here, we exposed developing SJL male mice to four injections with a GAS homogenate and evaluated the following domains: motor coordination; general locomotion; repetitive behaviors; perseverative responses; and sensorimotor gating (pre-pulse inhibition, PPI). To demonstrate that behavioral changes were associated with immune-mediated brain alterations, we analyzed, in selected brain areas, the presence of infiltrates and microglial activation (immunohistochemistry), monoamines (HPLC), and brain metabolites (in vivo Magnetic Resonance Spectroscopy). GAS-exposed mice showed increased repetitive and perseverative behaviors, impaired PPI, and reduced concentrations of serotonin in prefrontal cortex, a brain area linked to the behavioral domains investigated, wherein they also showed remarkable elevations in lactate. Active inflammatory processes were substantiated by the observation of infiltrates and microglial activation in the white matter of the anterior diencephalon. These data support the hypothesis that repeated GAS exposure may elicit inflammatory responses in brain areas involved in motor control and perseverative behavior, and result in phenotypic abnormalities.

  12. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  13. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms

    PubMed Central

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production. PMID:26657698

  14. ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor

    PubMed Central

    Chou, Shih Min; Teoh, Lay Gaik; Lai, Wei Hao; Su, Yen Hsun; Hon, Min Hsiung

    2006-01-01

    The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrate using Pt as interdigitated electrodes. The structure was characterized by XRD and SEM analyses, and the ethanol vapor gas sensing as well as electrical properties have been investigated and discussed. The gas sensing results show that the sensitivity for detecting 400 ppm ethanol vapor was ∼20 at an operating temperature of 250°C. The high sensitivity, fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetron sputtering can be used for ethanol vapor gas sensing.

  15. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation.

    PubMed

    Boutilier, Michael S H; Sun, Chengzhen; O'Hern, Sean C; Au, Harold; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2014-01-28

    Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially decreases flow through defects. On the basis of experimental results, we develop a gas transport model that elucidates the separate contributions of tears and intrinsic defects on gas leakage through these membranes. The model shows that the pore size of the porous support and its permeance critically affect the separation behavior, and reveals the parameter space where gas separation can be achieved regardless of the presence of nonselective defects, even for single-layer membranes. The results provide a framework for understanding gas transport in graphene membranes and guide the design of practical, selectively permeable graphene membranes for gas separation.

  16. Performance improvement of optical fiber coupler with electric heating versus gas heating.

    PubMed

    Shuai, Cijun; Gao, Chengde; Nie, Yi; Peng, Shuping

    2010-08-20

    Gas heating has been widely used in the process of fused biconical tapering. However, as the instability and asymmetric flame temperature of gas heating exist, the performance of the optical devices fabricated by this method was affected. To overcome the problems resulting from gas combustion, an electric heater is designed and manufactured using a metal-ceramic (MoSi(2)) as a heating material. Our experimental data show that the fused-taper machine with an electric heater has improved the performance of optical devices by increasing the consistency of the extinction ratio, excess loss, and the splitting ratio over that of the previous gas heating mode. Microcrystallizations and microcracks were observed at the fused region of the polarization-maintaining (PM) fiber coupler and at the taper region with scanning electron microscopy and atomic force microscopy respectively. The distribution of the microcrystallizations and microcracks are nonuniform along the fiber with gas heating, while their distribution is rather uniform with electric heating. These findings show that the novel optical fiber coupler with an electric heater has improved the performance of optical fiber devices by affecting the consistency of the optical parameters and micromorphology of the surface of PM fiber.

  17. A laboratory study of sediment and contaminant release during gas ebullition.

    PubMed

    Yuan, Qingzhong; Valsaraj, Kalliat T; Reible, Danny D; Willson, Clinton S

    2007-09-01

    Significant quantities of gas are generated from labile organic matter in contaminated sediments. The implications for the gas generation and subsequent release of contaminants from sediments are unknown but may include enhanced direct transport such as pore water advection and diffusion. The behavior of gas in sediments and the resulting migration of a polyaromatic hydrocarbon, viz phenanthrene, were investigated in an experimental system with methane injection at the base of a sediment column. Hexane above the overlying water layer was used to trap any phenanthrene migrating out of the sediment layer. The rate of suspension of solid particulate matter from the sediment bed into the overlying water layer was also monitored. The experiments indicated that significant amounts of both solid particulate matter and contaminant can be released from a sediment bed by gas movement with the amount of release related to the volume of gas released. The effective mass transfer coefficient of gas bubble-facilitated contaminant release was estimated under field conditions, being around three orders of magnitude smaller than that of bioturbation. A thin sand-capping layer (2 cm) was found to dramatically reduce the amount of contaminant or particles released with the gas because it could prevent or at least reduce sediment suspension. Based on the experimental observations, gas bubble-facilitated contaminant transport pathways for both uncapped and capped systems were proposed. Sediment cores were sliced to obtain phenanthrene concentration. X-ray computed tomography (CT) was used to investigate the void space distribution in the sediment penetrated by gas bubbles. The results showed that gas bubble migration could redistribute the sediment void spaces and may facilitate pore water circulation in the sediment.

  18. Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering

    NASA Astrophysics Data System (ADS)

    Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping

    2018-02-01

    The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.

  19. Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhu, Lianhua; Wang, Ruijie; Guo, Zhaoli

    2018-05-01

    Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002), 10.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.

  20. INTERIOR OF SOUTHEAST SIDE ENTRY CORRIDOR, SHOWING BLASTRESISTANT AND GASTIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SOUTHEAST SIDE ENTRY CORRIDOR, SHOWING BLAST-RESISTANT AND GAS-TIGHT DOOR. NOTE RELIEF VALVES NEAR BOTTOM OF DOOR AND ALTERED ONE IN BULKHEAD. - U.S. Naval Base, Pearl Harbor, Bombproof Personnel Shelter, Enterprise Street and St. Lo Avenue, Pearl City, Honolulu County, HI

  1. Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063

    NASA Astrophysics Data System (ADS)

    Oosterloo, Tom; Raymond Oonk, J. B.; Morganti, Raffaella; Combes, Françoise; Dasyra, Kalliopi; Salomé, Philippe; Vlahakis, Nektarios; Tadhunter, Clive

    2017-12-01

    We present a detailed study of the properties of the molecular gas in the fast outflow driven by the active galactic nucleus (AGN) in the nearby radio-loud Seyfert galaxy IC 5063. By using ALMA observations of a number of tracers of the molecular gas (12CO(1-0), 12CO(2-1), 12CO(3-2), 13CO(2-1) and HCO+(4-3)), we map the differences in excitation, density and temperature of the gas as function of position and kinematics. The results show that in the immediate vicinity of the radio jet, a fast outflow, with velocities up to 800 km s-1, is occurring of which the gas has high excitation with excitation temperatures in the range 30-55 K, demonstrating the direct impact of the jet on the ISM. The relative brightness of the 12CO lines, as well as that of 13CO(2-1) vs. 12CO(2-1), show that the outflow is optically thin. We estimate the mass of the molecular outflow to be at least 1.2 × 106 M⊙ and likely to be a factor between two and three larger than this value. This is similar to that of the outflow of atomic gas, but much larger than that of the ionised outflow, showing that the outflow in IC 5063 is dominated by cold gas. The total mass outflow rate we estimated to be 12 M⊙ yr-1. The mass of the outflow is much smaller than the total gas mass of the ISM of IC 5063. Therefore, although the influence of the AGN and its radio jet is very significant in the inner regions of IC 5063, globally speaking the impact will be very modest. We used RADEX non-LTE modelling to explore the physical conditions of the molecular gas in the outflow. Models with the outflowing gas being quite clumpy give the most consistent results and our preferred solutions have kinetic temperatures in the range 20-100 K and densities between 105 and 106 cm-3. The resulting pressures are 106-107.5 K cm-3, about two orders of magnitude higher than in the outer quiescent disk. The highest densities and temperatures are found in the regions with the fastest outflow. The results strongly suggest that

  2. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    PubMed

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  3. Analysis of factors affecting gas exchange in intravascular blood gas exchanger.

    PubMed

    Niranjan, S C; Clark, J W; San, K Y; Zwischenberger, J B; Bidani, A

    1994-10-01

    A mathematical model of an intravascular hollow-fiber gas-exchange device, called IVOX, has been developed using a Krogh cylinder-like approach with a repeating unit structure comprised of a single fiber with gas flowing through its lumen surrounded by a coaxial cylinder of blood flowing in the opposite direction. Species mass balances on O2 and CO2 result in a nonlinear coupled set of convective-diffusion parabolic partial differential equations that are solved numerically using an alternating-direction implicit finite-difference method. Computed results indicated the presence of a large resistance to gas transport on the external (blood) side of the hollow-fiber exchanger. Increasing gas flow through the device favored CO2 removal from but not O2 addition to blood. Increasing blood flow over the device favored both CO2 removal as well as O2 addition. The rate of CO2 removal increased linearly with the transmural PCO2 gradient imposed across the device. The effect of fiber crimping on blood phase mass transfer resistance was evaluated indirectly by varying species blood diffusivity. Computed results indicated that CO2 excretion by IVOX can be significantly enhanced with improved bulk mixing of vena caval blood around the IVOX fibers.

  4. Selective gas capture via kinetic trapping

    DOE PAGES

    Kundu, Joyjit; Pascal, Tod; Prendergast, David; ...

    2016-07-13

    Conventional approaches to the capture of CO 2 by metal-organic frameworks focus on equilibrium conditions, and frameworks that contain little CO 2 in equilibrium are often rejected as carbon-capture materials. Here we use a statistical mechanical model, parameterized by quantum mechanical data, to suggest that metal-organic frameworks can be used to separate CO 2 from a typical flue gas mixture when used under nonequilibrium conditions. The origin of this selectivity is an emergent gas-separation mechanism that results from the acquisition by different gas types of different mobilities within a crowded framework. The resulting distribution of gas types within the frameworkmore » is in general spatially and dynamically heterogeneous. Our results suggest that relaxing the requirement of equilibrium can substantially increase the parameter space of conditions and materials for which selective gas capture can be effected.« less

  5. Identification of Fatty Acids and Aliphatic Hydrocarbons in Sarcina lutea by Gas Chromatography and Combined Gas Chromatography-Mass Spectrometry

    PubMed Central

    Tornabene, T. G.; Gelpi, E.; Oró, J.

    1967-01-01

    The composition and nature of the fatty acids and hydrocarbons of Sarcina lutea were elucidated by gas chromatography and by combined gas chromatography-mass spectrometry. The distribution of fatty acids found in S. lutea showed two families of pairs, or dyads, of saturated monocarboxylic acids (C12–C18) with and without methyl branching. These pairs of fatty acids showed a pattern of iso and anteiso structures for C13, C15, and C17, and iso and normal structures for C12, C14, and C16. Only the C18 showed unsaturation. The distribution of hydrocarbons in the range C22–C29 showed two families of tetrads of unsaturated aliphatic hydrocarbons all showing methyl branching. Each tetrad was composed of four isomers identified as two iso olefins and two anteiso olefins. The only difference between the tetrads pertaining to different families was found in the relative gas chromatographic retention times of the last two components of each group. PMID:6039356

  6. Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport

    NASA Astrophysics Data System (ADS)

    Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike

    2017-04-01

    Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters

  7. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution.

    PubMed

    Cassini, Filippo; Scheutz, Charlotte; Skov, Bent H; Mou, Zishen; Kjeldsen, Peter

    2017-05-01

    Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-passive biocover system was constructed at the AV Miljø Landfill, Denmark. The biocover system was fed by landfill gas pumped out of three leachate collection wells. An innovative gas distribution system was used to overcome the commonly observed surface emission hot spot areas resulting from an uneven gas distribution to the active methane oxidation layer, leading to areas with methane overloading. Performed screening of methane and carbon dioxide surface concentrations, as well as flux measurement using a flux chamber at the surface of the biocover, showed homogenous distributions indicating an even gas distribution. This was supported by results from a tracer gas test where the compound HFC-134a was added to the gas inlet over an adequately long time period to obtain tracer gas stationarity in the whole biocover system. Studies of the tracer gas movement within the biocover system showed a very even gas distribution in gas probes installed in the gas distribution layer. Also the flux of tracer gas out of the biocover surface, as measured by flux chamber technique, showed a spatially even distribution. Installed probes logging the temperature and moisture content of the methane oxidation layer at different depths showed elevated temperatures in the layer with temperature differences to the ambient temperature in the range of 25-50°C at the deepest measuring point due to the microbial processes occurring in the layer. The moisture measurements showed that infiltrating precipitation was efficiently drained away from the methane oxidation layer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Underwater gas tornado

    NASA Astrophysics Data System (ADS)

    Byalko, Alexey V.

    2013-07-01

    We present the first experimental observation of a new hydrodynamic phenomenon, the underwater tornado. Simple measurements show that the tornado forms a vortex of the Rankine type, i.e. the rising gas rotates as a solid body and the liquid rotates with a velocity decreasing hyperbolically with the radius. We obtain the dependence of the tornado radius a on the gas stream value j theoretically: a ∼ j2/5. Processing of a set of experiments yielded the value 0.36 for the exponent in this expression. We also report the initial stages of the theoretical study of this phenomenon.

  9. Characterizing tight-gas systems with production data: Wyoming, Utah, and Colorado

    USGS Publications Warehouse

    Nelson, Philip H.; Santus, Stephen L.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    The study of produced fluids allows comparisons among tight-gas systems. This paper examines gas, oil, and water production data from vertical wells in 23 fields in five Rocky Mountain basins of the United States, mostly from wells completed before the year 2000. Average daily rates of gas, oil, and water production are determined two years and seven years after production begins in order to represent the interval in which gas production declines exponentially. In addition to the daily rates, results are also presented in terms of oil-to-gas and water-to-gas ratios, and in terms of the five-year decline in gas production rates and water-to-gas ratios. No attempt has been made to estimate the ultimate productivity of wells or fields. The ratio of gas production rates after seven years to gas production rates at two years is about one-half, with median ratios falling within a range of 0.4 to 0.6 in 16 fields. Oil-gas ratios show substantial variation among fields, ranging from dry gas (no oil) to wet gas to retrograde conditions. Among wells within fields, the oil-gas ratios vary by a factor of three to thirty, with the exception of the Lance Formation in Jonah and Pinedale fields, where the oil-gas ratios vary by less than a factor of two. One field produces water-free gas and a large fraction of wells in two other fields produce water-free gas, but most fields have water-gas ratios greater than 1 bbl/mmcf—greater than can be attributed to water dissolved in gas in the reservoir— and as high as 100 bbl/mmcf. The median water-gas ratio for fields increases moderately with time, but in individual wells water influx relative to gas is erratic, increasing greatly with time in many wells while remaining constant or decreasing in others.

  10. Compositional Discrimination of Decompression and Decomposition Gas Bubbles in Bycaught Seals and Dolphins

    PubMed Central

    Bernaldo de Quirós, Yara; Seewald, Jeffrey S.; Sylva, Sean P.; Greer, Bill; Niemeyer, Misty; Bogomolni, Andrea L.; Moore, Michael J.

    2013-01-01

    Gas bubbles in marine mammals entangled and drowned in gillnets have been previously described by computed tomography, gross examination and histopathology. The absence of bacteria or autolytic changes in the tissues of those animals suggested that the gas was produced peri- or post-mortem by a fast decompression, probably by quickly hauling animals entangled in the net at depth to the surface. Gas composition analysis and gas scoring are two new diagnostic tools available to distinguish gas embolisms from putrefaction gases. With this goal, these methods have been successfully applied to pathological studies of marine mammals. In this study, we characterized the flux and composition of the gas bubbles from bycaught marine mammals in anchored sink gillnets and bottom otter trawls. We compared these data with marine mammals stranded on Cape Cod, MA, USA. Fresh animals or with moderate decomposition (decomposition scores of 2 and 3) were prioritized. Results showed that bycaught animals presented with significantly higher gas scores than stranded animals. Gas composition analyses indicate that gas was formed by decompression, confirming the decompression hypothesis. PMID:24367623

  11. Methane Gas Emissions - is Older Infrastructure Leakier?

    NASA Astrophysics Data System (ADS)

    Wendt, L. P.; Caulton, D.; Zondlo, M. A.; Lane, H.; Lu, J.; Golston, L.; Pan, D.

    2015-12-01

    Large gains in natural gas production from hydraulic fracturing is reinvigorating the US energy economy. It is a clean burning fuel with lower emissions than that of coal or oil. Studies show that methane (CH4) leaks from natural gas infrastructure vary widely. A broader question is whether leak rates of methane might offset the benefits of combustion of natural gas. Excess methane (CH4) is a major greenhouse gas with a radiative forcing constant of 25 times that of CO2 when projected over a 100-year period. An extensive field study of 250 wells in the Marcellus Shale conducted in July 2015 examined the emission rates of this region and identifed super-emitters. Spud production data will provide information as to whether older infrastructure is responsible for more of the emissions. Quantifying the emission rate was determined by extrapolating methane releases at a distance from private well pads using an inverse Gaussian plume model. Wells studied were selected by prevailing winds, distance from public roads, and topographical information using commercial (ARCGIS and Google Earth), non-profit (drillinginfo), and government (State of PA) databases. Data were collected from the mobile sensing lab (CH4, CO2 and H2O sensors), as well as from a stationary tower. Emission rates from well pads will be compared to their original production (spud dates) to evaluate whether infrastructure age and total production correlates with the observed leak rates. Very preliminary results show no statistical correlation between well pad production rates and observed leak rates.

  12. Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2004-06-22

    Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

  13. Electrical tree initiation in polyethylene absorbing Penning gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, N.; Tohyama, N.; Sato, H.

    1996-12-31

    Ac tree initiation voltage was examined in untreated LDPE, vacuum degassed LDPE and LDPE absorbing He gas (He gas was absorbed after vacuum degassing). The authors have already reported that vacuum degassed LDPE shows much higher tree initiation voltage than untreated one because of absence of oxygen. Therefore they expected that LDPE absorbing He shows the same property with vacuum degassed LDPE. However tree initiation voltage of LDPE absorbing He is as low as that of untreated LDPE. LDPE absorbing Ar gas shows the same tendency. He or Ar gas does not change so much impulse tree initiation voltage. LDPEmore » absorbing He was not well dyed with methylene blue after ac voltage application, which indicates that active oxidation does not occur. Low ac tree initiation voltage in LDPE absorbing He or Ar may be caused by Penning ionization in free volume.« less

  14. A new gas lesion syndrome in man, induced by 'isobaric gas counterdiffusion'

    NASA Technical Reports Server (NTRS)

    Lambertsen, C. J.; Idicula, J.

    1975-01-01

    Normal men have been found to develop pruritis and gas bubble lesions in the skin, and disruption of vestibular function, when breathing nitrogen or neon with oxygen while surrounded by helium at increased ambient pressure. This phenomenon, which occurs at stable ambient pressures, at 1 or many ATA, has been designated the isobaric gas counterdiffusion syndrome. In a series of analyses and experiments in vivo and in vitro the cause of the syndrome has been established as due to gas accumulation and development of gas bubbles in tissues as a result of differences in selective diffusivities, for various respired and ambient gases, in the tissue substances between capillary blood and the surrounding atmosphere. The phenomenon described in man is an initial stage of a process shown later in animals to progress to continuous, massive, lethal, intravascular gas embolization.

  15. Validation of OpenFoam for heavy gas dispersion applications.

    PubMed

    Mack, A; Spruijt, M P N

    2013-11-15

    In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a wind tunnel test case, numerical data was validated with experiments. For a full scale numerical experiment, a code to code comparison was performed with numerical results obtained from Fluent. The validation was performed in a gravity driven environment (slope), where the heavy gas induced the turbulence. For the code to code comparison, a hypothetical heavy gas release into a strongly turbulent atmospheric boundary layer including terrain effects was selected. The investigations were performed for SF6 and CO2 as heavy gases applying the standard k-ɛ turbulence model. A strong interaction of the heavy gas with the turbulence is present which results in a strong damping of the turbulence and therefore reduced heavy gas mixing. Especially this interaction, based on the buoyancy effects, was studied in order to ensure that the turbulence-buoyancy coupling is the main driver for the reduced mixing and not the global behaviour of the turbulence modelling. For both test cases, comparisons were performed between OpenFoam and Fluent solutions which were mainly in good agreement with each other. Beside steady state solutions, the time accuracy was investigated. In the low turbulence environment (wind tunnel test) which for both codes (laminar solutions) was in good agreement, also with the experimental data. The turbulent solutions of OpenFoam were in much better agreement with the experimental results than the Fluent solutions. Within the strong turbulence environment, both codes showed an excellent comparability. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Biotransformation of natural gas and oil compounds associated with marine oil discharges.

    PubMed

    Brakstad, Odd Gunnar; Almås, Inger K; Krause, Daniel Franklin

    2017-09-01

    Field data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases. Gas oxidation was not affected by the presence of volatile oil compounds. Contrary to DWH deep sea plume data, propane oxidation was not faster than methane oxidation. These data may reflect variations between biodegradation of oil and gas in seawater environments with different history of oil and gas exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Reservoir model for Hillsboro gas storage field management

    USGS Publications Warehouse

    Udegbunam, Emmanuel O.; Kemppainen, Curt; Morgan, Jim; ,

    1995-01-01

    A 3-dimensional reservoir model is used to understand the behavior of the Hillsboro Gas Storage Field and to investigate the field's performance under various future development. Twenty-two years of the gas storage reservoir history, comprising the initial gas bubble development and seasonal gas injection and production cycles, are examined with a full-field, gas water, reservoir simulation model. The results suggest that the gas-water front is already in the vicinity of the west observation well that increasing the field's total gas-in-place volume would cause gas to migrate beyond the east, north and west observation well. They also suggest that storage enlargement through gas injection into the lower layers may not prevent gas migration. Moreover, the results suggest that the addition of strategically-located new wells would boost the simulated gas deliverabilities.

  18. Modeling CO2 air dispersion from gas driven lake eruptions

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco

    2016-04-01

    the people living in the surrounding areas. Simulation results are in good agreement with these observations. Another application is focused on a hypothetical gas release from lake Albano (Italy), a volcanic lake that probably degassed on the past as reported in historical chronicles by the Roman historian Titus Livius. At the present time the lake is far from saturation conditions and the occurrence of such an event is impossible. However a recent re-interpretation of literature data clearly show the presence of anomalous CO2 enrichment of the lake waters during the last seismic crisis which affected the area. For these reasons a future limnic eruption can not be ruled out completely. The simulations we present show the potential effect of a gas driven eruption from lake Albano in this densely populated area located 20 km south-east from the centre of Rome.

  19. Modeling the Relative GHG Emissions of Conventional and Shale Gas Production

    PubMed Central

    2011-01-01

    Recent reports show growing reserves of unconventional gas are available and that there is an appetite from policy makers, industry, and others to better understand the GHG impact of exploiting reserves such as shale gas. There is little publicly available data comparing unconventional and conventional gas production. Existing studies rely on national inventories, but it is not generally possible to separate emissions from unconventional and conventional sources within these totals. Even if unconventional and conventional sites had been listed separately, it would not be possible to eliminate site-specific factors to compare gas production methods on an equal footing. To address this difficulty, the emissions of gas production have instead been modeled. In this way, parameters common to both methods of production can be held constant, while allowing those parameters which differentiate unconventional gas and conventional gas production to vary. The results are placed into the context of power generation, to give a ″well-to-wire″ (WtW) intensity. It was estimated that shale gas typically has a WtW emissions intensity about 1.8–2.4% higher than conventional gas, arising mainly from higher methane releases in well completion. Even using extreme assumptions, it was found that WtW emissions from shale gas need be no more than 15% higher than conventional gas if flaring or recovery measures are used. In all cases considered, the WtW emissions of shale gas powergen are significantly lower than those of coal. PMID:22085088

  20. Modeling the relative GHG emissions of conventional and shale gas production.

    PubMed

    Stephenson, Trevor; Valle, Jose Eduardo; Riera-Palou, Xavier

    2011-12-15

    Recent reports show growing reserves of unconventional gas are available and that there is an appetite from policy makers, industry, and others to better understand the GHG impact of exploiting reserves such as shale gas. There is little publicly available data comparing unconventional and conventional gas production. Existing studies rely on national inventories, but it is not generally possible to separate emissions from unconventional and conventional sources within these totals. Even if unconventional and conventional sites had been listed separately, it would not be possible to eliminate site-specific factors to compare gas production methods on an equal footing. To address this difficulty, the emissions of gas production have instead been modeled. In this way, parameters common to both methods of production can be held constant, while allowing those parameters which differentiate unconventional gas and conventional gas production to vary. The results are placed into the context of power generation, to give a ″well-to-wire″ (WtW) intensity. It was estimated that shale gas typically has a WtW emissions intensity about 1.8-2.4% higher than conventional gas, arising mainly from higher methane releases in well completion. Even using extreme assumptions, it was found that WtW emissions from shale gas need be no more than 15% higher than conventional gas if flaring or recovery measures are used. In all cases considered, the WtW emissions of shale gas powergen are significantly lower than those of coal.

  1. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    NASA Astrophysics Data System (ADS)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-07-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  2. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    NASA Astrophysics Data System (ADS)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-01-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  3. 76. General view looking east showing Rust Co. boiler stacks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. General view looking east showing Rust Co. boiler stacks at left, Babcock & Wilcox type boiler stacks at right, Dovel horizontal gas washer in foreground, and No. 1 Furnace in distance. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  4. Liquid and gas phase NMR spectra of 13CH313CHO acetaldehyde

    NASA Astrophysics Data System (ADS)

    Makulski, Włodzimierz; Wikieł, Agata J.

    2018-01-01

    The gas phase NMR experiments perform a vital role in establishing the magnetic shielding and spin-spin coupling constants which are free from intermolecular interactions, equivalent to the parameter of isolated molecules. This work is concerned with an acetaldehyde molecule. Small amounts of acetaldehyde 13CH313CHO in gaseous matrices of CO2 and Xe were studied using high-precision 1H and 13C NMR measurements. Results were extrapolated to the zero-density limit permitting the determinations of the 1H and 13C absolute nuclear magnetic shielding of an isolated acetaldehyde molecule. The difference between the experimental and recent theoretical DFT results is discussed. Several samples of 13CH313CHO dissolved in popular organic and inorganic solvents were also investigated. Gas-to-solution shifts show the influence of the association process when acetaldehyde is transferred from gas to liquid state. Several spin-spin coupling constants in the gas phase and in different solvents were precisely measured.

  5. Catalytic activity of Cu4-cluster to adsorb H2S gas: h-BN nanosheet

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-05-01

    We have investigated the electronic properties, adsorptions strength and charge transfer using first principles calculations using density functional theory (DFT). The hexagonal boron nitride (h-BN) substrate shows metallic behavior, which helps to enhance the absorption process. The adsorption of three different orientations (S, D and T) of the H2S gas molecules to analyze the maximum adsorption strength from them onto a copper cluster (Cu4) based on h-BN nanosheet. The maximum adsorption energy of the H2S gas molecule is -1.50 eV for the S orientation and for D and U, it is -0.71 eV and -0.78 eV, respectively. The results show that Cu4 cluster helps to capture H2S gas from the environment and results are useful for the cleaning environment from the toxic gases.

  6. LEAK AND GAS PERMEABILITY TESTING DURING SOIL-GAS SAMPLING AT HAL'S CHEVRON LUST SITE IN GREEN RIVER, UTAH

    EPA Science Inventory

    The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...

  7. Water Availability for Shale Gas Development in Sichuan Basin, China.

    PubMed

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  8. Percolation Network Study on the Gas Apparent Permeability of Rock

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tang, Y. B.; Li, M.

    2017-12-01

    We modeled the gas single phase transport behaviors of monomodal porous media using percolation networks. Different from the liquid absolute permeability, which is only related to topology and morphology of pore space, the gas permeability depends on pore pressure as well. A published gas flow conductance model, included usual viscous flow, slip flow and Knudsen diffusion in cylinder pipe, was used to simulated gas flow in 3D, simple cubic, body-center cubic and face-center cubic networks with different hydraulic radius, different coordination number, and different pipe radius distributions under different average pore pressure. The simulation results showed that the gas apparent permeability kapp obey the `universal' scaling law (independence of network lattices), kapp (z-zc)β, where exponent β is related to pore radius distribution, z is coordination number and zc=1.5. Following up on Bernabé et al.'s (2010) study of the effects of pore connectivity and pore size heterogeneity on liquid absolute permeability, gas apparent permeability kapp model and a new joint gas-liquid permeability (i.e., kapp/k∞) model, which could explain the Klinkenberg phenomenon, were proposed. We satisfactorily tested the models by comparison with published experimental data on glass beads and other datasets.

  9. Coalbed natural gas exploration, drilling activities, and geologic test results, 2007-2010

    USGS Publications Warehouse

    Clark, Arthur C.

    2014-01-01

    The U.S. Geological Survey, in partnership with the U.S. Bureau of Land Management, the North Slope Borough, and the Arctic Slope Regional Corporation conducted a four-year study designed to identify, define, and delineate a shallow coalbed natural gas (CBNG) resource with the potential to provide locally produced, affordable power to the community of Wainwright, Alaska. From 2007 through 2010, drilling and testing activities conducted at three sites in or near Wainwright, identified and evaluated an approximately 7.5-ft-thick, laterally continuous coalbed that contained significant quantities of CBNG. This coalbed, subsequently named the Wainwright coalbed, was penetrated at depths ranging from 1,167 ft to 1,300 ft below land surface. Core samples were collected from the Wainwright coalbed at all three drill locations and desorbed-gas measurements were taken from seventeen 1-ft-thick sections of the core. These measurements indicate that the Wainwright coalbed contains enough CBNG to serve as a long-term energy supply for the community. Although attempts to produce viable quantities of CBNG from the Wainwright coalbed proved unsuccessful, it seems likely that with proper well-field design and by utilizing currently available drilling and reservoir stimulation techniques, this CBNG resource could be developed as a long-term economically viable energy source for Wainwright.

  10. Formation and coalescence of nanobubbles under controlled gas concentration and species

    NASA Astrophysics Data System (ADS)

    Li, Chenliang; Zhang, A.-Man; Wang, Shiping; Cui, Pu

    2018-01-01

    Using molecular dynamics simulations, the effects of gas concentration and species on the coalescence and growth of nanobubbles were systematically investigated. With increasing gas concentration, not only surface nanobubbles but also bulk nanobubbles are formed. The bulk nanobubble in water is less explored so far. Here, its coalescence, stability, movement trajectory and velocity are discussed. A comparison of the motion and coalescence of the bulk nanobubble to the surface nanobubble, directly demonstrates that the three-phase contact line plays a crucial role for surface nanobubble stability. Compared with the bubble size, the distance between surface nanobubbles is a more important factor to decide the merging order among three nanobubbles. The study also shows that three factors including the oversaturated gas concentration, the distance between surface nanobubbles, and the stronger solid-gas interactions influence the formation of the gas-enrichment layer at the solid-liquid interface. The result has an important significance to enhancing the boundary slip due to the presence of nanobubbles.

  11. Gas Drilling, North Dakota

    NASA Image and Video Library

    2017-12-08

    Northwestern North Dakota is one of the least-densely populated parts of the United States. Cities and people are scarce, but satellite imagery shows the area has been aglow at night in recent years. The reason: the area is home to the Bakken shale formation, a site where gas and oil production are booming. On November 12, 2012, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this nighttime view of widespread drilling throughout the area. Most of the bright specks are lights associated with drilling equipment and temporary housing near drilling sites, though a few are evidence of gas flaring. Some of the brighter areas correspond to towns and cities including Williston, Minot, and Dickinson. The image was captured by the VIIRS “day-night band,” which detects light in a range of wavelengths from green to near-infrared and uses “smart” light sensors to observe dim signals such as gas flares, auroras, wildfires, city lights, and reflected moonlight. When VIIRS acquired the image, the Moon was in its waning crescent phase, so the landscape was reflecting only a small amount of light. According to the U.S. Energy Information Administration, natural gas production from the Bakken shale has increased more than 20-fold between 2007 and 2010. Gas production averaged over 485 million cubic feet per day in September 2011, compared to the 2005 average of about 160 million cubic feet per day. Due to the lack of a gas pipeline and processing facilities in the region, about 29 percent of that gas is flared. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day-Night Band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Adam Voiland. Instrument: Suomi NPP - VIIRS Credit: NASA Earth Observatory Click here to view all of the Earth at Night 2012 images

  12. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  13. Development of the infrared instrument for gas detection

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Wei; Chen, Chia-Ray

    2017-08-01

    MWIR (Mid-Wave Infrared) spectroscopy shows a large potential in the current IR devices market, due to its multiple applications, such as gas detection, chemical analysis, industrial monitoring, combustion and flame characterization. It opens this technique to the fields of application, such as industrial monitoring and control, agriculture and environmental monitoring. However, a major barrier, which is the lack of affordable specific key elements such a MWIR light sources and low cost uncooled detectors, have held it back from its widespread use. In this paper an uncooled MWIR detector combined with image enhancement technique is reported. This investigation shows good results in gas leakage detection test. It also verify the functions of self-developed MWIR lens and optics. A good agreement in theoretical design and experiment give us the lessons learned for the potential application in infrared satellite technology. A brief discussions will also be presented in this paper.

  14. Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas

    DTIC Science & Technology

    2004-08-01

    Hydrogenation of sugars or extraction from biomass pretreatment processes. Very few if any. Commercial processes Non-nutritive sweeteners ...and no commercial production of arabinitol. Xylitol is used as a non-nutritive sweetener . The technology required to convert the five carbon sugars ...Top Value Added Chemicals from Biomass Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by

  15. Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water.

    PubMed

    Tanaka, Kohei; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2014-10-29

    In this paper, we report that nanofiber network structures were constructed from chitin derivatives by gas bubbling and ultrasonic treatments in water. When chitin was first subjected to N2 gas bubbling with ultrasonication in water, the SEM images of the product showed nanofiber network morphology. However, nanofiber network was not re-constructed by the same N2 gas bubbling and ultrasonic treatments after agglomeration. We then have paid attention to an amidine group to provide the agglomeration-nanofibrillation behavior of chitin derivatives. An amidinated chitin was synthesized by the reaction of the amino groups in a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, which was subjected to CO2 gas bubbling and ultrasonic treatments in water to convert into an amidinium chitin by protonation. The SEM images of the product clearly showed nanofiber network morphology. We further examined re-nanofibrillation of the agglomerated material, which was obtained by mixing the nanofibrillated amidinium chitin with water, followed by drying under reduced pressure. Consequently, the material was re-nanofibrillated by N2 gas bubbling with ultrasonication in water owing to electrostatic repulsion between the amidinium groups. Furthermore, deprotonation of the amidinium chitin and re-protonation of the resulting amidinated chitin were conducted by alkaline treatment and CO2 gas bubbling-ultrasonic treatments, respectively. The material showed the agglomeration-nanofibrillation behavior during the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Challenges of constructing salt cavern gas storage in China

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Yuan, Guangjie; Ban, Fansheng; Zhuang, Xiaoqian; Li, Jingcui

    2017-11-01

    After more than ten years of research and engineering practice in salt cavern gas storage, the engineering technology of geology, drilling, leaching, completion, operation and monitoring system has been established. With the rapid growth of domestic consumption of natural gas, the requirement of underground gas storage is increasing. Because high-quality rock salt resources about 1000m depth are relatively scarce, the salt cavern gas storages will be built in deep rock salt. According to the current domestic conventional construction technical scheme, construction in deep salt formations will face many problems such as circulating pressure increasing, tubing blockage, deformation failure, higher completion risk and so on, caused by depth and the complex geological conditions. Considering these difficulties, the differences between current technical scheme and the construction scheme of twin well and big hole are analyzed, and the results show that the technical scheme of twin well and big hole have obvious advantages in reducing the circulating pressure loss, tubing blockage and failure risk, and they can be the alternative schemes to solve the technical difficulties of constructing salt cavern gas storages in the deep rock salt.

  17. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  18. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-08-27

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  19. Field testing the Raman gas composition sensor for gas turbine operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buric, M.; Chorpening, B.; Mullem, J.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class Imore » Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.« less

  20. Gas pre-warming for improving performances of heated humidifiers in neonatal ventilation.

    PubMed

    Schena, E; De Paolis, E; Silvestri, S

    2011-01-01

    Adequate temperature and humidification of gas delivered must be performed during long term neonatal ventilation to avoid potential adverse health effects. Literature shows that performances of heated humidifiers are, at least in some cases, quite poor. In this study, a novel approach to gas conditioning, consisting of gas warming upstream the humidification chamber, is presented. Gas pre-warming, in combination with a control strategy based on a mathematical model taking into account a number of parameters, allows to significantly improve the heated humidifier performances. The theoretical model has been validated and experimental trials have been carried out in the whole volumetric flow-rate (Q) range of neonatal ventilation (lower than 10 L · min(-1)). Experimental results (temperature values ranging from 36 °C to 38 °C and relative humidity values from 90 % to 98 % in the whole range of Q) show values very close to the ideal thermo-hygrometric conditions. The proposed solution allows to avoid vapor condensation at low flow rates and decrease of relative humidity at high flow rates.

  1. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate

    USGS Publications Warehouse

    Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H.

    2004-01-01

    This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences, in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.

  2. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  3. a Facile Synthesis of Fully Porous Tazo Composite and its Remarkable Gas Sensitive Performance

    NASA Astrophysics Data System (ADS)

    Liang, Dongdong; Liu, Shimin; Wang, Zhinuo; Guo, Yu; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan; Zhang, Zhihua

    The composite of a nanocrystalline SnO2 thick film deposited on an Al-doped ZnO ceramic substrate was firstly proposed. This study also provided a simple, fast and cost effective method to prepare SnO2 thick film and Al-doped ZnO ceramic as well as the final composite. The crystal structure, morphology, composition, pore size distribution and gas sensitivity of the composite were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Barrett-Joyner-Halenda analysis and gas sensitive measurement system. Results indicated that the composite was fully porous consisted of SnO2, ZnO and ZnAl2O4 crystal phases. The macrosized pores generated in the composite could enhance the gas infiltration into the sensing layers effectively. In this way, combining a high gas-transporting-capability and a nanocrystalline SnO2 thick film, the composite showed very impressive performance. The gas sensitivity of the composite was high enough for ethanol vapor with different concentrations, which was comparable to other kinds of reported SnO2 gas sensors, while showing two straight lines with a turning point at 1000ppm. Finally, the gas sensitive mechanism was proposed based on the microstructure and composition of the composite.

  4. Study on the wiping gas jet in continuous galvanizing line

    NASA Astrophysics Data System (ADS)

    Kweon, Yong-Hun; Kim, Heuy-Dong

    2011-09-01

    In the continuous hot-dip galvanizing process, the gas-jet wiping is used to control the coating thickness of moving steel strip. The high speed gas-jet discharged from the nozzle slot impinges on the strip, and at this moment, wipes the liquid coating layer dragged by a moving strip. The coating thickness is generally influenced on the flow characteristics of wiping gas-jet such as the impinging pressure distribution, pressure gradient and shear stress distribution on the surface of strip. The flow characteristics of wiping gas-jet mentioned above depends upon considerably both the process operating conditions such as the nozzle pressure, nozzle-to-strip distance and line speed, and the geometry of gas-jet wiping apparatus such as the height of nozzle slot. In the present study, the effect of the geometry of nozzle on the coating thickness is investigated with the help of a computational fluid dynamics method. The height of nozzle slot is varied in the range of 0.6mm to 1.7mm. A finite volume method (FVM) is employed to solve two-dimensional, steady, compressible Navier-Stokes equations. Based upon the results obtained, the effect of the height of nozzle slot in the gas-jet wiping process is discussed in detail. The computational results show that for a given standoff distance between the nozzle to the strip, the effective height of nozzle slot exists in achieving thinner coating thickness.

  5. Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.R.; Wang, G.X.; Massarotto, P.

    2007-12-15

    The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less

  6. Collective modes of a two-dimensional spin-1/2 Fermi gas in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Baur, Stefan K.; Vogt, Enrico; Köhl, Michael; Bruun, Georg M.

    2013-04-01

    We derive analytical expressions for the frequency and damping of the lowest collective modes of a two-dimensional Fermi gas using kinetic theory. For strong coupling, we furthermore show that pairing correlations overcompensate the effects of Pauli blocking on the collision rate for a large range of temperatures, resulting in a rate which is larger than that of a classical gas. Our results agree well with experimental data, and they recover the observed crossover from collisionless to hydrodynamic behavior with increasing coupling for the quadruple mode. Finally, we show that a trap anisotropy within the experimental bounds results in a damping of the breathing mode which is comparable to what is observed, even for a scale-invariant system.

  7. Radon as a tracer of biogenic gas equilibration and transport from methane-saturated sediments

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Chanton, Jeffrey P.

    1989-01-01

    Data on Rn-222 activity in methane-rich gas bubbles from anoxic coastal sediments of Cape Lookout Bight, North Carolina, were used to determine gas equilibration with pore waters and the rates of ebullitive stripping and transport of gases to overlying waters and the atmosphere. Results showed that, during summer months, the bubble ebullition process strips and transports 1.9-4.8 percent/day of the standing crop of radon (and, by inference, other gases equilibrated with gas bubbles) in surface sediments of Cape Lookout Bight to the troposphere. Thus, the ebullitive mode of gas transport represents an effective mechanism for delivering reduced biogenic gases directly to the atmosphere.

  8. Gas from Mexico: the brightest prospect for interim relief for U. S. consumers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falck, E.

    1977-08-04

    The U. S. natural gas industry is experiencing its greatest shortage and prices are continuing to advance to new highs. The regulated price for ''new'' gas has increased from 50 cents to $1.42 per Mcf plus escalations, and the Carter energy plan would increase this price further to $1.75 per Mcf. However, assuming the most optimistic results from conservation and new discoveries of gas, there remains an urgent need for additional sources of supply. The new government of Mexico is showing great interest in developing its natural gas and oil resources and also showing a new cordial atmosphere towards themore » U. S. This new atmosphere opens up the possibility for the U. S. to provide finance-capital, steel, compressors, and drilling equipment in exchange for Mexican natural gas. The transportation facilities for natural gas from Mexico will be less costly than from Alaska's North Slope. Equally important, gas can be brought in from Mexico at a much earlier date than from the North Slope. Pemex (Petroleos Mexicanos) has announced plans to construct a 780-mile, 48-inch pipeline to transport natural gas from the Reforma sweetening plant at Cardenas, Chiapas, to Reynosa where it can connect with U. S. pipelines at McAllen, Texas. Shipments of gas could begin within two or three years if satisfactory gas purchase contracts, financing, and government approval can be completed promptly. This pipeline is estimatedto cost in the neighborhood of $1 billion and could be completed by 1979. Methods of delivering natural gas to the U. S. from the North Slope, Mexican oil and gas reserves, and the economics of the Pemex gasoline and possible U. S. financing are discussed. (MCW)« less

  9. Continuous CO2 gas monitoring to clarify natural pattern and artificial leakage signals

    NASA Astrophysics Data System (ADS)

    Joun, W.; Ha, S. W.; Joo, Y. J.; Lee, S. S.; Lee, K. K.

    2017-12-01

    Continuous CO2 gas monitoring at shallow aquifer is significant for early detection and immediate handling of an aquifer impacted by leaking CO2 gas from the sequestration reservoir. However, it is difficult to decide the origin of CO2 gas because detected CO2 includes not only leaked CO2 but also naturally emitted CO2. We performed CO2 injection and monitoring tests in a shallow aquifer. Before the injection of CO2 infused water, we have conducted continuous monitoring of multi-level soil CO2 gas concentration and physical parameters such as temperature, humidity, pressure, wind speed and direction, and precipitation. The monitoring data represented that CO2 gas concentrations in unsaturated soil zone borehole showed differences at depths and daily variation (360 to 6980 ppm volume). Based on the observed data at 5 m and 8 m depths, vertical flux of gas was calculated as 0.471 L/min (LPM) for inflow from 5 m to 8 m and 9.42E-2 LPM for outflow from 8 m to 5 m. The numerical and analytical models were used to calculate the vertical flux of gas and to compare with observations. The results showed that pressure-based modeling could not explain the rapid change of CO2 gas concentration in borehole. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  10. A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process

    NASA Astrophysics Data System (ADS)

    Jia, B.; Tsau, J. S.; Barati, R.

    2017-12-01

    Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might

  11. High resolution gas volume change sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-05-15

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor ismore » based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 {mu}l. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure.« less

  12. Gas distribution equipment in hydrogen service - Phase II

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Huang, H. D.

    1980-01-01

    The hydrogen permeability of three different types of commercially available natural gas polyethylene pipes was determined. Ring tensile tests were conducted on permeability-exposed and as-received samples. Hydrogen-methane leakage experiments were also performed. The results show no selective leakage of hydrogen via Poiseuille, turbulent, or orifice flow (through leaks) on the distribution of blends of hydrogen and methane. The data collected show that the polyethylene pipe is 4 to 6 times more permeable to hydrogen than to methane.

  13. Numerical Investigation of PLIF Gas Seeding for Hypersonic Boundary Layer Flows

    NASA Technical Reports Server (NTRS)

    Johanson, Craig T.; Danehy, Paul M.

    2012-01-01

    Numerical simulations of gas-seeding strategies required for planar laser-induced fluorescence (PLIF) in a Mach 10 air flow were performed. The work was performed to understand and quantify adverse effects associated with gas seeding and to compare different flow rates and different types of seed gas. The gas was injected through a slot near the leading edge of a flat plate wedge model used in NASA Langley Research Center's 31- Inch Mach 10 Air Tunnel facility. Nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulation results showing the deflection of the velocity field for each of the cases are presented. Streamwise distributions of velocity and concentration boundary layer thicknesses as well as vertical distributions of velocity, temperature, and mass distributions are presented for each of the cases. Relative merits of the different seeding strategies are discussed.

  14. Exploring the recognized bio-mimicry materials for gas sensing.

    PubMed

    Wu, T Z; Lo, Y R; Chan, E C

    2001-12-01

    This study was undertaken to synthesize peptides that are partially similar to the binding sites of human olfactory receptor protein. First, a putative 3-D model structure of human olfactory receptor protein (P30953) was modeled using a molecular simulation method. The computer docking simulation was then performed to determine the most plausible binding sites between the model structure and target gases, trimethylamine, ammonia, acetic acid, and o-xylene. According to the simulation result, a series of polypeptide sequences, horp61 for TMA, horp103 for o-xylene, horp109 for ammonia, and horp193 for acetic acid as recognized molecules were designed for gas sensing purposes. Preparing these peptides as corresponding gas sensing probes, the results showed a high relative sensitivity response of 6.7 for TMA (probe horp61), 5.1 for o-xylene (probe horp103), 11 for ammonia (probe horp109), and 28 for acetic acid (probe horp193), respectively. These results indicate that peptide mimicking of binding domain on olfactory receptor opens a new window and offers a novel strategy for the further development of recognized materials for gas sensing.

  15. Ionised gas kinematics in bipolar H II regions

    NASA Astrophysics Data System (ADS)

    Dalgleish, Hannah S.; Longmore, Steven N.; Peters, Thomas; Henshaw, Jonathan D.; Veitch-Michaelis, Joshua L.; Urquhart, James S.

    2018-05-01

    Stellar feedback plays a fundamental role in shaping the evolution of galaxies. Here we explore the use of ionised gas kinematics in young, bipolar H II regions as a probe of early feedback in these star-forming environments. We have undertaken a multi-wavelength study of a young, bipolar H II region in the Galactic disc, G316.81-0.06, which lies at the centre of a massive (˜103 M⊙) infrared-dark cloud filament. It is still accreting molecular gas as well as driving a ˜0.2 pc ionised gas outflow perpendicular to the filament. Intriguingly, we observe a large velocity gradient (47.81 ± 3.21 km s-1 pc-1) across the ionised gas in a direction perpendicular to the outflow. This kinematic signature of the ionised gas shows a reasonable correspondence with the simulations of young H II regions. Based on a qualitative comparison between our observations and these simulations, we put forward a possible explanation for the velocity gradients observed in G316.81-0.06. If the velocity gradient perpendicular to the outflow is caused by rotation of the ionised gas, then we infer that this rotation is a direct result of the initial net angular momentum in the natal molecular cloud. If this explanation is correct, this kinematic signature should be common in other young (bipolar) H II regions. We suggest that further quantitative analysis of the ionised gas kinematics of young H II regions, combined with additional simulations, should improve our understanding of feedback at these early stages.

  16. Scary gas: pathways in the axial body for soft tissue gas dissection (part I).

    PubMed

    Sandstrom, Claire K; Osman, Sherif F; Linnau, Ken F

    2017-10-01

    Gas is often encountered in abnormal locations in the torso, including within soft tissue compartments, vessels, and bones. The clinical significance of this gas ranges from incidental, benign, and self-limited to aggressive infection requiring immediate surgery. As a result of fascial interconnectivity and pressure differences between compartments, gas can dissect distant from its source. Gas can easily dissect between spaces of the extrapleural thorax, subperitoneal abdomen, deep cervical spaces, and subcutaneous tissues. The pleural and peritoneal cavities are normally isolated but may communicate with the other spaces in select situations. Dissection of gas may cause confusion as to its origin, potentially delaying treatment or prompting unnecessary and/or distracting workup and therapies. The radiologist might be the first to suggest and identify a remote source of dissecting gas when the clinical manifestation alone might be misleading. The purpose of this paper, the first in a three-part series on soft tissue gas, is to explore the various pathways by which gas dissects through the superficial and deep compartments of the torso.

  17. Electromagnetic radiations from laser interaction with gas-filled Hohlraum

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Yang, Yongmei; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2018-01-01

    The emission of intensive electromagnetic pulse (EMP) due to laser-target interactions at the ShenGuang-III laser facility has been evaluated by probes. EMP signals measured using the small discone antennas demonstrated two variation trends including a bilateral oscillation wave and a unilateral oscillation wave. The new trend of unilateral oscillation could be attributed to the hohlraum structure and low-Z gas in the hohlraum. The EMP waveform showed multiple peaks when the gas-filled hohlraum was shot by the high-power laser. Comparing the EMP signals with the verification of stimulated Raman scattering energy and hard x-ray energy spectrum, we found that the intensity of EMP signals decreased with the increase of the hohlraum size. The current results are expected to offer preliminary information to study physical processes on laser injecting gas-filled hohlraums in the National Ignition Facility implementation.

  18. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projectedmore » costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging

  19. Influence of discharge voltage on the sensitivity of the resultant sputtered NiO thin films toward hydrogen gas

    NASA Astrophysics Data System (ADS)

    Khalaf, Mohammed K.; Mutlak, Rajaa H.; Khudiar, Ausama I.; Hial, Qahtan G.

    2017-06-01

    Nickel oxide thin films were deposited on glass substrates as the main gas sensor for H2 by the DC sputtering technique at various discharge voltages within the range of 1.8-2.5 kV. Their structural, optical and gas sensing properties were investigated by XRD, AFM, SEM, ultraviolet visible spectroscopy and home-made gas sensing measurement units. A diffraction peak in the direction of NiO (200) was observed for the sputtered films, thereby indicating that these films were polycrystalline in nature. The optical band gap of the films decreased from 3.8 to 3.5 eV when the thickness of the films was increased from 83.5 to 164.4 nm in relation to an increase in the sputtering discharge voltage from 1.8 to 2.5 kV, respectively. The gas sensitivity performance of the NiO films that were formed was studied and the electrical responses of the NiO-based sensors toward different H2 concentrations were also considered. The sensitivity of the gas sensor increased with the working temperature and H2 gas concentration. The thickness of the NiO thin films was also an important parameter in determining the properties of the NiO films as H2 sensors. It was shown in this study that NiO films have the capability to detect H2 concentrations below 3% in wet air, a feature that allows this material to be used directly for the monitoring of the environment.

  20. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  1. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  2. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.

  3. Fundamental Study of Disposition and Release of Methane in a Shale Gas Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Xiong, Yongliang; Criscenti, Louise J.

    MD simulations also indicate that a significant fraction (3 - 35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. We have successfully established experimental capabilities for measuring gas sorption and desorption on shale and model materials under a wide range of physical and chemical conditions. Both low and high pressure measurements show significant sorption of CH 4 and CO 2 onto clays, implying that methane adsorbed on clay minerals could contribute a significant portion of gas-in-place in an unconventional reservoir. We have also studied the potential impact of the interaction of shale with hydrofracking fluid on gas sorption. We have found that the CH 4-CO 2 sorption capacity for the reacted sample is systematically lower (by a factor of ~2) than that for the unreacted (raw) sample. This difference in sorption capacity may result from a mineralogical or surface chemistry change of the shale sample induced by fluid-rock interaction. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs.« less

  4. A characteristic scale for cold gas

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Oh, S. Peng; O'Leary, Ryan; Madigan, Ann-Marie

    2018-02-01

    We find that clouds of optically thin, pressure-confined gas are prone to fragmentation as they cool below ∼106 K. This fragmentation follows the lengthscale ∼cstcool, ultimately reaching very small scales (∼0.1 pc/n), as they reach the temperature ∼104 K at which hydrogen recombines. While this lengthscale depends on the ambient pressure confining the clouds, we find that the column density through an individual fragment Ncloudlet ∼ 1017 cm-2 is essentially independent of environment; this column density represents a characteristic scale for atomic gas at 104 K. We therefore suggest that 'clouds' of cold, atomic gas may, in fact, have the structure of a mist or a fog, composed of tiny fragments dispersed throughout the ambient medium. We show that this scale emerges in hydrodynamic simulations, and that the corresponding increase in the surface area may imply rapid entrainment of cold gas. We also apply it to a number of observational puzzles, including the large covering fraction of diffuse gas in galaxy haloes, the broad-line widths seen in quasar and AGN spectra and the entrainment of cold gas in galactic winds. While our simulations make a number of assumptions and thus have associated uncertainties, we show that this characteristic scale is consistent with a number of observations, across a wide range of astrophysical environments. We discuss future steps for testing, improving and extending our model.

  5. Observations on gas exchange and element recycle within a gas-closed algal-mouse system

    NASA Technical Reports Server (NTRS)

    Smernoff, D. T.; Wharton, R. A., Jr.; Averner, M. M.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Algae are potentially useful for a variety of Closed Ecological Life Support System (CELSS) functions including the revitalization of atmospheres, production of food and for nitrogen fixation. The results of experiments conducted with a gas-closed algal-mouse system designed to investigate gas exchange phenomena under varying algal environmental conditions, and the ability of algae to utilize oxidized mouse solid waste are reported. Inherent instabilities exist between the uptake and release of carbon dioxide (CO2) and oxygen (O2) by the mouse and algae in a gas-closed system. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable short-term steady-state concentrations of atmospheric CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations were examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system.

  6. An assessment of consistence of exhaust gas emission test results obtained under controlled NEDC conditions

    NASA Astrophysics Data System (ADS)

    Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.

    2016-09-01

    Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.

  7. Lattice gas simulations of dynamical geometry in two dimensions.

    PubMed

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  8. Cerebral Arterial Gas Embolism During Upper Endoscopy.

    PubMed

    Eoh, Eun J; Derrick, Bruce; Moon, Richard

    2015-09-15

    Arterial gas embolism can be caused by direct entry of gas into systemic arteries or indirectly by venous-to-arterial shunting. Although arterial gas embolism is rare, most documented cases are iatrogenic, resulting from the entry of gas during procedures that involve direct vascular cannulation or intracavitary air insufflation. Of the 18 identified case reports of air embolism during endoscopy, 11 cases describe findings of cerebral arterial gas embolism during upper endoscopy. Only 1 of these occurred during endoscopic balloon dilation of an esophageal stricture. We report a rare case of cerebral arterial gas embolism in a 64-year-old woman, which occurred during endoscopic dilation of an esophageal stricture and was subsequently treated with hyperbaric oxygen therapy. In this case report, we explore the possible etiologies, clinical workup, and therapeutic management of cerebral artery gas embolisms. Hyperbaric oxygen therapy is the treatment of choice for cerebral arterial gas embolism, with earlier treatments resulting in better outcomes.

  9. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    NASA Astrophysics Data System (ADS)

    Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.

    2014-07-01

    In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.

  10. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    NASA Astrophysics Data System (ADS)

    Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.

    2014-02-01

    In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.

  11. Meeting Asia's future gas import demand with stranded natural gas from central Asia, Russia, Southeast Asia, and Australia

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This analysis shows the important contribution that stranded gas from central Asia, Russia, Southeast Asia, and Australia can make in meeting the projected demand for gas imports of China, India, Japan, and South Korea from 2020 to 2040. The estimated delivered costs of pipeline gas from stranded fields in Russia and central Asia at Shanghai, China, are generally less than delivered costs of liquefied natural gas (LNG). Australia and Malaysia are initially the lowest-cost LNG suppliers. In the concluding section, it is argued that Asian LNG demand is price sensitive, and that current Asian LNG pricing procedures are unlikely to be sustainable for gas import demand to attain maximum potential growth. Resource volumes in stranded fields evaluated can nearly meet projected import demands.

  12. Gas-phase mercury reduction to measure total mercury in the flue gas of a coal-fired boiler.

    PubMed

    Meischen, Sandra J; Van Pelt, Vincent J; Zarate, Eugene A; Stephens, Edward A

    2004-01-01

    Gaseous elemental and total (elemental + oxidized) mercury (Hg) in the flue gas from a coal-fired boiler was measured by a modified ultraviolet (UV) spectrometer. Challenges to Hg measurement were the spectral interferences from other flue gas components and that UV measures only elemental Hg. To eliminate interference from flue gas components, a cartridge filled with gold-coated sand removed elemental Hg from a flue gas sample. The Hg-free flue gas was the reference gas, eliminating the spectral interferences. To measure total Hg by UV, oxidized Hg underwent a gas-phase, thermal-reduction in a quartz cell heated to 750 degrees C. Simultaneously, hydrogen was added to flash react with the oxygen present forming water vapor and preventing Hg re-oxidation as it exits the cell. Hg concentration results are in parts per billion by volume Hg at the flue gas oxygen concentration. The modified Hg analyzer and the Ontario Hydro method concurrently measured Hg at a field test site. Measurements were made at a 700-MW steam turbine plant with scrubber units and selective catalytic reduction. The flue gas sampled downstream of the selective catalytic reduction contained 2100 ppm SO2 and 75 ppm NOx. Total Hg measured by the Hg analyzer was within 20% of the Ontario Hydro results.

  13. The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Lu, H.; Lorenson, T.D.; Moudrakovski, I.L.; Ripmeester, J.A.; Collett, T.S.; Hunter, R.B.; Ratcliffe, C.I.

    2011-01-01

    Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean ??13C=-48.6??? and ??D=-248??? for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage. ?? 2010 Elsevier Ltd.

  14. Gas tungsten arc welding in a microgravity environment: Work done on GAS payload G-169

    NASA Technical Reports Server (NTRS)

    Welcher, Blake A.; Kolkailah, Faysal A.; Muir, Arthur H., Jr.

    1987-01-01

    GAS payload G-169 is discussed. G-169 contains a computer-controlled Gas Tungsten Arc Welder. The equipment design, problem analysis, and problem solutions are presented. Analysis of data gathered from other microgravity arc welding and terrestrial Gas Tungsten Arc Welding (GTAW) experiments are discussed in relation to the predicted results for the GTAW to be performed in microgravity with payload G-169.

  15. Hydrocarbon gas liquids production and related industrial development

    EIA Publications

    2016-01-01

    Hydrocarbon gas liquids (HGL) are produced at refineries from crude oil and at natural gas processing plants from unprocessed natural gas. From 2010 to 2015, total HGL production increased by 42%. Natural gas processing plants accounted for all the increase, with recovered natural gas plant liquids (NGPL)—light hydrocarbon gases such as propane—rising by 58%, from 2.07 million barrels per day (b/d) in 2010 to 3.27 million b/d in 2015, while refinery output of HGL declined by 7%. The rapid increase in NGPL output was the result of rapid growth in natural gas production, as production shifted to tight gas and shale gas resources, and as producers targeted formations likely to yield natural gas with high liquids content. Annual Energy Outlook 2016 results suggest varying rates of future NGPL production growth, depending on relative crude oil and natural gas prices.

  16. Improving respiration measurements with gas exchange analyzers.

    PubMed

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO 2 differential (ΔCO 2 ) increased two-fold with no change in apparent R d , when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO 2 . Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO 2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Startup analysis for a high temperature gas loaded heat pipe

    NASA Technical Reports Server (NTRS)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  18. THE MOLECULAR GAS DENSITY IN GALAXY CENTERS AND HOW IT CONNECTS TO BULGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, David B.; Bolatto, Alberto; Drory, Niv

    2013-02-20

    In this paper we present gas density, star formation rate (SFR), stellar masses, and bulge-disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of the BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H{sub 2} conversion factors that depend on the CO surface brightness, and also that of correcting SFRs for diffuse emission from old stellar populations. We estimate that SFRs in bulges are typically lower by 20% when correcting for diffuse emission. Using the surface brightness dependent conversion factor, we find that over half of the galaxies inmore » our sample have {Sigma}{sub mol} > 100 M {sub Sun} pc{sup -2}. Though our sample is not complete in any sense, our results are enough to rule out the assumption that bulges are uniformly gas-poor systems. We find a trend between gas density of bulges and bulge Sersic index; bulges with lower Sersic index have higher gas density. Those bulges with low Sersic index (pseudobulges) have gas fractions that are similar to that of disks. Conversely, the typical molecular gas fraction in classical bulges is more similar to that of an elliptical galaxy. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that classical bulges with low gas surface density can be barred as well. Our results suggest that understanding the connection between the central surface density of gas in disk galaxies and the presence of bars should also take into account the total gas content of the galaxy. Finally, we show that when using the corrected SFRs and gas densities, the correlation between SFR surface density and gas surface density of bulges is similar to that of disks. This implies that at the scale of the bulges the timescale for converting gas into stars is comparable to those results found in disks.« less

  19. CMB distortion from circumgalactic gas

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Nath, Biman B.; Majumdar, Subhabrata; Silk, Joseph

    2015-04-01

    We study the Sunyaev-Zel'dovich (SZ) distortion of the cosmic microwave background radiation from extensive circumgalactic gas (CGM) in massive galactic haloes. Recent observations have shown that galactic haloes contain a large amount of X-ray emitting gas at the virial temperature, as well as a significant amount of warm O VI absorbing gas. We consider the SZ distortion from the hot gas in those galactic haloes in which the gas cooling time is longer than the halo destruction time-scale. We show that the SZ distortion signal from the hot gas in these galactic haloes at redshifts z ≈ 1-8 can be significant at small angular scales (ℓ ˜ 104), and dominate over the signal from galaxy clusters. The estimated SZ signal for most massive galaxies (halo mass ≥1012.5 M⊙) is consistent with the marginal detection by Planck at these mass scales. We also consider the SZ effect from warm circumgalactic gas. The integrated Compton distortion from the warm O VI absorbing gas is estimated to be y ˜ 10-8, which could potentially be detected by experiments planned for the near future. Finally, we study the detectability of the SZ signal from circumgalactic gas in two types of surveys, a simple extension of the South Pole Telescope survey and a more futuristic cosmic-variance-limited survey. We find that these surveys can easily detect the kinetic Sunyaev-Zel'dovich signal from CGM. With the help of a Fisher matrix analysis, we find that it will be possible for these surveys to constrain the gas fraction in CGM, after marginalizing over cosmological parameters, to ≤33 per cent, in case of no redshift evolution of the gas fraction.

  20. High-resolution surveys for geohazards and shallow gas: NW Adriatic (Italy) and Iskenderun Bay (Turkey)

    USGS Publications Warehouse

    Orange, D.L.; Garcia-Garcia, Ana; McConnell, D.; Lorenson, T.; Fortier, G.; Trincardi, F.; Can, E.

    2005-01-01

    The need for quantifying and understanding the distribution of shallow gas is both of academic interest and of relevance to offshore facilities. The combination of seafloor mapping, subbottom profiling, and multi-channel seismic data can provide information on regions of possible shallow gas, where the gas impacts the acoustic properties of the host material and the seafloor. In this paper, we present two case studies - one academic and one industry - that evaluate the distribution of shallow gas in two field areas in the Mediterranean. In the first case study, geophysical data from Iskenderun Bay, southeastern Turkey, indicate the presence and distribution of shallow gas. Pockmarks on the seafloor are associated with acoustic wipeout in the shallow subbottom data. Although deeper seismic data do not show bright spots or other indicators of possible gas, instantaneous frequency analysis clearly shows laterally restricted anomalies indicating gas-rich zones. The interpretation of possible shallow gas resulted in moving a proposed drilling location to a nearby area characterized by fewer (but still present) shallow gas signatures. In the second case study, cores acquired in the Po Delta, Adriatic Sea, provide quantitative ground-truthing of shallow gas - as suggested by geophysical data - and provide minimum estimates of the percentage of gas in the subsurface. Cores targeted on anomalous subbottom data yielded up to 41,000 ppm methane; cores with anomalous gas content are associated with thick recent flood deposits which may effectively isolate reactive terrigenous organic matter from biologic and physical re-working. ?? Springer 2005.