Science.gov

Sample records for gas thermal generation

  1. Thermal Analysis and Testing of Fastrac Gas Generator Design

    NASA Technical Reports Server (NTRS)

    Nguyen, H.

    1998-01-01

    The Fastrac Engine is being developed by the Marshall Space Flight Center (MSFC) to help meet the goal of substantially reducing the cost of access to space. This engine relies on a simple gas-generator cycle, which burns a small amount of RP-1 and oxygen to provide gas to drive the turbine and then exhausts the spent fuel. The Fastrac program envisions a combination of analysis, design and hot-fire evaluation testing. This paper provides the supporting thermal analysis of the gas generator design. In order to ensure that the design objectives were met, the evaluation tests have started on a component level and a total of 15 tests of different durations were completed to date at MSFC. The correlated thermal model results will also be compared against hot-fire thermocouple data gathered.

  2. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  3. Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review

    NASA Astrophysics Data System (ADS)

    Hardwicke, Canan U.; Lau, Yuk-Chiu

    2013-06-01

    Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.

  4. Thermal analysis of a simple-cycle gas turbine in biogas power generation

    SciTech Connect

    Yomogida, D.E.; Thinh, Ngo Dinh

    1995-09-01

    This paper investigates the technical feasibility of utilizing small simple-cycle gas turbines (25 kW to 125 kW) for biogas power generation through thermal analysis. A computer code, GTPower, was developed to evaluate the performance of small simple-cycle gas turbines specifically for biogas combustion. The 125 KW Solar Gas Turbine (Tital series) has been selected as the base case gas turbine for biogas combustion. After its design parameters and typical operating conditions were entered into GTPower for analysis, GTPower outputted expected values for the thermal efficiency and specific work. For a sensitivity analysis, the GTPower Model outputted the thermal efficiency and specific work. For a sensitivity analysis, the GTPower Model outputted the thermal efficiency and specific work profiles for various operating conditions encountered in biogas combustion. These results will assist future research projects in determining the type of combustion device most suitable for biogas power generation.

  5. Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Spelbring, Chris; Reeves, Daniel R.; Holt, James M.

    2003-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling. In addition, the next generation gas trap will essentially be a 'dropin" design such that no modifications to the ITCS pump package assembly (PPA) will be required, and the implementation of the new design will not affect changes to the ITCS operational conditions, interfaces, or software. This paper will present the initial membrane module design and development work which has included (1) a trade study among several conceptual designs, (2) performance modeling of a hydrophobic-only design, and (3) small-scale development test data for the hydrophobic-only design. Testing has shown that the hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal.

  6. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  7. Microcathode Sustained Discharges for the generation of DC, non-thermal plasmas at high gas pressure

    NASA Astrophysics Data System (ADS)

    Pitchford, Leanne

    2007-10-01

    It is now well known that non-thermal DC plasmas can be generated and maintained in high pressure gases in small - hundreds of micron-sized - geometries. One such configuration, a MicroHollow Cathode Discharge (MHCD), orginally investigated by Schoenbach and colleagues (KH Schoenbach, et al, Plasma Sources Sci. Technol. 6, 468 (1997)), consists of a metal/dielectric/metal sandwich through through which a central hole is pierced. The diameter of the hole and the thickness of the sandwich are each some 100's of microns. Larger volume plasmas can be generated by placing a third, positively biased electrode some distance (1 cm) away, in which case the MHCD can act as a plasma cathode. This configuration is called a MicroCathode Sustained Discharge or MCSD (RH Stark and KH Schoenbach J. Appl. Phys. 85 2075 (1999)). This talk will focus on the properties of the MCSD - its initiation and its electrical properties - and on the properties of the plasma generated in the MCSD volume. Experimental and numerical results for discharges in rare gases and in rare gas/oxygen mixtures at pressures up to atmospheric will be used to illustrate that the plasma generated in the MCSD is similar to a positive column plasma, with a low electric field and low to moderate gas temperature. The plasma conditions in the MCSD are suitable for the generation of large densities of radical species, such as oxygen molecules in the singlet delta metastable state (G. Bauville, et al, Appl. Phys. Lett. 90, 031501 (2007)).

  8. Effects of Surfactant Contamination on the Next Generation Gas Trap for the ISS Internal Thermal Control System

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Previous testing has shown that a hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal in clean deionized water. This paper presents results of testing to evaluate the effects of surfactant contamination on the steady-state performance of the hydrophobic-only design.

  9. Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Nainiger, J. J.

    1977-01-01

    Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.

  10. Burial History, Thermal Maturity, and Oil and Gas Generation History of Source Rocks in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2008-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for seven key source-rock units at eight well locations throughout the Bighorn Basin in Wyoming and Montana. Also modeled was the timing of cracking to gas of Phosphoria Formation-sourced oil in the Permian Park City Formation reservoirs at two well locations. Within the basin boundary, the Phosphoria is thin and only locally rich in organic carbon; it is thought that the Phosphoria oil produced from Park City and other reservoirs migrated from the Idaho-Wyoming thrust belt. Other petroleum source rocks include the Cretaceous Thermopolis Shale, Mowry Shale, Frontier Formation, Cody Shale, Mesaverde and Meeteetse Formations, and the Tertiary (Paleocene) Fort Union Formation. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the Bighorn Basin (Emblem Bench, Red Point/Husky, and Sellers Draw), three at intermediate depths (Amoco BN 1, Santa Fe Tatman, and McCulloch Peak), and two at relatively shallow locations (Dobie Creek and Doctor Ditch). The thermal maturity of source rocks is greatest in the deep central part of the basin and decreases to the south, east, and north toward the basin margins. The Thermopolis and Mowry Shales are predominantly gas-prone source rocks, containing a mix of Type-III and Type-II kerogens. The Frontier, Cody, Mesaverde, Meeteetse, and Fort Union Formations are gas-prone source rocks containing Type-III kerogen. Modeling results indicate that in the deepest areas, (1) the onset of petroleum generation from Cretaceous rocks occurred from early Paleocene through early Eocene time, (2) peak petroleum generation from Cretaceous rocks occurred during Eocene time, and (3) onset of gas generation from the Fort Union Formation occurred during early Eocene time and peak generation occurred from late Eocene to early Miocene time. Only in the deepest part of the basin did the oil generated from the Thermopolis and

  11. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    PubMed

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  12. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide

    NASA Astrophysics Data System (ADS)

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  13. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide

    PubMed Central

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  14. Liquid propellant gas generators

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design of gas generators intended to provide hot gases for turbine drive is discussed. Emphasis is placed on the design and operation of bipropellant gas generators because of their wider use. Problems and limitations involved in turbine operation due to temperature effects are analyzed. Methods of temperature control of gas turbines and combustion products are examined. Drawings of critical sections of gas turbines to show their operation and areas of stress are included.

  15. Fastrac Gas Generator Testing

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Dennis, Jay

    2001-01-01

    A rocket engine gas generator component development test was recently conducted at the Marshall Space Flight Center. This gas generator is intended to power a rocket engine turbopump by the combustion of Lox and RP-1. The testing demonstrated design requirements for start sequence, wall compatibility, performance, and stable combustion. During testing the gas generator injector was modified to improve distribution of outer wall coolant and the igniter boss was modified to investigate the use of a pyrotechnic igniter. Expected chamber pressure oscillations at longitudinal acoustic mode were measured for three different chamber lengths tested. High amplitude discrete oscillations resulted in the chamber-alone configurations when chamber acoustic modes coupled with feed-system acoustics modes. For the full gas generator configuration, which included a turbine inlet manifold, high amplitude oscillations occurred only at off-design very low power levels. This testing led to a successful gas generator design for the Fastrac 60,000 lb thrust engine.

  16. Fastrac Gas Generator Testing

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Dennis, Jay

    1999-01-01

    A rocket engine gas generator component development test was recently conducted at the Marshall Space Flight Center. This gas generator was intended to power a rocket engine turbopump by the combustion of Lox and RP-1. The testing demonstrated design requirements for start sequence, wall compatibility, performance, and stable combustion. During testing the gas generator injector was modified to improve distribution of outer wall coolant and the igniter boss was modified to investigate the use of a pyrotechnic igniter, Expected chamber pressure oscillations at longitudinal acoustic modes were measured for three different chamber lengths tested. High amplitude discrete oscillations occurred in the chamber-alone configurations when chamber acoustic modes coupled with feed-system acoustics modes. For the full gas generator configuration, which included the turbine inlet manifold simulator, high amplitude oscillations occurred only at off-design very low power levels. This testing led to a successful gas generator design for the Fastrac 60,000 lb thrust engine.

  17. Hydrazine Gas Generator Program. [space shuttles

    NASA Technical Reports Server (NTRS)

    Kusak, L.; Marcy, R. D.

    1975-01-01

    The design and fabrication of a flight gas generator for the space shuttle were investigated. Critical performance parameters and stability criteria were evaluated as well as a scaling laws that could be applied in designing the flight gas generator. A test program to provide the necessary design information was included. A structural design, including thermal and stress analysis, and two gas generators were fabricated based on the results. Conclusions are presented.

  18. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest F. (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Waite, J. Hunter (Inventor); Block, Bruce P. (Inventor); Sacks, Richard D. (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a recirculating fluid cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary. The capillary can include more than one separate thermally modulated sections.

  19. Non-mass-dependent (17) O anomalies generated by a superimposed thermal gradient on a rarefied O(2) gas in a closed system.

    PubMed

    Sun, Tao; Bao, Huiming

    2011-01-15

    Cryogenic or heating methods have been widely used in experiments involving gas purification or isolation and in studying phase changes among solids, liquids, or gases for more than a century. Thermal gradients are often present in these routine processes. While stable isotopes of an element are known to fractionate under a thermal gradient, the largely diffusion-driven fractionation is assumed to be entirely mass-dependent. We report here, however, that distinct non-mass-dependent oxygen isotope fractionation can be generated when subjecting rarefied O(2) gas in a closed system to a simple thermal gradient. The Δ(17) O value, a measure of the (17) O anomaly, can be up to -0.51‰ (standard deviation (s.d.) 1σ = 0.03) in one of the temperature compartments. The magnitude of the (17) O anomalies decreased with increasing initial gas pressures. The authenticity of this phenomenon is substantiated by a series of blank tests and isotope mass-balance calculations. The observed anomalies are not the result of H(2) O contamination in samples or in isotope ratio mass spectrometry. Our finding calls attention to the importance of thermal gradient-induced isotope fractionation and to its implications in laboratory procedures, stable isotope geochemistry, and the physical chemistry of rarefied gases. PMID:21154650

  20. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest F. (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Waite, J. Hunter (Inventor); Block, Bruce P. (Inventor); Sacks, Richard D. (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary.

  1. The Chemistry of Flammable Gas Generation

    SciTech Connect

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  2. Reducing gas generators and methods for generating a reducing gas

    SciTech Connect

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  3. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  4. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, and nitrogen in the gas phase; comparison of gas generation rates in supernate and solid fractions of Tank 241-SY-101 simulated waste

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.

    1995-03-01

    This report summarizes progress made in evaluating me by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using simulated waste mixtures. Work described in this report. was conducted at Pacific Northwest Laboratory (PNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT), under subcontract to PNL, using simulated wastes, and to studies being performed at VMC using actual wastes.

  5. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  6. Flow field thermal gradient gas chromatography.

    PubMed

    Boeker, Peter; Leppert, Jan

    2015-09-01

    Negative temperature gradients along the gas chromatographic separation column can maximize the separation capabilities for gas chromatography by peak focusing and also lead to lower elution temperatures. Unfortunately, so far a smooth thermal gradient over a several meters long separation column could only be realized by costly and complicated manual setups. Here we describe a simple, yet flexible method for the generation of negative thermal gradients using standard and easily exchangeable separation columns. The measurements made with a first prototype reveal promising new properties of the optimized separation process. The negative thermal gradient and the superposition of temperature programming result in a quasi-parallel separation of components each moving simultaneously near their lowered specific equilibrium temperatures through the column. Therefore, this gradient separation process is better suited for thermally labile molecules such as explosives and natural or aroma components. High-temperature GC methods also benefit from reduced elution temperatures. Even for short columns very high peak capacities can be obtained. In addition, the gradient separation is particularly beneficial for very fast separations below 1 min overall retention time. Very fast measurements of explosives prove the benefits of using negative thermal gradients. The new concept can greatly reduce the cycle time of high-resolution gas chromatography and can be integrated into hyphenated or comprehensive gas chromatography setups.

  7. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.

  8. Measurements of total peroxy and alkyl nitrate abundances in laboratory-generated gas samples by thermal dissociation cavity ring-down spectroscopy.

    PubMed

    Paul, Dipayan; Furgeson, Amanda; Osthoff, Hans D

    2009-11-01

    A novel measurement technique, thermal dissociation cavity ring-down spectroscopy (TD-CRDS), for rapid (1 s time resolution) and sensitive (precision approximately 100 parts per trillion by volume (10(-12); pptv)) quantification of total peroxy nitrate (SigmaPN) and total alkyl nitrate (SigmaAN) abundances in laboratory-generated gas mixtures is described. The organic nitrates are dissociated in a heated inlet to produce NO(2), whose concentration is monitored by pulsed-laser CRDS at 532 nm. Mixing ratios are determined by difference relative to a cold inlet reference channel. Conversion of laboratory-generated mixtures of AN in zero air (at an inlet temperature of 450 degrees C) is quantitative over a wide range of mixing ratios (0-100 parts per billion by volume (10(-9), ppbv)), as judged from simultaneous measurements of NO(y) using a commercial NO-O(3) chemiluminescence monitor. Conversion of PN is quantitative up to about 4 ppbv (at an inlet temperature of 250 degrees C); at higher concentrations, the measurements are affected by recombination reactions of the dissociation products. The results imply that TD-CRDS can be used as a generic detector of dilute mixtures of organic nitrates in air at near-ambient concentration levels in laboratory experiments. Potential applications of the TD-CRDS technique in the laboratory are discussed.

  9. Fuel cell generator containing a gas sealing means

    DOEpatents

    Makiel, Joseph M.

    1987-01-01

    A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator.

  10. Fuel cell generator containing a gas sealing means

    DOEpatents

    Makiel, J.M.

    1987-02-03

    A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator. 5 figs.

  11. Fast onset medications through thermally generated aerosols.

    PubMed

    Rabinowitz, Joshua D; Wensley, Martin; Lloyd, Peter; Myers, Daniel; Shen, William; Lu, Amy; Hodges, Craig; Hale, Ron; Mufson, Daniel; Zaffaroni, Alejandro

    2004-05-01

    Smoking involves heating a drug to form a mixture of drug vapor and gaseous degradation products. These gases subsequently cool and condense into aerosol particles that are inhaled. Here, we demonstrate rapid and reliable systemic delivery of pure pharmaceutical compounds without degradation products through a related process that also involves inhalation of thermally generated aerosol. Drug is coated as a thin film on a metallic substrate and vaporized by heating the metal. The thin nature of the drug coating minimizes the length of time during which the drug is exposed to elevated temperatures, thereby preventing its thermal decomposition. The vaporized, gas-phase drug rapidly condenses and coagulates into micrometer-sized aerosol particles. For the commonly prescribed antimigraine drug rizatriptan, inhalation of these particles results in nearly instantaneous systemic drug action. PMID:14752061

  12. Thermal Maturation of Gas Shale Systems

    NASA Astrophysics Data System (ADS)

    Bernard, Sylvain; Horsfield, Brian

    2014-05-01

    Shale gas systems serve as sources, reservoirs, and seals for unconventional natural gas accumulations. These reservoirs bring numerous challenges to geologists and petroleum engineers in reservoir characterization, most notably because of their heterogeneous character due to depositional and diagenetic processes but also because of their constituent rocks' fine-grained nature and small pore size -- much smaller than in conventional sandstone and carbonate reservoirs. Significant advances have recently been achieved in unraveling the gaseous hydrocarbon generation and retention processes that occur within these complex systems. In addition, cutting-edge characterization technologies have allowed precise documentation of the spatial variability in chemistry and structure of thermally mature organic-rich shales at the submicrometer scale, revealing the presence of geochemical heterogeneities within overmature gas shale samples and, notably, the presence of nanoporous pyrobitumen. Such research advances will undoubtedly lead to improved performance, producibility, and modeling of such strategic resources at the reservoir scale.

  13. Unconventional Shale-Gas Resource Systems and Processes Affecting Gas Generation, Retention, Storage, and Flow Rates

    NASA Astrophysics Data System (ADS)

    Jarvie, D. M.; Philp, R. P.; Jarvie, B. M.

    2009-04-01

    Geochemical and petrophysical characterization of various shale-gas systems in the U.S. indicates a variety of unconventional shale-gas system types. The most basic distinction is gas type: biogenic and thermogenic, although there can also be mixtures of the two gas types. Thermogenic shale-gas systems are further segregated into various sub-types depending on geochemistry and geology. The shale-gas system categories are: (1) high thermal maturity shale; (2) low thermal maturity shales; (3) mixed lithology intra-formational systems containing shale, sands, and silts; (4) inter-formational systems where gas is generated in a mature shale and stored in a less mature shale, and (5) mixed systems. A key difference among these shale-gas systems are initial gas flow rates. High thermal maturity systems tend to have much higher gas flow rates than low maturity systems because of gas charge and storage mechanisms. Certainly other non-geochemical factors, such as shale mineralogy, are extremely important in being able to stimulate these shales to flow gas. Geochemical comparison of the Antrim Shale (Michigan Basin), New Albany Shale (Illinois Basin), and Barnett Shale (Fort Worth Basin) are used to illustrate these different systems as well as other systems. These systems show significant differences in gas type, organic richness, thermal maturity, and gas flow rates. Gas flow rates are then dependent upon the amount of gas stored (or generated) and the ability to release gas from adsorption sites as well as connecting to micro-reservoir compartments.

  14. Thermal barrier coatings for gas turbine and diesel engines

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Brindley, William J.; Bailey, M. Murray

    1989-01-01

    The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.

  15. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  16. Thermal and evolved gas analyzer

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Boynton, W. V.; James, R. L.; Verts, W. T.; Bailey, S. H.; Hamara, D. K.

    1998-01-01

    The Thermal and Evolved Gas Analyzer (TEGA) instrument will perform calorimetry and evolved gas analysis on soil samples collected from the Martian surface. TEGA is one of three instruments, along with a robotic arm, that form the Mars Volatile and Climate Survey (MVACS) payload. The other instruments are a stereo surface imager, built by Peter Smith of the University of Arizona and a meteorological station, built by JPL. The MVACS lander will investigate a Martian landing site at approximately 70 deg south latitude. Launch will take place from Kennedy Space Center in January, 1999. The TEGA project started in February, 1996. In the intervening 24 months, a flight instrument concept has been designed, prototyped, built as an engineering model and flight model, and tested. The instrument performs laboratory-quality differential-scanning calorimetry (DSC) over the temperature range of Mars ambient to 1400K. Low-temperature volatiles (water and carbon dioxide ices) and the carbonates will be analyzed in this temperature range. Carbonates melt and evolve carbon dioxide at temperatures above 600 C. Evolved oxygen (down to a concentration of 1 ppm) is detected, and C02 and water vapor and the isotopic variations of C02 and water vapor are detected and their concentrations measured. The isotopic composition provides important tests of the theory of solar system formation.

  17. WIPP Gas-Generation Experiments

    SciTech Connect

    Frank S. Felicione; Steven M. Frank; Dennis D. Keiser

    2007-05-01

    An experimental investigation was conducted for gas generation in contact-handled transuranic (CH TRU) wastes subjected for several years to conditions similar to those expected to occur at the Waste Isolation Pilot Plant (WIPP) should the repository eventually become inundated with brine. Various types of actual CH TRU wastes were placed into 12 corrosion-resistant vessels. The vessels were loosely filled with the wastes, which were submerged in synthetic brine having the same chemical composition as that in the WIPP vicinity. The vessels were also inoculated with microbes found in the Salado Formation at WIPP. The vessels were sealed, purged, and the approximately 750 ml headspace in each vessel was pressurized with nitrogen gas to approximately 146 atmospheres to create anoxic conditions at the lithostatic pressure estimated in the repository were it to be inundated. The temperature was maintained at the expected 30°C. The test program objective was to measure the quantities and species of gases generated by metal corrosion, radiolysis, and microbial activity. These data will assist in the specification of the rates at which gases are produced under inundated repository conditions for use in the WIPP Performance Assessment computer models. These experiments were very carefully designed, constructed, instrumented, and performed. Approximately 6 1/2 years of continuous, undisturbed testing were accumulated. Several of the vessels showed significantly elevated levels of generated gases, virtually all of which was hydrogen. Up to 4.2% hydrogen, by volume, was measured. Only small quantities of other gases, principally carbon dioxide, were detected. Gas generation was found to depend strongly on the waste composition. The maximum hydrogen generation occurred in vessels containing carbon steel. Visual examination of carbon-steel coupons confirmed the correspondence between the extent of observable corrosion and hydrogen generation. Average corrosion penetration rates

  18. Reversible Chemisorption Gas-Gap Thermal Switch

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bard, Steven; Blue, Gary

    1991-01-01

    Gas/sorbent combinations provide means to turn heat-conduction paths on and off. Single-stage gas-gap thermal switch based on reversible chemisorption of hydrogen gas by ZrNiH. Two-stage gas-gap thermal switch based on reversible desorption of O2 from MnO2 in first stage, followed by absorption in Cu on zeolite in second stage. Requires relatively low power. Used in sorption refrigeration systems designed to operate for long times without maintenance.

  19. MultiUse solar thermal power generators

    NASA Astrophysics Data System (ADS)

    Abbott, Russell

    2001-02-01

    This paper describes Ontario Engineering International, Inc. (OEI) approach to a solar thermal power generation system using a number of thermal power generation technologies for possible applications to Mars exploration, material processing and for power generation on Earth. The latest power stage and generator design presented here were the culmination of studies covering a wide variety of generator configurations and operating parameters. The many steps and rationale leading to OEI's design evolution and materials selection will not be repeated here except for a description of OEI's latest design, including a heat source support scheme and power stage configuration. OEI's performance predictions were based on its techniques for the thermal analyses of thermal power generators. The analytical results indicate that the OEI power system design, operating within the stipulated solar input and temperature limits and well within its mass goals, can yield power outputs and system efficiencies that substantially exceed existing solar power generation technologies. The calculated efficiency for a cascaded power generation system is estimated to be 42% for a DC output or 37% for an AC power output. With the addition of a thermal storage medium power can be provided on a continuous basis during any shadow period. Recent advances in thermal power generation technologies have now progressed to the point where a solar thermal power generation system can be fabricated. This system can provide terrestrial power generation capacity in remote areas and provide a means for load leveling in the commercial power grid. This system is also adaptable for material processing and/or life-support on Mars. .

  20. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  1. Entropy generation method to quantify thermal comfort

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  2. Heat generating compositions for thermal batteries

    NASA Astrophysics Data System (ADS)

    Sheptunov, V. N.

    1991-03-01

    Thermal batteries are widely used as independent current sources with long storage life and the ability to operate over a wide ambient temperature range. A number of pyrotechnic materials may as rule be used as sources of thermal energy to provide ionic conduction in a molten electrolyte and to maintain the working temperature of the battery during the discharge of the electrochemical elements. The requirements for heat sources in thermal batteries are described and different heat generating compositions are reviewed.

  3. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  4. Apparatus and method for thermal power generation

    DOEpatents

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  5. The Analysis of Exhaust Gas Thermal Energy Recovery Through a TEG Generator in City Traffic Conditions Reproduced on a Dynamic Engine Test Bed

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Wojciechowski, Krzysztof T.

    2015-06-01

    We present an analysis of thermal energy recovery through a proprietary thermoelectric generator (TEG) in an actual vehicle driving cycle reproduced on a dynamic engine test bed. The tests were performed on a 1.3-L 66-kW diesel engine. The TEG was fitted in the vehicle exhaust system. In order to assess the thermal energy losses in the exhaust system, advanced portable emission measurement system research tools were used, such as Semtech DS by Sensors. Aside from the exhaust emissions, the said analyzer measures the exhaust mass flow and exhaust temperature, vehicle driving parameters and reads and records the engine parameters. The difficulty related to the energy recovery measurements under actual traffic conditions, particularly when passenger vehicles and TEGs are used, spurred the authors to develop a proprietary method of transposing the actual driving cycle as a function V = f( t) onto the engine test bed, opn which the driving profile, previously recorded in the city traffic, was reproduced. The length of the cycle was 12.6 km. Along with the motion parameters, the authors reproduced the parameters of the vehicle and its transmission. The adopted methodology enabled high repeatability of the research trials while still ensuring engine dynamic states occurring in the city traffic.

  6. Thermal properties of methane gas hydrates

    USGS Publications Warehouse

    Waite, William F.

    2007-01-01

    Gas hydrates are crystalline solids in which molecules of a “guest” species occupy and stabilize cages formed by water molecules. Similar to ice in appearance (fig. 1), gas hydrates are stable at high pressures and temperatures above freezing (0°C). Methane is the most common naturally occurring hydrate guest species. Methane hydrates, also called simply “gas hydrates,” are extremely concentrated stores of methane and are found in shallow permafrost and continental margin sediments worldwide. Brought to sea-level conditions, methane hydrate breaks down and releases up to 160 times its own volume in methane gas. The methane stored in gas hydrates is of interest and concern to policy makers as a potential alternative energy resource and as a potent greenhouse gas that could be released from sediments to the atmosphere and ocean during global warming. In continental margin settings, methane release from gas hydrates also is a potential geohazard and could cause submarine landslides that endanger offshore infrastructure. Gas hydrate stability is sensitive to temperature changes. To understand methane release from gas hydrate, the U.S. Geological Survey (USGS) conducted a laboratory investigation of pure methane hydrate thermal properties at conditions relevant to accumulations of naturally occurring methane hydrate. Prior to this work, thermal properties for gas hydrates generally were measured on analog systems such as ice and non-methane hydrates or at temperatures below freezing; these conditions limit direct comparisons to methane hydrates in marine and permafrost sediment. Three thermal properties, defined succinctly by Briaud and Chaouch (1997), are estimated from the experiments described here: - Thermal conductivity, λ: if λ is high, heat travels easily through the material. - Thermal diffusivity, κ: if κ is high, it takes little time for the temperature to rise in the material. - Specific heat, cp: if cp is high, it takes a great deal of heat to

  7. Gas storage carbon with enhanced thermal conductivity

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Judkins, R.R.

    2000-07-18

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  8. Gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  9. Preliminary Results of Solid Gas Generator Micropropulsion

    NASA Technical Reports Server (NTRS)

    deGroot, Wilhelmus A.; Reed, Brian D.; Brenizer, Marshall

    1999-01-01

    A decomposing solid thruster concept, which creates a more benign thermal and chemical environment than solid propellant combustion, while maintaining, performance similar to solid combustion, is described. A Micro-Electro-Mechanical (MEMS) thruster concept with diode laser and fiber-optic initiation is proposed, and thruster components fabricated with MEMS technology are presented. A high nitrogen content solid gas generator compound is evaluated and tested in a conventional axisymmetric thrust chamber with nozzle throat area ratio of 100. Results show incomplete decomposition of this compound in both low pressure (1 kPa) and high pressure (1 MPa) environments, with decomposition of up to 80% of the original mass. Chamber pressures of 1.1 MPa were obtained, with maximum calculated thrust of approximately 2.7 N. Resistively heated wires and resistively heated walls were used to initiate decomposition. Initiation tests using available lasers were unsuccessful, but infrared spectra of the compound show that the laser initiation tests used inappropriate wavelengths for optimal propellant absorption. Optimal wavelengths for laser ignition were identified. Data presented are from tests currently in progress. Alternative solid gas generator compounds are being evaluated for future tests.

  10. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  11. Thermal analysis of thermoelectric power generator; Including thermal stresses

    NASA Astrophysics Data System (ADS)

    Al-Merbati, Abdulrahman Salman

    In recent years, the energy demand is increasing leads to use and utilization of clean energy becomes target of countries all over the world. Thermoelectric generator is one type of clean energy generators which is a solid-state device that converts heat energy into electrical energy through the Seebeck effect. With availability of, heat from different sources such as solar energy and waste energy from systems, thermoelectric research becomes important research topic and researchers investigates efficient means of generating electricity from thermoelectric generators. One of the important problems with a thermoelectric is development of high thermal stresses due to formation of temperature gradient across the thermoelectric generator. High thermal stress causes device failure through cracks or fractures and these short comings may reduce the efficiency or totally fail the device. In this thesis work, thermodynamic efficiency and thermal stresses developed in thermoelectric generator are analyzed numerically. The bismuth telluride (Bi2Te3) properties are used in simulation. Stress levels in thermoelectric device pins are computed for various pin geometric configurations. MASTER.

  12. The photon gas formulation of thermal radiation

    NASA Technical Reports Server (NTRS)

    Ried, R. C., Jr.

    1975-01-01

    A statistical consideration of the energy, the linear momentum, and the angular momentum of the photons that make up a thermal radiation field was presented. A general nonequilibrium statistical thermodynamics approach toward a macroscopic description of thermal radiation transport was developed and then applied to the restricted equilibrium statistical thermostatics derivation of the energy, linear momentum, and intrinsic angular momentum equations for an isotropic photon gas. A brief treatment of a nonisotropic photon gas, as an example of the results produced by the nonequilibrium statistical thermodynamics approach, was given. The relativistic variation of temperature and the invariance of entropy were illustrated.

  13. Miniature Gas-Turbine Power Generator

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  14. Thermally induced atmospheric pressure gas discharges using pyroelectric crystals

    NASA Astrophysics Data System (ADS)

    Johnson, Michael J.; Linczer, John; Go, David B.

    2014-12-01

    Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach.

  15. Radioisotope thermal generator (RTG) power conditioner

    NASA Technical Reports Server (NTRS)

    Stacey, W. S.

    1974-01-01

    New regulator: (a) permits operation with high-impedance radioisotope thermal generators at conversion efficiencies typically above 90%; (b) does not require input filtering; (c) eliminates current spiking; and (d) is simple, efficient, and reliable. Converter-charger pair could be adapted for other power levels by changing transistor, diode, capacitor bank, and inductor.

  16. Method and apparatus for thermal power generation

    DOEpatents

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  17. Solar steam generation: Steam by thermal concentration

    NASA Astrophysics Data System (ADS)

    Shang, Wen; Deng, Tao

    2016-09-01

    The solar-driven generation of water steam at 100 °C under one sun normally requires the use of optical concentrators to provide the necessary energy flux. Now, thermal concentration is used to raise the vapour temperature to 100 °C without the need for costly optical concentrators.

  18. TOPICAL REVIEW: Thermal plasmas in gas mixtures

    NASA Astrophysics Data System (ADS)

    Murphy, A. B.

    2001-10-01

    The calculation and measurement of the properties of thermal plasmas in mixtures of different gases are reviewed. The calculation of composition, thermodynamic properties and transport coefficients is described. Particular attention is given to the calculation of diffusion coefficients, which is a significant problem in mixed-gas plasmas. The combined diffusion coefficient formulation is shown to be a useful method for the treatment of diffusion. Computational fluid dynamic modelling of thermal plasmas in gas mixtures is considered, using the examples of demixing in welding arcs, the turbulent mixing of atmospheric air into a plasma jet and a plasma waste destruction process. Diagnostic techniques for mixed-gas plasmas, in particular emission spectroscopy, laser scattering and laser-induced fluorescence, are discussed.

  19. Microstructure actuation and gas sensing by the Knudsen thermal force

    SciTech Connect

    Strongrich, Andrew; Alexeenko, Alina

    2015-11-09

    The generation of forces and moments on structures immersed in rarefied non-isothermal gas flows has received limited practical implementation since first being discovered over a century ago. The formation of significant thermal stresses requires both large thermal gradients and characteristic dimensions which are comparable to the gas molecular mean free path. For macroscopic geometries, this necessitates impractically high temperatures and very low pressures. At the microscale, however, these conditions are easily achieved, allowing the effects to be exploited, namely, for gas-property sensing and microstructure actuation. In this letter, we introduce and experimentally evaluate performance of a microelectromechanical in-plane Knudsen radiometric actuator, a self-contained device having Knudsen thermal force generation, sensing, and tuning mechanisms integrated onto the same platform. Sensitivity to ambient pressure, temperature gradient, as well as gas composition is demonstrated. Results are presented in terms of a non-dimensional force coefficient, allowing measurements to be directly compared to the previous experimental and computational data on out-of-plane cantilevered configurations.

  20. Onset of thermally induced gas convection in mine wastes

    USGS Publications Warehouse

    Lu, N.; Zhang, Y.

    1997-01-01

    A mine waste dump in which active oxidation of pyritic materials occurs can generate a large amount of heat to form convection cells. We analyze the onset of thermal convection in a two-dimensional, infinite horizontal layer of waste rock filled with moist gas, with the top surface of the waste dump open to the atmosphere and the bedrock beneath the waste dump forming a horizontal and impermeable boundary. Our analysis shows that the thermal regime of a waste rock system depends heavily on the atmospheric temperature, the strength of the heat source and the vapor pressure. ?? 1997 Elsevier Science Ltd. All rights reserved.

  1. Degradation of malathion in thermally generated aerosols.

    PubMed

    Brown, J R; Melson, R O; Breaud, T P

    1992-06-01

    The degradation of malathion, undiluted and diluted with No. 2 fuel oil, in thermally generated aerosol clouds was examined at selected temperatures ranging from 121 to 566 degrees C. Undiluted malathion residues decreased from 1.76 to 0.21 micrograms/ml over this range of temperatures. Malathion diluted with fuel oil decreased from 0.14 to 0.02 microgram/ml as the temperature was increased 288 to 510 degrees C.

  2. Automatic gas burner block for thermal units

    SciTech Connect

    Kryzhanovskii, K.S.; Senatov, V.I.

    1987-01-01

    The authors describe a new computerized control system and gas burner configuration for natural gas furnaces used for the heat treatment of ceramics and porcelain which is designed to control and monitor combustion and temperature regimes in the furnace and optimize fuel efficiency. The system permits simultaneous operation and thermal load control of up to 12 burners, automatic maintenance of the desired fuel-air ratio over the entire temperature range, and protection of the furnace against overload by the use of a fuel cutoff switch. Specifications on productivity and efficiency and results of performance evaluations are listed.

  3. Thermal tests of the SGT5-4000F gas-turbine plant of the PGU-420T power-generating unit at Combined Heat And Power Plant 16 of Mosenergo

    NASA Astrophysics Data System (ADS)

    Teplov, B. D.; Radin, Yu. A.; Filin, A. A.; Rudenko, D. V.

    2016-08-01

    In December 2014, the PGU-420T power-generating unit was put into operation at the Combined Heat and Power Plant 16, an affiliated company of PAO Mosenergo. In 2014-2015, thermal tests of the SGT5- 4000F gas-turbine plant (GTP) integrated into the power-generating unit were carried out. In the article, the test conditions are described and the test results are presented and analyzed. During the tests, 92 operating modes within a wide range of electrical loads and ambient air temperatures and operating conditions of the GTP when fired with fuel oil were investigated. In the tests, an authorized automated measuring system was applied. The experimental data were processed according to ISO 2314:2009 "Gas turbines—Acceptance tests" standard. The available capacity and the GTP efficiency vary from 266 MW and 38.8% to 302 MW and 39.8%, respectively, within the ambient air temperature range from +24 to-12°C, while the turbine inlet temperature decreases from 1200 to 1250°C. The switch to firing fuel oil results in a reduction in the turbine inlet temperature and the capacity of the GTP. With the full load and a reduction in the ambient temperature from +24 to-12°C, the compressor efficiency decreases from 89.6 to 86.4%. The turbine efficiency is approximately 89-91%. Within the investigated range of power output, the emissions of nitrogen oxides do not exceed 35 ppm for the gas-fired plant and 65 ppm for the fuel-oil-fired plant. Within the range of the GTP power output from 50 to 100% of the rated output, the combustion chamber operates without underburning and with hardly any CO being formed. At low loads close to the no-load operation mode, the CO emissions drastically increase.

  4. Thermal tests of the SGT5-4000F gas-turbine plant of the PGU-420T power-generating unit at Combined Heat And Power Plant 16 of Mosenergo

    NASA Astrophysics Data System (ADS)

    Teplov, B. D.; Radin, Yu. A.; Filin, A. A.; Rudenko, D. V.

    2016-08-01

    In December 2014, the PGU-420T power-generating unit was put into operation at the Combined Heat and Power Plant 16, an affiliated company of PAO Mosenergo. In 2014-2015, thermal tests of the SGT5- 4000F gas-turbine plant (GTP) integrated into the power-generating unit were carried out. In the article, the test conditions are described and the test results are presented and analyzed. During the tests, 92 operating modes within a wide range of electrical loads and ambient air temperatures and operating conditions of the GTP when fired with fuel oil were investigated. In the tests, an authorized automated measuring system was applied. The experimental data were processed according to ISO 2314:2009 "Gas turbines—Acceptance tests" standard. The available capacity and the GTP efficiency vary from 266 MW and 38.8% to 302 MW and 39.8%, respectively, within the ambient air temperature range from +24 to-12°С, while the turbine inlet temperature decreases from 1200 to 1250°С. The switch to firing fuel oil results in a reduction in the turbine inlet temperature and the capacity of the GTP. With the full load and a reduction in the ambient temperature from +24 to-12°C, the compressor efficiency decreases from 89.6 to 86.4%. The turbine efficiency is approximately 89-91%. Within the investigated range of power output, the emissions of nitrogen oxides do not exceed 35 ppm for the gas-fired plant and 65 ppm for the fuel-oil-fired plant. Within the range of the GTP power output from 50 to 100% of the rated output, the combustion chamber operates without underburning and with hardly any CO being formed. At low loads close to the no-load operation mode, the CO emissions drastically increase.

  5. Improved Thermal Modulator for Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  6. Thermal energy storage for power generation

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Sathyanarayana, K.

    1989-10-01

    Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s, with most regions of the country experiencing capacity shortages by the year 2000. In many cases, the demand for increased power will occur during intermediate and peak demand periods. Much of this demand is expected to be met by oil- and natural gas-fired Brayton cycle turbines and combined-cycle plants. While natural gas is currently plentiful and reasonably priced, the availability of an economical long-term coal-fired option for peak and intermediate load power generation will give electric power utilities an option in case either the availability or cost of natural gas should deteriorate. 54 refs., 5 figs., 17 tabs.

  7. F-1 Engine Gas Generator Testing

    NASA Video Gallery

    The gas generator from an F-1 engine is test-fired at the Marshall Space Flight Center in Huntsville, Ala., on Jan. 24, 2013. Data from the 30 second test will be used in the development of advance...

  8. Generation and delivery device for ozone gas

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2002-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system preferably includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  9. Moving thermal gradients in gas chromatography.

    PubMed

    Tolley, H Dennis; Tolley, Samuel E; Wang, Anzi; Lee, Milton L

    2014-12-29

    This paper examines the separation effects of a moving thermal gradient on a chromatographic column in gas chromatography. This movement of the gradient has a focusing effect on the analyte bands, limiting band broadening in the column. Here we examine the relationship between the slope of this gradient, the velocity of the gradient and the resulting band width. Additionally we examine how transport of analytes along the column at their analyte specific constant temperatures, determined by the gradient slope and velocity, affects resolution. This examination is based primarily on a theoretical model of partitioning and transport of analyte under low concentration conditions. Preliminary predictions indicate that analytes reach near constant temperatures, relative positions and resolutions in less than 100cm of column transport. Use of longer columns produces very little improvement in resolution for any fixed slope. Properties of the thermal gradient determine a fixed solute band width for each analyte. These widths are nearly reached within the first 40-70cm, after which little broadening or narrowing of the bands occur. The focusing effect of the thermal gradient corrects for broad injections, reduces effects of irregular stationary phase coatings and can be used with short columns for fast analysis. Thermal gradient gas chromatographic instrumentation was constructed and used to illustrate some characteristics predicted from the theoretical results.

  10. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    NASA Astrophysics Data System (ADS)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  11. The kinetics of thermal generation of flavour.

    PubMed

    Parker, Jane K

    2013-01-01

    Control and optimisation of flavour is the ultimate challenge for the food and flavour industry. The major route to flavour formation during thermal processing is the Maillard reaction, which is a complex cascade of interdependent reactions initiated by the reaction between a reducing sugar and an amino compound. The complexity of the reaction means that researchers turn to kinetic modelling in order to understand the control points of the reaction and to manipulate the flavour profile. Studies of the kinetics of flavour formation have developed over the past 30 years from single- response empirical models of binary aqueous systems to sophisticated multi-response models in food matrices, based on the underlying chemistry, with the power to predict the formation of some key aroma compounds. This paper discusses in detail the development of kinetic models of thermal generation of flavour and looks at the challenges involved in predicting flavour. PMID:23184881

  12. Generation of sub-ppb level vapor phase mixtures of biogenic volatile organic compounds from liquid phase standards and stepwise characterization of their volatilization properties by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun

    2014-12-19

    In the analysis of biogenic volatile organic compounds (BVOCs) in ambient air, preparation of a sub-ppb level standard is an important factor. This task is very challenging as most BVOCs (e.g., monoterpenes) are highly volatile and reactive in nature. As a means to produce sub-ppb gaseous standards for BVOCs, we investigated the dynamic headspace (HS) extraction technique through which their vapors are generated from a liquid standard (mixture of 10 BVOCs: (1) α-pinene, (2) β-pinene, (3) 3-carene, (4) myrcene, (5) α-phellandrene, (6) α-terpinene, (7) R-limonene, (8) γ-terpinene, (9) p-cymene, and (10) Camphene) spiked into a chamber-style impinger. The quantification of BVOCs was made by collection on multiple-bed sorbent tubes (STs) and subsequent analysis by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Using this approach, sub-ppb level mixtures of gaseous BVOCs were generated at different sweep cycles. The mean concentrations of 10 BVOCs generated from the most stable conditions (i.e., in the third sweep cycle) varied in the range of 0.37±0.05 to 7.27±0.86ppb depending on the initial concentration of liquid standard spiked into the system. The reproducibility of the gaseous BVOCs generated as mixture standards, if expressed in terms of relative standard error using the concentration datasets acquired under stable conditions, ranged from 1.64 (α-phellandrene) to 9.67% (R-limonene).

  13. Burial history, thermal maturity, and oil and gas generation history of petroleum systems in the Wind River Basin Province, central Wyoming: Chapter 6 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2007-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for eight key source rock units at nine well locations throughout the Wind River Basin Province. Petroleum source rocks include the Permian Phosphoria Formation, the Cretaceous Mowry Shale, Cody Shale, and Mesaverde, Meeteetse, and Lance Formations, and the Tertiary (Paleocene) Fort Union Formation, including the Waltman Shale Member. Within the province boundary, the Phosphoria is thin and only locally rich in organic carbon. Phosphoria oil produced from reservoirs in the province is thought to have migrated from the Wyoming and Idaho thrust belt. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the province (Adams OAB-17, Bighorn 1-5, and Coastal Owl Creek); three at intermediate depths (Hells Half Acre, Shell 33X-10, and West Poison Spider); and three at relatively shallow locations (Young Ranch, Amoco Unit 100, and Conoco-Coal Bank). The thermal maturity of source rocks is greatest in the deep northern and central parts of the province and decreases to the south and east toward the basin margins. The results of the modeling indicate that, in the deepest areas, (1) peak petroleum generation from Cretaceous rocks occurred from Late Cretaceous through middle Eocene time, and (2) onset of oil generation from the Waltman Shale Member occurred from late Eocene to early Miocene time. Based on modeling results, gas generation from the cracking of Phosphoria oil reservoired in the Park City Formation reached a peak in the late Paleocene/early Eocene (58 to 55 Ma) only in the deepest parts of the province. The Mowry Shale and Cody Shale (in the eastern half of the basin) contain a mix of Type-II and Type-III kerogens. Oil generation from predominantly Type-II source rocks of these units in the deepest parts of the province reached peak rates during the latest Cretaceous to early Eocene (65 to 55 Ma). Only in these areas of the basin did

  14. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

    2009-09-01

    The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

  15. Thermal chemical recuperation method and system for use with gas turbine systems

    DOEpatents

    Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  16. Thermal chemical recuperation method and system for use with gas turbine systems

    DOEpatents

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  17. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  18. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  19. A diarylethene as the SO2 gas generator upon UV irradiation.

    PubMed

    Kodama, Ryuhei; Sumaru, Kimio; Morishita, Kana; Kanamori, Toshiyuki; Hyodo, Kengo; Kamitanaka, Takashi; Morimoto, Masakazu; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2015-01-31

    A closed-ring isomer of a diarylethene having a sulfone group works as the reagent for SO2 gas generation with thermal stability even at 70 °C, and it rapidly reverts to the open-ring isomer and generates the SO2 gas to induce cell death upon UV irradiation.

  20. Equilibrium and kinetic studies of in situ generation of ammonia from urea in a batch reactor for flue gas conditioning of thermal power plants

    SciTech Connect

    Sahu, J.N.; Patwardhan, A.V.; Meikap, B.C.

    2009-03-15

    Ammonia has long been known to be useful in the treatment of flue/tail/stack gases from industrial furnaces, incinerators, and electric power generation industries. In this study, urea hydrolysis for production of ammonia, in different application areas that require safe use of ammonia at in situ condition, was investigated in a batch reactor. The equilibrium and kinetic study of urea hydrolysis was done in a batch reactor at reaction pressure to investigate the effect of reaction temperature, initial feed concentration, and time on ammonia production. This study reveals that conversion increases exponentially with an increase in temperature but with increases in initial feed concentration of urea the conversion decreases marginally. Further, the effect of time on conversion has also been studied; it was found that conversion increases with increase in time. Using collision theory, the temperature dependency of forward rate constant developed from which activation energy of the reaction and the frequency factor has been calculated. The activation energy and frequency factor of urea hydrolysis reaction at atmospheric pressure was found to be 73.6 kJ/mol and 2.89 x 10{sup 7} min{sup -1}, respectively.

  1. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, A.; Othmer, P.; Rostafinski, W.

    1992-01-01

    An experimental demonstration is presented for the generation of detonation waves that move periodically across high speed channel flow; these waves can compress the outflow from a low pressure compressor, and thereby both reduce the compressor requirements associated with conventional gas turbines and enhance thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock-wave losses are reduced by an order of magnitude; the result is a Humphrey cycle augmenting the basic Brayton-cycle gas turbine. Attention is presently given to results from an experimental detonation duct.

  2. Device for thermal transfer and power generation

    DOEpatents

    Weaver, Stanton Earl; Arik, Mehmet

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  3. Axial thermal gradients in microchip gas chromatography.

    PubMed

    Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L

    2014-12-29

    Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses.

  4. Axial thermal gradients in microchip gas chromatography.

    PubMed

    Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L

    2014-12-29

    Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses. PMID:25476685

  5. Thermal Efficiency in a Direct Contact Heat Exchanger of Gas and Liquid

    NASA Astrophysics Data System (ADS)

    Fukuhara, Isamu; Tsuji, Katsuhiko

    Co-generation systems have many practical applications for energy-saving, utilization of various energy resources and energy recovery of waste gas. However, it is pointed out that heat exchangers of co-generation system involve some problems which are corrosion of heat surface, decrease of heat transfer rate due to accumulation of soot and NOx in waste gas. Then. the heat exchange which contacts waste gas with liquid are studied to solve the above problems. The contacting state of gas and liquid has not been researched on the direct contact heat exchanger of gas and liquid. For it is considered that the contacting state has direct effects on a thermal efficiency and gas absorption. Then, we try to investigate the contacting state of gas and liquid by experiments of heating and image processing on the direct contact heat exchanger. From the results, the contacting state of gas and liquid can be evaluate by a gas-liquid contacting area.

  6. Development of a NASA standard gas generator

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Karp, Harold; Schimmel, Morry L.

    1993-01-01

    The goals of the NASA Standard Gas Generator (NSGG) Program are to create a NASA standard gas generating cartridge, characterize its performance, and make it readily available to users. A cartridge within the same envelope as the NASA Standard Initiator (NSI) has the greatest potential use. This potential use is described in viewgraph form. Our approach for NSGG development and qualification was planned to be conducted in several phases. Test methods were developed to evaluate output performance for a variety of potential applications. A feasibility study using modified NSI's was accomplished. Preliminary and final development will be conducted with a delta qualification to evaluate the effects of manufacturing lots and environments. Feasibility study results, feasibility study conclusions, and future plans are presented.

  7. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator must... sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in...

  8. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator must... sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in...

  9. Non-thermal plasmas as gas-phase advanced oxidation processes

    SciTech Connect

    Rosocha, L.A.

    1997-08-01

    Non-thermal plasmas are useful for generating reactive species (free radicals) in a gas stream. Because radical attack reaction rate constants are very large for many chemical species, entrained pollutants are readily decomposed by radicals. Such plasmas can generate both oxidative and reductive radicals; therefore, they show promise for treating a wide variety of pollutants.

  10. Thermoelectric power generator for variable thermal power source

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  11. First-generation hybrid MEMS gas chromatograph.

    PubMed

    Lu, Chia-Jung; Steinecker, William H; Tian, Wei-Cheng; Oborny, Michael C; Nichols, Jamie M; Agah, Masoud; Potkay, Joseph A; Chan, Helena K L; Driscoll, Jeffrey; Sacks, Richard D; Wise, Kensall D; Pang, Stella W; Zellers, Edward T

    2005-10-01

    The fabrication, assembly, and initial testing of a hybrid microfabricated gas chromatograph (microGC) is described. The microGC incorporates capabilities for on-board calibration, sample preconcentration and focused thermal desorption, temperature-programmed separations, and "spectral" detection with an integrated array of microsensors, and is designed for rapid determinations of complex mixtures of environmental contaminants at trace concentrations. Ambient air is used as the carrier gas to avoid the need for on-board gas supplies. The microsystem is plumbed through an etched-Si/glass microfluidic interconnection substrate with fused silica capillaries and employs a miniature commercial pump and valve subsystem for directing sample flow. The latest performance data on each system component are presented followed by first analytical results from the working microsystem. Tradeoffs in system performance as a function of volumetric flow rate are explored. The determination of an 11-vapor mixture of typical indoor air contaminants in less than 90 s is demonstrated with projected detection limits in the low part-per-billion concentration range for a preconcentrated air-sample volume of 0.25 L.

  12. Gas Generation from Actinide Oxide Materials

    SciTech Connect

    George Bailey; Elizabeth Bluhm; John Lyman; Richard Mason; Mark Paffett; Gary Polansky; G. D. Roberson; Martin Sherman; Kirk Veirs; Laura Worl

    2000-12-01

    This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents.

  13. Generation of Granulites Constrained by Thermal Modeling

    NASA Astrophysics Data System (ADS)

    Depine, G. V.; Andronicos, C. L.; Phipps-Morgan, J.

    2006-12-01

    The heat source needed to generate granulites facies metamorphism is still an unsolved problem in geology. There is a close spatial relationship between granulite terrains and extensive silicic plutonism, suggesting heat advection by melts is critical to their formation. To investigate the role of heat advection by melt in the generation of granulites we use numerical 1-D models which include the movement of melt from the base of the crust to the middle crust. The model is in part constrained by petrological observations from the Coast Plutonic Complex (CPC) in British Columbia, Canada at ~ 54° N where migmatite and granulite are widespread. The model takes into account time dependent heat conduction and advection of melts generated at the base of the crust. The model starts with a crust of 55 km, consistent with petrologic and geochemical data from the CPC. The lower crust is assumed to be amphibolite in composition, consistent with seismologic and geochemical constraints for the CPC. An initial geothermal gradient estimated from metamorphic P-T-t paths in this region is ~37°C/km, hotter than normal geothermal gradients. The parameters used for the model are a coefficient of thermal conductivity of 2.5 W/m°C, a density for the crust of 2700 kg/m3 and a heat capacity of 1170 J/Kg°C. Using the above starting conditions, a temperature of 1250°C is assumed for the mantle below 55 km, equivalent to placing asthenosphere in contact with the base of the crust to simulate delamination, basaltic underplating and/or asthenospheric exposure by a sudden steepening of slab. This condition at 55 km results in melting the amphibolite in the lower crust. Once a melt fraction of 10% is reached the melt is allowed to migrate to a depth of 13 km, while material at 13 km is displaced downwards to replace the ascending melts. The steady-state profile has a very steep geothermal gradient of more than 50°C/km from the surface to 13 km, consistent with the generation of andalusite

  14. WIPP panel simulations with gas generation

    SciTech Connect

    DeVries, K.L.; Callahan, G.D.

    1996-02-01

    An important issue in nuclear waste repository performance is the potential for fracture development resulting in pathways for release of radionuclides beyond the confines of the repository. A series of demonstration calculations using structural finite element analyses are presented here to examine the effect of internal gas generation on the response of a sealed repository. From the calculated stress fields, the most probable location for a fracture to develop was determined to be within the pillars interior to the repository for the range of parameter values considered. If a fracture interconnects the rooms and panels of the repository, fracture opening produces significant additional void volume to limit the excess gas pressure to less than 1.0 MPa above the overburden pressure. Consequently, the potential for additional fracture development into the barrier pillar is greatly reduced, which provides further confidence that the waste will be contained within the repository.

  15. Thermal oxidation vitrification flue gas elimination system

    SciTech Connect

    Kephart, W.; Angelo, F.; Clemens, M.

    1995-06-01

    With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO{sub x} emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ``greenhouse gas`` contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition.

  16. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, Andrew; Brinlee, Gayl A.; Othmer, Peter; Whelan, Michael A.

    1991-01-01

    The feasibility of the generation of detonation waves moving periodically across high speed channel flow is experimentally demonstrated. Such waves are essential to the concept of compressing requirements and increasing the engine pressure compressor with the objective of reducing conventional compressor requirements and increasing the engine thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock wave losses are reduced by an order of magnitude. The ultimate objective is to use such detonation ducts downstream of a low pressure gas turbine compressor to produce a high overall pressure ratio thermodynamic cycle. A 4 foot long, 1 inch x 12 inch cross-section, detonation duct was operated in a blow-down mode using compressed air reservoirs. Liquid or vapor propane was injected through injectors or solenoid valves located in the plenum or the duct itself. Detonation waves were generated when the mixture was ignited by a row of spark plugs in the duct wall. Problems with fuel injection and mixing limited the air speeds to about Mach 0.5, frequencies to below 10 Hz, and measured pressure ratios of about 5 to 6. The feasibility of the gas dynamic compression was demonstrated and the critical problem areas were identified.

  17. Thermal Optimization of the Heat Exchanger in the Vehicular Waste-Heat Thermoelectric Generations

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Zhan, W. W.; Shen, S.

    2012-06-01

    The potential for vehicular exhaust-based thermoelectric generations (ETEGs) has been increasing with recent advances in the efficiency of thermoelectric materials. This study analyzes the thermal performance of the exhaust gas tanks in ETEGs. The thermal characteristics of the exhaust gas tanks with different internal structures and thicknesses are discussed in terms of the interface temperature and the thermal uniformity. The methods of computational fluid dynamics simulations and infrared experiments on a high- performance production engine with a dynamometer are carried out. Results indicate that the exhaust gas tank, the internal structure of which is the "fishbone" shape and the interior thickness of which is 12 mm, obtains a relatively optimal thermal performance, which can really help improve the overall efficiency of the ETEGs.

  18. New Generation Perovskite Thermal Barrier Coating Materials

    NASA Astrophysics Data System (ADS)

    Ma, W.; Jarligo, M. O.; Mack, D. E.; Pitzer, D.; Malzbender, J.; Vaßen, R.; Stöver, D.

    2008-12-01

    Advanced ceramic materials of perovskite structure have been developed for potential application in thermal barrier coating systems, in an effort to improve the properties of the pre-existing ones like yttria-stabilized zirconia. Yb2O3 and Gd2O3 doped strontium zirconate (SrZrO3) and barium magnesium tantalate (Ba(Mg1/3Ta2/3)O3) of the ABO3 and complex A(B'1/3B''2/3)O3 systems, respectively, have been synthesized using ball milling prior to solid state sintering. Thermal and mechanical investigations show desirable properties for high-temperature coating applications. On atmospheric plasma spraying, the newly developed thermal barrier coatings reveal promising thermal cycle lifetime up to 1350 °C.

  19. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  20. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  1. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator...

  2. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator...

  3. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator...

  4. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  5. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  6. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  7. Generation of slanted gas-filled icicles

    NASA Astrophysics Data System (ADS)

    Wäscher, Thomas

    1991-04-01

    A procedure for the generation of slanted gas-filled icicles by freezing, using a domestic refrigerator, is described. The freezing vessel was a plastic ice-cube tray, which was filled both with tap and deionized water and was frozen successively from the outer to the inner compartments of the tray. Icicles having slanted elevations grew out of the surface of the deionized water of the innermost compartments. The erection angle of the icicles to the horizontal lay between 30° and 60°, for the three longest and thinnest specimens it was almost exactly 30°. All icicles have gas inclusions. Their shape varies between an irregular distribution of circular bubbles and a nearly uninterrupted axial gas channel together with dendrite-like, radially distorted bubbles. If a cold (-18°C) specimen comes into contact with warm and humid room-air, then hoarfrost is observed at the bottom and the top of the icicle, while the area in between remains transparent.

  8. Hydrazine gas generator performance on Space Shuttle

    NASA Technical Reports Server (NTRS)

    Patterson, I. J.; Swink, D. G.

    1983-01-01

    The design, functions, performance, and applications of the hydrazine gas generators (GG) on the STS are detailed. The GGs provide gas horse power for the APUs that drive the hydraulic pumps on the SRBs, which have two cross-linked systems. The Orbiter has three-cross-linked APU systems, used for gimballing the main engine and booster nozzles, actuating the main engine fuel valves and the ET umbilical disconnect, actuation of the control surfaces, and powering the landing gear, brakes, and nose wheel steering. The major design components of the Orbiter GGs are an injector, a catalyst bed, a decomposition chamber, an exhaust nozzle, and an interface structure, with the main structural material being Hasteloy B. Hydrazine injected and dispersed into the catalyst bed decomposes into gas and exits for expansion in an APU turbine. Twenty-six GGs have flown on missions STS-1 through STS-6 with over three tons of hydrazine having been expended over 44 hr of operations, as no refurbishment to that point was necessary.

  9. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    of Bottrop-Kirchhellen in the state of North Rhine-Westphalia. This region consists of nature reserves, forests, farmland and a few villages. To present a qualitative comparison between simulated and true biomass volume, we conducted field work by mapping the spatial extent of the desired biomass occurrences in the area. First results indicate a qualitative match of about 75%. Our research highlights the small-scale biomass features that have not been incorporated in previous biomass estimates. With the regular trimming and the accompanied raw material that becomes available, a new sector of thermal energy generation can be outlined. An automated quantification using satellite and GIS data will allow a regular monitoring of the vegetation growth and an assessment of the transport routes and costs as well as the location of the prospective power plants. In the endeavour of creating a sustainable energy supply, these biomass units should not be neglected, especially since the usage of the traditional units is limited due to competing interests in food production and nature conservation.

  10. The New Generation of Thermal Mapping

    ERIC Educational Resources Information Center

    Patterson, Valerie B.

    2012-01-01

    Thermal imaging was used 60+ years ago to enable the targeting of heat-seeking missiles and seeing opposing forces at night. Today thermograpy is employed for myriad uses, from turning on faucets, to tracking and attacking enemies from aerial spy drones, to identifying the scope of moisture infiltration in building envelopes. Thermography for…

  11. Thermal Conductivity of Gas Mixtures in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Brokaw, Richard S.

    1960-01-01

    The expression for the thermal conductivity of gas mixtures in chemical equilibrium is presented in a simpler and less restrictive form. This new form is shown to be equivalent to the previous equations.

  12. Development of a Thermal Oxidizer for Distributed Microturbine Based Generation

    SciTech Connect

    Tom Barton

    2009-03-01

    This project concerns the replacement of the catalytic bed in a microturbine with a thermal oxidizer. The advantage of a thermal oxidizer over a traditional combustion chamber is that the length and temperature of the device allows the volatile species to oxidize relatively slowly and without a flame front. With no flame, the temperature increase throughout the unit is spread over a much larger volume so there is no hot spot for thermal NO{sub x} formation, and the gas Btu level does not have to be above the ignition concentration. Project specific objectives included assessment of the materials and performance requirements of the thermal oxidizer, design the thermal oxidizer system, fabrication of the thermal oxidizer, testing of the oxidizer's performance in concert with the microturbine and comparison of the performance of the oxidizer with catalytic beds and traditional combustion chambers. The thermal oxidizer was designed and fabricated with the assistance of High Country Fabrication of Casper, Wyoming. The design consists of a long set of tubes surrounded by a packed bed of loose ceramic material. The outer vessel containing the tubes and packing is a 3-foot diameter steel shell with multiple layers of thermal insulation. After the metal components were fabricated, the vessel was shipped to Denver where the insulation was poured. The unit was shipped to the cosponsor site for integration with the 100 kW microturbine device. Connection of the thermal oxidizer to the Elliot microturbine turned out to be problematic. The high flow rate of gas tended to push the hot zone out of the oxidizer as assembled. The research team identified several approaches to improve the oxidizer performance including a longer gas path, increased residence time, higher surface area packing material and improved combustion catalysts. The cosponsor is working with an engineering form with oxidizer experience to reconfigure the hardware before moving to a field trial on landfill gas.

  13. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  14. Thermal reactor. [liquid silicon production from silane gas

    NASA Technical Reports Server (NTRS)

    Levin, H.; Ford, L. B. (Inventor)

    1982-01-01

    A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.

  15. A new methyl bromide gas generator for inhalation toxicity studies.

    PubMed

    Hori, H; Hyakudo, T; Tanaka, I

    1992-09-01

    A simple generator for methyl bromide gas has been newly developed by us. For inhalation toxicity studies, until now, there have been few generators capable of producing a constant and stable concentration of methyl bromide gas easily because of its high volatility. The principle of this new generator is based on gas-liquid equilibrium. The gas is generated from the surface of liquid methyl bromide in an evaporator made of a Teflon tube. The generator can produce up to 10,000 ppm of methyl bromide gas in a 0.1 m3 exposure chamber, and the concentration of this generated gas is able to be kept within +/- 0.8% over a long period of time. The generator has proved to be useful for investigating the effects of methyl bromide on health in inhalation toxicity studies.

  16. Sand effects on thermal barrier coatings for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Walock, Michael; Barnett, Blake; Ghoshal, Anindya; Murugan, Muthuvel; Swab, Jeffrey; Pepi, Marc; Hopkins, David; Gazonas, George; Kerner, Kevin

    Accumulation and infiltration of molten/ semi-molten sand and subsequent formation of calcia-magnesia-alumina-silicate (CMAS) deposits in gas turbine engines continues to be a significant problem for aviation assets. This complex problem is compounded by the large variations in the composition, size, and topology of natural sands, gas generator turbine temperatures, thermal barrier coating properties, and the incoming particulate's momentum. In order to simplify the materials testing process, significant time and resources have been spent in the development of synthetic sand mixtures. However, there is debate whether these mixtures accurately mimic the damage observed in field-returned engines. With this study, we provide a direct comparison of CMAS deposits from both natural and synthetic sands. Using spray deposition techniques, 7% yttria-stabilized zirconia coatings are deposited onto bond-coated, Ni-superalloy discs. Each sample is coated with a sand slurry, either natural or synthetic, and exposed to a high temperature flame for 1 hour. Test samples are characterized before and after flame exposure. In addition, the test samples will be compared to field-returned equipment. This research was sponsored by the US Army Research Laboratory, and was accomplished under Cooperative Agreement # W911NF-12-2-0019.

  17. Kr gas puff implosion experiments on the Z generator

    NASA Astrophysics Data System (ADS)

    Ampleford, David; Jennings, Christopher; Hansen, Stephanie; Harvey-Thompson, Adam; Rochau, Gregory; Lamppa, Derek; Jones, Brent; Dasgupta, Arati; Giuliani, John; Thornhill, J. Ward

    2015-11-01

    We discuss experiments imploding large diameter Kr gas puffs on the Z generator. Thermalization of kinetic energy leads to high pinch temperatures; the plasma conditions achieved are conducive to 13-keV K-shell emission from Kr. By tailoring the density profile and designing experiments using hydrodynamic gas flow modeling coupled to MHD modeling we are able to implode these gas puffs at high velocities (> 100cm / μs) from 12-cm initial diameters to a tight (~ 1 mm diameter) uniform stagnated pinch. Data indicates that changes to the initial density profile affect the implosion stability and significantly affect the radiated output, with the most stable implosion radiating ~ 8 kJ at >10 keV, the majority of which is radiated in the Kr He α line. In this poster we will compare an extensive suite of yield, spectral, imaging and pulse shape diagnostics to MHD modeling, and discuss the plasma conditions inferred from comparing data to atomic modeling. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  18. Thermal treatment of soils contaminated with gas oil: influence of soil composition and treatment temperature.

    PubMed

    Piña, Juliana; Merino, Jerónimo; Errazu, Alberto F; Bucalá, Verónica

    2002-10-14

    Samples of two soils containing different organic matter contents, neat or contaminated with gas oil (diesel fuel oil) at 2.5 wt.% were heated from room temperature to different final temperatures (200-900 degrees C). The experiments, performed in an anaerobic media, simulate conditions pertinent to ex situ thermal desorptive and thermal destructive treatments. The products generated during the heating were collected and light gases were analyzed by gas chromatography. The results indicate that the chemical composition of the soil is a key factor since it strongly influences the quantity and composition of the off-gases. According to the liquid and light gas yields, the gas oil does not affect appreciably the generation of pyrolysis products of the own soil constituents and the gas oil does not suffer significant chemical transformations even at high operating temperatures (e.g. 900 degrees C). With surface areas of 16000 cm(2)/g (Soil A) and 85000 cm(2)/g (Soil B) based on the monolayer adsorbed model, 4 and 20%, respectively, of the original gas oil can be adsorbed. These values are in good agreement with experimental data. Even for high temperatures, the employed thermal treatment is capable to practically remove the gas oil from the soil bed without changing appreciably the original chemical composition of the contaminant.

  19. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  20. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model. [Cyclic thermal injection

    SciTech Connect

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  1. Transition metal catalysis in the generation of petroleum and natural gas. Final report

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process: The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  2. Thermal decomposition of ethylpentaborane in gas phase

    NASA Technical Reports Server (NTRS)

    Mcdonald, Glen E

    1956-01-01

    The thermal decomposition of ethylpentaborane at temperatures of 185 degrees to 244 degrees C is approximately a 1.5-order reaction. The products of the decomposition were hydrogen, methane, a nonvolatile boron hydride, and traces of decaborane. Measurements of the rate of decomposition of pentaborane showed that ethylpentaborane has a greater rate of decomposition than pentaborane.

  3. Low-Cost Gas Generator and Ignitor

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr. (Inventor); Hissam, D. Andy (Inventor); Myers, W. Neill (Inventor); Taylor, Eric S. (Inventor)

    2001-01-01

    A gas generator and ignitor assembly for powering a turbine of a turbopump assembly for a rocket engine comprises an injector and a combustion chamber. the injector having a body member including a fuel inlet and an oxidizer inlet spaced one from the other and communicating with respective radially spaced apart annular members in the body member. Three annuli communicate with the fuel inlet and two annuli communicate with the oxidizer inlet. the annuli which communicates with the oxidizer being positioned between pairs of the other annuli, The body member is enclosed by a plate having an array of bores arranged in two series with three radially spaced apart groups of circular rows in each series. The outer series has 28 groups of triplet bores while the inner series has 14 groups of triplet bores. The annuli which communicate with oxidizer feed bores of each series that are between the other bores of a triplet. the latter bores communicating with annuli that communicate with fuel. The inner and outer bores of the triplets of each series are inclined relatively to each other and to the third bore of the triplet so that fuel and oxidizer atomizes as it is sprayed into the inlet of the combustion chamber where the propellants are mixed. and burned. The burning of the propellants is effected by ignition of a plug of solid propellant fuel mounted to communicate with the interior of the combustion chamber.

  4. Application of field-modulated generator systems to dispersed solar thermal electric generation

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.

    1979-01-01

    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  5. Ceramic thermal barrier coatings for commercial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.

    1991-01-01

    The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.

  6. The gas-phase thermal chemistry of tetralin and related model systems

    SciTech Connect

    Malandra, J.

    1993-05-01

    The thesis is divided into 5 papers: gas-phase thermal decomposition of tetralin; flash vacuum pyrolysis of 3-benzocycloheptenone and 1,3, 4,5-tetrahydro-2-benzothiepin-2,2-dioxide (model systems for gas-phase pyrolysis of tetralin); high-temperature gas-phase reactions of o-allylbenzyl radicals generated by flash vacuum pyrolysis of is(o-allylbenzyl) oxalate; flash vacuum pyrolysis of 1,4-diphenylbutane; and flash vacuum pyrolysis of o-allyltoluene, o-(3-butenyl)toluene and o-(pentenyl)toluene were also used.

  7. Note: thermal imaging enhancement algorithm for gas turbine aerothermal characterization.

    PubMed

    Beer, S K; Lawson, S A

    2013-08-01

    An algorithm was developed to convert radiation intensity images acquired using a black and white CCD camera to thermal images without requiring knowledge of incident background radiation. This unique infrared (IR) thermography method was developed to determine aerothermal characteristics of advanced cooling concepts for gas turbine cooling application. Compared to IR imaging systems traditionally used for gas turbine temperature monitoring, the system developed for the current study is relatively inexpensive and does not require calibration with surface mounted thermocouples.

  8. Note: thermal imaging enhancement algorithm for gas turbine aerothermal characterization.

    PubMed

    Beer, S K; Lawson, S A

    2013-08-01

    An algorithm was developed to convert radiation intensity images acquired using a black and white CCD camera to thermal images without requiring knowledge of incident background radiation. This unique infrared (IR) thermography method was developed to determine aerothermal characteristics of advanced cooling concepts for gas turbine cooling application. Compared to IR imaging systems traditionally used for gas turbine temperature monitoring, the system developed for the current study is relatively inexpensive and does not require calibration with surface mounted thermocouples. PMID:24007128

  9. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas generator: Location. 154.908 Section 154.908... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except...

  10. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas generator: Location. 154.908 Section 154.908... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except...

  11. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas generator: Location. 154.908 Section 154.908... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except...

  12. 21 CFR 866.2580 - Gas-generating device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gas-generating device. 866.2580 Section 866.2580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2580 Gas-generating...

  13. 21 CFR 866.2580 - Gas-generating device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gas-generating device. 866.2580 Section 866.2580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2580 Gas-generating...

  14. 21 CFR 866.2580 - Gas-generating device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas-generating device. 866.2580 Section 866.2580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2580 Gas-generating...

  15. 21 CFR 866.2580 - Gas-generating device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas-generating device. 866.2580 Section 866.2580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2580 Gas-generating...

  16. 21 CFR 866.2580 - Gas-generating device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gas-generating device. 866.2580 Section 866.2580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2580 Gas-generating...

  17. Investigation of a ceramic vane with a metal disk thermal and mechanical contact in a gas turbine impeller

    NASA Astrophysics Data System (ADS)

    Resnick, S. V.; Prosuntsov, P. V.; Sapronov, D. V.

    2015-01-01

    Promising directions of a new generation gas turbine engines development include using in gas turbines ceramic materials blades with high strength, thermal and chemical stability. One of the serious problems in developing such motors is insufficient knowledge of contact phenomena occurring in ceramic and metal details connection nodes. This work presents the numerical modeling results of thermal processes on ceramic and metal details rough boundaries. The investigation results are used in conducting experimental researches in conditions reproducing operating.

  18. Thermal Design of a Thermoelectric Micro-Generator

    NASA Astrophysics Data System (ADS)

    Hama, S.; Yabuki, T.; Tranchant, L.; Miyazaki, K.

    2015-12-01

    In this study, we fabricated micro thermoelectric power generator using freestanding film substrate, and we evaluated the performance of the generator from the standpoint of thermoelectric performance and thermal design. We fabricated a SiNx free-standing film substrate about 5 μm thick on Si wafer, using MEMS processes. Then, we prepared for both p and n type of bismuth telluride thermoelectric thin films by using a coaxial type vacuum arc evaporation method, and annealed for one hour at 573 K. As an electrode, Cu was deposited using a vacuum deposition method. We fabricated the thermoelectric power generator of 5 mm × 5 mm using a shadow mask for the patterning. The fabricated generator can create temperature difference of 22.3 K due to its high thermal resistance of the structure when the heat source temperature is 373 K. The exergy of the thermoelectric device is up to 7%. Therefore, the generator can convert about 0.4% of thermal energy into electric energy, even though the material performance is low with ZT = 0.28. The conversion efficiency is much higher than that of the conventional Π type thermoelectric module. It was possible to get higher performance by the thermal design, which is a more simple way than an improvement of ZT.

  19. Transition metal catalysis in the generation of natural gas

    SciTech Connect

    Mango, F.D.

    1995-12-31

    The view that natural gas is thermolytic, coming from decomposing organic debris, has remained almost unchallenged for nearly half a century. Disturbing contradictions exist, however: Oil is found at great depth, at temperatures where only gas should exist and oil and gas deposits show no evidence of the thermolytic debris indicative of oil decomposing to gas. Moreover, laboratory attempts to duplicate the composition of natural gas, which is typically between 60 and 95+ wt% methane in C{sub 1}-C{sub 4}, have produced insufficient amounts of methane (10 to 60%). It has been suggested that natural gas may be generated catalytically, promoted by the transition metals in carbonaceous sedimentary rocks. This talk will discuss experimental results that support this hypothesis. Various transition metals, as pure compounds and in source rocks, will be shown to generate a catalytic gas that is identical to natural gas. Kinetic results suggest robust catalytic activity under moderate catagenetic conditions.

  20. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    SciTech Connect

    Unknown

    2001-12-05

    , both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

  1. Thermal observations of gas pistoning at Kilauea Volcano

    USGS Publications Warehouse

    Johnson, J.B.; Harris, A.J.L.; Hoblitt, R.P.

    2005-01-01

    Data acquired by three continuously recording thermal infrared thermometers situated on the north rim of Pu'u'O' o Crater at Kilauea Volcano during 2002 revealed episodes of periodic thermal pulses originating from a degassing vent on the crater floor. These thermal pulses are interpreted as gas release (jetting events) associated with gas pistoning, a mechanism observed previously at both Mauna Ulu and Pu'u'O' o. During a 35-day-long period spanning June and July 2002, gas pistoning was frequently the dominant mode of gas release, with as many as several hundred pulses occurring in uninterrupted series. On other days, degassing alternated between periods of quasi-continuous gas jetting and intervals of gas pistoning that contained a few to a few dozen pulses. Characteristic time intervals between pistoning events ranged from 2 up to 7 min. We identify three types of pistoning. Type 1 involves emission of lava, followed by gas jetting and drain back; type 2 is the same but the elevated position of the vent does not allow postjet drain back; and type 3 involves gas jetting only with no precursory lava flow. To explain gas pistoning, we apply a model whereby a stagnant cap of degassed magma develops in the conduit below the vent. Gas bubbles rise through the magma column and collect under the cap. The collective buoyancy of these bubbles pushes the cap upward. When the cap reaches the surface, it erupts from the vent as a lava flow. Unloading of the conduit magma in this way results in an abrupt pressure drop (i.e., the overburden felt by the bubbles is reduced), causing explosive gas expansion in the form of gas jetting from the vent. This terminates the event and lava drains back into the conduit to start the cycle anew. In the case where there is no surface lava emission or drain back, the cap instead pushes into and spreads out within a subsurface cavity. Again, this unloads the conduit magma and terminates in explosive gas release. Once gas is expelled, lava in

  2. Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions

    NASA Astrophysics Data System (ADS)

    Pantano, David R.; Hill, Dennis H.

    2005-02-01

    The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo, Ulysses, and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources, such as the Stirling Radioisotope Generator (SRG110) and the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1-inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition, the Step 2 thermal model is investigated under typical SRG110 boundary conditions, with cover gas and gravity environments included where applicable, to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.

  3. Computer code for determination of thermally perfect gas properties

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Tatum, Kenneth E.

    1994-01-01

    A set of one-dimensional compressible flow relations for a thermally perfect, calorically imperfect gas is derived for the specific heat c(sub p), expressed as a polynomial function of temperature, and developed into the thermally perfect gas (TPG) computer code. The code produces tables of compressible flow properties similar to those of NACA Rep. 1135. Unlike the tables of NACA Rep. 1135 which are valid only in the calorically perfect temperature regime, the TPG code results are also valid in the thermally perfect calorically imperfect temperature regime which considerably extends the range of temperature application. Accuracy of the TPG code in the calorically perfect temperature regime is verified by comparisons with the tables of NACA Rep. 1135. In the thermally perfect, calorically imperfect temperature regime, the TPG code is validated by comparisons with results obtained from the method of NACA Rep. 1135 for calculating the thermally perfect calorically imperfect compressible flow properties. The temperature limits for application of the TPG code are also examined. The advantage of the TPG code is its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture thereof, whereas the method of NACA Rep. 1135 is restricted to only diatomic gases.

  4. Gas-phase generation of photoacoustic sound in an open environment.

    PubMed

    Yönak, Serdar H; Dowling, David R

    2003-12-01

    The photoacoustic effect is commonly exploited for molecular spectroscopy, nondestructive evaluation, and trace gas detection. Photoacoustic sound is produced when a photoactive material absorbs electromagnetic radiation and converts it to acoustic waves. This article focuses on the generation of photoacoustic sound from thermal expansion of photoactive gases due to unsteady heating from a laser light source, and extends the work of prior studies on photoacoustic sound generation in an open environment. Starting with the forced free-space wave equation, a simple model is constructed for photoacoustic sounds produced by both acoustically distributed and compact gas clouds. The model accounts for laser absorption through the Lambert-Beer law and includes the effects of photoactive gas cloud characteristics (shape, size, and concentration distribution), but does not include molecular diffusion, thermal conduction, convection, or the effects of acoustic propagation through sound-absorbing inhomogeneous media. This model is compared to experimentally measured photoacoustic sounds generated by scanning a 10.6-micron carbon dioxide (CO2) laser beam through small clouds of a photoactive gas, sulfur hexafluoride (SF6). For the current investigation, the photoactive gas clouds are formed either by low flow-rate calibrated leak sources or by a laminar jet emerging from a 1.6-mm-diam tube. Model-measurement comparisons are presented over a 3- to 160-kHz bandwidth. Signal pulse shapes from simple gas cloud geometries are found to match calculated results when unmeasured gas cloud characteristics within the model are adjusted.

  5. Magneto Themoelectric Generator with Carbon Nanotube Thermal Interfaces

    NASA Astrophysics Data System (ADS)

    McCarthy, Patrick T.; Fisher, Timothy S.; Marinero, Ernesto E.

    2013-03-01

    We report the thermal behavior of Gd foils used in a magneto thermoelectric generator cells. The device exploits the ferromagnetic phase transition of gadolinium to drive the movement of a diaphragm ``shuttle'' whose mechanical energy is converted to electrical form and which enhances heat transfer through both conduction and convection. Efficient heat transfer at mechanical interfaces is critical to increase shuttle speed and the commensurate rate of heat transfer. The synthesis and characterization of carbon nanotube thermal interfaces for the Gd foils are described. The samples generated in this study were consistently measured with total thermal interface resistances in the range of 65-105 mm2 K/W, a reduction of 55-70% compared to bare Gd (Rint ~ 230 mm2 K/W). The addition of carbon nanotube arrays did not alter the magnetic properties of the gadolinium foils and only a slight decrease in the magnetic moment of the gadolinium samples (8-13%) was measured after growth.

  6. Investigation of thermal plasma generator of technological function

    NASA Astrophysics Data System (ADS)

    Anshakov, A. S.; Urbakh, E. K.; Cherednichenko, V. S.; Kuzmin, M. G.; Urbakh, A. E.

    2015-11-01

    Experimental results on energy characteristics of electric-arc plasma generator for heating technical nitrogen with the power of up to 500 kW are presented. The features of arc discharge glow, thermal efficiency, and service life of the electrodes were determined under the regime of melting the metallurgical raw material in the test plasma electric furnace.

  7. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    SciTech Connect

    2010-01-01

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  8. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    ScienceCinema

    None

    2016-07-12

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  9. Thermal-barrier coatings for utility gas turbines

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.

    1982-01-01

    The potential of thermal barrier coatings for use in utility gas turbines was assessed. Pressurized passage and ambient pressure doped fuel burner rig tests revealed that thermal barrier coatings are not resistant to dirty combustion environments. However, present thermal barrier coatings, such as duplex partially stabilized zirconia and duplex Ca2SiO4 have ample resistance to the thermo-mechanical stress and temperature levels anticipated for heavy duty gas turbines firing clean fuel as revealed by clean fuel pressurized passage and ambient pressure burner rig tests. Thus, it is appropriate to evaluate such coatings on blades, vanes and combustors in the field. However, such field tests should be backed up with adequate effort in the areas of coating application technology and design analysis so that the field tests yield unequivocal results.

  10. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model

    SciTech Connect

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  11. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  12. Gas Generation Testing of Neptunium Oxide at Elevated Temperature

    SciTech Connect

    Duffey, JM

    2004-01-30

    Elevated temperature gas generation tests have been conducted using neptunium dioxide produced on a laboratory scale using the HB-Line Phase II flowsheet. These tests were performed to determine what effect elevated temperatures would have on the neptunium dioxide in comparison to neptunium dioxide tested at ambient temperature. The headspace gas compositions following storage at elevated temperatures associated with normal conditions of transport (NCT) have been measured. These test results show an increase in hydrogen generation rate at elevated temperature and significant removal of oxygen from the headspace gas. The elevated temperature gas generation tests described in this report involved heating small test vessels containing neptunium dioxide and measuring the headspace gas pressure and composition at the end of the test period. Four samples were used in these tests to evaluate the impact of process variables on the gas generation rate. Two samples were calcined to 600 degrees Celsius and two were calcined to 650 degrees Celsius. Each test vessel contained approximately 9.5 g of neptunium dioxide. Following exposure to 75 per cent relative humidity (RH) for five days, these samples were loaded in air and then heated to between 105 and 115 degrees Celsius for about one month. At the conclusion of the test period, the headspace gas of each container was analyzed using a micro-gas chromatograph installed in the glovebox where the experiments were conducted. The pressure, volume, and composition data for the headspace gas samples were used to calculate average H2 generation rates.

  13. Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas

    USGS Publications Warehouse

    Hill, R.J.; Zhang, E.; Katz, B.J.; Tang, Y.

    2007-01-01

    The generative gas potential of the Mississippian Barnett Shale in the Fort Worth Basin, Texas, was quantitatively evaluated by sealed gold-tube pyrolysis. Kinetic parameters for gas generation and vitrinite reflectance (Ro) changes were calculated from pyrolysis data and the results used to estimate the amount of gas generated from the Barnett Shale at geologic heating rates. Using derived kinetics for Ro evolution and gas generation, quantities of hydrocarbon gas generated at Ro ??? 1.1% are about 230 L/t (7.4 scf/t) and increase to more that 5800 L/t (186 scf/t) at Ro ??? 2.0% for a sample with an initial total organic carbon content of 5.5% and Ro = 0.44%. The volume of shale gas generated will depend on the organic richness, thickness, and thermal maturity of the shale and also the amount of petroleum that is retained in the shale during migration. Gas that is reservoired in shales appears to be generated from the cracking of kerogen and petroleum that is retained in shales, and that cracking of the retained petroleum starts by Ro ??? 1.1%. This result suggests that the cracking of petroleum retained in source rocks occurs at rates that are faster than what is predicted for conventional siliciclastic and carbonate reservoirs, and that contact of retained petroleum with kerogen and shale mineralogy may be a critical factor in shale-gas generation. Shale-gas systems, together with overburden, can be considered complete petroleum systems, although the processes of petroleum migration, accumulation, and trap formation are different from what is defined for conventional petroleum systems. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  14. Thermal Loading of a Direct Drive Target Rarefied Gas

    SciTech Connect

    Christensen, B.R.; Raffray, A.R.; Tillack, M.S.

    2005-05-15

    In an inertial fusion energy (IFE) power plant, each fusion micro-explosion ({approx}10 Hz) causes thermal and structural loads on the IFE reactor wall and driver optics. The loading on the wall must remain sufficiently low to ensure that economic and safety constraints are met.One proposed method for decreasing the intensity of the wall loading is to fill the reaction chamber with a gas, such as Xe, at low density. The gas will absorb much of the radiation and ion energy from the fusion event, and then slowly release it to the chamber wall. Unfortunately the protective gas introduces major heat loads on the direct drive target. The thermal loading of a target, during injection, largely determines the viability of that target upon reaching chamber center. Thus, the density of the gas must be carefully selected to ensure that a target will survive injection.The objective of this work is to quantify and characterize the heat flux resulting from the interaction of the target and the protective gas. The loading of the target is modeled using DS2V, a commercial DSMC (Direct Simulation Monte Carlo) program. Using DS2V, this work explores the effect of the protective gas density, temperature, sticking (condensation) and accommodation coefficients on the heat flux to the target.

  15. Thermal barrier coating on high temperature industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  16. Solar thermal organic rankine cycle for micro-generation

    NASA Astrophysics Data System (ADS)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  17. The greenhouse impact of unconventional gas for electricity generation

    NASA Astrophysics Data System (ADS)

    Hultman, Nathan; Rebois, Dylan; Scholten, Michael; Ramig, Christopher

    2011-10-01

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  18. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  19. Advanced Stirling Radioisotope Generator Thermal Power Model in Thermal Desktop SINDA/FLUINT Analyzer

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Fabanich, William A.; Schmitz, Paul C.

    2012-01-01

    This paper presents a three-dimensional Advanced Stirling Radioisotope Generator (ASRG) thermal power model that was built using the Thermal Desktop SINDA/FLUINT thermal analyzer. The model was correlated with ASRG engineering unit (EU) test data and ASRG flight unit predictions from Lockheed Martin's Ideas TMG thermal model. ASRG performance under (1) ASC hot-end temperatures, (2) ambient temperatures, and (3) years of mission for the general purpose heat source fuel decay was predicted using this model for the flight unit. The results were compared with those reported by Lockheed Martin and showed good agreement. In addition, the model was used to study the performance of the ASRG flight unit for operations on the ground and on the surface of Titan, and the concept of using gold film to reduce thermal loss through insulation was investigated.

  20. Test facility of thermal storage equipment for space power generation

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Nakagawa, M.; Mochida, Y.; Ohtomo, F.; Shimizu, K.; Tanaka, K.; Abe, Y.; Nomura, O.; Kamimoto, M.

    A thermal storage equipment test facility has been built in connection with developing solar dynamic power systems (SDPSs). The test facility consists of a recuperative closed Brayton cycle system (CBC), with a mixture of helium and xenon with a molecular weight of 39.9 serving as the working fluid. CBC has been shown to be the most attractive power generation system among several types of SDPSs because of its ability to meet the required high power demand and its thermal efficiency, about 30 percent. The authors present a description of this test facility and give results of the preliminary test and the first-stage test with heat storage equipment.

  1. Computational investigation of thermal gas separation for CO2 capture.

    SciTech Connect

    Gallis, Michail A.; Bryan, Charles R.; Brady, Patrick Vane; Torczynski, John Robert; Brooks, Carlton, F.

    2009-09-01

    This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 09-1351, 'Computational Investigation of Thermal Gas Separation for CO{sub 2} Capture'. Thermal gas separation for a binary mixture of carbon dioxide and nitrogen is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Molecular models for nitrogen and carbon dioxide are developed, implemented, compared to theoretical results, and compared to several experimental thermophysical properties. The molecular models include three translational modes, two fully excited rotational modes, and vibrational modes, whose degree of excitation depends on the temperature. Nitrogen has one vibrational mode, and carbon dioxide has four vibrational modes (two of which are degenerate). These models are used to perform a parameter study for mixtures of carbon dioxide and nitrogen confined between parallel walls over realistic ranges of gas temperatures and nominal concentrations of carbon dioxide. The degree of thermal separation predicted by DSMC is slightly higher than experimental values and is sensitive to the details of the molecular models.

  2. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community.

    PubMed

    Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Yanoviak, Stephen P; Kay, Adam

    2015-03-01

    The Thermal Adaptation Hypothesis posits that the warmer, aseasonal tropics generates populations with higher and narrower thermal limits. It has largely been tested among populations across latitudes. However, considerable thermal heterogeneity exists within ecosystems: across 31 trees in a Panama rainforest, surfaces exposed to sun were 8 °C warmer and varied more in temperature than surfaces in the litter below. Tiny ectotherms are confined to surfaces and are variously submerged in these superheated boundary layer environments. We quantified the surface CTmin and CTmax s (surface temperatures at which individuals grew torpid and lost motor control, respectively) of 88 ant species from this forest; they ranged in average mass from 0.01 to 57 mg. Larger ants had broader thermal tolerances. Then, for 26 of these species we again tested body CTmax s using a thermal dry bath to eliminate boundary layer effects: body size correlations observed previously disappeared. In both experiments, consistent with Thermal Adaptation, CTmax s of canopy ants averaged 3.5-5 °C higher than populations that nested in the shade of the understory. We impaled thermocouples in taxidermy mounts to further quantify the factors shaping operative temperatures for four ant species representing the top third (1-30 mg) of the size distribution. Extrapolations suggest the smallest 2/3rds of species reach thermal equilibrium in <10s. Moreover, the large ants that walk above the convective superheated surface air also showed more net heating by solar radiation, with operative temperatures up to 4 °C higher than surrounding air. The thermal environments of this Panama rainforest generate a range of CTmax subsuming 74% of those previously recorded for ant populations worldwide. The Thermal Adaptation Hypothesis can be a powerful tool in predicting diversity of thermal limits within communities. Boundary layer temperatures are likely key to predicting the future of Earth's tiny terrestrial

  3. Gas flow driven by thermal creep in dusty plasma

    SciTech Connect

    Flanagan, T. M.; Goree, J.

    2009-10-15

    Thermal creep flow (TCF) is a flow of gas driven by a temperature gradient along a solid boundary. Here, TCF is demonstrated experimentally in a dusty plasma. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. The design of the experiment allows isolating the effect of TCF. A stirring motion of the dust particle suspension is observed. By eliminating all other explanations for this motion, we conclude that TCF at the boundary couples by drag to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result provides an experimental verification, for the field of fluid mechanics, that TCF in the slip-flow regime causes steady-state gas flow in a confined volume.

  4. Martian hydrogeology sustained by thermally insulating gas and salt hydrates

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey S.; Furfaro, Roberto; Prieto-Ballesteros, Olga; Rodriguez, J. Alexis P.; Montgomery, David R.; Gillespie, Alan R.; Marion, Giles M.; Wood, Stephen E.

    2007-11-01

    Numerical simulations and geologic studies suggest that high thermal anomalies beneath, within, and above thermally insulating layers of buried hydrated salts and gas hydrates could have triggered and sustained hydrologic processes on Mars, producing or modifying chaotic terrains, debris flows, gullies, and ice-creep features. These simulations and geologic examples suggest that thick hydrate deposits may sustain such geothermal anomalies, shallow ground-water tables, and hydrogeologic activity for eons. The proposed mechanism may operate and be self-reinforcing even in today's cold Martian climate without elevated heat flux.

  5. Anisotropic Expansion of a Thermal Dipolar Bose Gas

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Sykes, A. G.; Burdick, N. Q.; DiSciacca, J. M.; Petrov, D. S.; Lev, B. L.

    2016-10-01

    We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the postexpansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.

  6. Ceramic thermal barrier coatings for electric utility gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1986-01-01

    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  7. Propellant-powered actuator for gas generators

    NASA Technical Reports Server (NTRS)

    Makowski, M. J.

    1972-01-01

    Hydrazine operated monopropellant generators are used for spacecraft rocket engines and propellant pressurization systems. Measured work output of monopropellant actuators compares favorably with output of squib-type actuators.

  8. Thermally reduced kaolin-graphene oxide nanocomposites for gas sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Renyun; Alecrim, Viviane; Hummelgård, Magnus; Andres, Britta; Forsberg, Sven; Andersson, Mattias; Olin, Håkan

    2015-01-01

    Highly sensitive graphene-based gas sensors can be made using large-area single layer graphene, but the cost of large-area pure graphene is high, making the simpler reduced graphene oxide (rGO) an attractive alternative. To use rGO for gas sensing, however, require a high active surface area and slightly different approach is needed. Here, we report on a simple method to produce kaolin-graphene oxide (GO) nanocomposites and an application of this nanocomposite as a gas sensor. The nanocomposite was made by binding the GO flakes to kaolin with the help of 3-Aminopropyltriethoxysilane (APTES). The GO flakes in the nanocomposite were contacting neighboring GO flakes as observed by electron microscopy. After thermal annealing, the nanocomposite become conductive as showed by sheet resistance measurements. Based on the conductance changes of the nanocomposite films, electrical gas sensing devices were made for detecting NH3 and HNO3. These devices had a higher sensitivity than thermally annealed multilayer GO films. This kaolin-GO nanocomposite might be useful in applications that require a low-cost material with large conductive surface area including the demonstrated gas sensors.

  9. Thermally reduced kaolin-graphene oxide nanocomposites for gas sensing.

    PubMed

    Zhang, Renyun; Alecrim, Viviane; Hummelgård, Magnus; Andres, Britta; Forsberg, Sven; Andersson, Mattias; Olin, Håkan

    2015-01-01

    Highly sensitive graphene-based gas sensors can be made using large-area single layer graphene, but the cost of large-area pure graphene is high, making the simpler reduced graphene oxide (rGO) an attractive alternative. To use rGO for gas sensing, however, require a high active surface area and slightly different approach is needed. Here, we report on a simple method to produce kaolin-graphene oxide (GO) nanocomposites and an application of this nanocomposite as a gas sensor. The nanocomposite was made by binding the GO flakes to kaolin with the help of 3-Aminopropyltriethoxysilane (APTES). The GO flakes in the nanocomposite were contacting neighboring GO flakes as observed by electron microscopy. After thermal annealing, the nanocomposite become conductive as showed by sheet resistance measurements. Based on the conductance changes of the nanocomposite films, electrical gas sensing devices were made for detecting NH3 and HNO3. These devices had a higher sensitivity than thermally annealed multilayer GO films. This kaolin-GO nanocomposite might be useful in applications that require a low-cost material with large conductive surface area including the demonstrated gas sensors. PMID:25566696

  10. Gas Generation from K East Basin Sludges - Series II Testing

    SciTech Connect

    Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2001-03-14

    This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focused on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report will present results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge.

  11. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    EPA Science Inventory

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  12. Micro- and Nanoscale Energetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators.

    PubMed

    Kim, Sang Beom; Kim, Kyung Ju; Cho, Myung Hoon; Kim, Ji Hoon; Kim, Kyung Tae; Kim, Soo Hyung

    2016-04-13

    In this study, we systematically investigated the effect of micro- and nanoscale energetic materials in formulations of aluminum microparticles (Al MPs; heat source)/aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ∼0.3 m/s. However, the addition of Al MPs and Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ∼1.5 and ∼5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ∼0.6 L/s, which was significantly increased to ∼1.4 and ∼3.9 L/s by adding Al MPs and Al NPs, respectively, to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive Al MPs and NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were more effective than Al MPs in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ∼140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ∼50 ms for airbag inflation.

  13. Micro- and Nanoscale Energetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators.

    PubMed

    Kim, Sang Beom; Kim, Kyung Ju; Cho, Myung Hoon; Kim, Ji Hoon; Kim, Kyung Tae; Kim, Soo Hyung

    2016-04-13

    In this study, we systematically investigated the effect of micro- and nanoscale energetic materials in formulations of aluminum microparticles (Al MPs; heat source)/aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ∼0.3 m/s. However, the addition of Al MPs and Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ∼1.5 and ∼5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ∼0.6 L/s, which was significantly increased to ∼1.4 and ∼3.9 L/s by adding Al MPs and Al NPs, respectively, to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive Al MPs and NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were more effective than Al MPs in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ∼140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ∼50 ms for airbag inflation. PMID:27007287

  14. Applications for Solid Propellant Cool Gas Generator Technology

    NASA Astrophysics Data System (ADS)

    van der List, M.; van Vliet, L. D.; Sanders, H. M.; Put, P. A. G.; Elst, J. W. E. C.

    2004-10-01

    In 2002 and 2003, Bradford Engineering B.V. conducted, in corporation with the Dutch research institute TNO Prins Maurits Laboratory (PML) a SME study for ESA-ESTEC for the identification of spaceflight applications and on-ground demonstration of Solid Propellant Cool Gas Generator (SPCGG) technology. This innovative technology has been developed by TNO-PML while Bradford Engineering also brought in its experience in spaceflight hardware development and manufacturing. The Solid Propellant Cool Gas Generator (SPCGG) technology allows for pure gas generation at ambient temperatures, as opposed to conventional solid propellant gas generators. This makes the SPCGG technology interesting for a wide range of terrestrial spaceflight applications. During the first part of the study, a variety of potential applications have been identified and three applications were selected for a more detailed quantitative study. In the third phase a ground demonstration was performed successfully for a cold gas propulsion system application. During the actual demonstration test, 10 cool gas generators were mounted and all operated successfully in sequence, demonstrating good repeatability of the produced amount of gas and pressure.

  15. Thermal barrier coatings for gas-turbine engine applications.

    PubMed

    Padture, Nitin P; Gell, Maurice; Jordan, Eric H

    2002-04-12

    Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities.

  16. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    EPA Science Inventory

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  17. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  18. Investigation of thermal storage and steam generator issues

    SciTech Connect

    Not Available

    1993-08-01

    A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

  19. Thermally controlled comb generation and soliton modelocking in microresonators.

    PubMed

    Joshi, Chaitanya; Jang, Jae K; Luke, Kevin; Ji, Xingchen; Miller, Steven A; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L

    2016-06-01

    We report, to the best of our knowledge, the first demonstration of thermally controlled soliton mode-locked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton mode-locked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of mode-locked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.

  20. Magneto-Thermo-Triboelectric Generator (MTTG) for thermal energy harvesting

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Yeop; Lee, James; Lee, Dong-Gun

    2016-04-01

    We present a novel thermal energy harvesting system using triboelectric effect. Recently, there has been intensive research efforts on energy harvesting using triboelectric effect, which can produce surprising amount of electric power (when compared to piezoelectric materials) by rubbing or touching (i.e, electric charge by contact and separation) two different materials together. Numerous studies have shown the possibility as an attractive alternative with good transparency, flexibility and low cost abilities for its use in wearable device and smart phone applications markets. However, its application has been limited to only vibration source, which can produce sustained oscillation with maintaining contact and separation states repeatedly for triboelectric effect. Thus, there has been no attempt toward thermal energy source. The proposed approach can convert thermal energy into electricity by pairing triboelectric effect and active ferromagnetic materials The objective of the research is to develop a new manufacturing process of design, fabrication, and testing of a Magneto-Thermo-Triboelectric Generator (MTTG). The results obtained from the approach show that MTTG devices have a feasible power energy conversion capability from thermal energy sources. The tunable design of the device is such that it has efficient thermal capture over a wide range of operation temperature in waste heat.

  1. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  2. Thermal and Evolved Gas Analysis of Hydromagnesite and Nesquehonite: Implications for Remote Thermal Analysis on Mars

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.

    2000-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.

  3. Gas-Generator Augmented Expander Cycle Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2011-01-01

    An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.

  4. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  5. Timing of oil and gas generation of petroleum systems in the Southwestern Wyoming Province

    USGS Publications Warehouse

    Roberts, L.N.R.; Lewan, M.D.; Finn, T.M.

    2004-01-01

    Burial history, thermal maturity, and timing of petroleum generation were modeled for eight key source-rock horizons at seven locations throughout the Southwestern Wyoming Province. The horizons are the bases of the Lower Permian Phosphoria Formation, the Upper Cretaceous Mowry Shale, Niobrara Formation, Baxter Shale (and equivalents), upper part of the Mesaverde Group, Lewis Shale, Lance Formation, and the Tertiary (Paleocene) Fort Union Formation. Burial history locations include three in the deepest parts of the province (Adobe Town in the Washakie Basin, Eagles Nest in the Great Divide Basin, and Wagon Wheel in the northern Green River Basin); two at intermediate basin depths (Federal 31-1 and Currant, Creek in the central and southern parts of the Green River Basin, respectively); and two relatively shallow locations (Bear 1 on the southeastern margin of the Sand Wash Basin and Bruff 2 on the Moxa arch). An overall ranking of the burial history locations in order of decreasing thermal maturity is Adobe Town > Eagles Nest > Wagon Wheel > Currant Creek > Federal 31-1 > Bear-1 > Bruff 2. The results of the models indicate that peak petroleum generation from Cretaceous oil- and gas-prone source rocks in the deepest parts of the province occurred from Late Cretaceous through middle Eocene. At the modeled locations, peak oil generation from source rocks of the Phosphoria Formation, which contain type-IIS kerogen, occurred in the Late Cretaceous (80 to 73 million years ago (Ma)). Gas generation from the cracking of Phosphoria oil reached a peak in the late Paleocene (57 Ma) only in the deepest parts of the province. The Mowry Shale, Niobrara Formation, and Baxter Shale (and equivalents) contain type-IIS or a mix of type-II and type-III kerogens. Oil generation from these units, in the deepest parts of the province, reached peak rates during the latest Cretaceous to early Paleocene (66 to 61 Ma). Only at these deepest locations did these units reach peak gas

  6. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  7. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040. PMID:26061407

  8. Spin current generated by thermally driven ultrafast demagnetization.

    PubMed

    Choi, Gyung-Min; Min, Byoung-Chul; Lee, Kyung-Jin; Cahill, David G

    2014-01-01

    Spin current is the key element for nanoscale spintronic devices. For ultrafast operation of such nano-devices, generation of spin current in picoseconds, a timescale that is difficult to achieve using electrical circuits, is highly desired. Here we show thermally driven ultrafast demagnetization of a perpendicular ferromagnet leads to spin accumulation in a normal metal and spin transfer torque in an in-plane ferromagnet. The data are well described by models of spin generation and transport based on differences and gradients of thermodynamic parameters. The temperature difference between electrons and magnons is the driving force for spin current generation by ultrafast demagnetization. On longer timescales, a few picoseconds following laser excitation, we also observe a small contribution to spin current by a temperature gradient and the spin-dependent Seebeck effect. PMID:25007978

  9. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  10. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    SciTech Connect

    Lin, E.I.

    1997-12-31

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

  11. Generation and expulsion of petroleum and gas from Almond Formation Coal, Greater Green River Basin, Wyoming

    SciTech Connect

    Garcia-Gonzalez, M.; Surdam, R.C.; Lee, M.L.

    1997-01-01

    Petrographic and geochemical studies of coal from the Almond Formation in the Greater Green River basin demonstrate that the coal contains important volumes of stored liquid petroleum, as well as methane. Modeling indicates that at the basin center, most of the oil generated in the coal has been thermally cracked to gas, whereas at the basin flank the oil-to-gas reaction has barely proceeded. Several new concepts are presented about the mechanism of petroleum generation in coal based on (1) natural maturation trends gleaned form examination of Almond coal samples from different burial depths and (2) similar maturation trends observed in hydrous pyrolysis experiments using immature Almond coal samples. These new concepts show that the oil in the coal was generated during the alteration of desmocollinite and liptinite macerals to exsudatinite (waxy oil) and inertinite solid residue; that the waxy oil was initially stored in porous structures and subsequently in vesicles as the coal matured under increasing temperature; that primary migration of the oil occurred as the generation of a sufficient volume of exsudatinite microfractured the vitrinite-semifusinite vesicles, interconnecting vesicles and pores; and that the thermal cracking of exsudatinite generated a sufficient volume of gas to fracture the vesiculated coal as pore pressure increased and allowed migration of hydrocarbons out of the coal.

  12. Optical Property Evaluation of Next Generation Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  13. Evaluation of Ash Toxicity Generated From the Thermal Plasma Pyrolysis of Used Automobile Tires

    NASA Astrophysics Data System (ADS)

    Chang, J. S.; Novog, D. R.; Jamal, S.

    1996-10-01

    The disposal of used tires represents a severe environmental problem. As the heat content of the rubber tires is even higher than that of coal it should be considered as a future source of alternate fuel for power generation. There have been attempts to burn old tires directly in cofired boilers for production of electricity. However, there are several environmental concerns since the combustion flue gas may contain a significant concentration heavy metals (Fe, Zn, Cd, As, etc.). One technique currently being developed is the pyrolyzation of rubber tires by a thermal plasma to produce combustible gases. In this work, ashes generated during the plasma pyrolysis of used automobile tires using a DC Argon thermal plasma were analyzed using Neutron Activation Analysis (NAA) and produced syngas composition was analyzed by FT-IR.. The gas analysis indicates a significant quantity of combustible gases (CH4, C2H2, C2H4, CO, H2 etc..) was produced from the thermal plasma pyrolysis of used tires. The results also indicate that a majority of the heavy metals present in used tires were concentrated in the ashes deposited in reaction chamber wall and in the two-stage filtering system. Furthermore the heavy metal concentration decreases significantly with increasing distance from the plasma torch. Toxic components such as Zn, As and Cl were also collected in the filtering process.

  14. Sand control in wells with gas generator and resin

    SciTech Connect

    Dees, J.M.

    1992-04-07

    This patent describes a method of treating a wellbore having formation perforations for controlling sand and other fine materials. It comprises positioning a quantity of fluid resin material in alignment with the formation perforations of the wellbore; positioning a gas generator in proximity with the fluid resin material; actuating the gas generator to increase wellbore pressure in a substantially instantaneous manner to a pressure substantially in excess of well pressure to force the fluid resin material from the wellbore into the formation perforations; and subsequently polymerizing the resin material to form a consolidated, porous, permeable matrix which retains the sand and other fine materials while permitting the flow of production fluid into the wellbore. This paper also describes a method of treating a wellbore having formation perforations for controlling sand and other fine materials. It comprises positioning a coiled tubing, having a valve and gas generator attached thereto, so that the valve is positioned in a predetermined location relative to the bottom formation perforation; injecting a predetermined amount of fluid resin material through the coiled tubing and valve into the wellbore; raising the gas generator to a position across the formation perforations and in proximity with the fluid resin material; actuating the gas generator to force the fluid resin material into the formation perforations; and thereafter polymerizing the previously fluid resin material to form a consolidated, porous, permeable matrix which retains the sand and other fine materials while permitting the flow of production fluid into the wellbore.

  15. Thermal effects of magmatic sills on coal seam metamorphism and gas occurrence

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Cheng, Long-biao; Cheng, Yuan-ping; Yin, Guang-zhi; Cai, Chun-cheng; Xu, Chao; Jin, Kan

    2014-04-01

    Igneous intrusions in coal seams are found in 80 % of coal mines in the Huaibei coalfield, China, and coal and gas outburst accidents have occurred 11 times under a 120-m-thick sill in the Haizi mining field. The magma's heat had a significant controlling effect on coal seam gas occurrence. Based on theoretical analysis, experimental tests and site validation, we analyzed the temperature distribution following magma intrusion into coal measure strata and the variations in multiple physical parameters and adsorption/desorption characteristics between the underlying coal seams beneath the sill in the Haizi mining field and coal seams uninfluenced by magma intrusion in the adjacent Linhuan mining field. The research results show that the main factors controlling the temperature distribution of the magma and surrounding rocks in the cooling process include the cooling time and the thickness and initial temperature of the magmatic rock. As the distance from sill increases, the critical effective temperature and the duration of sustained high temperatures decrease. The sill in the Haizi mining field significantly promoted coal seam secondary hydrocarbon generation in the thermally affected area, which generated approximately 340 m3/t of hydrocarbon. In the magma-affected area, the metamorphic grade, micropore volume, amount of gas adsorption, initial speed of gas desorption, and amount of desorption all increase. Fluid entrapment by sills usually causes the gas pressure and gas content of the underlying coal seams to increase. As a result, the outburst risks from coal seams increases as well.

  16. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  17. Assessing climate benefits of natural gas and coal electricity generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochun; Myhrvold, Nathan; Caldeira, Ken

    2015-04-01

    A transition from a system of coal electricity generation to near-zero emission electricity generation will be central to any effort to mitigate climate change. Natural gas is increasingly seen as a 'bridge fuel' for transitions form coal to near-zero emission energy sources. However, various studies use different metrics to estimate the climate impact of natural gas utilization, and led to differing conclusions. Thus, there is a need to identify the key factors affecting the climate effects of natural gas and coal electricity production, and to present these climate effects in as clear and transparent a way as possible. Here, we identify power plant efficiency and methane leakage rate as the key factors that explain most of the variance in greenhouse gas emissions by natural gas and coal power plants. We then develop a power plant GHG emission model, apply available life-cycle parameters to calculate associated CO2 and CH4 emissions and assess climate effects. Simple underlying physical changes can be obscured by abstract evaluation metrics, thus we base our discussion on temperature changes over time. We find that, during the period of plant operation, if there is substantial natural gas leakage, natural gas plants can produce greater near-term warming than a coal plant with the same power output. If leakage rates can be made to be low and efficiency high, natural gas plants can produce some reduction in near-term warming. However, without carbon capture and storage natural gas power plants cannot achieve the deep reductions that would be required to avoid substantial contribution to additional global warming. Achieving climate benefits from the use of natural gas depends on building high-efficiency natural gas plants, controlling methane leakage, and on developing a policy environment that assures a transition to future lower-emission technologies. For more information please see http://iopscience.iop.org/1748-9326/9/11/114022/article .

  18. Integrating planning and design optimization for thermal power generation in developing economies: Designs for Vietnam

    NASA Astrophysics Data System (ADS)

    Pham, John Dinh Chuong

    In the twenty first century, global warming and climate change have become environmental issues worldwide. There is a need to reduce greenhouse gas emissions from thermal power plants through improved efficiency. This need is shared by both developed and developing countries. It is particularly important in rapidly developing economies (for example, Vietnam, South Korea, and China) where there is very significant need to increase generation capacity. This thesis addresses improving thermal power plant efficiency through an improved planning process that emphasizes integrated design. With the integration of planning and design considerations of key components in thermal electrical generation, along with the selection of appropriate up-to-date technologies, greater efficiency and reduction of emissions could be achieved. The major barriers to the integration of overall power plant optimization are the practice of individual island tendering packages, and the lack of coordinating efforts between major original equipment manufacturers (OEM). This thesis assesses both operational and design aspects of thermal power plants to identify opportunities for energy saving and the associated reduction of CO2 emissions. To demonstrate the potential of the integrated planning design approach, three advanced thermal power plants, using anthracite coal, oil and gas as their respective fuel, were developed as a case study. The three plant formulations and simulations were performed with the cooperation of several leading companies in the power industry including Babcock & Wilcox, Siemens KWU, Siemens-Westinghouse Power Corporation, Hitachi, Alstom Air Preheater, TLT-Covent, and ABB Flakt. The first plant is a conventional W-Flame anthracite coal-fired unit for base load operation. The second is a supercritical oil-fired plant with advanced steam condition, for two shifting and cycling operations. The third plant is a gas-fired combined cycle unit employing a modern steam-cooled gas

  19. Gas generator for fine-grained coal fuels

    SciTech Connect

    Waldhofer, R.

    1981-10-20

    A gas generator is described which uses fine-grained coal and includes a steam boiler, a combustion boiler and a stack leading from the combustion chamber to the steam boiler. The steam boiler is provided with a slanting bottom portion for the discharge of fly ash and slag. The stack from the combustion chamber to the boiler is composed of a gas outlet pipe attached to the combustion chamber and a gas inlet pipe leading to the boiler. The gas outlet and gas inlet pipes are connected by attaching means. The gas inlet pipe has a double wall of which the inner wall with its top extends freely into the slanting bottom portion of the boiler and thus is adapted for axial heat expansion. The outer wall is provided with a heat expansion compensator and is connected with its top end to the said slanting bottom of the boiler and with its bottom end to the connecting means between the gas inlet and gas outlet pipes. The inner wall of the gas inlet pipe may be in the form of a jacket for holding a cooling water.

  20. Noble gas clusters and nanoplasmas in high harmonic generation

    NASA Astrophysics Data System (ADS)

    Aladi, M.; Bolla, R.; Rácz, P.; Földes, I. B.

    2016-02-01

    We report a study of high harmonic generation from noble gas clusters of xenon atoms in a gas jet. Harmonic spectra were investigated as a function of backing pressure, showing spectral shifts due to the nanoplasma electrons in the clusters. At certain value of laser intensity this process may oppose the effect of the well-known ionization-induced blueshift. In addition, these cluster-induced harmonic redshifts may give the possibility to estimate cluster density and cluster size in the laser-gas jet interaction range.

  1. Thermal History Of PMRs Via Pyrolysis-Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Gluyas, Richard E.; Alston, William B.; Snyder, William J.

    1994-01-01

    Pyrolysis-gas chromatography (PY-GC) useful as analytical technique to determine extents of cure or postcure of PMR-15 polyimides and to lesser extent, cumulative thermal histories of PMR-15 polyimides exposed to high temperatures. Also applicable for same purposes to other PMR polyimides and to composite materials containing PMR polyimides. Valuable in reducing costs and promoting safety in aircraft industry by helping to identify improperly cured or postcured PMR-15 composite engine and airframe components and helping to identify composite parts nearing ends of their useful lives.

  2. Thermal and Evolved Gas Analysis of "Nanophase" Carbonates: Implications for Thermal and Evolved Gas Analysis on Mars Missions

    NASA Technical Reports Server (NTRS)

    Lauer, Howard V., Jr.; Archer, P. D., Jr.; Sutter, B.; Niles, P. B.; Ming, Douglas W.

    2012-01-01

    Data collected by the Mars Phoenix Lander's Thermal and Evolved Gas Analyzer (TEGA) suggested the presence of calcium-rich carbonates as indicated by a high temperature CO2 release while a low temperature (approx.400-680 C) CO2 release suggested possible Mg- and/or Fe-carbonates [1,2]. Interpretations of the data collected by Mars remote instruments is done by comparing the mission data to a database on the thermal properties of well-characterized Martian analog materials collected under reduced and Earth ambient pressures [3,4]. We are proposing that "nano-phase" carbonates may also be contributing to the low temperature CO2 release. The objectives of this paper is to (1) characterize the thermal and evolved gas proper-ties of carbonates of varying particle size, (2) evaluate the CO2 releases from CO2 treated CaO samples and (3) examine the secondary CO2 release from reheated calcite of varying particle size.

  3. Hybrid propulsion based on fluid-controlled solid gas generators

    NASA Technical Reports Server (NTRS)

    Cohen, Norman S.; Strand, Leon D.

    1993-01-01

    The use of fuel-rich solid (gas generator-type) propellants for hybrid propulsion affords some design and utilization efficiency advantages. Both forward and aft liquid injection control concepts are evaluated from the operational standpoints of ballistics, throttling, stability and extinguishment. Steady-state and non-steady ballistics analyses are employed for this evaluation. Stability of solid motor operation is enhanced by fluid injection with adequate injector pressure drop. Efficient throttling and reliable extinguishment are attained through a combination of solid propellant combustion tailoring, grain design, control valves and sensors. Initial results from a laboratory-scale slab combustor, combining a gas generator propellant with gaseous oxygen injection, are also presented.

  4. High order harmonic generation in dual gas multi-jets

    SciTech Connect

    Tosa, Valer E-mail: calin.hojbota@itim-cj.ro; Hojbota, Calin E-mail: calin.hojbota@itim-cj.ro

    2013-11-13

    High order harmonic generation (HHG) in gas media suffers from a low conversion efficiency that has its origins in the interaction of the atom/molecule with the laser field. Phase matching is the main way to enhance the harmonic flux and several solutions have been designed to achieve it. Here we present numerical results modeling HHG in a system of multi-jets in which two gases alternate: the first gas jet (for example Ne) generates harmonics and the second one which ionizes easier, recover the phase matching condition. We obtain configurations which are experimentally feasible with respect to pressures and dimensions of the jets.

  5. Acoustic wave reflection from thermal gradient regions in a gas

    NASA Astrophysics Data System (ADS)

    Tarau, Calin; Otugen, Volkan; Sheverev, Valeri; Vradis, George

    2003-11-01

    Acoustic wave reflection from thermal gradient regions in a gas Calin Tarau, Volkan Otugen, Valery Sheverev and George Vradis Polytechnic University Six Metrotech Center Brooklyn, NY 11201 Temperature gradients in a gas medium can cause reflection and refraction of acoustic waves. For large incidence angles and sharp temperature gradients, sound reflection from the high (or low) temperature zone can be significant. The present report evaluates the effectiveness of using small regions of hot gas inside an ambient environment as a sound barrier. The behavior of sound wave in the two extreme cases where the acoustic wavelength is either much larger or much smaller than the gradient region is well known. In the latter case, the reflection coefficient tends to be negligible while the maximum reflection is obtained for the former situation. The present is the intermediate case where Ü l L (Ü and L are the acoustic wavelength and length of gradient region, respectively). The compressible unsteady Euler's equations together with the perfect gas state equation are solved using higher order (both time and space) finite volume approach. The numerical results are compared with previous theoretical analysis and recent experimental results of sound propagation through glow discharge.

  6. Liquefied natural gas-freon electricity generation system

    SciTech Connect

    Nozawa, R.

    1983-12-27

    The present invention relates to an electricity generation system, using freon as an agent to circulate between a warm heat source and a cold heat sink, recapturing electrical energy on one side and alleviating thermal pollution in the environment on the other side.

  7. Liquefied natural gas-freon electricity generation system

    SciTech Connect

    Nozawa, R.

    1982-05-25

    The present invention relates to an electricity generation system, using freon as an agent to circulate between a warm heat source and a cold heat sink, recapturing electrical energy on one side and alleviating thermal pollution in the environment on the other side.

  8. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    EPA Science Inventory

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  9. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  10. Transition metal catalysis in the generation of petroleum and natural gas. Final report, September 1, 1992--October 31, 1995

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process. The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  11. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    PubMed

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.

  12. Generating Molecular Rovibrational Coherence by Two-Photon Femtosecond Photoassociation of Thermally Hot Atoms

    SciTech Connect

    Rybak, Leonid; Levin, Liat; Amitay, Zohar; Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michal; Moszynski, Robert; Koch, Christiane P.

    2011-12-30

    The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.

  13. Generating Molecular Rovibrational Coherence by Two-Photon Femtosecond Photoassociation of Thermally Hot Atoms

    NASA Astrophysics Data System (ADS)

    Rybak, Leonid; Amaran, Saieswari; Levin, Liat; Tomza, Michał; Moszynski, Robert; Kosloff, Ronnie; Koch, Christiane P.; Amitay, Zohar

    2011-12-01

    The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.

  14. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  15. Electro-thermal modeling of a microbridge gas sensor

    SciTech Connect

    Manginell, R.P.; Smith, J.H.; Ricco, A.J.; Hughes, R.C.; Moreno, D.J.; Huber, R.J.

    1997-08-01

    Fully CMOS-compatible, surface-micromachined polysilicon microbridges have been designed, fabricated, and tested for use in catalytic, calorimetric gas sensing. To improve sensor behavior, extensive electro-thermal modeling efforts were undertaken using SPICE. The validity of the SPICE model was verified comparing its simulated behavior with experiment. Temperature distribution of an electrically heated microbridges was measured using an infrared microscope. Comparisons among the measured distribution, the SPICE simulation, and distributions obtained by analytical methods show that heating at the ends of a microbridges has important implications for device response. Additional comparisons between measured and simulated current-voltage characteristics, as well as transient response, further support the accuracy of the model. A major benefit of electro- thermal modeling with SPICE is the ability to simultaneously simulate the behavior of a device and its control/sensing electronics. Results for the combination of a unique constant-resistance control circuit and microbridges gas sensor are given. Models of in situ techniques for monitoring catalyst deposition are shown to be in agreement with experiment. Finally, simulated chemical response of the detector is compared with the data, and methods of improving response through modifications in bridge geometry are predicted.

  16. Design criteria monograph for liquid propellant gas generators

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Monograph reviews and assesses current design practices, and from them establishes firm guidance for achieving greater consistency in design, increased reliability in end product, and greater efficiency in design effort. Main emphasis of monograph is on bipropellant gas generators using hydrogen peroxide and hydrazine monopropellants.

  17. 33. Lower level, ballistic gas generator at left (opens launcher ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Lower level, ballistic gas generator at left (opens launcher door during launch), LDB panel at right - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  18. Minimizing thermal degradation in gas chromatographic quantitation of pentaerythritol tetranitrate.

    PubMed

    Lubrano, Adam L; Field, Christopher R; Newsome, G Asher; Rogers, Duane A; Giordano, Braden C; Johnson, Kevin J

    2015-05-15

    An analytical method for establishing calibration curves for the quantitation of pentaerythriol tetranitrate (PETN) from sorbent-filled thermal desorption tubes by gas chromatography with electron capture detection (TDS-GC-ECD) was developed. As PETN has been demonstrated to thermally degrade under typical GC instrument conditions, peaks corresponding to both PETN degradants and molecular PETN are observed. The retention time corresponding to intact PETN was verified by high-resolution mass spectrometry with a flowing atmospheric pressure afterglow (FAPA) ionization source, which enabled soft ionization of intact PETN eluting the GC and subsequent accurate-mass identification. The GC separation parameters were transferred to a conventional GC-ECD instrument where analytical method-induced PETN degradation was further characterized and minimized. A method calibration curve was established by direct liquid deposition of PETN standard solutions onto the glass frit at the head of sorbent-filled thermal desorption tubes. Two local, linear relationships between detector response and PETN concentration were observed, with a total dynamic range of 0.25-25ng. PMID:25841610

  19. Thermal Independent Modulator for Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Luong, Jim; Guan, Xiaosheng; Xu, Shifen; Gras, Ronda; Shellie, Robert A

    2016-09-01

    We introduce a modulation strategy for comprehensive two-dimensional gas chromatography (GC×GC) with complete thermal independence between the cooling and heating stages and without the need for GC oven heat for remobilization. Based on this approach, a compact thermal independent modulator (TiM) with thermoelectric cooling and micathermic heating has been successfully innovated for use in GC×GC. The device operates externally to a gas chromatograph, does not require liquid cryogen, and has minimal consumables requirements. The augmentation of an additional gas flow stream results in a number of critical chromatographic parameter improvements such as the decoupling of flows of first- and second-dimension columns to attain both efficiency and speed optimized flow in each dimension, the potential for independent retention time locking or scaling in either dimension, the improvement of modulator reinjection efficiency, as well as facilitating back-flushing for the first dimension to enhance system cleanliness and throughput. TiM was found to be useful for chromatographic applications over a volatility range equivalent to nC6 to nC24 under conditions used. Repeatability of retention time for model compounds such as benzene, toluene, ethyl benzene, and xylenes were found to be quite satisfactory with relative standard deviations of less than 0.009% in (1)D and less than 0.008% in (2)D (n = 10). Typical peak widths of 120 ms or less with a relative standard deviation of less than 4.7% were achieved for the aromatic model compounds. In this article, the performance of the modulator is demonstrated and a series of challenging chromatographic applications are presented to illustrate usefulness of the apparatus. PMID:27537206

  20. 81mKr gas generator for lung ventilation study.

    PubMed

    Koyama, T; Koyama, T; Hirokawa, Y; Yoshizawa, Y; Noma, H; Horiguchi, T; Kiso, Y; Hasai, H; Takemi, H

    1980-12-01

    A generator of 81mKr was designed and tested. The parent nuclide 81Rb was produced by the 70 MeV proton induced reactions on a Rb2SO4 target. 81mKr was bubbled out with oxygen gas from the 81Rb solution, and collected in a reservoir for lung ventilation studies. The generator was continuously operated at the high flow rate up to 10 1/min. The generator efficiency was 86%. The collection rates in the reservoir were examined under several flow rates. The pure 81mKr isomer was observed wih a NaI (T1) detector at the reservoir.

  1. Microwave-assisted generation of standard gas mixtures.

    PubMed

    Xiong, Guohua; Pawliszyn, Janusz

    2002-05-15

    Microwave heating was employed for preparation of the standard gas of volatile organic compounds (VOCs) and semivolatile organic compounds (semi-VOCs) by using a 1000 W commercial domestic microwave oven and 1 L gas-sampling bulbs. The VOCs investigated were benzene, chloroform, 1,3-dichlorobenzene, tetrachloroethylene, toluene, and 1,1,2-trichloroethane, and the semi-VOCs used were the polychlorinated biphenyls (PCBs) PCB 1016 and PCB 1248. Since these weakly or nonpolar molecules are very poor absorbers of microwave energy, an appropriate amount of water was introduced to accept microwave radiation and act as the thermal source to accelerate their evaporation. The glass bulb may also contribute thermal energy to the VOCs/semi-VOCs by accepting microwave energy to a small degree. For 0.5 microL of liquid VOCs on 10 mg of glass wool, it was shown that 15 microL of H2O and 60 s of microwave heating yielded a very efficient evaporation [97.2-106.4%, compared with a classic method (Muller, L; Gorecki, T.; Pawliszyn, J. Fresenius' J. Anal. Chem. 1999, 364, 610-616)]. For 1 microL of PCB solution (1000 microg/mL in hexane), 15 microL of H2O and 90 s of microwave heating also provided a complete evaporation. The addition of water was particularly significant for microwave-assisted evaporation of PCBs because semi-VOCs are much more difficult to evaporate than VOCs. This developed microwave technique proved to be quite simple, powerful, rapid, accurate, and safe for the preparation of VOC/semi-VOC standard gas. Solid- phase microextraction combined with gas chromatography was used for the gas analysis.

  2. Revisions to the hydrogen gas generation computer model

    SciTech Connect

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program's maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model's predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  3. Revisions to the hydrogen gas generation computer model

    SciTech Connect

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program`s maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model`s predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  4. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, Tim; Turner, James E. (Technical Monitor)

    2000-01-01

    This presentation consists of viewgraph which review the test program and the results of the tests for the Gas Generator (GG) component for the Fastrac Engine. Included are pictures of the Fastrac (MC-1) Engine and the GG, diagrams of the flight configuration, and schematics of the LOX, and the RP-1 systems and the injector assembly. The normal operating parameters are reviewed, as are the test instrumentation. Also shown are graphs of the hot gas temperature, and the test temperature profiles. The results are summarized.

  5. Hydrogen Peroxide Gas Generator Cycle with a Reciprocating Pump

    SciTech Connect

    Whitehead, J C

    2002-06-11

    A four-chamber piston pump is powered by decomposed 85% hydrogen peroxide. The performance envelope of the evolving 400 gram pump has been expanded to 172 cc/s water flow at discharge pressures near 5 MPa. A gas generator cycle system using the pump has been tested under similar conditions of pressure and flow. The powerhead gas is derived from a small fraction of the pumped hydrogen peroxide, and the system starts from tank pressures as low as 0.2 MPa. The effects of steam condensation on performance have been evaluated.

  6. A Thermoelectric Generator Using Porous Si Thermal Isolation

    PubMed Central

    Hourdakis, Emmanouel; Nassiopoulou, Androula G.

    2013-01-01

    In this paper we report on a thermoelectric generator (TEG) using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The “hot” contacts of the thermocouples lie on the porous Si layer, while the “cold” contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the “hot” contacts of the thermocouples, the “cold” contacts being isolated from the “hot” contacts by a thick resist layer. The fabrication of the sensing element (Si die) is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 μW/cm2 was measured for a 50 μm thick porous Si layer. PMID:24152923

  7. A thermoelectric generator using porous Si thermal isolation.

    PubMed

    Hourdakis, Emmanouel; Nassiopoulou, Androula G

    2013-01-01

    In this paper we report on a thermoelectric generator (TEG) using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The "hot" contacts of the thermocouples lie on the porous Si layer, while the "cold" contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the "hot" contacts of the thermocouples, the "cold" contacts being isolated from the "hot" contacts by a thick resist layer. The fabrication of the sensing element (Si die) is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 μW/cm2 was measured for a 50 μm thick porous Si layer.

  8. A thermoelectric generator using porous Si thermal isolation.

    PubMed

    Hourdakis, Emmanouel; Nassiopoulou, Androula G

    2013-01-01

    In this paper we report on a thermoelectric generator (TEG) using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The "hot" contacts of the thermocouples lie on the porous Si layer, while the "cold" contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the "hot" contacts of the thermocouples, the "cold" contacts being isolated from the "hot" contacts by a thick resist layer. The fabrication of the sensing element (Si die) is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 μW/cm2 was measured for a 50 μm thick porous Si layer. PMID:24152923

  9. Mechanical behavior of thermal barrier coatings for gas turbine blades

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.; Phucharoen, W.; Chang, G. C.

    1984-01-01

    Plasma-sprayed thermal barrier coatings (TBCs) will enable turbine components to operate at higher temperatures and lower cooling gas flow rates; thereby improving their efficiency. Future developments are limited by precise knowledge of the material properties and failure mechanisms of the coating system. Details of this nature are needed for realistic modeling of the coating system which will, in turn, promote advancements in coating technology. Complementary experiments and analytical modeling which were undertaken in order to define and measure the important failure processes for plasma-sprayed coatings are presented. The experimental portion includes two different tests which were developed to measure coating properties. These are termed tensile adhesion and acoustic emission tests. The analytical modeling section details a finite element method which was used to calculate the stress distribution in the coating system. Some preliminary results are presented.

  10. Dissipation process of binary gas mixtures in thermally relativistic flow

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier–Stokes–Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165–74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  11. Dissipation process of binary gas mixtures in thermally relativistic flow

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier-Stokes-Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165-74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  12. Two-Dimensional Thermal Resistance Analysis of a Waste Heat Recovery System with Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Huang, Gia-Yeh; Yao, Da-Jeng

    2013-07-01

    In this study, it is shown that two-dimensional (2D) thermal resistance analysis is a rapid and simple method to predict the power generated from a waste heat recovery system with thermoelectric generators (TEGs). Performance prediction is an important part of system design, generally being simulated by numerical methods with high accuracy but long computational duration. Use of the presented analysis saves much time relative to such numerical methods. The simple 2D model of the waste heat recovery system comprises three parts: a recovery chamber, the TEGs, and a cooling system. A fin-structured duct serves as a heat recovery chamber, to which were attached the hot sides of two TEGs; the cold sides were attached to a cooling system. The TEG module and duct had the same width. In the 2D analysis, unknown temperatures are located at the centroid of each cell into which the system is divided. The relations among the unknown temperatures of the cells are based on the principle of energy conservation and the definition of thermal resistance. The temperatures of the waste hot gas at the inlet and of the ambient fluid are known. With these boundary conditions, the unknown temperatures in the system become solvable, and the power generated by the TEGs can be predicted. Meanwhile, a three-dimensional (3D) model of the system was simulated in FloTHERM 9.2. The 3D numerical solution matched the solution of the 2D analysis within 10%.

  13. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    NASA Astrophysics Data System (ADS)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-09-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory's BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release.

  14. Oxygen rich gas generator design and performance analysis

    NASA Technical Reports Server (NTRS)

    Gloyer, P. W.; Knuth, W. H.; Crawford, R. A.

    1993-01-01

    The present oxygen-rich combustion research investigates oxygen gas generator concepts. The theoretical and modeling aspects of a selected concept are presented, together with a refined concept resulting from the findings of the study. This investigation examined a counter-flow gas generator design for O2/H2 mass ratios of 100-200, featuring a near-stoichiometric combustion zone followed by downstream mixing. The critical technologies required to develop a performance model are analyzed and include the following: (1) oxygen flow boiling; (2) two-phase oxygen flow heat transfer; (3) film-cooling in the combustion zone; (4) oxygen-rich combustion with hydrogen; and (5) mixing and dilution.

  15. Phoenix Mars Mission--the thermal evolved gas analyzer.

    PubMed

    Hoffman, John H; Chaney, Roy C; Hammack, Hilton

    2008-10-01

    The Phoenix spacecraft that was launched to Mars in August 2007 landed safely on the Martian northern arctic region on May 25, 2008. It carried six experiments to study the history of water on the planet and search for organic molecules in the icy subsurface Martian soil. The spacecraft is a lander with an arm and scoop designed to dig a trench though the top soil to reach an expected ice layer near the surface. One of the instruments on board is the thermal evolved gas analyzer (TEGA), which consists of two components, a set of eight very small ovens that will heat samples of the ice soil mixtures from the trench to release imbedded gases and mineral decomposition products, and a mass spectrometer that serves as the analysis tool for the evolved gases, and also for measurements of the composition and isotopic ratios of the gases that comprise the atmosphere of Mars. The mass spectrometer is a miniature magnetic sector instrument controlled by microprocessor-driven power supplies. One feature is the gas enrichment cell that will increase the partial pressures of the noble gases in an atmosphere sample by removing all the active gases, carbon dioxide, and nitrogen, to improve the accuracy of their isotopic ratio measurements. PMID:18715800

  16. Characterization of Gas Hydrates Formation and Dissociation Using Thermal Analysis and Calorimetry

    NASA Astrophysics Data System (ADS)

    Rudow, M.; Lilova, K.

    2015-12-01

    In general, the gas hydrates are formed at low temperature and high pressure which requires a special technique to mimic the natural conditions. The hydrate thermal properties: heat capacity, heat of dissociation, are crucial for evaluating the effects on climate change and for a prediction of the gas production rates from hydrate reservoirs. The effect of the porous materials on the dissociation of synthetic methane hydrates was investigated at 150 - 300 K and atmospheric pressure. Another experiment with methane hydrates, but at high pressure (20 MPa) was performed at near room temperature using a highly sensitive micro-differential scanning calorimeter with a specifically design high pressure vessel (the vessel can withstand a pressure up to 1000 bars). The thermal cycle for measuring the methane hydrate dissociation in water includes cooling down a water solution under a certain methane pressure (30 to 350 bars) to -30 C to allow water crystallization and hydrate formation, then heated up to room temperature. The endothermic peak, following the ice melting is associated to the hydrate dissociation process and gives the enthalpy of the hydrate decomposition. The kinetics of the hydrates formation could also be predicted by a rapid DSC cooling experiment followed by isothermal step and heating. Both dissociation and specific heats of synthetic methane and ethane hydrates were measured under high-pressure condition by using a heat-flow type calorimeter to understand thermodynamic properties of gas hydrates under submarine/sublacustrine environments. The large reserves of natural gas are present as clathrate hydrates in permafrost regions and beneath the oceans have generated interest in the study of their thermophysical properties such as heat capacity and thermal conductivity. The effect of isotopic substitution in both THF and water on the eutectic and hydrate melting temperatures in water-tetrahydrofuran systems studied by DSC will be shown as an example.

  17. Thermal Flammable Gas Production from Bulk Vitrification Feed

    SciTech Connect

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.

    2008-05-21

    The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. The drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution

  18. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation

    PubMed Central

    Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan

    2014-01-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  19. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    PubMed

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  20. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  1. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  2. A cohort mortality study among gas generator utility workers.

    PubMed

    Blot, W J; Fryzek, J P; Henderson, B E; Sadler, C J; McLaughlin, J K

    2000-02-01

    An earlier cohort study tracked the mortality experience through 1988 of male employees at five utility companies in the United States. Workers employed by the Pacific Gas and Electric Company (PG&E) were part of that study, but results for PG&E employees overall or for those involved in gas generator plant operations where hexavalent chromium compounds were used in open and closed systems from the 1950s to early 1980s were not reported. To evaluate risk of lung cancer and other diseases, a cohort of 51,899 PG&E male workers was followed for mortality from 1971 through 1997. Observed numbers of deaths were compared with those expected based on rates in the general California population, with standardized mortality ratios (SMR) and corresponding 95% confidence intervals (CI) calculated for the total cohort and for subsets defined by potential for gas generator plant exposure. A total of 10,591 deaths were observed, a number significantly less than expected (SMR, 0.89; 95% CI, 0.87 to 0.91). No significant excesses of total or specific cancers were observed, with SMR typically near or below 1.0. Lung cancer mortality in the entire cohort was close to expected (SMR, 0.98; 95% CI, 0.92 to 1.05), with no excess detected among persons who worked (SMR, 0.81; 95% CI, 0.35 to 1.60) or trained (SMR, 0.57; 95% CI, 0.12 to 1.67) at gas generator facilities. Furthermore, risk of lung cancer did not increase with increasing duration of employment or time since hire. The study thus provides no evidence that occupational exposures at PG&E facilities resulted in increased risk of lung cancer or any other cause of death. The results indicate that any chromium exposures were of insufficient magnitude to result in increased risk of lung cancer.

  3. Selection and Evaluation of Thermal Interface Materials for Reduction of the Thermal Contact Resistance of Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Sakamoto, Tatsuya; Iida, Tsutomu; Sekiguchi, Takeshi; Taguchi, Yutaka; Hirayama, Naomi; Nishio, Keishi; Takanashi, Yoshifumi

    2014-10-01

    A variety of thermal interface materials (TIMs) were investigated to find a suitable TIM for improving the performance of thermoelectric power generators (TEGs) operating in the medium-temperature range (600-900 K). The thermal resistance at the thermal interface between which the TIM was inserted was evaluated. The TIMs were chosen on the basis of their thermal stability when used with TEGs operating at medium temperatures, their electrical insulating properties, their thermal conductivity, and their thickness. The results suggest that the boron nitride (BN)-based ceramic coating, Whity Paint, and the polyurethane-based sheet, TSU700-H, are suitable TIMs for the heat source and heat sink sides, respectively, of the TEG. Use of these effectively enhances TEG performance because they reduce the thermal contact resistance at the thermal interface.

  4. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  5. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  6. Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste

    SciTech Connect

    Person, J.C.

    1996-05-30

    Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.

  7. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  8. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  9. Department of Energy power generation programs for natural gas

    SciTech Connect

    Bajura, R.A.

    1995-04-01

    The U.S. Department of Energy (DOE) is sponsoring two major programs to develop high efficiency, natural gas fueled power generation technologies. These programs are the Advanced Turbine Systems (ATS) Program and the Fuel Cell Program. While natural gas is gaining acceptance in the electric power sector, the improved technology from these programs will make gas an even more attractive fuel, particularly in urban areas where environmental concerns are greatest. Under the auspices of DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE), the 8-year ATS Program is developing and will demonstrate advanced gas turbine power systems for both large central power systems and smaller industrial-scale systems. The large-scale systems will have efficiencies significantly greater than 60 percent, while the industrial-scale systems will have efficiencies with at least an equivalent 15 percent increase over the best 1992-vintage technology. The goal is to have the system ready for commercial offering by the year 2000.

  10. Generation and characterization of gas bubbles in liquid metals

    SciTech Connect

    Eckert, S.; Gerbeth, G.; Witke, W.

    1996-06-01

    There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empirical nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer.

  11. DC non-thermal atmospheric-pressure plasma jet generated using a syringe needle electrode

    NASA Astrophysics Data System (ADS)

    Matra, Khanit

    2016-07-01

    Non-thermal plasma jet was generated by applying a dc source voltage between the syringe needle anode with flowing Argon gas and a planar or a hollow copper cathode in an atmospheric-pressure environment. The two operating discharge modes, which were self-pulsing and a continuous discharge mode, these were mainly controlled by the limitations of the current flowing in the discharge circuit. A ballast resistor was an important factor in affecting the limitations of the operating discharge mode. The gas breakdown was initially generated in the self-pulsing discharge mode at the source voltage of 1.2 kV. This was slightly higher than the breakdown voltage at the experimental condition of 1 lpm of Argon and a 1 mm electrode gap distance. The peak self-pulsing discharge currents were up to 15–20 A with a self-pulsing frequency in the range of 10–20 kHz. The continuous discharge mode could be observed at the higher source voltage with the continuous discharge current within the range of a few milliamperes.

  12. Inhomogeneous feed gas processing in industrial ozone generation.

    PubMed

    Krogh, Fabio; Merz, Reto; Gisler, Rudolf; Müller, Marco; Paolini, Bernhard; Lopez, Jose L; Freilich, Alfred

    2008-01-01

    The synthesis of ozone by means of dielectric barrier discharge (DBD) is extensively used in industry. Ozone generators available on the market differ in ozone production capacities, electrode arrangements and working parameters, but operate with a uniformly distributed filamentary discharge plasma pattern.In the presented work the benefits of inhomogeneous feed gas processing are explored. Causality between power induction, production efficiency and working parameters are investigated. Different electrode arrangements, evenly distributed within a given space parameter, were designed, simulated, manufactured and tested on a representative scale. A finite element model was utilized to simulate an inhomogeneous power induction pattern along the ozone generator tube. The simulation yielded the local power density, the local gas temperature gradient and the relative DBD packing density.Results show that the degree of filamentation turns out to be decisive, indicating a new potential by means of plasma tailoring. An arrangement with a pronounced power induction at the inlet of the ozone generator revealed several advantages over homogeneous plasma processing arrangements, for which an increase in robustness and a reduction in electrical power consumption are achieved. PMID:19092182

  13. Externally limited defect generation in multiwalled carbon nanotubes upon thermal annealing, and possible mechanism

    NASA Astrophysics Data System (ADS)

    Bhalerao, G. M.; Sinha, A. K.; Srivastava, A. K.; Sathe, V.; Amarendra, G.

    2016-09-01

    Structural defects in multiwalled carbon nanotubes (MWCNTs) are found to increase upon moderate thermal annealing below 1400 K in an argon atmosphere. The defects are estimated using the ID/IG ratio in Raman spectroscopy of MWCNTs and confirmed by a direct observation using high-resolution transmission electron microscopy (HRTEM). HRTEM shows that the structural defects are created due to large damage to the outer walls of the nanotubes, while inner walls do not sustain any damage. The generation of defects on MWCNTs is attibuted to mechanical abrasion between the MWCNTs in contact, augmented by the momentum transfer from the flow of hot gas. A possible mechanism is proposed and experimentally validated by means of modulating the chemical environment of annealing from argon to hydrogen.

  14. Externally limited defect generation in multiwalled carbon nanotubes upon thermal annealing, and possible mechanism.

    PubMed

    Bhalerao, G M; Sinha, A K; Srivastava, A K; Sathe, V; Amarendra, G

    2016-09-01

    Structural defects in multiwalled carbon nanotubes (MWCNTs) are found to increase upon moderate thermal annealing below 1400 K in an argon atmosphere. The defects are estimated using the ID/IG ratio in Raman spectroscopy of MWCNTs and confirmed by a direct observation using high-resolution transmission electron microscopy (HRTEM). HRTEM shows that the structural defects are created due to large damage to the outer walls of the nanotubes, while inner walls do not sustain any damage. The generation of defects on MWCNTs is attibuted to mechanical abrasion between the MWCNTs in contact, augmented by the momentum transfer from the flow of hot gas. A possible mechanism is proposed and experimentally validated by means of modulating the chemical environment of annealing from argon to hydrogen. PMID:27456152

  15. Combustion Stability Analyses for J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.

  16. Use of thermal desorption/gas chromatography as a performance-based screening method for petroleum hydrocarbons

    SciTech Connect

    Slavin, P.J. |; Crandall, K.; Dawson, L.; Kottenstette, R.; Wade, M. |

    1996-08-01

    Thermal desorption/gas chromatography (TD/GC) was used to screen soil samples on site for total petroleum hydrocarbon (TPH) content during a RCRA Facility Investigation (RFI). It proved to be a rapid, cost- effective tool for detecting non-aromatic mineral oil in soil. The on- site TD/GC results correlated well with those generated at an off- site laboratory for samples analyzed in accordance with EPA Method 418.1.

  17. Study of compressor systems for a gas-generator engine

    NASA Technical Reports Server (NTRS)

    Sather, Bernard I; Tauschek, Max J

    1950-01-01

    Various methods of providing compressor-capacity and pressure-ratio control in the gas-generator type of compound engine over a range of altitudes from sea level to 50,000 feet are presented. The analytical results indicate that the best method of control is that in which the first stage of compression is carried out in a variable-speed supercharger driven by a hydraulic slip coupling. The constant-speed second stage could be either a mixed-flow rotary compressor or a piston-type compressor. A variable-area turbine nozzle is shown to be unnecessary for cruising operation of the engine.

  18. Gas generation in pure and impure plutonium-bearing materials

    SciTech Connect

    Mason, R.; Allen, T.; Eller, P.G.; Hagan, R.; Horrell, D.; Rink, N.

    1999-07-01

    The Los Alamos National Laboratory's (LANL's) materials identification and surveillance (MIS) project identifies materials to be stored in DOE-STD-3013-96 containers, determines the chemical and physical character of stored materials, and evaluates processing to be used to stabilize materials to meet the standard. The project has completed processing and analysis of 9 Hanford items and 24 Rocky Flats items, representing a substantial portion of the oxides to be packaged for long-term storage. The resultant data provide insight into the physical and chemical characteristics of the materials at the sites. A component of the study was to investigate gas generation for representative materials. These studies included headspace gas measurements over the 9 Hanford items, measurement of gas generation in 10-g surveillance samples of MIS powders, and pressure monitoring. Before examining the Hanford cans, sampling and analysis methods were demonstrated on HRA-905191, an item from the LANL vault. This item was not typical of materials designated to be stored in 3013 cans, as it contained plastic vials, emery cloths, paper towels, and a large percentage of thorium. However, it was one of the items that contained significant hydrogen in the headspace. A mass spectrometer was used to determine the composition of headspace gases. Oxygen was substantially depleted in all cases, and the percent of nitrogen in many items was greater than that found in air. In both cans with a high hydrogen content, the corresponding oxygen content was near zero (HRA905191 and ARF-102-85-365). In some cases, carbon dioxide was generated in the cans. Carbon monoxide was found in item BLO-39-11-85-295. This item has a high americium content, thus higher temperature than other materials examined. The only notable impurities in item BLO-39-11-85-295 were carbon at {approximately}0.1 wt% and chlorides at 0.2 wt%. Seven long-term surveillance vessels each holding {approximately}10 g of MIS powders have

  19. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  20. Design Optimization of Gas Generator Hybrid Propulsion Boosters

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Phillips, Dwight; Fink, Larry

    1990-01-01

    A methodology used in support of a study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specific optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  1. Design optimization of gas generator hybrid propulsion boosters

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Phillips, Dwight U.; Fink, Lawrence E.

    1990-01-01

    A methodology used in support of a contract study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specified optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  2. Attosecond pulses generated by the lighthouse effect in Ar gas

    NASA Astrophysics Data System (ADS)

    Tosa, Valer; Lee, Ji Su; Kim, Hyung Taek; Nam, Chang Hee

    2015-05-01

    We numerically investigate harmonic generation in Ar gas under high ionization conditions and demonstrate that a lighthouse effect is present. We examine the structure of the driving field during propagation in temporal, spectral, and spatial domains, and conclude that the complete depletion of neutral Ar on axis gives rise to additional wavelets at off-axis regions. We show that these wavelets propagate with increasing divergence as the radial distances from the axis increase, generating the rotation of the wave front, thus fulfilling a necessary condition for the lighthouse effect. We obtain attosecond bursts of light emitted with different divergences in successive optical half-cycles so that in the far field these bursts arrive at different distances from the beam axis.

  3. Numerical simulation of thermal-hydraulic generators running in a single regime

    NASA Astrophysics Data System (ADS)

    Chioreanu, Nicolae; Mitran, Tudor; Rus, Alexandru; Beles, Horia

    2014-06-01

    The paper presents the basis for the design of thermal-hydraulic generators running in a single regime. The thermal-hydraulic generators in a single regime running represent an absolute novelty worldwide (a pioneer invention). Based on the methodology concerning this subject, the design calculus for an experimental model was developed.

  4. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  5. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. PMID:26684056

  6. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel.

  7. Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Martus, K.; Lee, W. Y.; Becker, K.

    2004-04-01

    We explored the feasibility of using a single flow-through microhollow cathode discharge (MHCD) as a non-thermal plasma source for hydrogen (H2) production for portable fuel cell applications. The MHCD device consisted of two thin metal electrodes separated by a mica spacer with a single-hole, roughly 100 [mu]m in diameter, through all three layers. The efficiency of the MHCD reactor for H2 generation from NH3 was analyzed by monitoring the products formed in the discharge in a mass spectrometer. Using a gas mixture of up to 10% NH3 in Ar at pressures up to one atmosphere, the MHCD reactor achieved a maximum ammonia conversion of slightly more than 20%. The overall power efficiency of the MHCD reactor reached a peak value of about 11%. The dependence of NH3 conversion and power efficiency on the residence time of the gas in the MHCD plasma was studied. Experiments using pulsed excitation of the MHCD plasma indicated that pulsing can increase the power efficiency. Design and operating criteria are proposed for a microplasma-based H2 generator that can achieve a power efficiency above the break-even point, i.e., a microplasma reactor that requires less electrical power to generate and maintain the plasma than the power that can be obtained from the conversion of the H2 generated in the microplasma reactor.

  8. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    SciTech Connect

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-09-01

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that

  9. Deformation and the timing of gas generation and migration in the eastern Brooks Range foothills, Arctic National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Parris, T.M.; Burruss, R.C.; O'Sullivan, P. B.

    2003-01-01

    Along the southeast border of the 1002 Assessment Area in the Arctic National Wildlife Refuge, Alaska, an explicit link between gas generation and deformation in the Brooks Range fold and thrust belt is provided through petrographic, fluid inclusion, and stable isotope analyses of fracture cements integrated with zircon fission-track data. Predominantly quartz-cemented fractures, collected from thrusted Triassic and Jurassic rocks, contain crack-seal textures, healed microcracks, and curved crystals and fluid inclusion populations, which suggest that cement growth occurred before, during, and after deformation. Fluid inclusion homogenization temperatures (175-250??C) and temperature trends in fracture samples suggest that cements grew at 7-10 km depth during the transition from burial to uplift and during early uplift. CH4-rich (dry gas) inclusions in the Shublik Formation and Kingak Shale are consistent with inclusion entrapment at high thermal maturity for these source rocks. Pressure modeling of these CH4-rich inclusions suggests that pore fluids were overpressured during fracture cementation. Zircon fission-track data in the area record postdeposition denudation associated with early Brooks Range deformation at 64 ?? 3 Ma. With a closure temperature of 225-240??C, the zircon fission-track data overlap homogenization temperatures of coeval aqueous inclusions and inclusions containing dry gas in Kingak and Shublik fracture cements. This critical time-temperature relationship suggests that fracture cementation occurred during early Brooks Range deformation. Dry gas inclusions suggest that Shublik and Kingak source rocks had exceeded peak oil and gas generation temperatures at the time structural traps formed during early Brooks Range deformation. The timing of hydrocarbon generation with respect to deformation therefore represents an important exploration risk for gas exploration in this part of the Brooks Range fold and thrust belt. The persistence of gas high at

  10. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.

    PubMed

    Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  11. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  12. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.

    PubMed

    Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  13. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    NASA Astrophysics Data System (ADS)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  14. Radionuclide gas transport through nuclear explosion-generated fracture networks

    SciTech Connect

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  15. Testing and Functions of the J2X Gas Generator

    NASA Technical Reports Server (NTRS)

    Miller, Nicholas

    2009-01-01

    The Ares I, NASA s new solid rocket based crew launch vehicle, is a two stage in line rocket that has made its waytothe forefront of NASA s endeavors. The Ares I s Upper Stage (US) will be propelled by a J-2X engine which is fueled by liquid hydrogen and liquid oxygen. The J-2X is a variation based on two of its predecessor s, the J-2 and J-2S engines. ET50 is providing the design support for hardware required to run tests on the J-2X Gas Generator (GG) that increases the delivery pressure of the supplied combustion fuels that the engine burns. The test area will be running a series of tests using different lengths and curved segments of pipe and different sized nozzles to determine the configuration that best satisfies the thrust, heat, and stability requirements for the engine. I have had to research the configurations that are being tested and gain an understanding of the purpose of the tests. I then had to research the parts that would be used in the test configurations. I was taken to see parts similar to the ones used in the test configurations and was allowed to review drawings and dimensions used for those parts. My job over this summer has been to use the knowledge I have gained to design, model, and create drawings for the un-fabricated parts that are necessary for the J-2X Workhorse Gas Generator Phase IIcTest.

  16. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, T.

    2000-01-01

    Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.

  17. Testing marine shales' ability to generate catalytic gas at low temperature

    NASA Astrophysics Data System (ADS)

    Wei, L.; Schimmelmann, A.; Drobniak, A.; Sauer, P. E.; Mastalerz, M.

    2013-12-01

    Hydrocarbon gases are generally thought to originatevia low-temperature microbial or high-temperature thermogenicpathways (Whiticar, 1996) that can be distinguished by compound-specific hydrogen and carbon stable isotope ratios. An alternative low-temperature catalytic pathway for hydrocarbon generation from sedimentary organic matter has been proposed to be active at temperatures as low as 50oC (e.g.,Mango and Jarvie,2009,2010; Mango et al., 2010; Bartholomew et al., 1999). This hypothesis, however, still requires rigoroustesting by independent laboratory experiments.The possibility of catalytic generation of hydrocarbons in some source rocks (most likely in relatively impermeable and organic-rich shales where reduced catalytic centers can be best preserved) would offer an explanation for the finding of gas of non-microbial origin in formations that lack the thermal maturity for generating thermogenic gas.It is unknown whether catalytically generated methane would be isotopically different from thermogenicmethane (δ13CCH4>-50‰, δ2HCH4from -275‰ to -100‰) ormicrobially generated methane (δ13CCH4from -40‰ to -110‰, δ2HCH4from -400‰to -150‰) (Whiticar, 1998). In order to test for catalytic gas generationin water-wet shales and coals, we are conductinglaboratory experiments at three temperatures (60°C, 100°C, 200°C)and three pressures (ambient pressure, 107 Pa, 3x107 Pa)over periods of six months to several years. So far, our longest running experiments have reached one year. We sealed different types of thermally immature, pre-evacuatedshales (Mowry, New Albany, and Mahoganyshales) and coals (SpringfieldCoal and Wilcoxlignite)with isotopically defined waters in gold cells in the absence of elemental oxygen.Preliminary results show that these samples, depending on conditions, can generate light hydrocarbon gases (methane, ethane and propane) and CO2. Methane, CO2, and traces of H2havebeen generated at 60°C, whereas experiments at 100°C and 200

  18. Reactive Transport Modeling of Acid Gas Generation and Condensation

    SciTech Connect

    G. Zhahg; N. Spycher; E. Sonnenthal; C. Steefel

    2005-01-25

    Pulvirenti et al. (2004) recently conducted a laboratory evaporation/condensation experiment on a synthetic solution of primarily calcium chloride. This solution represents one potential type of evaporated pore water at Yucca Mountain, Nevada, a site proposed for geologic storage of high-level nuclear waste. These authors reported that boiling this solution to near dryness (a concentration factor >75,000 relative to actual pore waters) leads to the generation of acid condensate (pH 4.5) presumably due to volatilization of HCl (and minor HF and/or HNO{sub 3}). To investigate the various processes taking place, including boiling, gas transport, and condensation, their experiment was simulated by modifying an existing multicomponent and multiphase reactive transport code (TOUGHREACT). This code was extended with a Pitzer ion-interaction model to deal with high ionic strength. The model of the experiment was set-up to capture the observed increase in boiling temperature (143 C at {approx}1 bar) resulting from high concentrations of dissolved salts (up to 8 m CaCl{sub 2}). The computed HCI fugacity ({approx} 10{sup -4} bars) generated by boiling under these conditions is not sufficient to lower the pH of the condensate (cooled to 80 and 25 C) down to observed values unless the H{sub 2}O mass fraction in gas is reduced below {approx}10%. This is because the condensate becomes progressively diluted by H{sub 2}O gas condensation. However, when the system is modeled to remove water vapor, the computed pH of instantaneous condensates decreases to {approx}1.7, consistent with the experiment (Figure 1). The results also show that the HCl fugacity increases, and calcite, gypsum, sylvite, halite, MgCl{sub 2}4H{sub 2}O and CaCl{sub 2} precipitate sequentially with increasing concentration factors.

  19. A second generation of low thermal noise cryogenic silicon resonators

    NASA Astrophysics Data System (ADS)

    Matei, D. G.; Legero, T.; Grebing, Ch; Häfner, S.; Lisdat, Ch; Weyrich, R.; Zhang, W.; Sonderhouse, L.; Robinson, J. M.; Riehle, F.; Ye, J.; Sterr, U.

    2016-06-01

    We have set up an improved vertically mounted silicon cavity operating at the zero-crossing temperature of the coefficient of thermal expansion (CTE) near 123 K with estimated thermal noise limited instability of 4 x 10-17 in the modified Allan deviation. Owing to the anisotropic elasticity of single-crystal silicon, the vertical acceleration sensitivity was minimized in situ by axially rotating the resonator with respect to the mounting frame. The control of the resonator temperature is greatly improved by using a combination of two thermal shields, monitoring with several temperature sensors, and employing low-thermal conductivity materials. The instability of the resonator stabilized laser was characterized by comparing with another low-noise system based on a 48 cm long room temperature cavity of PTB's strontium lattice clock, resulting in a modified Allan deviation of 7 x 10-17 at 100 s.

  20. Solar thermal power generation. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics.

  1. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  2. The influence of variations of elemental composition on the thermal properties of interstellar gas

    NASA Astrophysics Data System (ADS)

    Vasiliev, E. O.; Shchekinov, Yu. A.

    2016-10-01

    The mixing of metals and redistribution of the relative abundances of chemical elements in the interstellar medium often takes place on a timescale that exceeds the characteristic timescales for many other processes, such as ionization and the establishment of thermal equilibrium. Under these conditions, different regions of interstellar gas can have different thermal, chemical, and spectral properties. The paper considers the ionization kinetics and thermal regime of interstellar gas with variations in the relative elemental abundances. The thermal properties and observational (spectral) characteristics are most sensitive to variations of the relative abundance of carbon, oxygen, neon, and iron. The dynamic consequences of such variations are considered.

  3. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    NASA Technical Reports Server (NTRS)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  4. THERMINATOR: THERMal heavy-IoN generATOR

    NASA Astrophysics Data System (ADS)

    Kisiel, Adam; Tałuć, Tomasz; Broniowski, Wojciech; Florkowski, Wojciech

    2006-04-01

    THERMINATOR is a Monte Carlo event generator designed for studying of particle production in relativistic heavy-ion collisions performed at such experimental facilities as the SPS, RHIC, or LHC. The program implements thermal models of particle production with single freeze-out. It performs the following tasks: (1) generation of stable particles and unstable resonances at the chosen freeze-out hypersurface with the local phase-space density of particles given by the statistical distribution factors, (2) subsequent space-time evolution and decays of hadronic resonances in cascades, (3) calculation of the transverse-momentum spectra and numerous other observables related to the space-time evolution. The geometry of the freeze-out hypersurface and the collective velocity of expansion may be chosen from two successful models, the Cracow single-freeze-out model and the Blast-Wave model. All particles from the Particle Data Tables are used. The code is written in the object-oriented c++ language and complies to the standards of the ROOT environment. Program summaryProgram title:THERMINATOR Catalogue identifier:ADXL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland RAM required to execute with typical data:50 Mbytes Number of processors used:1 Computer(s) for which the program has been designed: PC, Pentium III, IV, or Athlon, 512 MB RAM not hardware dependent (any computer with the c++ compiler and the ROOT environment [R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389 (1997) 81, http://root.cern.ch] Operating system(s) for which the program has been designed:Linux: Mandrake 9.0, Debian 3.0, SuSE 9.0, Red Hat FEDORA 3, etc., Windows XP with Cygwin ver. 1.5.13-1 and gcc ver. 3.3.3 (cygwin special)—not system dependent External routines/libraries used: ROOT ver. 4.02.00 Programming language:c++ Size of the package: (324 KB directory 40 KB compressed distribution

  5. Transition metal catalysis in the generation of petroleum and natural gas

    SciTech Connect

    Mango, F.D. )

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. The author proposes that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched a natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  6. Gas desorption from seawater in open-cycle ocean thermal energy conversion barometric upcomers

    SciTech Connect

    Ghiaasiaan, S.M.; Wassel, A.T. ); Pesaran, A.A. )

    1990-08-01

    Gas desorption from warm and cold seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions is addressed in this paper. The desorption process of dissolved O{sub 2}, N{sub 2}, and CO{sub 2} in the barometric upcomers of an OTEC plant is simulated mathematically. The model considers the growth of bubbles originating in the ocean and bubbles formed in the upcomers. Bubble growth is induced by gas mass transfer and water evaporation at the bubble-liquid interface, as well as by the decreasing hydrostatic pressure. Heterogeneous nucleation at pipe wall crevices and on suspended particles in the water stream is also modeled. Bubble coalescence due to turbulent shear and differential buoyancy is simulated. The results generated show the deaeration efficiency as a function of flow and geometric parameters. The calculations show that gas desorption in the barometric upcomers can be appreciable. Such desorption is enhanced by increasing the concentration of the incoming and/or the heterogeneously formed bubbles. Results of existing experiments are discussed and predictions are shown for the selected test conditions.

  7. Recent Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas removal performance and operational lifetime of the gas trap have been affected by contamination in the ITCS coolant. However, the gas trap has performed flawlessly with regard to its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. This paper discusses on-orbit events over the course of the last year related to the performance and functioning of the gas trap.

  8. Pulsed x-ray generator for commercial gas lasers

    NASA Astrophysics Data System (ADS)

    Bollanti, S.; Bonfigli, F.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Murra, D.; Schina, G.; Zheng, C. E.

    2001-10-01

    We have designed and tested a 1-m-long x-ray diode based on innovative plasma cathodes, which exploit commercial spark plugs as electron emitters. Based on the results of a numerical study, we optimized both diode geometry (e.g., the angle between anode and cathode surfaces, the thickness of the Al window) and electrical circuitry (e.g., the capacitance in series to each spark plug, the peak voltage of the anode) of our x-ray generator. The overall result is a simple and efficient circuitry, giving a total diode current in excess of 2.1 kA with a breakdown voltage of 70 kV, which generates a 50 ns rise-time x-ray pulse with a spatially averaged dosage of up to 6×10-4 Gy when using a Pb-wrapped anode. The double-diode x-ray generator was operated for 1.5×106 shots at a repetition rate of up to 30 Hz, and the lifetime test was interrupted without any fault. During the lifetime test, it was not necessary to adjust any working parameter. At the end of the lifetime test, the x-ray emission uniformity was better than 80% along the longitudinal axis. This x-ray generator has a lifetime, reliability, and cost fitting the requirements of industrial users. Among the broad range of potential applications, this x-ray generator is particularly suitable to ionize discharge pumped gas lasers, like TEA CO2 and excimer lasers, including those operated by x-ray triggered discharges.

  9. Peristaltic Micro-pump Generated from Heating Trapped Gas in a Superhydrophobic Microchannel

    NASA Astrophysics Data System (ADS)

    Hann, Sungyun; Kim, Tae Jin; Hidrovo, Carlos

    2013-11-01

    Study of micro-pumps has been actively pursued as they may be integrated into portable fluidic systems. Since one major application of developing portable fluidic devices is in medical drug delivery systems, the study of valveless micro-peristaltic pumps has attracted many researchers, particularly due to its low contamination risk of the working fluid. However, conventional peristaltic micro-pumps involve complex fabrication steps, including alignment of multiple device layers. The purpose of this research is to design a low cost, single layer peristaltic pump which utilizes thermal expansion of gas bubbles trapped in the microchannel walls. The microchannel walls are corrugated with a high roughness factor to prevent water from protruding into the gaps, thus rendering the surface superhydrophobic. The gas pockets are heated from the side walls, where the microheaters are fabricated by flowing molten metal into satellite microchannels and then solidifying them. We expect that the expanding gas pockets will act as a series of valves and that the fluid flow can be generated by sequentially heating the gas pockets along the microchannel.

  10. Estimating methane gas generation from Devil's swamp landfill using greenhouse gas emission models

    NASA Astrophysics Data System (ADS)

    Adeyemi, Ayodeji Thompson

    Greenhouse gas (GHG) has been a key issue in the study, design, and management of landfills. Landfill gas (LFG) is considered either as a significant source of renewable energy (if extracted and processed accordingly) or significant source of pollution and risk (if not mitigated or processed). A municipal solid waste (MSW) landfill emits a significant amount of methane, a potent GHG. Thus, quantification and mitigation of GHG emissions is an important area of study in engineering and other sciences related to landfill technology and management. The present study will focus on estimating methane generation from Devils swamp landfill (DSLF), a closed landfill in Baton Rouge, LA. The landfill operated for 53 years (1940-1993) and contains both industrial and municipal waste products. Since the Clean Air Act of 1963, landfills are now classified as New Source Performance Standard (NSPS) waste (i.e., waste that will decompose to generate LFG). Currently, the DSLF is being used as source of renewable energy through the "Waste to Energy" program. For this study, to estimate the methane potential in the DSLF, it is important to determine the characteristics and classification of the landfill's wastes. The study uses and compares different GHG modeling tools---LandGEM, a multiphase model, and a simple first-order model---to estimate methane gas emission and compare results with the actual emissions from the DSLF. The sensitivity of the methane generation rate was analyzed by the methane generation models to assess the effects of variables such as initial conditions, specific growth rate, and reaction rate constants. The study concludes that methane (L0) and initial organic concentration in waste (k) are the most important parameters when estimating methane generation using the models.

  11. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use.

    PubMed

    Martirosyan, K S; Wang, L; Vicent, A; Luss, D

    2009-10-01

    Our experiments showed that the combustion of an Al-Bi2O3 nanoparticle mixture generated the highest pressure pulse among common nanothermite reactions and can potentially be used as a nanoenergetic gas generator. The combustion front propagation velocity and rate of energy release increased by up to three orders of magnitude when the particle size was reduced to a nanosize range for both the aluminum and the oxidizer. We developed a novel one-step (metal nitrate-glycine) combustion synthesis of nanostructured amorphous-like and highly crystalline bismuth trioxide nanoparticles. The combustion synthesis was conducted using a solution of molten bismuth nitrate as an oxidizer and glycine as a fuel. The glycine was completely combusted during the thermal decomposition of the bismuth nitrate pentahydrate and generated a temperature front that propagated through the sample. Increasing the fuel concentration increased the maximum combustion temperature from 280 to 1200 degrees C and the Bi2O3 particle size from 20 to 100 nm. The oxidizer/fuel ratio had a strong impact on the bismuth trioxide particle crystallinity. At low temperature (280 degrees C), amorphous-like bismuth trioxide nanoparticles formed, while at T > or =370 degrees C the structures were crystalline. A peak pressure of approximately 12 MPa and a thermal front propagating velocity of approximately 2500 m s(-1) were achieved during the combustion of an Al-Bi2O3 mixture containing 80 wt% of the synthesized Bi2O3 crystalline nanoparticles (size: 40-50 nm).

  12. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use

    NASA Astrophysics Data System (ADS)

    Martirosyan, K. S.; Wang, L.; Vicent, A.; Luss, D.

    2009-10-01

    Our experiments showed that the combustion of an Al-Bi2O3 nanoparticle mixture generated the highest pressure pulse among common nanothermite reactions and can potentially be used as a nanoenergetic gas generator. The combustion front propagation velocity and rate of energy release increased by up to three orders of magnitude when the particle size was reduced to a nanosize range for both the aluminum and the oxidizer. We developed a novel one-step (metal nitrate-glycine) combustion synthesis of nanostructured amorphous-like and highly crystalline bismuth trioxide nanoparticles. The combustion synthesis was conducted using a solution of molten bismuth nitrate as an oxidizer and glycine as a fuel. The glycine was completely combusted during the thermal decomposition of the bismuth nitrate pentahydrate and generated a temperature front that propagated through the sample. Increasing the fuel concentration increased the maximum combustion temperature from 280 to 1200 °C and the Bi2O3 particle size from 20 to 100 nm. The oxidizer/fuel ratio had a strong impact on the bismuth trioxide particle crystallinity. At low temperature (280 °C), amorphous-like bismuth trioxide nanoparticles formed, while at T>=370 °C the structures were crystalline. A peak pressure of ~12 MPa and a thermal front propagating velocity of ~2500 m s-1 were achieved during the combustion of an Al-Bi2O3 mixture containing 80 wt% of the synthesized Bi2O3 crystalline nanoparticles (size: 40-50 nm).

  13. Solar thermal bowl concepts and economic comparisons for electricity generation

    SciTech Connect

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

    1988-04-01

    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

  14. Thermal degradation events as health hazards: Particle vs gas phase effects, mechanistic studies with particles

    NASA Astrophysics Data System (ADS)

    Oberdörster, G.; Ferin, J.; Finkelstein, J.; Soderholm, S.

    Exposure to thermal degradation products arising from fire or smoke could be a major concern for manned space missions. Severe acute lung damage has been reported in people after accidental exposure to fumes from plastic materials, and animal studies revealed the extremely high toxicity of freshly generated fumes whereas a decrease in toxicity of aged fumes has been found. This and the fact that toxicity of the freshly generated fumes can be prevented with filters raises the question whether the toxicity may be due to the particulate rather than the gas phase components of the thermodegradation products. Indeed, results from recent studies implicate ultrafine particles (particle diameter in the nm range) as potential severe pulmonary toxicants. We have conducted a number of in vivo (inhalation and instillation studies in rats) and in vitro studies to test the hypothesis that ultrafine particles possess an increased potential to injure the lung compared to larger-sized particles. We used as surrogate particles ultrafine TiO 2 particles (12 and 20 nm diameter). Results in exposed rats showed that the ultrafine TiO 2 particles not only induce a greater acute inflammatory reaction in the lung than larger-sized TiO 2 particles, but can also lead to persistent chronic effects, as indicated by an adverse effect on alveolar macrophage mediated clearance function of particles. Release of mediators from alveolar macrophages during phagocytosis of the ultrafine particles and an increased access of the ultrafine particles to the pulmonary interstitium are likely factors contributing to their pulmonary toxicity. In vitro studies with lung cells (alveolar macrophages) showed, in addition, that ultrafine TiO 2 particles have a greater potential to induce cytokines than larger-sized particles. We conclude from our present studies that ultrafine particles have a significant potential to injure the lung and that their occurrence in thermal degradation events can play a major role in

  15. Thermal degradation events as health hazards: particle vs gas phase effects, mechanistic studies with particles.

    PubMed

    Oberdörster, G; Ferin, J; Finkelstein, J; Soderholm, S

    1992-01-01

    Exposure to thermal degradation products arising from fire or smoke could be a major concern for manned space missions. Severe acute lung damage has been reported in people after accidental exposure to fumes from plastic materials, and animal studies revealed the extremely high toxicity of freshly generated fumes whereas a decrease in toxicity of aged fumes has been found. This and the fact that toxicity of the freshly generated fumes can be prevented with filters raises the question whether the toxicity may be due to the particulate rather than the gas phase components of the thermodegradation products. Indeed, results from recent studies implicate ultrafine particles (particle diameter in the nm range) as potential severe pulmonary toxicants. We have conducted a number of in vivo (inhalation and instillation studies in rats) and in vitro studies to test the hypothesis that ultrafine particles possess an increased potential to injure the lung compared to larger-sized particles. We used as surrogate particles ultrafine TiO2 particles (12 and 20 nm diameter). Results in exposed rats showed that the ultrafine TiO2 particles not only induce a greater acute inflammatory reaction in the lung than larger-sized TiO2 particles, but can also lead to persistent chronic effects, as indicated by an adverse effect on alveolar macrophage mediated clearance function of particles. Release of mediators from alveolar macrophages during phagocytosis of the ultrafine particles and an increased access of the ultrafine particles to the pulmonary interstitium are likely factors contributing to their pulmonary toxicity. In vitro studies with lung cells (alveolar macrophages) showed, in addition, that ultrafine TiO2 particles have a greater potential to induce cytokines than larger-sized particles. We conclude from our present studies that ultrafine particles have a significant potential to injure the lung and that their occurrence in thermal degradation events can play a major role in the

  16. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  17. Evaluation of an Integrated Gas-Cooled Reactor Simulator and Brayton Turbine-Generator

    NASA Technical Reports Server (NTRS)

    Hissam, David Andy; Stewart, Eric T.

    2006-01-01

    A closed-loop brayton cycle, powered by a fission reactor, offers an attractive option for generating both planetary and in-space electric power. Non-nuclear testing of this type of system provides the opportunity to safely work out integration and system control challenges for a modest investment. Recognizing this potential, a team at Marshall Space Flight Center has evaluated the viability of integrating and testing an existing gas-cooled reactor simulator and a modified commercially available, off-the-shelf, brayton turbine-generator. Since these two systems were developed independently of one another, this evaluation had to determine if they could operate together at acceptable power levels, temperatures, and pressures. Thermal, fluid, and structural analyses show that this combined system can operate at acceptable power levels and temperatures. In addition, pressure drops across the reactor simulator, although higher than desired, are also viewed as acceptable. Three potential working fluids for the system were evaluated: N2, He/Ar, and He/Xe. Other potential issues, such as electrical breakdown in the generator and the operation of the brayton foil bearings using various gas mixtures, were also investigated.

  18. Removal of Dioxin Contamination for Gas Turbine Generator Set Repair

    SciTech Connect

    Fay, W. S.; Borah, R.E.

    2003-02-25

    Decontamination projects are typically undertaken in the interest of reducing disposal costs. This goal can be achieved because decontamination concentrates the contaminant into a smaller volume or changes its form so that a lower cost disposal technology becomes available. Less frequently, decontamination adds value back to the fouled structure or contaminated piece of equipment. This removal of dioxins from a gas turbine generator set is one of the latter cases. A multi-million dollar piece of equipment could have been destined for the scrap pile. Instead, an innovative, non-destructive decontamination technology, developed under EPA and DOE demonstration programs has was employed so that the set could repaired and put back into service. The TechXtractchemical decontamination technology reduced surface dioxin / furan concentrations from as high as 24,000 ng / m2 to less than 25 ng / m2 and below detection limits.

  19. High-pressure LOX/hydrocarbon preburners and gas generators

    NASA Technical Reports Server (NTRS)

    Huebner, A. W.

    1981-01-01

    The objective of the program was to conduct a small scale hardware test program to establish the technology base required for LOX/hydrocarbon preburners and gas generators. The program consisted of six major tasks; Task I reviewed and assessed the performance prediction models and defined a subscale test program. Task II designed and fabricated this subscale hardware. Task III tested and analyzed the data from this hardware. Task IV analyzed the hot fire results and formulated a preliminary design for 40K preburner assemblies. Task V took the preliminary design and detailed and fabricated three 40K size preburner assemblies, one each fuel-rich LOX/CH, and LOX/RP-1 and one oxidizer rich LOX/CH4. Task VI delivered these preburner assemblies to MSFC for subsequent evaluation.

  20. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.

  1. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows. PMID:20866801

  2. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGESBeta

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  3. Maximized thermal efficiency crank driven hot gas engine

    SciTech Connect

    Pinto, A.P.

    1987-06-30

    A method is described for converting heat to mechanical shaft work in a reciprocating piston crank driven by a hot gas engine. The engine consists of a pair of hot and cold cylinders connected together with leak sealed flow paths. The flow paths have included valves and regenerator, the method comprising: (a) drawing the working gas into the cold cylinder; (b) compressing the gas in the cold cylinder with simultaneous removal of heat to keep the compression isothermal; (c) trapping the working gas in the cold cylinder during the isothermal compression, so that no working gas may enter or leave the cold cylinder during the isothermal compression; (d) setting the crank angular relationship between the hot and cold cylinder pistons such that the hot cylinder piston leads the cold cylinder piston by an angle determining the compression ratio of the engine; (e) transferring the gas from the cold cylinder to the hot cylinder, with addition of heat from the regenerator; (f) expanding the gas in the hot cylinder with the simultaneous addition of heat to keep the expansion isothermal; (g) trapping the working gas in the hot cylinder during the isothermal expansion, so that no working gas may enter or leave the hot cylinder during the isothermal expansion; (h) expelling gas from the hot cylinder to the working gas supply source with deposition of heat in the regenerator for addition to the compressed working gas of the next cycle; (i) selecting the hot and cold cylinder volumes to be approximately in the same ratio as the absolute temperatures of their respective isothermal processes such that the working gas transfers between them are isobaric.

  4. Optimized working conditions for a thermoelectric generator as a topping cycle for gas turbines

    NASA Astrophysics Data System (ADS)

    Brady Knowles, C.; Lee, Hohyun

    2012-10-01

    This paper presents a model for a theoretical maximum efficiency of a thermoelectric generator integrated with a Brayton-cycle engine. The thermoelectric cycle is presented in two configurations as a topping cycle and a preheating topping cycle. For the topping cycle configuration, the thermoelectric generator receives heat from a high-temperature heat source and produces electrical work before rejecting heat to a Brayton cycle. For the preheating topping cycle, the rejected heat from the thermoelectric generator partially heats the compressed working fluid of the Brayton cycle before a secondary heater delivers heat to the working fluid directly from the heat source. The thermoelectric topping cycle efficiency increases as the temperature difference between the hot- and cold-side increases; however, this limits the heat transfer possible to the Brayton cycle, which in turn reduces power generation from the Brayton cycle. This model identifies the optimum operating parameters of the thermoelectric and Brayton cycles to obtain the maximum thermal efficiency of the combined cycle. In both configurations, efficiency gains are larger at low-temperature Brayton cycles. Although a thermoelectric generator (TEG) topping cycle enhances efficiency for a low temperature turbine, efficiency cannot exceed a high temperature gas turbine. Using a TEG topping cycle is limited to cases when space or price for a high temperature turbine cannot be justified. A design to achieve the preheating thermoelectric topping cycle is also presented.

  5. Stratospheric Trace Gas Distributions from Far Infrared Thermal Emission Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Guo, Jing

    1987-09-01

    An inversion algorithm has been developed to retrieve stratospheric trace gas distributions from high resolution far infrared limb thermal emission spectral data. The algorithm follows an onion peel approach and employs a non-linear least-square-fit spectral analysis technique. The infrared radiative transfer model used to compute the spectrum is based on full line-by-line and layer-by-layer calculations and includes curvature and refraction effects. Finite instrument field of view effects have been studied. An inversion algorithm has also been developed to correct observation angles. The spectral measurements were made in the Balloon Intercomparison Campaign (BIC), October, 1982, using a Fourier transform spectrometer. The observed spectra have an unapodized spectral resolution of 0.0033 cm ^{-1}, and cover the spectral region between 20-100 cm^{-1}. Spectral data for selected limb sequences have been calibrated. The instrument line shape function has been empirically determined. The observation angles of the spectra have been corrected from spectral lines of O_2 in the 23 -84 cm^{-1} region to have an accuracy within 4 arc minutes. The vertical profiles of O_3, H_2O, HDO, HCN, ^ {16}O^{16}O ^{18}O, and ^ {16}O^{18}O ^{16}O in the stratosphere have been retrieved with an altitude resolution of about 4-5 km in the 20-37 km range. The results are compared with available measurements in literature. The vertical profiles of O_3, H_2 O, and HDO are retrieved from spectral lines in the 20-100 cm^{-1} region. The variation of the D/H ratio of water vapor is derived. The vertical profile of HCN is retrieved from spectral lines in the 32-56 cm^{-1} region. The volume mixing ratio of HCN is found to be 139 pptv at 20 km, 127 pptv at 25 km, and increasing to 172 pptv at 37 km. The vertical profiles of stratospheric ^ {16}O^{16}O ^{18}O and ^ {16}O^{18}O ^{16}O are retrieved from spectral lines in the 39-76 cm^{-1 } region. The ratio of total heavy isotopic ozone ^{50}O_3 to

  6. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  7. The generation of hydrogen by the thermal decomposition of water

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1974-01-01

    Development of an approach to the evaluation of the thermal efficiency of the process of water splitting to produce hydrogen. A way of viewing thermochemical processes - both overall and step-by-step is suggested, and some recent work on a process evaluation technique is described which provides internal checks on the thermodynamic data and calculates, in addition to the efficiency, many important process parameters.

  8. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  9. Practical experience of using thermal-mass flowmeters at the registration associated (free) petroleum gas

    NASA Astrophysics Data System (ADS)

    Fazlyyyakhmatov, M. G.; Kashapov, N. F.; Khayritonov, Kh A.; Lazarev, D. K.; Lazarev, V. K.

    2014-12-01

    The results of field tests of thermal-mass flowmeter TurboFlow TFG-S in comparison with ultrasonic flowmeter Dymetic-1223K at existing oil and gas extraction object are given in the article. Measured medium - associated (free) petroleum gas.

  10. Gas-geochemical condition and ecological functions of urban soils in areas with gas generating grounds

    NASA Astrophysics Data System (ADS)

    Mozharova, Nadezhda; Lebed-Sharlevich, Iana; Kulachkova, Svetlana

    2014-05-01

    Rapid urbanization and expansion of city borders lead to development of new areas, often following with relief changes, covering of gully-ravine systems and river beds with technogenic grounds containing construction and municipal waste. Decomposition of organic matter in these grounds is a source of methane and carbon dioxide. Intensive generation and accumulation of CO2 and CH4 into grounds may cause a fire and explosion risk for constructed objects. Gases emission to the atmosphere changes the global balance of GHGs and negatively influences on human health. The aim of this investigation is to study gas-geochemical condition and ecological functions of urban soils in areas with gas generating grounds. Studied areas are the gully-ravine systems or river beds, covered with technogenic grounds during land development. Stratigraphic columns of these grounds are 5-17 meters of man-made loamy material with inclusion of construction waste. Gas generating layer with increased content of organic matter, reductive conditions and high methanogenic activity (up to 1.0 ng*g-1*h-1) is situated at the certain depth. Maximum CH4 and CO2 concentrations in this layer reach dangerous values (2-10% and 11%, respectively) in the current standards. In case of disturbance of ground layer (e.g. well-drilling) methane is rapidly transferred by convective flux to atmosphere. The rate of CH4 emission reaches 100 mg*m-2*h-1 resulting in its atmospheric concentration growth by an order of magnitude compared with background. In normal occurrence of grounds methane gradually diffuses into the upper layers by pore space, consuming on different processes (e.g. formation of organic matter, nitrogen compounds or specific particles of magnetite), and emits to atmosphere. CH4 emission rate varies from 1 to 40 mg*m-2*h-1 increasing with depth of grounds. Carbon dioxide emission is about 100 mg*m-2*h-1. During soil formation on gas generating grounds bacterial oxidation of methane, one of the most

  11. Response of a thermal barrier system to acoustic excitation in a gas turbine nuclear reactor

    SciTech Connect

    Betts, W.S. Jr.; Blevins, R.D.

    1980-11-01

    A gas turbine located within a High-Temperature Gas-Cooled Reactor (HTGR) induces high acoustic sound pressure levels into the primary coolant (helium). This acoustic loading induces high cycle fatigue stresses which may control the design of the thermal barrier system. This study examines the dynamic response of a thermal barrier configuration consisting of a fibrous insulation compressed against the reactor vessel by a coverplate which is held in position by a central attachment fixture. The results of dynamic vibration analyses indicate the effect of the plate size and curvature and the attachment size on the response of the thermal barrier.

  12. Computer-Aided Robot Trajectory Auto-generation Strategy in Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Cai, Zhenhua; Liang, Hong; Quan, Shuhai; Deng, Sihao; Zeng, Chunnian; Zhang, Feng

    2015-10-01

    This paper is concerned with a new methodology which is designed to auto-generate the robotic trajectory for thermal spraying process. Based on it, a software package named Thermal Spray Toolkit is developed and integrated in the main frame of off-line programming software RobotStudio™ (Product of ABB Company, Sweden). This toolkit implements the robotic trajectory planning in an interactive manner between RobotStudio™ and the finite element analysis software (FES). It allows rearranging the imported node index created on the surface of workpiece by FES and in turn generating the thermal spraying needed robot trajectories. Several parameters in thermal spraying, such as scanning step and torch-substrate relative velocity which have major influence on the coating deposition, are considered in the trajectory generation process. Experiment is carried out to check the reliability of the generated robot trajectory.

  13. Next-Generation Thermal Infrared Multi-Body Radiometer Experiment (TIMBRE)

    NASA Astrophysics Data System (ADS)

    Kenyon, M.; Mariani, G.; Johnson, B.; Brageot, E.; Hayne, P.

    2016-10-01

    We have developed an instrument concept called TIMBRE which belongs to the important class of instruments called thermal imaging radiometers (TIRs). TIMBRE is the next-generation TIR with unparalleled performance compared to the state-of-the-art.

  14. A novel compact design of calibration equipment for gas and thermal sensors

    SciTech Connect

    Feng, P. X.; Zhang, H. X.; Peng, X. Y.; Sajjad, M.; Chu, J.

    2011-04-15

    A novel design of calibration equipment has been developed for static and dynamic calibrations of gas and thermal sensors. This system is cheap, compact, and easily adjustable, which is also combined with a plasma surface modification source for tailoring the surface of sensors to ensure the sensitivity and selectivity. The main advantage of this equipment is that the operating temperature, bias voltage, types of plasma source (for surface modification), types of feeding gases, and gas flow rate (for calibrations), etc., can be independently controlled. This novel system provides a highly reliable, reproducible, and economical method of calibrations for various gas and thermal sensors.

  15. Next Generation * Natural Gas (NG)2 Information Requirements--Executive Summary

    EIA Publications

    2000-01-01

    The Energy Information Administration (EIA) has initiated the Next Generation * Natural Gas (NG)2 project to design and implement a new and comprehensive information program for natural gas to meet customer requirements in the post-2000 time frame.

  16. Non-Equilibrium Dynamics of an Atomic Gas Coupled to a Synthetic Thermal Body

    NASA Astrophysics Data System (ADS)

    Price, Craig; Liu, Qi; Zhao, Jianshi; Gemelke, Nathan

    2016-05-01

    One takes for Granted that thermal equilibrium can be established between two bodies by bringing them into physical contact with one another - viewed externally however, any statistical reservoir must therefore interact in ways such that the exchange of conserved quantities satisfy basic constraints which define the equilibrium it and any attached bodies reach. We describe the experimental construction of a ``synthetic thermal body,'' engineered by controlling the spatio-temporal modulation of nominally conservative optical, radio-frequency, and microwave couplings of a 87 Rb neutral atomic gas carrying hyperfine-spin to a spin-dependent spatially and temporally disordered bath. We measure the out-of-equilibrium response through its resultant diffusive motion, extracting drift and diffusion parameters, and making comparison to the Einstein-Smoluchowski and generalized fluctuation-dissipation relations. We discuss new limits on temperature and density for direct cooling by suitably engineered baths, by simultaneously avoiding the constraints of photon-recoil and density-dependent losses from light-assisted collisional processes in traditional laser cooling, and discuss new avenues in quantum simulation by coupling atomic gasses to statistically-generated and open environments.

  17. Test results of a steam injected gas turbine to increase power and thermal efficiency

    SciTech Connect

    Messerlie, R.L.; Tischler, A.O.

    1983-08-01

    The desire to increase both power and thermal efficiency of the gas turbine (Brayton cycle) engine has been pursued for a number of years and has involved many approaches. The use of steam in the cycle to improve performance has been proposed by various investigators. This was most recently proposed by International Power Technology, Inc. (IPT) and has been tested by Detroit Diesel Allison (DDA), Division of General Motors. This approach, identified as the Cheng dual-fluid cycle (Cheng/DFC), includes the generation of steam using heat from the exhaust, and injecting this steam into the engine combustion chamber. Test results on an Allison 501-KB engine have demonstrated that use of this concept will increase the thermal efficiency of the engine by 30% and the output power by 60% with no increase in turbine inlet temperature. These results will be discussed, as will the impact of steam rate, location of steam injection, turbine temperature, and engine operational characteristics on the performance of the Cheng/DFC.

  18. Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices

    NASA Astrophysics Data System (ADS)

    Steinparzer, T.; Haider, M.; Fleischanderl, A.; Hampel, A.; Enickl, G.; Zauner, F.

    2012-11-01

    The fluctuating thermal emissions of electric arc furnaces require energy storage systems to provide downstream consumers with a continuous amount of thermal energy or electricity. Heat recovery systems based on thermal energy storage are presented. A comparison of different thermal energy storage systems has been performed. For the purpose, suitable heat exchangers for the off-gas heat have been developed. Dynamic process simulations of the heat recovery plants were necessary to check the feasibility of the systems and consider the non-steady-state off-gas emissions of the steelmaking devices. The implementation of a pilot plant into an existing off-gas duct of an electric arc furnace was required to check the real behavior of the heat exchanger and determine suitable materials in view of corrosion issues. The pilot plant is presented in this paper.

  19. Ideal gas interaction with thermal radiation in classical thermodynamics and Gibb's paradox

    NASA Astrophysics Data System (ADS)

    Paglietti, A.

    2012-05-01

    The standard theory of ideal gases ignores the interaction of the gas particles with the thermal radiation ( photon gas) that fills the otherwise vacuum space between them. Although acceptable in most cases, this feature of the theory contrasts with the evidence that all real materials, and hence in particular the particles of a real gas, absorb and radiate thermal energy. The interaction with the thermal radiation contained in the volume of a body may be important in gases. The latter, unlike solids and liquids, are capable of undergoing conspicuous volume changes, which entails large variations in the total amount of radiation that fills their volume in thermal equilibrium conditions. The paper considers a nonstandard ideal gas that differs from the classical one because it interacts with thermal radiation. This interaction is shown to produce temperature changes both in the free expansion of the gas and in its adiabatic mixing with another gas. Taking this kind of interaction into account also avoids the well-known Gibbs' paradox still keeping the theory within the realm of classical macroscopic thermodynamics, i.e. without resorting to the current statistical mechanics explanation.

  20. Development and application of an analysis methodology for interpreting ambiguous historical pressure data in the WIPP gas-generation experiments.

    SciTech Connect

    Felicione, F. S.

    2006-01-23

    the headspace volume caused by thermal expansion and contraction within the brine and waste. A further effort was directed at recovering useful results from the voluminous archived pressure data. An analytic methodology to do this was developed. This methodology was applied to each archived pressure measurement to nullify temperature and other effects to yield an adjusted pressure, from which gas-generation rates could be calculated. A review of the adjusted-pressure data indicated that generated-gas concentrations among these containers after approximately 3.25 years of test operation ranged from zero to over 17,000 ppm by volume. Four test containers experienced significant gas generation. All test containers that showed evidence of significant gas generation contained carbon-steel in the waste, indicating that corrosion was the predominant source of gas generation.

  1. Self-Assembled Nano-energetic Gas Generators based on Bi2O3

    NASA Astrophysics Data System (ADS)

    Hobosyan, Mkhitar; Trevino, Tyler; Martirosyan, Karen

    2012-10-01

    Nanoenergetic Gas-Generators are formulations that rapidly release a large amount of gaseous products and generate a fast moving thermal wave. They are mainly based on thermite systems, which are pyrotechnic mixtures of metal powders (fuel- Al, Mg, etc.) and metal oxides (oxidizer, Bi2O3, Fe2O3, WO3, MoO3 etc.) that can generate an exothermic oxidation-reduction reaction referred to as a thermite reaction. A thermite reaction releases a large amount of energy and can generate rapidly extremely high temperatures. The intimate contact between the fuel and oxidizer can be enhanced by use of nano instead of micro particles. The contact area between oxidizer and metal particles depends from method of mixture preparation. In this work we utilize the self-assembly processes, which use the electrostatic forces to produce ordered and self-organized binary systems. In this process the intimate contact significantly enhances and gives the ability to build an energetic material in molecular level, which is crucial for thepressure discharge efficiency of nano-thermites. The DTA-TGA, Zeta-size analysis and FTIR technique were performed to characterize the Bi2O3 particles. The self-assembly of Aluminum and Bi2O3 was conducted in sonic bath with appropriate solvents and linkers. The resultant thermite pressure discharge values were tested in modified Parr reactor. In general, the self-assembled thermites give much higher-pressure discharge values than the thermites prepared with conventional roll-mixing technique.

  2. Characterization of moderate ash-and-gas explosions at Santiaguito volcano, Guatemala, from infrasound waveform inversion and thermal infrared measurements

    NASA Astrophysics Data System (ADS)

    Angelis, S. De; Lamb, O. D.; Lamur, A.; Hornby, A. J.; Aulock, F. W.; Chigna, G.; Lavallée, Y.; Rietbrock, A.

    2016-06-01

    The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas-and-ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum-driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small-to-moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.

  3. Harmonic and subharmonic association of universal dimers in a thermal gas

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek; Braaten, Eric

    2015-07-01

    In a gas of ultracold atoms whose scattering length is controlled by a magnetic Feshbach resonance, atoms can be associated into universal dimers by an oscillating longitudinal magnetic field. In addition to the harmonic resonance with frequency near that determined by the dimer binding energy, there is a subharmonic resonance with half that frequency. If the thermal gas contains dimers, they can be dissociated into unbound atoms by the oscillating magnetic field. We show that the transition rates for association and dissociation can be calculated by treating the oscillating magnetic field as a sinusoidal time-dependent perturbation proportional to the contact operator. Many-body effects are taken into account through transition matrix elements of the contact operator. We calculate both the harmonic and subharmonic transition rates analytically for association in a thermal gas of atoms and for dissociation in a thermal gas of dimers.

  4. A reference protocol for comparing the biocidal properties of gas plasma generating devices

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Seri, P.; Borghi, C. A.; Shama, G.; Iza, F.

    2015-12-01

    Growing interest in the use of non-thermal, atmospheric pressure gas plasmas for decontamination purposes has resulted in a multiplicity of plasma-generating devices. There is currently no universally approved method of comparing the biocidal performance of such devices and in the work described here spores of the Gram positive bacterium Bacillus subtilis (ATCC 6633) are proposed as a suitable reference biological agent. In order to achieve consistency in the form in which the biological agent in question is presented to the plasma, a polycarbonate membrane loaded with a monolayer of spores is proposed. The advantages of the proposed protocol are evaluated by comparing inactivation tests in which an alternative microorganism (methicillin resistant Staphylococcus aureus—MRSA) and the widely-used sample preparation technique of directly pipetting cell suspensions onto membranes are employed. In all cases, inactivation tests with either UV irradiation or plasma exposure were more reproducible when the proposed protocol was followed.

  5. VIPIR and VIPIR-S: next generation infantry thermal sights

    NASA Astrophysics Data System (ADS)

    Bigwood, Chris; Eccles, Lee; Jones, Arwyn; Jones, Berwyn; Meakin, David; Rickard, Steve; Robinson, Rob

    2005-05-01

    Thales Optics Ltd. have been involved in a joint funded technology demonstrator program between UK MOD and Thales called Thermal Imager for Dismounted Infantry, run in conjunction with QinetiQ. The aim of this program was to evaluate and demonstrate a cost effective route to equipping the infantry soldier with a small, lightweight, rugged, short range, weapon mounted thermal imaging sight, intended for mass deployment. To address the requirements of this program, Thales Optics Ltd. performed a detailed trade-off analysis considering the effect of using alternative sensors, displays and optical configurations on the sight cost, mass, volume, power and performance. This effort was supported with equipment trials and user assessments. Based on this work, six technical demonstrator sights have been manufactured and delivered to UK MOD for evaluation on several programmes including the UK's FIST soldier modernisation program. Thales Optics has since progressed the TIDI concept further into two product streams, a family of weapon sights called VIPIR and a surveillance sight called VIPIR-S. This paper will summarise the work undertaken on the TIDI program and how this has been applied to the VIPIR and VIPIR-S family of products.

  6. A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2006-01-01

    A method for calculating viscosity and thermal conductivity of a helium-xenon (He-Xe) gas mixture was employed, and results were compared to AiResearch (part of Honeywell) analytical data. The method of choice was that presented by Hirschfelder with Singh's third-order correction factor applied to thermal conductivity. Values for viscosity and thermal conductivity were calculated over a temperature range of 400 to 1200 K for He-Xe gas mixture molecular weights of 20.183, 39.94, and 83.8 kg/kmol. First-order values for both transport properties were in good agreement with AiResearch analytical data. Third-order-corrected thermal conductivity values were all greater than AiResearch data, but were considered to be a better approximation of thermal conductivity because higher-order effects of mass and temperature were taken into consideration. Viscosity, conductivity, and Prandtl number were then compared to experimental data presented by Taylor.

  7. Modeling of a Thermoelectric Generator for Thermal Energy Regeneration in Automobiles

    NASA Astrophysics Data System (ADS)

    Tatarinov, Dimitri; Koppers, M.; Bastian, G.; Schramm, D.

    2013-07-01

    In the field of passenger transportation a reduction of the consumption of fossil fuels has to be achieved by any measures. Advanced designs of internal combustion engine have the potential to reduce CO2 emissions, but still suffer from low efficiencies in the range from 33% to 44%. Recuperation of waste heat can be achieved with thermoelectric generators (TEGs) that convert heat directly into electric energy, thus offering a less complicated setup as compared with thermodynamic cycle processes. During a specific driving cycle of a car, the heat currents and temperature levels of the exhaust gas are dynamic quantities. To optimize a thermoelectric recuperation system fully, various parameters have to be tested, for example, the electric and thermal conductivities of the TEG and consequently the heat absorbed and rejected from the system, the generated electrical power, and the system efficiency. A Simulink model consisting of a package for dynamic calculation of energy management in a vehicle, coupled with a model of the thermoelectric generator system placed on the exhaust system, determines the drive-cycle-dependent efficiency of the heat recovery system, thus calculating the efficiency gain of the vehicle. The simulation also shows the temperature drop at the heat exchanger along the direction of the exhaust flow and hence the variation of the voltage drop of consecutively arranged TEG modules. The connection between the temperature distribution and the optimal electrical circuitry of the TEG modules constituting the entire thermoelectric recuperation system can then be examined. The simulation results are compared with data obtained from laboratory experiments. We discuss error bars and the accuracy of the simulation results for practical thermoelectric systems embedded in cars.

  8. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  9. Modeling of thermal steam cracking of an atmospheric gas oil

    SciTech Connect

    Depeyre, D.; Flicoteaux, C.; Arbabzadeh, F.; Zabaniotou, A. )

    1989-07-01

    Gas oil cracking experiments in the presence of steam were performed in a loboratory-scale tubular quartz or Inconel reactor. The effects of temperature, inlet steam to gas oil ratio, and residence time on the major effluent products were investigated. The temperature, steam to gas oil weight ratio, and residence time were varied in the ranges 628-800 {degrees}C, 1-2 kg/kg, and 0.4-1.0's, respectively. The best yield of ethylene, 27% by weight, was obtained in the quartz reactor at 770 {degrees}C, residence time of 0.6 s, and mass ratio of steam to gas oil equal to 1. Experiments combined with a simulation model allows the authors to predict the effluent products distribution as a function of temperature and residence time. Several kinetic models were attempted. The best one was a mechanistic radical and molecular model. Gas oil feedstock composition was simplified, taking into account radical and molecular model. Gas oil feedstock composition was simplified, taking into account one compound as representative of the principle hydrocarbon families. For this study, the model proposed consisted of 138 reactions, 18 species, and 24 radicals.

  10. Measurement of positronium thermalization in isobutane gas for precision measurement of ground-state hyperfine splitting

    NASA Astrophysics Data System (ADS)

    Ishida, A.; Namba, T.; Asai, S.

    2016-03-01

    The thermalization parameter of positronium in pure isobutane gas was measured in order to take into account the thermalization effect on precision measurements of the ground-state hyperfine splitting (HFS) of positronium. The momentum-transfer cross section was measured to be {σ }{{m}}=47.2+/- 6.7 {\\mathringA }2 for positroniums with kinetic energy below 0.17 eV. Using this value, our new HFS experiment revealed that the positronium thermalization effect on HFS was as large as 10+/- 2 {ppm}. In this article, we show the details of Ps thermalization measurement, which have not been published before, and also its effect on HFS.

  11. Gas Generation Testing of Neptunium Oxide Generated Using the HB-Line Phase IIFlowsheet

    SciTech Connect

    Duffey, J

    2003-08-29

    The hydrogen (H{sub 2}) gas generation rate for neptunium dioxide (NpO{sub 2}) samples produced on a laboratory scale using the HB-Line Phase II flowsheet has been measured following exposure to 75% relative humidity (RH). As expected, the observed H{sub 2} generation rates for these samples increase with increasing moisture content. A maximum H{sub 2} generation rate of 1.8 x 10{sup -6} moles per day per kilogram (mol {center_dot} day{sup -1} kg{sup -1}) was observed for NpO{sub 2} samples with approximately one and one-half times (1 1/2 X) the expected specific surface area (SSA) for the HB-Line Phase II product. The SSA of NpO{sub 2} samples calcined at 650 C is similar to plutonium dioxide (PuO{sub 2}) calcined at 950 C according to the Department of Energy (DOE) standard for packaging and storage of PuO{sub 2}. This low SSA of the HB-Line Phase II product limits moisture uptake to less than 0.2 weight percent (wt %) even with extended exposure to 75% RH.

  12. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  13. Results of Laboratory and Industrial Tests of Periodic-Type Gas Generators

    NASA Astrophysics Data System (ADS)

    Karp, I. N.; P‧yanykh, K. E.; Antoshchuk, T. A.; Lysenko, A. A.

    2015-05-01

    Results of laboratory and industrial tests of periodic-type gas generators burning various solid biofuels have been presented. The tests were carried out with the aim of obtaining producer gas which could totally or partly replace natural gas in power equipment burning gaseous fuel. The energy and environmental characteristics of a boiler unit burning a mixture of producer gas and natural gas have been assessed.

  14. Generation of dispersion in nondispersive nonlinear waves in thermal equilibrium

    PubMed Central

    Lee, Wonjung; Kovačič, Gregor; Cai, David

    2013-01-01

    In this work, we examine the important theoretical question of whether dispersion relations can arise from purely nonlinear interactions among waves that possess no linear dispersive characteristics. Using two prototypical examples of nondispersive waves, we demonstrate how nonlinear interactions can indeed give rise to effective dispersive-wave–like characteristics in thermal equilibrium. Physically, these example systems correspond to the strong nonlinear coupling limit in the theory of wave turbulence. We derive the form of the corresponding dispersion relation, which describes the effective dispersive structures, using the generalized Langevin equations obtained in the Zwanzig–Mori projection framework. We confirm the validity of this effective dispersion relation in our numerical study using the wavenumber–frequency spectral analysis. Our work may provide insight into an important connection between highly nonlinear turbulent wave systems, possibly with no discernible dispersive properties, and the dispersive nature of the corresponding renormalized waves. PMID:23401526

  15. TRU waste transportation -- The flammable gas generation problem

    SciTech Connect

    Connolly, M.J.; Kosiewicz, S.T.

    1997-11-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site`s inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons.

  16. Comprehensive Thermal Hydraulics Research of the Very High Temperature Gas Cooled Reactor

    SciTech Connect

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; David Petti; Hyung Kang

    2010-10-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  17. Effects of Intergranular Gas Bubbles on Thermal Conductivity

    SciTech Connect

    K. Chockalingam; Paul C. Millett; M. R. Tonks

    2012-11-01

    Model microstructures obtained from phase-field simulations are used to study the effective heat transfer across bicrys- tals with stationary grain boundary bubble populations. We find that the grain boundary coverage, irrespective of the intergranular bubble radii, is the most relevant parameter to the thermal resistance, which we use to derive effec- tive Kapitza resistances that are dependent on the grain boundary coverage and Kaptiza resistance of the intact grain boundary. We propose a model to predict thermal conductivity as a function of porosity, grain-size, Kaptiza resistance of the intact grain boundary, and grain boundary bubble coverage.

  18. Thermal analysis of solar biomass hybrid co-generation plants

    NASA Astrophysics Data System (ADS)

    Kaushika, N. D.; Mishra, Anuradha; Chakravarty, M. N.

    2005-12-01

    This article describes a co-generation plant based on the biogas being produced from the waste of distillery plant and highlights the possible configuration in which the plant can be hybridized with auxiliary solar energy source having the advantage of using financial incentives in several countries. In hybridization, the solar heat is used for heating the boiler feed water. The solar heat-generating unit consists of line focus parabolic trough collector, heat transportation system and heat delivery unit such as heat exchanger. The simulation model of heat and mass transfer processes in the solar field as well as the balance of the system is developed to investigate the technological feasibility of the concept in terms of plant yield and matching of subsystems.

  19. Study on pyrolysis gas in thermal extraction of Bai Yinhua lignite with industrial washing oil

    NASA Astrophysics Data System (ADS)

    Cui, Y. M.; Lian, X. P.; Zhao, F. Y.; Xu, Y. Q.; Hu, Y. Q.; Yuan, Z. K.; Hao, X. R.

    2016-08-01

    Industrial washing oil as solvent, pyrolysis gas produced from Bai Yinhua lignite during thermal extraction was studied by gas chromatography. The effects of temperature and solvent coal ration on coal pyrolysis gas were investigated. The results showed that: Pyrolysis gas produced mainly in CO, CO2, O2, H2, CH4, and so on, in which the total amount of oxygen containing compounds nearly 40%, significant effects of deoxidation was achieved. The increase of heat extraction temperature can significantly increase the degree of bond breaking and the gas formation rate, the gas yield and the rate of oxygen increase significantly, while the gas yield increases with the decrease of the solvent coal ration.

  20. Investigation of gas generation in regenerative fuel cells by low-energy X-rays

    NASA Astrophysics Data System (ADS)

    Selamet, Omer Faruk; Deevanhxay, Phengxay; Tsushima, Shohji; Hirai, Shuichiro

    2015-11-01

    Gas generation and discharge behaviors in an operating regenerative fuel cell (RFC) are investigated using low-energy X-ray radiography. In situ visualization at high spatial and temporal resolution reveal dynamic and inhomogeneous behaviors of the gas generation in the membrane electrode assembly (MEA) in the RFC. Temporal and spatial variation of the gas thickness in the MEA is quantitatively discussed and shows an intermittent and periodic discharge processes of the gas generated by electrolysis, suggesting that the reaction sites in the catalyst layer and the discharging path of gas bubbles are well established in the MEA for the electrolysis. Larger gas accumulation and discharge in the gas diffusion layer (GDL) under the ribs are identified in comparison with those under the channels, which is attributed to the relatively longer path for accumulated gas under the ribs to be discharged into the flow channels.

  1. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Unknown

    2002-03-31

    The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

  2. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  3. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  4. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, Prabhakar; George, Raymond A.

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  5. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    SciTech Connect

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF/sub 4/ is used as the sensitizer to absorb energy from a pulsed CO/sub 2/ laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF/sub 6/ is the reactant, CF/sub 3/Cl is used as reagent to trap atomic fluorine reaction product, forming CF/sub 4/ as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF/sub 6/ unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF/sub 6/ as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs.

  6. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    SciTech Connect

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  7. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE PAGESBeta

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  8. Thermal tests of the 9FB gas turbine unit produced by general electric

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.; Radin, Yu. A.; Mel'nikov, V. A.; Tuz, N. E.; Mironenko, A. V.

    2013-09-01

    In July 2011, a PGU-410 combined-cycle power plant was commissioned at the Srendeuralsk district power station owned by Enel OGK-5. The main equipment of this power plant includes an MS9001FB gas turbine unit (produced by GE Energy Power Plant Systems, the United States), a heat recovery boiler (produced by Nooter/Ericsen, the United States), and a >Skoda KT-140-13.3 two-cylinder condensing and cogeneration turbine with steam reheating. In 2011-2012, specialists of the All-Russia Thermal Engineering Institute carried out thermal tests of this power plant in a wide range of loads and under different external conditions. The results from thermal tests of the MS9001FB gas turbine unit are presented and analyzed. The actual indicators of the gas turbine unit and its elements are determined and their characteristics are constructed.

  9. Thermal maturity and organic composition of Pennsylvanian coals and carbonaceous shales, north-central Texas: Implications for coalbed gas potential

    USGS Publications Warehouse

    Hackley, P.C.; Guevara, E.H.; Hentz, T.F.; Hook, R.W.

    2009-01-01

    Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600??m; 2000??ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (Ro) values between about 0.4 and 0.8%. This range of Ro values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100??m; 300??ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar Ro values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from ~ 1650??m; 5400??ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher Ro values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1??m; 3.3??ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank.

  10. Gas transport by thermal transpiration in micro-channels -- A numerical study

    SciTech Connect

    Wong, C.C.; Hudson, M.L.; Potter, D.L.; Bartel, T.J.

    1998-08-01

    A reliable micro gas pump is an essential element to the development of many micro-systems for chemical gas analyses. At Sandia, the authors are exploring a different pumping mechanism, gas transport by thermal transpiration. Thermal transpiration refers to the rarefied gas dynamics developed in a micro-channel with a longitudinal temperature gradient. To investigate the potential of thermal transpiration for gas pumping in micro-systems, the authors have performed simulations and model analysis to design micro-devices and to assess their design performance before the fabrication process. The effort is to apply ICARUS (a Direct Simulation Monte Carlo code developed at Sandia) to characterize the fluid transport and evaluate the design performance. The design being considered has two plenums at different temperatures (hot and cold) separated by a micro-channel of 0.1 micron wide and 1 micron long. The temperature difference between the two plenums is 30 kelvin. ICARUS results, a quasi-steady analysis, predicts a net flow through the micro-channel with a velocity magnitude of about 0.4 m/s due to temperature gradient at the wall (thermal creep flow) at the early time. Later as the pressure builds up in the hot plenum, flow is reversed. Eventually when the system reaches steady state equilibrium, the net flow becomes zero. The thermal creep effect is compensated by the thermo-molecular pressure effect. This result demonstrates that it is important to include the thermo-molecular pressure effect when designing a pumping mechanism based on thermal transpiration. The DSMC technique can model this complex thermal transpiration problem.

  11. Position paper on gas generation in the Waste Isolation Pilot Plant

    SciTech Connect

    Brush, L.H.

    1994-11-15

    Gas generation by transuranic (TRU) waste is a significant issue because gas will, if produced in significant quantities, affect the performance of the Waste Isolation Pilot Plant (WIPP) with respect to Environmental Protection Agency (EPA) regulations for the long-term isolation of radioactive and chemically hazardous waste. If significant gas production occurs, it will also affect, and will be affected by, other processes and parameters in WIPP disposal rooms. The processes that will produce gas in WIPP disposal rooms are corrosion, microbial activity and radiolysis. This position paper describes these processes and the models, assumptions and data used to predict gas generation in WIPP disposal rooms.

  12. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    SciTech Connect

    Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

  13. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    NASA Astrophysics Data System (ADS)

    Antoniak, Z. I.; Brown, D. R.; Drost, M. K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20 percent cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20 percent more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5 percent when compared to larger gas turbines.

  14. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  15. Performance of a Small Gas Generator Using Liquid Hydrogen and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Acker, Loren W.; Fenn, David B.; Dietrich, Marshall W.

    1961-01-01

    The performance and operating problems of a small hot-gas generator burning liquid hydrogen with liquid oxygen are presented. Two methods of ignition are discussed. Injector and combustion chamber design details based on rocket design criteria are also given. A carefully fabricated showerhead injector of simple design provided a gas generator that yielded combustion efficiencies of 93 and 96 percent.

  16. Analysis of Turkish High School Chemistry Textbooks and Teacher-Generated Questions about Gas Laws

    ERIC Educational Resources Information Center

    Nakiboglu, Canan; Yildirir, H.

    2011-01-01

    This study presents the results of an analysis of high school chemistry textbooks and teacher-generated questions about gas laws. The materials that were analyzed consisted of 456 questions about gas laws found in seven grade 10 chemistry textbooks and 264 teacher-generated examination questions prepared by seven chemistry teachers from three…

  17. FIRST ORDER KINETIC GAS GENERATION MODEL PARAMETERS FOR WET LANDFILLS

    EPA Science Inventory

    Landfill gas is produced as a result of a sequence of physical, chemical, and biological processes occurring within an anaerobic landfill. Landfill operators, energy recovery project owners, regulators, and energy users need to be able to project the volume of gas produced and re...

  18. Boltzmann Equation Analysis Of Electron Swarms For Non Thermal Flue Gas Discharge Modeling

    NASA Astrophysics Data System (ADS)

    Yousfi, M.

    1997-10-01

    The aim of this presentation is to give an overview on the electron swarm development in the flue gas mixture discharges involving N2, O2, H2O and CO2. The corresponding electron basic data needed for the non thermal plasma device for pollution control are given in typical flue gases from Boltzmann equation solution including the dominant collision processes (elastic, inelastic and super-elastic). These data are first the electron-molecule collision cross sections for each gas of the mixture and then the transport and reaction coefficients of electron swarms in the gas mixture. The strong coupling between this electron swarm model with the different models used for the non thermal plasma device of our interest are emphasized. This concerns the electron Boltzamnn equation coupled with the charged particle (or electrical) model, the gas dynamics and also the chemical kinetics models. Some illustrative results of this coupling are then given.

  19. Thermal vacuum life test facility for radioisotope thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Deaton, R. L.; Goebel, C. J.; Amos, W. R.

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG and G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al., (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met.

  20. Thermal/Pyrolysis Gas Flow Analysis of Carbon Phenolic Material

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2001-01-01

    Provided in this study are predicted in-depth temperature and pyrolysis gas pressure distributions for carbon phenolic materials that are externally heated with a laser source. Governing equations, numerical techniques and comparisons to measured temperature data are also presented. Surface thermochemical conditions were determined using the Aerotherm Chemical Equilibrium (ACE) program. Surface heating simulation used facility calibrated radiative and convective flux levels. Temperatures and pyrolysis gas pressures are predicted using an upgraded form of the SINDA/CMA program that was developed by NASA during the Solid Propulsion Integrity Program (SPIP). Multispecie mass balance, tracking of condensable vapors, high heat rate kinetics, real gas compressibility and reduced mixture viscosity's have been added to the algorithm. In general, surface and in-depth temperature comparisons are very good. Specie partial pressures calculations show that a saturated water-vapor mixture is the main contributor to peak in-depth total pressure. Further, for most of the cases studied, the water-vapor mixture is driven near the critical point and is believed to significantly increase the local heat capacity of the composite material. This phenomenon if not accounted for in analysis models may lead to an over prediction in temperature response in charring regions of the material.

  1. Stack gas analyzer and thermal oxidation device therefor

    SciTech Connect

    Vincent, A.

    1980-07-08

    A stack gas analyzer is described for connection from a recovery stack, said stack gas analyzer comprising: first means including a first outlet for producing a flow of a dehydrated mixture of the gases flowing in said recovery stck, said dehydrated mixture including sulfur dioxide, total reduced sulfur (TRS), and oxygen remaining after combustion utilizing an oxygen rate a few percent in excess of the stoichiometric rate; a scrubber having an inlet and an outlet to receive said dehydrated mixture, said scrubber having a composition to remove sulfur dioxide from said dehydrated mixture without removing the said TRS, said scrubber outlet having a flow therethrough of a trs sample mixture the same as said dehydrated mixture except for the removal of sulfur dioxide therefrom and including at least some of said oxygen; a coulometric titrator having a cell including an inlet and an outlet, and having second means to produce an electrical output signal proportional to the concentration of sulfur dioxide in an oxidized gas mixture passing through said cell from said cell inlet to said cell outlet; a conduit connected from said scrubber outlet to said cell inlet, saidaconduit having a flow of said TRS sample therein; and third means to heat said TRS sample in said conduit to a pedetermined temperature such that said trs is oxidized to sulfur dioxide.

  2. Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol

    NASA Astrophysics Data System (ADS)

    Pourhashem, Ghasideh; Adler, Paul R.; McAloon, Andrew J.; Spatari, Sabrina

    2013-06-01

    Second generation ethanol bioconversion technologies are under demonstration-scale development for the production of lignocellulosic fuels to meet the US federal Renewable Fuel Standards (RFS2). Bioconversion technology utilizes the fermentable sugars generated from the cellulosic fraction of the feedstock, and most commonly assumes that the lignin fraction may be used as a source of thermal and electrical energy. We examine the life cycle greenhouse gas (GHG) emission and techno-economic cost tradeoffs for alternative uses of the lignin fraction of agricultural residues (corn stover, and wheat and barley straw) produced within a 2000 dry metric ton per day ethanol biorefinery in three locations in the United States. We compare three scenarios in which the lignin is (1) used as a land amendment to replace soil organic carbon (SOC); (2) separated, dried and sold as a coal substitute to produce electricity; and (3) used to produce electricity onsite at the biorefinery. Results from this analysis indicate that for life cycle GHG intensity, amending the lignin to land is lowest among the three ethanol production options (-25 to -2 g CO2e MJ-1), substituting coal with lignin is second lowest (4-32 g CO2e MJ-1), and onsite power generation is highest (36-41 g CO2e MJ-1). Moreover, the onsite power generation case may not meet RFS2 cellulosic fuel requirements given the uncertainty in electricity substitution. Options that use lignin for energy do so at the expense of SOC loss. The lignin-land amendment option has the lowest capital cost among the three options due to lower equipment costs for the biorefinery’s thermal energy needs and use of biogas generated onsite. The need to purchase electricity and uncertain market value of the lignin-land amendment could raise its cost compared to onsite power generation and electricity co-production. However, assuming a market value (50-100/dry Mg) for nutrient and soil carbon replacement in agricultural soils, and potentially

  3. Analysis and clustering of natural gas consumption data for thermal energy use forecasting

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro; Fantozzi, Fabio

    2015-11-01

    In this paper, after a brief analysis of the connections between the uses of natural gas and thermal energy use, the natural gas consumption data related to Italian market are analyzed and opportunely clustered in order to compute the typical consumption profile in different days of the week in different seasons and for the different class of users: residential, tertiary and industrial. The analysis of the data shows that natural gas consumption profile is mainly related to seasonality pattern and to the weather conditions (outside temperature, humidity and wind chiller). There is also an important daily pattern related to industrial and civil sector that, at a lower degree than the previous one, does affect the consumption profile and have to be taken into account for defining an effective short and mid term thermal energy forecasting method. A possible mathematical structure of the natural gas consumption profile is provided. Due to the strong link between thermal energy use and natural gas consumption, this analysis could be considered the first step for the development of a model for thermal energy forecasting.

  4. Daily thermal predictions of the AGR-1 experiment with gas gaps varying with time

    SciTech Connect

    Hawkes, G.; Sterbentz, J.; Maki, J.; Pham, B.

    2012-07-01

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps changed from the beginning of life. The control temperature gas gap and the fuel compact - graphite holder gas gaps were modeled with a linear change from the original fabrication gap dimensions to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation with the commercial finite element heat transfer code ABAQUS. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented. (authors)

  5. An overview of micromachined platforms for thermal sensing and gas detection

    SciTech Connect

    Manginell, R.P.; Smith, J.H.; Ricco, A.J.

    1997-03-01

    Micromachined hotplates, membranes, filaments, and cantilevers have all been used as platforms for thermal sensing and gas detection. Compared with conventional devices, micromachined sensors are characterized by low power consumption, high sensitivity, and fast response time. Much of these gains can be attributed to the size reductions achieved by micromachining. In addition, micromachining permits easy, yet precise tailoring of the heat transfer characteristics of these devices. By simple alterations in device geometry and materials used, the relative magnitudes of radiation, convection and conduction losses and Joule heat gains can be adjusted, and in this way device response can be optimized for specific applications. The free-standing design of micromachined platforms, for example, reduces heat conduction losses to the substrate, thereby making them attractive as low power, fast-response heaters suitable for a number of applications. However, while micromachining solves some of the heat transfer problems typical of conventionally produced devices, it introduces some of its own. These trade-offs will be discussed in the context of several micromachined thermal and gas sensors present in the literature. These include micromachined flow sensors, gas thermal conductivity sensors, pressure sensors, uncooled IR sensors, metal-oxide and catalytic/calorimetric gas sensors. Recent results obtained for a microbridge-based catalytic/calorimetric gas sensor will also be presented as a means of further illustrating the concepts of thermal design in micromachined sensors.

  6. Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time

    SciTech Connect

    Grant Hawkes; James Sterbentz; John Maki; Binh Pham

    2012-06-01

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps varying from the beginning of life. The control temperature gas gap and the fuel compact – graphite holder gas gaps were linearly changed from the original fabrication dimensions, to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented.

  7. Thermal stress analysis of a graded zirconia/metal gas path seal system for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Taylor, C. M.

    1977-01-01

    A ceramic/metallic aircraft gas turbine outer gas path seal designed to enable improved engine performance is studied. Flexible numerical analysis schemes suitable for the determination of transient temperature profiles and thermal stress distributions in the seal are outlined. An estimation of the stresses to which a test seal is subjected during simulated engine deceleration from sea level takeoff to idle conditions is made. Experimental evidence has indicated that the surface layer of the seal is probably subjected to excessive tensile stresses during cyclic temperature loading. This assertion is supported by the analytical results presented. Brief consideration is given to means of mitigating this adverse stressing.

  8. High electric field effects on the thermal generation in hydrogenated amorphous silicon

    SciTech Connect

    Ilie, A.; Equer, B.

    1997-07-01

    The authors have studied the electric field dependence of the electron-hole thermal generation process in hydrogenated amorphous silicon. A model was developed which takes into account the Poole-Frenkel effect and the thermally assisted tunneling. In order to explain the experimental results it was necessary to consider a strong electron-lattice interaction describing the carrier tunneling mechanism. Deep defects relaxation is also discussed.

  9. Thermal Optimization of the Heat Exchanger in an Automotive Exhaust-Based Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Liu, X.; Chen, S.; Tong, N. Q.

    2013-07-01

    Recent advances in thermoelectric technologies have made exhaust-based thermoelectric generators (TEGs) promising to recover waste heat. The thermal performance of the heat exchanger in exhaust-based TEGs is studied in this work. In terms of interface temperature and thermal uniformity, the thermal characteristics of heat exchangers with different internal structures, lengths, and materials are discussed. Following computational fluid dynamics simulations, infrared experiments are carried out on a high-performance production engine with a dynamometer. Simulation and experimental results show that a plate-shaped heat exchanger made of brass with fishbone-shaped internal structure and length of 600 mm achieves a relatively ideal thermal performance, which is practically helpful to enhance the thermal performance of the TEG.

  10. Evaluation of steam generator feedwater nozzles for the effects of thermal stratification

    SciTech Connect

    Qashu, R.; El-Akily, N.M.; Kuo, A.

    1995-12-01

    The potential for thermal stratification in the main feedwater (FW) line of a Pressurized Water Reactor (PWR) plant exists whenever the auxiliary feedwater is initiated. The thermal stratification phenomenon is attributed to the difference in density between the hotter normal feedwater, initially in the pipe, and the colder auxiliary feedwater introduced into the piping. The effect of thermal stratification on the fatigue life is two fold: the global bending due to the bowing effect caused by thermal stratification, and the local effect due to the fluctuation in the level of the hot-cold interface. This paper deals with the global and local effects of thermal stratification in the main feedwater line on the fatigue life of the steam generator feedwater nozzle. This nozzle, which is attached to the main feedwater line, is subjected to the effects of thermal stratification in the main feedwater line and in the nozzle itself due to the difference in the water density between the auxiliary feedwater and the steam generator. It should be noted that steam generator feedwater nozzle cracking has been a concern in the nuclear power industry since the late 1970`s.

  11. Generation of Nitrogen Acceptors in ZnO using Pulse Thermal Processing

    SciTech Connect

    Xu, Jun; Ott, Ronald D; Sabau, Adrian S; Pan, Zhengwei; Xiu, Faxian; Liu, Jilin; Erie, Jean-Marie; Norton, David P

    2008-01-01

    Bipolar doping in wide bandgap semiconductors is difficult to achieve under equilibrium conditions because of the spontaneous formation of compensating defects and unfavorable energetics for dopant substitution. In this work, we explored the use of rapid pulse thermal processing for activating nitrogen dopants into acceptor states in ZnO. Low-temperature photoluminescence spectra revealed both acceptor-bound exciton (A{sup 0}X) and donor-acceptor pair emissions, which present direct evidence for acceptors generated after pulse thermal processing of nitrogen-doped ZnO. This work suggests that pulse thermal processing is potentially an effective method for p-type doping of ZnO.

  12. Thermal and petroleum-generation history of the Mississippian Eleana Formation and Tertiary source rocks, Yucca Mountain Area, Southern Nye County, Nevada

    SciTech Connect

    Barker, C.E.

    1995-06-01

    A geochemical and geologic assessment of petroleum potential in the Yucca Mountain area indicates little remaining potential for significant oil and gas generation in the Mississippian Eleana Formation or related Paleozoic rocks, and good but a really restricted potential in Tertiary rocks in Area 8 of the Nevada Test Site. Mesozoic source rocks are not present in the Yucca Mountain area. The Tertiary source rocks in Area 8 of the Nevada Test Site are typically carbon-rich, and where hydrogen-rich, they are good oil-prone source rocks that are immature to marginally mature with respect to oil and gas generation. A geologically similar occurrence of hydrothermally altered Tertiary source rocks at north Bare Mountain retains little hydrocarbon generation capacity. The implication is that hydrocarbons were generated during hydrothermal alteration and have since migrated out of the source rocks or alive been lost during exhumation. A reconstructed thermal history of the Yucca Mountain area, based on the Eleana Formation, indicates petroleum was generated in the Late Paleozoic and possibly Early Mesozoic and that the oil was lost or metamorphosed to pyrobitumen during later heating, probably related to igneous activity. The Tertiary rocks are still capable of generating oil and gas, but little potential exists for a major hydrocarbon discovery due to the restricted occurrence of good source rocks and their marginal thermal maturity when situated away from intrusions.

  13. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  14. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Unknown

    2002-01-31

    The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

  15. Fundamental understanding of the thermal degradation mechanisms of waste tires and their air pollutant generation in a N2 atmosphere.

    PubMed

    Kwon, Eilhann; Castaldi, Marco J

    2009-08-01

    The thermal decomposition of waste tires has been characterized via thermo-gravimetric analysis (TGA) tests, and significant mass loss has been observed between 300 and 500 degrees C. A series of gas chromatography-mass spectrometer (GC-MS) measurements, in which the instrument was coupled to a TGA unit, have been carried out to investigate the thermal degradation mechanisms as well as the air pollutant generation including volatile organic carbons (VOCs) and polycyclic aromatic hydrocarbons (PAHs) in a nitrogen atmosphere. In order to understand fundamental information on the thermal degradation mechanisms of waste tires, the main constituents of tires, poly-isoprene rubber (IR) and styrene butadiene rubber (SBR), have been studied under the same conditions. All of the experimental work indicated that the bond scission on each monomer of the main constituents of tires was followed by hydrogenation and gas phase reactions. This helped to clarify the independent pathways and species attributable to IR and SBR during the pyrolysis process. To extend that understanding to a more practical level, a flow-through reactor was used to test waste tire, SBR and IR samples in the temperature range of 500-800 degrees C at a heating rate of approximately 200 degrees C. Lastly, the formation of VOCs (approximately 1-50 PPMV/10 mg of sample) and PAHs (approximately 0.2-7 PPMV/10 mg of sample) was observed at relatively low temperatures compared to conventional fuels, and its quantified concentration was significantly high due to the chemical structure of SBR and IR. The measurement of chemicals released during pyrolysis suggests not only a methodology for reducing the air pollutants but also the feasibility of petrochemical recovery during thermal treatment.

  16. Thermal conditions for cooled gas-turbine metal-ceramic blade

    NASA Astrophysics Data System (ADS)

    Soudarev, A. V.; Soudarev, B. V.; Molchanov, A. S.; Souryaninov, A. A.; Grishaev, V. V.

    2002-02-01

    Application of the alumo-boron-nitride heat-resistant structural ceramics allows distribution of the thermal and mechanical loads on the metal-ceramic blade elements reasonably rationally from the thermotechnical point of view. The ceramic shell, actually free of the mechanical effects, absorbs the heat from the high-temperature gas and serves as a shield for the strength core. The latter, being loaded mechanically, is cooled with air, the flow thereof is mainly the function of the heat supply from the peripheral platform and ceramic shell, additionally separated by a thin- wall metal screen from the core. Calculation of the pattern factors for the basic parts was performed at rating as applied to the nozzle vanes and rotor blades of the 2.5 MW GTE with the gas temperature at the inlet TIT=1623K. It was demonstrated that an admissible temperature level of the mechanically loaded parts could be achieved at the cooling air flows of 1.5%. Decreasing the power consumption on cooling allowed to get a high efficiency of the designed engine amounting to 42 43% (speed at rating is around 23,000 r/min). During rotation the length of the ceramic shell, installed loosely on the strength core, moves due to the action of the centrifugal forces and is pressed to the platform of the core. At the same time, a relatively lower compressive stresses of around 40 MPa are generated in the shell which ensures a feasibility of a long-term reliable operation of the turbine.

  17. Monte Carlo analysis of lobular gas-surface scattering in tubes applied to thermal transpiration

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Raquet, C. A.

    1972-01-01

    A model of rarefied gas flow in tubes was developed which combines a lobular distribution with diffuse reflection at the wall. The model with Monte Carlo techniques was used to explain previously observed deviations in the free molecular thermal transpiration ratio which suggest molecules can have a greater tube transmission probability in a hot-to-cold direction than in a cold-to-hot direction. The model yields correct magnitudes of transmission probability ratios for helium in Pyrex tubing (1.09 to 1.14), and some effects of wall-temperature distribution, tube surface roughness, tube dimensions, gas temperature, and gas molecular mass.

  18. Materials Selection in Gas Turbine Engine Design and the Role of Low Thermal Expansion Materials

    NASA Astrophysics Data System (ADS)

    Lagow, Benjamin W.

    2016-08-01

    Materials selection criteria in gas turbine engine design are reviewed, and several design challenges are introduced where selection of low coefficient of thermal expansion (CTE) materials can help improve engine performance and operability. This is followed by a review of the types of low CTE materials that are suitable for gas turbine engine applications, and discussion of their advantages and disadvantages. The primary limitation of low CTE materials is their maximum use temperature; if higher temperature materials could be developed, this could result in novel turbine system designs for gas turbine engines.

  19. Computer Modeling of Flow, Thermal Condition and Ash Deposition in a Hot-Gas Filtration Device

    SciTech Connect

    Ahmadi, G.; Mazaheri, A.; Liu, C.; Gamwo, I.K.

    2002-09-19

    The objective of the present study is to develop a computational model for simulating the gas flow, thermal condition and ash transport and deposition pattern in the hot-gas filtration systems. The computational model is to provide a virtual tool for design and operation modifications. Particular attention is given to the Particle Control Device (PCD) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. For evaluation of gas velocity and temperature field in the vessel, the FLUENT commercial CFD computer code is used. Ash particle transport and deposition pattern was analyzed with the Lagrangian particle tracking approach.

  20. Development of New Generation of Thermally-Enhanced Fiber Glass Insulation

    SciTech Connect

    Kosny, Jan; Yarbrough, David W; Childs, Phillip W; Miller, William A; Atchley, Jerald Allen; Shrestha, Som S

    2010-03-01

    This report presents experimental and numerical results from thermal performance studies. The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and John s Manville was to design a basic concept of a new generation of thermally-enhanced fiber glass insulation. Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central U.S. climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed thermally-enhanced fiber glass insulation will maximize this integration by utilizing a highly-efficient building envelope with high-R thermal insulation, active thermal mass and superior air-tightness. Improved thermal resistance will come from modifications in infrared internal characteristics of the fiber glass insulation. Thermal mass effect can be provided by proprietary thermally-active microencapsulated phase change material (PCM). Work carried out at the Oak Ridge National Laboratory (ORNL) on the CRADA is described in this report.

  1. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    PubMed

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-01

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  2. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  3. Thermal mechanical modeling of gas tungsten arc welding

    SciTech Connect

    Shapiro, A.B.; Mahin, K.W.

    1986-05-01

    Welding problems encountered in development and production activities are typically solved in a ''let's try this'' approach, which can be costly and do not always provide the optimal solution. The Ongoing research at LLNL and Sandia is directed toward improving our basic understanding of what is actually occurring on a phenomenological basis in welding and to apply this knowledge to the development of a general computer-based weld model. Our approach has been to couple a well defined experiment with computer simulation to examine the effects of various moedling assumptions on the computer predictions. The application is confined to the inert gas-tungsten-arc (GTA) process. However, the results give insight into modeling other welding processes (e.g. laser, electron beam).

  4. Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.

  5. The gas-grain interaction in the interstellar medium - Thermal accommodation and trapping

    NASA Astrophysics Data System (ADS)

    Burke, J. R.; Hollenbach, D. J.

    1983-02-01

    The paper develops a numerical model for calculating thermal accommodation coefficients alphaT and trapping functions ft for gases incident on solid surfaces. The method is especially designed for astrophysical applications in that it treats economically and with moderate accuracy (+ or - 20%) the dependences of alphaT and ft on finite and different surface and gas temperatures for a large number of gas-surface combinations. In particular, the method is applied to the astrophysical combinations of hydrogen and helium gases incident on graphite, silicon, and ice surfaces. Graphs are presented of the dependence of alphaT and ft on interstellar gas temperatures in the range of 10 to 10,000 K and grain temperatures in the range 10 to 1000 K, assuming the current estimates of the gas-surface physical parameters such as the composition and the Debye temperature of the grain material, the repulsive range of the surface potential, and the gas-grain adsorption energy.

  6. Steam generation under one sun enabled by a floating structure with thermal concentration

    NASA Astrophysics Data System (ADS)

    Ni, George; Li, Gabriel; Boriskina, Svetlana V.; Li, Hongxia; Yang, Weilin; Zhang, Tiejun; Chen, Gang

    2016-09-01

    Harvesting solar energy as heat has many applications, such as power generation, residential water heating, desalination, distillation and wastewater treatment. However, the solar flux is diffuse, and often requires optical concentration, a costly component, to generate the high temperatures needed for some of these applications. Here we demonstrate a floating solar receiver capable of generating 100 ∘C steam under ambient air conditions without optical concentration. The high temperatures are achieved by using thermal concentration and heat localization, which reduce the convective, conductive and radiative heat losses. This demonstration of a low-cost and scalable solar vapour generator holds the promise of significantly expanding the application domain and reducing the cost of solar thermal systems.

  7. Steam generation under one sun enabled by a floating structure with thermal concentration

    NASA Astrophysics Data System (ADS)

    Ni, George; Li, Gabriel; Boriskina, Svetlana V.; Li, Hongxia; Yang, Weilin; Zhang, Tiejun; Chen, Gang

    2016-09-01

    Harvesting solar energy as heat has many applications, such as power generation, residential water heating, desalination, distillation and wastewater treatment. However, the solar flux is diffuse, and often requires optical concentration, a costly component, to generate the high temperatures needed for some of these applications. Here we demonstrate a floating solar receiver capable of generating 100 ∘C steam under ambient air conditions without optical concentration. The high temperatures are achieved by using thermal concentration and heat localization, which reduce the convective, conductive and radiative heat losses. This demonstration of a low-cost and scalable solar vapour generator holds the promise of significantly expanding the application domain and reducing the cost of solar thermal systems.

  8. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  9. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    SciTech Connect

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  10. Thermal Damage on LX-04 Mock Material and Gas Permeability Assessment

    SciTech Connect

    Hsu, P C; Dehaven, M; McClelland, M; Maienschein, J

    2004-11-15

    RM-04-BR, a mock material for the plastic-bonded HMX-based explosive LX-04, is characterized after being thermally damaged at 140 C and 190 C. We measured the following material properties before and after the thermal experiments: sample volume, density, sound speed, and gas permeability in the material. Thermal treatment of the mock material leads to de-coloring and insignificant weight loss. Sample expanded, resulting in density reductions of 1.0% to 2.5% at 140 C and 190 C, respectively. Permeability in the mock samples was found to increase from 10{sup -15} to 10{sup -16} m{sup 2}, as the porosity increased. The permeability measurements are well represented by the Blake-Kozeny equation for laminar flow through porous media. The results are similar to the gas permeability in PBX-9501 obtained by other researchers.

  11. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  12. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. PMID:21532584

  13. Thermal and Electrical Conductivities of a Three-Dimensional Ideal Anyon Gas with Fractional Exclusion Statistics

    NASA Astrophysics Data System (ADS)

    Qin, Fang; Wen, Wen; Chen, Ji-Sheng

    2014-07-01

    The thermal and electrical transport properties of an ideal anyon gas within fractional exclusion statistics are studied. By solving the Boltzmann equation with the relaxation-time approximation, the analytical expressions for the thermal and electrical conductivities of a three-dimensional ideal anyon gas are given. The low-temperature expressions for the two conductivities are obtained by using the Sommerfeld expansion. It is found that the Wiedemann—Franz law should be modified by the higher-order temperature terms, which depend on the statistical parameter g for a charged anyon gas. Neglecting the higher-order terms of temperature, the Wiedemann—Franz law is respected, which gives the Lorenz number. The Lorenz number is a function of the statistical parameter g.

  14. Gas-Filled Panels: An update on applications in the building thermal envelope

    SciTech Connect

    Griffith, B.T.; Arasteh, D.; Tuerler, D.

    1995-10-01

    This paper discusses the application of Gas-Filled Panels to the building thermal envelope. Gas-Filled Panels, or GFPs, are thermal insulating devices that retain a high concentration of a low- conductivity gas, at atmospheric pressure, within a multilayer infrared reflective baffle. The thermal performance of the panel depends on the type of gas fill and the baffle configuration. Heat- flow meter apparatus measurements have shown effective apparent thermal conductivities of 0.194 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with air as the gas fill, 0.138 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with argon, and 0.081 Btu{center_dot}in/h{center_dot}ft{sup 2}{center_dot}{degree}F with krypton. Calorimetric measurements have also shown total resistance levels of about R-12.6 h{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 1.0-inch thick krypton panel, R-25.7 h{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 2.0-inch krypton panel, and R-18.4 f{center_dot}ft{sup 2}{center_dot}{degree}F/Btu for a 10-inch xenon panel. GFPs are flexible, self-supporting and can be made in a variety of shapes and sizes to thoroughly fill most types of cavities in building walls and roofs, although the modular nature of the panels can lead to complications in installing them, especially for irregularly shaped cavities. We present computer simulation results showing the improvement in thermal resistance resulting from using an argon-GFP in place of glass fiber batt insulation in wood-frame construction. This report also presents estimates of the quantity and cost of material components needed to manufacture GFPs using current prototype designs.

  15. Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2003-01-01

    A dual-membrane gas trap is currently used to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the NCG. The inner hydrophobic fiber allows the trapped NCG to pass through and vent to the ambient atmosphere in the cabin. The purpose of the gas trap is to prevent gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump, and the current gas trap has performed flawlessly in this regard. However, because of actual operational conditions on-orbit, its gas removal performance and operational lifetime have been affected. This paper discusses experiences with several of these dual- membrane gas traps, including on-orbit gas venting rate, effects due to the presence of nickel in the ITCS coolant, and subsequent refurbishing to remove the nickel from the gas trap.

  16. A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Patel, Vipul; Reeves, Daniel R.; Holt, James M.

    2005-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.

  17. Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions

    NASA Astrophysics Data System (ADS)

    Manero, Albert; Sofronsky, Stephen; Knipe, Kevin; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Raghavan, Seetha; Bartsch, Marion

    2015-07-01

    Advances in aircraft and land-based turbine engines have been increasing the extreme loading conditions on traditional engine components and have incited the need for improved performance with the use of protective coatings. These protective coatings shield the load-bearing super alloy blades from the high-temperature combustion gases by creating a thermal gradient over their thickness. This addition extends the life and performance of blades. A more complete understanding of the behavior, failure mechanics, and life expectancy for turbine blades and their coatings is needed to enhance and validate simulation models. As new thermal-barrier-coated materials and deposition methods are developed, strides to effectively test, evaluate, and prepare the technology for industry deployment are of paramount interest. Coupling the experience and expertise of researchers at the University of Central Florida, The German Aerospace Center, and Cleveland State University with the world-class synchrotron x-ray beam at the Advanced Photon Source in Argonne National Laboratory, the synergistic collaboration has yielded previously unseen measurements to look inside the coating layer system for in situ strain measurements during representative service loading. These findings quantify the in situ strain response on multilayer thermal barrier coatings and shed light on the elastic and nonelastic properties of the layers and the role of mechanical load and internal cooling variations on the response. The article discusses the experimental configuration and development of equipment to perform in situ strain measurements on multilayer thin coatings and provides an overview of the achievements thus far.

  18. Sonic booms and diffusion wakes generated by a heavy quark in thermal gauge-string duality.

    PubMed

    Gubser, Steven S; Pufu, Silviu S; Yarom, Amos

    2008-01-11

    We evaluate the Poynting vector generated by a heavy quark moving through a thermal state of N=4 gauge theory using the gauge-string duality. A significant diffusion wake is observed as well as a Mach cone. We discuss the ratio of the energy going into sound modes to the energy coming in from the wake. PMID:18232753

  19. Temperature and flow rate effects on mass median diameters of thermally generated malathion and naled fogs.

    PubMed

    Brown, J R; Chew, V; Melson, R O

    1993-06-01

    The effects of temperature and flow rate on mass median diameters (mmds) of thermally generated aerosol clouds were studied. Number 2 fuel oil alone, undiluted and diluted malathion 91, and undiluted naled were examined. There was a significant flow rate x temperature interaction on the mmds of diluted malathion fogs: i.e., differences among flow rates depended on temperature and vice versa.

  20. Sonic Booms and Diffusion Wakes Generated by a Heavy Quark in Thermal Gauge-String Duality

    SciTech Connect

    Gubser, Steven S.; Pufu, Silviu S.; Yarom, Amos

    2008-01-11

    We evaluate the Poynting vector generated by a heavy quark moving through a thermal state of N=4 gauge theory using the gauge-string duality. A significant diffusion wake is observed as well as a Mach cone. We discuss the ratio of the energy going into sound modes to the energy coming in from the wake.

  1. Application of the ATHOS3 code for steam generator thermal hydraulics and fouling analysis

    SciTech Connect

    Srikantiah, G.S.; Chappidi, P.R.

    1996-09-01

    The steam generator is a most important component in the coolant loop of Pressurized Water Reactors. Although designed for a 30--40 year operating life, severe material degradation problems have occurred within the first ten years of operation. Performance and reliability evaluations are required on a continuing basis to develop solutions and design modifications to ensure reliable operation of these systems. Thermal hydraulic analysis provides basic information such as velocity and void fraction distributions within the secondary side of the steam generator needed for the evaluation of sludge deposition, bundle fouling, tube vibration, fretting, wear and fatigue. This paper presents detailed thermal hydraulic analysis of several steam generator designs, and analyzes the correlation between thermal hydraulic distributions, sludge deposition and bundle fouling using a recent model for sludge transport and deposition. The correlation between thermal hydraulic distributions and other degradation mechanisms such as circumferential cracking of tubes is also presented. The results show that there is a strong correlation between flow velocity, void fraction and sludge deposition. The calculated sludge deposit potential maps are in very good agreement with the observed results within operating steam generators.

  2. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  3. Biogenic Gas Generation from Organic Rich Shales of Southeastern Brazil: A Potential Contributor to Greenhouse Gas Emissions?

    NASA Astrophysics Data System (ADS)

    Bertassoli, D. J., Jr.; Sawakuchi, H. O.; Sawakuchi, A. O.; Krusche, A. V.; Almeida, N. S.; Alem, V. A. T.; Camargo, M. G. P.; Brochsztain, S.; Castanheira, B.

    2015-12-01

    Studies regarding the biogeochemistry and internal structure of organic rich shales may assist the understanding of these as geological sources of greenhouse gases. The present work aims to evaluate the potential production and factors controlling the biogenic methane generation from Brazilian shales. Multiple anoxic incubations were prepared in order to quantify methane and dioxide carbon generation under wet and dry conditions. Experiments utilized samples collected from Devonian, Permian and Paleogene organic rich shales of Paraná and Taubaté basins, Southeastern Brazil. Production rates of 24 shale samples representing a wide range of total organic carbon and porosity were measured along several months. Carbon isotope values of carbon dioxide and methane enabled further investigation of biogenic gas generation and emission. A discussion regarding biogenic gas production and gas microseepage will be presented.

  4. Evaluation of Gas-Cooled Pressurized Phosphoric Acid Fuel Cells for Electric Utility Power Generation

    NASA Technical Reports Server (NTRS)

    Faroque, M.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas-cooling was already demonstrated in atmospheric pressure stacks. Theoretical and experimental investigations of gas-cooling for pressurized PAFC are presented. Two approaches to gas cooling, Distributed Gas-Cooling (DIGAS) and Separated Gas-Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  5. Gas core nuclear thermal rocket engine research and development in the former USSR

    SciTech Connect

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept.

  6. Modeling the final phase of landfill gas generation from long-term observations.

    PubMed

    Tintner, Johannes; Kühleitner, Manfred; Binner, Erwin; Brunner, Norbert; Smidt, Ena

    2012-06-01

    For waste management, methane emissions from landfills and their effect on climate change are of serious concern. Current models for biogas generation that focus on the economic use of the landfill gas are usually based on first order chemical reactions (exponential decay), underestimating the long-term emissions of landfills. The presented study concentrated on the curve fitting and the quantification of the gas generation during the final degradation phase under optimal anaerobic conditions. For this purpose the long-term gas generation (240-1,830 days) of different mechanically biologically treated (MBT) waste materials was measured. In this study the late gas generation was modeled by a log-normal distribution curve to gather the maximum gas generation potential. According to the log-normal model the observed gas sum curve leads to higher values than commonly used exponential decay models. The prediction of the final phase of landfill gas generation by a fitting model provides a basis for CO(2) balances in waste management and some information to which extent landfills serve as carbon sink.

  7. Characteristics of carbon nanotubes based micro-bubble generator for thermal jet printing.

    PubMed

    Zhou, Wenli; Li, Yupeng; Sun, Weijun; Wang, Yunbo; Zhu, Chao

    2011-12-01

    We propose a conceptional thermal printhead with dual microbubble generators mounted parallel in each nozzle chamber, where multiwalled carbon nanotubes are adopted as heating elements with much higher energy efficiency than traditional approaches using noble metals or polysilicon. Tailing effect of droplet can be excluded by appropriate control of grouped bubble generations. Characteristics of the corresponding micro-fabricated microbubble generators were comprehensively studied before the formation of printhead. Electrical properties of the microheaters on glass substrate in air and performance of bubble generation underwater focusing on the relationships between input power, device resistance and bubble behavior were probed. Proof-of-concept bubble generations grouped to eliminate the tailing effect of droplet were performed indicating precise pattern with high resolution could be realized by this kind of printhead. Experimental results revealed guidance to the geometric design of the printhead as well as its fabrication margin and the electrical control of the microbubble generators.

  8. Thermal-destruction products of coal in the blast-furnace gas-purification system

    SciTech Connect

    A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev

    2008-10-15

    The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

  9. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.

    PubMed

    Kim, Sung-Jin; Reidy, Shaelah M; Block, Bruce P; Wise, Kensall D; Zellers, Edward T; Kurabayashi, Katsuo

    2010-07-01

    In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes.

  10. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.

    PubMed

    Kim, Sung-Jin; Reidy, Shaelah M; Block, Bruce P; Wise, Kensall D; Zellers, Edward T; Kurabayashi, Katsuo

    2010-07-01

    In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes. PMID:20556268

  11. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  12. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas.

    PubMed

    An, Jiutao; Shang, Kefeng; Lu, Na; Jiang, Yuze; Wang, Tiecheng; Li, Jie; Wu, Yan

    2014-03-15

    The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg(0)) in simulated flue gas at 110°C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg(0) was oxidized and 20.5μgkJ(-1) of energy yield was obtained at a rate of 3.9JL(-1). A maximal Hg(0) oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg(0) oxidation efficiency was observed in the mixed flue gas that included O2, H2O, SO2, NO and HCl. Chemical and physical processes (e.g., ozone, N2 metastable states and UV-light) were found to contribute to Hg(0) oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase.

  13. Gases generated from simulated thermal degradation of autotrophic and heterotrophic chlorella

    SciTech Connect

    Qingyu Wu )

    1992-01-01

    The content of crude lipid in the cells of heterotrophic Chlorella protothecoides is 4.4 times as high as in the autotrophic algal cells. The gases thermally degraded from autotrophic cells at 200-300[degrees]C contain mainly CO[sub 2], while the heterotrophic algal cells produce hydrocarbon gas at a much higher rate than autotraophic algal cells. With the rise in temperature, both kinds of cells display a rapid drop in the acid/alkane ratio of the gas components and the ratio of ethane to ethylene increases regularly. Their ratio of normal and isomeric alkanes are all above 1. The study reveals that the actual potential of microplanktonic algae in producing oil and natural gas should be much greater than what people have recognized before.

  14. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    SciTech Connect

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  15. Modeling strategic competition in hydro-thermal electricity generation markets with cascaded reservoir-hydroelectric generation plants

    NASA Astrophysics Data System (ADS)

    Uluca, Basak

    This dissertation aims to achieve two goals. The first is to model the strategic interactions of firms that own cascaded reservoir-hydro plants in oligopolistic and mixed oligopolistic hydrothermal electricity generation markets. Although competition in thermal generation has been extensively modeled since the beginning of deregulation, the literature on competition in hydro generation is still limited; in particular, equilibrium models of oligopoly that study the competitive behavior of firms that own reservoir-hydro plants along the same river in hydrothermal electricity generation markets are still under development. In competitive markets, when the reservoirs are located along the same river, the water released from an upstream reservoir for electricity generation becomes input to the immediate downstream reservoir, which may be owned by a competitor, for current or future use. To capture the strategic interactions among firms with cascaded reservoir-hydro plants, the Upstream-Conjecture approach is proposed. Under the Upstream-Conjecture approach, a firm with an upstream reservoir-hydro plant assumes that firms with downstream reservoir-hydro plants will respond to changes in the upstream firm's water release by adjusting their water release by the same amount. The results of the Upstream Conjecture experiments indicate that firms that own upstream reservoirs in a cascade may have incentive to withhold or limit hydro generation, forcing a reduction in the utilization of the downstream hydro generation plants that are owned by competitors. Introducing competition to hydroelectricity generation markets is challenging and ownership allocation of the previously state-owned cascaded reservoir-hydro plants through privatization can have significant impact on the competitiveness of the generation market. The second goal of the dissertation is to extract empirical guidance about best policy choices for the ownership of the state-owned generation plants, including the

  16. Gas Generation and Hold-Up in Hanford Waste Treatment Plant Process Streams Containing Anti-Foam Agent (AFA)

    SciTech Connect

    Arm, Stuart T.; Poloski, Adam P.; Stewart, Charles W.; Meyer, Perry A.; Kurath, Dean E.

    2007-06-29

    The Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify defense wastes stored at the DOE Hanford Site near Richland, Washington. Some of the WTP process streams are slurries that exhibit non-Newtonian rheological behavior. Such streams can accumulate hazardous quantities of thermally and radiolytically generated flammable gases. Experiments were performed in a bubble column to measure gas hold-up under various conditions to better understand flammable gas behavior in WTP processes. The two non-Newtonian slurries tested were kaolin-bentonite clay and a chemical surrogate of pretreated high-level waste (HLW) from Hanford Tank AZ-101. The addition of solutes, whether a salt or anti-foaming agent (AFA) decrease the bubble coalescence rate leading to smaller bubbles, lower bubble rise velocity and higher gas holdup. Gas holdup decreased with increasing yield stress and consistency. The impact of AFA on gas holdup in kaolin-bentonite clay was less than in simulated HLW, presumably because the AFA adsorbed onto the clay particles, rendering it unavailable to retard coalescence.

  17. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  18. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    SciTech Connect

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  19. Gas and isotope chemistry of thermal features in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bergfeld, D.; Lowenstern, Jacob B.; Hunt, Andrew G.; Shanks, W.C. Pat; Evans, William

    2011-01-01

    This report presents 130 gas analyses and 31 related water analyses on samples collected from thermal features at Yellowstone between 2003 and 2009. An overview of previous studies of gas emissions at Yellowstone is also given. The analytical results from the present study include bulk chemistry of gases and waters and isotope values for water and steam (delta18O, dealtaD), carbon dioxide (delta13C only), methane (delta13C only), helium, neon, and argon. We include appendixes containing photos of sample sites, geographic information system (GIS) files including shape and kml formats, and analytical results in spreadsheets. In addition, we provide a lengthy discussion of previous work on gas chemistry at Yellowstone and a general discussion of the implications of our results. We demonstrate that gases collected from different thermal areas often have distinct chemical signatures, and that differences across the thermal areas are not a simple function of surface temperatures or the type of feature. Instead, gas chemistry and isotopic composition are linked to subsurface lithologies and varying contributions from magmatic, crustal, and meteoric sources.

  20. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  1. Atmospheric noble gas signatures in deep Michigan Basin brines as indicators of a past thermal event

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Castro, Maria Clara; Hall, Chris M.

    2009-01-01

    Atmospheric noble gases (e.g., 22Ne, 36Ar, 84Kr, 130Xe) in crustal fluids are only sensitive to subsurface physical processes. In particular, depletion of atmospheric noble gases in groundwater due to boiling and steam separation is indicative of the occurrence of a thermal event and can thus be used to trace the thermal history of stable tectonic regions. We present noble gas concentrations of 38 deep brines (~ 0.5-3.6 km) from the Michigan Basin. The atmospheric noble gas component shows a strong depletion pattern with respect to air saturated water. Depletion of lighter gases ( 22Ne and 36Ar) is stronger compared to the heavier ones ( 84Kr and 130Xe). To understand the mechanisms responsible for this overall atmospheric noble gas depletion, phase interaction models were tested. We show that this atmospheric noble gas depletion pattern is best explained by a model involving subsurface boiling and steam separation, and thus, consistent with the occurrence of a past thermal event of mantle origin as previously indicated by both high 4He/heat flux ratios and the presence of primordial mantle He and Ne signatures in the basin. Such a conceptual model is also consistent with the presence of past elevated temperatures in the Michigan Basin (e.g., ~ 80-260 °C) at shallow depths as suggested by previous thermal studies in the basin. We suggest that recent reactivation of the ancient mid-continent rift system underneath the Michigan Basin is likely responsible for the release of both heat and mantle noble gases into the basin via deep-seated faults and fracture zones. Relative enrichment of atmospheric Kr and Xe with respect to Ar is also observed, and is interpreted as reflecting the addition of sedimentary Kr and Xe from associated hydrocarbons, following the hydrothermal event. This study pioneers the use of atmospheric noble gases in subsurface fluids to trace the thermal history of stable tectonic regions.

  2. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    E.W. Baxter

    2002-06-30

    The objective of this report period was to continue the development of the Gas Generator design, completion of the hardware and ancillary hardware fabrication and commence the Test Preparations for the testing of the non-polluting unique power turbine driven Gas Generator. Focus during this report period has been on completing the Gas Generator fabrication of hardware and ancillary hardware, and completion of unit closeout brazing and bonding. Because of unacceptable delays encountered in a previously competitively selected test site, CES initiated a re-competition of our testing program and selected an alternate test site. Following that selection, CES used all available resources to make preparations for testing the 10 Mw Gas Generator at the new testing site facilities of NTS at Saugus, CA.

  3. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Kumai, Kazuma; Miyashiro, Hajime; Kobayashi, Yo; Takei, Katsuhito; Ishikawa, Rikio

    To elucidate the gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cells after long cycling, we developed a device which can accurately determine the volume of generated gas in the cell. Experiments on Li xC 6/Li 1- xCoO 2 cells using electrolytes such as 1 M LiPF 6 in propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) are presented and discussed. In the nominal voltage range (4.2-2.5 V), compositional change due mainly to ester exchange reaction occurs, and gaseous products in the cell are little. Generated gas volume and compositional change in the electrolyte are detected largely in overcharged cells, and we discussed that gas generation due to electrolyte decomposition involves different decomposition reactions in overcharged and overdischarged cells.

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  5. New portable instrument for the measurement of thermal conductivity in gas process conditions

    NASA Astrophysics Data System (ADS)

    Queirós, C. S. G. P.; Lourenço, M. J. V.; Vieira, S. I.; Serra, J. M.; Nieto de Castro, C. A.

    2016-06-01

    The development of high temperature gas sensors for the monitoring and determination of thermophysical properties of complex process mixtures at high temperatures faces several problems, related with the materials compatibility, active sensing parts sensitivity, and lifetime. Ceramic/thin metal films based sensors, previously developed for the determination of thermal conductivity of molten materials up to 1200 °C, were redesigned, constructed, and applied for thermal conductivity measuring sensors. Platinum resistance thermometers were also developed using the same technology, to be used in the temperature measurement, which were also constructed and tested. A new data acquisition system for the thermal conductivity sensors, based on a linearization of the transient hot-strip model, including a portable electronic bridge for the measurement of the thermal conductivity in gas process conditions was also developed. The equipment is capable of measuring the thermal conductivity of gaseous phases with an accuracy of 2%-5% up to 840 °C (95% confidence level). The development of sensors up to 1200 °C, present at the core of the combustion chambers, will be done in a near future.

  6. New portable instrument for the measurement of thermal conductivity in gas process conditions.

    PubMed

    Queirós, C S G P; Lourenço, M J V; Vieira, S I; Serra, J M; Nieto de Castro, C A

    2016-06-01

    The development of high temperature gas sensors for the monitoring and determination of thermophysical properties of complex process mixtures at high temperatures faces several problems, related with the materials compatibility, active sensing parts sensitivity, and lifetime. Ceramic/thin metal films based sensors, previously developed for the determination of thermal conductivity of molten materials up to 1200 °C, were redesigned, constructed, and applied for thermal conductivity measuring sensors. Platinum resistance thermometers were also developed using the same technology, to be used in the temperature measurement, which were also constructed and tested. A new data acquisition system for the thermal conductivity sensors, based on a linearization of the transient hot-strip model, including a portable electronic bridge for the measurement of the thermal conductivity in gas process conditions was also developed. The equipment is capable of measuring the thermal conductivity of gaseous phases with an accuracy of 2%-5% up to 840 °C (95% confidence level). The development of sensors up to 1200 °C, present at the core of the combustion chambers, will be done in a near future.

  7. New portable instrument for the measurement of thermal conductivity in gas process conditions.

    PubMed

    Queirós, C S G P; Lourenço, M J V; Vieira, S I; Serra, J M; Nieto de Castro, C A

    2016-06-01

    The development of high temperature gas sensors for the monitoring and determination of thermophysical properties of complex process mixtures at high temperatures faces several problems, related with the materials compatibility, active sensing parts sensitivity, and lifetime. Ceramic/thin metal films based sensors, previously developed for the determination of thermal conductivity of molten materials up to 1200 °C, were redesigned, constructed, and applied for thermal conductivity measuring sensors. Platinum resistance thermometers were also developed using the same technology, to be used in the temperature measurement, which were also constructed and tested. A new data acquisition system for the thermal conductivity sensors, based on a linearization of the transient hot-strip model, including a portable electronic bridge for the measurement of the thermal conductivity in gas process conditions was also developed. The equipment is capable of measuring the thermal conductivity of gaseous phases with an accuracy of 2%-5% up to 840 °C (95% confidence level). The development of sensors up to 1200 °C, present at the core of the combustion chambers, will be done in a near future. PMID:27370495

  8. Generation and delivery device for ozone gas and ozone dissolved in water

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2004-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system preferably includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  9. Gas composition and hydrochemistry of non-volcanic thermal springs in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Wuh Terng, Lim; Tsanyao F, Yang; Hsuan-Wen, Chen; Yusoff, Ismail Bin

    2015-04-01

    Peninsular Malaysia is located on Sunda Plate which situated between two major boundaries of tectonic plates, Australian Plate and Eurasian Plate. Over sixty thermal springs have been reported in Peninsular Malaysia, a non-volcanic country, but their water and gas geochemistry characteristic have not been reported yet. The aim of this study is to identify the geochemical characteristics of water and gas samples from selected sixteen thermal springs. This is the first time to study the thermal springs in Peninsular Malaysia in terms of dissolved gas. Due to the chemical inertness, the concentration and isotopic composition of dissolved gas can always become a good indicators of mantle degassing, geothermal circulation and the condition of water-rock interaction. Other parameters such as pH, temperature, electric conductivity, and water radon values will be also recorded. The surface temperature of studied thermal springs range from 40.1° C to 88.7° C, the pH values range from 6.6 to 9.1, and the conductivity varies between 200 μs/cm and 3700 μs/cm. Meanwhile, the water radon analysis which been carried out in the field by using RAD7 Radon Detector. The water radon values of selected thermal springs in Peninsular Malaysia vary from 111,866 Bq/cm3 to 200 Bq/cm3, indicating various radon sources which mainly controlled by the permeability and lithology of host rocks in studied areas. Analysed results show that the constituent of dissolved gas in thermal springs is major in nitrogen and minor in other compositions such as argon, carbon dioxides and oxygen. Isotopic composition of hydrogen (D/H) and oxygen (18O/16O) mostly fall along the MWL, indicating the meteoric water is the major fluid source for those hot springs. However, the helium isotopic ratios of most samples show consistently low value, less than 0.1 Ra (Ra is the 3He/4He ratio of the air). It implies that crust component is the major helium gas source for those hot springs.

  10. Dual-Stage Consumable-Free Thermal Modulator for the Hyphenation of Thermal Analysis, Gas Chromatography, and Mass Spectrometry.

    PubMed

    Wohlfahrt, Sebastian; Fischer, Michael; Varga, Janos; Saraji-Bozorgzad, Mohammad-Reza; Matuschek, Georg; Denner, Thomas; Zimmermann, Ralf

    2016-01-01

    The design of the so-called "Peltier modulator" is presented. It is a new dual-stage consumable-free thermal modulator for thermal analysis-gas chromatography-mass spectrometry (TA-GC-MS). It requires only electrical power for operation as it facilitates thermo-electric coolers instead of cryogenics for trapping and resistive on-column heating for reinjection. Trapping and desorption temperatures as well as modulation cycles are freely adjustable. The stationary phase for the trapping region can be selected to suit the specific application, since common fused silica capillary is used. The Peltier modulator's performance is demonstrated with a broad range of different standard substances and with heavy crude oil as a complex real life sample. Successful modulation from n-pentane to pyrene (boiling points = 36/394 °C) is presented. The produced peaks show the narrowest bandwidths ever reported for a consumable-free thermal modulator, i.e., 12.8 ± 1.2 ms for n-pentadecane. The Peltier modulator is rugged, cost-effective, requires low maintenance, and decreases security issues significantly, compared to commercial available solutions using liquid N2/CO2. PMID:26606252

  11. Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance

    SciTech Connect

    Penney, T R; Althof, J A

    1985-06-01

    The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

  12. Cold gas in cluster cores: global stability analysis and non-linear simulations of thermal instability

    NASA Astrophysics Data System (ADS)

    Choudhury, Prakriti Pal; Sharma, Prateek

    2016-04-01

    We perform global linear stability analysis and idealized numerical simulations in global thermal balance to understand the condensation of cold gas from hot/virial atmospheres (coronae), in particular the intracluster medium (ICM). We pay particular attention to geometry (e.g. spherical versus plane-parallel) and the nature of the gravitational potential. Global linear analysis gives a similar value for the fastest growing thermal instability modes in spherical and Cartesian geometries. Simulations and observations suggest that cooling in haloes critically depends on the ratio of the cooling time to the free-fall time (tcool/tff). Extended cold gas condenses out of the ICM only if this ratio is smaller than a threshold value close to 10. Previous works highlighted the difference between the nature of cold gas condensation in spherical and plane-parallel atmospheres; namely, cold gas condensation appeared easier in spherical atmospheres. This apparent difference due to geometry arises because the previous plane-parallel simulations focused on in situ condensation of multiphase gas but spherical simulations studied condensation anywhere in the box. Unlike previous claims, our non-linear simulations show that there are only minor differences in cold gas condensation, either in situ or anywhere, for different geometries. The amount of cold gas depends on the shape of tcool/tff; gas has more time to condense if gravitational acceleration decreases towards the centre. In our idealized plane-parallel simulations with heating balancing cooling in each layer, there can be significant mass/energy/momentum transfer across layers that can trigger condensation and drive tcool/tff far beyond the critical value close to 10.

  13. Role of thermal diffusion in cw IR laser absorption in gas mixtures.

    PubMed

    Maleissye, J T; Lempereur, F

    1982-01-15

    The absorption of radiation from a cw CO(2) laser by a mixture of absorbing SF(6) and transparent buffer gases has been measured as a function of pressure of added transparent gas (C(4)H(10)). The results are analyzed in terms of thermal diffusion of excited SF6 molecules out of the irradiation zone. In the 60-400-Torr pressure range, thermal difusion depletes the concentration of SF(6) so that the overall absorption is decreased and competes with the various channels of collisional relaxation which enhance absorption. An approximate semiempirical expression is used to determine the transient perturbation of concentration which occurs inside the laser beam.

  14. History of Thermal Barrier Coatings for Gas Turbine Engines: Emphasizing NASA's Role from 1942 to 1990

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    2009-01-01

    NASA has played a central role in the development of thermal barrier coatings (TBCs) for gas turbine applications. This report discusses the history of TBCs emphasizing the role NASA has played beginning with (1) frit coatings in the 1940s and 1950s; (2) thermally sprayed coatings for rocket application in the 1960s and early 1970s; (3) the beginnings of the modern era of turbine section coatings in the mid 1970s; and (4) failure mechanism and life prediction studies in the 1980s and 1990s. More recent efforts are also briefly discussed.

  15. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.

  16. Fully Electrical Modeling of Thermoelectric Generators with Contact Thermal Resistance Under Different Operating Conditions

    NASA Astrophysics Data System (ADS)

    Siouane, Saima; Jovanović, Slaviša; Poure, Philippe

    2016-09-01

    The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.

  17. Simulation and Test for the Thermal Behaviour of a Prototype Synchronous Generator with HTS Armature Windings

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Qu, T.-M.; Song, P.; Li, L.-N.; Chen, D.-X.; Han, Z.

    A synchronous generator prototype with HTS armature windings and a permanent magnet rotor (HTS-PM) was developed. The temperature evolution during cooling and operation processes of the HTS coils was analyzed by finite element method (FEM). The simulated results coincided well with the temperature measurement data acquired by PT-100 sensors. Cooling time, terminal temperature, contact thermal conductivity, during cooling, as well as the proportion between real and calculated iron loss, contact thermal conductivity, at various rotating speeds during operation, were worked out using the FEM model.

  18. Effects of Thermal Cycling on Control and Irradiated EPC 2nd Generation GaN FETs

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2013-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling in order to address their reliability for use in space missions. Results of the experimental work are presented and discussed.

  19. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.

  20. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  1. Effects of fresh gas velocity and thermal expansion on the structure of a Bunsen flame tip

    SciTech Connect

    Higuera, F.J.

    2010-08-15

    Numerical computations and order-of-magnitude estimates are used to describe the tip region of a Bunsen flame where the flame departs from a planar flame at an angle to the incoming fresh gas flow. A single irreversible Arrhenius reaction with high activation energy is assumed. The well-known linear relation between flame velocity and curvature is recovered in the thermodiffusive limit, when the thermal expansion of the gas is left out, for velocities of the fresh gas (U{sub 0}) only slightly larger than the velocity of a planar flame (U{sub L}), provided this flame is stable. For large values of the velocity ratio U{sub 0}/U{sub L}, the tip region becomes slender and the curvature of the reaction sheet at the tip increases proportionally to U{sub 0}/U{sub L}. The thermal expansion of the gas across the flame reduces the aspect ratio of the tip region. A qualitative analysis of the structure of the tip region for very exothermic reactions shows that this region ceases to be slender when the burnt-to-fresh gas temperature ratio becomes of the order of the velocity ratio U{sub 0}/U{sub L}. For even larger values of the temperature ratio, the tip region becomes a cap of characteristic size not very different from the thickness of a planar flame. (author)

  2. Conical flow near singular rays. [shock generation in ideal gas

    NASA Technical Reports Server (NTRS)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is investigated by the method of matched asymptotic expansions, with particular emphasis on the flow near the singular ray occurring in linearized theory. The first-order problem governing the flow in this region is formulated, leading to the equation of Kuo, and an approximate solution is obtained in the case of compressive flow behind the main front. This solution is compared with the results of previous investigations with a view to assessing the applicability of the Lighthill-Whitham theories.

  3. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  4. Observations of ionospheric ELF and VLF wave generation by excitation of the thermal cubic nonlinearity.

    PubMed

    Moore, R C; Fujimaru, S; Kotovsky, D A; Gołkowski, M

    2013-12-01

    Extremely-low-frequency (ELF, 3-3000 Hz) and very-low-frequency (VLF, 3-30 kHz) waves generated by the excitation of the thermal cubic nonlinearity are observed for the first time at the High-Frequency Active Auroral Research Program high-frequency transmitter in Gakona, Alaska. The observed ELF and VLF field amplitudes are the strongest generated by any high frequency (HF, 3-30 MHz) heating facility using this mechanism to date. This manner of ELF and VLF generation is independent of naturally forming currents, such as the auroral electrojet current system. Time-of-arrival analysis applied to experimental observations shows that the thermal cubic ELF and VLF source region is located within the collisional D-region ionosphere. Observations are compared with the predictions of a theoretical HF heating model using perturbation theory. For the experiments performed, two X-mode HF waves were transmitted at frequencies ω1 and ω2, with |ω2-2ω1| being in the ELF and VLF frequency range. In contrast with previous work, we determine that the ELF and VLF source is dominantly produced by the interaction between collision frequency oscillations at frequency ω2-ω1 and the polarization current density associated with the lower frequency HF wave at frequency ω1. This specific interaction has been neglected in past cubic thermal nonlinearity work, and it plays a major role in the generation of ELF and VLF waves. PMID:24476285

  5. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e

  6. FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Eugene Baxter; Roger E. Anderson; Stephen E. Doyle

    2003-06-01

    In September 2000 the Department of Energy's National Energy Technology Laboratory (DOE/NETL) contracted with Clean Energy Systems, Inc. (CES) of Sacramento, California to design, fabricate, and test a 20 MW{sub t} (10 MW{sub e}) gas generator. Program goals were to demonstrate a non-polluting gas generator at temperatures up to 3000 F at 1500 psi, and to demonstrate resulting drive gas composition, comprising steam and carbon dioxide substantially free of pollutants. Following hardware design and fabrication, testing, originally planned to begin in the summer of 2001, was delayed by unavailability of the contracted test facility. CES designed, fabricated, and tested the proposed gas generator as originally agreed. The CES process for producing near-zero-emissions power from fossil fuels is based on the near-stoichiometric combustion of a clean gaseous fuel with oxygen in the presence of recycled water, to produce a high-temperature, high-pressure turbine drive fluid comprising steam and carbon dioxide. Tests demonstrated igniter operation over the prescribed ranges of pressure and mixture ratios. Ignition was repeatable and reliable through more than 100 ignitions. Injector design ''A'' was operated successfully at both low power ({approx}20% of rated power) and at rated power ({approx}20 MW{sub t}) in more than 95 tests. The uncooled gas generator configuration (no diluent injectors or cooldown chambers installed) produced drive gases at temperatures approaching 3000 F and at pressures greater than 1550 psia. The fully cooled gas generator configuration, with cooldown chambers and injector ''A'', operated consistently at pressures from 1100 to 1540 psia and produced high pressure, steam-rich turbine drive gases at temperatures ranging from {approx}3000 to as low as 600 F. This report includes description of the intended next steps in the gas generator technology demonstration and traces the anticipated pathway to commercialization for the gas generator technology

  7. HIGH-SPEED, CLINICAL-SCALE MICROFLUIDIC GENERATION OF STABLE PHASE-CHANGE DROPLETS FOR GAS EMBOLOTHERAPY

    PubMed Central

    Bardin, David; Martz, Thomas D.; Sheeran, Paul S.; Shih, Roger; Dayton, Paul A.; Lee, Abraham P.

    2013-01-01

    In this study we report on a microfluidic device and droplet formation regime capable of generating clinical-scale quantities of droplet emulsions suitable in size and functionality for in vivo therapeutics. By increasing the capillary number – based on the flow rate of the continuous outer phase – in our flow-focusing device, we examine three modes of droplet breakup: geometry-controlled, dripping, and jetting. Operation of our device in the dripping regime results in the generation of highly monodisperse liquid perfluoropentane droplets in the appropriate 3–6 µm range at rates exceeding 105 droplets per second. Based on experimental results relating droplet diameter and the ratio of the continuous and dispersed phase flow rates, we derive a power series equation, valid in the dripping regime, to predict droplet size by Dd ≅ 27(QC/QD)−5/12. The volatile droplets in this study are stable for weeks at room temperature yet undergo rapid liquid-to-gas phase transition, and volume expansion, above a uniform thermal activation threshold. The opportunity exists to potentiate locoregional cancer therapies such as thermal ablation and percutaneous ethanol injection using thermal or acoustic vaporization of these monodisperse phase-change droplets to intentionally occlude the vessels of a cancer. PMID:22011845

  8. In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation

    SciTech Connect

    Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

    2002-09-20

    The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

  9. Dependence of multi-layer insulation thermal performance on interstitial gas pressure

    NASA Astrophysics Data System (ADS)

    Feller, Jeffrey Robert; Johnson, Wesley

    2012-06-01

    Four examples of multi-layer insulation (MLI) blankets, differing in layer density, thickness, and spacer type, were evaluated using the Cryostat-100 fixture, a cylindrical calorimeter, in the Cryogenic Test Laboratory at Kennedy Space Center. The steady state thermal performance of each was measured at pressures ranging from high vacuum (down to 10-6 Torr) up to 1 atmosphere. The four heat flux versus pressure data sets were reduced to a single "universal curve", demonstrating the essential parameters that determine how the performance of a generic blanket depends on interstitial gas pressure. A simple phenomenological model based on molecular collision probabilities is followed by a systematic curve fitting procedure encompassing the entire pressure range. The final result is a closed-form expression for the pressure-dependent heat flux that can be readily generalized to arbitrary thermal boundary temperatures, gas species, and MLI blanket thickness and layer density.

  10. Thermal dispersion in vertical gas-liquid flows with foaming and non-foaming liquids

    SciTech Connect

    Pino, L.R.Z.; Saez, A.E.

    1995-05-01

    Heat transfer experiments have been performed in gas-liquid upwards flow in a vertical column with non-foaming (water) and foaming (kerosene) liquids. The main purpose of the experiments has been to characterized the degree of thermal mixing in the system. For the range of conditions employed, the nonfoaming liquid exhibits complete mixing a low liquid superficial velocities. An increased in liquid velocity leads to incomplete mixing. In the latter case, the thermal dispersion coefficient at low gas superficial velocities is larger than what correlations in the literature predict. For the foaming liquid, when foaming and bubbling regions coexist in the bubble column, each region behaves as a completely-mixed subsystem.

  11. Thermal stability of fission gas bubble superlattice in irradiated U–10Mo fuel

    SciTech Connect

    Gan, J.; Keiser, D. D.; Miller, B. D.; Robinson, A. B.; Wachs, D. M.; Meyer, M. K.

    2015-09-01

    To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated U-7Mo dispersion and U-10Mo monolithic fuel plates, a FIB-TEM sample of the irradiated U-10Mo fuel with a local fission density of 3.5×1021 fissions/cm3 was used for an in-situ heating TEM experiment. The temperature of the heating holder was raised at a ramp rate of approximately 10 ºC/min up to ~700 ºC, kept at that temperature for about 34 min, continued to 850 ºC with a reduced rate of 5 ºC/min. The result shows a high thermal stability of the fission gas bubble superlattice. The implication of this observation on the fuel microstructural evolution and performance under irradiation is discussed.

  12. The correlation between thermal and noxious gas environments, pig productivity and behavioral responses of growing pigs.

    PubMed

    Choi, Hong Lim; Han, Sang Hwa; Albright, Louis D; Chang, Won Kyung

    2011-09-01

    Correlations between environmental parameters (thermal range and noxious gas levels) and the status (productivity, physiological, and behavioral) of growing pigs were examined for the benefit of pig welfare and precision farming. The livestock experiment was conducted at a Seoul National University station in South Korea. Many variations were applied and the physiological and behavioral responses of the growing pigs were closely observed. Thermal and gas environment parameters were different during the summer and winter seasons, and the environments in the treatments were controlled in different manners. In the end, this study finds that factors such as Average Daily Gain (ADG), Adrenocorticotropic Hormone (ACTH), stress, posture, and eating habits were all affected by the controlled environmental parameters and that appropriate control of the foregoing could contribute to the improvement of precision farming and pig welfare.

  13. The application of thermal conductivity measurements to the Kuqa River profile, China, and implications for petrochemical generation.

    PubMed

    Feng, Jiarui; Gao, Zhiyong; Zhu, Rukai; Luo, Zhong; Zhang, Linyan

    2013-01-01

    Measurement of thermal conductivity of rocks is important to understand the thermal properties of earth materials, the characteristics of terrestrial heat flow, and the formation of oil. In this paper we report thermal conductivity, thermal diffusivity, and heat capacity data for 12 conglomerate, sandstone, and gypsum-bearing samples from the Paleogene Kuqa River profile in Kuqa, China. Samples were measured via the hot disk technique, yielding thermal conductivity values of 0.436 to 0.998 W/mK, thermal diffusivity measurements of 0.395 to 1.314 mm(2)/s, and heat capacity values of 0.439 to 1.717 MJ/m(3)K. These analyses reveal that gypsum-bearing rocks, with their low thermal conductivity, can act as excellent insulators over oil and gas reservoirs, aiding the formation and thermal maturation of petroleum. PMID:24255869

  14. The application of thermal conductivity measurements to the Kuqa River profile, China, and implications for petrochemical generation.

    PubMed

    Feng, Jiarui; Gao, Zhiyong; Zhu, Rukai; Luo, Zhong; Zhang, Linyan

    2013-01-01

    Measurement of thermal conductivity of rocks is important to understand the thermal properties of earth materials, the characteristics of terrestrial heat flow, and the formation of oil. In this paper we report thermal conductivity, thermal diffusivity, and heat capacity data for 12 conglomerate, sandstone, and gypsum-bearing samples from the Paleogene Kuqa River profile in Kuqa, China. Samples were measured via the hot disk technique, yielding thermal conductivity values of 0.436 to 0.998 W/mK, thermal diffusivity measurements of 0.395 to 1.314 mm(2)/s, and heat capacity values of 0.439 to 1.717 MJ/m(3)K. These analyses reveal that gypsum-bearing rocks, with their low thermal conductivity, can act as excellent insulators over oil and gas reservoirs, aiding the formation and thermal maturation of petroleum.

  15. Ocean thermal gradient as a generator of electricity. OTEC power plant

    NASA Astrophysics Data System (ADS)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  16. A concept of heat dissipation coefficient for thermal cloak based on entropy generation approach

    NASA Astrophysics Data System (ADS)

    Xu, Guoqiang; Zhang, Haochun

    2016-09-01

    In this paper, we design a 3D spherical thermal cloak with eight material layers based on transformation thermodynamics and it worked at steady state before approaching `static limit'. Different from the present research, we introduce local entropy generation to present the randomness in the cloaking system and propose the concept of a heat dissipation coefficient which is used to describe the capacity of heat diffusion in the `cloaking' and `protected' region to characterize the cloaking performance on the basis of non-equilibrium thermodynamics. We indicate the ability of heat dissipation for the thermal cloak responds to changes in anisotropy (caused by the change in the number of layers) and differential temperatures. In addition, we obtain a comparison of results of different cloaks and believe that the concept of a heat dissipation coefficient can be an evaluation criterion for the thermal cloak.

  17. Thermal Photon and Residual Gas Scattering of the Electrons in the ILC RTML

    SciTech Connect

    Seletskiy, S.M.; /SLAC

    2006-08-16

    The scattering of the primary beam electrons off of thermal photons and residual gas molecules in the projected International Linear Collider (ILC) is a potential source of beam haloes which must be collimated downstream of the linac. In this report we give the analytic estimations of the individual input that each of the main scattering processes makes in the production of off-energy and large amplitude particles in the Damping Ring to Main Linac region (RTML).

  18. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect

    Paul C. Millett; Michael Tonks

    2011-06-01

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  19. Notes on radial oscillations of gas bubbles in liquids: thermal effects.

    PubMed

    Zhang, Yuning; Li, S C

    2010-11-01

    For oscillations of gas bubbles in liquids, the polytropic exponent and thermal damping constant for the high frequency region have been re-evaluated based on the framework by Prosperetti [J. Acoust. Soc. Am. 61, 17-27 (2007)]. It is seen that the approximation of G(1)≪ 1 in Prosperetti (1977) should be dropped for G(1)≥ 10(-2). The ratios of bubble radii to wavelengths are the paramount parameters categorizing the behavior into three different regions.

  20. High harmonic generation in a semi-infinite gas cell.

    PubMed

    Sutherland, Julia; Christensen, E; Powers, N; Rhynard, S; Painter, J; Peatross, J

    2004-09-20

    Ten-millijoule 35-femtosecond laser pulses interact with a cell of helium or neon that extends from a focusing lens to an exit foil near the laser focus. High harmonic orders in the range of 50 to 100 are investigated as a function of focal position relative to the exit foil. An aperture placed in front of the focusing lens increases the brightness of observed harmonics by more than an order of magnitude. Counter-propagating light is used to directly probe where the high harmonics are generated within the laser focus. In neon, the harmonics are generated in the last few millimeters before the exit foil, limited by absorption. In helium, the harmonics are produced over a much longer distance. PMID:19483992

  1. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.

    PubMed

    Wilson, Thomas O; McNeal, Frederick M; Spatari, Sabrina; G Abler, David; Adler, Paul R

    2012-01-17

    Regional supplies of biomass are currently being evaluated as feedstocks in energy applications to meet renewable portfolio (RPS) and low carbon fuel standards. We investigate the life cycle greenhouse gas (GHG) emissions and associated abatement costs resulting from using densified switchgrass for thermal and electrical energy. In contrast to the large and positive abatement costs for using biomass in electricity generation ($149/Mg CO(2)e) due to the low cost of coal and high feedstock and power plant operation costs, abatement costs for replacing fuel oil with biomass in thermal applications are large and negative (-$52 to -$92/Mg CO(2)e), resulting in cost savings. Replacing fuel oil with biomass in thermal applications results in least cost reductions compared to replacing coal in electricity generation, an alternative that has gained attention due to RPS legislation and the centralized production model most often considered in U.S. policy. Our estimates indicate a more than doubling of liquid fuel displacement when switchgrass is substituted for fuel oil as opposed to gasoline, suggesting that, in certain U.S. locations, such as the northeast, densified biomass would help to significantly decarbonize energy supply with regionally sourced feedstock, while also reducing imported oil. On the basis of supply projections from the recently released Billion Ton Report, there will be enough sustainably harvested biomass available in the northeast by 2022 to offset the entirety of heating oil demand in the same region. This will save NE consumers between $2.3 and $3.9 billion annually. Diverting the same resource to electricity generation would cost the region $7.7 billion per year. While there is great need for finding low carbon substitutes for coal power and liquid transportation fuels in the U.S., we argue that in certain regions it makes cost- (and GHG mitigation-) effective sense to phase out liquid heating fuels with locally produced biomass first.

  2. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2016-08-01

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N2, O2, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  3. New-generation gas turbine helping brewery lighten energy costs

    SciTech Connect

    Brezonick, M.

    1994-10-01

    In nearly any manufacturing industry, the loss of electrical power can have a severe impact on the manufacturing process. The case of Labatt's Ontario Breweries in particular, the loss of electrical service puts a crimp in the brewmaster's art by forcing the company to dump large quantities of it's Labatt's Blue. To solve the problem, the company has installed a gas-turbine-drive cogeneration system to guard against brownout. The new 501-KB7 was developed from the well-established 501-KB5 turbine. It has improved power output over the 501-KB7 design, up from 4025 to 5225 kw, a higher 13.5:1 pressure ratio, and a 32% increased in airflow (20.4 kg/s). The Labatt's installation which became operational in 1993 reduced the Breweries energy cost because of 501-KB7 turbine's higher energy output. 3 figs.

  4. Magnetic Field Generation and Zonal Flows in the Gas Giants

    NASA Astrophysics Data System (ADS)

    Duarte, L.; Wicht, J.; Gastine, T.

    2013-12-01

    The surface dynamics of Jupiter and Saturn is dominated by a banded system of fierce zonal winds. The depth of these winds remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is negligible. The dynamo responsible for the dipole dominated magnetic fields of both Gas Giants, on the other hand, likely operates in the deeper interior where hydrogen assumes a metallic state. We present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variations. The electrical conductivity is assumed to remain constant in the thicker inner metallic region and decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification (Δρ≈55) and a weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole dominated magnetic fields. The particular setup explored here allows the equatorial jet to remain confined to the weaker conducting region where is does not interfere with the deeper seated dynamo action. The equatorial jet can afford to remain geostrophic and reaches throughout the whole shell. This is not an option for the additional mid to higher latitude jets, however. In dipole dominated dynamo solutions, appropriate for the Gas Giants, zonal flows remain very faint in the deeper dynamo region but increase in amplitude in the weakly conducting outer layer in some of our simulations. This suggests that the mid to high latitude jets

  5. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    SciTech Connect

    Lisenkov, V. V.; Shklyaev, V. A.

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  6. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures

    SciTech Connect

    Littke, R.; Krooss, B.; Frielingsdorf, J.; Idiz, E.

    1995-03-01

    The occurrence of natural gas accumulations with high percentages (up to 100%) of molecular nitrogen in various hydrocarbon provinces represents a largely unresolved problem and a serious exploration risk. In this context, a geochemical and basin modeling study was performed to evaluate the potential of sedimentary organic matter to generate molecular nitrogen. The masses of nitrogen present in coals - if converted into molecular nitrogen - are sufficient to fill commercial gas reservoirs. A calculation for gas accumulations in northern Germany, where percentages of molecular nitrogen range from less than 5 to greater than 90%, reveals that the molecular nitrogen generated in underlying coal-bearing strata is sufficient to account for the nitrogen gas even in the largest fields. In addition, much of the total nitrogen in clay-rich rock types, such as shales and mudstones, is fixed in sedimentary organic matter and may add to the nitrogen generation capacity of the coals.

  7. Industry tests of NASA ceramic thermal barrier coating. [for gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1979-01-01

    Ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical, marine, and ground-based gas turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt. percent) and a ceramic coating of yttria-stabilized zirconia (ZrO2-12Y2O3, in wt. percent). Seven tests evaluated the system's thermal protection and durability. Five other tests determined thermal conductivity, vibratory fatigue characteristics, and corrosion resistance of the system. The information presented includes test results and photographs of the coated parts. Recommendations are made for improving the coating procedures.

  8. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    SciTech Connect

    Banovic, S.W.; Barmak, K.; Chan, H.M.

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  9. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    SciTech Connect

    Banovic, S.W.; Chan, H.M.; Marder, A.R.

    1995-12-31

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc.). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  10. Thermal effect on the generated quantum correlation between two superconducting qubits

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-B. A.

    2016-08-01

    Quantum correlations in two superconducting (SC) qubits, placed in an SC-cavity and driven by noise fields, are investigated by using quantum discord (QD) and measurement-induced nonlocality with quantum entanglement (QE). It was found that the initial values of QD and measurement-induced non-locality (MIN) grow from zero-values to non-zero values. This growth of quantum correlations is due to the unitary qubits–field interaction. It is found that by increasing the coupling to the thermal environment, the generated correlations (of QD, MIN and QE) return to their zero-values and the phenomena of the sudden death and sudden birth only occur for QE. It is interesting to note that the state of two superconducting qubits has the quantum discord and quantum nonlocality without entanglement. The ability of the thermal field parameter for the disappearance of the generated correlations depend on the spontaneous emission parameter and vice versa.

  11. Thermal effect on the generated quantum correlation between two superconducting qubits

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-B. A.

    2016-08-01

    Quantum correlations in two superconducting (SC) qubits, placed in an SC-cavity and driven by noise fields, are investigated by using quantum discord (QD) and measurement-induced nonlocality with quantum entanglement (QE). It was found that the initial values of QD and measurement-induced non-locality (MIN) grow from zero-values to non-zero values. This growth of quantum correlations is due to the unitary qubits-field interaction. It is found that by increasing the coupling to the thermal environment, the generated correlations (of QD, MIN and QE) return to their zero-values and the phenomena of the sudden death and sudden birth only occur for QE. It is interesting to note that the state of two superconducting qubits has the quantum discord and quantum nonlocality without entanglement. The ability of the thermal field parameter for the disappearance of the generated correlations depend on the spontaneous emission parameter and vice versa.

  12. Trajectory Generation and Coupled Numerical Simulation for Thermal Spraying Applications on Complex Geometries

    NASA Astrophysics Data System (ADS)

    Candel, A.; Gadow, R.

    2009-12-01

    For high process reproducibility and optimized coating quality in thermal spray applications on complex geometries, atmospheric plasma spraying and high-velocity oxygen fuel torches are guided by advanced robot systems. The trajectory of the torch, the spray angle, and the relative speed between torch and component are crucial factors which affect the coating microstructure, properties, and, especially, the residual stress distribution. Thus, the requirement of high-performance thermally sprayed coatings with narrow dimensional tolerances leads to challenges in the field of robot-assisted handling, and software tools for efficient trajectory generation and robot programming are demanded. By appropriate data exchange, the automatically generated torch trajectory and speed profile can be integrated in finite element method models to analyze their influence on the heat and mass transfer during deposition. Coating experiments assisted by online diagnostics were performed to validate the developed software tools.

  13. Thermal behavior of a high power generator exciter bridge measured by optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Probst, Werner K.; Bortolotti, Fernando; de Morais Sousa, Kleiton; Kalinowski, Hypolito José; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2013-05-01

    This paper presents temperature measurements taken at a 3-phase thyristor rectifier bridge in a synchronous generator using fiber Bragg grating (FBG) sensors applied directly on the thyristors upper surface. The results show the thermal behavior of the thyristors during the generator's start-up-phase and the period of time after the synchronization, with regulating operations as reaction to different load conditions. The temperature analysis is supported by current, voltage and power values of the hydroelectric power plant monitoring system. The trend of curves describes the typical behavior of thyristors which is proven with a four term transient thermal model. The different heat effect a thyristor experiences inside the switching-cabinet are also discussed.

  14. Thermal neutron analysis (TNA) explosive detection based on electronic neutron generators

    SciTech Connect

    Lee, W.; Mahood, D.B.; Ryge, P.

    1994-12-31

    Thermal neutron analysis explosive detection systems have been developed and demonstrated for inspection of checked airline baggage and for detection of buried land mines. Thermal neutrons from a moderated neutron source impinge on the inspected object and the resulting capture gamma ray signatures provide detection information. Isotopic neutron sources, e.g. {sup 252}Cf, are compact, economical and reliable, but they are subject to the licensing requirements, safety concerns and public perception problems associated with radioactive material. These are mitigated by use of an electronic neutron generator - an ion accelerator with a target producing neutrons by a nuclear reaction such as D(d,n){sup 3}He or {sup 9}Be(d,n){sup 10}B. With suitable moderator designs based on neutron transport codes, operational explosive detection systems can be build and would provide effective alternatives to radioactive neutron sources. Calculations as well as laboratory and field experience with three generator types will be presented.

  15. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    SciTech Connect

    Kreider, M.A.; White, G.A.; Varrin, R.D. Jr.

    1998-06-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator fouling. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure-loss evaluations demonstrated two key points: (1) that the available thermal margin against fouling, which can vary substantially from plant to plant, has an important bearing on whether a given plant exhibits losses in electrical generating capacity, and (2) that a wide variety of causes can result in SG thermal performance degradation.

  16. Improved design and construction practices for thermal loads in plastic gas pipelines

    NASA Astrophysics Data System (ADS)

    Bilgin, Omer

    1999-11-01

    Guidelines are presented for the design of polyethylene (PE) pipe used in gas distribution systems. Thermo-mechanical properties of medium and high density PE are described. Design temperatures that take into account PE installation temperatures and seasonal minimum ground temperatures are identified. Design curves for temperature changes are presented in terms of equivalent design temperatures which account of all of the temperature-time effects and the effects of pipe length and excavation size that result in the same pipe stress as when complete viscoelastic stress relaxation models are used. A critical factor for thermally induced PE loads is the temperature at the time the PE is tied into existing systems. Full-scale tests on buried cast iron and PE at various temperatures were performed to substantiate simplified models for pullout resistance and for use in numerical models to determine allowable conditions for different geometric configurations. Example calculations are given for determining thermal forces in PE gas pipelines. The resistances of lateral offsets are evaluated. Methods are identified to determine the pullout resistance of cast iron joints in response to thermal loads in PE for direct burial and insertions. Linear pipe systems with a failure mode of joint pullout were studied. Existing cast iron systems in many cases have sufficient strength to resist thermal loads provided that measures are taken to minimize the PE temperatures when the final connections to the existing pipe are made.

  17. Development of a multiscale thermal conductivity model for fission gas in UO2

    NASA Astrophysics Data System (ADS)

    Tonks, Michael R.; Liu, Xiang-Yang; Andersson, David; Perez, Danielle; Chernatynskiy, Aleksandr; Pastore, Giovanni; Stanek, Christopher R.; Williamson, Richard

    2016-02-01

    Accurately predicting changes in the thermal conductivity of light water reactor UO2 fuel throughout its lifetime in reactor is an essential part of fuel performance modeling. However, typical thermal conductivity models from the literature are empirical. In this work, we begin to develop a mechanistic thermal conductivity model by focusing on the impact of gaseous fission products, which is coupled to swelling and fission gas release. The impact of additional defects and fission products will be added in future work. The model is developed using a combination of atomistic and mesoscale simulation, as well as analytical models. The impact of dispersed fission gas atoms is quantified using molecular dynamics simulations corrected to account for phonon-spin scattering. The impact of intragranular bubbles is accounted for using an analytical model that considers phonon scattering. The impact of grain boundary bubbles is determined using a simple model with five thermal resistors that are parameterized by comparing to 3D mesoscale heat conduction results. When used in the BISON fuel performance code to model four reactor experiments, it produces reasonable predictions without having been fit to fuel thermocouple data.

  18. Temperature and flow rate effects on mass median diameters of thermally generated malathion and naled fogs.

    PubMed

    Brown, J R; Chew, V; Melson, R O

    1993-06-01

    The effects of temperature and flow rate on mass median diameters (mmds) of thermally generated aerosol clouds were studied. Number 2 fuel oil alone, undiluted and diluted malathion 91, and undiluted naled were examined. There was a significant flow rate x temperature interaction on the mmds of diluted malathion fogs: i.e., differences among flow rates depended on temperature and vice versa. PMID:8350082

  19. Design and construction of a thermophotovoltaic generator using turbine combustion gas

    SciTech Connect

    Erickson, T.A.; Lindler, K.W.; Harper, M.J.

    1997-07-01

    This US Naval Academy project involves the development of a prototype thermophotovoltaic (TPV) generator that uses a General Electric T-58 helicopter gas turbine as the heat source. The goals of this project were to demonstrate the viability of using TPV and external combustion gases to generate electricity, and develop a system which could also be used for materials testing. The generator was modularly designed so that different materials could be tested at a later date. The combustion gas was tapped from the T-58`s combustor through one of the two igniter ports and extracted through a silicon carbide matrix ceramic composite tube into a similarly constructed ceramic composite radiant emitter. The ceramic radiant emitters is heated by the combustion gas via convection, and then serves the TPV generator by radiating the heat outwards where it can be absorbed by thermophotovoltaic cells and converted directly into electricity. The gas turbine and generator module are monitored by a data acquisition system that performs both data collection and control functions. This paper details the design of the TPV generator. It also gives results of initial tests with the gas turbine.

  20. Three-dimensional surface grid generation for calculation of thermal radiation shape factors

    NASA Technical Reports Server (NTRS)

    Aly, Hany M.

    1992-01-01

    A technique is described to generate three dimensional surface grids suitable for calculating shape factors for thermal radiative heat transfer. The surface under consideration is approximated by finite triangular elements generated in a special manner. The grid is generated by dividing the surface into a two dimensional array of nodes. Each node is defined by its coordinates. Each set of four adjacent nodes is used to construct two triangular elements. Each triangular element is characterized by the vector representation of its vertices. Vector algebra is used to calculate all desired geometric properties of grid elements. The properties are used to determine the shape factor between the element and an area element in space. The grid generation can be graphically displayed using any software with three dimensional features. DISSPLA was used to view the grids.

  1. Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhongliang; Li, Dawen

    2016-04-01

    In this study, segmented thermoelectric generators (TEGs) have been simulated with various state-of-the-art TE materials spanning a wide temperature range, from 300 K up to 1000 K. The results reveal that by combining the current best p-type TE materials, BiSbTe, MgAgSb, K-doped PbTeS and SnSe with the strongest n-type TE materials, Cu-Doped BiTeSe, AgPbSbTe and SiGe to build segmented legs, TE modules could achieve efficiencies of up to 17.0% and 20.9% at ΔT = 500 K and ΔT = 700 K, respectively, and a high output power densities of over 2.1 Watt cm-2 at the temperature difference of 700 K. Moreover, we demonstrate that successful segmentation requires a smooth change of compatibility factor s from one end of the TEG leg to the other, even if s values of two ends differ by more than a factor of 2. The influence of the thermal radiation, electrical and thermal contact effects have also been studied. Although considered potentially detrimental to the TEG performance, these effects, if well-regulated, do not prevent segmentation of the current best TE materials from being a prospective way to construct high performance TEGs with greatly enhanced efficiency and output power density.

  2. Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances

    PubMed Central

    Ouyang, Zhongliang; Li, Dawen

    2016-01-01

    In this study, segmented thermoelectric generators (TEGs) have been simulated with various state-of-the-art TE materials spanning a wide temperature range, from 300 K up to 1000 K. The results reveal that by combining the current best p-type TE materials, BiSbTe, MgAgSb, K-doped PbTeS and SnSe with the strongest n-type TE materials, Cu-Doped BiTeSe, AgPbSbTe and SiGe to build segmented legs, TE modules could achieve efficiencies of up to 17.0% and 20.9% at ΔT = 500 K and ΔT = 700 K, respectively, and a high output power densities of over 2.1 Watt cm−2 at the temperature difference of 700 K. Moreover, we demonstrate that successful segmentation requires a smooth change of compatibility factor s from one end of the TEG leg to the other, even if s values of two ends differ by more than a factor of 2. The influence of the thermal radiation, electrical and thermal contact effects have also been studied. Although considered potentially detrimental to the TEG performance, these effects, if well-regulated, do not prevent segmentation of the current best TE materials from being a prospective way to construct high performance TEGs with greatly enhanced efficiency and output power density. PMID:27052592

  3. Study on generating of thermal neutron scattering cross sections for LiH

    SciTech Connect

    Wang, L.; Jiang, X.; Zhao, Z.; Chen, L.

    2013-07-01

    LiH is designated as a promising moderator and shielding material because of its low density, high melting point and large fraction of H atoms. However, lack of the thermal neutron cross sections of LiH makes numerical calculation deviate from experimental data to some extent. As a result, it is necessary to study LiH thermal kernel effect. The phonon property of LiH has been investigated by first-principles calculations using the plane-wave pseudo potential method with CASTEP code. The scattering law and the thermal neutron scattering cross sections for Li and H have been generated using this distribution. The results have been compared with zirconium hydride data. The GASKET and NJOY/LEAPR codes have been used in the calculation of scattering law, whose results have been compared with the reference; the discrepancy mainly comes from phonon spectrums and its expansion. LEAPR had the capability to compute scattering through larger energy and momentum transfers than GASKET did. By studying LiH phonon spectrum and constructing the model of LiH thermal kernel and scattering matrix, the ACE format LiH thermal neutron cross sections for MCNP software could be made and used for reactor Neutronics calculation. (authors)

  4. Drought Resilience of Water Supplies for Shale Gas Extraction and Related Power Generation in Texas

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.; Nicot, J. P.; Uhlman, K.

    2014-12-01

    There is considerable concern about water availability to support energy production in Texas, particularly considering that many of the shale plays are in semiarid areas of Texas and the state experienced the most extreme drought on record in 2011. The Eagle Ford shale play provides an excellent case study. Hydraulic fracturing water use for shale gas extraction in the play totaled ~ 12 billion gallons (bgal) in 2012, representing ~7 - 10% of total water use in the 16 county play area. The dominant source of water is groundwater which is not highly vulnerable to drought from a recharge perspective because water is primarily stored in the confined portion of aquifers that were recharged thousands of years ago. Water supply drought vulnerability results primarily from increased water use for irrigation. Irrigation water use in the Eagle Ford play was 30 billion gallons higher in the 2011 drought year relative to 2010. Recent trends toward increased use of brackish groundwater for shale gas extraction in the Eagle Ford also reduce pressure on fresh water resources. Evaluating the impacts of natural gas development on water resources should consider the use of natural gas in power generation, which now represents 50% of power generation in Texas. Water consumed in extracting the natural gas required for power generation is equivalent to ~7% of the water consumed in cooling these power plants in the state. However, natural gas production from shale plays can be overall beneficial in terms of water resources in the state because natural gas combined cycle power generation decreases water consumption by ~60% relative to traditional coal, nuclear, and natural gas plants that use steam turbine generation. This reduced water consumption enhances drought resilience of power generation in the state. In addition, natural gas combined cycle plants provide peaking capacity that complements increasing renewable wind generation which has no cooling water requirement. However, water

  5. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  6. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  7. Generation of coherent terahertz radiation in ultrafast laser-gas interactions

    SciTech Connect

    Kim, Ki-Yong

    2009-05-15

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  8. ORIGIN OF THERMAL FLUIDS AT LASSEN VOLCANIC NATIONAL PARK: EVIDENCE FROM NOBLE AND REACTIVE GAS ABUNDANCES.

    USGS Publications Warehouse

    Truesdell, Alfred H.; Mazor, Emanuel; Nehring, Nancy L.

    1983-01-01

    Thermal fluid discharges at Lassen are dominated by high-altitude fumaroles and acid-sulfate hot springs in the Park, and lower altitude, neutral, high-chloride hot springs in Mill Valley 7-10 km to the south. The interrelations of these fluids have been studied by noble and reactive gas analyses. Atmospheric noble gas (ANG) contents of superheated fumaroles are similar to those of air-saturated recharge water (ASW) at 5 degree C and 2500-m elevation. Low-elevation, high-chloride, hot-spring waters are highly depleted in ANG, relative to the ASW. The surface temperatures and gas chemistry of the fumaroles and hot springs suggest that steam originating from partial to near-complete vaporization of liquid from a boiling, high-chloride, hot water aquifer is decompressed adiabatically, and more or less mixed with shallow groundwater to form superheated and drowned fumaroles within the Park. Refs.

  9. Assembly of thermally reduced graphene oxide nanostructures by alternating current dielectrophoresis as hydrogen-gas sensors

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Singh, Budhi; Maeng, Sunglyul; Joh, Han-Ik; Kim, Gil-Ho

    2013-08-01

    Chemo-resistive hydrogen-gas sensors based on thermally reduced graphene oxide (rGO) have been fabricated on a micro-hotplate by positive ac dielectrophoresis (DEP). The optimized DEP parameters for manipulating rGO nanostructures into Au electrodes for hydrogen sensing are: applied frequency = 1 MHz, peak-to-peak voltage = 5 V, and DEP time = 30 s. The device exhibits good sensitivity (˜6%) with fast response time (˜11 s) and recovery time (˜36 s) for 200 ppm hydrogen gas at room temperature. This result indicates that the DEP process has great potential for assembling rGO for hydrogen-gas sensor in many industrial and scientific applications.

  10. Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.

    2016-08-01

    Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.

  11. Non-thermal gas plasma-induced endoplasmic reticulum stress mediates apoptosis in human colon cancer cells.

    PubMed

    Ruwan Kumara, Madduma Hewage Susara; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Park, Jeong Eon; Shilnikova, Kristina; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeonsoo; Kim, Seong Bong; Yoo, Suk Jae; Hyun, Jin Won

    2016-10-01

    Colorectal cancer is a common type of tumor among both men and women worldwide. Conventional remedies such as chemotherapies pose the risk of side‑effects, and in many cases cancer cells develop chemoresistance to these treatments. Non‑thermal gas plasma (NTGP) was recently identified as a potential tool for cancer treatment. In this study, we investigated the potential use of NTGP to control SNUC5 human colon carcinoma cells. We hypothesized that NTGP would generate reactive oxygen species (ROS) in these cells, resulting in induction of endoplasmic reticulum (ER) stress. ROS generation, expression of ER stress‑related proteins and mitochondrial calcium levels were analyzed. Our results confirmed that plasma‑generated ROS induce apoptosis in SNUC5 cells. Furthermore, we found that plasma exposure resulted in mitochondrial calcium accumulation and expression of unfolded protein response (UPR) proteins such as glucose‑related protein 78 (GRP78), protein kinase R (PKR)‑like ER kinase (PERK), and inositol‑requiring enzyme 1 (IRE1). Elevated expression of spliced X‑box binding protein 1 (XBP1) and CCAAT/enhancer‑binding protein homologous protein (CHOP) further confirmed that ROS generated by NTGP induces apoptosis through the ER stress signaling pathway. PMID:27573888

  12. Non-thermal gas plasma-induced endoplasmic reticulum stress mediates apoptosis in human colon cancer cells.

    PubMed

    Ruwan Kumara, Madduma Hewage Susara; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Park, Jeong Eon; Shilnikova, Kristina; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeonsoo; Kim, Seong Bong; Yoo, Suk Jae; Hyun, Jin Won

    2016-10-01

    Colorectal cancer is a common type of tumor among both men and women worldwide. Conventional remedies such as chemotherapies pose the risk of side‑effects, and in many cases cancer cells develop chemoresistance to these treatments. Non‑thermal gas plasma (NTGP) was recently identified as a potential tool for cancer treatment. In this study, we investigated the potential use of NTGP to control SNUC5 human colon carcinoma cells. We hypothesized that NTGP would generate reactive oxygen species (ROS) in these cells, resulting in induction of endoplasmic reticulum (ER) stress. ROS generation, expression of ER stress‑related proteins and mitochondrial calcium levels were analyzed. Our results confirmed that plasma‑generated ROS induce apoptosis in SNUC5 cells. Furthermore, we found that plasma exposure resulted in mitochondrial calcium accumulation and expression of unfolded protein response (UPR) proteins such as glucose‑related protein 78 (GRP78), protein kinase R (PKR)‑like ER kinase (PERK), and inositol‑requiring enzyme 1 (IRE1). Elevated expression of spliced X‑box binding protein 1 (XBP1) and CCAAT/enhancer‑binding protein homologous protein (CHOP) further confirmed that ROS generated by NTGP induces apoptosis through the ER stress signaling pathway.

  13. Solid waste generation from oil and gas industries in United Arab Emirates.

    PubMed

    Elshorbagy, Walid; Alkamali, Abdulqader

    2005-04-11

    Solid wastes generated from oil and gas industrial activities are very diverse in their characteristics, large in their amounts and many of which are hazardous in nature. Thus, quantifying and characterizing the generated amounts in association with their types, classes, sources, industrial activities, and their chemical and biological characteristics is an obvious mandate when evaluating the possible management practices. This paper discusses the types, amounts, generation units, and the factors related to solid waste generation from a major oil and gas field in the United Arab Emirates (Asab Field). The generated amounts are calculated based on a 1-year data collection survey and using a database software specially developed and customized for the current study. The average annual amount of total solid waste generated in the studied field is estimated at 4061 t. Such amount is found equivalent to 650 kg/capita, 0.37 kg/barrel oil, and 1.6 kg/m3 of extracted gas. The average annual amount of hazardous solid waste is estimated at 55 t and most of which (73%) is found to be generated from gas extraction-related activities. The majority of other industrial non-hazardous solid waste is generated from oil production-related activities (41%), The present analysis does also provide the estimated generation amounts per waste type and class, amounts of combustible, recyclable, and compostable wastes, and the amounts dumped in uncontrolled way as well as disposed into special hazardous landfill facilities. The results should help the decision makers in evaluating the best alternatives available to manage the solid wastes generated from the oil and gas industries. PMID:15811669

  14. Electrical Generation Using Non-Salable Low BTU Natural Gas

    SciTech Connect

    Scott Corsair

    2005-12-01

    High operating costs are a significant problem for independent operators throughout the U.S. Often, decisions to temporarily idle or abandon a well or lease are dictated by these cost considerations, which are often seen as unavoidable. Options for continuing operations on a marginal basis are limited, but must include non-conventional approaches to problem solving, such as the use of alternative sources of lease power, and scrupulous reduction of non-productive operating techniques and costs. The loss of access to marginal oil and gas productive reservoirs is of major concern to the DOE. The twin difficulties of high operating costs and low or marginal hydrocarbon production often force independent operators to temporarily or permanently abandon existing lease facilities, including producing wells. Producing well preservation, through continued economical operation of marginal wells, must be maintained. Reduced well and lease operating costs are expected to improve oil recovery of the Schaben field, in Ness County, Kansas, by several hundred thousands of barrels of oil. Appropriate technology demonstrated by American Warrior, allows the extension of producing well life and has application for many operators throughout the area.

  15. Liquid phase sintered composite solders for next generation thermal interface applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia

    It is undeniable that electronics are becoming increasingly powerful and that there is continual effort towards miniaturization of these devices and thus increasing heat generation requires a new paradigm in thermal interface materials (TIM) design. This work was aimed at optimizing the processing parameters and characterizing the performance of Cu-In composite solders produced by liquid phase sintering (LPS). These composites comprise a high-melting phase (HMP) such as Cu embedded in a matrix of a low-melting phase (LMP) such as In. Copper contributes to high thermal and electrical conductivity of composites, whereas the soft In matrix helps maintain high shear compliance. This combination of high electrical/thermal conductivities and high shear compliance makes these solders suitable for a range of next-generation thermal interface material (TIM) and interconnect (IC) applications. After considering a range of compositions, a solder with 60 volume percent In was found to possess the requisite combination of high compliance and high conductivity. During the study, interfacial engineering was introduced to slow down the reaction between Cu and In, and hence further improve the performance of composite solders. A dual interfacial layer consisting of Al 2O3 and Au was used to mitigate the reaction between Cu and In. A 1 nm Al2O3 layer was used as a diffusion barrier to prohibit the inter-diffusion between Cu and In, while a 20 nm Au layer was coated on top of the ceramic Al2O3 for wetting enhancement. The dual layer increased the thermal conductivity of the solder by a factor of ˜2 while reducing the yield strength to make the solder more compliant. The effects of particle size, shape and volume fraction was also studied, and a simple model was utilized to explain the trends in the mechanical and the thermal properties. The optimized Cu-In composite solders were further used to study the performance of solder joints. Mechanical properties under shear and joint

  16. Status and integration of the gas generation studies performed for the Hydrogen Safety Program. FY 1993, Annual report

    SciTech Connect

    Strachan, D.M.

    1994-04-01

    This document represents the second in a series of documents in which information is summarized and integrated on the chemical mechanisms for gas generation from simulated wastes that mimic the nuclear waste in Tank 241-SY. Over the past year the reliability of the instrumentation that has been installed on Tank 101-SY has been increased dramatically. Gases composed of H{sub 2}, N{sub 2}O, N{sub 2}, and NH{sub 3} are continuously released at low levels and also periodically released from the waste stored in this tank such that the lower flammability limit of 4% H{sub 2} is sometimes exceeded. To better understand the reasons for this phenomenon and with the goal of mitigating the potential safety problem associated with the flammability, instrumentation has been installed on the tank and studies have been carried out to understand the mechanism by which these gases are generated. It is worthwhile to annually summarize this information in a single document, to integrate the information, and to highlight the remaining open questions surrounding the mechanism of gas generation. This is the goal of this document. Information on simulated wastes under thermal and radiation conditions has been collected from work performed at Argonne National Laboratory, Georgia Institute of Technology, and Pacific Northwest Laboratory; this report attempts to correlate the simulated data with that of actual tank waste. This document is lengthier than the former report because so much more information was available this year.

  17. Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC

    NASA Astrophysics Data System (ADS)

    Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung

    2016-01-01

    The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.

  18. Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC

    NASA Astrophysics Data System (ADS)

    Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung

    2016-11-01

    The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.

  19. Evaluating the Climate Effects of Natural Gas Versus Coal Electricity Generation

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Myhrvold, N. P.; Caldeira, K.

    2014-12-01

    Assessing potential climate effects of fossil-fuel electricity generations, especially natural gas versus coal electricity generation is complicated by the large number of factors reported in life cycle assessment studies, compounded by the large number of proposed climate metrics. Thus, there is a need to identify the key factors affecting the climate effects of fossil-fuel electricity generations (especially natural gas and coal based electricity production), and to present these climate effects in as clear and transparent a way as possible. Here, we identify power plant efficiencies and methane emission rates as the factors that explain most of the variance in greenhouse gas emissions by natural gas and coal power plants. Thus, we focus on the roles of these factors in determining the relative merit of natural gas and coal power plants. We develop a simple model with estimating CH4 and CO2 emissions from natural gas and coal power plants and resulting climate effects. Simple underlying physical changes can be obscured by abstract evaluation metrics, thus we base our discussion on temperature changes over time. We find that, during the period of plant operation, if there is substantial natural gas leakage, natural gas plants can produce greater near-term warming than a coal plant with the same power output. However, if leakage rates can be made to be low and efficiency high, natural gas plants can produce some reduction in near-term warming. After several centuries of continuous use, natural gas power plants produce substantial warming, but in most cases substantially less warming than would occur with coal plants.

  20. Thermally Simulated Testing of a Direct-Drive Gas-Cooled Nuclear Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Bragg-Sitton, Shannon; VanDyke, Melissa

    2003-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet-sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrical thermal simulation of reactor components and concepts.