Science.gov

Sample records for gas tracer studies

  1. Neutrally buoyant tracer in gas cleaning equipment: a case study

    NASA Astrophysics Data System (ADS)

    Peng, Weiming; Hoffmann, Alex C.; Dries, Huub W. A.; Regelink, Michiel; Foo, Kee-Khoon

    2005-12-01

    A generic problem when studying the gas flow in gas cleaning equipment is that any conventional tracer, whether solid particles or liquid droplets, is separated out in accordance with the purpose of the equipment. This makes it impossible, for instance, to visualize the core of the vortex in centrifugal gas cleaning equipment. This paper explores the use of a neutrally buoyant tracer. The tracer is soap bubbles filled with helium. The smaller density of the helium relative to the surrounding air is precisely compensated by the mass of the bubble film to create a neutrally buoyant tracer. The method is used to study the flow in a swirl-tube gas-solid separator, highlighting flow features that cannot be shown with, for instance, LDA. Results are shown as controlled exposure time photographs, where pathlines of the tracer show the flow pattern. The results are further clarified by high-time-resolution pressure measurements at the walls. The work shows that the vortex core can be directly visualized using this technique. The vortex core is observed to, under some conditions, bend to—and spin around—the wall of the separator. Under other conditions, the vortex core coincides with the separator axis, and extends to the bottom of the hopper under the swirl tube. Also the flow in the downstream tubing is studied. The possibilities for obtaining quantitative data for the gas velocity field are discussed, and a promising method for doing this is identified.

  2. Multiple-tracer gas analyzer

    SciTech Connect

    Uhl, J.E.

    1982-01-01

    A multi-gas tracer system has been designed, built, and used on an explosively fractured oil shale rubble bed. This paper deals exclusively with the hardware, software, and overall operation of the tracer system. This system is a field portable, self-contained unit, which utilizes a mass spectrometer for gas analysis. The unit has a 20 channel sample port capability and is controlled by a desk top computer. The system is configured to provide a dynamic sensitivity range of up to six orders of magnitude. A roots blower is manifolded to the unit to provide continuous flow in all sample lines. The continuous flow process allows representative samples as well as decreasing the time between each measurement. Typical multiplex cycle time to evaluate four unique gases is approximately 12 seconds.

  3. PERFLUOROCARBON GAS TRACER STUDIES TO SUPPORT RISK ASSESSMENT MODELING OF CRITICAL INFRASTRUCTURE SUBJECTED TO TERRORIST ATTACKS.

    SciTech Connect

    SULLIVAN, T.M.; HEISER, J.; WATSON, T.; ALLWINE, K.J.; FLAHERTY, J.E.

    2006-05-06

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., ''urban canyons''. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City's (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport models

  4. Perfluorocarbon Gas Tracer Studies to Support Risk Assessment Modeling of Critical Infrastructure Subjected to Terrorist Attacks

    SciTech Connect

    Sullivan, Terry M.; Heiser, John H.; Watson, Tom; Allwine, K Jerry; Flaherty, Julia E.

    2006-05-06

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., “urban canyons”. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City’s (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport

  5. A pilot study of the behavior of gas- and particle-phase ETS tracers in residences

    SciTech Connect

    Apte, Michael; Gundel, Lara; Dod, Raymond; Chang, Gee-Min; Sextro, Richard

    2002-02-01

    Our previous study of environmental tobacco smoke (ETS) in a three-room environmental chamber showed that smoking history significantly influenced inter-room ETS transport, particularly of gas-phase nicotine. We conducted a three-home pilot study where smoking was limited to one room. Single-smoker residences were monitored during five one-week periods while the smoker participated in a smoking cessation program. Nicotine traced ETS particles were detected reliably in the smoking rooms (SRs) and unreliably in the non-smoking rooms (NSRs). On average, the ventilation- and volume-normalized smoking rate, 0.1 Cigarette-h{sup -1} m{sup -3}, added about 17 and 4 {micro}g m{sup -3} of ETS particles into the SR and NSR, while average nicotine concentration increases were 2 and 0.06 {micro}g m{sup -3}, respectively. Thus, nicotine tracers may underestimate ETS particle exposure in a NSR (e.g., a child's bedroom) by a factor of 2 to 8. In other words, ETS exposure predicted from nicotine concentrations could be almost an order of magnitude lower than actual exposure.

  6. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    PubMed

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  7. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    PubMed

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  8. EVALUATION OF LEAKAGE FROM FUME HOODS USING TRACER GAS, TRACER NANOPARTICLES AND NANOPOWDER HANDLING TEST METHODOLOGIES

    PubMed Central

    Dunn, Kevin H.; Tsai, Candace Su-Jung; Woskie, Susan R.; Bennett, James S.; Garcia, Alberto; Ellenbecker, Michael J.

    2015-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 feet/minute) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust air flows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  9. ANALYSIS OF ESTUARINE TRACER-GAS TRANSPORT AND DESORPTION.

    USGS Publications Warehouse

    Bales, Jerad D.; Holley, Edward R.

    1987-01-01

    The riverine tracer-gas technique provides a direct, reach-averaged measure of gas exchange, is fairly simple to implement, and is widely accepted for determining reaeration-rate coefficients in rivers. The method, however, is not directly applicable to flows having vertical density gradients. Consequently, studies were undertaken to develop and evaluate methods for obtaining surface-exchange coefficients from estuarine tracer-gas data. Reasonable estimates of the desorption coefficient (within 50 percent of the correct value) were obtained when an analytical solution of the transport equation was compared with data from a numerically simulated continuous release of tracer gas.

  10. Novel tracer method to measure isotopic labeled gas-phase nitrous acid (HO15NO) in biogeochemical studies.

    PubMed

    Wu, Dianming; Kampf, Christopher J; Pöschl, Ulrich; Oswald, Robert; Cui, Junfang; Ermel, Michael; Hu, Chunsheng; Trebs, Ivonne; Sörgel, Matthias

    2014-07-15

    Gaseous nitrous acid (HONO), the protonated form of nitrite, contributes up to ∼60% to the primary formation of hydroxyl radical (OH), which is a key oxidant in the degradation of most air pollutants. Field measurements and modeling studies indicate a large unknown source of HONO during daytime. Here, we developed a new tracer method based on gas-phase stripping-derivatization coupled to liquid chromatography-mass spectrometry (LC-MS) to measure the 15N relative exceedance, ψ(15N), of HONO in the gas-phase. Gaseous HONO is quantitatively collected and transferred to an azo dye, purified by solid phase extraction (SPE), and analyzed using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). In the optimal working range of ψ(15N)=0.2-0.5, the relative standard deviation of ψ(15N) is <4%. The optimum pH and solvents for extraction by SPE and potential interferences are discussed. The method was applied to measure HO15NO emissions from soil in a dynamic chamber with and without spiking 15) labeled urea. The identification of HO15NO from soil with 15N urea addition confirmed biogenic emissions of HONO from soil. The method enables a new approach of studying the formation pathways of HONO and its role for atmospheric chemistry (e.g., ozone formation) and environmental tracer studies on the formation and conversion of gaseous HONO or aqueous NO2- as part of the biogeochemical nitrogen cycle, e.g., in the investigation of fertilization effects on soil HONO emissions and microbiological conversion of NO2- in the hydrosphere.

  11. Quantifying capture efficiency of gas collection wells with gas tracers.

    PubMed

    Yazdani, Ramin; Imhoff, Paul; Han, Byunghyun; Mei, Changen; Augenstein, Don

    2015-09-01

    A new in situ method for directly measuring the gas collection efficiency in the region around a gas extraction well was developed. Thirteen tests were conducted by injecting a small volume of gas tracer sequentially at different locations in the landfill cell, and the gas tracer mass collected from each test was used to assess the collection efficiency at each injection point. For 11 tests the gas collection was excellent, always exceeding 70% with seven tests showing a collection efficiency exceeding 90%. For one test the gas collection efficiency was 8±6%. Here, the poor efficiency was associated with a water-laden refuse or remnant daily cover soil located between the point of tracer injection and the extraction well. The utility of in situ gas tracer tests for quantifying landfill gas capture at particular locations within a landfill cell was demonstrated. While there are certainly limitations to this technology, this method may be a valuable tool to help answer questions related to landfill gas collection efficiency and gas flow within landfills. Quantitative data from tracer tests may help assess the utility and cost-effectiveness of alternative cover systems, well designs and landfill gas collection management practices. PMID:26148643

  12. Natural and artificial nobel gas hydrologic tracers

    SciTech Connect

    Hudson, G.B.

    1994-06-01

    Noble gas isotopes provide opportunities for ground water tracing. Both naturally occurring tracers and artificially injected tracers can be used. The equilibration of water with the earth`s atmosphere records the temperature and atmospheric pressure during ground water recharge. This temperature/pressure record can be used to distinguish cold recharge from warmer recharge with a resolution of 1-2 C temperature and 500m in altitude. The radioactive decay of U and Th produce large concentrations of 4He in old ground water and this 4He signature can be useful in tracing the small addition of old water (>10,000 yr.) to young water (<100 yr.). The decay of 3H present either form nuclear testing or cosmic ray interactions leads to detectable amounts of 3He in young ground water (<50 yr.). By measuring both 3H and 3He, the mean age of the 3H in the water can be calculated. In addition to these natural tracers, isotopically enriched noble gas isotopes are readily available at low cost and can be used an non-hazardous water tracers. This inert, persistent, and harmless tracing technique can used in many situations at a cost of about one dollar per million gallons of water traced.

  13. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 2: Gas Tracer Dispersion

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2016-07-01

    The Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The first method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model's Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.

  14. Following Footsteps: ECD Tracer Studies.

    ERIC Educational Resources Information Center

    Smale, Jim, Editor

    2002-01-01

    This document consists of the single 2002 issue of The Bernard van Leer Foundation's "Early Childhood Matters," a periodical addressed to practitioners in the field of early childhood education and including information on projects funded by the Foundation. Articles in this issue focus on early childhood development tracer studies of former…

  15. Waste tank ventilation rates measured with a tracer gas method

    SciTech Connect

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103.

  16. Dissolved gas and isotopic tracers of denitrification

    SciTech Connect

    Singleton, M J; Moran, J E; Esser, B K; McNab, W W; Carle, S F; Cey, B D

    2008-02-28

    We present results from field studies in California (USA) where tritium-helium age dating is used in conjunction with major gases (N{sub 2}, O{sub 2}, CH{sub 4}, CO{sub 2}), noble gases (He, Ne, Ar, Kr, Xe), and stable isotopes ({sup 15}N/{sup 14}N, {sup 18}O/{sup 16}O) in order to document nitrate loading and denitrification associated with confined animal agricultural operations and septic systems. Preliminary results show that in-field extraction of the full suite of dissolved gases will be possible using a new Gas Extraction System under development to augment the current Noble Gas Mass Spectrometry and Membrane Inlet Mass Spectrometry techniques. Ascribing observed groundwater nitrate levels to specific current and past land use practices is often complicated by uncertainty in groundwater age and the degree and locus of dentrification. Groundwater age dating at dairy field sites using the {sup 3}H-{sup 3}He method indicates that the highest nitrate concentrations (150-260 mg/L-NO3) occur in waters with apparent ages of <5 yrs, whereas older waters contain excess N{sub 2} from saturated zone denitrification [1]. At a residential septic system site in Livermore, CA, waters with young apparent ages (<1 yr) proximal to leach line drainage have lower nitrate concentrations and elevated nitrate {delta}{sup 15}N and {delta}{sup 18}O values consistent with denitrification, but little evidence for excess N{sub 2}, indicating that denitrification is occurring in the unsaturated zone. Degassing of groundwater can complicate efforts to calculate travel times [2] and to quantify denitrification. Degassed groundwater underlying dairy operations is formed by two distinct mechanisms: (1) recharge of manure lagoon water affected by biogenic gas ebullition [3] and (2) saturated zone denitrification producing N{sub 2} gas above solubility in groundwater. Gas loss due to both mechanisms is evident in the concentrations of noble gases and major gases in dairy groundwater samples.

  17. Tracer studies on an aerated lagoon.

    PubMed

    Broughton, Alistair; Shilton, Andy

    2012-01-01

    The city of Palmerston North, New Zealand, has two aerated lagoons as its secondary treatment facility. Interest about treatment efficiency led to an investigation into the hydraulics in the second lagoon to determine if further optimisation was viable. A tracer study using rhodamine WT was undertaken to ascertain the stimulus response output. Samples were also taken at 24 points within the lagoon to determine the tracer concentration profile throughout the lagoon. The mean residence time was determined to be 39.9 h compared with a theoretical residence time of 55.4 h. Peak concentration of the tracer at the outlet occurred at 0.44 of the mean residence time. The results of the tracer study pointed to 28% of volume being dead space. A subsequent sludge survey indicated that 26% of the design volume of the lagoon was filled with sludge. While the curved geometry of the lagoon did not appear to impact the hydraulics the fact that the first aerator is confined in a relatively smaller area will have locally boosted the mixing energy input in this inlet zone. From interpretation of the tracer response and the tracer distribution profiles it appears that the aerators are mixing the influent into the bulk flow effectively in the front end of the lagoon and that there was no evidence of any substantive short-circuiting path of concentrated tracer around to the outlet. The tracer distribution profiles gave direct insight as to how the tracer was being transported within the pond and should be used more often when conducting tracer studies. Comparison with the literature indicated that the lagoon's hydraulic efficiency was on par with a baffled pond system and it would be expected that addition of several baffles to the lagoon would provide minimal further improvement. PMID:22277219

  18. Field measurements of tracer gas transport by barometric pumping

    SciTech Connect

    Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.

    1994-07-28

    Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ``active`` tracer was driven by a large quantity of injected air; the second ``passive`` tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through {approximately}1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs.

  19. Partitioning Gas Tracer Technology for Measuring Water in Landfills

    NASA Astrophysics Data System (ADS)

    Briening, M. L.; Jakubowitch, A.; Imhoff, P. T.; Chiu, P. C.; Tittlebaum, M. E.

    2002-12-01

    Unstable landfills can result in significant environmental contamination and can become a risk to public health. To reduce this risk, water may be added to landfills to ensure that enough moisture exists for biodegradation of organic wastes. In this case risks associated with future breaks in the landfill cap are significantly reduced because organic material is degraded more rapidly. To modify moisture conditions and enhance biodegradation, leachate is typically collected from the bottom of the landfill and then recirculated near the top. It is difficult, though, to know how much leachate to add and where to add it to achieve uniform moisture conditions. This situation is exacerbated by the heterogeneous nature of landfill materials, which is known to cause short circuiting of infiltrating water, a process that has been virtually impossible to measure or model. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. In this research we are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. In this methodology two gas tracers are injected into a landfill. One tracer is non-reactive with landfill materials, while the second partitions into and out of free water trapped within the pore space of the solid waste. Chromatographic separation of the tracers occurs

  20. Radon, CO2 and CH4 as environmental tracers in groundwater/surface water interaction studies - comparative theoretical evaluation of the gas specific water/air phase transfer kinetics

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Paschke, A.

    2015-05-01

    The applicability of radon as environmental tracer in groundwater/surface water interaction studies has been documented in a considerable number of publications. In some of these reports it has also been suggested to validate the radon based results by using CO2 and CH4 as supplementary tracers. The on-site measurement of the three gaseous parameters relies on their extraction from the water followed by the measurement of their concentration by means of mobile gas-in-air detectors. Since most related practical applications require the recording of time series, a continuous extraction of the gases from (e.g.) a permanently pumped water stream is necessary. A precondition for the sound combined interpretation of the resulting time series is that the individual temporal responses of the extracted gas-in-air concentrations to instantaneously changing gas-in-water concentrations are either identical or in reproducible relation to each other. The aim of our theoretical study was the comparison of the extraction behavior of the three gaseous solutes with focus on the individual temporal responses to changing gas-in-water concentrations considering in particular the gas specific water/air phase transfer kinetics. We could show that the overall mass transfer coefficients of radon, CO2 and CH4 result in a virtually similar temporal response to aqueous concentration changes, thus confirming the straightforward combined measurement/utilization of the dissolved gases as environmental tracers in groundwater/surface water interaction studies.

  1. Unit vent airflow measurements using a tracer gas technique

    SciTech Connect

    Adams, D.G.; Lagus, P.L.; Fleming, K.M.

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  2. Tracer diffusion coefficients in a sheared inelastic Maxwell gas

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Trizac, Emmanuel

    2016-07-01

    We study the transport properties of an impurity in a sheared granular gas, in the framework of the Boltzmann equation for inelastic Maxwell models. We investigate here the impact of a nonequilibrium phase transition found in such systems, where the tracer species carries a finite fraction of the total kinetic energy (ordered phase). To this end, the diffusion coefficients are first obtained for a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. In this situation, the set of coupled Boltzmann equations are solved by means of a Chapman-Enskog-like expansion around the (local) shear flow distributions for each species, thereby retaining all the hydrodynamic orders in the shear rate a. Due to the anisotropy induced by the shear flow, three tensorial quantities D ij , D p,ij , and D T,ij are required to describe the mass transport process instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled algebraic equations, which can be exactly solved as functions of the shear rate a, the coefficients of restitution {αsr} and the parameters of the mixture (masses and composition). Once the forms of D ij , D p,ij , and D T,ij are obtained for arbitrary mole fraction {{x}1}={{n}1}/≤ft({{n}1}+{{n}2}\\right) (where n r is the number density of species r), the tracer limit ({{x}1}\\to 0 ) is carefully considered for the above three diffusion tensors. Explicit forms for these coefficients are derived showing that their shear rate dependence is significantly affected by the order-disorder transition.

  3. Estimating fracture spacing from natural tracers in shale-gas production

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; McKenna, S. A.; Heath, J. E.; Gardner, P.

    2012-12-01

    Resource appraisal and long-term recovery potential of shale gas relies on the characteristics of the fracture networks created within the formation. Both well testing and analysis of micro-seismic data can provide information on fracture characteristics, but approaches that directly utilize observations of gas transport through the fractures are not well-developed. We examine transport of natural tracers and analyze the breakthrough curves (BTC's) of these tracers with a multi-rate mass transfer (MMT) model to elucidate fracture characteristics. The focus here is on numerical simulation studies to determine constraints on the ability to accurately estimate fracture network characteristics as a function of the diffusion coefficients of the natural tracers, the number and timing of observations, the flow rates from the well, and the noise in the observations. Traditional tracer testing approaches for dual-porosity systems analyze the BTC of an injected tracer to obtain fracture spacing considering a single spacing value. An alternative model is the MMT model where diffusive mass transfer occurs simultaneously over a range of matrix block sizes defined by a statistical distribution (e.g., log-normal, gamma, or power-law). The goal of the estimation is defining the parameters of the fracture spacing distribution. The MMT model has not yet been applied to analysis of natural in situ natural tracers. Natural tracers are omnipresent in the subsurface, potentially obviating the needed for introduced tracers, and could be used to improve upon fracture characteristics estimated from pressure transient and decline curve production analysis. Results of this study provide guidance for data collection and analysis of natural tracers in fractured shale formations. Parameter estimation on simulated BTC's will provide guidance on the necessary timing of BTC sampling in field experiments. The MMT model can result in non-unique or nonphysical parameter estimates. We address this

  4. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    USGS Publications Warehouse

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Rob; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  5. Isotopologues of Dense Gas Tracers in NGC 1068

    NASA Astrophysics Data System (ADS)

    Wang, Junzhi; Zhang, Zhi-Yu; Qiu, Jianjie; Shi, Yong; Zhang, Jiangshui; Fang, Min

    2014-11-01

    We present observations of isotopic lines of dense gas tracers toward the nuclear region of nearby Seyfert 2 galaxy NGC 1068 with the IRAM 30 m telescope and the Atacama Pathfinder Experiment (APEX) 12 m telescope. We detected four isotopic lines (H13CN 1-0, H13CO+ 1-0, HN13C 1-0, and HC18O+ 1-0) at the 3 mm band with the IRAM 30 m telescope and obtained upper limits of other lines. We calculated optical depths of dense gas tracers with the detected isotopic lines of HCN 1-0, HCO+ 1-0, and HNC 1-0. We find that the 14N/15N abundance ratio is greater than 420 if we adopt the upper limit of HC15N(1-0) emission. Combining this with fluxes of 1-0 lines from IRAM 30 m observations and the upper limit of 3-2 lines from APEX 12 m observations, we also estimated the excitation condition of molecular gas in the nuclear region of NGC 1068, which is less dense than that in the extreme starburst regions of galaxies.

  6. Isotopologues of dense gas tracers in NGC 1068

    SciTech Connect

    Wang, Junzhi; Qiu, Jianjie; Zhang, Zhi-Yu; Shi, Yong; Zhang, Jiangshui; Fang, Min

    2014-11-20

    We present observations of isotopic lines of dense gas tracers toward the nuclear region of nearby Seyfert 2 galaxy NGC 1068 with the IRAM 30 m telescope and the Atacama Pathfinder Experiment (APEX) 12 m telescope. We detected four isotopic lines (H{sup 13}CN 1-0, H{sup 13}CO{sup +} 1-0, HN{sup 13}C 1-0, and HC{sup 18}O{sup +} 1-0) at the 3 mm band with the IRAM 30 m telescope and obtained upper limits of other lines. We calculated optical depths of dense gas tracers with the detected isotopic lines of HCN 1-0, HCO{sup +} 1-0, and HNC 1-0. We find that the {sup 14}N/{sup 15}N abundance ratio is greater than 420 if we adopt the upper limit of HC{sup 15}N(1-0) emission. Combining this with fluxes of 1-0 lines from IRAM 30 m observations and the upper limit of 3-2 lines from APEX 12 m observations, we also estimated the excitation condition of molecular gas in the nuclear region of NGC 1068, which is less dense than that in the extreme starburst regions of galaxies.

  7. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1992-12-31

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The .experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated.

  8. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The .experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated.

  9. Plan for radionuclide tracer studies of the residence time distribution in the Wilsonville dissolver and preheater

    SciTech Connect

    Jolley, R.L.; Begovich, J.M.; Brashear, H.R.; Case, N.; Clark, T.G.; Emery, J.F.; Patton, B.D.; Rodgers, B.R.; Villiers-Fisher, J.F.; Watson, J.S.

    1983-12-01

    Stimulus-response measurements using radiotracers to measure residence time distribution (RTD) and hydrodynamic parameters for the preheaters and dissolvers at the Ft. Lewis Solvent Refined Coal (SRC) and the Exxon Donor Solvent (EDS) coal conversion pilot plants are reviewed. A plan is also presented for a series of radioactive tracer studies proposed for the Advanced Coal Liquefaction Facility at Wilsonville, Alabama, to measure the RTD for the preheater and dissolvers in the SRC-I mode. The tracer for the gas phase will be /sup 133/Xe, and /sup 198/Au (on carbonized resin or as an aqueous colloidal suspension) will be used as the slurry tracer. Four experimental phases are recommended for the RTD tracer studies: (1) preheater; (2) dissolver with 100% takeoff; (3) dissolver with 100% takeoff and solids withdrawal; and (4) dissolver with 50% takeoff. Eighteen gas-tracer and 22 liquid-tracer injections are projected to accomplish the four experimental phases. Two to four tracer injections are projected for preliminary tests to ensure the capability of safe injection of the radiotracers and the collection of statistically significant data. A complete projected cost and time schedule is provided, including procurement of necessary components, preparation of the radiotracers, assembly and testing of tracer injection apparatus and detection systems, onsite work and tracer injections, laboratory experimentation, data analysis, and report writing.

  10. Analysis of volatile-phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1994-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at depth; barometric pressure, rainfall, and wind speed were monitored at the soil surface. Linear and multiple regression analysis under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature, and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been observed. 25 refs., 12 figs., 1 tab.

  11. New Tracers of Gas Migration in the Continental Crust

    SciTech Connect

    Kurz, Mark D.

    2015-11-01

    Noble gases are exceptional tracers in continental settings due to the remarkable isotopic variability between the mantle, crust, and atmosphere, and because they are inert. Due to systematic variability in physical properties, such as diffusion, solubility, and production rates, the combination of helium, neon, and argon provides unique but under-utilized indices of gas migration. Existing noble gas data sets are dominated by measurements of gas and fluid phases from gas wells, ground waters and hot springs. There are very few noble gas measurements from the solid continental crust itself, which means that this important reservoir is poorly characterized. The central goal of this project was to enhance understanding of gas distribution and migration in the continental crust using new measurements of noble gases in whole rocks and minerals from existing continental drill cores, with an emphasis on helium, neon, argon. We carried out whole-rock and mineral-separate noble gas measurements on Precambrian basement samples from the Texas Panhandle. The Texas Panhandle gas field is the southern limb of the giant Hugoton-Panhandle oil and gas field; it has high helium contents (up to ~ 2 %) and 3He/4He of 0.21 (± 0.03) Ra. Because the total amount of helium in the Panhandle gas field is relatively well known, crustal isotopic data and mass balance calculations can be used to constrain the ultimate source rocks, and hence the helium migration paths. The new 3He/4He data range from 0.03 to 0.11 Ra (total), all of which are lower than the gas field values. There is internal isotopic heterogeneity in helium, neon, and argon, within all the samples; crushing extractions yield less radiogenic values than melting, demonstrating that fluid inclusions preserve less radiogenic gases. The new data suggest that the Precambrian basement has lost significant amounts of helium, and shows the importance of measuring helium with neon and argon. The 4He/40Ar values are particularly useful

  12. Gas tracer transport in a heterogeneous fracture in two-phase flow conditions. Experimental and modeling results

    NASA Astrophysics Data System (ADS)

    Jódar, Jorge; Medina, Agustín; Carrera, Jesús

    2011-11-01

    Large amounts of gas can result from anaerobic corrosion of metals and from chemical and biological degradation of organic substances in underground repositories for radioactive waste. Gas generation may lead to the formation of a buoyant gas phase bubble (i.e. zone with increased gas saturation surrounded by water) and to the migration of radioactive gaseous species. In this situation, gaseous species migration is controlled by (1) advection, dispersion and diffusion within the gas bubble, and (2) dissolution in the water surrounding the gas bubble and diffusion of the dissolved species away from the interface. A number of gas tracer tests were performed in the framework of the GAs Migration (GAM) project to study the role played by dissolution/diffusion phenomena in gas transport. Tracers were selected to display a large range of solubility and diffusion coefficients, which should have led to significant chromatographic separation in the breakthrough curves (BTCs) of the tracers. However, measured BTCs displayed much smaller chromatographic separation than expected. These curves were interpreted using (1) a numerical model of multiphase flow and tracer transport in the fracture plane and diffusion into the immobile water, and (2) a simple two box model. Results showed that dissolution/diffusion into immobile water regions played a small role, and tailing appears to have been largely controlled by diffusion into dead gas volumes, such as boreholes.

  13. Gastric activity studies using a magnetic tracer.

    PubMed

    Cordova-Fraga, T; Bernal-Alvarado, J J; Gutierrez-Juarez, G; Sosa, M; Vargas-Luna, M

    2004-10-01

    A magnetic pulse generator has been set up in order to study gastric activity. Two coils 1.05 m in diameter, arranged in a Helmholtz configuration, were used. The system generated magnetic field pulses higher than 15 mT, of duration 17.3+/-1.2 ms. Measurements were performed in 11 male volunteers, with average age 29.3+/-6.4 years and body mass index 26.0+/-4.8 kg m(-2). Magnetite (Fe3O4) particles with diameters from 75 to 125 microm were used as magnetic tracers, which were mixed in 250 ml of yogurt in concentrations from 2 to 5 g. Signals were registered by using a high speed 3 axis fluxgate digital magnetometer and processed to determine the relaxation of the magnetic tracers by fitting a first-order exponential function to the data, a mean relaxation constant K = 116+/-40 s(-1) was obtained. Also, an average gastric peristaltic frequency was measured; a value of 3.2+/-0.3 cpm was determined. PMID:15535190

  14. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    SciTech Connect

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  15. Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determined via push-pull tracer tests

    NASA Astrophysics Data System (ADS)

    Reid, Matthew C.; Pal, David S.; Jaffé, Peter R.

    2015-09-01

    Gas transfer processes are fundamental to the biogeochemical and water quality functions of wetlands, yet there is limited knowledge of the rates and pathways of soil-atmosphere exchange for gases other than oxygen and methane (CH4). In this study, we use a novel push-pull technique with sulfur hexafluoride (SF6) and helium (He) as dissolved gas tracers to quantify the kinetics of root-mediated gas transfer, which is a critical efflux pathway for gases from wetland soils. This tracer approach disentangles the effects of physical transport from simultaneous reaction in saturated, vegetated wetland soils. We measured significant seasonal variation in first-order gas exchange rate constants, with smaller spatial variations between different soil depths and vegetation zones in a New Jersey tidal marsh. Gas transfer rates for most biogeochemical trace gases are expected to be bracketed by the rate constants for SF6 and He, which ranged from ˜10-2 to 2 × 10-1 h-1 at our site. A modified Damköhler number analysis is used to evaluate the balance between biochemical reaction and root-driven gas exchange in governing the fate of environmental trace gases in rooted, anaerobic soils. This approach confirmed the importance of plant gas transport for CH4, and showed that root-driven transport may affect nitrous oxide (N2O) balances in settings where N2O reduction rates are slow.

  16. Generation of ethylene tracer by noncatalytic pyrolysis of natural gas at elevated pressure

    USGS Publications Warehouse

    Lu, Y.; Chen, S.; Rostam-Abadi, M.; Ruch, R.; Coleman, D.; Benson, L.J.

    2005-01-01

    There is a critical need within the pipeline gas industry for an inexpensive and reliable technology to generate an identification tag or tracer that can be added to pipeline gas to identify gas that may escape and improve the deliverability and management of gas in underground storage fields. Ethylene is an ideal tracer, because it does not exist naturally in the pipeline gas, and because its physical properties are similar to the pipeline gas components. A pyrolysis process, known as the Tragen process, has been developed to continuously convert the ???2%-4% ethane component present in pipeline gas into ethylene at common pipeline pressures of 800 psi. In our studies of the Tragen process, pyrolysis without steam addition achieved a maximum ethylene yield of 28%-35% at a temperature range of 700-775 ??C, corresponding to an ethylene concentration of 4600-5800 ppm in the product gas. Coke deposition was determined to occur at a significant rate in the pyrolysis reactor without steam addition. The ?? 13C isotopic analysis of gas components showed a ?? 13C value of ethylene similar to ethane in the pipeline gas, indicating that most of the ethylene was generated from decomposition of the ethane in the raw gas. However, ?? 13C isotopic analysis of the deposited coke showed that coke was primarily produced from methane, rather than from ethane or other heavier hydrocarbons. No coke deposition was observed with the addition of steam at concentrations of > 20% by volume. The dilution with steam also improved the ethylene yield. ?? 2005 American Chemical Society.

  17. Atmospheric tracer experiments for regional dispersion studies

    SciTech Connect

    Heffter, J.L.; Ferber, G.J.

    1980-01-01

    Tracer experiments are being conducted to verify atmospheric transport and dispersion calculations at distances from tens to hundreds of km from pollutant sources. In one study, a 2 1/2 year sampling program has been carried out at 13 sites located 30 to 140 km from a source of /sup 85/Kr at the Savannah River Plant in South Carolina. Average weekly concentrations as well as twice-daily concentrations were obtained. Sampling data and meteorological data, including surface, tower, and rawinsonde observations are available on magnetic tape for model verification studies. Some verification results for the Air Resources Laboratories Atmospheric Transort and Dispersion Model (ARL-ATAD) are shown for averaging periods from one week to two years.

  18. Verification of subsurface barrier integrity using perfluorocarbon gas tracers

    SciTech Connect

    SULLIVAN,T.M.; GIBBS,B.; SENUM,G.; SCHWARTZ,M.; HOPKINGS,T.; HEISER,J.

    1998-03-01

    Use of perfluorocarbon (PFT) gaseous tracers shows promise as an excellent means of demonstrating subsurface barrier integrity. The PFT technology has been applied at Brookhaven National Laboratory to evaluate the colloidal silica (CS) barrier installed during the summer of 1997. This program involved two separate experimental phases. In the first phase, PFTs were injected into the native soil for a period of one day in the region adjacent to the proposed location of the CS barrier. The information was used to confirm that diffusion is the rate controlling transport mechanism and measure in-situ diffusion coefficients for the tracers in the native soil. This information is useful in interpreting data from the second phase of this study. In addition, the monitoring data was used to estimate the leak (injection) location. In the second phase, PFTs were injected into the region contained by the CS barrier and data have been collected to evaluate the performance of the barrier. In the experiment three unique PFTs were injected with the aim of increasing the resolution of leak detection. Two regions which provided essentially no added resistance to flow as compared to the native soil were detected in the bulk of the CS barrier.

  19. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED THROUGH FRACTURED MEDIA

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured clay system that is the confin...

  20. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests

    SciTech Connect

    Oostrom, Martinus; Tartakovsky, Guzel D.; Wietsma, Thomas W.; Truex, Michael J.; Dane, Jacob H.

    2011-04-15

    Soil desiccation (drying), involving water evaporation induced by dry air injection and extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot-test and field sites. In this paper, tracer tests have been conducted in porous medium columns with various water saturations using sulfur hexafluoride as the conservative tracer and tricholorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt and/or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. However, for sediments with significant silt and/or organic matter fractions, tracer tests only provided satisfactory results when the water saturation was at least 0.1 - 0.2. For dryer conditions, the apparent tracer retardation increases due to air – soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air – water partitioning and water – soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided the initial water saturations are sufficiently large. However, tracer tests are not suitable for quantifying moisture content in desiccated sediments.

  1. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  2. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  3. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  4. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  5. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  6. Nitrous oxide as a tracer gas in the ASHRAE 110-1995 Standard.

    PubMed

    Burke, Martin; Wong, Larry; Gonzales, Ben A; Knutson, Gerhard

    2014-01-01

    ANSI/ASHRAE Standard 110 provides a quantitative method for testing the performance of laboratory fume hoods. Through release of a known quantity (4.0 Lpm) of a tracer gas, and subsequent monitoring of the tracer gas concentration in the "breathing zone" of a mannequin positioned in front of the hood, this method allows for evaluation of laboratory hood performance. Standard 110 specifies sulfur hexafluoride (SF6) as the tracer gas; however, suitable alternatives are allowed. Through three series of performance tests, this analysis serves to investigate the use of nitrous oxide (N2O) as an alternate tracer gas for hood performance testing. Single gas tests were performed according to ASHRAE Standard 110-1995 with each tracer gas individually. These tests showed identical results using an acceptance criterion of AU 0.1 with the sash half open, nominal 18 inches (0.46m) high, and the face velocity at a nominal 60 fpm (0.3 m/s). Most data collected in these single gas tests, for both tracer gases, were below the minimum detection limit, thus two dual gas tests were developed for simultaneous sampling of both tracer gases. Dual gas dual ejector tests were performed with both tracer gases released simultaneously through two ejectors, and the concentration measured with two detectors using a common sampling probe. Dual gas single ejector tests were performed with both tracer gases released though a single ejector, and the concentration measured in the same manner as the dual gas dual ejector tests. The dual gas dual ejector tests showed excellent correlation, with R typically greater than 0.9. Variance was observed in the resulting regression line for each hood, likely due to non-symmetry between the two challenges caused by variables beyond the control of the investigators. Dual gas single ejector tests resulted in exceptional correlation, with R>0.99 typically for the consolidated data, with a slope of 1.0. These data indicate equivalent results for ASHRAE 110

  7. National Biomedical Tracer Facility: Project definition study

    SciTech Connect

    Heaton, R.; Peterson, E.; Smith, P.

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  8. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  9. Field-scale sulfur hexafluoride tracer experiment to understand long distance gas transport in the deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian; Green, Christopher T.; Stonestrom, David A.; Striegl, Rob

    2014-01-01

    A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.

  10. Comparison of observed and predicted short-term tracer gas concentrations in the atmosphere

    SciTech Connect

    Cotter, S.J.; Miller, C.W.; Lin, W.C.T.

    1985-01-01

    The Savannah River Laboratory is in the process of conducting a series of atmospheric tracer studies. The inert gas sulfurhexafluoride is released from a height of 62 m for 15 min and concentrations in air are measured on sampling arcs up to 30 km downwind of the release point. Maximum 15 min. air concentrations from 14 of these tracer tests have been compared with the ground-level, centerline air concentration predicted with a Gaussian plume atmospheric transport model using eight different sets of atmospheric dispersion parameters. Preliminary analysis of the results from these comparisons indicates that the dispersion parameters developed at Juelich, West Germany, based on tracers released from a height of 50 m, give the best overall agreement between the predicted and observed values. The median value of the ratio of predicted to observed air concentrations for this set of parameters is 1.3, and the correlation coefficient between the log of the predictions and the log of the observations is 0.72. For the commonly used Pasquill-Gifford dispersion parameters, the values of these same statistics are 4.4 and 0.68, respectively. The Gaussian plume model is widely used to predict air concentrations resulting from short-term radionuclide release to the atmosphere. The results of comparisons such as these must be considered whenever the Gaussian model is used for such purposes. 22 references, 3 tables.

  11. Gas-partitioning tracer test to quantify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, V.M.; Solomon, D.K.; Perkins, K.S.; Ellett, K.M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  12. Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation.

    PubMed

    Isaacman-VanWertz, Gabriel; Yee, Lindsay D; Kreisberg, Nathan M; Wernis, Rebecca; Moss, Joshua A; Hering, Susanne V; de Sá, Suzane S; Martin, Scot T; Alexander, M Lizabeth; Palm, Brett B; Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A; Jimenez, Jose L; Riva, Matthieu; Surratt, Jason D; Viegas, Juarez; Manzi, Antonio; Edgerton, Eric; Baumann, Karsten; Souza, Rodrigo; Artaxo, Paulo; Goldstein, Allen H

    2016-09-20

    Exchange of atmospheric organic compounds between gas and particle phases is important in the production and chemistry of particle-phase mass but is poorly understood due to a lack of simultaneous measurements in both phases of individual compounds. Measurements of particle- and gas-phase organic compounds are reported here for the southeastern United States and central Amazonia. Polyols formed from isoprene oxidation contribute 8% and 15% on average to particle-phase organic mass at these sites but are also observed to have substantial gas-phase concentrations contrary to many models that treat these compounds as nonvolatile. The results of the present study show that the gas-particle partitioning of approximately 100 known and newly observed oxidation products is not well explained by environmental factors (e.g., temperature). Compounds having high vapor pressures have higher particle fractions than expected from absorptive equilibrium partitioning models. These observations support the conclusion that many commonly measured biogenic oxidation products may be bound in low-volatility mass (e.g., accretion products, inorganic-organic adducts) that decomposes to individual compounds on analysis. However, the nature and extent of any such bonding remains uncertain. Similar conclusions are reach for both study locations, and average particle fractions for a given compound are consistent within ∼25% across measurement sites. PMID:27552285

  13. Leak testing of bubble-tight dampers using tracer gas techniques

    SciTech Connect

    Lagus, P.L.; DuBois, L.J.; Fleming, K.M.

    1995-02-01

    Recently tracer gas techniques have been applied to the problem of measuring the leakage across an installed bubble-tight damper. A significant advantage of using a tracer gas technique is that quantitative leakage data are obtained under actual operating differential pressure conditions. Another advantage is that leakage data can be obtained using relatively simple test setups that utilize inexpensive materials without the need to tear ducts apart, fabricate expensive blank-off plates, and install test connections. Also, a tracer gas technique can be used to provide an accurate field evaluation of the performance of installed bubble-tight dampers on a periodic basis. Actual leakage flowrates were obtained at Zion Generating Station on four installed bubble-tight dampers using a tracer gas technique. Measured leakage rates ranged from 0.01 CFM to 21 CFM. After adjustment and subsequent retesting, the 21 CFM damper leakage was reduced to a leakage of 3.8 CFM. In light of the current regulatory climate and the interest in Control Room Habitability issues, imprecise estimates of critical air boundary leakage rates--such as through bubble-tight dampers--are not acceptable. These imprecise estimates can skew radioactive dose assessments as well as chemical contaminant exposure calculations. Using a tracer gas technique, the actual leakage rate can be determined. This knowledge eliminates a significant source of uncertainty in both radioactive dose and/or chemical exposure assessments.

  14. Estimation of road traffic emission factors from a long term tracer study

    NASA Astrophysics Data System (ADS)

    Belalcazar, Luis Carlos; Fuhrer, Oliver; Ho, Minh Dung; Zarate, Erika; Clappier, Alain

    2009-12-01

    Road traffic emissions, one of the largest source categories in megacity inventories, are highly uncertain. It is essential to develop methodologies to reduce these uncertainties to manage air quality more effectively. In this paper, we propose a methodology to estimate road traffic emission factors (EFs) from a tracer experiment and from roadside pollutants measurements. We emitted continuously during about 300 non-consecutive hours a passive tracer from a finite line source placed on one site of an urban street. At the same time, we measured continuously the resulting tracer concentrations at the other side of the street with a portable on-line gas chromatograph. We used n-propane contained in commercial liquid petroleum gas (LPG) as a passive tracer. Propane offers several advantages to traditional tracers (SF6, N2O, CFCs): low price, easily available, non-reactive, negligible global warming potential, and easy to detect with commercial on-line gas chromatographs. The tracer experiment was carried out from January to March 2007 in a busy street of Ho Chi Minh City (Vietnam). Traffic volume, weather information and pollutant concentrations were also measured at the measurement site. We used the results of the tracer experiment to calculate the dilution factors and afterwards we used these dilution factors, the traffic counts and the pollutant concentrations to estimate the EFs. The proposed method assumes that the finite emission line represents the emission produced by traffic in the full area of the street and therefore there is an error associated to this assumption. We use the Computational Fluids Dynamics (CFD) model MISKAM to calculate this error and to correct the HCMC EFs. EFs for 15 volatile organic compounds (VOCs) and NO are reported here. A comparison with available studies reveals that most of the EFs estimated here are within the range of EFs reported in other studies.

  15. [Determination of tracer gas contents in sediment pore water of gas hydrate area by two-dimensional gas chromatography].

    PubMed

    Wang, Hu; Yang, Qunhui; Ji, Fuwu; Zhou, Huaiyang; Xue, Xiang

    2011-01-01

    A two-dimensional gas chromatographic instrument was established by the capillary flow technology (Deans Switch) and two columns (PoraPLOT Q and Molsieve 5A) and three detectors (pulsed discharge helium ionization detector, flame photometric detector and thermal conductivity detector). The instrument can be used to measure tracer gases simultaneously including hydrogen, methane, carbon dioxide and hydrogen sulfide. The detection limits of the hydrogen, methane, carbon dioxide and hydrogen sulfide were 0.51, 0.17, 82 and 0.08 micromol/mol, and the calibration curves presented good linear relationships in the range of 2-1030, 0.6-501, 120-10500 and 0.2- 49.1 micromol/mol, respectively. The relative standard deviations were less than 10% for the measurements of ten standard gases. By this method, the tracer gases in the sediment pore water of gas hydrate area in South China Sea had been detected. This method is simple, sensitive, and suitable for on-board detection. Compared with the usual methods for measuring tracer gases, the amount of a sample necessary is reduced greatly. It is useful for the survey of gas hydrate and hydrothermal resources below sea floor and for the research of dissolved gases in the ocean.

  16. Estimating the gas and dye quantities for modified tracer technique measurements of stream reaeration coefficients

    USGS Publications Warehouse

    Rathbun, R.E.

    1979-01-01

    Measuring the reaeration coefficient of a stream with a modified tracer technique has been accomplished by injecting either ethylene or ethylene and propane together and a rhodamine-WT dye solution into the stream. The movement of the tracers through the stream reach after injection is described by a one-dimensional diffusion equation. The peak concentrations of the tracers at the downstream end of the reach depend on the concentrations of the tracers in the stream at the injection site, the longitudinal dispersion coefficient, the mean water velocity, the length of the reach, and the duration of the injection period. The downstream gas concentrations also depend on the gas desorption coefficients of the reach. The concentrations of the tracer gases in the stream at the injection site depend on the flow rates of the gases through the injection diffusers, the efficiency of the gas absorption process, and the stream discharge. The concentration of dye in the stream at the injection site depends on the flow rate of the dye solution, the concentration of the dye solution, and the stream discharge. Equations for estimating the gas flow rates, the quantities of the gases, the dye concentration, and the quantity of dye together with procedures for determining the variables in these equations are presented. (Woodard-USGS)

  17. National Biomedical Tracer Facility. Project definition study

    SciTech Connect

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  18. Olive Oil Tracer Particle Size Analysis for Optical Flow Investigations in a Gas Medium

    NASA Astrophysics Data System (ADS)

    Harris, Shaun; Smith, Barton

    2014-11-01

    Seed tracer particles must be large enough to scatter sufficient light while being sufficiently small to follow the flow. These requirements motivate a desire for control over the particle size. For gas measurements, it is common to use atomized oil droplets as tracer particles. A Laskin nozzle is a device for generating oil droplets in air by directing high-pressure air through small holes under an oil surface. The droplet diameter frequency distribution can be varied by altering the hole diameter, the number of holes, or the inlet pressure. We will present a systematic study of the effect of these three parameters on the resultant particle distribution as it leaves the Laskin nozzle. The study was repeated for cases where the particles moved through a typical jet facility before their size was measured. While the jet facility resulted in an elimination of larger particles, the average particle diameter could be varied by a factor of two at both the seeder exit and downstream of the jet facility.

  19. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    SciTech Connect

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  20. Partitioning gas tracer tests for measurement of water in municipal solid waste.

    PubMed

    Imhoff, Paul T; Jakubowitch, Andrew; Briening, Michele L; Chiu, Pei C

    2003-11-01

    A key component in the operation of almost all bioreactor landfills is the addition of water to maintain optimal moisture conditions. To determine how much water is needed and where to add it, in situ methods are required to measure water within solid waste. Existing technologies often result in measurements of unknown accuracy, because of the variability of solid waste materials and time-dependent changes in packing density, both of which influence most measurement methods. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone--the partitioning gas tracer test--was tested. In this technology, the transport behavior of two gas tracers within solid waste is used to measure the fraction of the void space filled with water. One tracer is conservative and does not react with solids or liquids, while a second tracer partitions into the water and is separated from the conservative tracer during transport. This technology was tested in four different solid waste packings and was capable of determining the volumetric water content to within 48% of actual values, with most measurement errors less than 15%. This technology and the factors that affect its applicability to landfills are discussed in this paper. PMID:14649759

  1. Radon as a natural tracer for gas transport within uranium waste rock piles.

    PubMed

    Silva, N C; Chagas, E G L; Abreu, C B; Dias, D C S; Lopez, D; Guerreiro, E T Z; Alberti, H L C; Braz, M L; Branco, O; Fleming, P

    2014-07-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Indústrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m(-3) with mean concentration of 320.7±263.3 kBq m(-3). PMID:24729565

  2. Radon as a natural tracer for gas transport within uranium waste rock piles.

    PubMed

    Silva, N C; Chagas, E G L; Abreu, C B; Dias, D C S; Lopez, D; Guerreiro, E T Z; Alberti, H L C; Braz, M L; Branco, O; Fleming, P

    2014-07-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Indústrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m(-3) with mean concentration of 320.7±263.3 kBq m(-3).

  3. Tracer Studies In A Laboratory Beach Subjected To Waves

    EPA Science Inventory

    This work investigated the washout of dissolved nutrients from beaches due to waves by conducting tracer studies in a laboratory beach facility. The effects of waves were studied in the case where the beach was subjected to the tide, and that in which no tidal action was present...

  4. Gas as a tracer of barred spiral dynamics

    SciTech Connect

    Sanders, R.H.; Tubbs, A.D.

    1980-02-01

    The gravitational field of a barred spiral galaxy is described by a simple model consisting of two variable components: a central or nuclear disk and a homogeneous triaxial spheroid: and one fixed component: an extended disk or halo. The model is characterized by five free dimensionless parameters: the ratio of bar mass to central disk mass, two axial ratios of the spheroid, the ratio of the central disk length scale to the spheroid semimajor axis, and the corotation radius in units of the spheroid semimajor axis. Two-dimensional, time-dependent gas dynamical calculations are carried out in the gravitational field resulting from this mass model in order to generate a grid of hydrodynamical models on the five-dimensional parameter space. It is found that over a well-defined domain of this parameter space, the steady-state gas density and velocity distributions resemble the observed morphology and kinematics of the gas in actual SBb galaxies.

  5. Gas Exchange Rates for a First-Order Stream Determined With Deliberate and Natural Tracers

    NASA Astrophysics Data System (ADS)

    Wanninkhof, R.; Mulholland, P. J.; Elwood, J. W.

    1990-07-01

    Gas transfer velocities have been determined for a first-order stream by performing a 3-hour release of the volatile tracer sulfur hexafluoride, SF6, and the nonvolatile tracer tritiated water, 3H2O. The average gas transfer velocity for the 292-m reach was 29 cm/h which corresponds to a reaeration coefficient for oxygen at 25°C of 134 day-1. Groundwater inflow along the stream was corrected for by measuring the downstream dilution of the 3H2O spike. Downstream discharge increased from 0.5 L/s, 2 m downstream of the point of tracer release, to 19.3 L/s at a point 292 m downstream. As an alternative to using (radioactive) 3H2O, we investigated the possibility of using natural radon, 222Rn, as a groundwater tag and using the variation of SF6 and 222Rn along the stream to determine gas exchange rates and groundwater inflow. The method yielded an average transfer velocity of 21 cm/h and underestimated the groundwater inflow by a factor of 3. This large discrepancy is attributed to a doubling of stream discharge between the time the stream was sampled for radon and the tracer experiment and the limited number of radon samples.

  6. Delineation of Fast Flow Paths in Porous Media Using Noble Gas Tracers

    SciTech Connect

    Hudson, G B; Moran, J E

    2002-03-21

    Isotopically enriched xenon isotopes are ideal for tracking the flow of relatively large volumes of groundwater. Dissolved noble gas tracers behave conservatively in the saturated zone, pose no health risk to drinking water supplies, and can be used with a large dynamic range. Different Xe isotopes can be used simultaneously at multiple recharge sources in a single experiment. Results from a tracer experiment at a California water district suggests that a small fraction of tracer moved from the recharge ponds through the thick, unconfined, coarse-grained alluvial aquifer to high capacity production wells at a horizontal velocity of 6 m/day. In contrast, mean water residence times indicate that the average rate of transport is 0.5 to 1 m/day.

  7. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    SciTech Connect

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  8. Evaluation of Partitioning Gas Tracer Tests for Measuring Water in Landfills

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Han, B.; Jafarpour, Y.; Gallagher, V. N.; Chiu, P. C.; Fluman, D. A.; Vasuki, N. C.; Yazdani, R.; Augenstein, D.; Cohen, K. K.

    2003-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. An important issue in the operation of bioreactor landfills is knowing how much water to add and where to add it. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. We are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. We report the results from laboratory and field tests designed to evaluate the partitioning gas tracer test within an anaerobic landfill operated by the Delaware Solid Waste Authority. Vertical wells were installed within the landfill to inject and extract tracer gases. Gas flow and tracer gas movement in the solid waste were controlled by the landfill's existing gas collection system, which included vertical wells installed throughout the landfill through

  9. A Tracer Study of Lebanese Upper Secondary School Students

    ERIC Educational Resources Information Center

    Vlaardingerbroek, Barend; Dallal, Kamel; Rizkallah, George; Rabah, Jihan

    2007-01-01

    This paper presents data arising from a tracer study of 90 terminating Beirut upper secondary school students. Nearly all the students intended to transit to university, about half of them to science and technology programmes, and subsequently did so. Median anticipated earnings upon graduation were realistic, but a lack of information or guidance…

  10. Studies of thunderstorm transport processes with aircraft using tracer techniques

    SciTech Connect

    Detwiler, A.G.; Smith, P.L.; Stith, J.L.

    1996-10-01

    Instrumented aircraft can provide in situ measurements of winds and turbulence useful for studying transport and dispersion in clouds. Using inert artificial gases as tracers, and fast response analyzers on aircraft, time-resolved observations of transport and dispersion have been obtained. Examples are shown of these types of observations in and around cumulus and cumulonimbus clouds. 23 refs., 6 figs.

  11. Determination of water saturation using gas phase partitioning tracers and time-lapse electrical conductivity measurements

    SciTech Connect

    Johnson, Timothy C.; Oostrom, Martinus; Truex, Michael J.; Thomle, Jonathan N.; Wietsma, Thomas W.

    2013-05-21

    Water saturation is an important indicator of contaminant distribution and plays a governing role in contaminant transport within the vadose zone. Understanding the water saturation distribution is critical for both remediation and contaminant flux monitoring in unsaturated environments. In this work we propose and demonstrate a method of remotely determining water saturation levels using gas phase partitioning tracers and time-lapse bulk electrical conductivity measurements. The theoretical development includes the partitioning chemistry for the tracers we demonstrate (ammonia and carbon dioxide), as well as a review of the petrophysical relationship governing how these tracers influence bulk conductivity. We also investigate methods of utilizing secondary information provided by electrical conductivity breakthrough magnitudes induced by the tracers. We test the method on clean, well characterized, intermediate-scale sand columns under controlled conditions. Results demonstrate the capability to predict partitioning coefficients and accurately monitor gas breakthrough curves along the length of the column according to the corresponding electrical conductivity response, leading to accurate water saturation estimates. This work is motivated by the need to develop effective characterization and monitoring techniques for contaminated deep vadose zone environments, and provides a proof-of-concept toward uniquely characterizing and monitoring water saturation levels at the field scale and in three-dimensions using electrical resistivity tomography.

  12. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED IN AN UNSATURATED FRACTURED-CLAY FORMATION

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confin...

  13. The Relationship Between PAH Emission and Gas Tracers in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wong, Tony H.; Xue, R.; Whitney, B.; Heitsch, F.; Hughes, A.; Bolatto, A. D.; Robitaille, T.

    2013-06-01

    The Spitzer SAGE 8-micron image of the LMC is strongly dominated by interstellar emission from PAH molecules, and offers spatial and brightness dynamic range which far exceeds what is available from spectral-line radio observations. We examine the correlation of this emission with other gas tracers, including the radio lines of CO, HI, and HCO+ as observed by the ATCA and Mopra telescopes, and archival UV absorption spectra of HI and H2 from the HST and FUSE. We show preliminary results of radiative transfer simulations using the HYPERION code aimed at identifying regimes and techniques for using 8-micron emission as a high resolution (sub-pc) tracer of gas density.

  14. Results of a tracer study for the validation study: The Terrain-Responsive Atmospheric Code (TRAC): Volume 2

    SciTech Connect

    Not Available

    1988-09-01

    This report describes a tracer study conducted by North American Weather Consultants (NAWC) at the Rocky Flats Plant in Colorado. The purpose of the study was to provide data for the evaluation of a dispersion model. This tracer study was timed to sample the upslope, downslope and transition conditions prevalent in the Rocky Flats area during the summer period. The field studies were conducted from 17 July, 1987 through 8 August, 1987. A total of twelve days of plume tracking were conducted, four during upslope conditions, six during stable downslope conditions, and two during transition conditions. The tracer gas, sulfur hexafluoride (SF/sub 6/) was released on the Rocky Flats plant site and the plume was tracked using an aircraft with a continuous SF/sub 6/ analyzer on-board. Grab samples were also obtained from various sites on the ground during the aerial tracking period. Volume 2 contains data sheets only.

  15. The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schweitzer, P H; Deluca, Frank, Jr

    1942-01-01

    A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.

  16. Hanford facilities tracer study report (315 Water Treatment Facility)

    SciTech Connect

    Ambalam, T.

    1995-04-14

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations.

  17. Tracer microrheology study of a hydrophobically modified comblike associative polymer.

    PubMed

    Abdala, Ahmed A; Amin, Samiul; van Zanten, John H; Khan, Saad A

    2015-04-01

    The viscoelastic properties of associative polymers are important not only for their use as rheology modifiers but also to understand their complex structure in aqueous media. In this study, the dynamics of comblike hydrophobically modified alkali swellable associative (HASE) polymers are probed using diffusing wave spectroscopy (DWS) based tracer microrheology. DWS-based tracer microrheology accurately probes the dynamics of HASE polymers, and the extracted microrheological moduli versus frequency profile obtained from this technique closely matches that obtained from rotational rheometry measurements. Quantitatively, however, the moduli extracted from DWS-based tracer microrheology measurements are slightly higher than those obtained using rotational rheometry. The creep compliance, elastic modulus, and relaxation time concentration scaling behavior exhibits a power-law dependence. The length scale associated with the elastic to glassy behavior change is obtained from the time-dependent diffusion coefficient. The Zimm-Rouse type scaling is recovered at high frequencies but shows a concentration effect switching from Zimm to more Rouse-like behavior at higher concentrations.

  18. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Study; Progress report, July 1, 1991--December 31, 1991

    SciTech Connect

    Dombrowski, T.; Stetzenbach, K.

    1991-12-31

    Studies continued on organic tracers for use as hydrologic tracers as part of the Yucca Mountain Site Characterization project. Tracers studied include benzoic acids, cinnamic acids, and salicylic acids. The main focus of the work performed during the time period from 07/01/91 to 12/31/91 has been the continuation of (1) LC-MS optimization for tracer identification, (2) batch sorption and degradation studies, (3) neoprene tubing evaluation studies, and (4) soil column evaluation of tracer compounds. All of these areas of research (except perhaps the neoprene tubing evaluation) are ongoing and will continue throughout the coming year.

  19. Molecular Gas in Starburts ARP 220 & NGC 6240: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, Nicholas; Sheth, Kartik

    2015-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present our observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  20. Molecular Gas in Local Mergers: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Sheth, K.

    2013-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging will allow multilevel excitation analysis of HCN, HCO+ and CS transitions which will be used to constrain the properties of the gas as a function of position and velocity (across line profiles). We aim to do an extensive multilevel excitation analysis of the merger as a function of radius which will enable in depth understanding of the gas dynamics and gas properties such as temperature and density. This will in turn probe the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will help assemble a more integrated picture of the merger process. We will probe the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  1. Molecular Gas in Starburts: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Walter, F.; Sheth, K.

    2014-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  2. DISSOCIATION OF SULFUR HEXAFLUORIDE TRACER GAS IN THE PRESENCE OF AN INDOOR COMBUSTION SOURCE

    EPA Science Inventory

    As an odorless, non-toxic, and inert compound, sulfur hexafluoride (SF6) is one of the most widely used tracer gases in indoor air quality studies in both controlled and uncontrolled environments. This compound may be subject to hydrolysis under elevated temperature to form acidi...

  3. Lighting the Dark Molecular Gas: H2 as a Direct Tracer

    NASA Astrophysics Data System (ADS)

    Togi, Aditya; Smith, J. D. T.

    2016-10-01

    Robust knowledge of molecular gas mass is critical for understanding star formation in galaxies. The {{{H}}}2 molecule does not emit efficiently in the cold interstellar medium, hence the molecular gas content of galaxies is typically inferred using indirect tracers. At low metallicity and in other extreme environments, these tracers can be subject to substantial biases. We present a new method of estimating total molecular gas mass in galaxies directly from pure mid-infrared rotational {{{H}}}2 emission. By assuming a power-law distribution of {{{H}}}2 rotational temperatures, we can accurately model {{{H}}}2 excitation and reliably obtain warm (T ≳ 100 K) {{{H}}}2 gas masses by varying only the power law’s slope. With sensitivities typical of Spitzer/IRS, we are able to directly probe the {{{H}}}2 content via rotational emission down to ∼80 K, accounting for ∼15% of the total molecular gas mass in a galaxy. By extrapolating the fitted power-law temperature distributions to a calibrated single lower cutoff temperature, the model also recovers the total molecular content within a factor of ∼2.2 in a diverse sample of galaxies, and a subset of broken power-law models performs similarly well. In ULIRGs, the fraction of warm {{{H}}}2 gas rises with dust temperature, with some dependency on α CO. In a sample of five low-metallicity galaxies ranging down to 12+{log}[{{O}}/{{H}}]=7.8, the model yields molecular masses up to ∼100× larger than implied by CO, in good agreement with other methods based on dust mass and star formation depletion timescale. This technique offers real promise for assessing molecular content in the early universe where CO and dust-based methods may fail.

  4. Atmospheric noble gases as tracers of biogenic gas dynamics in a shallow unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Jones, Katherine L.; Lindsay, Matthew B. J.; Kipfer, Rolf; Mayer, K. Ulrich

    2014-03-01

    Atmospheric noble gases (NGs) were used to investigate biogenic gas dynamics in a shallow unconfined aquifer impacted by a crude oil spill, near Bemidji, MN. Concentrations of 3,4He, 20,22Ne, 36,40Ar, Kr, and Xe were determined for gas- and aqueous-phase samples collected from the vadose and saturated zones, respectively. Systematic elemental fractionation of Ne, Ar, Kr, and Xe with respect to air was observed in both of these hydrogeologic zones. Within the vadose zone, relative ratios of Ne and Ar to Kr and Xe revealed distinct process-related trends when compared to corresponding ratios for air. The degree of NG deviation from atmospheric concentrations generally increased with greater atomic mass (i.e., ΔXe > ΔKr > ΔAr > ΔNe), indicating that Kr and Xe are the most sensitive NG tracers in the vadose zone. Reactive transport modeling of the gas data confirms that elemental fractionation can be explained by mass-dependent variations in diffusive fluxes of NGs opposite to a total pressure gradient established between different biogeochemical process zones. Depletion of atmospheric NGs was also observed within a methanogenic zone of petroleum hydrocarbon degradation located below the water table. Solubility normalized NG abundances followed the order Xe > Kr > Ar > Ne, which is indicative of dissolved NG partitioning into the gas phase in response to bubble formation and possibly ebullition. Observed elemental NG ratios of Ne/Kr, Ne/Xe, Ar/Xe, and Kr/Xe and a modeling analysis provide strong evidence that CH4 generation below the water table caused gas exsolution and possibly ebullition and carbon transfer from groundwater to the vadose zone. These results suggest that noble gases provide sensitive tracers in biologically active unconfined aquifers and can assist in identifying carbon cycling and transfer within the vadose zone, the capillary fringe, and below the water table.

  5. Study of stomach motility using the relaxation of magnetic tracers.

    PubMed

    Carneiro, A A; Baffa, O; Oliveira, R B

    1999-07-01

    Magnetic tracers can be observed in the interior of the human body to give information about their quantity, position and state of order. With the aim of detecting and studying the degree of disorder of these tracers after they have been previously magnetized inside the stomach, a system composed of magnetization coils and magnetic detectors was developed. Helmholtz coils of diameter 84 cm were used to magnetize the sample and the remanent magnetization (RM) was detected with two first-order gradiometric fluxgate arrays each with a 15 cm base line, sensitivity of 0.5 nT and common mode rejection (CMR) of at least 10. The system allows simultaneous measurement in the anterior and posterior projections of the stomach. Measurements of the time evolution of the RM were performed in vitro and in normal subjects after the ingestion of a test meal labelled with magnetic particles. The data were fitted with an exponential curve and the relaxation time tau was obtained. Initial studies were performed to ascertain the action of a drug that is known to affect the gastric motility, showing that the decay of the remanent magnetization was indeed due to stomach contractions. PMID:10442706

  6. Recent progress of 10Be tracer studies in Chinese loess

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Xie, Xingjun; Beck, Warren; Kong, Xianghui; Xian, Feng; Du, Yajuan; Wu, Zhenkun

    2015-10-01

    Studies of cosmogenic 10Be in Chinese loess began about twenty-five years ago and since then a number of research groups worldwide have contributed to a firm understanding of the production, transport, deposition and storage of 10Be in loess. The essential characteristics that make 10Be a useful isotopic tracer in loess, include: (1) dominant atmospheric production directly linked to the intensity of the Earth's magnetic field; (2) climate-dependent deposition; and (3) subsequent immobility, so that as 10Be accumulates in a loess profile its stratigraphic integrity is preserved. This fact, combined with very high deposition rates in loess on the Chinese Loess Plateau, makes 10Be an especially valuable continental archive of paleoclimate and paleomagnetism, complementing marine and ice-core records. Here we provide in particular the most recent progress of 10Be tracer studies in Chinese loess, including the determination of the correct age of the Brunhes-Matuyama polarity reversal at 780 ± 3 ka B.P., in accord with marine and ice records, and quantitative reconstruction of 130-ka paleoprecipitation using 10Be from Chinese loess profiles.

  7. The role of soil air composition for noble gas tracer applications in tropical groundwater

    NASA Astrophysics Data System (ADS)

    Mayer, Simon; Jenner, Florian; Aeschbach, Werner; Weissbach, Therese; Peregovich, Bernhard; Machado, Carlos

    2016-04-01

    Dissolved noble gases (NGs) in groundwater provide a well-established tool for paleo temperature reconstruction. However, reliable noble gas temperature (NGT) determination needs appropriate assumptions or rather an exact knowledge of soil air composition. Deviations of soil air NG partial pressures from atmospheric values have already been found in mid latitudes during summer time as a consequence of subsurface oxygen depletion. This effect depends on ambient temperature and humidity and is thus expected to be especially strong in humid tropical soils, which was not investigated so far. We therefore studied NGs in soil air and shallow groundwater near Santarém (Pará, Brazil) at the end of the rainy and dry seasons, respectively. Soil air data confirms a correlation between NG partial pressures, the sum value of O2+CO2 and soil moisture contents. During the rainy season, we find significant NG enhancements in soil air by up to 7% with respect to the atmosphere. This is twice as much as observed during the dry season. Groundwater samples show neon excess values between 15% and 120%. Nearly all wells show no seasonal variations of excess air, even though the local river level seasonally fluctuates by about 8 m. Assuming atmospheric NG contents in soil air, fitted NGTs underestimate the measured groundwater temperature by about 1-2° C. However, including enhanced soil air NG contents as observed during the rainy season, resulting NGTs are in good agreement with local groundwater temperatures. Our presented data allows for a better understanding of subsurface NG variations. This is essential with regard to NG tracer applications in humid tropical areas, for which reliable paleoclimate data is of major importance for modern climate research.

  8. Coupling a Knudsen reactor with the short lived radioactive tracer (13)N for atmospheric chemistry studies.

    PubMed

    Schreiber, S; Kerbrat, M; Huthwelker, T; Birrer, M; Ammann, M

    2013-03-01

    A Knudsen cell flow reactor was coupled to an online gas phase source of the short-lived radioactive tracer (13)N to study the adsorption of nitrogen oxides on ice at temperatures relevant for the upper troposphere. This novel approach has several benefits over the conventional coupling of a Knudsen cell with a mass spectrometer. Experiments at lower partial pressures close to atmospheric conditions are possible. The uptake to the substrate is a direct observable of the experiment. Operation of the experiment in continuous or pulse mode allows to retrieve steady state uptake kinetics and more details of adsorption and desorption kinetics.

  9. Vertical Tracer Concentration Profiles Measured During the Joint Urban 2003 Dispersion Study

    SciTech Connect

    Flaherty, Julia E.; Lamb, Brian K.; Allwine, K Jerry; Allwine, Eugene J.

    2007-12-01

    An atmospheric tracer dispersion study known as Joint Urban 2003 was conducted in Oklahoma City, Oklahoma during the summer of 2003. As part of this field program, vertical concentration profiles were measured at approximately 1 km from downtown tracer gas release locations. These profiles indicated that the urban landscape was very effective in mixing the plume vertically. The height of the plume centerline (as determined by the maximum concentration over the depth of the measurements) for any specific 30 min period varied over the 65 m measurement range. Most of the variations in tracer concentration observed in the profile time series were related to changes in wind direction as opposed to changes in turbulence. As a simple analysis tool for emergency response, maximum normalized concentration curves were developed with 5-minute averaged measurements. These curves give the maximum concentration (normalized by the release rate) that would be observed as a function of downwind distance in an urban area. The 5-min data resulted in greater concentrations than predicted with a simple Gaussian plume model. However, the curve compared well with results from a computational fluid dynamics simulation. This dispersion dataset is a valuable asset not only for refining air quality models, but also for developing new tools for emergency response personnel in the event of a toxic release.

  10. Reintegration of child soldiers in Burundi: a tracer study

    PubMed Central

    2012-01-01

    Background Substantial attention and resources are aimed at the reintegration of child soldiers, yet rigorous evaluations are rare. Methods This tracer study was conducted among former child soldiers (N=452) and never-recruited peers (N=191) who participated in an economic support program in Burundi. Socio-economic outcome indicators were measured retrospectively for the period before receiving support (T1; 2005–06); immediately afterwards (T2; 2006–07); and at present (T3; 2010). Participants also rated present functional impairment and mental health indicators. Results Participants reported improvement on all indicators, especially economic opportunity and social integration. At present no difference existed between both groups on any of the outcome indicators. Socio-economic functioning was negatively related with depression- and, health complaints and positively with intervention satisfaction. Conclusion The present study demonstrates promising reintegration trajectories of former child soldiers after participating in a support program. PMID:23095403

  11. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  12. A survey of tracer gas techniques for estimation airflow and effective volumes in single and multizone buildings

    SciTech Connect

    O'Neill, P.J.

    1990-10-01

    This paper briefly describes the development of tracer gas techniques. These techniques were introduced over 50 years ago and have evolved into a number of distinct methods. These methods are often tailored to a specific application or to obtain particular information about the flow and volume system. Single-zone techniques are utilized when the structure or zone is relatively well-mixed and can be characterized by a single concentration measurement. Areas or rooms within a single-family residence can sometimes be closely approximated as one well-mixed zone. Multizone techniques are required when the building is composed of two or more zones which communicate with one another through interzonal airflows. Commercial office buildings are usually multizone systems. This paper focuses on single and multiple gas tracer techniques. Traditionally, multizone systems have been analyzed by using a different tracer for each zone. These techniques require equipment capable of accurately injecting and detecting each of the tracers which can be cumbersome in large order systems. Recently, a number of methods have been proposed which use a single tracer gas to estimate flow and effective volumes in multizone systems. 24 refs., 2 figs., 1 tab.

  13. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Study; Progress report, June 1--December 31, 1990

    SciTech Connect

    Stetzenbach, K.J.

    1990-12-31

    Ground water tracers are solutes dissolved in or carried by ground water to delineate flow pathways. Tracers provide information on direction and speed of water movement and that of contaminants that might be conveyed by the water. Tracers can also be used to measure effective porosity, hydraulic conductivity, dispersivity and solute distribution coefficients. For most applications tracers should be conservative, that is, move at the same rate as the water and not sorb to aquifer materials. Tracers must have a number of properties to be functional. Regardless of the desired properties, the chemical and physical behavior of a tracer in ground water and the porous medium under study must be understood. Good estimates of tracer behavior can be obtained from laboratory studies. Studies in this proposal will address tracer properties with analytical method development, static sorption and degradation studies and column transport studies, Mutagenicity tests will be performed on promising candidates. The tracers that will be used for these experiments are fluorinated organic acids and other organic compounds that have the chemical and biological stability necessary to be effective in the Yucca Mountain environment. Special emphasis will be placed on compounds that fluoresce or have very large ultraviolet absorption coefficients for very high analytical sensitivity.

  14. Aligning Higher Education to Workforce Needs in Liberia: A Tracer Study of University Graduates in Liberia

    ERIC Educational Resources Information Center

    Flomo, John S., Jr.

    2013-01-01

    This study investigated the congruence between higher education and the labor market from the perspectives of college graduates in Liberia. It specifically examined the alignment of the skills college students acquire in college to Liberia's labor market. The study employed a Tracer Study quantitative research methodology. Tracer study as a…

  15. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD <6.3%) and good accuracy, in which the relative deference between the data measured by the HS-GC method and the reference method were within 6.0%. The HS-GC method is simple and particularly suitable for measuring the solubility of LVLOs at elevated temperatures. This approach should be of special interest to those concerned about the impact of the presence of low-volatility organic liquids in waters of environmental and biological systems. PMID:26850316

  16. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD <6.3%) and good accuracy, in which the relative deference between the data measured by the HS-GC method and the reference method were within 6.0%. The HS-GC method is simple and particularly suitable for measuring the solubility of LVLOs at elevated temperatures. This approach should be of special interest to those concerned about the impact of the presence of low-volatility organic liquids in waters of environmental and biological systems.

  17. Noble gas tracers of ventilation during deep-water formation in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.; Khatiwala, S.; Heimbach, P.

    2016-05-01

    To explore the dynamics and implications of incomplete air-sea equilibration during the formation of abyssal water masses, we simulated noble gases in the Estimating the Circulation & Climate of the Ocean (ECCO) global ocean state estimate. A novel computation approach utilizing a matrix-free Newton-Krylov (MFNK) scheme was applied to quickly compute the periodic seasonal solutions for noble gas tracers. MFNK allows for quick computation of a cyclo-stationary solution for tracers (i.e., a spun-up, repeating seasonal cycle), which would otherwise be computationally infeasible due to the long time scale of dynamic adjustment of the abyssal ocean (1000’s of years). A suite of experiments isolates individual processes, including atmospheric pressure effects, the solubility pump and air-sea bubble fluxes. In addition to these modeled processes, a volumetric contribution of 0.28 ± 0.07% of glacial melt water is required to reconcile deep-water observations in the Weddell Sea. Another primary finding of our work is that the saturation anomaly of heavy noble gases in model simulations is in excess of two-fold more negative than is suggested from Weddell Sea observations. This result suggests that model water masses are insufficiently ventilated prior to subduction and thus there is insufficient communication between atmosphere and ocean at high latitudes. The discrepancy between noble gas observations and ECCO simulations highlights that important inadequacies remain in how we model high-latitude ventilation with large implications for the oceanic uptake and storage of carbon.

  18. Analysis of the dust emissions from a naturally ventilated turkey house using tracer gas method.

    PubMed

    Mostafa, Ehab; Diekmann, Bernd; Buescher, Wolfgang; Schneider, Till

    2016-06-01

    Particulate matter (PM) emissions are becoming increasingly important in licensing procedures for the construction of new livestock houses or for the modernization of existing ones. Emission predictions require reliable data about emission rates. On this account, it is necessary to obtain information about the emission development and the relevant influencing factors in naturally ventilated turkey houses. The primary objective of the present research was to describe different aspects of PM emissions from a naturally ventilated turkey house. This includes the quantification of PM emissions and descriptions of the relevant influencing factors. Moreover, the tracer gas decay (TGD) method for ventilation rate estimation had to be used. To determine the emission mass flow from livestock buildings, it was necessary to measure the concentration of the target substance in the exhaust air and the airflow volume. The PM concentration measurements were carried out with a light scattering aerosol spectrometer in the exhaust air. The airflow volume was determined using the TGD method. To this purpose, tracer gas was injected into the supply air before the concentration decay was measured in the exhaust air of the building. The main influences on the PM concentration and the PM size distribution were shown to be animal activity and air volume flow. For the turkey barn, the PM emission factor averaged 0.027 g h(-1) animal(-1) over the entire year. If service times were to be included in the calculation, the emission factor 0.021 g h(-1) animal(-1), again averaged over the entire year, is well below the regulatory limit. PMID:27234512

  19. Importance of sites of tracer administration and sampling in turnover studies

    SciTech Connect

    Katz, J.

    1982-01-01

    Our recent studies with tritium and /sup 14/C-labeled lactate and alanine in starved rats revealed that the sites of tracer administration and sampling have a profound effect on the kinetics of the specific activity curves and the calculation of metabolic parameters. The importance of the sites of tracer administration and sampling for the experimental design and interpretation of tracer data in vivo is discussed.

  20. Near-Road Mulltipollutant Profiles: Association between Volatile Organic Compounds and a Tracer Gas Surrogate Near a Busy Highway

    EPA Science Inventory

    This research characterizes associations between multiple pollutants in the near-road environment attributed to a roadway line source. It also examines the use of a tracer gas as a surrogate of mobile source pollutants. Air samples were collected in summa canisters along a 300 m ...

  1. Analysis of 13C labeling enrichment in microbial culture applying metabolic tracer experiments using gas chromatography-combustion-isotope ratio mass spectrometry.

    PubMed

    Heinzle, Elmar; Yuan, Yongbo; Kumar, Sathish; Wittmann, Christoph; Gehre, Matthias; Richnow, Hans-Herrmann; Wehrung, Patrick; Adam, Pierre; Albrecht, Pierre

    2008-09-15

    The applicability of gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for the quantification of 13C enrichment of proteinogenic amino acids in metabolic tracer experiments was evaluated. Measurement of the 13C enrichment of proteinogenic amino acids from cell hydrolyzates of Corynebacterium glutamicum growing on different mixtures containing between 0.5 and 10% [1-13C]glucose shows the significance of kinetic isotope effects in metabolic flux studies at low degree of labeling. We developed a method to calculate the 13C enrichment. The approach to correct for these effects in metabolic flux studies using delta13C measurement by GC-C-IRMS uses two parallel experiments applying substrate with natural abundance and 13C-enriched tracer substrate, respectively. The fractional enrichment obtained in natural substrate is subtracted from that of the enriched one. Tracer studies with C. glutamicum resulted in a statistically identical relative fractional enrichment of 13C in proteinogenic amino acids over the whole range of applied concentrations of [1-13C]glucose. The current findings indicate a great potential of GC-C-IRMS for labeling quantification in 13C metabolic flux analysis with low labeling degree of tracer substrate directly in larger scale bioreactors.

  2. In situ measurements of the air-sea gas transfer rate using heat as a proxy tracer

    SciTech Connect

    Haussecker, H.; Jaehne, B. |

    1994-12-31

    Conventional techniques to measure the transfer velocity k = j/{Delta}c of gases across the ocean interface are based on mass balance of the gas tracer in the water body. In order to determine j the temporal change {dot c}{sub w} of the tracer concentration in a volume of water V{sub w} has to be measured. The corresponding time constant {tau}{sub w} is in the order of days to weeks in the ocean. This long integration time prevents both an empirical parameterization of the gas transfer rate with friction velocity and other parameters such as the wave field and an insight into the mechanisms. Eddy correlation techniques are in principal suitable for flux measurements and parameterization of the gas transfer rate. So far, however, it could not be verified that they yield results that are consistent with geochemical methods and laboratory investigations. Here, an alternative approach is presented. The novel technique controls the tracer flux at the interface and uses heat as a proxy tracer.

  3. Simultaneous Analyses and Applications of Multiple Fluorobenzoate and Halide Tracers in Hydrologic Studies

    SciTech Connect

    Hu, Q; Moran, J E

    2004-01-22

    An analytical method that employs ion chromatography has been developed to more fully exploit the use of fluorobenzoic acids (FBAs) and halides as hydrologic tracers. In a single run, this reliable, sensitive, and robust method can simultaneously separate and quantify halides (fluoride, chloride, bromide, and iodide) and up to seven FBAs from other common groundwater constituents (e.g., nitrate and sulfate). The usefulness of this ion chromatographic (IC) analytical method is demonstrated in both field and laboratory tracer experiments. Field experiments in unsaturated tuff featuring fractures or a fault show that this efficient and cost-effective method helps achieve the objectives of tracer studies that use multiple FBAs and/or diffusivity tracers (simultaneous use of one or more FBA and halide). The field study examines the hydrologic response of fractures and the matrix to different flow rates and the contribution of matrix diffusion in chemical transport. Laboratory tracer experiments with eight geologic media from across the United States--mostly from Department of Energy facilities where groundwater contamination is prevalent and where subsurface characterization employing tracers has been ongoing or is in need--reveal several insights about tracer transport behavior: (1) Bromide and FBAs are not always transported conservatively. (2) The delayed transport of these anionic tracers is likely related to geologic media characteristics, such as organic matter, pH, iron oxide content, and clay mineralogy. (3) Any use of iodine as a hydrologic tracer should take into account the different sorption behaviors of iodide and iodate and the possible conversion of iodine's initial chemical form. (4) The transport behavior of potential FBA and halide tracers under relevant geochemical conditions should be evaluated before beginning ambitious, large-scale field tracer experiments.

  4. Project definition study for the National Biomedical Tracer Facility

    SciTech Connect

    Roozen, K.

    1995-02-15

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.

  5. Using a Gas-Phase Tracer Test to Characterize the Impact of Landfill Gas Generation on Advective-Dispersive Transport of VOCs in the Vadose Zone

    PubMed Central

    Monger, Gregg R.; Duncan, Candice Morrison; Brusseau, Mark L.

    2015-01-01

    A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation. PMID:26380532

  6. Enhancing the activation of silicon carbide tracer particles for PEPT applications using gas-phase deposition of alumina at room temperature and atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Valdesueiro, D.; Garcia-Triñanes, P.; Meesters, G. M. H.; Kreutzer, M. T.; Gargiuli, J.; Leadbeater, T. W.; Parker, D. J.; Seville, J. P. K.; van Ommen, J. R.

    2016-01-01

    We have enhanced the radio-activation efficiency of SiC (silicon carbide) particles, which by nature have a poor affinity towards 18F ions, to be employed as tracers in studies using PEPT (Positron Emission Particle Tracking). The resulting SiC-Al2O3 core-shell structure shows a good labelling efficiency, comparable to γ-Al2O3 tracer particles, which are commonly used in PEPT. The coating of the SiC particles was carried at 27±3 °C and 1 bar in a fluidized bed reactor, using trimethylaluminium and water as precursors, by a gas phase technique similar to atomic layer deposition. The thickness of the alumina films, which ranged from 5 to 500 nm, was measured by elemental analysis and confirmed with FIB-TEM (focused ion beam - transmission electron microscope), obtaining consistent results from both techniques. By depositing such a thin film of alumina, properties that influence the hydrodynamic behaviour of the SiC particles, such as size, shape and density, are hardly altered, ensuring that the tracer particle shows the same flow behaviour as the other particles. The paper describes a general method to improve the activation efficiency of materials, which can be applied for the production of tracer particles for many other applications too.

  7. 13N as a tracer for studying glutamate metabolism

    PubMed Central

    Cooper, Arthur J. L.

    2010-01-01

    This mini-review summarizes studies my associates and I carried out that are relevant to the topic of the present volume [i.e. glutamate dehydrogenase (GDH)] using radioactive 13N (t½ 9.96 min) as a biological tracer. These studies revealed the previously unrecognized rapidity with which nitrogen is exchanged among certain metabolites in vivo. For example, our work demonstrated that a) the t½ for conversion of portal vein ammonia to urea in the rat liver is ~10–11 sec, despite the need for five enzyme-catalyzed steps and two mitochondrial transport steps, b) the residence time for ammonia in the blood of anesthetized rats is ≤7–8 sec, c) the t½ for incorporation of blood-borne ammonia into glutamine in the normal rat brain is <3 sec, and d) equilibration between glutamate and aspartate nitrogen in rat liver is extremely rapid (seconds), a reflection of the fact that the components of the hepatic aspartate aminotransferase reaction are in thermodynamic equilibrium. Our work emphasizes the importance of the GDH reaction in rat liver as a conduit for dissimilating or assimilating ammonia as needed. In contrast, our work shows that the GDH reaction in rat brain appears to operate mostly in the direction of ammonia production (dissimilation). The importance of the GDH reaction as an endogenous source of ammonia in the brain and the relation of GDH to the brain glutamine cycle is discussed. Finally, our work integrates with the increasing use of positron emission tomography (PET) and nuclear magnetic resonance (NMR) to study brain ammonia uptake and brain glutamine, respectively, in normal individuals and in patients with liver disease or other diseases associated with hyperammonemia. PMID:21108979

  8. Analysis techniques for tracer studies of oxidation. M. S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Basu, S. N.

    1984-01-01

    Analysis techniques to obtain quantitative diffusion data from tracer concentration profiles were developed. Mass balance ideas were applied to determine the mechanism of oxide growth and to separate the fraction of inward and outward growth of oxide scales. The process of inward oxygen diffusion with exchange was theoretically modelled and the effect of lattice diffusivity, grain boundary diffusivity and grain size on the tracer concentration profile was studied. The development of the tracer concentration profile in a growing oxide scale was simulated. The double oxidation technique was applied to a FeCrAl-Zr alloy using 0-18 as a tracer. SIMS was used to obtain the tracer concentration profile. The formation of lacey oxide on the alloy was discussed. Careful consideration was given to the quality of data required to obtain quantitative information.

  9. TRACER DISPERSION STUDIES FOR HYDRAULIC CHARACTERIZATION OF PIPES

    EPA Science Inventory

    A series of experiments were conducted at the U. S. Environmental Protection Agency (EPA) Test & Evaluation (T&E) Facility in Cincinnati, Ohio, to quantify longitudinal dispersion of a sodium fluoride tracer in polyvinyl chloride (PVC) pipe and ductile iron pipe under laminar, tr...

  10. Study of North Atlantic ventilation using transient tracers. Doctoral Thesis

    SciTech Connect

    Doney, S.C.

    1991-08-01

    Tritium, (3)He, and chlorofluorocarbon distributions in the North Atlantic provide constraints on the ventilation time-scales for the thermocline and abyssal water. A new model function based on a factor analysis of the WMO/IAEA precipitation data set is developed for predicting the spatial and temporal patterns of bomb-tritium in precipitation. Model atmospheric and advective tritium inputs to the North Atlantic are compared with the observed bomb-tritium inventories calculated from the 1972 GEOSECS and 1981-1983 TTO data sets. The observed growth of bomb-tritium levels in the deep North Atlantic are used, along with the tracer gradients ((3)H and (3)He) in the Deep Western Boundary Current, to estimate abyssal ventilation rates and boundary current recirculation. The surface boundary conditions for different transient tracers are found to profoundly effect thermocline ventilation rates estimates. Tracers that equilibrate rapidly with the atmosphere, such as (3)He and the CFCs, have faster apparent ventilation rates and are more appropriate for estimating oxygen utilization rates than tracers that are reset slowly in the surface ocean (e.g. (3)H and (14)C). The chlorofluorocarbon data for a new section in the eastern North Atlantic are presented and used to illustrate the ventilation time-scales for the major water masses in the region. (Copyright (c) Scott C. Doney, 1991.)

  11. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  12. Artificial ultra-fine aerosol tracers for highway transect studies

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Barnes, David E.; Wuest, Leann; Gribble, David; Buscho, David; Miller, Roger S.; De la Croix, Camille

    2016-07-01

    The persistent evidence of health impacts of roadway aerosols requires extensive information for urban planning to avoid putting populations at risk, especially in-fill projects. The required information must cover both highway aerosol sources as well as transport into residential areas under a variety of roadway configurations, traffic conditions, downwind vegetation, and meteorology. Such studies are difficult and expensive to do, but were easier in the past when there was a robust fine aerosol tracer uniquely tied to traffic - lead. In this report we propose and test a modern alternative, highway safety flare aerosols. Roadway safety flares on vehicles in traffic can provide very fine and ultra-fine aerosols of unique composition that can be detected quantitatively far downwind of roadways due to a lack of upwind interferences. The collection method uses inexpensive portable aerosol collection hardware and x-ray analysis protocols. The time required for each transect is typically 1 h. Side by side tests showed precision at ± 4%. We have evaluated this technique both by aerosol removal in vegetation in a wind tunnel and by tracking aerosols downwind of freeways as a function of season, highway configuration and vegetation coverage. The results show that sound walls for at-grade freeways cause freeway pollution to extend much farther downwind than standard models predict. The elevated or fill section freeway on a berm projected essentially undiluted roadway aerosols at distances well beyond 325 m, deep into residential neighborhoods. Canopy vegetation with roughly 70% cover reduced very fine and ultra-fine aerosols by up to a factor of 2 at distances up to 200 m downwind.

  13. Optimization of Sampling Positions for Measuring Ventilation Rates in Naturally Ventilated Buildings Using Tracer Gas

    PubMed Central

    Shen, Xiong; Zong, Chao; Zhang, Guoqiang

    2012-01-01

    Finding out the optimal sampling positions for measurement of ventilation rates in a naturally ventilated building using tracer gas is a challenge. Affected by the wind and the opening status, the representative positions inside the building may change dynamically at any time. An optimization procedure using the Response Surface Methodology (RSM) was conducted. In this method, the concentration field inside the building was estimated by a three-order RSM polynomial model. The experimental sampling positions to develop the model were chosen from the cross-section area of a pitched-roof building. The Optimal Design method which can decrease the bias of the model was adopted to select these sampling positions. Experiments with a scale model building were conducted in a wind tunnel to achieve observed values of those positions. Finally, the models in different cases of opening states and wind conditions were established and the optimum sampling position was obtained with a desirability level up to 92% inside the model building. The optimization was further confirmed by another round of experiments.

  14. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  15. Spitzer 8μm Emission as a Tracer of Neutral Gas in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wong, Tony H.; Xue, R.; Whitney, B.; Heitsch, F.; Hughes, A.; Bolatto, A. D.; Robitaille, T.; MAGMA Team

    2014-01-01

    We examine the utility of 8 micron PAH emission as a tracer of neutral gas in the LMC, by comparing the Spitzer SAGE imaging with lower resolution CO and HI imaging, pencil beam UV absorption sight lines, and radiative transfer modeling of simulated clouds. We discuss under what conditions the 8µm emission is sensitive primarily to the UV radiation field and under what conditions it can be used to trace column density.

  16. Preliminary Results from Downhole Osmotic Samplers in a Gas Tracer Injection Experiment in the Upper Oceanic Crust on the Eastern Flank of the Juan de Fuca Ridge.

    NASA Astrophysics Data System (ADS)

    de Jong, M. T.; Clark, J. F.; Neira, N. M.; Fisher, A. T.; Wheat, C. G.

    2015-12-01

    We present results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of hydrothermal circulation. Sulfur hexafluoride (SF6) tracer was injected in Hole 1362B in 2010, during IODP Expedition 327. Fluid samples were subsequently collected from a borehole observatory (CORK) installed in this hole and similar CORKs in three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. This array of holes is located on 3.5 My old seafloor, as an array oriented subparallel to the Endeavor Segment of Juan de Fuca Ridge. Borehole fluid samples were collected in copper coils using osmotic pumps. In addition to pumps at seafloor wellheads, downhole sampling pumps were installed in the perforated casing in the upper ocean crust. These downhole samplers were intended to produce a high-resolution continuous record of tracer concentrations, including records from the first year after tracer injection in Holes 1362A and 1362B. In contrast, wellhead samplers were not installed on these CORKs holes until 2011, and wellhead records from all CORKs have a record gap of up to one year, because of a delayed expedition in 2012. The downhole samples were recovered with the submersible Alvin in August 2014. SF6 concentrations in downhole samples recovered in 2014 are generally consistent with data obtained from wellhead samples. Of particular interest are the results from Hole 1362B, where a seafloor valve was opened and closed during various recovery expeditions. High resolution tracer curves produced from the 1362B downhole samples confirm that these operations produced an SF6 breakthrough curve corresponding to a classic push-pull test used to evaluate contaminant field locations in terrestrial setting. Complete analyses of downhole samples from these CORKs are expected to produce high-resolution breakthrough curves that will allow more precise analysis and modeling of hydrothermal flow in the study area.

  17. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study. Progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1995-05-01

    Fluorinated organic acids were utilized in a test study as hydrologic tracers for the Yucca Mountain Project. Fluorinated acids included cinnamic acid; benzoic acid, and toluic acid. Results are discussed pertaining to retention time, elution time, and stability.

  18. THE NEW YORK CITY URBAN DISPERSION PROGRAM MARCH 2005 FIELD STUDY: TRACER METHODS AND RESULTS.

    SciTech Connect

    WATSON, T.B.; HEISER, J.; KALB, P.; DIETZ, R.N.; WILKE, R.; WIESER, R.; VIGNATO, G.

    2005-10-01

    The Urban Dispersion Program March 2005 Field Study tracer releases, sampling, and analytical methods are described in detail. There were two days where tracer releases and sampling were conducted. A total of 16.0 g of six tracers were released during the first test day or Intensive Observation Period (IOP) 1 and 15.7 g during IOP 2. Three types of sampling instruments were used in this study. Sequential air samplers, or SAS, collected six-minute samples, while Brookhaven atmospheric tracer samplers (BATS) and personal air samplers (PAS) collected thirty-minute samples. There were a total of 1300 samples resulting from the two IOPs. Confidence limits in the sampling and analysis method were 20% as determined from 100 duplicate samples. The sample recovery rate was 84%. The integrally averaged 6-minute samples were compared to the 30-minute samples. The agreement was found to be good in most cases. The validity of using a background tracer to calculate sample volumes was examined and also found to have a confidence level of 20%. Methods for improving sampling and analysis are discussed. The data described in this report are available as Excel files. An additional Excel file of quality assured tracer data for use in model validation efforts is also available. The file consists of extensively quality assured BATS tracer data with background concentrations subtracted.

  19. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization study. [Quarterly] progress report, April 1, 1995--June 3, 1995

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1995-08-01

    The focus for this quarter has been on completing the laboratory studies in preparation for the C-Well tracer tests. These studies include measuring the solubilities for each of the fluorinated benzoic acids as well as determining the stabilities of these compounds through both batch and column testing. A batch test for four pyridone compounds was also initiated. The Tracer QA procedures were approved by the YM USGS on May 24, 1995. The batch testing was repeated using these procedures.

  20. What is the difference between a brusselator and a realistic tracer gas chemistry?

    NASA Astrophysics Data System (ADS)

    Lustfeld, H.

    2003-04-01

    The chemistry of realistic active tracer gases in the troposphere (and the stratosphere) is rather complicated: More than fifty active tracers undergo more than 150 reactions on scales that differ by more than 15 orders of magnitude. A strong time dependence of the reactions is intrinsic due to photolytic reactions. Nevertheless the relevant dimension of these systems is small and therefore a comparison with a simple low dimensional chemical system becomes possible.

  1. Dye tracers as a tool for outfall studies: dilution measurement approach.

    PubMed

    Pecly, J O G; Roldão, J S F

    2013-01-01

    Dye tracer technique is well established and of wide application for assessment of outfalls and for delineation of near field and far field extensions. Common goals of a tracer study include the measurement of the dilution factor, estimation of the dispersion coefficients, measurement of the effluent discharge and calibration of a contaminant transport model. This paper presents a brief review of the methods involving the use of dye tracer for outfall assessment and illustrates the methods of slug release and continuous injection based on two real cases of campaigns carried out on Brazilian coastal waters. Slug injection on the surface of the water body was used for preliminary dispersion studies aiming at outfall positioning. During the operational phase of an outfall, the continuous injection of dye tracer was used to determine effluent dilution in different seasons. In coastal waters of Rio de Janeiro city, sea current pattern, tidal modulation and thermal stratification explained the main features of the dilution field.

  2. Glass mixing theory and tracer study results from the SF-10 run

    SciTech Connect

    Bowman, B.W.; Routt, K.R.

    1988-08-01

    A general, partial differential equation governing glass mixing in the Slurry Fed Ceramic Melter (SFCM) was derived and a solution obtained based upon certain simplifying assumptions. Tracer studies were then conducted in the SFCM during the SF-10 run to test the theory and characterize glass mixing in this melter. Analysis of the tracer data shows that glass mixing in the SFCM can be explained by use of a model of two, well-mixed tanks in series.

  3. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, R.L.; Miller, D.N.

    2006-01-01

    Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large-scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3-, N2, and sorbed NH 4+; and in situ natural gradient 15NH 4+ tracer tests with numerical simulations of 15NH4+, 15NO3-, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3- and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH 4+. The ??15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH 4+-consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.

  4. Urban Dispersion Program MSG05 Field Study: Summary of Tracer and Meteorological Measurements

    SciTech Connect

    Allwine, K Jerry; Flaherty, Julia E.

    2006-08-09

    The Urban Dispersion Program is a multi-year project, funded by the U.S. Department of Homeland Security, to better understand the flow and dispersion of airborne contaminants through and around the deep street canyons of New York City. The first tracer and meteorological field study was a limited study conducted during March 2005 near the Madison Square Garden in midtown Manhattan. Six safe, inert, gaseous perfluorocarbon tracers were released simultaneously at five street-level locations during two experimental days. In addition to collecting tracer data, meteorological data were also collected. Brookhaven National Laboratory conducted the bulk of the tracer and meteorological field efforts with Pacific Northwest National Laboratory and Stevens Institute of Technology assisting by measuring the vertical profile of winds. The Environmental Protection Agency worked with Brookhaven National Laboratory in accomplishing the personal exposure component of the study. This report presents some results from this analysis. In general, different release locations showed vastly different plume footprints for tracer materials, and the situation was made very complex with upwind and/or crosswind transport of tracer near street-level for the different release locations. Overall wind speeds and directions upwind and over the city were generally constant throughout each of the two experimental periods.

  5. Using Biofuel Tracers to Study Alternative Combustion Regimes

    SciTech Connect

    Mack, J H; Flowers, D L; Buchholz, B A; Dibble, R W

    2006-02-14

    Interest in the use of alternative fuels and combustion regimes is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO{sub 2} emissions are countered with higher nitrogen oxides (NOx) and particulate matter (PM) emissions, and higher noise. Noise and PM have traditionally been the obstacles toward consumer acceptance of Diesel passenger cars in North America, while NOx (a key component in photochemical smog) has been more of an engineering challenge. Diesels are lean burning (combustion with excess oxygen) and reducing NOx to N2 in an oxygen rich environment is difficult. Adding oxygenated compounds to the fuel helps reduce PM emissions, but relying on fuel alone to reduce PM is unrealistic. Keeping peak combustion temperature below 1700 K prevents NOx formation. Altering the combustion regime to burn at temperatures below the NOx threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous Charge Compression Ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NOx and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to validate combustion modeling.

  6. DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES

    SciTech Connect

    Groves, Brent A.; Schinnerer, Eva; Walter, Fabian; Leroy, Adam; Galametz, Maud; Bolatto, Alberto; Hunt, Leslie; Dale, Daniel; Calzetti, Daniela; Croxall, Kevin; Kennicutt, Robert Jr.

    2015-01-20

    We use a sample of 36 galaxies from the KINGFISH (Herschel IR), HERACLES (IRAM CO), and THINGS (Very Large Array H I) surveys to study empirical relations between Herschel infrared (IR) luminosities and the total mass of the interstellar gas (H{sub 2} + H I). Such a comparison provides a simple empirical relationship without introducing the uncertainty of dust model fitting. We find tight correlations, and provide fits to these relations, between Herschel luminosities and the total gas mass integrated over entire galaxies, with the tightest, almost linear, correlation found for the longest wavelength data (SPIRE 500). However, we find that accounting for the gas-phase metallicity (affecting the dust to gas ratio) is crucial when applying these relations to low-mass, and presumably high-redshift, galaxies. The molecular (H{sub 2}) gas mass is found to be better correlated with the peak of the IR emission (e.g., PACS160), driven mostly by the correlation of stellar mass and mean dust temperature. When examining these relations as a function of galactocentric radius, we find the same correlations, albeit with a larger scatter, up to a radius of r ∼ 0.7 r {sub 25} (containing most of a galaxy's baryonic mass). However, beyond that radius, the same correlations no longer hold, with increasing gas (predominantly H I) mass relative to the infrared emission. The tight relations found for the bulk of the galaxy's baryonic content suggest that total gas masses of disk-like (non-merging/ULIRG) galaxies can be inferred from far-infrared continuum measurements in situations where only the latter are available, e.g., in ALMA continuum observations of high-redshift galaxies.

  7. Ubiquitous argonium (ArH+) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas

    NASA Astrophysics Data System (ADS)

    Schilke, P.; Neufeld, D. A.; Müller, H. S. P.; Comito, C.; Bergin, E. A.; Lis, D. C.; Gerin, M.; Black, J. H.; Wolfire, M.; Indriolo, N.; Pearson, J. C.; Menten, K. M.; Winkel, B.; Sánchez-Monge, Á.; Möller, T.; Godard, B.; Falgarone, E.

    2014-06-01

    Aims: We describe the assignment of a previously unidentified interstellar absorption line to ArH+ and discuss its relevance in the context of hydride absorption in diffuse gas with a low H2 fraction. The confidence of the assignment to ArH+ is discussed, and the column densities are determined toward several lines of sight. The results are then discussed in the framework of chemical models, with the aim of explaining the observed column densities. Methods: We fitted the spectral lines with multiple velocity components, and determined column densities from the line-to-continuum ratio. The column densities of ArH+ were compared to those of other species, tracing interstellar medium (ISM) components with different H2 abundances. We constructed chemical models that take UV radiation and cosmic ray ionization into account. Results: Thanks to the detection of two isotopologues, 36ArH+ and 38ArH+, we are confident about the carrier assignment to ArH+. NeH+ is not detected with a limit of [NeH+]/[ArH+] ≤ 0.1. The derived column densities agree well with the predictions of chemical models. ArH+ is a unique tracer of gas with a fractional H2 abundance of 10-4 - 10-3 and shows little correlation to H2O+, which traces gas with a fractional H2 abundance of ≈0.1. Conclusions: A careful analysis of variations in the ArH+, OH+, H2O+, and HF column densities promises to be a faithful tracer of the distribution of the H2 fractional abundance by providing unique information on a poorly known phase in the cycle of interstellar matter and on its transition from atomic diffuse gas to dense molecular gas traced by CO emission. Abundances of these species put strong observational constraints upon magnetohydrodynamical (MHD)simulations of the interstellar medium, and potentially could evolve into a tool characterizing the ISM. Paradoxically, the ArH+ molecule is a better tracer of almost purely atomic hydrogen gas than Hi itself, since Hi can also be present in gas with a significant

  8. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO{sub 2} catalysts

    SciTech Connect

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  9. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO sub 2 catalysts

    SciTech Connect

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  10. Tracer-based quantification of individual frac discharge in single-well multiple-frac backflow: sensitivity study

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Sauter, Martin

    2014-05-01

    Within the deep-geothermal research project at GroßSchönebeck in the NE German Basin, targeting volcanic rocks (Lower Rotliegend) and siliciclastics (Upper Rotliegend) in the Lower Permian by means of a well doublet with several screening intervals between 3815 and 4247 m b.s.l., several artificial fractures with different geometric and hydraulic characteristics were created at each well, aiming to increase reservoir performance [1], [2]. It could not be told a priori which of the various fracturing treatments was to prove as most promising in terms of future reservoir productivity. At the intended-production well (GS-4), one large-area waterfrac was created in the low-permeability volcanic rocks, and two gel-proppant fractures in selected sandstone layers. Each fracturing treatment was accompanied by the injection of a water-dissolved tracer slug, followed by a defined volume of tracer-free ('chaser') fluid [3]. Each frac received a different species of a sulfonated aromatic acid salt, as a conservative water tracer. During subsequent backflow tests (either gas-based lifting, or production by means of a downhole submersible pump), each frac can contribute a certain (more or less constant) amount to the measured total discharge (also depending on whether and when each frac 'starts' contributing, and which effective aperture and area it actually 'manifests' during the process). Since these individual-frac discharge amounts cannot be measured directly, it was endeavoured to indirectly determine ('resolve') them from tracer signals as detectable in the overall backflow discharge. Therefore, we need to examine how these tracer signals depend on local discharge values and on local hydrogeologic parameters (matrix porosity, permeability distribution; frac transmissivity, thickness, effective area and aperture), and to what extent hydrogeological uncertainty will impede the inversion of local discharge values. To this end, a parameter sensitivity study was conducted on

  11. Simultaneous measurement of ventilation using tracer gas techniques and VOC concentrations in homes, garages and vehicles.

    PubMed

    Batterman, Stuart; Jia, Chunrong; Hatzivasilis, Gina; Godwin, Chris

    2006-02-01

    Air exchange rates and interzonal flows are critical ventilation parameters that affect thermal comfort, air migration, and contaminant exposure in buildings and other environments. This paper presents the development of an updated approach to measure these parameters using perfluorocarbon tracer (PFT) gases, the constant injection rate method, and adsorbent-based sampling of PFT concentrations. The design of miniature PFT sources using hexafluorotoluene and octafluorobenzene tracers, and the development and validation of an analytical GC/MS method for these tracers are described. We show that simultaneous deployment of sources and passive samplers, which is logistically advantageous, will not cause significant errors over multiday measurement periods in building, or over shorter periods in rapidly ventilated spaces like vehicle cabins. Measurement of the tracers over periods of hours to a week may be accomplished using active or passive samplers, and low method detection limits (<0.025 microg m(-3)) and high precisions (<10%) are easily achieved. The method obtains the effective air exchange rate (AER), which is relevant to characterizing long-term exposures, especially when ventilation rates are time-varying. In addition to measuring the PFT tracers, concentrations of other volatile organic compounds (VOCs) are simultaneously determined. Pilot tests in three environments (residence, garage, and vehicle cabin) demonstrate the utility of the method. The 4 day effective AER in the house was 0.20 h(-1), the 4 day AER in the attached garage was 0.80 h(-1), and 16% of the ventilation in the house migrated from the garage. The 5 h AER in a vehicle traveling at 100 km h(-1) under a low-to-medium vent condition was 92 h(-1), and this represents the highest speed test found in the literature. The method is attractive in that it simultaneously determines AERs, interzonal flows, and VOC concentrations over long and representative test periods. These measurements are

  12. Measuring the emission rate of an aerosol source placed in a ventilated room using a tracer gas: influence of particle wall deposition.

    PubMed

    Bémer, D; Lecler, M T; Régnier, R; Hecht, G; Gerber, J M

    2002-04-01

    A method to measure the emission rate of an airborne pollutant source using a tracer gas was tested in the case of an aerosol source. The influence of particle deposition on the walls of a test room of 72 m3 was studied. The deposition rate of an aerosol of MgCl2 was determined by means of two methods: one based on measuring the aerosol concentration decay inside the ventilated room, the other based on calculation of the material mass balance. The concentration decay was monitored by optical counting and the aerosol mass concentration determined by means of sampling on a filter and analysis of the mass deposited by atomic absorption spectrometry. Four series of measurements were carried out. The curve giving the deposition rate according to the particle aerodynamic diameter (d(ae)) was established and shows deposition rates higher than those predicted using the model of Corner. The decay method gives the best results. The study carried out has shown that the phenomenon of deposition has little effect on the measurement of the aerosol source emission rate using a tracer gas for particles of aerodynamic diameter < 5 microm (underestimation < 25%). For particles of a greater diameter, wall deposition is an extremely limiting factor for the method, the influence of which can, however, be limited by using a test booth of small volume and keeping the sampling duration as short as possible.

  13. Study of stability zone influences and tracer patterns from the 1987 ANATEX (Across North America Tracer Experiment) experiment

    SciTech Connect

    Porch, W.M.; Gifford, F.A.; Hoard, D.E.

    1988-01-01

    In this paper, we will show preliminary results which appear to connect much of the hit and miss behavior of the surface tracer samples to large scale stability zones 100 to 1000 km wide. With these wintertime stability effects in mind, we have done the best we can to characterize the observed overall tracer patterns as well as individual tracer releases. This type of survey information is important to numerical model development. Diagnostic models often have difficulty reproducing surface plume concentrations where transport over stable layers have occurred. Prognostic models can, in theory, model effects of strong stable layers. However, these models would have great difficulty predicting large scale stable regions such as those observed during ANATEX. Also, though these models have ways of budging in synoptic wind fields, temperature observations are presently ignored. This is because if both wind and temperature observations are forced too strongly into the model, conflicting results may be produced. 12 refs., 5 figs.

  14. Results of Chemical Analyses for Alcove 8/Niche 3 Tracer Studies

    SciTech Connect

    Daniels, Jeanette

    2006-02-23

    This is the final report detailing the analyses performed under ORD-FY04-011 "Chemical Analyses for Alcove 8/Niche 3 Tracer Studies." The work was performed under the University and Community College System of Nevada (UCCSN) and the Department of Energy (DOE) Cooperative Agreement Number DE-FC28-04RW12232. This task provided method development and analytical support for the Alcove 8/Niche 3 Tracer Studies in the Exploratory Studies Facility (ESF). Concentrations of tracers, as well as major anions and cations, were reported for samples provided by Lawrence Berkeley National Laboratory (LBNL) and the US Geological Survey (USGS). Samples were analyzed using High Performance Liquid Chromatography (HPLC) and Ion Chromatography (IC). Samples were analyzed and controlled according to Implementing Procedures (IP's) written and approved in accordance with the Office of Civilian Radioactive Waste Management (OCRWM) approved Nevada System of Higher Education (NSHE) Quality Assurance Program.

  15. Efficacy of seven retrograde tracers, compared in multiple-labelling studies of feline motoneurones.

    PubMed

    Richmond, F J; Gladdy, R; Creasy, J L; Kitamura, S; Smits, E; Thomson, D B

    1994-07-01

    The labelling efficacies of 7 retrograde tracers were evaluated following cut nerve exposure or intramuscular injection into the serially compartmentalized neck muscle, biventer cervicis. Tested tracers included Fast Blue (FB), Fluorogold (FG), dextran conjugated to fluorescein (FD), dextran conjugated to rhodamine (Fluororuby (FR), 3000 and 10,000 MW), fluorescent latex microspheres, horseradish peroxidase coupled to colloidal gold, and 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI). In 2 animals, horseradish peroxidase was also employed and spinal cords were processed for peroxidase activity to evaluate its effect on the appearance of cells labelled with fluorescent tracers. Four tracers, FB, FG, FD and FR, could be observed in motoneurones under the conditions of our study. FB and FG labelled comparable numbers of motoneurones following cut nerve exposure, but dissimilar numbers following intramuscular injection. FG diffused extensively following injection and was found in motoneurones not only in the appropriate ipsilateral segment but also adjacent ipsilateral and contralateral segments. Intramuscular injections of FB usually labelled fewer cells than cut nerve exposure, but evidence for spurious labelling following intramuscular injection could also be found. FD or FR labelled motoneurones following cut nerve exposure but not following intramuscular injection. The conjugated dextrans labelled more variable numbers of cells than FB or FG, but the labelled cells had similar patterns of distribution. The remaining tracers were ineffective as retrograde markers in our study, and the possible reasons for these failures are discussed.

  16. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Study. Progress report, July 1, 1994--September 30, 1994

    SciTech Connect

    Stetzenbach, K.

    1994-12-01

    The work performed during this quarter consists of the continuation of the batch studies for the fluorinated benzoic acids and the evaluation of LC/MS for the analysis of these potential tracers. Column studies for these compounds have also been initiated.

  17. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  18. Terrestrial inert gases - Isotope tracer studies and clues to primordial components in the mantle

    NASA Astrophysics Data System (ADS)

    Lupton, J. E.

    The use of He-3/He-4 measurements for characterizing terrestrial materials and tracing natural-system processes is surveyed. Terrestrial He is classified according to its He-3/He-4 ratio, expressed as R/R-A where R-A is the He-3/He-4 ratio of atmospheric He, 1.4 x 10 to the -6th; radiogenic He typical of continental rocks has R/R-A of 0.01-0.1, while mantle He, typical of midoceanic ridge basalts (MORB) and other geothermal environments and attributed to gas entrapment during the earth's formation, has R/R-A of 5-30. Determinations of R/R-A for MORB and for samples from hot spots, from Tristan da Cunha, and from subduction zones are compared with Sr, Nd, Ar, Ne, and Xe data and shown to support a two-layer (depleted/fertile) model of the mantle, with mixing processes accounting for tectonic variations in R/R-A. The use of He-3 as a tracer for mapping ocean circulation patterns, studying ridge-crest tectonic and hydrothermal processes, and geothermal and hydrologic prospecting is described.

  19. Effects of submesoscale turbulence on ocean tracers

    NASA Astrophysics Data System (ADS)

    Smith, Katherine M.; Hamlington, Peter E.; Fox-Kemper, Baylor

    2016-01-01

    Ocean tracers such as carbon dioxide, nutrients, plankton, and oil advect, diffuse, and react primarily in the oceanic mixed layer where air-sea gas exchange occurs and light is plentiful for photosynthesis. There can be substantial heterogeneity in the spatial distributions of these tracers due to turbulent stirring, particularly in the submesoscale range where partly geostrophic fronts and eddies and small-scale three-dimensional turbulence are simultaneously active. In this study, a large eddy simulation spanning horizontal scales from 20 km down to 5 m is used to examine the effects of multiscale turbulent mixing on nonreactive passive ocean tracers from interior and sea-surface sources. The simulation includes the effects of both wave-driven Langmuir turbulence and submesoscale eddies, and tracers with different initial and boundary conditions are examined in order to understand the respective impacts of small-scale and submesoscale motions on tracer transport. Tracer properties are characterized using spatial fields and statistics, multiscale fluxes, and spectra, and the results detail how tracer mixing depends on air-sea tracer flux rate, tracer release depth, and flow regime. Although vertical fluxes of buoyancy by submesoscale eddies compete with mixing by Langmuir turbulence, vertical fluxes of tracers are often dominated by Langmuir turbulence, particularly for tracers that are released near the mixed-layer base or that dissolve rapidly through the surface, even in regions with pronounced submesoscale activity. Early in the evolution of some tracers, negative eddy diffusivities occur co-located with regions of negative potential vorticity, suggesting that symmetric instabilities or other submesoscale phenomenon may act to oppose turbulent mixing.

  20. The use of Na-22 as a tracer for long-term bone mineral turnover studies.

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.; Rieksts, G. A.; Palmer, R. F.; Gillis, M. F.

    1979-01-01

    Sodium-22 has been studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with Na-22, which is released through the metabolic turnover of the bone. The Na-22 not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high, but nontoxic levels of NaCl. The Na-22 tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  1. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1994-12-31

    The bromide anion has been used extensively as a tracer for mapping the flow of groundwater. It has proven to be both a safe and reliable groundwater tracer. The goal in this study is to find several tracing compounds with characteristics similar to the bromide anion to be used in multiple well tracing tests. Four groups of fluorinated organic acids were selected as candidates for groundwater tracers. These groups include fluorinated benzoic acids (FBA), fluorinated salicylic acids (FSA), fluorinated toluic acids (FTA), and fluorinated cinnamic acids (FCA). These compounds have been shown to move readily with the flow of water and do not adsorb to soil. They are also non-toxic. In this study, the retention of the fluorinated organic acids on to a soil column is compared to that of the bromide ion. The time required for the elution of each analyte from the soil column is measured using a UV-Vis detector. The soils consist of the light, medium, and dark tuffs used in the batch study. The work performed during this quarter consists of the continuation of the batch studies for the fluorinated benzoic acids and column studies for several potential tracer compounds.

  2. Evaluation of short-term tracer fluctuations in groundwater and soil air in a two year study

    NASA Astrophysics Data System (ADS)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Weissbach, Therese

    2016-04-01

    The application of gas tracers like noble gases (NGs), SF6 or CFCs in groundwater studies such as paleo temperature determination requires a detailed understanding of the dynamics of reactive and inert gases in the soil air with which the infiltrating water equilibrates. Due to microbial gas consumption and production, NG partial pressures in soil air can deviate from atmospheric air, an effect that could bias noble gas temperatures estimates if not taken into account. So far, such an impact on NG contents in groundwater has not been directly demonstrated. We provide the first long-term study of the above mentioned gas tracers and physical parameters in both the saturated and unsaturated soil zone, sampled continuously for more than two years near Mannheim (Germany). NG partial pressures in soil air correlate with soil moisture and the sum value of O2+CO2, with a maximal significant enhancement of 3-6% with respect to atmospheric air during summer time. Observed seasonal fluctuations result in a mass dependent fractionation of NGs in soil air. Concentrations of SF6 and CFCs in soil air are determined by corresponding fluctuations in local atmospheric air, caused by industrial emissions. Arising concentration peaks are damped with increasing soil depth. Shallow groundwater shows short-term NG fluctuations which are smoothed within a few meters below the water table. A correlation between NG contents of soil air and of groundwater is observable during strong recharge events. However, there is no evidence for a permanent influence of seasonal variations of soil air composition on shallow groundwater. Fluctuating NG contents in shallow groundwater are rather determined by variations of soil temperature and water table level. Our data gives evidence for a further temperature driven equilibration of groundwater with entrapped air bubbles within the topmost saturated zone, which permanently occurs even some years after recharge. Local subsurface temperature fluctuations

  3. Effect of tidal phase on solute flushing from a strait: SF6 tracer study in the East River, New York

    NASA Astrophysics Data System (ADS)

    Caplow, T.; Schlosser, P.; Ho, D. T.

    2003-12-01

    Flow in the East River, a 25 km tidal strait connecting Long Island Sound with New York Harbor, is driven by a tidal phase lag between the two ends of the strait. The direction and rate of solutes transported in the strait, including natural materials as well as anthropogenic contaminants, has important implications for the environmental management of Long Island Sound and other fragile local ecosystems. Sulfur hexafluoride (SF6) is a successful deliberate tracer for rivers, estuaries, and coastal areas. It is non-reactive, inexpensive, and offers an extremely low detection limit. High-resolution transport studies of complex coastal and estuarine areas up to 100 km2, and lasting up to two weeks, have recently been achieved using a boat-mounted SF6 measurement system with a sampling interval of 1 min and a detection limit of 1 x 10-14 mol L-1. In June 2003, two injections of 6.2 mol sulfur hexafluoride (SF6) were made 8 days apart in the East River to study residual circulation and rates of solute dissipation at different states of the tide. Both injections were made at the same location, but the first injection occurred at the slack before flood (northward flow), and the second injection occurred at the slack before ebb (southward flow). Tidally synchronized surveys of the SF6 tracer patch were made by boat for 7 days following the flood injection and for 5 days following the ebb injection. For the flood and ebb injections, respectively, mean displacement of the center of tracer mass within the East River, a proxy for residual circulation, was northward at 0.31 +/- 0.35 and 1.5 +/- 1.0 km day-1, mean fractional tracer loss due to tidal flushing was 0.32 +/- 0.06 day-1 and 0.52 +/- 0.10 day-1, and mean residence time was 2.6 +/- 0.4 days and 1.3 +/- 0.6 days. These tracer loss rates include a small correction for air-water gas exchange, which was estimated by a combination of previously established relationships between gas transfer velocity and wind speeds, river

  4. USING CONTINUOUS MONITORS FOR CONDUCTING TRACER STUDIES IN WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    The use of online monitors for conducting a distribution system tracer study is proving to be an essential tool to accurately understand the flow dynamics in a distribution system. In a series of field testing sponsored by U. S. Environmental Protection Agency (EPA) and Greater ...

  5. Discovery of Phosphodiesterase 10A (PDE10A) PET Tracer AMG 580 to Support Clinical Studies.

    PubMed

    Hu, Essa; Chen, Ning; Kunz, Roxanne K; Hwang, Dah-Ren; Michelsen, Klaus; Davis, Carl; Ma, Ji; Shi, Jianxia; Lester-Zeiner, Dianna; Hungate, Randall; Treanor, James; Chen, Hang; Allen, Jennifer R

    2016-07-14

    We report the discovery of PDE10A PET tracer AMG 580 developed to support proof of concept studies with PDE10A inhibitors in the clinic. To find a tracer with higher binding potential (BPND) in NHP than our previously reported tracer 1, we implemented a surface plasmon resonance assay to measure the binding off-rate to identify candidates with slower washout rate in vivo. Five candidates (2-6) from two structurally distinct scaffolds were identified that possessed both the in vitro characteristics that would favor central penetration and the structural features necessary for PET isotope radiolabeling. Two cinnolines (2, 3) and one keto-benzimidazole (5) exhibited PDE10A target specificity and brain uptake comparable to or better than 1 in the in vivo LC-MS/MS kinetics distribution study in SD rats. In NHP PET imaging study, [(18)F]-5 produced a significantly improved BPND of 3.1 and was nominated as PDE10A PET tracer clinical candidate for further studies. PMID:27437084

  6. Technical Secondary Schools and the Labour Market: Some Results from a Tracer Study in Kenya.

    ERIC Educational Resources Information Center

    Narman, Anders

    1988-01-01

    Reports tracer studies of Kenyan youths leaving technical school to determine their success at obtaining gainful employment. Almost 43% were neither in formal schooling nor training, nor employed a year after leaving, although technical skills were seen as useful, particularly in private life. (DP)

  7. Numerical Simulations and Tracer Studies as a Tool to Support Water Circulation Modeling in Breeding Reservoirs

    NASA Astrophysics Data System (ADS)

    Zima, Piotr

    2014-12-01

    The article presents a proposal of a method for computer-aided design and analysis of breeding reservoirs in zoos and aquariums. The method applied involves the use of computer simulations of water circulation in breeding pools. A mathematical model of a pool was developed, and a tracer study was carried out. A simplified model of two-dimensional flow in the form of a biharmonic equation for the stream function (converted into components of the velocity vector) was adopted to describe the flow field. This equation, supplemented by appropriate boundary conditions, was solved numerically by the finite difference method. Next, a tracer migration equation was solved, which was a two-dimensional advection-dispersion equation describing the unsteady transport of a non-active, permanent solute. In order to obtain a proper solution, a tracer study (with rhodamine WT as a tracer) was conducted in situ. The results of these measurements were compared with numerical solutions obtained. The results of numerical simulations made it possible to reconstruct water circulation in the breading pool and to identify still water zones, where water circulation was impeded.

  8. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer

  9. Radio-tracer techniques for the study of flow in saturated porous materials

    USGS Publications Warehouse

    Skibitzke, H.E.; Chapman, H.T.; Robinson, G.M.; McCullough, Richard A.

    1961-01-01

    An experiment was conducted by the U.S. Geological Survey to determine the feasibility of using a radioactive substance as a tracer in the study of microscopic flow in a saturated porous solid. A radioactive tracer was chosen in preference to dye or other chemical in order to eliminate effects of the tracer itself on the flow system such as those relating to density, viscosity and surface tension. The porous solid was artificial "sandstone" composed of uniform fine grains of sand bonded together with an epoxy adhesive. The sides of the block thus made were sealed with an epoxy coating compound to insure water-tightness. Because of the chemical inertness of the block it was possible to use radioactive phosphorus (P32). Ion-exchange equilibrium was created between the block and nonradioactive phosphoric acid. Then a tracer tagged with P32 was injected into the block in the desired geometric configuration, in this case, a line source. After equilibrium in isotopic exchange was reached between the block and the line source, the block was rinsed, drained and sawn into slices. It was found that a quantitative analysis of the flow system may be made by assaying the dissected block. ?? 1961.

  10. Radon as a tracer of biogenic gas equilibration and transport from methane-saturated sediments

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Chanton, Jeffrey P.

    1989-01-01

    Data on Rn-222 activity in methane-rich gas bubbles from anoxic coastal sediments of Cape Lookout Bight, North Carolina, were used to determine gas equilibration with pore waters and the rates of ebullitive stripping and transport of gases to overlying waters and the atmosphere. Results showed that, during summer months, the bubble ebullition process strips and transports 1.9-4.8 percent/day of the standing crop of radon (and, by inference, other gases equilibrated with gas bubbles) in surface sediments of Cape Lookout Bight to the troposphere. Thus, the ebullitive mode of gas transport represents an effective mechanism for delivering reduced biogenic gases directly to the atmosphere.

  11. Noble gas as tracers for CO2 deep input in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Pujol, Magali; Stuart, Finlay; Gilfillan, Stuart; Montel, François; Masini, Emmanuel

    2016-04-01

    The sub-salt hydrocarbon reservoirs in the deep offshore part of the Atlantic Ocean passive margins are a new key target for frontier oil and gas exploration. Type I source rocks locally rich in TOC (Total Organic Carbon) combined with an important secondary connected porosity of carbonate reservoirs overlain by an impermeable salt layer gives rise to reservoirs with high petroleum potential. However, some target structures have been found to be mainly filled with CO2 rich fluids. δ13C of the CO2 is generally between -9 and -4 permil, compatible with a deep source (metamorphic or mantle). Understanding the origin of the CO2 and the relative timing of its input into reservoir layers in regard to the geodynamic context appears to be a key issue for CO2 risk evaluation. The inertness and ubiquity of noble gases in crustal fluids make them powerful tools to trace the origin and migration of mixed fluids (Ballentine and Burnard 2002). The isotopic signature of He, Ne and Ar and the elemental pattern (He to Xe) of reservoir fluid from pressurized bottom hole samples provide an insight into fluid source influences at each reservoir depth. Three main end-members can be mixed into reservoir fluids (e.g. Gilfillan et al., 2008): atmospheric signature due to aquifer recharge, radiogenic component from organic fluid ± metamorphic influence, and mantle input. Their relative fractionation provides insights into the nature of fluid transport (Burnard et al., 2012)and its relative migration timing. In the studied offshore passive margin reservoirs, from both sides of South Atlantic margin, a strong MORB-like magmatic CO2 influence is clear. Hence, CO2 charge must have occurred during or after lithospheric break-up. CO2 charge(s) history appears to be complex, and in some cases requires several inputs to generate the observed noble gas pattern. Combining the knowledge obtained from noble gas (origin, relative timing, number of charges) with organic geochemical and thermodynamic

  12. A new double-tracer gas single-breath washout to assess early cystic fibrosis lung disease.

    PubMed

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Abbas, Chiara; Casaulta, Carmen; Frey, Urs; Latzin, Philipp

    2013-02-01

    In cystic fibrosis (CF), tests for ventilation inhomogeneity are sensitive but not established for clinical routine. We assessed feasibility of a new double-tracer gas single-breath washout (SBW) in school-aged children with CF and control subjects, and compared SBW between groups and with multiple-breath nitrogen washout (MBNW). Three SBW and MBNW were performed in 118 children (66 with CF) using a side-stream ultrasonic flowmeter setup. The double-tracer gas containing 5% sulfur hexafluoride and 26.3% helium was applied during one tidal breath. Outcomes were SBW phase III slope (SIII(DTG)), MBNW-derived lung clearance index (LCI), and indices of acinar (S(acin)) and conductive (S(cond)) ventilation inhomogeneity. SBW took significantly less time to perform than MBNW. SBW and MBNW were feasible in 109 (92.4%) and 98 (83.0%) children, respectively. SIII(DTG) differed between children with CF and controls, mean±sd was -456.7±492.8 and -88.4±129.1 mg·mol·L(-1), respectively. Abnormal SIII(DTG) was present in 36 (59%) children with CF. SIII(DTG) was associated with LCI (r= -0.58) and S(acin) (r= -0.58), but not with S(cond). In CF, steeply sloping SIII(DTG) potentially reflects ventilation inhomogeneity near the acinus entrance. This tidal SBW is a promising test to assess ventilation inhomogeneity in an easy and fast way. PMID:22599360

  13. Quantification of metal loading in French Gulch, Summit County, Colorado, using a tracer-injection study, July 1996. Final report

    SciTech Connect

    Kimball, B.A.; Runkel, R.L.; Gerner, L.J.

    1999-10-01

    The objective of this report is to present a description of the complex hydrology of the French Gulch site using the tracer-injection study and the synoptic sampling. In particular, the tracer injection allows for evaluation of the effect of the hydrology on the fate and transport of the metals in French Gulch.

  14. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    NASA Astrophysics Data System (ADS)

    Wagner, Brian J.; Harvey, Judson W.

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI>>1.0), solute exchange

  15. Using Tracer Experiments To Study Phosphorus Transfer From Soil To Overland Flow

    NASA Astrophysics Data System (ADS)

    Vollmer, T.; Stamm, C.; Schaerer, M.; Sinaj, S.; Frossard, E.; Fluehler, H.

    Diffuse phosphorus (P) losses from agricultural land contribute to the eutrophication of surface water bodies in Switzerland. Grassland soils in areas of high animal stock densities are often prone to high P losses due to over-fertilization and a strong accumu- lation of P in the topsoil. In order to understand the effects of management practices and remediation measures on P transfer into runoff water at a small scale it is impor- tant to localize the sources of this phosphorus within the soil profile and to describe the water flows within the topsoil­overland flow system. We are studying the effects of remediation measures on P availability in the soil and on P concentrations in overland flow in a field experiment. We are using tracer exper- iments to examine the mixing behavior of water applied with a sprinkling device onto the soil surface with pre-event soil water and to trace the contribution of those two water sources to overland flow. Two plots were pre-irrigated with a solution of KBr in order to label the soil solu- tion. After a few days of equilibration, two fluorescent dyes were applied to different areas of the plots at a constant rate of 40 mm h-1. Surface runoff was analyzed for tracer concentrations. Small soil monoliths (0.35 * 0.25 *0.20 m3) were excavated and the tracer distribution within the blocks was mapped using a digital camera, optical filters, and tracer specific excitation light source. This tracing technique allowed for independent mapping of the distribution of two simultaneously applied tracers. The experiments demonstrated heterogenous infiltration of the dyes, negligible lat- eral translocation of the dyes within the soil, minimal transfer of the pre-applied Br- into overland flow, early breakthrough of the dye tracers in overland flow which was independent of the tracers sorption properties and a recovery of the dyes that corre- sponded to the runoff ratio. In all, the experiments indicate a very restricted interac- tion between

  16. Nocturnal Glucose Metabolism in Type 1 Diabetes: A Study Comparing Single Versus Dual Tracer Approaches

    PubMed Central

    Mallad, Ashwini; Hinshaw, Ling; Dalla Man, Chiara; Cobelli, Claudio; Basu, Rita; Lingineni, Ravi; Carter, Rickey E.; Kudva, Yogish C.

    2015-01-01

    Abstract Background: Understanding the effect size, variability, and underlying physiology of the dawn phenomenon is important for next-generation closed-loop control algorithms for type 1 diabetes (T1D). Subjects and Methods: We used an iterative protocol design to study 16 subjects with T1D on individualized insulin pump therapy for two successive nights. Endogenous glucose production (EGP) rates at 3 a.m. and 7 a.m. were measured with [6,6-2H2]glucose as a single tracer, infused from midnight to 7 a.m. in all subjects. To explore possibility of tracer recycling due to prolonged [6,6-2H2]glucose infusion, which was highly probable after preplanned interim data analyses, we infused a second tracer, [6-3H]glucose, from 4 a.m. to 7 a.m. in the last seven subjects to measure EGP at 7 a.m. Results: Cortisol concentrations increased during both nights, but changes in glucagon and insulin concentration were inconsistent. Although the plasma glucose concentrations rose from midnight to 7 a.m. during both nights, EGP measured with [6,6-2H2]glucose between 3 a.m. and 7 a.m. did not differ during Night 1 but fell in Night 2. However, EGP measured with [6-3H]glucose at 7 a.m. was higher than that measured with [6,6-2H2]glucose during both nights, thereby suggesting tracer recycling probably underestimating EGP calculated at 7 a.m. with [6,6-2H2]glucose. Likewise, EGP was higher at 7 a.m. with [6-3H]glucose than at 3 a.m. with [6,6-2H2]glucose during both nights. Conclusions: The data demonstrate a consistent overnight rise in glucose concentrations through increased EGP, mediated likely by rising cortisol concentrations. The observations with the dual tracer approach imply significant tracer recycling leading to underestimation of EGP measured by longer-duration tracer infusion. PMID:26121060

  17. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    USGS Publications Warehouse

    Wagner, B.J.; Harvey, J.W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI >> 1.0), solute exchange

  18. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  19. Sample site selection for tracer studies applying a unidirectional circulatory approach

    SciTech Connect

    Layman, D.K.; Wolfe, R.R.

    1987-08-01

    The optimal arterial or venous sites for infusion and sampling during isotopic tracer studies have not been established. This study determined the relationship of plasma and tissue enrichment (E) when isotopes were infused in an artery and sampled from a vein (av mode) or infused in a vein and sampled from an artery (va mode). Adult dogs were given primed constant infusions of (3-/sup 13/C)lactate, (1-/sup 13/C)leucine, and /sup 14/C-labeled bicarbonate. Simultaneous samples were drawn from the vena cava, aortic arch, and breath. Tissue samples were removed from skeletal muscle, liver, kidney, and gut. Breath samples were analyzed for /sup 14/CO/sub 2/ by liquid scintillation counting and plasma isotopic enrichments of (/sup 13/C)lactate, (/sup 13/C)leucine, and alpha-(/sup 13/C)ketoisocaproate (KIC) were determined by gas chromatography-mass spectrometry. By using the va mode, the plasma E for lactate and leucine were 30-40% above tissue E. The av mode provided an accurate reflection of tissue E for lactate, which equilibrates rapidly with tissues, and a reasonable estimate for leucine, which exchanges more slowly. The isotopic enrichment of plasma KIC more directly reflected tissue leucine E than did plasma leucine E, and KIC enrichment was insensitive to sampling site. We also evaluated theoretically a circulatory model that predicts venous isotopic enrichments when the va mode is used. We conclude that the av mode is optimal but that the problems arising from use of the va mode can be overcome by use of a metabolic product (i.e., KIC) or by calculation of venous specific activity with our circulatory mode.

  20. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    SciTech Connect

    Murphy, E. M.; Szecsody, J. E.; Phillips, S. J.

    1991-02-01

    This report presents a study plan tor estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. The prediction of contaminant movement or transport is one aspect of performance assessment and an important step in the remedial investigation/feasibility study (RI/FS) process. In the past, recharge has been characterized by collecting lysimeter data. Although lysimeters can generate important and reliable data, their limitations include 1) fixed location, 2) fixed sediment contents, 3) edge effects, 4) low rates, and 5) relatively short duration of measurement. These limitations impact the ability to characterize the spatial distribution of recharge at the Hanford Site, and thus the ability to predict contaminant movement in the vadose zone. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, {sup 36}CI, {sup 3}H, and {sup 2}H/{sup 18}O. Atmospheric levels of {sup 36}CI and {sup 3}H increased during nuclear bomb testing in the Pacific, and the resulting "bomb pulse" or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resu~ed in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, {sup 129}I, and {sup 99}Tc. The radionuclides, in particular, reached a well-defined atmospheric peak in 1945. Atmospheric releases of {sup 129}I and {sup 99}Tc were greatly reduced by mid-1946, but nitrogen oxides continued to be released from the uranium separations facilities. As a result, the nitrate concentrations probably peaked in the mid-1950s, when the greatest number of separations facilities were operating

  1. Characterization of crushed tuff for the evaluation of the fate of tracers in transport studies in the unsaturated zone

    SciTech Connect

    Polzer, W.L.; Fuentes, H.R.; Raymond, R.; Bish, D.L.; Gladney, E.S.; Lopez, E.A.

    1987-03-01

    Results of field-scale (caisson) transport studies under unsaturated moisture and steady and nonsteady flow conditions indicate variability and a lack of conservation of mass in solute transport. The tuff materials used in that study were analyzed for the presence of tracers and of freshly precipitated material to help explain the variability and lack of conservation of mass. Selected tuff samples were characterized by neutron activation analysis for tracer identification, by x-ray diffraction for mineral identification, by petrographic analysis for identification of freshly precipitated material, and by x-ray fluorescence analysis for identification of major and trace elements. The results of these analyses indicate no obvious presence of freshly precipitated material that would retard tracer movement. The presence of the nonsorbing tracers (bromide and iodide) suggest the retention of these tracers in immobile water. The presence of the nonsorbing tracers (bromide and iodide) suggest the retention of these tracers in immobile water. The presence of sorbing and nonsorbing tracers on the tuff at some locations (even cesium at the 415-cm depth) and not at others suggests variability in transport. 15 refs., 14 figs., 9 tabs.

  2. Estimation of bias with the single-zone assumption in measurement of residential air exchange using the perfluorocarbon tracer gas method

    PubMed Central

    Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J

    2015-01-01

    Residential air exchange rates (AERs) are vital in understanding the temporal and spatial drivers of indoor air quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed air zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER1z). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER2z). In total, 287 daily pairs of AER2z and AER1z estimates were made from 35 homes across three cities. In 87% of the cases, AER2z was higher than AER1z. Overall, the AER1z estimates underestimated AER2z by approximately 16% (IQR: 5–32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential air exchange using a single PFT gas, the assumption of a single well-mixed air zone very likely results in an under prediction of the AER. PMID:25399878

  3. Modeling of meteorology, tracer transport and chemistry for the Uintah Basin Winter Ozone Studies 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Ahmadov, R.; McKeen, S. A.; Angevine, W. M.; Frost, G. J.; Roberts, J. M.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brown, S. S.; Edwards, P. M.; Wild, R. J.; Pichugina, Y. L.; Banta, R. M.; Brewer, A.; Senff, C. J.; Langford, A. O.; Petron, G.; Karion, A.; Sweeney, C.; Schnell, R. C.; Johnson, B.; Zamora, R. J.; Helmig, D.; Park, J.; Evans, J.; Stephens, C. R.; Olson, J. B.; Trainer, M.

    2013-12-01

    The Uintah Basin Winter Ozone Studies (UBWOS) field campaigns took place during winter of 2012 and 2013 in the Uintah Basin, Utah. The studies were aimed at characterizing meteorology, emissions of atmospheric constituents and air chemistry in a region abundant with oil and gas production, with associated emissions of various volatile organic compounds (VOCs) and NOx. High ozone pollution events were observed throughout the Uintah Basin during the winter of 2013, but not during the winter of 2012. A clear understanding of the processes leading to high ozone events is still lacking. We present here high spatiotemporal resolution simulations of meteorology, tracer transport and gas chemistry over the basin during January-February, 2012 and 2013 using the WRF/Chem regional photochemical model. Correctly characterizing the meteorology poses unique challenges due to complex terrain, cold-pool conditions, and shallow inversion layers observed during the winter of 2013. We discuss the approach taken to adequately simulate the meteorology over the basin and present evaluations of the modeled meteorology using surface, lidar and tethersonde measurements. Initial simulations use a passive tracer within the model as a surrogate for CH4 released from oil and gas wells. These tracer transport simulations show that concentrations of inert, emitted species near the surface in 2013 were 4-8 times higher than 2012 due to much shallower boundary layers and reduced winds in 2013. This is supported by in-situ measurements of CH4 made at the Horse Pool surface station during the field campaigns. Full photochemical simulations are forced by VOC and NOx emissions that are determined in a top-down approach, using observed emission ratios of VOC and NOx relative to CH4, along with available information of active wells, compressors, and processing plants. We focus on differences in meteorology, temperature, and radiation between the two winters in determining ozone concentrations in the

  4. National Biomedical Tracer Facility (NBTF). Project definition study: Phase I

    SciTech Connect

    Lagunas-Solar, M.C.

    1995-02-15

    This report describes a five-year plan for the construction and commissioning of a reliable and versatile NBTF facility for the production of high-quality, high-yield radioisotopes for research, biomedical, and industrial applications. The report is organized in nine sections providing, in consecutive order, responses to the nine questions posed by the U.S. Department of Energy in its solicitation for the NBTF Project Definition Study. In order to preserve direct correspondence (e.g., Sec. 3 = 3rd item), this Introduction is numbered {open_quotes}0.{close_quotes} Accelerator and facility designs are covered in Section 1 (Accelerator Design) and Section 2 (Facility Design). Preliminary estimates of capital costs are detailed in Section 3 (Design and Construction Costs). Full licensing requirements, including federal, state, and local ordinances, are discussed in Section 4 (Permits). A plan for the management of hazardous materials to be generated by NBTF is presented in Section 5 (Waste Management). An evaluation of NBTF`s economic viability and its potential market impact is detailed in Section 6(Business Plan), and is complemented by the plans in Section 7 (Operating Plan) and Section 8 (Radioisotope Plan). Finally, a plan for NBTF`s research, education, and outreach programs is presented in Section 9 (Research and Education Programs).

  5. A tracer study in an Alaskan gravel beach and its implications on the persistence of the Exxon Valdez oil.

    PubMed

    Li, Hailong; Boufadel, Michel C

    2011-06-01

    Despite great efforts including bioremediation, the 1989 Exxon Valdez oil spills persist in many gravel beaches in Prince William Sound, Alaska, USA. To explore this mystery, a lithium tracer study was conducted along two transects on one of these beaches. The tracer injections and transports were successfully simulated using the 2-dimensional numerical model MARUN. The tracer stayed much longer in the oil-persisting, right transect (facing landwand) than in the clean, left transect. If the tracer is approximately regarded as oils, oils in the upper layer would have more opportunities to enter the lower layer in the right transect than in the left one. This may qualitatively explain the oil persistence within the right transect. When the tracer is regarded as nutrients, the long stay of nutrients within the right transect implies that the oil persistence along the right transect was not due to the lack of nutrients during the bioremediation. PMID:21492883

  6. Solute movement in drained fen peat: a field tracer study in a Somerset (UK) wetland

    NASA Astrophysics Data System (ADS)

    Baird, Andrew J.; Gaffney, Simon W.

    2000-10-01

    Little is known about solute transport in peats, despite the obvious importance of solute transport on eco-hydrological processes in both managed and natural peatlands. To address this lack of knowledge, we investigated solute transport processes in an agricultural fen peat using a conservative KBr tracer. The main aim of the study was to elucidate solute transport behaviour in general in this peat, with a more specific aim of investigating whether preferential or bypassing flow occurred. The tracer moved through the peat more rapidly than expected, and the pattern of movement showed clear evidence of plot-scale bypassing flow. The data also provide evidence that bypassing flow occurs in pores at smaller scales. The implications of this study for management of wetland pastures in the Somerset Moors in south-west England are discussed.

  7. Nitrate turnover in a peat soil under drained and rewetted conditions: results from a [(15)N]nitrate-bromide double-tracer study.

    PubMed

    Russow, Rolf; Tauchnitz, Nadine; Spott, Oliver; Mothes, Sibylle; Bernsdorf, Sabine; Meissner, Ralph

    2013-01-01

    Under natural conditions, peatlands are generally nitrate-limited. However, recent concerns about an additional N input into peatlands by atmospheric N deposition have highlighted the risk of an increased denitrification activity and hence the likelihood of a rise of emissions of the greenhouse gas nitrous oxide. Therefore, the aim of the present study was to investigate the turnover of added nitrate in a drained and a rewetted peatland using a [(15)N]nitrate-bromide double-tracer method. The double-tracer method allows a separation between physical effects (dilution, dispersion and dislocation) and microbial and chemical nitrate transformation by comparing with the conservative Br(-) tracer. In the drained peat site, low NO3(-) consumption rates have been observed. In contrast, NO3(-) consumption at the rewetted peat site rises rapidly to about 100% within 4 days after tracer application. Concomitantly, the (15)N abundances of nitrite and ammonium in soil water increased and lead to the conclusion that, besides commonly known NO3(-) reduction to nitrite (i.e. denitrification), a dissimilatory nitrate reduction to ammonium has simultaneously taken place. The present study reveals that increasing NO3(-) inputs into rewetted peatlands via atmospheric deposition results in a rapid NO3(-) consumption, which could lead to an increase in N2O emissions into the atmosphere.

  8. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    SciTech Connect

    Genereux, D.; Hemond, H.; Mulholland, P.

    1992-05-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate Rn{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rn{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach.

  9. Flow optimization study of a batch microfluidics PET tracer synthesizing device

    PubMed Central

    Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.

    2010-01-01

    We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595

  10. Noble Gas Isotopes: Tracers of Impactor Signatures in Lonar Impact Glasses

    NASA Astrophysics Data System (ADS)

    Murty, S. V. S.; Ranjit Kumar, P. M.

    2012-03-01

    Noble gas isotopes ^2^1Ne, ^3^6Ar, and ^1^2^9Xe reveal excesses due to the presence of cosmogenic, trapped, and radiogenic components of meteoritic origin, in the impact glasses from Lonar Crater, providing unambiguous signatures of the impactor.

  11. STRATEGIES FOR QUANTIFYING PET IMAGING DATA FROM TRACER STUDIES OF BRAIN RECEPTORS AND ENZYMES.

    SciTech Connect

    Logan, J.

    2001-04-02

    A description of some of the methods used in neuroreceptor imaging to distinguish changes in receptor availability has been presented in this chapter. It is necessary to look beyond regional uptake of the tracer since uptake generally is affected by factors other than the number of receptors for which the tracer has affinity. An exception is the infusion method producing an equilibrium state. The techniques vary in complexity some requiring arterial blood measurements of unmetabolized tracer and multiple time uptake data. Others require only a few plasma and uptake measurements and those based on a reference region require no plasma measurements. We have outlined some of the limitations of the different methods. Laruelle (1999) has pointed out that test/retest studies to which various methods can be applied are crucial in determining the optimal method for a particular study. The choice of method will also depend upon the application. In a clinical setting, methods not involving arterial blood sampling are generally preferred. In the future techniques for externally measuring arterial plasma radioactivity with only a few blood samples for metabolite correction will extend the modeling options of clinical PET. Also since parametric images can provide information beyond that of ROI analysis, improved techniques for generating such images will be important, particularly for ligands requiring more than a one-compartment model. Techniques such as the wavelet transform proposed by Turkheimer et al. (2000) may prove to be important in reducing noise and improving quantitation.

  12. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations.

    PubMed

    Warner, N R; Darrah, T H; Jackson, R B; Millot, R; Kloppmann, W; Vengosh, A

    2014-11-01

    Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF. PMID:25327769

  13. Overview of SIMS-Based Experimental Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion

    DOE PAGES

    Kulkarni, Nagraj S.; Bruce Warmack, Robert J.; Radhakrishnan, Bala; Hunter, Jerry L.; Sohn, Yongho; Coffey, Kevin R.; Murch, Graeme E.; Belova, Irina V.

    2014-09-23

    Tracer diffusivities provide the most fundamental information on diffusion in materials and are the foundation of robust diffusion databases. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS) based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. Experimental procedures & techniques that are utilized for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-highmore » vacuum (UHV) system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for the correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is discussed. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (1954) was found to be a good representation of both types of diffusion data that cover a broad range of temperatures between 250 - 627° C (523 900 K).« less

  14. Overview of SIMS-Based Experimental Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion

    SciTech Connect

    Kulkarni, Nagraj S.; Bruce Warmack, Robert J.; Radhakrishnan, Bala; Hunter, Jerry L.; Sohn, Yongho; Coffey, Kevin R.; Murch, Graeme E.; Belova, Irina V.

    2014-09-23

    Tracer diffusivities provide the most fundamental information on diffusion in materials and are the foundation of robust diffusion databases. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS) based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. Experimental procedures & techniques that are utilized for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-high vacuum (UHV) system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for the correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is discussed. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (1954) was found to be a good representation of both types of diffusion data that cover a broad range of temperatures between 250 - 627° C (523 900 K).

  15. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.

    PubMed

    Zigan, Lars; Trost, Johannes; Leipertz, Alfred

    2016-02-20

    This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations. PMID:26906600

  16. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.

    PubMed

    Zigan, Lars; Trost, Johannes; Leipertz, Alfred

    2016-02-20

    This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations.

  17. Impact of non-idealities in gas-tracer tests on the estimation of reaeration, respiration, and photosynthesis rates in streams.

    PubMed

    Knapp, Julia L A; Osenbrück, Karsten; Cirpka, Olaf A

    2015-10-15

    Estimating respiration and photosynthesis rates in streams usually requires good knowledge of reaeration at the given locations. For this purpose, gas-tracer tests can be conducted, and reaeration rate coefficients are determined from the decrease in gas concentration along the river stretch. The typical procedure for analysis of such tests is based on simplifying assumptions, as it neglects dispersion altogether and does not consider possible fluctuations and trends in the input signal. We mathematically derive the influence of these non-idealities on estimated reaeration rates and how they are propagated onto the evaluation of aerobic respiration and photosynthesis rates from oxygen monitoring. We apply the approach to field data obtained from a gas-tracer test using propane in a second-order stream in Southwest Germany. We calculate the reaeration rate coefficients accounting for dispersion as well as trends and uncertainty in the input signals and compare them to the standard approach. We show that neglecting dispersion significantly underestimates reaeration, and results between sections cannot be compared if trends in the input signal of the gas tracer are disregarded. Using time series of dissolved oxygen and the various estimates of reaeration, we infer respiration and photosynthesis rates for the same stream section, demonstrating that the bias and uncertainty of reaeration using the different approaches significantly affects the calculation of metabolic rates.

  18. Salt marsh ecosystem biogeochemical responses to nutrient enrichment: a paired 15N tracer study.

    PubMed

    Drake, D C; Peterson, Bruce J; Galván, Kari A; Deegan, Linda A; Hopkinson, Charles; Johnson, J Michael; Koop-Jakobsen, K; Lemay, Lynsey E; Picard, Christian

    2009-09-01

    We compared processing and fate of dissolved NO3- in two New England salt marsh ecosystems, one receiving natural flood tide concentrations of approximately 1-4 micromol NO3-/ L and the other receiving experimentally fertilized flood tides containing approximately 70-100 micromol NO3-/ L. We conducted simultaneous 15NO3- (isotope) tracer additions from 23 to 28 July 2005 in the reference (8.4 ha) and fertilized (12.4 ha) systems to compare N dynamics and fate. Two full tidal cycles were intensively studied during the paired tracer additions. Resulting mass balances showed that essentially 100% (0.48-0.61 mol NO3-N.ha(-1).h(-1)) of incoming NO3- was assimilated, dissimilated, sorbed, or sedimented (processed) within a few hours in the reference system when NO3- concentrations were 1.3-1.8 micromol/L. In contrast, only 50-60% of incoming NO3- was processed in the fertilized system when NO3- concentrations were 84-96 micromol/L; the remainder was exported in ebb tidewater. Gross NO3- processing was approximately 40 times higher in the fertilized system at 19.34-24.67 mol NO3-N.ha(-1).h(-1). Dissimilatory nitrate reduction to ammonium was evident in both systems during the first 48 h of the tracer additions but <1% of incoming 15NO3- was exported as 15NH4+. Nitrification rates calculated by 15NO3- dilution were 6.05 and 4.46 mol.ha(-1).h(-1) in the fertilized system but could not be accurately calculated in the reference system due to rapid (<4 h) NO3- turnover. Over the five-day paired tracer addition, sediments sequestered a small fraction of incoming NO3-, although the efficiency of sequestration was 3.8% in the reference system and 0.7% in the fertilized system. Gross sediment N sequestration rates were similar at 13.5 and 12.6 mol.ha(-1).d(-1), respectively. Macrophyte NO3- uptake efficiency, based on tracer incorporation in aboveground tissues, was considerably higher in the reference system (16.8%) than the fertilized system (2.6%), although bulk uptake of NO3

  19. Isotopic analysis and multi tracer tests to study groundwater circulation in a landslide in Southern Alps

    NASA Astrophysics Data System (ADS)

    Pera, Sebastian; Marzocchi, Roberto; Bronzini, Simona

    2014-05-01

    Understanding groundwater circulation in landslides is often necessary to assess their dynamics and forecast movements. Fontana landslide is placed in Canton Ticino, its main body is constituted by gneiss, that is covered by moraine and other deposits related to the mass movements like debris flows and, rock fall. Gneiss that originally has low hydraulic conductivity increases their aquifer properties due to weathering and fracture presence. In fact several springs are present in across the landslide some of them having discharge up to 1 m3 S-1. To study groundwater circulation in the landslide body, a multi tracer test was designed and water samples taken. 3 tracers (Naphtionate, Sulphorhodamine B and Uranine) were injected underground. Injection mass was calculated by using EHTD (EPA, 2003), 2 field fluorimeters were placed in springs considered to be the main water discharge of the system for continuous monitoring. Other springs with smaller discharge scattered along the landslide body were monitored by using charcoal bags. Water samples also were taken for chemical and stable isotopes analysis. The tracers' presence was also monitored in the river crossing the area collecting surface flow from snowmelt and springs. Even if the landslide has a small area, isotopic composition of water from springs shows clear differences. All samples plot close to the local meteoric water line, and an altitude effect is visible. Chemical composition is relatively uniform however some differences can also be seen. Concerning tracers the only that arrived at monitored points was uranine, and it was detected in the charcoal bags. Considering tracer concentration in ppm, in the charcoal and travel times to restitution points was possible to have conceptual model for groundwater flow across the landslide. Circulation is rapid and recharge controlled by snowmelt in spring and precipitation in late spring to autumn. Snow accumulates at the top of the landslide where an elongated

  20. Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry

    SciTech Connect

    Elias, V.O.; Simoneit, B.R.T. ); Pereira, A.S.; Cardoso, J.N. ); Cabral, J.A. )

    1999-07-15

    High-temperature high-resolution gas chromatography (HTGC) is an established technique for the separation of complex mixtures of high molecular weight (HMW) compounds which do not elute when analyzed on conventional GC columns. The combination of this technique with mass spectrometry is not so common and application to aerosols is novel. The HTGC and HTGC-MS analyses of smoke samples taken by particle filtration from combustion of different species of plants provided the characterization of various classes of HMW compounds reported to occur for the first time in emissions from biomass burning. Among these components are a series of wax esters with up to 58 carbon numbers, aliphatic hydrocarbons, triglycerides, long chain methyl ketones, alkanols and a series of triterpenyl fatty acid esters which have been characterized as novel natural products. Long chain fatty acids with more than 32 carbon numbers are not present in the smoke samples analyzed. The HMW compounds in smoke samples from the burning of plants from Amazonia indicate the input of directly volatilized natural products in the original plants during their combustion. However, the major organic compounds extracted from smoke consist of a series of lower molecular weight polar components, which are not natural products but the result of the thermal breakdown of cellulose and lignin. In contrast, the HMW natural products may be suitable tracers for specific sources of vegetation combustion because they are emitted as particles without thermal alternation in the smoke and can thus be related directly to the original plant material.

  1. Neonatal Respiratory Diseases in the Newborn Infant: Novel Insights from Stable Isotope Tracer Studies.

    PubMed

    Carnielli, Virgilio P; Giorgetti, Chiara; Simonato, Manuela; Vedovelli, Luca; Cogo, Paola

    2016-01-01

    Respiratory distress syndrome is a common problem in preterm infants and the etiology is multifactorial. Lung underdevelopment, lung hypoplasia, abnormal lung water metabolism, inflammation, and pulmonary surfactant deficiency or disfunction play a variable role in the pathogenesis of respiratory distress syndrome. High-quality exogenous surfactant replacement studies and studies on surfactant metabolism are available; however, the contribution of surfactant deficiency, alteration or dysfunction in selected neonatal lung conditions is not fully understood. In this article, we describe a series of studies made by applying stable isotope tracers to the study of surfactant metabolism and lung water. In a first set of studies, which we call 'endogenous studies', using stable isotope-labelled intravenous surfactant precursors, we showed the feasibility of measuring surfactant synthesis and kinetics in infants using several metabolic precursors including plasma glucose, plasma fatty acids and body water. In a second set of studies, named 'exogenous studies', using stable isotope-labelled phosphatidylcholine tracer given endotracheally, we could estimate surfactant disaturated phosphatidylcholine pool size and half-life. Very recent studies are focusing on lung water and on the endogenous biosynthesis of the surfactant-specific proteins. Information obtained from these studies in infants will help to better tailor exogenous surfactant treatment in neonatal lung diseases.

  2. Neonatal Respiratory Diseases in the Newborn Infant: Novel Insights from Stable Isotope Tracer Studies.

    PubMed

    Carnielli, Virgilio P; Giorgetti, Chiara; Simonato, Manuela; Vedovelli, Luca; Cogo, Paola

    2016-01-01

    Respiratory distress syndrome is a common problem in preterm infants and the etiology is multifactorial. Lung underdevelopment, lung hypoplasia, abnormal lung water metabolism, inflammation, and pulmonary surfactant deficiency or disfunction play a variable role in the pathogenesis of respiratory distress syndrome. High-quality exogenous surfactant replacement studies and studies on surfactant metabolism are available; however, the contribution of surfactant deficiency, alteration or dysfunction in selected neonatal lung conditions is not fully understood. In this article, we describe a series of studies made by applying stable isotope tracers to the study of surfactant metabolism and lung water. In a first set of studies, which we call 'endogenous studies', using stable isotope-labelled intravenous surfactant precursors, we showed the feasibility of measuring surfactant synthesis and kinetics in infants using several metabolic precursors including plasma glucose, plasma fatty acids and body water. In a second set of studies, named 'exogenous studies', using stable isotope-labelled phosphatidylcholine tracer given endotracheally, we could estimate surfactant disaturated phosphatidylcholine pool size and half-life. Very recent studies are focusing on lung water and on the endogenous biosynthesis of the surfactant-specific proteins. Information obtained from these studies in infants will help to better tailor exogenous surfactant treatment in neonatal lung diseases. PMID:27251153

  3. A rapid method for the measurement of sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), and Halon 1211 (CF2ClBr) in hydrologic tracer studies

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, L. Niel

    2010-01-01

    A rapid headspace method for the simultaneous laboratory determination of intentionally introduced hydrologic tracers, sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), Halon 1211 (CF2ClBr), and other halocarbons in water and gases is described. The high sensitivity of the procedure allows for introduction of minimal tracer mass (a few grams) into hydrologic systems with a large dynamic range of analytical detection (dilutions to 1:108). Analysis times by gas chromatography with electron capture detector are less than 1 min for SF6; about 2 min for SF6 and SF5CF3; and 4 min for SF6, SF5CF3, and Halon 1211. Many samples can be rapidly collected, preserved in stoppered septum bottles, and analyzed at a later time in the laboratory. Examples are provided showing the effectiveness of the gas tracer test studies in varied hydrogeological settings.

  4. Universal model for accurate calculation of tracer diffusion coefficients in gas, liquid and supercritical systems.

    PubMed

    Lito, Patrícia F; Magalhães, Ana L; Gomes, José R B; Silva, Carlos M

    2013-05-17

    In this work it is presented a new model for accurate calculation of binary diffusivities (D12) of solutes infinitely diluted in gas, liquid and supercritical solvents. It is based on a Lennard-Jones (LJ) model, and contains two parameters: the molecular diameter of the solvent and a diffusion activation energy. The model is universal since it is applicable to polar, weakly polar, and non-polar solutes and/or solvents, over wide ranges of temperature and density. Its validation was accomplished with the largest database ever compiled, namely 487 systems with 8293 points totally, covering polar (180 systems/2335 points) and non-polar or weakly polar (307 systems/5958 points) mixtures, for which the average errors were 2.65% and 2.97%, respectively. With regard to the physical states of the systems, the average deviations achieved were 1.56% for gaseous (73 systems/1036 points), 2.90% for supercritical (173 systems/4398 points), and 2.92% for liquid (241 systems/2859 points). Furthermore, the model exhibited excellent prediction ability. Ten expressions from the literature were adopted for comparison, but provided worse results or were not applicable to polar systems. A spreadsheet for D12 calculation is provided online for users in Supplementary Data.

  5. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  6. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    DOE PAGES

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; et al

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  7. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon

    2016-04-01

    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  8. Field Studies of Streamflow Generation Using Natural and Injected Tracers on Bickford and Walker Branch Watersheds

    SciTech Connect

    Genereux, D.

    1992-01-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate [Rn]{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and {sup 222}Rn volatilization from, the study reach. The second stage involved quantitative comparison of [Rn]{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach. The method was first applied to a 34 m stream reach at Bickford during baseflow; results suggested that {ge} 70% of the lateral inflow could be considered vadose zone water (water which had been in a saturated zone for less than a few days), and the remainder ''soil groundwater'' or ''saturated zone water'' (which had a longer residence time in a soil saturated zone). The method was then applied to two stream reaches on the West Fork of Walker Branch over a wide range of flow conditions; four springs were also investigated. It was found that springwater and inflow to the stream could be viewed as a mixture of water from three end members: the two defined at Bickford (vadose zone water and soil groundwater) and a third (bedrock groundwater) to account for the movement of water through fractured dolomite bedrock. Calcium was used as a second naturally-occurring tracer to distinguish bedrock groundwater from the other two end members. The behavior indicated by the three

  9. Using tracer technique to study the flow behavior of surfactant foam.

    PubMed

    Tsai, Yih-Jin; Chou, Feng-Chih; Cheng, Shin-Jen

    2009-07-30

    Surfactant foam was used to remove absorbed hydrocarbons from soils. The nature and extent of the foam pathway decide the efficiency of this technology. The characteristics and behavior of foam flow are difficult to visually observe. In this study, laboratory sandbox experiments were performed to estimate the flow behavior of surfactant foam and thus elucidate the properties and flow behavior of surfactant foam. To quantitatively determine the distribution of foam and evaluate accurately the flow field of foam in the soil, this study designed a special technique, applying micro-scale iron powder as a tracer. The foam generated with 4% (w/v) mixed solution of Span 60 and sodium dodecyl sulfate (SDS) showed an excellent stability and quality, which made it particularly apt for this study. The results indicated that the foam flows through the zone above the clay planes and also flows through the zone between the clay planes. The heterogeneous sand does not inhibit the invasion of foam flow. Moreover, the results of tracer tests and photographs of the foam distributions in sandbox were identical in the behavior of foam flow. This knowledge is valuable for providing insight into the foam remediation of contaminated soil.

  10. Using a Coupled Surface water/ Groundwater Model to Study Heat as a Tracer in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Reeves, J.; Hatch, C. E.; Letcher, B. H.

    2014-12-01

    Heat as a tracer has proven to be an effective method for quantifying groundwater - surface water interactions. However, there remains a lack of controlled, experimental data to assess fundamental aspects of heat transport in porous media. There may be a disconnect between field and model-based studies, because: 1) model results have yet to be tested against data from controlled laboratory experiments, and 2) there are often too many variables in field studies to be thoroughly modeled without simplification. This study is comprised of a three-dimensional transient numerical model of heat flow through a porous media coupled with steady state fluid flow using COMSOL Multiphysics. Pressure and temperature outputs are compared to data measured in a laboratory flume. The 3D model enables exploration of the effects of oblique flow paths through a stream bed and/or banks with a (stream) surface water upper boundary on diurnal temperature records. By imposing known flow or temperature gradients in any direction, we can analyze the effects of these diverse gradients on the veracity of current heat as a tracer methods (which assume unidirectional flow) as well as develop valid error statistics for these methods in the presence of non-vertical flow.

  11. SF6 Tracer Release Study: A Contaminant Fate Study in Newtown Creek

    NASA Astrophysics Data System (ADS)

    Schmieder, P. J.; Ho, D. T.; Peter, S.; Simpson, H. J.; Flores, S.; Dugan, W. A.

    2004-12-01

    Newtown Creek is a 5.5km creek that discharges into the East River, a 25km strait connecting Long Island Sound to the north and the New York Harbor to the south. Surface runoff dominates the freshwater input into the creek, for natural tributaries no longer exist. The areas directly adjacent to the creek are highly industrialized, and New York City's largest Water Pollution Control Plant (WPCP) discharges directly into creek. In August 2004, we injected sulfur hexafluoride (SF6) into Newtown creek to study the fate of oil seeping into the creek from an underground oil spill and the fate of nutrient rich effluent from the WPCP. We monitored SF6 in Newtown Creek, the East River, and the Upper Bay of New York Harbor for 7 consecutive days following the injection in order to investigate the spreading patterns and transport mechanics of waters exiting the creek, and to determine the ultimate fate of the contaminants/solutes originating in Newtown Creek. Dissolved oxygen (DO) measurements were collected simultaneously with SF6 measurements. A strong DO gradient exists in the creek, where waters in the upper reaches are anoxic. We use SF6 data to calculate mean residence times for Newtown Creek waters. SF6 was detected above background concentrations approximately 15km to the south of the creek at the Verrazano Bridge only 1 day after the tracer injection. By combining the movements of the SF6 distribution, the position of the oxygen gradient, and the residence time of Newtown Creek water, we can determine a lower boundary for oxygen consumption rates.

  12. Geophysical Methods, Tracer Leakage, and Flow Modeling Studies at the West Pearl Queen Carbon Sequestration/EOR Pilot Site

    NASA Astrophysics Data System (ADS)

    Bromhal, G. S.; Wilson, T. H.; Wells, A.; Diehl, R.; Smith, D. H.

    2003-12-01

    Recently, a few thousand tons of CO2 were injected into the West Pearl Queen field, a depleted oil reservoir in southeastern New Mexico, for a pilot carbon sequestration project. Small amounts of 3 different perfluorocarbon tracers were injected with the CO2. Approximately 50 capillary absorption tube samplers (CATS) were located across the field within 2m of the grounds surface to detect the tracers in extremely small (~10-13L) quantities. After only several days, the CATS detected quantities of tracers at distances of up to 350m from the injection well. Greater amounts of tracers were detected in the different directions. The underground transport mechanism(s) are uncertain; however, appearance of tracer in the CATS after only a 6 day period suggests that CO2 movement may have occurred through near-surface processes. Subsequent tracer measurements made over 10 and 54 day time periods revealed continued tracer leakage. To try to understand the tracer information, we conducted lineament interpretations of the area using a black and white aerial photo taken in 1949, digital orthophotos, and Landsat TM imagery. Lineament interpretations revealed distinct northeast and northwest trending lineament sets. These directions coincided roughly with the direction of tracer-leakage into areas northwest and southwest of the injection well. The near-surface geology consists of a few-feet thick veneer of late Pleistocene and Holocene sand dunes covering the middle Pleistocene Mescalero caliche. A survey of the caliche was made using ground penetrating radar (GPR) to attempt to identify any preferential migration pathways. Modeling studies also were performed to identify the potential leakage pathways at the site. Because of the relatively fast appearance of tracers at large distances from the injection well, simple diffusion through the surface layers was ruled out. Wind patterns in the area have also made transport through the atmosphere and back into the ground highly unlikely

  13. Dual tracer autoradiographic study with thallium-201 and radioiodinated fatty acid in cardiomyopathic hamsters

    SciTech Connect

    Kurata, C.; Kobayashi, A.; Yamazaki, N.

    1989-01-01

    To investigate the usefulness of myocardial scintigraphy with radioiodinated 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) in cardiomyopathy, quantitative dual tracer autoradiographic study with /sup 201/Tl and (/sup 125/I)BMIPP was performed in 27 cardiomyopathic Bio 14.6 Syrian hamsters and eight normal hamsters. Furthermore, 16 Bio 14.6 Syrian hamsters aged 21 days were divided into verapamil-treated (during 70 days) and control groups (respectively, n = 8), and autoradiography with /sup 201/Tl and (/sup 125/I)BMIPP was performed. Quantitative autoradiography demonstrated an uncoupling of /sup 201/Tl and (/sup 125/I)BMIPP distributions and a regional heterogeneity of (/sup 125/I)BMIPP distribution in cardiomyopathic hamsters aged more than 2 mo, while normal hamsters showed only mild heterogeneity of (/sup 125/I)BMIPP distribution without an uncoupling of tracers. Age-matched comparison between normal and cardiomyopathic hamsters (5-8 mo old) demonstrated that a difference between their (/sup 125/I)BMIPP distributions are more marked than that between their /sup 201/Tl distributions. Furthermore, (/sup 125/I)BMIPP visualized effects of verapamil on cardiomyopathy more distinctly than did /sup 201/Tl. In conclusion, myocardial imaging with (/sup 123/I)BMIPP could be useful for investigating cardiomyopathy and evaluating the efficacy of therapeutic intervention in patients with cardiomyopathy.

  14. Accounting for Dispersion and time-dependent Input Signals during Gas Tracer Tests and their Effect on the Estimation of Reaeration, Respiration and Photosynthesis in Streams

    NASA Astrophysics Data System (ADS)

    Knapp, Julia; Osenbrück, Karsten; Olaf, Cirpka

    2015-04-01

    The variation of dissolved oxygen (DO) in streams, are caused by a number of processes, of which respiration and primary production are considered to be the most important ones (Odum, 1956; Staehr et al., 2012). Measuring respiration and photosynthesis rates in streams based on recorded time series of DO requires good knowledge on the reaeration fluxes at the given locations. For this, gas tracer tests can be conducted, and reaeration coefficients determined from the observed decrease in gas concentration along the stretch (Genereux and Hemond, 1990): ( ) --1- -cup- k2 = t2 - t1 ln Rcdown (1) with the gas concentrations measured at an upstream location, cup[ML-3], and a downstream location, cdown. t1[T] andt2 [T] denote the measurement times at the two locations and R [-] represents the recovery rate which can also be obtained from conservative tracer data. The typical procedure for analysis, however, contains a number of assumptions, as it neglects dispersion and does not take into account possible fluctuations of the input signal. We derive the influence of these aspects mathematically and illustrate them on the basis of field data obtained from a propane gas tracer test. For this, we compare the reaeration coefficients obtained from approaches with dispersion and/or a time-dependent input signals to the standard approach. Travel times and travel time distributions between the different measurement stations are obtained from a simultaneously performed conservative tracer test with fluorescein. In order to show the carry-over effect to metabolic rates, we furthermore estimate respiration and photosynthesis rates from the calculated reaeration coefficients and measured oxygen data. This way, we are able to show that neglecting dispersion significantly underestimates reaeration, and the impact of the time-dependent input concentration cannot be disregarded either. When estimated reaeration rates are used to calculate respiration and photosynthesis from measured

  15. Investigation of Contaminant Transport and Dispersion in New York Harbor by a High Resolution SF6 Tracer Study

    NASA Astrophysics Data System (ADS)

    Caplow, T.; Schlosser, P.; Ho, D. T.

    2002-12-01

    Sulfur hexafluoride (SF6) has been used successfully as a deliberate tracer for rivers, estuaries, and coastal areas, due to its inert nature, non-toxicity, and extremely low detection limit. An automated, high-resolution SF6 measurement system mounted on a boat was recently developed for several projects on the Hudson River. The system has a sampling interval of two minutes and a detection limit of 1 x 10-14 mol L-1. Real-time data visualization enables revisions of sampling strategy during the experiment. A single injection has allowed observation of advection rates, dispersion processes, and air-water gas exchange for up to two weeks, and longer experiments are possible. This equipment, with minor modifications, was applied to New York Harbor in July 2002. New York Harbor is one of the busiest seaports in the United States, processing nearly \\100 billion in cargo each year. Most of the shipping facilities are located in Newark Bay (approximately 15 km^{2}) or in two adjacent channels: the Kill van Kull (6 km long) and the Arthur Kill (20 km long). Newark Bay, which is mostly saline, is fed by the Hackensack and Passaic Rivers, both of which flow through heavily industrialized areas. Ultimately, these waters drain through the Kills to Raritan Bay and the Atlantic Ocean. Due to a combination of point sources, runoff, wastewater treatment plants, and emissions from the shipping industry, Newark Bay and the Kills receive a large volume and variety of contaminants, including petroleum, heavy metals, PCBs, and dioxins. In addition, much of the area is subject to ongoing and extensive navigational dredging, causing widespread re-suspension of previously deposited contaminants. A small quantity (ca. 2 mols) of SF_{6}$ was injected into northern Newark Bay to investigate the spreading of water throughout the Bay, the Kills, and the tidal portions of the Passaic and Hackensack Rivers. The tracer was successfully monitored across most of this area for 12 consecutive days

  16. 13C-Tracer and Gas Chromatography-Mass Spectrometry Analyses Reveal Metabolic Flux Distribution in the Oleaginous Microalga Chlorella protothecoides1[C][W][OA

    PubMed Central

    Xiong, Wei; Liu, Lixia; Wu, Chao; Yang, Chen; Wu, Qingyu

    2010-01-01

    The green alga Chlorella protothecoides has received considerable attention because it accumulates neutral triacylglycerols, commonly regarded as an ideal feedstock for biodiesel production. In order to gain a better understanding of its metabolism, tracer experiments with [U-13C]/[1-13C]glucose were performed with heterotrophic growth of C. protothecoides for identifying the metabolic network topology and estimating intracellular fluxes. Gas chromatography-mass spectrometry analysis tracked the labeling patterns of protein-bound amino acids, revealing a metabolic network consisting of the glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle with inactive glyoxylate shunt. Evidence of phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme activity was also obtained. It was demonstrated that the relative activity of the pentose phosphate pathway to glycolysis under nitrogen-limited environment increased, reflecting excess NADPH requirements for lipid biosynthesis. Although the growth rate and cellular oil content were significantly altered in response to nitrogen limitation, global flux distribution of C. protothecoides remained stable, exhibiting the rigidity of central carbon metabolism. In conclusion, quantitative knowledge on the metabolic flux distribution of oleaginous alga obtained in this study may be of value in designing strategies for metabolic engineering of desirable bioproducts. PMID:20720172

  17. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study. Progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1995-12-01

    Laboratory work on tracers to be used for C-Well tracer tests is complete. Solubilities for fluorinated benzoic acids in J13 water were determined and the stability of these compounds to both degradation and sorption on ground tuff measured in batch and column tests.

  18. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    SciTech Connect

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-05-12

    A key parameter governing the performance and life-time of a Hot Fractured Rock (HFR) reservoir is the effective heat transfer area between the fracture network and the matrix rock. We report on numerical modeling studies into the feasibility of using tracer tests for estimating heat transfer area. More specifically, we discuss simulation results of a new HFR characterization method which uses surface-sorbing tracers for which the adsorbed tracer mass is proportional to the fracture surface area per unit volume. Sorption in the rock matrix is treated with the conventional formulation in which tracer adsorption is volume-based. A slug of solute tracer migrating along a fracture is subject to diffusion across the fracture walls into the adjacent rock matrix. Such diffusion removes some of the tracer from the fluid in the fractures, reducing and retarding the peak in the breakthrough curve (BTC) of the tracer. After the slug has passed the concentration gradient reverses, causing back-diffusion from the rock matrix into the fracture, and giving rise to a long tail in the BTC of the solute. These effects become stronger for larger fracture-matrix interface area, potentially providing a means for estimating this area. Previous field tests and modeling studies have demonstrated characteristic tailing in BTCs for volatile tracers in vapor-dominated reservoirs. Simulated BTCs for solute tracers in single-phase liquid systems show much weaker tails, as would be expected because diffusivities are much smaller in the aqueous than in the gas phase, by a factor of order 1000. A much stronger signal of fracture-matrix interaction can be obtained when sorbing tracers are used. We have performed simulation studies of surface-sorbing tracers by implementing a model in which the adsorbed tracer mass is assumed proportional to the fracture-matrix surface area per unit volume. The results show that sorbing tracers generate stronger tails in BTCs, corresponding to an effective

  19. A tracer study of ventilation in the Japan/East Sea

    NASA Astrophysics Data System (ADS)

    Postlethwaite, C. F.; Rohling, E. J.; Jenkins, W. J.; Walker, C. F.

    2005-06-01

    During the Circulation Research in East Asian Marginal Seas (CREAMS) summer cruises in 1999, a suite of samples was collected for tracer analysis. Oxygen isotopes combined with tritium-helium ventilation timescales and noble gas measurements give unique insights into the ventilation of water masses in the Japan/East Sea (JES). In particular, noble gases and oxygen isotopes are indicators of brine rejection, which may assist in explaining the recent changes observed in the ventilation of the JES. Oxygen isotope data presented here indicate that both thermally driven convection and brine rejection have played significant roles in deep-water formation but that brine rejection is unlikely to be a significant contributor at the moment. A 6-box ventilation model of the JES, calibrated with tritium and helium-3 measurements, performed better when a significant decrease of dense-water formation rates in the mid-1960s was incorporated. However, the model calculations suggest that Japan Sea Intermediate Water formation is still occurring. Subduction of sea-ice melt water may be a significant ventilation mechanism for this water mass, based on an argon saturation minimum at the recently ventilated salinity minimum in the northwestern sector of the JES. The salinity and oxygen isotope budgets imply a potential bottom-water formation rate of 3.97±0.89×10 12 m 3 yr -1 due to brine rejection, which could account for a time averaged fraction of between 25% and 35% of the ventilation of subsurface water formation in the JES.

  20. ALMA Observations of the Submillimeter Dense Molecular Gas Tracers in the Luminous Type-1 Active Nucleus of NGC 7469

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kohno, Kotaro; Aalto, Susanne; Doi, Akihiro; Espada, Daniel; Fathi, Kambiz; Harada, Nanase; Hatsukade, Bunyo; Hattori, Takashi; Hsieh, Pei-Ying; Ikarashi, Soh; Imanishi, Masatoshi; Iono, Daisuke; Ishizuki, Sumio; Krips, Melanie; Martín, Sergio; Matsushita, Satoki; Meier, David S.; Nagai, Hiroshi; Nakai, Naomasa; Nakajima, Taku; Nakanishi, Kouichiro; Nomura, Hideko; Regan, Michael W.; Schinnerer, Eva; Sheth, Kartik; Takano, Shuro; Tamura, Yoichi; Terashima, Yuichi; Tosaki, Tomoka; Turner, Jean L.; Umehata, Hideki; Wiklind, Tommy

    2015-09-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 1 observations of the central kiloparsec region of the luminous type 1 Seyfert galaxy NGC 7469 with unprecedented high resolution (0.″5 ×0.″4 = 165 × 132 pc) at submillimeter wavelengths. Utilizing the wide bandwidth of ALMA, we simultaneously obtained HCN(4-3), HCO+(4-3), CS(7-6), and partially CO(3-2) line maps, as well as the 860 μm continuum. The region consists of the central ˜1″ component and the surrounding starburst ring with a radius of ˜1.″5-2.″5. Several structures connect these components. Except for CO(3-2), these dense gas tracers are significantly concentrated toward the central ˜1″, suggesting their suitability to probe the nuclear regions of galaxies. Their spatial distribution resembles well those of centimeter and mid-infrared continuum emissions, but it is anticorrelated with the optical one, indicating the existence of dust-obscured star formation. The integrated intensity ratios of HCN(4-3)/HCO+(4-3) and HCN(4-3)/CS(7-6) are higher at the active galactic nucleus (AGN) position than at the starburst ring, which is consistent with our previous findings (submillimeter-HCN enhancement). However, the HCN(4-3)/HCO+(4-3) ratio at the AGN position of NGC 7469 (1.11 ± 0.06) is almost half of the corresponding value of the low-luminosity type 1 Seyfert galaxy NGC 1097 (2.0 ± 0.2), despite the more than two orders of magnitude higher X-ray luminosity of NGC 7469. But the ratio is comparable to that of the close vicinity of the AGN of NGC 1068 (˜1.5). Based on these results, we speculate that some heating mechanisms other than X-ray (e.g., mechanical heating due to an AGN jet) can contribute significantly for shaping the chemical composition in NGC 1097.

  1. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    SciTech Connect

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; Davis, B.

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  2. Rocky Flats 1990--91 winter validation tracer study: Volume 1

    SciTech Connect

    Brown, K.J.

    1991-10-01

    During the winter of 1990--91, North American Weather Consultants (NAWC) and its subcontractor, ABB Environmental Services (ABBES), conducted a Winter Validation Study (WVS) for EG&G Rocky Flats involving 12 separate tracer experiments conducted between February 3 and February 19, 1991. Six experiments were conducted during nighttime hours and four experiments were conducted during daytime hours. In addition, there was one day/night and one night/day transitional experiment conducted. The primary purpose of the WVS was to gather data to further the approval process for the Terrain Responsive Atmospheric Code (TRAC). TRAC is an atmospheric dispersion model developed and operated at the Department of Energy`s (DOE`s) Rocky Flats Plant (RFP) north of Denver, Colorado. A secondary objective was to gather data that will serve to validate the TRAC model physics.

  3. Sensory innervation of the suprarenal gland in the albino rat: a fluorescent tract tracer study.

    PubMed

    Sangari, S K; Khatri, K; Sengupta, P

    1998-01-01

    The afferent innervation of the suprarenal gland was studied by using a fluorescent tract tracer in the adult albino rat. The left suprarenal gland was injected slowly with 5 microl of 2% aqueous suspension of Fast blue. After a survival period of 4-5 days, the dorsal root ganglia were dissected out and 15-microm-thick plastic (JB 4) sections were examined under the fluorescent microscope. The labelled neurons were seen from the third thoracic to second lumbar dorsal root ganglia, ipsilateral to the site of injection with maximum concentration from T6 to T11. These primary sensory neurons were round to oval in shape, varied from 7 microm to 40 microm in size, and were distributed randomly in the dorsal root ganglia. The labelling of the primary sensory neurons in the dorsal root ganglia confirms the presence of sensory nerve endings in the suprarenal gland that may be responsible for the vascular distension and hormonal release.

  4. Conducting Graduate Tracer Studies for Quality Assurance in East African Universities: A Focus on Graduate Students Voices on Quality Culture

    ERIC Educational Resources Information Center

    Badiru, Egesah Omar; Wahome, Mary

    2016-01-01

    The purpose of this paper is to propose a guide for graduate trace studies (GTS) to be adopted by universities and other higher education institutions (HEIs) in East Africa. Their essential role notwithstanding, graduate tracer studies present viable opportunities through which quality assurance (QA) can be institutionalized and mainstreamed in…

  5. Studying coupled hydrological and micro-biological processes by means of tracer injections and mathematical models

    NASA Astrophysics Data System (ADS)

    Worman, A.; Kjellin, J. P.; Lindahl, A.; Johansson, H.

    2005-05-01

    To throw light on coupled hydrological, chemical and microbiological processes in treatment wetlands, this study uses both radioactive water and reactive tracers. A tracer mixture consisting of tritiated water, P-32 in the form of PO4- and N-15 in the form of N2O was injected to the 2.6 hectare large Ekeby wetland, Sweden. From the breakthrough curves of tritium, the mean residence time of water in pond 1 can be estimated to be about 3 to 3.5 days. The total injected activity of phosphorus was 17.98 GBq and about 13.73 GBq was recovered at the outlet during the investigation period ending 10 days and 16 hours after the start of the injection. This implies that 24% of the phosphate solution was removed in the November - December period in which the experiment was performed. The total injected amount of N-15 was 42.1 grams and 29.6 grams was retained at the effluent. This means that 30% of the nitrogen was either retained in the wetland or removed due to denitrification. An analysis of regular monitoring data shows that the annual removal rate in the entire wetland (each flow line passes two ponds in series) is about 50% for total phosphorus and 25% for total nitrogen. Probably, the most important mechanism for this removal is adsorption onto particulate matter and deposition. Analyses of vegetation material indicate that a certain (minor) fraction was adsorbed to submersed and emerging macrophytes, like Elodera Canadensis, Thypa sp. (Cattail) and Glyceria sp. (Manna grass). A 2D mathematical model for both water flow and solute transport could explain the N-transport through the wetland. The model accounts for the rate-limited exchange with bed sediments and denitrification in the water and bed sediment. Independent batch tests indicate a particularly high microbiological activity in the bed sediments. The rate-limited exchange with the bed limits also the denitrification capacity of the wetland.

  6. Hydrodynamics of the bank storage effect--An integrated tracer and modeling study

    SciTech Connect

    Hibbs, B.J.; Sharp, J.M. Jr. . Dept. of Geological Sciences)

    1992-01-01

    The hydrodynamics of the bank storage effect were studied in an integrated modeling and tracer investigation along the Lower Colorado River of Texas. Variations in dissolved solids between river water and ground water created ideal conditions for analysis of stream/ground-water interaction. Three sites were instrumented with observation-well and stream-stage recorders. At each site, head, temperature, and chemical data were collected during low-flow, high-flow, and flood-wave conditions. The authors observed that aquifer head responded relatively rapidly to changing stream stage, but tracer breakthrough curves were generally not observed even for wells very close to the Colorado River. The water-table response lagged behind the average head response in the observation wells. This is created by an elastic response in the shallow, unconfined aquifer to rapid changes in stream stage. In one case, a stratified salinity profile was observed in the alluvial wells prior to the flood peak. The authors infer that the lower salinity water in the upper portion of the thin aquifer was the result of recharge from unusually high winter precipitation. The salinity profile became first more uniformly saline and then less as the river water finally reached the well. They modeled aquifer responses with HST3D and, although this aquifer is clearly recognizable as an unconfined aquifer, the confined model gave a superior simulation. Both modeling and field data support the hypothesis of elastic head recovery response in the unconfined aquifer and demonstrate the need for caution in using alluvial response in the unconfined aquifer and demonstrate the need for caution in using alluvial responses to stream stage fluctuations to determine hydraulic diffusivity. Partial differential equations are presented which consider the elastic response.

  7. Predictive value of tracer studies for /sup 131/I treatment in hyperthyroid cats

    SciTech Connect

    Broome, M.R.; Turrel, J.M.; Hays, M.T.

    1988-02-01

    In 76 cats with hyperthyroidism, peak thyroidal radioiodine (/sup 131/I) uptakes and effective half-lives were determined after administration of tracer and therapeutic activities of /sup 131/I. In 6 additional hyperthyroid cats, only peak thyroidal uptakes after administration of tracer and therapeutic activities of /sup 131/I were determined. Good correlation was found between peak thyroidal uptakes of tracer and therapeutic /sup 131/I; however, only fair correlation was observed between effective half-lives. In 79% of the cats, the effective half-life for therapeutic /sup 131/I was longer than that for tracer /sup 131/I. After administration of therapeutic activity of /sup 131/I, monoexponential and biphasic decay curves were observed in 51 and 16 cats, respectively. Using therapeutic kinetic data, radiation doses to the thyroid gland were calculated retrospectively on the basis of 2 methods for determining the activity of /sup 131/I administered: (1) actual administration of tracer-compensated activity and (2) hypothetic administration of uniform activity (3 mCi). Because of the good predictive ability of tracer kinetic data for the therapeutic kinetic data, the tracer-compensated radiation doses came significantly (P = 0.008) closer to the therapeutic goal than did the uniform-activity doses. In addition, the use of tracer kinetic information reduced the extent of the tendency for consistently high uniform-activity doses. A manual method for acquiring tracer kinetic data was developed and was an acceptable alternative to computerized techniques. Adoption of this method gives individuals and institutions with limited finances the opportunity to characterize the iodine kinetics in cats before proceeding with administration of therapeutic activities of /sup 131/I.

  8. Tracer studies of transport processes in the tidal Hudson River: A comparison of SF6 and a fluorescent dye

    NASA Astrophysics Data System (ADS)

    Ho, D. T.; Schlosser, P.; Houghton, R.; Caplow, T.

    2004-12-01

    Fluorescent dyes have frequently been used to study transport processes such as net advection and longitudinal dispersion in rivers. Recently, it has been shown that sulfur hexafluoride (SF6) is a viable alternative to dyes, while offering many advantages. For example, SF6 is less expensive than dye, and has a greater dynamic range. As a result, experiments can be conducted on longer timescales and greater spatial scales. Also, because SF6 is a gas, its loss across the air-water interface can be used to quantify the gas transfer velocity, which affects the fate of volatile and semi-volatile compounds. Here, we present results from a dual tracer release conducted in the tidal Hudson River using a fluorescent dye (Fluorescein; C20H10O5Na2) and SF6. Fluorescein was surveyed for 5 days (until it was undetectable) and SF6 was surveyed for 11 days. The dye resolves initial vertical mixing on the first day, and then net advection and longitudinal dispersion on subsequent days, while the SF6 provides information on net advection and longitudinal mixing on larger spatial and longer time scales. Transport processes (net advection and longitudinal dispersion) calculated from the two methods were consistent for the first four days, and start to deviate on the fifth day when the signal to noise ratio of the dye deteriorated. Initial results indicate that for the first four days, net advection was 3.0 ± 0.1 km d-1, and longitudinal dispersion coefficients were 24.6 ± 6.6 and 19.6 ± 2.5 m2 s-1 for SF6 and dye, respectively. The SF6 results for the longer timescale and larger special scale will be discussed in the context of similar experiments conducted in other reaches of the tidal Hudson River.

  9. The Experience of Receiving and Then Losing a Scholarship: A Tracer Study of Secondary School Scholarship Recipients in Uganda

    ERIC Educational Resources Information Center

    Watson, Cathy; Chapman, David W.; Okurut, Charles Opolot

    2014-01-01

    This study reports findings of a tracer that investigated differences in the profile and subsequent experiences of scholarship recipients in Uganda who were able to complete the lower secondary school cycle (O level) without interruption (N = 174) and those that dropped out before completing their O-level cycle (N = 51), thereby losing their…

  10. Performance of Higher National Diploma of Building Technology Graduates in the Construction Industry: A Tracer Study in Kumasi Metropolis, Ghana

    ERIC Educational Resources Information Center

    Awere, E.; Edu-Buandoh, K. B. M.; Dadzie, D. K.; Aboagye, J. A.

    2016-01-01

    Building Technology graduates from Ghanaian Polytechnics seek employment in the construction industry, yet little information is known as to whether their tertiary education is really related to and meeting the actual needs of their prospective employers in the construction industry. The tracer study was conducted to ascertain the performance of…

  11. Diatoms as a tracer of hydrological connectivity: the Oak Creek case study (Oregon, USA)

    NASA Astrophysics Data System (ADS)

    Antonelli, Marta; Martínez-Carreras, Nuria; Frentress, Jay; Pfister, Laurent

    2015-04-01

    The vast heterogeneity and complexity of rainfall-runoff transformation processes expresses itself in a multitude of water sources and flowpaths - ultimately resulting in the well-known intricacy of hydrological connectivity. Pioneering work of Pfister et al. (2009) conducted in the Weierbach catchment (0.45 km2, NW Luxembourg, semi-oceanic climate) demonstrated the potential for diatoms (unicellular, eukaryotic algae) to be used as a tracer of hydrological connectivity. Diatoms originating from terrestrial habitats had been shown to be systematically flushed from the riparian areas into the stream during storm events. Here, we present a study conducted in the Oak Creek(0.17 km2, Oregon, Mediterranean climate), characterised by a large riparian area. Our first working hypothesis (H1) stipulates that diatoms are an ubiquitous tracer of fast hydrological flowpaths. The second hypothesis (H2) states that the riparian area is the major reservoir of terrestrial diatoms that contributes to the flushing process during rainfall events. A winter rainfall-runoff event was monitored in March 2012. Diatom samples were collected from soil, moss, epipelon and streamwater in order to characterise the communities along the hillslope-riparian-stream (HRS) continuum. Diatoms in each sample were also assigned to different wetness categories (according to Van Dam et al., 1994). The catchment was instrumented with an ISCO automatic streamwater sampler and the samples were analysed for conductivity, 18O, 2H, chemical elements and presence/abundance of diatoms belonging to different wetness categories. Our results show that the percentage of diatom species originating from habitats located outside of the stream evolves along the rising and falling limbs of the hydrograph. This observation confirms the event-related flushing of diatoms from terrestrial habitats to the stream and, consequently, the potential for diatoms to be used for the detection of hydrological connectivity in the

  12. Innovative techniques for the description of reservoir heterogeneity using tracers. Second technical annual progress report, October 1991--September 1992

    SciTech Connect

    Pope, G.A.; Sepehrnoori, K.

    1992-12-31

    This second annual report on innovative uses of tracers for reservoir characterization contains four sections each describing a novel use of oilfield tracers. The first section describes and illustrates the use of a new single-well tracer test to estimate wettability. This test consists of the injection of brine containing tracers followed by oil containing tracers, a shut-in period to allow some of the tracers to react, and then production of the tracers. The inclusion of the oil injection slug with tracers is unique to this test, and this is what makes the test work. We adapted our chemical simulator, UTCHEM, to enable us to study this tracer method and made an extensive simulation study to evaluate the effects of wettability based upon characteristic curves for relative permeability and capillary pressure for differing wetting states typical of oil reservoirs. The second section of this report describes a new method for analyzing interwell tracer data based upon a type-curve approach. Theoretical frequency response functions were used to build type curves of ``transfer function`` and ``phase spectrum`` that have dimensionless heterogeneity index as a parameter to characterize a stochastic permeability field. We illustrate this method by analyzing field tracer data. The third section of this report describes a new theory for interpreting interwell tracer data in terms of channeling and dispersive behavior for reservoirs. Once again, a stochastic approach to reservoir description is taken. The fourth section of this report describes our simulation of perfluorocarbon gas tracers. This new tracer technology developed at Brookhaven National Laboratory is being tested at the Elk Hills Naval Petroleum Reserve No. 1 in California. We report preliminary simulations made of these tracers in one of the oil reservoirs under evaluation with these tracers in this field. Our compostional simulator (UTCOMP) was used for this simulation study.

  13. A simulation study on superparamagnetic nanoparticle based multi-tracer tracking

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Batra, Akash; Jain, Shray; Ye, Clark; Liu, Jinming; Wang, Jian-Ping

    2015-10-01

    Superparamagnetic nanoparticles (MNPs) have been utilized in biomedical sensing, detection, therapeutics, and diagnostics due to their unique magnetic response under different driving fields. In this letter, we report a multi-tracer tracking method that uses different kinds of MNPs as magnetic tracers along with two alternating magnetic fields that can be potentially used to build magnetic-based flow cytometry. By applying two driving fields at frequency f H and f L to MNPs, the response signal is measured at the combinatorial frequencies such as f H ± 2 f L (3rd harmonics), f H ± 4 f L (5th harmonics), f H ± 6 f L (7th harmonics), and so on. Each MNP has its own signature of phase and amplitude, and it is possible to differentiate individual MNPs in a mixture. We theoretically demonstrated colorizing up to 4-MNP tracers in one mixture with an error rate lower than 10%. The performance of multi-tracer imaging can be optimized by increasing the driving field frequency, choosing MNPs with higher saturation magnetization, and using MNP tracers with more centralized size distribution.

  14. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study; Progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Dombrowski, T.; Stetzenbach, K.

    1993-08-01

    This report is in two parts one for the fluorinated benzoic acids and one for the fluorinated aliphatic acids. The assumptions made in the report regarding the amount of tracer that will be used, dilution of the tracer during the test and the length of exposure (if any) to individuals drinking the water were made by the authors. These assumptions must really come from the USGS hydrologists in charge of the c-well tracer testing program. Accurate estimates of dilution of the tracer during the test are also important because of solubility limitations of some of the tracers. Three of the difluorobenzoic acids have relatively low solubilities and may not be usable if the dilution estimates are large. The toxicologist that reviewed the document agreed with our conclusion that the fluorinated benzoic and toluic acids do not represent a health hazard if used under the conditions as outlined in the report. We are currently testing 15 of these compounds, and if even if three difluorobenzoic acids cannot be used because of solubility limitations we will still have 12 tracers. The toxicologist felt that the aliphatic fluorinated acids potentially present more of a health risk than the aromatic. This assessment was based on the fact of a known allergic response to halothane anesthetic. This risk, although minimal, is known and he felt that was enough reason to recommend against their use. The authors feel that the toxicologists interpretation of this risk was overly conservative, however, we will not go against his recommendation at this time for the following reasons. First, without the aliphatic compounds we still have 12 to 15 fluorinated aromatic acids which, should be enough for the c-well tests. Second, to get a permit to use aliphatic compounds would undoubtedly require a hearing which could be quite lengthy.

  15. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1996-06-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.

  16. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies

    USGS Publications Warehouse

    Templer, P.H.; Mack, M.C.; Chapin, F. S.; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.

    2012-01-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  17. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies.

    PubMed

    Templer, P H; Mack, M C; Chapin, F S; Christenson, L M; Compton, J E; Crook, H D; Currie, W S; Curtis, C J; Dail, D B; D'Antonio, C M; Emmett, B A; Epstein, H E; Goodale, C L; Gundersen, P; Hobbie, S E; Holland, K; Hooper, D U; Hungate, B A; Lamontagne, S; Nadelhoffer, K J; Osenberg, C W; Perakis, S S; Schleppi, P; Schimel, J; Schmidt, I K; Sommerkorn, M; Spoelstra, J; Tietema, A; Wessel, W W; Zak, D R

    2012-08-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer

  18. Subsurface barrier integrity verification using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Milian, L.; Senum, G.

    1996-12-01

    Subsurface barriers are an extremely promising remediation option to many waste management problems. Gas phase tracers include perfluorocarbon tracers (PFT`s) and chlorofluorocarbon tracers (CFC`s). Both have been applied for leak detection in subsurface systems. The focus of this report is to describe the barrier verification tests conducted using PFT`s and analysis of the data from the tests. PFT verification tests have been performed on a simulated waste pit at the Hanford Geotechnical facility and on an actual waste pit at Brookhaven National Laboratory (BNL). The objective of these tests were to demonstrate the proof-of-concept that PFT technology can be used to determine if small breaches form in the barrier and for estimating the effectiveness of the barrier in preventing migration of the gas tracer to the monitoring wells. The subsurface barrier systems created at Hanford and BNL are described. The experimental results and the analysis of the data follow. Based on the findings of this study, conclusions are offered and suggestions for future work are presented.

  19. Feasibility Study of Non-Radioactive Tracers for Monitoring Injected Water in Oil Reservoirs

    NASA Astrophysics Data System (ADS)

    Sawamura, H.; Nishimura, K.; Mituishi, H.; Muta, T.; Schweitzer, J. S.

    This paper discusses the results of analyses conducted on non-radioactive tracers that can be used in combination with the sea water injected into a well for monitoring the water permeating through the oil reservoir by a nuclear logging tool utilizing a pulsed neutron generator. The model of the pulsed neutron tool is constructed to permit Monte Carlo Simulations to be performed of the tool response to the presence of non-radioactive tracers to achieve a desirable level of the neutron absorbing cross sections in the sea water injected into and permeating through the oil reservoirs. Sensitivity analyses of the tool response of the nuclear logging tool were performed for two types of non-radioactive tracers, ammonium tetraborate and gadolinium chloride.

  20. The use of air as a natural tracer infractured hydrothermal systems, Los Azufres, Mexico, case study

    SciTech Connect

    Mario Cesar Sudrez Arriaga; Hector Gutierrez Puente, Josefina Moreno Ochoa

    1991-01-01

    Injection of atmospheric air mixed with cold water has been occurring since 1982 at the Los Azufres geothermal field. Several chemical and thermodynamical evidences show that air injection into this fractured hydrothermal system could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate, under the action of the induced injection-extraction gradient, from reinjection sectors to production zones following preferential paths closely related to high permeability conduits. A coarse numerical estimation of the average permeability tensor existing at Tejamaniles, the southern sector, explains the unsuccessful recovery of the artificial tracer tests performed in past years: the anisotropic nature of the fractured volcanic rock would demand considerably quantities of tracer in order to be detected at the producing wells, especially when fluid extraction was low. At the same time concentrations of calcium, cesium, chloride, potassium, rubidium and sodium, are increasing in the liquid produced by the oldest wells of this field's sector.

  1. Tracer airflow measurement system (TRAMS)

    DOEpatents

    Wang, Duo

    2007-04-24

    A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.

  2. Carbon monoxide as a tracer for assessing exposures to particulate matter in wood and gas cookstove households of highland Guatemala.

    PubMed

    Naeher, L P; Smith, K R; Leaderer, B P; Neufeld, L; Mage, D T

    2001-02-01

    Kitchen-area 22-h gravimetric PM2.5 and passive diffusion stain-tube carbon monoxide (CO) concentrations were measured in homes with open fire and improved wood cookstoves in two studies. In the first study (Guat-2), which also studied homes with gas cookstoves, three samples were collected per stove condition from each of three test houses. In the second study (Guat-3), one sample was collected per house from 15 open fire and 25 improved-stove houses. CO personal samples were also taken for mother and child in both studies. Spearman correlation coefficients (R) between kitchen-area CO and PM2.5 levels in homes using open fires or impoved wood cookstoves were high ranging from 0.92 (Guat-2) to 0.94 (Guat-3), as were those between the personal samples for mother and child ranging from 0.85 (Guat-3) to 0.96 (Guat-2). In general, the correlations were lower for less-polluted conditions. The study found that CO is a good proxy for PM2.5 in homes using open fires or planchas (improved wood cookstove with chimney) but not under gas stove use conditions. It also determined that mother personal CO is a good proxy for child's (under 2 years of age) personal CO and that area CO measurements are not strongly representative of personal CO measurements. These results generally support the use of Draeger CO passive diffusion tubes as a proxy for PM2.5 in such cases where a single type of emission source is the predominant source for CO and PM2.5.

  3. OTEC gas desorption studies

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Golshani, A.

    1982-02-01

    Experiments on deaeration in packed columns and barometric intake systems, and with hydraulic air compression for open-cycle OTEC systems are reported. A gas desorption test loop consisting of water storage tanks, a vacuum system, a liquid recirculating system, an air supply, a column test section, and two barometric leg test sections was used to perform the tests. The aerated water was directed through columns filled with either ceramic Raschig rings or plastic pall rings, and the system vacuum pressure, which drives the deaeration process, was found to be dependent on water velocity and intake pipe height. The addition of a barometric intake pipe increased the deaeration effect 10%, and further tests were run with lengths of PVC pipe as potential means for noncondensibles disposal through hydraulic air compression. Using the kinetic energy from the effluent flow to condense steam in the noncondensible stream improved the system efficiency.

  4. Collisional decoherence of a tracer particle moving in one dimension

    SciTech Connect

    Kamleitner, Ingo

    2010-11-15

    We study decoherence of the external degree of freedom of a tracer particle moving in a one-dimensional dilute Boltzmann gas. We find that phase averaging is the dominant decoherence effect, rather than information exchange between tracer and gas particles. While a coherent superposition of two wave packets with different mean positions quickly turns into a mixed state, it is demonstrated that such superpositions of different momenta are robust to phase averaging, until the two wave packets acquire a different position due to the different velocity of each wave packet.

  5. Many Paths to Skilled Employment: A Reverse Tracer Study of Seven Occupations in Colombia.

    ERIC Educational Resources Information Center

    Ziderman, Adrian; Horn, Robin

    1995-01-01

    Employs reverse tracer techniques to identify alternative training paths for selected skilled and semiskilled occupations in Colombia. Shows that workers pursue various alternative training paths to acquire essential occupational skills. Strong public intervention in training markets should be discouraged, as choices would be narrowed and the…

  6. Comparison of [11C]cocaine binding at tracer and pharmacological doses of baboon brain: A PET study

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Logan, J.

    1994-05-01

    In vitro studies have shown that cocaine (C) binds to both high and low affinity sites on the dopamine transporter (DAT). We have previously characterized the binding of tracer doses of [{sup 11}C]cocaine (C*)to a high affinity site on the DAT. To assess if in vivo C also binds to low affinity sites we used PET to compare binding of tracer doses (17.8{plus_minus}12.2 {mu}g C) of C* to pharmacological doses (8 mg of C coadministered with C*). Sixteen paired studies were done to assess test/retest variability, specific versus non specific binding and to characterize binding profile. Dynamic scans were started immediately after injection of C* (5-8 mCi) for 50 min on the CTI-931 (6 x 6 x 6.5 mm FWHM). Time activity curves for tissue concentration and for unchanged tracer in plasma were used to calculate the transport constant between plasma and tissue (K1) and to obtain the distribution volume (DV). The ratio of the DV in striatum (ST) to that in cerebellum (CB) (which corresponds to Bmax/Kd-1) was used as model parameter. Peak brain uptake of C* was significantly higher for tracer than for pharmacological doses (0.041 versus 0.033 % dose/cc), as were the values for K1 (1.07{plus_minus}0.21 versus 0.68{plus_minus}0.26 (t=3.0 p<0.01)). Repeated measures were reproducible for tracer ({plus_minus}2%) and pharmacological doses of C* ({plus_minus}4%). Tracer dose C* showed highest binding and slowest clearance in ST which was reduced by C (0.5-2.0 mg/kg iv, -25 to -30%) and by drugs that inhibit DAT (2mg/kg nomifensine - 21%, 0.5 mg/kg methylphenidate -12%) and was increased by serotonin transporter inhibitors (5HT-Ti) (2 mg/kg citalopram +11%, 0.5 mg/kg fluoxetine +6%) and not changed by NE transporter inhibitors (0.5 mg/kg desipramine or 2 mg/kg tomoxetine). The increase with (5HT-Ti) may reflect neurotransmitter interactions or changes in bioavailability. At pharmacological doses C* showed homogeneous distribution and was not changed by C nor by any of the above drugs.

  7. Tracer testing for reservoir description

    SciTech Connect

    Brigham, W.E.; Abbaszadeh-Dehghani, M.

    1987-05-01

    When a reservoir is studied in detail for an EOR project, well-to-well tracers should be used as a tool to help understand the reservoir in a quantitative way. Tracers complement the more traditional reservoir evaluation tools. This paper discusses the concepts underlying tracer testing, the analysis methods used to produce quantitative results, and the meaning of these results in terms of conceptual picture of the reservoir. Some of the limitations of these analysis methods are discussed, along with ongoing research on tracer flow.

  8. An Analytical Solution for Slug-Tracer Tests in FracturedReservoirs

    SciTech Connect

    Shan, Chao; Pruess, Karsten

    2005-03-02

    The transport of chemicals or heat in fractured reservoirs is strongly affected by the fracture-matrix interfacial area. In a vapor-dominated geothermal reservoir, this area can be estimated by inert gas tracer tests, where gas diffusion between the fracture and matrix causes the tracer breakthrough curve (BTC) to have a long tail determined by the interfacial area. For water-saturated conditions, recent studies suggest that sorbing solute tracers can also generate strong tails in BTCs that may allow a determination of the fracture-matrix interfacial area. To theoretically explore such a useful phenomenon, this paper develops an analytical solution for BTCs in slug-tracer tests in a water-saturated fractured reservoir. The solution shows that increased sorption should have the same effect on BTCs as an increase of the diffusion coefficient. The solution is useful for understanding transport mechanisms, verifying numerical codes, and for identifying appropriate chemicals as tracers for the characterization of fractured reservoirs.

  9. Exploring Hydrofluorocarbons as Groundwater Age Tracers (Invited)

    NASA Astrophysics Data System (ADS)

    Haase, K. B.; Busenberg, E.; Plummer, L. N.; Casile, G.; Sanford, W. E.

    2013-12-01

    Groundwater dating tracers are an essential tool for analyzing hydrologic conditions in groundwater systems. Commonly used tracers for dating post-1940's groundwater include sulfur hexafluoride (SF6), chlorofluorocarbons (CFCs), 3H-3He, and other isotopic tracers (85Kr, δ2H and δ18O isotopes, etc.). Each tracer carries a corresponding set of advantages and limitations imposed by field, analytical, and interpretive methods. Increasing the number available tracers is appealing, particularly if they possess inert chemical properties and unique temporal emission histories from other tracers. Atmospherically derived halogenated trace gases continue to hold untapped potential for new tracers, as they are generally inert and their emission histories are well documented. SF5CF3, and CFC-13 were previously shown to have application as dating tracers, though their low mixing ratios and low solubility require large amounts of water to be degassed for their quantification. Two related groups of compounds, hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are hypothesized to be potential age tracers, having similar mixing ratios to the CFCs and relatively high solubility. However, these compounds yield gas chromatography electron capture detector (GC-ECD) responses that are 10-2 -10-5 less than CFC-12, making purge and trap or field stripping GC-ECD approaches impractical. Therefore, in order to use dissolved HCFCs and HFCs as age tracers, different approaches are needed. To solve this problem, we developed an analytical method that uses an atomic emission detector (GC-AED) in place of an ECD to detect fluorinated compounds. In contrast to the ECD, the AED is a universally sensitive, highly linear, elementally specific detector. The new GC-AED system is being used to measure chlorodifluoromethane (HCFC-22), 1,1,1,2-tetrafluoroethane (HFC-134a), and other fluorinated compounds in one liter water samples to study their potential as age dating tracers. HCFC-22 is a

  10. Effect of Error Propagation in Stable Isotope Tracer Studies: An Approach for Estimating Impact on Apparent Biochemical Flux.

    PubMed

    Previs, Stephen F; Herath, Kithsiri; Castro-Perez, Jose; Mahsut, Ablatt; Zhou, Haihong; McLaren, David G; Shah, Vinit; Rohm, Rory J; Stout, Steven J; Zhong, Wendy; Wang, Sheng-Ping; Johns, Douglas G; Hubbard, Brian K; Cleary, Michele A; Roddy, Thomas P

    2015-01-01

    Stable isotope tracers are widely used to quantify metabolic rates, and yet a limited number of studies have considered the impact of analytical error on estimates of flux. For example, when estimating the contribution of de novo lipogenesis, one typically measures a minimum of four isotope ratios, i.e., the precursor and product labeling pre- and posttracer administration. This seemingly simple problem has 1 correct solution and 80 erroneous outcomes. In this report, we outline a methodology for evaluating the effect of error propagation on apparent physiological endpoints. We demonstrate examples of how to evaluate the influence of analytical error in case studies concerning lipid and protein synthesis; we have focused on (2)H2O as a tracer and contrast different mass spectrometry platforms including GC-quadrupole-MS, GC-pyrolysis-IRMS, LC-quadrupole-MS, and high-resolution FT-ICR-MS. The method outlined herein can be used to determine how to minimize variations in the apparent biology by altering the dose and/or the type of tracer. Likewise, one can facilitate biological studies by estimating the reduction in the noise of an outcome that is expected for a given increase in the number of replicate injections. PMID:26358910

  11. 40K-40Ca systematics as a Tracer of Silicate Weathering: A Himalayan case study

    NASA Astrophysics Data System (ADS)

    Davenport, Jesse; Caro, Guillaume; France-Lanord, Christian

    2015-04-01

    This study investigates the use of the 40K-40Ca system as a tracer to better quantify the contributions of silicate and carbonate lithologies in the dissolved load of major Himalayan rivers. Previous work using Sr isotopes as a proxy for silicate weathering has been complicated by the redistribution of radiogenic 87Sr between silicate and carbonate lithologies, particularly in the Lesser Himalaya, where dolomites exhibit 87Sr/86Sr ratios as high as 0.85. The 40Ca signature of carbonates, on the other hand, appears to be remarkably resistant to metamorphism and dolomitization [1]. It was therefore anticipated that the 40K-40Ca system could circumvent issues associated with such secondary events, and yield more robust constraints on the relative contribution of silicate vs. carbonate lithologies in dissolved river loads. The main difficulty in applying the 40K-40Ca decay scheme as a tracer lies in the analytical precision required to measure small variations (~1 ɛ-unit) on the large 40Ca isotope (96.9%). This difficulty can now be overcome using the Finnigan Triton TIMS, which allows measurements of the 40Ca/44Ca ratio with external precision of 0.35 ɛ-unit in multidynamic mode. Using this method, we generated high-precision 40Ca data on carbonates/dolomites, bedload sediments, dissolved load, and clay samples originating from and representing the main litho-tectonic units of the Himalaya. Our results show that metamorphosed dolomites from the Lesser Himalaya (LH) exhibit no radiogenic 40Ca excess despite highly variable 87Sr/86Sr signatures (0.73-0.85). Thus, all Himalayan carbonates appear to be characterized by a homogeneous ɛ40Ca=0. In contrast, silicate material is radiogenic, with ɛ40Ca averaging +1 in the Tethyan Sedimentary Series (TSS), +1.6 in the High Himalaya crystalline (HHC) and +4 ɛ-units in the LH. Results obtained from a series of 35 Himalayan rivers (including the Brahmaputra, Ganga and its main tributaries) show that ɛ40Ca in the

  12. Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and 2HH2O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks

    USGS Publications Warehouse

    Révész, Kinga M.; Lollar, Barbara Sherwood; Kirshtein, Julie D.; Tiedeman, Claire R.; Imbrigiotta, Thomas E.; Goode, Daniel J.; Shapiro, Allen M.; Voytek, Mary A.; Lancombe, Pierre J.; Busenberg, Eurybiades

    2014-01-01

    An in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in 2H was also injected as a tracer of the BA solution, to monitor advective transport processes. The changes in concentration and the δ13C of TCE, cis-dichloroethene (cis-DCE), and vinyl chloride (VC); the δ2H of water; changes in the abundance of the microbial communities; and the concentration of dissolved H2 gas compared to pre- test conditions, provided multiple lines of evidence that enhanced biodegradation occurred in the injection well and in two downgradient wells. For those wells where the biodegradation was stimulated intensively, the sum of the molar chlorinated ethene (CE) concentrations in post-BA water was higher than that of the sum of the pre-BA background molar CE concentrations. The concentration ratios of TCE/(cis-DCE + VC) indicated that the increase in molar CE concentration may result from additional TCE mobilized from the rock matrix in response to the oil injection or due to desorption/diffusion. The stable carbon isotope mass-balance calculations show that the weighted average 13C isotope of the CEs was enriched for around a year compared to the background value in a two year monitoring period, an effective indication that dechlorination of VC was occurring. Insights gained from this study can be applied to efforts to use BA in other fractured rock systems. The study demonstrates that a BA approach can substantially enhance in situ bioremediation not only in fractures connected to the injection well, but also in the rock matrix around the well due to processes such as diffusion and desorption. Because the effect of the

  13. Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and ²HH₂O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks.

    PubMed

    Révész, Kinga M; Lollar, Barbara Sherwood; Kirshtein, Julie D; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Shapiro, Allen M; Voytek, Mary A; Lacombe, Pierre J; Busenberg, Eurybiades

    2014-01-01

    An in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in ²H was also injected as a tracer of the BA solution, to monitor advective transport processes. The changes in concentration and the δ¹³C of TCE, cis-dichloroethene (cis-DCE), and vinyl chloride (VC); the δ²H of water; changes in the abundance of the microbial communities; and the concentration of dissolved H₂ gas compared to pre- test conditions, provided multiple lines of evidence that enhanced biodegradation occurred in the injection well and in two downgradient wells. For those wells where the biodegradation was stimulated intensively, the sum of the molar chlorinated ethene (CE) concentrations in post-BA water was higher than that of the sum of the pre-BA background molar CE concentrations. The concentration ratios of TCE/(cis-DCE+VC) indicated that the increase in molar CE concentration may result from additional TCE mobilized from the rock matrix in response to the oil injection or due to desorption/diffusion. The stable carbon isotope mass-balance calculations show that the weighted average ¹³C isotope of the CEs was enriched for around a year compared to the background value in a two year monitoring period, an effective indication that dechlorination of VC was occurring. Insights gained from this study can be applied to efforts to use BA in other fractured rock systems. The study demonstrates that a BA approach can substantially enhance in situ bioremediation not only in fractures connected to the injection well, but also in the rock matrix around the well due to processes such as diffusion and desorption. Because the effect

  14. Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and ²HH₂O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks.

    PubMed

    Révész, Kinga M; Lollar, Barbara Sherwood; Kirshtein, Julie D; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Shapiro, Allen M; Voytek, Mary A; Lacombe, Pierre J; Busenberg, Eurybiades

    2014-01-01

    An in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in ²H was also injected as a tracer of the BA solution, to monitor advective transport processes. The changes in concentration and the δ¹³C of TCE, cis-dichloroethene (cis-DCE), and vinyl chloride (VC); the δ²H of water; changes in the abundance of the microbial communities; and the concentration of dissolved H₂ gas compared to pre- test conditions, provided multiple lines of evidence that enhanced biodegradation occurred in the injection well and in two downgradient wells. For those wells where the biodegradation was stimulated intensively, the sum of the molar chlorinated ethene (CE) concentrations in post-BA water was higher than that of the sum of the pre-BA background molar CE concentrations. The concentration ratios of TCE/(cis-DCE+VC) indicated that the increase in molar CE concentration may result from additional TCE mobilized from the rock matrix in response to the oil injection or due to desorption/diffusion. The stable carbon isotope mass-balance calculations show that the weighted average ¹³C isotope of the CEs was enriched for around a year compared to the background value in a two year monitoring period, an effective indication that dechlorination of VC was occurring. Insights gained from this study can be applied to efforts to use BA in other fractured rock systems. The study demonstrates that a BA approach can substantially enhance in situ bioremediation not only in fractures connected to the injection well, but also in the rock matrix around the well due to processes such as diffusion and desorption. Because the effect

  15. You are not always what we think you eat. Selective assimilation across multiple whole-stream isotopic tracer studies

    SciTech Connect

    Dodds, W. K.; Collins, S. M.; Hamilton, S. K.; Tank, J. L.; Johnson, S.; Webster, J. R.; Simon, K. S.; Whiles, M. R.; Rantala, H. M.; McDowell, W. H.; Peterson, S. D.; Riis, T.; Crenshaw, C. L.; Thomas, S. A.; Kristensen, P. B.; Cheever, B. M.; Flecker, A. S.; Griffiths, N. A.; Crowl, T.; Rosi-Marshall, E. J.; El-Sabaawi, R.; Martí, E.

    2014-10-01

    Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling and food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.

  16. You are not always what we think you eat. Selective assimilation across multiple whole-stream isotopic tracer studies

    DOE PAGES

    Dodds, W. K.; Collins, S. M.; Hamilton, S. K.; Tank, J. L.; Johnson, S.; Webster, J. R.; Simon, K. S.; Whiles, M. R.; Rantala, H. M.; McDowell, W. H.; et al

    2014-10-01

    Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling andmore » food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.« less

  17. Analysing fluorobenzoate tracers in groundwater samples using liquid chromatography-tandem mass spectrometry. A tool for leaching studies and hydrology.

    PubMed

    Juhler, René K; Mortensen, Annette P

    2002-05-24

    A sensitive LC-MS-MS method for the direct determination and quantification of 15 fluorobenzoic acids (FBAs) was developed. FBAs are used as conservative tracers for hydrological modelling of water flow and in studies of pesticides and other xenobiotic compounds. The use of FBAs is discussed in relation to other tracers (bromide, chloride, uranine). The method covers mono-substituted fluorobenzoic acid, difluorobenzoic acid, trifluorobenzoic acid, and tetrafluorobenzoic acid. The general detection limit in ground water was 1 microg/l using electrospray ionisation and 20 microg/l using atmospheric pressure chemical ionisation. Analysis time was less than 10 min, small sample volumes were needed and no clean-up was required.

  18. Preliminary Results from a Gas Tracer Injection Experiment in the Upper Oceanic Crust on the Eastern Flank of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Neira, N. M.; Clark, J. F.; Fisher, A. T.; Wheat, C. G.

    2013-12-01

    We present the first results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of vigorous hydrothermal circulation. A mixture of tracers was injected in Hole 1362B in 2010, during IODP Expedition 327, as part of a 24-hour pumping experiment. Fluid samples were subsequently collected from this hole and three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. The array of holes is located on 3.5 M.y. old seafloor, and oriented N20°E, subparallel to the Endeavor Segment of Juan de Fuca Ridge, 100 km to the west. Sulfur hexafluoride (SF6) was injected at a concentration of 0.0192 mol/min, with fluid pumping rate of 6.7 L/s for 20.2 h, resulting in a mean concentration of 47.6 μM and 23.3 mol of SF6 being added to crustal fluids. Borehole fluid samples were collected in copper coils using osmotic pumps attached to the wellheads of several long-term, subseafloor observatories (CORKs). These samples were recovered from the seafloor using a remotely-operated vehicle in 2011 and 2013. Analyses of SF6 concentrations in samples recovered in 2011 indicate the first arrival of SF6 in Hole 1301A, 550 m south of the injection Hole 1362B, ~265 days after injection. This suggests that the most rapid lateral transport of gas (at the leading edge of the plume) occurred at ~2 m/day. Samples recovered in 2013 should provide a more complete breakthrough curve, allowing assessment of the mean lateral transport rate. Additional insights will come from analysis of metal salts and particle tracers injected contemporaneously with the SF6, the cross-hole pressure response to injection and a two-year fluid discharge experiment. Additional wellhead samples will be collected in Summer 2014, as will downhole osmosamplers deployed in perforated casing within the upper ocean crust in Holes 1362A and 1362B.

  19. Tracer and hydrometric study of preferential flow in large undisturbed soil cores from the Georgia Piedmont, USA

    USGS Publications Warehouse

    McIntosh, Janice; McDonnell, Jeffrey J.; Peters, Norman E.

    1999-01-01

    We studied the temporal patterns of tracer throughput in the outflow of large (30 cm diameter by 38 cm long) undisturbed cores from the Panola Mountain Research Watershed, Georgia. Tracer breakthrough was affected by soil structure and rainfall intensity. Two rainfall intensities (20 and 40 mm hr-1) for separate Cl- and Br- amended solutions were applied to two cores (one extracted from a hillslope soil and one extracted from a residual clay soil on the ridge). For both low and high rainfall intensity experiments, preferential flow occurred in the clay core, but not in the hillslope core. The preferential flow is attributed to well-developed interpedal macrochannels that are commonly found in structured clay soils, characteristic of the ridge site. However, each rainfall intensity exceeded the matrix infiltration capacity at the top of the hillslope core, but did not exceed the matrix infiltration capacity at the middle and bottom of the hillslope core and at all levels in the clay core. Localized zones of saturation created when rainfall intensity exceeds the matrix infiltration capacity may cause water and tracer to overflow from the matrix into macrochannels, where preferential flow occurs to depth in otherwise unsaturated soil. Copyright © 1999 John Wiley & Sons, Ltd.

  20. Tracer and hydrometric study of preferential flow in large undisturbed soil cores from the Georgia Piedmont, USA

    NASA Astrophysics Data System (ADS)

    McIntosh, Janice; McDonnell, Jeffrey J.; Peters, Norman E.

    1999-02-01

    We studied the temporal patterns of tracer throughput in the outflow of large (30 cm diameter by 38 cm long) undisturbed cores from the Panola Mountain Research Watershed, Georgia. Tracer breakthrough was affected by soil structure and rainfall intensity. Two rainfall intensities (20 and 40 mm hr-1) for separate Cl- and Br- amended solutions were applied to two cores (one extracted from a hillslope soil and one extracted from a residual clay soil on the ridge). For both low and high rainfall intensity experiments, preferential flow occurred in the clay core, but not in the hillslope core. The preferential flow is attributed to well-developed interpedal macrochannels that are commonly found in structured clay soils, characteristic of the ridge site. However, each rainfall intensity exceeded the matrix infiltration capacity at the top of the hillslope core, but did not exceed the matrix infiltration capacity at the middle and bottom of the hillslope core and at all levels in the clay core. Localized zones of saturation created when rainfall intensity exceeds the matrix infiltration capacity may cause water and tracer to overflow from the matrix into macrochannels, where preferential flow occurs to depth in otherwise unsaturated soil.

  1. AIR INFILTRATION MEASUREMENTS USING TRACER GASES: A LITERATURE REVIEW

    EPA Science Inventory

    The report gives results of a literature review of air filtration measurements using tracer gases, including sulfur hexafluoride, hydrogen, carbon monoxide, carbon dioxide, nitrous oxide, and radioactive argon and krypton. Sulfur hexafluoride is the commonest tracer gas of choice...

  2. Observational Studies of Parameters Influencing Air-sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.

    A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.

  3. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    USGS Publications Warehouse

    Kumar, A.; Abouchami, W.; Galer, S.J.G.; Garrison, V.H.; Williams, E.; Andreae, M.O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers – Sr, Nd and Pb – to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  4. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Krouse, H. R.; Kadko, D.; Perovich, D. K.

    2002-10-01

    At the Surface Heat Budget of the Arctic Ocean (SHEBA) program's field site in the northern Chukchi Sea, snow and ice meltwater flow was found to have a strong impact on the heat and mass balance of sea ice during the summer of 1998. Pathways and rates of meltwater transport were derived from tracer studies (H218O, 7Be, and release of fluorescent dyes), complemented by in situ sea-ice permeability measurements. It was shown that the balance between meltwater supply at the surface (averaging between 3.5 and 10.5 mm d-1) and ice permeability (between <10-11 and >10-9 m2) determines the retention and pooling of meltwater, which in turn controls ice albedo. We found that the seasonal evolution of first-year and multiyear ice permeability and surface morphology determine four distinct stages of melt. At the start of the ablation season (stage 1), ponding is widespread and lateral melt flow dominates. Several tens of cubic meters of meltwater per day were found to drain hundreds to thousands of square meters of ice through flaws and permeable zones. Significant formation of underwater ice, composed between <30 and >50% of meteoric water, formed at these drainage sites. Complete removal of snow cover, increase in ice permeability, and reductions in hydraulic gradients driving fluid flow mark stage 2, concurrent with a reduction in pond coverage and albedo. During stage 3, maximum permeabilities were measured, with surface meltwater penetrating to 1 m depth in the ice and convective overturning and desalination found to dominate the lower layers of first-year and thin multiyear ice. Enhanced fluid flow into flaws and permeable zones was observed to promote ice floe breakup and disintegration, concurrent with increases in pond salinities and 7Be. Advective heat flows of several tens of watts per square meter were derived, promoting widening of ponds and increases in pond coverage. Stage 4 corresponds to freeze-up. Roughly 40% of the total surface melt was retained by the

  5. Multiple tracer study in Horonobe, northern Hokkaido, Japan: 2. Depletion of chlorofluorocarbons (CFCs) estimated using 3H/3He index and lumped parameter models

    NASA Astrophysics Data System (ADS)

    Kashiwaya, Koki; Hasegawa, Takuma; Nakata, Kotaro; Tomioka, Yuichi; Mizuno, Takashi

    2015-05-01

    The conservativeness of chlorofluorocarbons (CFC-12, CFC-11, and CFC-113) in an environment rich in organic carbon was evaluated using multiple tracer analyses and lumped parameter models (LPMs). Wells on a coastal plain in Horonobe, northern Hokkaido, Japan, were studied. The CFC concentrations in groundwater from 22 wells were measured, converted into atmospheric mixing ratios (CARs), and compared with estimated ratios (EARs) obtained from 3H/3He values and LPMs. The degree of CFC depletion was expressed as the percentage of the CAR relative to the EAR, and was less than 43% for CFC-12 and 28% for CFC-11 (but one well had unusual values). CFC-113 was depleted more than the other CFCs, and could not be detected in most wells. The CFC depletion mechanisms were different in each of the three well groups. Groundwater of northern Shimonuma wells (NSW) was oxic and oxidative, so CFC depletion in the NSW could be attributed to sorption by organic carbon in the lignite and peat in the aquifers. Groundwater of southern Shimonuma wells (SSW) was anoxic and reductive. The northerly SSW are supplied from the aquifer that supplies the most of the NSW, so CFC depletion in the SSW was caused by degradation under sulfate-reducing and methanogenic conditions, in addition to sorption by lignite in the northerly SSW. Gas stripping, contamination from a local source, and methane interfering with the CFC analysis were found in groundwater of Hamasato wells (HW). One well of HW was not affected by these problems, but the CFCs were depleted by microbial degradation. Assuming that the CFC depletion mechanisms follow first-order reaction kinetics, reaction rate constants of 2.7 y-1 for CFC-12 and 2.8 y-1 for CFC-11 were estimated. Microbial degradation, sorption, gas stripping of CFCs, and methane formation processes are enhanced in environments rich in organic carbon. Special attention is required when CFCs are used as transient tracers in such environments. The combination of multiple

  6. The Numerical Simulation of a Tracer-Release Field Project to Study Motion within the Nocturnal Boundary Layer

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; Leclerc, M. Y.; Buckley, R.; Parker, M.; Kurzeja, R.; Duarte, H. F.; Zhang, G.; Durden, D.

    2009-12-01

    The Savannah River National Laboratory (SRNL), Brookhaven National Laboratory (BNL), the University of Georgia (UGA), and the National Oceanic and Atmospheric Administration (NOAA) conducted a regional tracer experiment to study the nocturnal behavior of CO2 in the vicinity of an instrumented tall tower during two nights on May 11th and 12th, 2009. The experiment consisted of a release of five perfluorocarbon tracer (PFTs) compounds in twelve unique locations in Aiken County, South Carolina. Intensive meteorological measurements including in-situ turbulence were made in conjunction with the release and sampling of the PFTs. A 300m tower was also used to collect data from higher levels, allowing us to determine the extent to which the tracer was mixed vertically. Lagrangian plume simulations performed during the experiment demonstrated transport over distances of >8 km, and correlated well with in situ sampling. The area was characterized by heavy vegetation cover, and carbon dioxide concentrations were also monitored in an effort to determine how respiration and advection affect CO2 levels in the stable layer. Tracer release locations were carefully selected via a fine-scale mesoscale modeling study of similar nights. The purpose of these experiments was to provide data that will be used to increase the understanding of the terrestrial carbon budget, especially with respect to nocturnal boundary layer (NBL) phenomena such as low level jets and breaking gravity waves. Using these data, a simulation of the motion of the tracer within the boundary layer was developed using the Regional Atmospheric Modeling System (RAMS) mesoscale model coupled to a tracer model. The RAMS model was also coupled to the Simple Biosphere (SiB) vegetation model, which allowed for the simulation of the release of carbon dioxide into the NBL. The simulation results are used to validate the NBL hypothesis of CO2 monitoring, by which the release of CO2 can be correlated with the accumulation

  7. Assessing the Accuracy of the Tracer Dilution Method with Atmospheric Dispersion Modeling

    NASA Astrophysics Data System (ADS)

    Taylor, D.; Delkash, M.; Chow, F. K.; Imhoff, P. T.

    2015-12-01

    Landfill methane emissions are difficult to estimate due to limited observations and data uncertainty. The mobile tracer dilution method is a widely used and cost-effective approach for predicting landfill methane emissions. The method uses a tracer gas released on the surface of the landfill and measures the concentrations of both methane and the tracer gas downwind. Mobile measurements are conducted with a gas analyzer mounted on a vehicle to capture transects of both gas plumes. The idea behind the method is that if the measurements are performed far enough downwind, the methane plume from the large area source of the landfill and the tracer plume from a small number of point sources will be sufficiently well-mixed to behave similarly, and the ratio between the concentrations will be a good estimate of the ratio between the two emissions rates. The mobile tracer dilution method is sensitive to different factors of the setup such as placement of the tracer release locations and distance from the landfill to the downwind measurements, which have not been thoroughly examined. In this study, numerical modeling is used as an alternative to field measurements to study the sensitivity of the tracer dilution method and provide estimates of measurement accuracy. Using topography and wind conditions for an actual landfill, a landfill emissions rate is prescribed in the model and compared against the emissions rate predicted by application of the tracer dilution method. Two different methane emissions scenarios are simulated: homogeneous emissions over the entire surface of the landfill, and heterogeneous emissions with a hot spot containing 80% of the total emissions where the daily cover area is located. Numerical modeling of the tracer dilution method is a useful tool for evaluating the method without having the expense and labor commitment of multiple field campaigns. Factors tested include number of tracers, distance between tracers, distance from landfill to transect

  8. A Forward Analysis on the Applicability of Tracer Breakthrough in Revealing the Pore Structure of Tight Gas Sandstone and Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Mehmani, A.; Mehmani, Y.; Prodanovic, M.; Balhoff, M.

    2015-12-01

    Be it fuel production for energy consumption or carbon storage and sequestration to mitigate global warming, tight gas sandstone and carbonate formations offer a new and largely available potential for these purposes. Exploring and developing these formations however is hampered by uncertainties in quantifying their pore structure due to considerable heterogeneity and existence of pores in multiple length scales. We explore tracer breakthrough profiles (TBP) as a macroscopic property to infer the complex pore space topology of tight gas sandstone and carbonate rocks at the core scale. The following features were modeled via three-dimensional multiscale networks: microporosity within dissolved grains and pore-filling clay, cementation in the absence and presence of microporosity (each classified into uniform, pore preferred, and throat-preferred modes), layering, vug, and microcrack inclusion. A priori knowledge of the extent and location of each process was assumed to be known. With the exception of an equal importance of macropores and pore-filling micropores, TBPs show little sensitivity to the fraction of micropores present. In general, significant sensitivity of the TBPs was observed for uniform and throat-preferred cementation. Layering parallel to the fluid flow direction had a considerable impact on TBPs whereas layering perpendicular to flow did not. Microcrack orientations seemed of minor importance in affecting TBPs.

  9. Using dissolved noble gas and isotopic tracers to evaluate the vulnerability of groundwater resources in a small, high elevation catchment to predicted climate changes

    SciTech Connect

    Singleton, M J; Moran, J E

    2009-10-02

    We use noble gas concentrations and multiple isotopic tracers in groundwater and stream water in a small high elevation catchment to provide a snapshot of temperature, altitude, and physical processes at the time of recharge; and to determine subsurface residence times of different groundwater components. They identify three sources that contribute to groundwater flow: (1) seasonal groundwater recharge with short travel times, (2) water from bedrock aquifers that have elevated radiogenic {sup 4}He, and (3) upwelling of deep fluids that have 'mantle' helium and hydrothermal carbon isotope signatures. Although a bimodal distribution in apparent groundwater age indicates that groundwater storage times range from less than a year to several decades, water that recharges seasonally is the largest likely contributor to stream baseflow. Under climate change scnearios with earlier snowmelt, the groundwater that moves through the alluvial aquifer seasonally will be depleted earlier, providing less baseflow and possible extreme low flows in the creek during summer and fall. Dissolved noble gas measurements indciate recharge temperatures are 5 to 11 degrees higher than would be expected for direct influx of snowmelt, and that excess air concentrations are lower than would be expected for recharge through bedrock fractures. Instead, recharge likely occurs over diffuse vegetated areas, as indicated by {delta}{sup 13}C-DIC values that are consistent with incorporation of CO{sub 2} from soil respiration. Recharge temperatures are close to or slightly higher than mean annual air temperature, and are consistent with recharge during May and June, when snowpack melting occurs.

  10. Probing X-ray irradiation in the nucleus of NGC 1068 with observations of high-J lines of dense gas tracers

    NASA Astrophysics Data System (ADS)

    Pérez-Beaupuits, J. P.; Spaans, M.; van der Tak, F. F. S.; Aalto, S.; García-Burillo, S.; Fuente, A.; Usero, A.

    2009-08-01

    Context: Single-dish observations of molecular tracers have suggested that both star formation and an AGN can drive the gas chemistry of the central ~kpc of active galaxies. The irradiation by UV photons from an starburst or by X-rays from an AGN is expected to produce different signatures in molecular chemistry, which existing data on low-J lines cannot distinguish, as they do not trace gas at high temperature and density. Depending on the angular scale of a galaxy, the observed low-J lines can be dominated by the emission coming from the starburst ring rather than from the central region. Aims: With the incorporation of high-J molecular lines, we aim to constrain the physical conditions of the dense gas in the central region of the Seyfert 2 galaxy NGC 1068 and to determine signatures of the AGN or the starburst contribution. Methods: We used the James Clerk Maxwell Telescope to observe the J = 4-3 transition of HCN, HNC, and HCO^+, as well as the CN NJ = 25/2-13/2 and NJ = 35/2-25/2, in NGC 1068. We estimate the excitation conditions of HCN, HNC, and CN, based on the line intensity ratios and radiative transfer models. We discuss the results in the context of models of irradiation of the molecular gas by UV light and X-rays. Results: A first-order estimate leads to starburst contribution factors of 0.58 and 0.56 for the CN and HCN J=1-0 lines, respectively. We find that the bulk emission of HCN, HNC, CN, and the high-J HCO+ emerge from dense gas (n(H2) ≥ 105 cm-3). However, the low-J HCO+ lines (dominating the HCO+ column density) trace less dense (n(H2) < 105 cm-3) and colder (TK ≤ 20 K) gas, whereas the high-J HCO+ emerges from warmer (> 30 K) gas than the other molecules. We also find that the HNC/HCN and CN/HCN line intensity ratios decrease with increasing rotational quantum number J. Conclusions: The HCO+ J = 4-3 line intensity, compared with the lower transition lines and with the HCN J = 4-3 line, support the influence of a local XDR environment. The

  11. Petroleum characterization by perfluorocarbon tracers

    SciTech Connect

    Senum, G.I.; Fajer, R.W. ); Harris, B.R. Jr. ); DeRose, W.E. ); Ottaviani, W.L. )

    1992-02-01

    Perfluorocarbon tracers (PFTs), a class of six compounds, were used to help characterize the Shallow Oil Zone (SOZ) reservoir at the Naval Petroleum Reserve in California (NPRC) at Elk Hills. The SOZ reservoir is undergoing a pilot gas injection program to assess the technical feasibility and economic viability of injecting gas into the SOZ for improved oil recovery. PFTs were utilized in the pilot gas injection to qualitatively assess the extent of the pilot gas injection so as to determine the degree of gas containment within the SOZ reservoir.

  12. Radioisotope tracer studies in the NASA Skylab ethothermic brazing experiment M-552

    NASA Technical Reports Server (NTRS)

    Braski, D. N.; Adair, H. L.; Kobisk, E. H.

    1974-01-01

    The first use of radioisotope tracer for mapping flow patterns during brazing of metal components in a space environment (near-zero gravity) proved successful. A nickel ferrule was brazed to a nickel tube with Lithobraze BT (71.8% Ag, 28% Cu, 0.2% Li) which contained a trace amount of radioactive Ag-110. Mapping of the flow of the braze alloy in the annulus formed between the tube and the concentric ferrule was determined by counting the radiation intensity as a function of position in the braze joint. Significant information concerning the thermal history of the braze was determined.

  13. Tracer studies for evaluation of in situ air sparging and in-well aeration system performance at a gasoline-contaminated site.

    PubMed

    Berkey, Jennifer S; Lachmar, Thomas E; Doucette, William J; Ryan Dupont, R

    2003-03-17

    Field-scale tracer studies were conducted at a gasoline-contaminated site in order to evaluate the effectiveness of in situ air sparging (IAS) and in-well aeration (IWA) in controlling the movement of soil gas and groundwater in the subsurface. The field site was comprised of silty sand (SM) and silty clay (CL), underlain by a clay layer at approximately 7.6 m. Depth to groundwater ranged from 2.4 to 3 m. Soil permeability and the natural hydraulic gradient were both low. Helium was used to trace the movement of soil gas in the unsaturated zone during the IAS field study, and successfully confirmed short-circuit pathways for injected air and demonstrated the limited distribution of injected gases at this site. Fluorescein, bromide, and rhodamine were used to trace the movement of groundwater during the IWA system field study, and successfully documented the inability of the IWA system to recirculate enough groundwater to enhance subsurface dissolved oxygen levels or to remediate groundwater by air stripping at this site. The inability of the systems to remediate the site was likely due to site conditions which consist of low-permeability soils and decreasing permeability with depth. As a result, relatively impermeable layers exist at the depth of the IAS screen and the lower IWA screen. These site conditions are not conducive to successful performance of either remediation system.

  14. Tracer development at ESRI

    SciTech Connect

    Adams, M.C.; Rose, P.E.; McPherson, P.

    1996-04-10

    At ESRI the Tracer Development Program is divided into three components: liquid-phase tracers, vapor-phase tracers, and pre-test modeling. The liquid-phase project has tested 40 aromatic acids and 10 fluorescent tracers for geothermal use. The vapor-phase project, which develops tracers for reservoirs such as the Geysers, is currently focused on testing SF{sub 6} at high temperatures and examining HPLC methods for the sensitive analysis of alcohol tracers. The pre-test modeling component is exploring the feasibility of using simple numerical models to lower the cost of tracer tests by providing estimates of tracer quantities, flowpaths, and arrival times.

  15. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    SciTech Connect

    Wells, Arthur W; Diehl, J Rodney; Strazisar, Brian R; Wilson, Thomas; H Stanko, Dennis C

    2012-05-01

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period of 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.

  16. Viral tracer studies indicate contamination of marine waters by sewage disposal practices in key largo, Florida.

    PubMed

    Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R

    1995-06-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys. PMID:16535046

  17. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    USGS Publications Warehouse

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  18. Groundwater age structure and palaeo hydrogeology over a 500 kyr time scale revealed from Krypton 81and a multiple tracer study: Great Artesian Basin

    NASA Astrophysics Data System (ADS)

    Love, A. J.; Purtschert, R.; Jiang, W.; Lu, Z.; Tosaki, Y.; Fulton, S.; Wohling, D.; Shand, P.; Broder, L.; Aeschbach, W.; Rousseau=Gueutin, P.

    2013-12-01

    We report on the most comprehensive set of krypton -81 data to be analysed so far. Our study site is on the western margin of the Great Artesian Basin (GAB). The study area is focused on the western margin of the GAB between the Finke River system in the Northern Territory and the iconic Dalhousie springs in South Australia. This represents the direction of groundwater flow from recharge to discharge through the Dalhousie spring complex. Because of its vast size and the potential for large regional flow systems to occur, the GAB has been considered an ideal basin to test emerging groundwater dating techniques such as Cl-36 and He-4. However both of these techniques are subjected to large degrees of uncertainty, as they require a detailed understanding of different sources and sinks of these two isotopes. Contrasting this Kr-81 is considered to be an ideal tracer as it contains only one source, the atmosphere with no or at most minimal sub surface production. For the first time we have provided a comprehensive suite of analyse not only of Cl-36, He-4, C-14, Ar-39, stable isotopes of the water molecule and noble gases but also, Kr-85 and Kr-81. Our results indicate a spectrum of 'groundwater ages' ranging from modern as indicated by thermonuclear C-14 and Ar-39 up to hundreds of thousands of years as indicated by Kr-81, Cl-36 and He-4. The data set indicates a wide range of stable isotopes of the water molecule as well as variability in noble gas recharge temperatures that suggest that not only has this region been subjected to changes in climate in the recharge zone but also testaments to a changes in the dominate direction of rainfall indicated by a change in recharge mechanism at the beginning of the Holocene. As suggested previously this groundwater flow transect may represent an ideal 'type section' for testing new and emerging environmental tracers in hydrogeology.

  19. Study of sediment movement in an irrigated maize-cotton system combining rainfall simulations, sediment tracers and soil erosion models

    NASA Astrophysics Data System (ADS)

    Guzmán, Gema; Laguna, Ana; Cañasveras, Juan Carlos; Boulal, Hakim; Barrón, Vidal; Gómez-Macpherson, Helena; Giráldez, Juan Vicente; Gómez, José Alfonso

    2015-05-01

    Although soil erosion is one of the main threats to agriculture sustainability in many areas of the world, its processes are difficult to measure and still need a better characterization. The use of iron oxides as sediment tracers, combined with erosion and mixing models opens up a pathway for improving the knowledge of the erosion and redistribution of soil, determining sediment sources and sinks. In this study, magnetite and a multivariate mixing model were used in rainfall simulations at the micro-plot scale to determine the source of the sediment at different stages of a furrow-ridge system both with (+T) and without (-T) wheel tracks. At a plot scale, magnetite, hematite and goethite combined with two soil erosion models based on the kinematic wave approach were used in a sprinkler irrigation test to study trends in sediment transport and tracer dynamics along furrow lengths under a wide range of scenarios. In the absence of any stubble cover, sediment contribution from the ridges was larger than the furrow bed one, almost 90%, while an opposite trend was observed with stubble, with a smaller contribution from the ridge (32%) than that of the bed, at the micro-plot trials. Furthermore, at a plot scale, the tracer concentration analysis showed an exponentially decreasing trend with the downstream distance both for sediment detachment along furrows and soil source contribution from tagged segments. The parameters of the distributed model KINEROS2 have been estimated using the PEST Model to obtain a more accurate evaluation. Afterwards, this model was used to simulate a broad range of common scenarios of topography and rainfall from commercial farms in southern Spain. Higher slopes had a significant influence on sediment yields while long furrow distances allowed a more efficient water use. For the control of runoff, and therefore soil loss, an equilibrium between irrigation design (intensity, duration, water pattern) and hydric needs of the crops should be

  20. Numerical simulation of a natural gradient tracer experiment for the natural attenuation study: flow and physical transport.

    PubMed

    Julian, H E; Boggs, J M; Zheng, C; Feehley, C E

    2001-01-01

    Results are presented for numerical simulations of ground water flow and physical transport associated with a natural gradient tracer experiment conducted within a heterogeneous alluvial aquifer of the Natural Attenuation Study (NATS) site near Columbus, Mississippi. A principal goal of NATS is to evaluate biogeochemical models that predict the rate and extent of natural biodegradation under field conditions. This paper describes the initial phase in the model evaluation process, i.e., calibration of flow and physical transport models that simulate conservative bromide tracer plume evolution during NATS. An initial large-scale flow model (LSM) is developed encompassing the experimental site and surrounding region. This model is subsequently scaled down in telescopic fashion to an intermediate-scale ground water flow model (ISM) covering the tracer-monitoring network, followed by a small-scale transport model (SSM) focused on the small region of hydrocarbon plume migration observed during NATS. The LSM uses inferred depositional features of the site in conjunction with hydraulic conductivity (K) data from aquifer tests and borehole flowmeter tests to establish large-scale K and flow field trends in and around the experimental site. The subsequent ISM incorporates specified flux boundary conditions and large-scale K trends obtained from the calibrated LSM, while preserving small-scale K structure based on some 4000 flowmeter data for solute transport modeling. The configuration of the ISM-predicted potentiometric surface approximates that of the observed surface within a root mean squared error of 0.15 m. The SSM is based on the dual-domain mass-transfer approach. Despite the well-recognized difficulties in modeling solute transport in extremely heterogeneous media as found at the NATS site, the dual-domain model adequately reproduced the observed bromide concentration distributions. Differences in observed and predicted bromide concentration distributions are

  1. OTEC gas-desorption studies

    SciTech Connect

    Chen, F.C.; Golshani, A.

    1981-01-01

    OTEC gas desorption studies were initiated with the goal of mitigating these effects and were carried out in four areas: (1) vacuum deaeration in a packed column, (2) deaeration in a barometric water intake system, (3) noncondensibles disposal through hydraulic air compression, and (4) OTEC deaeration subsystems' analysis. Laboratory experiments to date have completed the vacuum deaeration test of three different kinds of packings, barometric intake deaeration experiments, and a series of hydraulic air compression tests. Preliminary analyses based on the experimental data have shown that, as compared to the previous baseline study, reduction both in deaerator cost and pumping power can be realized with a combination of barometric intake and packed column deaeration. The design and operation of the gas desorption test loop, experimental and computer simulation results obtained, and an analysis of OTEC deaeration subsystem design based on the test results and their implication on OTEC open-cycle power systems are presented.

  2. Fluorescent particle tracers for surface hydrology: development of a sensing station for field studies

    NASA Astrophysics Data System (ADS)

    Capocci, I.; Mocio, G.; Insogna, F.; Tauro, F.; Petroselli, A.; Rapiti, R.; Cipollari, G.; Grimaldi, S.; Porfiri, M.

    2012-04-01

    This work focuses on the development and testing of a sensing station for the detection and tracking of a new class of fluorescent particle tracers for surface hydrology. This tracing methodology is based on the release of microspheres that fluoresce at labeled wavelengths in natural streams. The particles are detected as they transit below a sensing station that comprises a light source and a digital camera. Video feed from the station is then processed to obtain direct flow measurements and stream reach travel times. This novel tracing technology is a low-cost measurement system that can be implemented on a variety of real-world settings, spanning from small scale streams to few centimeters rills in natural hillslopes. In particular, the use of insoluble buoyant particles limits the tracer dispersion from adhesion to natural substrates and thus minimizes the amount of tracing material for experimental measurements. Further, particle enhanced fluorescence allows for non-intrusively detecting the tracer without deploying probes and samplers in the water. The performance of the sensing station is assessed by conducting a large array of experiments under different flow and acquisition conditions. More specifically, experiments are performed for multiple flow velocities, camera acquisition frequencies, light sources, and distances of the sensing station from the flow surface. Particles are deployed in a custom built artificial water channel of adjustable slope to simulate varying flow conditions. A high definition bullet camera is used to detect particles that fluoresce either in green or red and two optical filters, corresponding to the emission wavelengths of the particles, are incorporated in the sensing station. In this implementation, green emission is elicited by using Ultra Violet lights, while white light drives the red emission. Experimental results confirm the versatility and the effectiveness of the proposed methodology. Both particle types are found to be

  3. The potential of silica encapsulated DNA magnetite microparticles (SiDNAMag) for multi-tracer studies in subsurface hydrology

    NASA Astrophysics Data System (ADS)

    Willem Foppen, Jan; Bogaard, Thom; van Osnabrugge, Bart; Puddu, Michela; Grass, Robert

    2015-04-01

    With tracer experiments, knowledge on solute transport, travel times, flow pathways, source areas, and linkages between infiltration and exfiltration zones in subsurface hydrological studies can be obtained. To overcome the well-known limitations of artificial tracers, we report here the development and application of an inexpensive method to produce large quantities of environmentally friendly 150-200 nm microparticles composed of a magnetite core to which small fragments of synthetic 80 nt ssDNA were adsorbed, which were then covered by a layer of inert silica (acronym: SiDNAMag). The main advantages of using DNA are the theoretically unlimited amount of different DNA tracers and the low DNA detection limit using the quantitative polymerase chain reaction (qPCR); the main advantage of the silica layer is to prevent DNA decay, while the magnetite core facilitates magnetic separation, recovery and up-concentration. In 10 cm columns of saturated quartz sand, we first injected NaCl, a conservative salt tracer, and measured the breakthrough. Then, we injected SiDNAMag suspended in water of known composition, harvested the SiDNAMag in column effluent samples, and measured the DNA concentration via qPCR after dissolving the SiDNAMag. The results indicated that the timing of the rising limb of the DNA breakthrough curve, the plateau phase and the falling limb were identical to the NaCl breakthrough curve. However, the relative maximum DNA concentration reached during the plateau phase was around 0.3, indicating that around 70% of the SiDNAMag mass was retained in the column. From these results we inferred that SiDNAMag was not retarded and therefore not subject to equilibrium sorption. Instead, first order irreversible kinetic attachment appeared to be the dominant retention mechanism. Based on our results, we speculate that, despite significant retention, due to the low DNA detection limit and the possibility of magnetic up-concentration, the use of SiDNAMag is a very

  4. Simulation and interpretation of inter-well tracer tests

    NASA Astrophysics Data System (ADS)

    Huseby, Olaf; Sagen, Jan; Viig, Sissel; Dugstad, Øyvind

    2013-05-01

    In inter-well tracer tests (IWTT), chemical compounds or radioactive isotopes are used to label injection water and gas to establish well connections and fluid patterns in petroleum reservoirs. Tracer simulation is an invaluable tool to ease the interpretation of IWTT results and is also required for assisted history matching application of tracer data. In this paper we present a new simulation technique to analyse and interpret tracer results. Laboratory results are used to establish and test formulations of the tracer conservation equations, and the technique is used to provide simulated tracer responses that are compared with observed tracer data from an extensive tracer program. The implemented tracer simulation methodology use a fast post-processing of previously simulated reservoir simulation runs. This provides a fast, flexible and powerful method for analysing gas tracer behaviour in reservoirs. We show that simulation time for tracers can be reduced by factor 100 compared to solving the tracer flow equations simultaneously with the reservoir fluid flow equations. The post-processing technique, combined with a flexible built-in local tracer-grid refinement is exploited to reduce numerical smearing, particularly severe for narrow tracer pulses.

  5. Water, methanol and dense gas tracers in the local ULIRG Arp 220: results from the new SEPIA Band 5 Science Verification campaign

    NASA Astrophysics Data System (ADS)

    Galametz, M.; Zhang, Z.-Y.; Immer, K.; Humphreys, E.; Aladro, R.; De Breuck, C.; Ginsburg, A.; Madden, S. C.; Møller, P.; Arumugam, V.

    2016-10-01

    We present a line survey of the ultraluminous infrared galaxy Arp 220, taken with the newly installed SEPIA (Swedish-European Southern Observatory PI receiver for APEX) Band 5 instrument on APEX (Atacama Pathfinder Experiment). We illustrate the capacity of SEPIA to detect the 183.3 GHz H2O 31,3-22,0 line against the atmospheric H2O absorption feature. We confirm the previous detection of the HCN(2-1) line, and detect new transitions of standard dense gas tracers such as HNC(2-1), HCO+(2-1), CS(4-3), C34S(4-3) and HC3N(20-19). We also detect HCN(2-1) v2 = 1 and the 193.5 GHz methanol (4-3) group for the first time. The absence of time variations in the megamaser water line compared to previous observations seems to rule out an AGN nuclear origin for the line. It could, on the contrary, favour a thermal origin instead, but also possibly be a sign that the megamaser emission is associated with star-forming cores washed out in the beam. We finally discuss how the new transitions of HCN, HNC and HCO+ refine our knowledge of the interstellar medium physical conditions in Arp 220.

  6. Tracer dating and ocean ventilation

    SciTech Connect

    Thiele, G.; Sarmiento, J.L. )

    1990-06-15

    The interpretation of transient tracer observations depends on difficult to obtain information on the evolution in time of the tracer boundary conditions and interior distributions. Recent studies have attempted to circumvent this problem by making use of a derived quantity, age, based on the simultaneous distribution of two complementary tracers, such as tritium and its daughter, helium 3. The age is defined with reference to the surface such that the boundary condition takes on a constant value of zero. The authors use a two-dimensional model to explore the circumstances under which such a combination of conservation equations for two complementary tracers can lead to a cancellation of the time derivative terms. An interesting aspect of this approach is that mixing can serve as a source or sink of tracer based age. The authors define an idealized ventilation age tracer that is conservative with respect to mixing, and they explore how its behavior compares with that of the tracer-based ages over a range of advective and diffusive parameters.

  7. Halon-1301, a new Groundwater Age Tracer

    NASA Astrophysics Data System (ADS)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    Groundwater dating is an important tool to assess groundwater resources in regards to direction and time scale of groundwater flow and recharge and to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However ambiguous age interpretations are often faced, due to a limited set of available tracers and limitations of each tracer method when applied alone. There is a need for additional, complementary groundwater age tracers. We recently discovered that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate [Beyer et al, 2014]. Halon-1301 can be determined along with SF6, SF5CF3 and CFC-12 in groundwater using a gas chromatography setup with attached electron capture detector developed by Busenberg and Plummer [2008]. Halon-1301 has not been assessed in groundwater. This study assesses the behaviour of Halon-1301 in water and its suitability as a groundwater age tracer. We determined Halon-1301 in 17 groundwater and various modern (river) waters sites located in 3 different groundwater systems in the Wellington Region, New Zealand. These waters have been previously dated with tritium, CFC-12, CFC-11 and SF6 with mean residence times ranging from 0.5 to over 100 years. The waters range from oxic to anoxic and some show evidence of CFC contamination or degradation. This allows us to assess the different properties affecting the suitability of Halon-1301 as groundwater age tracer, such as its conservativeness in water and local contamination potential. The samples are analysed for Halon-1301 and SF6simultaneously, which allows identification of issues commonly faced when using gaseous tracers such as contamination with modern air during sampling. Overall we found in the assessed groundwater samples Halon-1301 is a feasible new groundwater tracer. No sample indicated significantly elevated

  8. Feasibility study of silver iodide smoke as an atmospheric dispersion tracer for Rocky Flats Plant site, July 1983-December 1984

    SciTech Connect

    Langer, G.

    1986-09-22

    At Rocky Flats Plant, we developed a technique that employs the release of silver iodide (AgI) smoke as a very economical tracer for air dispersion around the Plant. In an emergency, the AgI smoke would trace a contaminant plume over long distances, in real time, to guide emergency response. To test this technique, we experimented with first releasing AgI smoke particles, then tracking them up to 50 km from the Plant by vehicle and aircraft under various typical weather conditions. Able to detect single AgI particles as small as 0.01 ..mu..m in real time, a portable cloud chamber operated on either a pickup truck or a small aircraft. For both procedures, a simple smoke generator operating unattended produced up to 1 x 10/sup 15/ particles/g of AgI. Ground tracking of the smoke (1) showed the influence on dispersion by the midday shift from downslope to upslope flow during stable conditions and (2) provided an interesting case study of a nearby thunderstorm as a transient effect. Aerial tracking during eight flights covered a wide range of meteorological conditions. Convective flow often lofted the smoke completely off the ground before it left the Plant boundary. During inversion conditions, the tracer remained within 100 m of the ground.

  9. Birth Outcomes in a Prospective Pregnancy–Birth Cohort Study of Environmental Risk Factors in Kuwait: The TRACER Study

    PubMed Central

    AlSeaidan, Mohammad; Al Wotayan, Rihab; Christophi, Costas A.; Al-Makhseed, Massouma; Awad, Yara Abu; Nassan, Feiby; Ahmed, Ayah; Abraham, Smitha; Boley, Robert Bruce; James-Todd, Tamarra; Wright, Rosalind J.; Dockery, Douglas W.; Behbehani, Kazem

    2016-01-01

    Background Rapid development and westernisation in Kuwait and other Gulf states have been accompanied by rising rates of obesity, diabetes, asthma, and other chronic conditions. Prenatal experiences and exposures may be important targets for intervention. We undertook a prospective pregnancy–birth cohort study in Kuwait, the TRansgenerational Assessment of Children’s Environmental Risk (TRACER) Study, to examine prenatal risk factors for early childhood obesity. This article describes the methodology and results of follow-up through birth. Methods Women were recruited at antenatal clinical visits. Interviewers administered questionnaires during the pregnancy and collected and banked biological samples. Children are being followed up with quarterly maternal interviews, annual anthropometric measurements, and periodic collection of biosamples. Frequencies of birth outcomes (i.e. stillbirth, preterm birth, small and large for gestational age, and macrosomia) were calculated as a function of maternal characteristics and behaviours. Results Two thousand four hundred seventy-eight women were enrolled, and 2254 women were followed to delivery. Overall, frequencies of stillbirth (0.6%), preterm birth (9.3%), and small for gestational age (7.4%) were comparable to other developed countries, but not strongly associated with maternal characteristics or behaviours. Macrosomia (6.1%) and large for gestational age (23.0%) were higher than expected and positively associated with pre-pregnancy maternal overweight/obesity. Conclusions A large birth cohort has been established in Kuwait. The collected risk factors and banked biosamples will allow examination of the effects of prenatal exposures on the development of chronic disease in children. Initial results suggest that maternal overweight/obesity before pregnancy should be targeted to prevent macrosomia and its associated sequelae of childhood overweight/obesity. PMID:27193754

  10. Diffusive partitioning tracer test for the quantification of nonaqueous phase liquid (NAPL) in the vadose zone: Performance evaluation for heterogeneous NAPL distribution

    NASA Astrophysics Data System (ADS)

    Werner, David; Karapanagioti, Hrissi K.; Höhener, Patrick

    2009-08-01

    A partitioning tracer test based on gas-phase diffusion in the vadose zone yields estimates of the residual nonaqueous phase liquid (NAPL) saturation. The present paper investigates this technique further by studying diffusive tracer breakthrough curves in the vadose zone for a heterogeneous NAPL distribution. Tracer experiments were performed in a lysimeter with a horizontal layer of artificial kerosene embedded in unsaturated sand. Tracer disappearance curves at the injection point and tracer breakthrough curves at some distance from the injection point were measured inside and outside of the NAPL layer. A numerical code was used to generate independent model predictions based on the physicochemical sand, NAPL, and tracer properties. The measured and modeled tracer breakthrough curves were in good agreement confirming the validity of important modeling assumptions such as negligible sorption of chlorofluorocarbon (CFC) tracers to the uncontaminated sand and their fast reversible partitioning between the soil air and the NAPL phase. Subsequently, the model was used to investigate different configurations of NAPL contamination. The experimental and model results show that the tracer disappearance curves of a single-well diffusive partitioning tracer test (DPTT) are dominated by the near-field presence of NAPL around the tip of the soil gas probe. In contrast, breakthrough curves of inter-well tracer tests reflect the NAPL saturation in between the probes, although there is no unique interpretation of the tracer signals if the NAPL distribution is heterogeneous. Numerical modeling is useful for the planning of a DPTT application. Simulations suggest that several cubic meters of soil can be investigated with a single inter-well partitioning tracer test of 24-hour duration by placing the injection point in the center of the investigated soil volume and probes at up to 1 m distance for the monitoring of gaseous tracers.

  11. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1987-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. The slug-injection and constant-rate injection methods of performing gas tracer desorption measurements are described. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients. (Author 's abstract)

  12. Radioisotope tracer studies of inorganic carbon and Ca in microbially derived CaCO3

    USGS Publications Warehouse

    Yates, Kimberly K.; Robbins, Lisa L.

    1999-01-01

    Microbial calcification significantly impacts the cycling and deposition of inorganic carbon. This research employs 45Ca and 14C techniques as radioisotopic tracers to examine the role of cellular cycling of Ca2+ and inorganic carbon in CaCO3 precipitation by the unicellular green alga Nannochloris atomus. Implications of the effects of these physiological aspects on CaCO3 precipitation and the effects of microbial calcification on CaCO3 δ13C ratios are discussed. Results from pulse/chase experiments indicate that intracellular Ca2+ is incorporated into extracellular CaCO3. Intracellular inorganic carbon leaks from cells within 10 to 12 s after injection of unlabelled NaHCO3, providing a source of inorganic carbon for extracellular CaCO3. Cellular expulsion of calcium plays a key role in increasing the CaCO3 saturation state at the site of calcification. The δ13C ratios of microbial carbonates may vary depending on the amount of photorespiratory CO2 incorporated.

  13. Automatic alignment of renal DCE-MRI image series for improvement of quantitative tracer kinetic studies

    NASA Astrophysics Data System (ADS)

    Zikic, Darko; Sourbron, Steven; Feng, Xinxing; Michaely, Henrik J.; Khamene, Ali; Navab, Nassir

    2008-03-01

    Tracer kinetic modeling with dynamic contrast enhanced MRI (DCE-MRI) and the quantification of the kinetic parameters are active fields of research which have the potential to improve the measurement of renal function. However, the strong coronal motion of the kidney in the time series inhibits an accurate assessment of the kinetic parameters. Automatic motion correction is challenging due to the large movement of the kidney and the strong intensity changes caused by the injected bolus. In this work, we improve the quantification results by a template matching motion correction method using a gradient-based similarity measure. Thus, a tedious manual motion correction is replaced by an automatic procedure. The only remaining user interaction is reduced to a selection of a reference slice and a coarse manual segmentation of the kidney in this slice. These steps do not present an overhead to the interaction needed for the assessment of the kinetic parameters. In order to achieve reliable and fast results, we constrain the degrees of freedom for the correction method as far as possible. Furthermore, we compare our method to deformable registration using the same similarity measure. In all our tests, the presented template matching correction was superior to the deformable approach in terms of reliability, leading to more accurate parameter quantification. The evaluation on 10 patient data series with 180-230 images each demonstrate that the quantitative analysis by a two-compartment model can be improved by our method.

  14. Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study.

    PubMed

    Handler, Robert M; Beard, Brian L; Johnson, Clark M; Scherer, Michelle M

    2009-02-15

    The reaction of aqueous Fe(II) with Fe(III) oxides is a complex process, comprising sorption, electron transfer, and in some cases, reductive dissolution and transformation to secondary minerals. To better understand the dynamics of these reactions, we measured the extent and rate of Fe isotope exchange between aqueous Fe(II) and goethite using a 57Fe isotope tracer approach. We observed near-complete exchange of Fe atoms between the aqueous phase and goethite nanorods over a 30-day time period. Despite direct isotopic evidence for extensive mixing between the aqueous and goethite Fe, no phase transformation was observed, nor did the size or shape of the goethite rods change appreciably. High-resolution transmission electron microscopy images, however, appear to indicate that some recrystallization of the goethite particles may have occurred. Near-complete exchange of Fe between aqueous Fe(II) and goethite, coupled with negligible change in the goethite mineralogy and morphology, suggests a mechanism of coupled growth (via sorption and electron transfer) and dissolution at separate crystallographic goethite sites. We propose that sorption and dissolution sites are linked via conduction through the bulk crystal, as was recently demonstrated for hematite. Extensive mixing between aqueous Fe(II) and goethite, a relatively stable iron oxide, has significant implications for heavy metal sequestration and release (e.g., arsenic and uranium), as well as reduction of soil and groundwater contaminants.

  15. A study of the accuracy of neutrally buoyant bubbles used as flow tracers in air

    NASA Technical Reports Server (NTRS)

    Kerho, Michael F.

    1993-01-01

    Research has been performed to determine the accuracy of neutrally buoyant and near neutrally buoyant bubbles used as flow tracers in air. Theoretical, computational, and experimental results are presented to evaluate the dynamics of bubble trajectories and factors affecting their ability to trace flow-field streamlines. The equation of motion for a single bubble was obtained and evaluated using a computational scheme to determine the factors which affect a bubble's trajectory. A two-dimensional experiment was also conducted to experimentally determine bubble trajectories in the stagnation region of NACA 0012 airfoil at 0 deg angle of attack using a commercially available helium bubble generation system. Physical properties of the experimental bubble trajectories were estimated using the computational scheme. These properties included the density ratio and diameter of the individual bubbles. the helium bubble system was then used to visualize and document the flow field about a 30 deg swept semispan wing with simulated glaze ice. Results were compared to Navier-Stokes calculations and surface oil flow visualization. The theoretical and computational analysis have shown that neutrally buoyant bubbles will trace even the most complex flow patterns. Experimental analysis revealed that the use of bubbles to trace flow patterns should be limited to qualitative measurements unless care is taken to ensure neutral buoyancy. This is due to the difficulty in the production of neutrally buoyant bubbles.

  16. Novel and nontraditional use of stable isotope tracers to study metal bioavailability from natural particles.

    PubMed

    Croteau, Marie-Noële; Cain, Daniel J; Fuller, Christopher C

    2013-04-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails ( Lymnaea stagnalis ) to synthetic water spiked with Cu that was 99.4% (65)Cu to increase the relative abundance of (65)Cu in the snail's tissues from ~32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe-Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used (63)Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  17. Rapid dual-tracer PTSM+ATSM PET imaging of tumour blood flow and hypoxia: a simulation study.

    PubMed

    Rust, T C; Kadrmas, D J

    2006-01-01

    Blood flow and hypoxia are interrelated aspects of physiology that affect cancer treatment and response. Cu-PTSM and Cu-ATSM are related PET tracers for blood flow and hypoxia, and the ability to rapidly image both tracers in a single scan would bring several advantages over conventional single-tracer techniques. Using dynamic imaging with staggered injections, overlapping signals for multiple PET tracers may be recovered utilizing information from kinetics and radioactive decay. In this work, rapid dual-tracer PTSM+ATSM PET was simulated and tested as a function of injection delay, order and relative dose for several copper isotopes, and the results were compared relative to separate single-tracer data. Time-activity curves representing a broad range of tumour blood flow and hypoxia levels were simulated, and parallel dual-tracer compartment modelling was used to recover the signals for each tracer. The main results were tested further using a torso phantom simulation of PET tumour imaging. Using scans as short as 30 minutes, the dual-tracer method provided measures of blood flow and hypoxia similar to single-tracer imaging. The best performance was obtained by injecting PTSM first and using a somewhat higher dose for ATSM. Comparable results for different copper isotopes suggest that tracer kinetics with staggered injections play a more important role than radioactive decay in the signal separation process. Rapid PTSM+ATSM PET has excellent potential for characterizing both tumour blood flow and hypoxia in a single, fast scan, provided that technological hurdles related to algorithm development and routine use can be overcome.

  18. Salt tracer experiments in constructed wetland ponds with emergent vegetation: laboratory study on the formation of density layers and its influence on breakthrough curve analysis.

    PubMed

    Schmid, Bernhard H; Hengl, Michael A; Stephan, Ursula

    2004-04-01

    Constructed wetlands are a rapidly expanding and intensively studied wastewater treatment system. One of the main types in use is the free water surface (FWS) wetland or wetland pond. In studies on these ponds, salt tracer experiments are a convenient tool to determine travel time distributions, which are, in turn, related to hydraulic and sedimentation (trapping) as well as nutrient removal efficiencies. Typically, flows encountered in constructed wetland ponds are characterized by low Reynolds numbers, at times even within the laminar flow regime. In such conditions the injection of salt may cause strong density effects, thereby threatening the usefulness of the recorded breakthrough curves. The processes and mechanisms governing the formation of density stratification due to salt tracer injections into wetland ponds with emergent vegetation were studied in the laboratory. The results reported are expected to be useful in the planning of future field tracer experiments.

  19. Olfacto-retinalis pathway in Austrolebias charrua fishes: a neuronal tracer study.

    PubMed

    Rosillo, J C; Olivera-Bravo, S; Casanova, G; García-Verdugo, J M; Fernández, A S

    2013-12-01

    The olfacto-retinal centrifugal system, a constant component of the central nervous system that appears to exist in all vertebrate groups, is part of the terminal nerve (TN) complex. TN allows the integration of different sensory modalities, and its anatomic variability may have functional and evolutionary significance. We propose that the olfacto-retinal branch of TN is an important anatomical link that allows the functional interaction between olfactory and visual systems in Austrolebias. By injecting three different neuronal tracers (biocytin, horseradish peroxidase, and 1,1'-dioctadecyl-3,3,3',3'tetramethyl-indocarbocyanine perchlorate (DiI)) in the left eye of Austrolebias charrua fishes, we identified the olfacto-retinal branch of TN and related neuronal somas that were differentiable by location, shape, and size. The olfacto-retinal TN branch is composed of numerous thin axons that run ventrally along the olfactory bulb (OB) and telencephalic lobes, and appears to originate from a group of many small monopolar neurons located in the rostral portion of both the ipsi- and contralateral OB (referred to as region 1). Labeled cells were found in two other regions: bipolar and multipolar neurons in the transition between the OB and telencephalic lobes (region 2) and two other groups in the preoptic/pretectal area (region 3). In this last region, the most rostral group is constituted by monopolar pear-shaped neurons and may belong to the septo-preoptic TN complex. The second group, putatively located in the pretectal region, is formed by pseudounipolar neurons and coincides with a conserved vertebrate nucleus of the centrifugal retinal system not involved in the TN complex. The found that connections between the olfactory and visual systems via the olfacto-retinal TN branch suggest an early interaction between these sensory modalities, and contribute to the identification of their currently unknown circuital organization.

  20. Modeling and interpretation of two-phase flow and tracer studies from a subbituminous coal seam in the San Juan basin of New Mexico

    SciTech Connect

    Nuttall, H.E.; Travis, B.J.

    1980-01-01

    Field and modeling studies were performed to characterize two-phase flow within the natural cleat structure of an upper Cretaceous subbituminous coal seam. A two borehole pattern with open completion was used in a study of dewatering and tracer residence time distribution. Air was pumped into a five meter thick seam located about 170 meters below the surface. Krypton 85 was used as the airborne tracer. Air inflow and air and water production rates and tracer arrival times were monitored. The field tests were simulated with a two-phase, three component, porous flow code. Results showed that the air inflow and air and water outflow rates and breakthrough times could not be modeled assuming a uniform darcy-type permeability. The use of a pressure dependent permeability did provide, however, a much better match with the field data.

  1. Depth-resolved water column spectral absorption of sunlight by phytoplankon during the Southern Ocean Gas Exchange (SOGasEx) Lagrangian tracer experiments

    NASA Astrophysics Data System (ADS)

    Hargreaves, B. R.

    2008-12-01

    Optical measurements made during gas exchange tracer experiments in the Southern Ocean, Atlantic sector near 51°S, 38°W from March-April 2008 (SOGasEx) were used to develop daily integrated depth- resolved PAR absorbed by phytoplankton. Particulate and phytoplankton pigment spectral absorption coefficients (ap and aph), and methanol-extracted chlorophyll-a concentrations (chl-a) from discrete samples within and below the upper mixed layer (40 stations) were combined with data from optical casts where chlorophyll-a and cdom fluorescence and PAR scalar irradiance were measured (11 stations), PAR Kd was measured from a buoy free of ship shadow for 0-5m (11 stations), and Wetlabs AC-9 whole water absorption coefficients to 150m were measured (14 stations, with 3 in common with fluorescence data) to estimate depth-resolved values for both total spectral absorption and spectral PAR irradiance. By combining depth-adjusted spectral absorption of phytoplankton pigments (aph) with depth-adjusted PAR spectral irradiance we estimated depth-resolved daily PAR irradiance absorbed by photosynthetic pigments. These data can be compared with time-integrated primary production measurements conducted on deck where solar exposure or lamp exposure was modified to simulate a range of depths. Such a synthesis should improve our estimates of depth-integrated daily primary production, and ultimately contribute to refining estimates of carbon export rates to be incorporated into a carbon budget and CO2 air-sea flux models for the SOGasEx experiments.

  2. A pilot study of the feasibility of long-term human bone balance during perimenopause using a 41Ca tracer

    NASA Astrophysics Data System (ADS)

    Hui, S. K.; Prior, J.; Gelbart, Z.; Johnson, R. R.; Lentle, B. C.; Paul, M.

    2007-06-01

    The mechanisms governing calcium fluxes during bone remodeling processes in perimenopausal women are poorly known. Despite higher, albeit erratic, estradiol levels in perimenopause, spine bone loss is greater than during the first five years past the final menstrual flow when estradiol becomes low. Understanding changes during this dynamic transition are important to prevent fragility fractures in midlife and older women. The exploration of long-lived 41Ca (T1/2 = 1.04 × 105 yrs) tracer measurements using accelerator mass spectrometry (AMS) leads to the possibility of monitoring bone remodeling balance. With this new technology, we explored a pilot long-term feasibility study of bone health by measuring the 41Ca trace element in urine for six years from premenopausal to later perimenopausal phases in one midlife woman. We measured bone mineral density in parallel.

  3. Preferential flow in heterogeneous forest-reclaimed lignitic mine soil I. Cell-lysimeter and multiple-tracer study

    NASA Astrophysics Data System (ADS)

    Hangen, E.; Gerke, H. H.; Schaaf, W.; Hüttl, R. F.

    2003-04-01

    Flow and transport processes in forest-reclaimed lignitic mine soils are required to quantify water and element budgets, which are important for long-term predictions of restored ecosystem stability and development of mining area water quality. Soil water pressure head and solute concentration measurements using tensiometers and suction cups showed strong spatial heterogeneity possibly indicating preferential flow effects. Properties and spatial structures of the mostly sandy mine soils and transport processes, however, have not sufficiently been known for detailed assessments. The objective of this study was to quantitatively analyse flow paths and measure amount and spatial distribtion of leaching. Water and element fluxes were studied at a reclaimed mine spoil site, which was afforested in 1982 with Pinus nigra. At a 3.3 m2 plot, the total percolating water was collected in 110 cm soil depth by 45 squared suction cells of 27 cm edge length each. A multi-tracer solution containing deuterium, bromide, and terbuthylazine was applied evenly at the plot surface and imposed to natural infiltration. Leaching was measured for a period of about 2 years. One third of the cells never delivered any drainage water while few cells had large drainage rates which in one case even exceeded local infiltration rates. About 71 % of the drainage was through 9 % of the area. The spatial distribution of the leached bromide tracer did not always correspond with that of drainage. Relative concentrations of bromide and deuterium were similar. Terbuthylazine was observed only sporadically during the first drainage period and at relatively small concentrations just above the analytical detection limit. Leaching patterns of the sorptive herbicide indicate only relatively small nonequilibrium-type preferential flow. Sediment structures, water repellent regions, and tree root distributions seem to be important for funneling and flow path formation.

  4. On the use of flow-storage repartitions derived from artificial tracer tests for geothermal reservoir characterization in the Malm-Molasse basin: a theoretical study

    NASA Astrophysics Data System (ADS)

    Dewi, Dina Silvia; Osaigbovo Enomayo, Augustine; Mohsin, Rizwan; Karmakar, Shyamal; Ghergut, Julia; Sauter, Martin

    2016-04-01

    needed to calculate FSR. Looking at the Sauerlach example, we find that premature interruption of tracer sampling systematically leads to overestimating the reservoir's storage capacity and underestimating its flow capacity, with misestimation generally increasing as the bedded/reef interfacial area per volume is increased. It is interesting to correlate these findings with the tracer-based approach to facies identification for the shallower Malm aquifers of the Southern Franconian Alb, proposed by Seiler et al. (1989, 1995) and with expectations from the direct (i. e., distributed-parameter) modeling of matrix-diffusive effects (Maloszewski and Zuber 1985) on measured tracer signals. References: Maloszewski P, Zuber A (1985) On the theory of tracer experiments in fissured rocks with a porous matrix, Journal of Hydrology, 79, 333-358 Seiler K-P, Behrens H, Wolf M (1995) Use of artificial and environmental tracers to study storage and drainage of groundwater in the Franconian Alb, Germany, and the consequences for groundwater protection, Proc Isotopes in Water Resources Management, 2, 135-146 (IAEA, Vienna) Seiler K-P, Maloszewski P, Behrens H (1989) Hydrodynamic dispersion in karstified limestones and dolomites in the Upper Jurassic of the Franconian Alb, FRG, Journal of Hydrology, 108, 235-247 Shook G M (2003) A Simple, Fast Method of Estimating Fractured Reservoir Geometry from Tracer Tests, Geothermal Resources Council Transactions, 27, 407-411 Financial support from the German Federal Ministry for Economic Affairs and Energy is gratefully acknowledged. - Gefördert durch BMWi aufgrund eines Beschlusses des Deutschen Bundestages (FKZ 0325515 "TRENDS").

  5. Analysis of tracer and thermal transients during reinjection

    SciTech Connect

    Kocabas, I.

    1989-10-01

    This work studied tracer and thermal transients during reinjection in geothermal reserviors and developed a new technique which combines the results from interwell tracer tests and thermal injection-backflow tests to estimate the thermal breakthrough times. Tracer tests are essential to determine the degree of connectivity between the injection wells and the producing wells. To analyze the tracer return profiles quantitatively, we employed three mathematical models namely, the convection-dispersion (CD) model, matrix diffusion (MD) model, and the Avodnin (AD) model, which were developed to study tracer and heat transport in a single vertical fracture. We considered three types of tracer tests namely, interwell tracer tests without recirculation, interwell tracer tests with recirculation, and injection-backflow tracer tests. To estimate the model parameters, we used a nonlinear regression program to match tracer return profiles to the solutions.

  6. A field tracer study of attenuation of atrazine, hexazinone and procymidone in a pumice sand aquifer.

    PubMed

    Pang, L; Close, M E

    2001-12-01

    A field tracer experiment, simulating point source contamination, was conducted to investigate attenuation and transport of atrazine, hexazinone and procymidone in a volcanic pumice sand aquifer. Preliminary laboratory incubation tests were also carried out to determine degradation rates. Field transport of the pesticides was observed to the significant under non-equilibrium conditions. Therefore, a two-region/two-site non-equilibrium transport model, N3DADE, was used for analysis of the field data. A lump reduction rate constant was used in this paper to encompass all the irreversible reduction processes (e.g. degradation, irreversible adsorption, complexation and filtration for the pesticides adsorbed into particles and colloids) which are assumed to follow a first-order rate law. Results from the field experiment suggest that (a) hexazinone was the most mobile (retardation factor R = 1.4) and underwent least mass reduction; (b) procymidone was the least mobile (R = 9.26) and underwent the greatest mass reduction; (c) the mobility of atrazine (R = 4.45) was similar to that of rhodamine WT (R = 4.10). Hence, rhodamine WT can be used to delimit the appearance of atrazine in pumice sand groundwater. Results from the incubation tests suggest that (a) hexazinone was degraded only in the mixture of groundwater and aquifer material (degradation rate constant = 4.36 x 10(-3) day-1); (b) procymidone was degraded not only in the mixture of groundwater and aquifer material (rate constant = 1.12 x 10(-2) day-1) but also in the groundwater alone (rate constant = 2.79 x 10(-2) and-1); (c) atrazine was not degraded over 57 days incubation in either the mixture of aquifer material and groundwater or the groundwater alone. Degradation rates measured in the batch tests were much lower than the total reduction rates. This suggests that not only degradation but also other irreversible processes are important in attenuating pesticides under field conditions. Hence, the use of

  7. Tracer tomography (in) rocks!

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2016-04-01

    Physical behavior of fractured aquifers is rigorously controlled by the presence of interconnected conductive fractures, as they represent the main pathways for flow and transport. Ideally, they are simulated as a discrete fracture network (DFN) in a model to capture the role of fracture system geometry, i.e. fracture length, height, and width (aperture/transmissivity). Such network may be constrained by prior geological information or direct data resources such as field mapping, borehole logging and geophysics. With the many geometric features, however, calibration of a DFN to measured data is challenging. This is especially the case when spatial properties of a fracture network need to be calibrated to flow and transport data. One way to increase the insight in a fractured rock is by combining the information from multiple field tests. In this study, a tomographic configuration that combines multiple tracer tests is suggested. These tests are conducted from a borehole with different injection levels that act as sources. In a downgradient borehole, the tracer is recorded at different levels or receivers, in order to maximize insight in the spatial heterogeneity of the rock. As tracer here we chose heat, and temperature breakthrough curves are recorded. The recorded tracer data is inverted using a novel stochastic trans-dimensional Markov Chain Monte Carlo procedure. An initial DFN solution is generated and sequentially modified given available geological information, such as expected fracture density, orientation, length distribution, spacing and persistency. During this sequential modification, the DFN evolves in a trans-dimensional inversion space through adding and/or deleting fracture segments. This stochastic inversion algorithm requires a large number of thousands of model runs to converge, and thus using a fast and robust forward model is essential to keep the calculation efficient. To reach this goal, an upwind coupled finite difference method is employed

  8. Kinetic measurements of bone mineral metabolism: The use of Na-22 as a tracer for long-term bone mineral turnover studies

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1978-01-01

    Sodium-22 was studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with (22)Na which is released through the metabolic turnover of the bone. The (22)Na which is not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high but nontoxic levels of NaCl. The (22)Na tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  9. INL Tracer Interpretation

    2007-03-27

    This spreadsheet application is for tracer test analysis. The analyses are based on the first temporal moment of a tracer. The governing equations are briefly discussed, and the individual steps required of the user are outlined. A series of Excel macros written in Visual Basic calculate mean residence time, swept pore volume, and flow-storage geometry from a tracer history.

  10. Far-infrared study of tracers of oxygen chemistry in diffuse clouds

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, H.; Güsten, R.; Heyminck, S.; Hübers, H. W.; Menten, K. M.; Neufeld, D. A.; Richter, H.; Simon, R.; Stutzki, J.; Winkel, B.; Wyrowski, F.

    2016-01-01

    Context. The chemistry of the diffuse interstellar medium rests upon three pillars: exothermic ion-neutral reactions ("cold chemistry"), endothermic neutral-neutral reactions with significant activation barriers ("warm chemistry"), and reactions on the surfaces of dust grains. While warm chemistry becomes important in the shocks associated with turbulent dissipation regions, the main path for the formation of interstellar OH and H2O is that of cold chemistry. Aims: The aim of this study is to observationally confirm the association of atomic oxygen with both atomic and molecular gas phases, and to understand the measured abundances of OH and OH+ as a function of the available reservoir of H2. Methods: We obtained absorption spectra of the ground states of OH, OH+ and O i with high-velocity resolution, with GREAT onboard SOFIA, and with the THz receiver at the APEX. We analyzed them along with ancillary spectra of HF and CH from HIFI. To deconvolve them from the hyperfine structure and to separate the blend that is due to various velocity components on the sightline, we fit model spectra consisting of an appropriate number of Gaussian profiles using a method combining simulated annealing with downhill simplex minimization. Together with HF and/or CH as a surrogate for H2, and H i λ21 cm data, the molecular hydrogen fraction fNH2 = N(H2)/(N(H) + 2N(H2)) can be determined. We then investigated abundance ratios as a function of fNH2. Results: The column density of O i is correlated at a high significance with the amount of available molecular and atomic hydrogen, with an atomic oxygen abundance of 3 × 10-4 relative to H nuclei. While the velocities of the absorption features of OH and OH+ are loosely correlated and reflect the spiral arm crossings on the sightline, upon closer inspection they display an anticorrespondence. The arm-to-interarm density contrast is found to be higher in OH than in OH+. While both species can coexist, with a higher abundance in OH than

  11. Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sulfur hexafluoride tracer technique (SF**6) is a commonly used method for measuring CH**4 enteric emissions in ruminants. Studies using SF**6 have shown large variation in CH**4 emissions data, inconsistencies in CH**4 emissions across studies, and potential methodological errors. Therefore, th...

  12. Using Tracer Technology to Characterize Contaminated Pipelines

    SciTech Connect

    Maresca, Joseph, W., Jr., Ph.D.; Bratton, Wesley, L., Ph.D., P.E.; Dickerson, Wilhelmina; Hales, Rochelle

    2005-12-30

    The Pipeline Characterization Using Tracers (PCUT) technique uses conservative and partitioning, reactive or other interactive tracers to remotely determine the amount of contaminant within a run of piping or ductwork. The PCUT system was motivated by a method that has been successfully used to characterize subsurface soil contaminants and is similar in operation to that of a gas chromatography column. By injecting a ?slug? of both conservative and partitioning tracers at one end (or section) of the piping and measuring the time history of the concentration of the tracers at the other end (or another section) of the pipe, the presence, location, and amount of contaminant within the pipe or duct can be determined. The tracers are transported along the pipe or duct by a gas flow field, typically air or nitrogen, which has a velocity that is slow enough so that the partitioning tracer has time to interact with the contaminant before the tracer slug completely passes over the contaminate region. PCUT not only identifies the presence of contamination, it also can locate the contamination along the pipeline and quantify the amount of residual. PCUT can be used in support of deactivation and decommissioning (D&D) of piping and ducts that may have been contaminated with hazardous chemicals such as chlorinated solvents, petroleum products, radioactive materials, or heavy metals, such as mercury.

  13. Fluorescence characteristics of the fuel tracers triethylamine and trimethylamine for the investigation of fuel distribution in internal combustion engines.

    PubMed

    Lind, Susanne; Aßmann, Simon; Zigan, Lars; Will, Stefan

    2016-03-01

    Laser-induced fluorescence based on fuel tracers like amines is a suitable measurement technique for mixing studies in internal combustion (IC) engines. Triethylamine has often been used in gasoline IC engines; however, no detailed fluorescence characterization for excitation at 263 or 266 nm is available. Trimethylamine (TMA) exhibits high potential as a gaseous fuel tracer but little information about TMA fluorescence is currently available. A picosecond laser source combined with a streak camera equipped with a spectrograph was used to determine the spectral fluorescence emission and fluorescence decay time of both tracers. The tracers were investigated at various temperatures and pressures in a calibration cell with nitrogen as bath gas. The results provide an in-depth understanding of the fluorescence characteristics of both tracers and allow assessment of their application to the investigation of fuel distribution in IC engines.

  14. Fluorescence characteristics of the fuel tracers triethylamine and trimethylamine for the investigation of fuel distribution in internal combustion engines.

    PubMed

    Lind, Susanne; Aßmann, Simon; Zigan, Lars; Will, Stefan

    2016-03-01

    Laser-induced fluorescence based on fuel tracers like amines is a suitable measurement technique for mixing studies in internal combustion (IC) engines. Triethylamine has often been used in gasoline IC engines; however, no detailed fluorescence characterization for excitation at 263 or 266 nm is available. Trimethylamine (TMA) exhibits high potential as a gaseous fuel tracer but little information about TMA fluorescence is currently available. A picosecond laser source combined with a streak camera equipped with a spectrograph was used to determine the spectral fluorescence emission and fluorescence decay time of both tracers. The tracers were investigated at various temperatures and pressures in a calibration cell with nitrogen as bath gas. The results provide an in-depth understanding of the fluorescence characteristics of both tracers and allow assessment of their application to the investigation of fuel distribution in IC engines. PMID:26974612

  15. An analysis of whole body tracer kinetics in dynamic PET studies with application to image-based blood input function extraction.

    PubMed

    Huang, Jian; O'Sullivan, Finbarr

    2014-05-01

    In a positron emission tomography (PET) study, the local uptake of the tracer is dependent on vascular delivery and retention. For dynamic studies the measured uptake time-course information can be best interpreted when knowledge of the time-course of tracer in the blood is available. This is certainly true for the most established tracers such as 18F-Fluorodeoxyglucose (FDG) and 15O-Water (H2O). Since direct sampling of blood as part of PET studies is increasingly impractical, there is ongoing interest in image-extraction of blood time-course information. But analysis of PET-measured blood pool signals is complicated because they will typically involve a combination of arterial, venous and tissue information. Thus, a careful appreciation of these components is needed to interpret the available data. To facilitate this process, we propose a novel Markov chain model for representation of the circulation of a tracer atom in the body. The model represents both arterial and venous time-course patterns. Under reasonable conditions equilibration of tracer activity in arterial and venous blood is achieved by the end of the PET study-consistent with empirical measurement. Statistical inference for Markov model parameters is a challenge. A penalized nonlinear least squares process, incorporating a generalized cross-validation score, is proposed. Random effects analysis is used to adaptively specify the structure of the penalty function based on historical samples of directly measured blood data. A collection of arterially sampled data from PET studies with FDG and H2O is used to illustrate the methodology. These data analyses are highly supportive of the overall modeling approach. An adaptation of the model to the problem of extraction of arterial blood signals from imaging data is also developed and promising preliminary results for cerebral and thoracic imaging studies with FDG and H2O are obtained.

  16. An Analysis of Whole Body Tracer Kinetics in Dynamic PET Studies With Application to Image-Based Blood Input Function Extraction

    PubMed Central

    Huang, Jian; O’Sullivan, Finbarr

    2014-01-01

    In a positron emission tomography (PET) study, the local uptake of the tracer is dependent on vascular delivery and retention. For dynamic studies the measured uptake time-course information can be best interpreted when knowledge of the time-course of tracer in the blood is available. This is certainly true for the most established tracers such as 18F-Fluorodeoxyglucose (FDG) and 15O-Water (H2O). Since direct sampling of blood as part of PET studies is increasingly impractical, there is ongoing interest in image-extraction of blood time-course information. But analysis of PET-measured blood pool signals is complicated because they will typically involve a combination of arterial, venous and tissue information. Thus, a careful appreciation of these components is needed to interpret the available data. To facilitate this process, we propose a novel Markov chain model for representation of the circulation of a tracer atom in the body. The model represents both arterial and venous time-course patterns. Under reasonable conditions equilibration of tracer activity in arterial and venous blood is achieved by the end of the PET study—consistent with empirical measurement. Statistical inference for Markov model parameters is a challenge. A penalized nonlinear least squares process, incorporating a generalized cross-validation score, is proposed. Random effects analysis is used to adaptively specify the structure of the penalty function based on historical samples of directly measured blood data. A collection of arterially sampled data from PET studies with FDG and H2O is used to illustrate the methodology. These data analyses are highly supportive of the overall modeling approach. An adaptation of the model to the problem of extraction of arterial blood signals from imaging data is also developed and promising preliminary results for cerebral and thoracic imaging studies with FDG and H2O are obtained. PMID:24770914

  17. Short communication: Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted.

    PubMed

    Dorich, C D; Varner, R K; Pereira, A B D; Martineau, R; Soder, K J; Brito, A F

    2015-04-01

    The objective of this study was to measure enteric CH4 emissions using a new portable automated open-circuit gas quantification system (GQS) and the sulfur hexafluoride tracer technique (SF6) in midlactation Holstein cows housed in a tiestall barn. Sixteen cows averaging 176 ± 34 d in milk, 40.7 ± 6.1 kg of milk yield, and 685 ± 49 kg of body weight were randomly assigned to 1 out of 2 treatments according to a crossover design. Treatments were (1) ad libitum (adjusted daily to yield 10% orts) and (2) restricted feed intake [set to restrict feed by 10% of baseline dry matter intake (DMI)]. Each experimental period lasted 22d, with 14 d for treatment adaptation and 8d for data and sample collection. A common diet was fed to the cows as a total mixed ration and contained 40.4% corn silage, 11.2% grass-legume haylage, and 48.4% concentrate on a dry matter basis. Spot 5-min measurements using the GQS were taken twice daily with a 12-h interval between sampling and sampling times advanced 2h daily to account for diurnal variation in CH4 emissions. Canisters for the SF6 method were sampled twice daily before milking with 4 local background gas canisters inside the barn analyzed for background gas concentrations. Enteric CH4 emissions were not affected by treatments and averaged 472 and 458 g/d (standard error of the mean = 18 g/d) for ad libitum and restricted intake treatments, respectively (data not shown). The GQS appears to be a reliable method because of the relatively low coefficients of variation (ranging from 14.1 to 22.4%) for CH4 emissions and a moderate relationship (coefficient of determination = 0.42) between CH4 emissions and DMI. The SF6 resulted in large coefficients of variation (ranging from 16.0 to 111%) for CH4 emissions and a poor relationship (coefficient of determination = 0.17) between CH4 emissions and DMI, likely because of limited barn ventilation and high background gas concentration. Research with improved barn ventilation systems or

  18. Short communication: Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted.

    PubMed

    Dorich, C D; Varner, R K; Pereira, A B D; Martineau, R; Soder, K J; Brito, A F

    2015-04-01

    The objective of this study was to measure enteric CH4 emissions using a new portable automated open-circuit gas quantification system (GQS) and the sulfur hexafluoride tracer technique (SF6) in midlactation Holstein cows housed in a tiestall barn. Sixteen cows averaging 176 ± 34 d in milk, 40.7 ± 6.1 kg of milk yield, and 685 ± 49 kg of body weight were randomly assigned to 1 out of 2 treatments according to a crossover design. Treatments were (1) ad libitum (adjusted daily to yield 10% orts) and (2) restricted feed intake [set to restrict feed by 10% of baseline dry matter intake (DMI)]. Each experimental period lasted 22d, with 14 d for treatment adaptation and 8d for data and sample collection. A common diet was fed to the cows as a total mixed ration and contained 40.4% corn silage, 11.2% grass-legume haylage, and 48.4% concentrate on a dry matter basis. Spot 5-min measurements using the GQS were taken twice daily with a 12-h interval between sampling and sampling times advanced 2h daily to account for diurnal variation in CH4 emissions. Canisters for the SF6 method were sampled twice daily before milking with 4 local background gas canisters inside the barn analyzed for background gas concentrations. Enteric CH4 emissions were not affected by treatments and averaged 472 and 458 g/d (standard error of the mean = 18 g/d) for ad libitum and restricted intake treatments, respectively (data not shown). The GQS appears to be a reliable method because of the relatively low coefficients of variation (ranging from 14.1 to 22.4%) for CH4 emissions and a moderate relationship (coefficient of determination = 0.42) between CH4 emissions and DMI. The SF6 resulted in large coefficients of variation (ranging from 16.0 to 111%) for CH4 emissions and a poor relationship (coefficient of determination = 0.17) between CH4 emissions and DMI, likely because of limited barn ventilation and high background gas concentration. Research with improved barn ventilation systems or

  19. SEAPORT LIQUID NATURAL GAS STUDY

    SciTech Connect

    COOK,Z.

    1999-02-01

    The Seaport Liquid Natural Gas Study has attempted to evaluate the potential for using LNG in a variety of heavy-duty vehicle and equipment applications at the Ports of Los Angeles and Oakland. Specifically, this analysis has focused on the handling and transport of containerized cargo to, from and within these two facilities. In terms of containerized cargo throughput, Los Angeles and Oakland are the second and sixth busiest ports in the US, respectively, and together handle nearly 4.5 million TEUs per year. At present, the landside handling and transportation of containerized cargo is heavily dependent on diesel-powered, heavy-duty vehicles and equipment, the utilization of which contributes significantly to the overall emissions impact of port-related activities. Emissions from diesel units have been the subject of increasing scrutiny and regulatory action, particularly in California. In the past two years alone, particulate matter from diesel exhaust has been listed as a toxic air contaminant by CAM, and major lawsuits have been filed against several of California's largest supermarket chains, alleging violation of Proposition 65 statutes in connection with diesel emissions from their distribution facilities. CARE3 has also indicated that it may take further regulatory action relating to the TAC listing. In spite of these developments and the very large diesel emissions associated with port operations, there has been little AFV penetration in these applications. Nearly all port operators interviewed by CALSTART expressed an awareness of the issues surrounding diesel use; however, none appeared to be taking proactive steps to address them. Furthermore, while a less controversial issue than emissions, the dominance of diesel fuel use in heavy-duty vehicles contributes to a continued reliance on imported fuels. The increasing concern regarding diesel use, and the concurrent lack of alternative fuel use and vigorous emissions reduction activity at the Ports provide

  20. Plant uptake of cations under nutrient limitation: An environmental tracer study using Ca/Sr and K/Rb ratios

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Keller, C. K.; Stacks, D.; Grant, M.; Harsh, J. B.; Letourneau, M.; Gill, R. A.; Balogh-Brunstad, Z.; Thomashow, L.; Dohnalkova, A.

    2012-12-01

    Vascular plant growth builds soils and ecosystem nutrient capital by sequestering and partitioning atmospheric CO2 into organic matter and continental runoff and driving terrestrial water and energy balances. Plant root-system functions, e.g. nutrient mobilization and uptake, are altered by environmental stress. However, the stress-response relationships are poorly understood. Chemical tracers have potential for assessing contributions of nutrients from various nutrient pools. Our objective is to quantitatively study how varying degrees of nutrient limitation (and corresponding needs to extract base cations from mineral sources) influence Ca and K uptake functions in a plant-root-mineral system. We are studying plant-driven mineral weathering in column experiments with red pine (Pinus resinosa) seedlings. The columns contain quartz sand amended with anorthite and biotite that constitute the sole mineral sources of Ca and K. These minerals also contain known amounts of Sr and Rb, which exhibit chemical behavior similar to Ca and K, respectively. The solution source of Ca and K was varied by adding 0% (no dissolved Ca and K), 10%, 30%, or 100% of a full strength Ca and K nutrient solution through irrigation water in which both Sr and Rb concentrations were negligible. Selected columns were destructively sampled at 3, 6 and 9 months to harvest biomass and measure plant uptake of cations. We used Ca/Sr and K/Rb ratio results to estimate the contributions of Ca and K from mineral and solution sources. For the 0% nutrient treatment, the Ca/Sr and K/Rb ratios in total biomass at 3 months, compared with those in the mineral phases, suggested preferential uptake of Ca and K over Sr and Rb, respectively, and allowed us to determine uptake discrimination factors for both cations. The K/Rb ratios in total biomass increased with greater K availability in the solution source, as expected, but Ca/Sr ratios did not show any dependence on Ca availability in the solution source

  1. The effect of wind and currents on gas exchange in an estuarine system

    NASA Technical Reports Server (NTRS)

    Broecker, W. S.; Ledwell, J. R.; Bopp, R.

    1987-01-01

    The objectives were to develop a non-volatile tracer to use in gas exchange experiments in laterally unconfined systems and to study applications of deliberate tracers in limnology and oceanography. Progress was made on both fronts but work on the development of the non-volatile tracer proved to be more difficult and labor intensive that anticipated so no field experiments using non-volatile tracers was performed as yet. In the search for a suitable non-volatile tracer for an ocean scale gas exchange experiment a tracer was discovered which does not have the required sensitivity for a large scale experiment, but is very easy to analyze and will be well suited for smaller experiments such as gas exchange determinations on rivers and streams. Sulfur hexafluoride, SF6, was used successfully as a volatile tracer along with tritium as a non-volatile tracer to study gas exchange rates from a primary stream. This is the first gas exchange experiment in which gas exchange rates were determined on a head water stream where significant groundwater input occurs along the reach. In conjunction with SF6, Radon-222 measurements were performed on the groundwater and in the stream. The feasibility of using a combination of SF6 and radon is being studied to determine groundwater inputs and gas exchange of rates in streams with significant groundwater input without using a non-volatile tracer.

  2. Study of Formation Mechanisms of Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  3. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    SciTech Connect

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  4. Isotope tracer studies of diffusion in silicates and of geological transport processes using actinide elements

    SciTech Connect

    Wasserburg, G.J.

    1992-01-01

    The following are reported: high abundance sensitivity mass spectrometer for U-Th studies; [sup 238]U-[sup 230]Th disequilibrium in recent lavas from Iceland; water-rock interaction from U-Th studies; resonance ionization mass spectrometry of Os and Ti isotopes; and self-diffusion of Mg.

  5. Biological tracer method

    DOEpatents

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  6. Biological tracer method

    DOEpatents

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  7. Effects of trichloroacetic acid on the nitrogen metabolism of Pinus sylvestris--a 13C/15N tracer study.

    PubMed

    Hafner, Christoph; Jung, Klaus; Schüürmann, Gerrit

    2002-01-01

    Trichloroacetic acid (TCA) can be found in various environmental compartments like air, rain and plants all over the world. It is assumed that TCA is an atmospheric degradation product of volatile chloroorganic hydrocarbons. The herbicide effect of TCA in higher concentrations is well known, but not much is known about the phytotoxic effects in environmentally relevant concentrations. It can be shown in this study by using the 13C/15N stable isotope tracer technique that [13C]TCA is taken up by roots of two-year-old seedlings of Pinus sylvestris L. and transported into the needles. At the same time the effect of the substance on nitrogen metabolism can be analyzed by measuring the incorporation of 15NO3- into different nitrogen fractions of the plant. The more [13C]TCA incorporation, the higher the synthesis of 15N labelled amino acids and proteins is. These effects on the nitrogen metabolism are probably based on the activation of stress- and detoxification metabolism. It has to be assumed that there is an influence on N metabolism of Pinus sylvestris caused by the deposition of environmentally relevant TCA concentrations.

  8. Application of stable isotope tracers in the study of exercise metabolism in children: a primer.

    PubMed

    Mahon, Anthony D; Timmons, Brian W

    2014-02-01

    Exercise metabolism in children has traditionally been assessed using the respiratory exchange ratio (RER) to determine the contributions of fat and carbohydrate to the exercise energy demands. Although easily measured, RER measurements have limitations. Other methods to assess metabolism such as the obtainment of a muscle biopsy and the use of nuclear magnetic resonance spectroscopy carry ethical and feasibility concerns, respectively, which limit their use in studies involving children. Stable isotopes, used routinely in studies involving adults, can also be applied in studies involving children in an ethical and feasible manner. Two common stable isotopes used in metabolic studies involving children include carbon-13 (¹³C) and nitrogen-15 (¹⁵N). ¹³C-glucose can be used to study carbohydrate metabolism and ¹⁵N-glycine can be used to assess protein metabolism. This article reviews the use of ¹³C-glucose and ¹⁵N-glycine to study exercise metabolism in children, considers some of the associated ethical aspects, explains the general methodology involved in administering these isotopes and the resources required, and describes studies involving children utilizing these methods. Finally, suggestions for future research are provided to encourage further use of these techniques.

  9. Application of the tracer-aerosol gradient interpretive technique to sulfur attribution for the big bend regional aerosol and visibility observational study.

    PubMed

    Green, Mark; Kuhns, Hampden; Pitchford, Marc; Dietz, Russell; Ashbaugh, Lowell; Watson, Tom

    2003-05-01

    A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2, and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park. The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag "local" sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65-86%) and a small fraction (19-31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.

  10. The Reanalysis for Stratospheric Trace-gas Studies

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Li, Shuhua

    2002-01-01

    In order to re-examine trace gas transport in the middle atmosphere for the period May 1991 until April 1995, a "reanalysis" is being performed using an up-to-date version of the DAO's "GEOS" assimilation system. The Reanalysis for Stratospheric Trace-gas Studies (ReSTS) is intended to provide state-of-the-art estimates of the atmosphere during a period when the Upper Atmospheric Research Satellite provided a high density of trace-gas observations, and when the aerosol loading from the eruption of Mount Pinatubo contaminated the lower stratosphere, at the same time performing a natural tracer transport experiment. This study will present the first results from ReSTS, focussing on the improvements over the meteorological analyses produced by the then-operational GEOS-1 data assimilation system; emphasis will be placed on the improved representations of physical processes between GEOS-1 and the current GEOS-4 systems, highlighting the transport properties of the datasets. Alongside the production of a comprehensive atmospheric dataset, important components of ReSTS include performing sensitivity studies to the formulation of the assimilation system (including the representation of physical processes in the GCM, such as feedbacks between ozone/aerosols and meteorology) and to the inclusion of additional data types (including limb-sounding temperature data alongside the TOVS observations). Impacts of some of these factors on the analyzed meteorology and transport will be discussed. Of particular interest are attempts to determine the relative importance of various steps in the assimilation process to the quality of the final analyses.

  11. Determination of traveltimes in the lower San Joaquin River basin, California, from dye-tracer studies during 1994-1995

    USGS Publications Warehouse

    Kratzer, Charles R.; Biagtan, Rhoda N.

    1997-01-01

    Dye-tracer studies were done in the lower San Joaquin River Basin in February 1994, June 1994, and February 1995. Dye releases were made in the Merced River (February 1994), Salt Slough (June 1994), Tuolumne River (February 1995), and Dry Creek (February 1995). The traveltimes determined in the studies aided the interpretation of pesticide data collected during storm sampling and guided sample collection during a Lagrangian pesticide study. All three studies used rhodamine WT 20-percent dye solution, which was released as a slug in midstream. The mean traveltime determined in the dye studies were compared to estimates based on regression equations of mean stream velocity as a function of streamflow. Dye recovery, the ratio of the calculated dye load at downstream sites to the initial amount of dye released, was determined for the 1994 studies and a dye-dosage formula was evaluated for all studies. In the February 1994 study, mean traveltime from the Merced River at River Road to the San Joaquin River near Vernalis (46.8 river miles) was 38.5 hours, and to the Delta-Mendota Canal at Tracy pumps (84.3 river miles) was 90.4 hours. In the June 1994 study, mean traveltime from Salt Slough at Highway 165 to Vernalis (64.0 river miles) was 80.1 hours. In the February 1995 study, the mean traveltime from the Tuolumne River at Roberts Ferry to Vernalis (51.5 river miles) was 35.8 hours. For the 1994 studies, the regression equations provided suitable estimates of travel-time, with ratios of estimated traveltime to mean dye traveltime of 0.94 to 1.08. However, for the 1995 dye studies, the equations considerably underestimated traveltime, with ratios of 0.49 to 0.73.In the February 1994 study, 70 percent of the dye released was recovered at Vernalis and 35percent was recovered at the Delta-Mendota Canal at Tracy pumps. In the June 1994 study, recovery was 61 percent at Patterson, 43 percent just upstream of the Tuolumne River confluence, and 37 percent at Vernalis. The dye

  12. Study of large eddy simulation of the effects of boundary layer convection on tracer uplift and transport

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Wang, Rong

    2016-04-01

    Using large eddy model (LEM) and observed data from Dunhuang meteorological station during the intensive period of land-atmosphere interaction field experiment over arid region of North-west China, a series of sensitivity experiments have been performed to investigate the effects of the surface heat flux and wind shear on the strength and the organization of boundary layer convection as well as the growth of the convective boundary layer (CBL). The results show that surface heat flux increases with constant wind shear will give rise to a thicker and warmer CBL, stronger convections and larger thermal eddies due to intense surface turbulence transporting more energy to the upper layer. On the other hand wind shear increases with constant surface heat flux lead to a thicker and warmer CBL because of the entrainment of warm air from the inversion layer to the mixed layer, while the boundary layer convection became weaker with broken thermal eddies. To investigate the quantitative linkage of surface heat flux, wind shear with the tracer uplift rate and transport height, a passive tracer with a constant value of 100 was added at all model levels below the 100 m in all simulations. The least square analysis reveals that the tracer uplift rate increases linearly with the surface heat flux when wind shear is less than 10.5×10-3 s-1 owing to the enhancement of the downward transport of higher momentum. However, the tracer uplift rate decreases with increasing wind shear when the surface heat flux is less than 462.5 W/m2 because of the weakened convection. The passive tracer in the model is also shown to be transported to the higher altitude with increasing surface heat flux and under constant wind shear. However, under a constant surface heat flux, the tracer transport height increases with increasing wind shear only when the shear is above a certain threshold and this threshold depend on the magnitude of surface heat fluxes.

  13. Study of the effects of the chaser in push-pull tracer tests by using temporal moment analysis

    NASA Astrophysics Data System (ADS)

    Hebig, Klaus; Zeilfelder, Sarah; Ito, Narimitsu; Machida, Isao; Marui, Atsunao; Scheytt, Traugott

    2015-04-01

    "Push-pull" tracer tests are a suitable tracer test method for hydrochemical charac-terization of an aquifer in a single-well setting (e.g. in deep geothermal systems). A known amount of selected solutes as conservative and reactive tracers is injected into the aquifer ("push") and afterwards extracted ("pull"). In many cases, a so-called "chaser", which is just original groundwater without any added solutes, is injected directly after the injection of the test solution. Its objective is to push the test solution out of the bore-hole into the aquifer and therefore to mini-mize the influence of the gravel pack on the shape of the breakthrough curve. The influence of the chaser on the tracer breakthrough curve is unknown so far. Also, the determination of the appropriate volume for the chaser is a difficult task if at all applied. A first experiment was conducted with the objective to compare three push-pull tests with similar injection volumes, two tests with and one without a chaser. Results show that the application of a chaser lowers the main peak concentration. However, it does not alter the tailing of the breakthrough curve nor does it have a negative in-fluence on tracer mass recovery. In a second experiment, a new method was developed to determine the optimal chaser volume by testing seven different chaser injection volumes combined with temporal moment analysis and comparison of the mean residence times of the in-jected tracer fluid. As a result, the application of a chaser is recommended, when reactions of injected solutes within the open well or the gravel pack should be avoided. If a chaser is used, the new method mentioned above can easily be used to determine the required chaser injection volume. The experiments were conducted at the Hamasato test site in Horonobe (Hokkaido, Japan).

  14. NOAA EPA Near-Roadway Sound Barrier Atmospheric Tracer Study 2008

    EPA Science Inventory

    A roadway toxics dispersion study was conducted at the Idaho National Laboratory to document the effects on concentrations of roadway emissions behind a roadside sound barrier in various conditions of atmospheric stability. The key finding was that reduced concentrations were me...

  15. Isotope Tracers as Tools for Identifying Water Sources in Developing Regions: Case of Study in Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Mosquera, G.; Lazo, P.; Crespo, P.; Célleri, R.

    2014-12-01

    Páramo ecosystems are widely recognized for their high water regulation capacity and as the main source of runoff generation in the Andean region. Understanding the hydrological functioning of the fragile wet Andean páramo ecosystems is critical in the mountainous regions of South America given their high susceptibility to global and local stressors such as land use change and climate change and variability . Despite this, most of the basins in the Andean mountain range are still ungauged, resulting in a currently hindered hydrologic analysis of the water sources contributing to runoff generation in the high-elevation páramo ecosystems. To improve this situation and provide a baseline for future tracer-based hydrologic studies, the isotopic signature of water samples collected within the Zhurucay River experimental basin (7.53 km2) was analyzed. The study area is located in the southern Ecuador and stretches over an altitudinal range of 3200 and 3900 m a.s.l. Water samples in rainfall, streamflow, and soils were collected between May 2011 and May 2013. Streamflow hydrometric and isotopic information within the study site was collected using a nested monitoring system. The main soils in the study site are the Andosols mainly located in the steep slopes, and the Histosols (Andean páramo wetlands) predominantly located at the bottom of the valley. Results reveal that the Andosols drain the infiltrated rainfall water to the Histosols. The Histosols on their turn feed creeks and small rivers. Pre-event water stored in the Histosols is the primary source of runoff generation throughout the year. Defining the water sources contributing to runoff generation is the first step towards the establishment of scientifically-based programs of management and conservation of water resources in the Andean region; and the monitoring of isotopic information has proven useful to improve the understanding of the ecosystem's hydrologic behavior.

  16. Aerosol transport and wet scavenging in deep convective clouds: a case study and model evaluation using a multiple passive tracer analysis approach

    SciTech Connect

    Yang, Qing; Easter, Richard C.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Fast, Jerome D.; Ghan, Steven J.; Wang, Hailong; Berg, Larry K.; Barth, Mary; Liu, Ying; Shrivastava, ManishKumar B.; Singh, Balwinder; Morrison, H.; Fan, Jiwen; Ziegler, Conrad L.; Bela, Megan; Apel, Eric; Diskin, G. S.; Mikoviny, Tomas; Wisthaler, Armin

    2015-08-20

    The effect of wet scavenging on ambient aerosols in deep, continental convective clouds in the mid-latitudes is studied for a severe storm case in Oklahoma during the Deep Convective Clouds and Chemistry (DC3) field campaign. A new passive-tracer based transport analysis framework is developed to characterize the convective transport based on the vertical distribution of several slowly reacting and nearly insoluble trace gases. The passive gas concentration in the upper troposphere convective outflow results from a mixture of 47% from the lower level (0-3 km), 21% entrained from the upper troposphere, and 32% from mid-atmosphere based on observations. The transport analysis framework is applied to aerosols to estimate aerosol transport and wet-scavenging efficiency. Observations yield high overall scavenging efficiencies of 81% and 68% for aerosol mass (Dp < 1μm) and aerosol number (0.03< Dp < 2.5μm), respectively. Little chemical selectivity to wet scavenging is seen among observed submicron sulfate (84%), organic (82%), and ammonium (80%) aerosols, while nitrate has a much lower scavenging efficiency of 57% likely due to the uptake of nitric acid. Observed larger size particles (0.15 - 2.5μm) are scavenged more efficiently (84%) than smaller particles (64%; 0.03 - 0.15μm). The storm is simulated using the chemistry version of the WRF model. Compared to the observation based analysis, the standard model underestimates the wet scavenging efficiency for both mass and number concentrations with low biases of 31% and 40%, respectively. Adding a new treatment of secondary activation significantly improves simulation results, so that the bias in scavenging efficiency in mass and number concentrations is reduced to <10%. This supports the hypothesis that secondary activation is an important process for wet removal of aerosols in deep convective storms.

  17. A CFD study of gas-solid jet in a CFB riser flow

    SciTech Connect

    Li, Tingwen; Guenther, Chris

    2012-03-01

    Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.

  18. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer.

    PubMed

    Di Tullo, Pamela; Pannier, Florence; Thiry, Yves; Le Hécho, Isabelle; Bueno, Maïté

    2016-08-15

    A better understanding of selenium fate in soils at both short and long time scales is mandatory to consolidate risk assessment models relevant for managing both contamination and soil fertilization issues. The purpose of this study was thus to investigate Se retention processes and their kinetics by monitoring time-dependent distribution/speciation changes of both ambient and freshly added Se, in the form of stable enriched selenite-77, over a 2-years field experiment. This study clearly illustrates the complex reactivity of selenium in soil considering three methodologically defined fractions (i.e. soluble, exchangeable, organic). Time-dependent redistribution of Se-77 within solid-phases having different reactivity could be described as a combination of chemical and diffusion controlled processes leading to its stronger retention. Experimental data and their kinetic modeling evidenced that transfer towards less labile bearing phases are controlled by slow processes limiting the overall sorption of Se in soils. These results were used to estimate time needed for (77)Se to reach the distribution of naturally present selenium which may extend up to several decades. Ambient Se speciation accounted for 60% to 100% of unidentified species as function of soil type whereas (77)Se(IV) remained the more abundant species after 2-years field experiment. Modeling Se in the long-term without taking account these slow sorption kinetics would thus result in underestimation of Se retention. When using models based on Kd distribution coefficient, they should be at least reliant on ambient Se which is supposed to be at equilibrium. PMID:27100008

  19. Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers

    NASA Astrophysics Data System (ADS)

    Garcia, A. R.; Volkamer, R.; Molina, L. T.; Molina, M. J.; Samuelson, J.; Mellqvist, J.; Galle, B.; Herndon, S. C.; Kolb, C. E.

    2006-10-01

    Photochemical pollution control strategies require an understanding of photochemical oxidation precursors, making it important to distinguish between primary and secondary sources of HCHO. Estimates for the relative strengths of primary and secondary sources of formaldehyde (HCHO) were obtained using a statistical regression analysis with time series data of carbon monoxide (CO) and glyoxal (CHOCHO) measured in the Mexico City Metropolitan Area (MCMA) during the spring of 2003. Differences between Easter week and more typical weeks are evaluated. The use of CO-CHOCHO as HCHO tracers is more suitable for differentiating primary and secondary sources than CO-O3. The application of the CO-O3 tracer pair to mobile laboratory data suggests a potential in-city source of background HCHO. A significant amount of HCHO observed in the MCMA is associated with primary emissions.

  20. Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers

    NASA Astrophysics Data System (ADS)

    García, A. R.; Volkamer, R.; Molina, L. T.; Molina, M. J.; Samuelson, J.; Mellqvist, J.; Galle, B.; Herndon, S. C.; Kolb, C. E.

    2005-11-01

    Photochemical pollution control strategies require an understanding of photochemical oxidation precursors, making it important to distinguish between primary and secondary sources of HCHO. Estimates for the relative strengths of primary and secondary sources of formaldehyde (HCHO) were obtained using a statistical regression analysis with time series data of carbon monoxide (CO) and glyoxal (CHOCHO) measured in the Mexico City Metropolitan Area (MCMA) during the spring of 2003. Differences between Easter week and more typical weeks are evaluated. The use of CO-CHOCHO as HCHO tracers is more suitable for differentiating primary and secondary sources than CO-O3. The application of the CO-O3 tracer pair to mobile laboratory data suggests a potential in-city source of background HCHO. A significant amount of HCHO observed in the MCMA is associated with primary emissions.

  1. Isotope Tracer Studies of Diffusion in Sillicates and of Geological Transport Processes Using Actinide Elements

    SciTech Connect

    Wasserburg, Gerald J

    2008-07-31

    The objectives were directed toward understanding the transport of chemical species in nature, with particular emphasis on aqueous transport in solution, in colloids, and on particles. Major improvements in measuring ultra-low concentrations of rare elements were achieved. We focused on two areas of studies: (1) Field, laboratory, and theoretical studies of the transport and deposition of U, Th isotopes and their daughter products in natural systems; and (2) Study of calcium isotope fractionation effects in marine carbonates and in carbonates precipitated in the laboratory, under controlled temperature, pH, and rates of precipitation. A major study of isotopic fractionation of Ca during calcite growth from solution has been completed and published. It was found that the isotopic shifts widely reported in the literature and attributed to biological processes are in fact due to a small equilibrium fractionation factor that is suppressed by supersaturation of the solution. These effects were demonstrated in the laboratory and with consideration of the solution conditions in natural systems, where [Ca{sup 2+}] >> [CO{sub 3}{sup 2-}] + [HCO{sub 3}{sup -}]. The controlling rate is not the diffusion of Ca, as was earlier proposed, but rather the rate of supply of [CO{sub 3}{sup 2-}] ions to the interface. This now opens the issues of isotopic fractionation of many elements to a more physical-chemical approach. The isotopic composition of Ca {Delta}({sup 44}Ca/{sup 40}Ca) in calcite crystals has been determined relative to that in the parent solutions by TIMS using a double spike. Solutions were exposed to an atmosphere of NH{sub 3} and CO{sub 2}, provided by the decomposition of (NH4)2CO3. Alkalinity, pH, and concentrations of CO{sub 3}{sup 2-}, HCO{sub 3}{sup -}, and CO{sub 2} in solution were determined. The procedures permitted us to determine {Delta}({sup 44}Ca/{sup 40}Ca) over a range of pH conditions, with the associated ranges of alkalinity. Two solutions with

  2. Magnetofossils as tracers of oxygenation change: a case study from the stratified Pettaquamscutt River Estuary

    NASA Astrophysics Data System (ADS)

    Chen, A. P.; Berounsky, V. M.; Chan, M. K.; Moskowitz, B. M.; Andrade Lima, E.; Kopp, R. E.; Cady, C.; Weiss, B. P.; Hesse, P. P.

    2013-12-01

    Magnetotactic bacteria (MB) are motile organisms commonly found around the oxic-anoxic-interface (OAI) in sediments and stratified water columns. Magnetite and greigite crystals synthesized by MB intracellularly, termed magnetosomes, can be preserved in sediments as magnetofossils. Changes in OAI thickness (due to changes in temperature, clathrate dissociation & methane oxidation, organic carbon supply/oxidation, or sedimentation rate) would produce proportional changes in MB population and sedimentary magnetofossil concentration. While potentially useful as an oxygenation proxy, magnetofossil quantification techniques and variables controlling their preservation in sediments need to be better understood. Most prior work focused on cultured magnetite-MB and sediment mixtures while studies of greigite-MB (found just below the OAI in the sulfidic hypolimnion) is lacking because axenic cultures do not exist. To address these issues, we study wild magnetite- and greigite-MB from the seasonally stratified Pettaquamscutt River Estuary Upper Basin (RI, USA) as a function of water depth, d. Transmission electron microscope imaging of 21 MB (377 magnetosomes) revealed a complexity in wild MB not found in cultures. From d=3.9 m-7.0 m, live-cell assays confirmed the presence of multiple MB morphotypes, both north- (majority) and south-seeking (minority), and a few magnetic protists. Based on a previous microscopy study just 1.4 km south of Upper Basin (Bazylinski et al., 1995), magnetite-MB are expected for d<5.0 m, mix magnetite- and greigite-MB for 5.0 m6.0 m. Coercivity distributions for all depths are characterized by a small variance, reflecting uniformity in magnetosome size. Interestingly, despite changing from dominant magnetite to greigite-MB with increasing depth, the median coercivity remained largely unchanged. Median coercivity is therefore not diagnostic of magnetosome mineralogy. We also report ferromagnetic resonance

  3. Ternary gas diffusion - in vitro studies.

    PubMed

    Modell, H I; Farhi, L E

    1976-07-01

    The purpose of these experiments was to compare diffusive gas movement in a two-gas system with that in a three-gas system. Gas mixtures of different compositions were placed initially on either side of a removable partition dividing a cylindrical lucite diffusion chamber, filled with 3 mm glass beads. This served to slow diffusion, minimize convective currents generated by removing the partition, and stabilize temperature within the chamber. In two-gas systems, after the partition was removed, oxygen equilibrated between the two parts of the chamber more rapidly in a helium environment than in a nitrogen environment, conforming with predictions based on binary gas laws. Results obtained with a three-gas system differed significantly from those obtained with the binary system. With 21% oxygen in belium initially in one half of the chamber and 21% oxygen in nitrogen in the other, PO2 rose transiently in the He-O2 side of the chamber. Qualitatively, similar results were obtained when the O2-N2 mixture was replaced by 100% nitrogen. Pressure in the system remained essentially constant. The possible mechanisms responsible for the PO2 rise were studied using a computer model of the system. This showed that movement of a given gas may be affected significantly by movement of other gases in the system. Hence, application of binary gas diffusion laws to systems containing more than two gases may lead to significant errors.

  4. NPS Gas Gun for Planar Impact Studies

    NASA Astrophysics Data System (ADS)

    Cheong Ho, Chien; Hixson, Robert

    2009-11-01

    The Naval Postgraduate School (NPS) commissioned a Gas Gun for shock wave studies on 9^th October 2009, by performing the first experiment. The Gas Gun is the key element of NPS Shock Wave Research Program within the Physics Department, where well-characterized planar impacts are essential for obtaining high quality data, to characterize a solid material. This first experiment was very successful, and returned key data on the quality of the impact conditions created. The Gas Gun is designed by SANDIA NATIONAL LABORATORIES, and the NPS spent twelve months fabricating the components of the Gas Gun and six months assembling the Gas Gun. Three inch projectile are launched at velocities up to 0.5 km/s, creating high pressure and temperature states that can be used to characterize the fundamental response of relevant materials to dynamic loading. The projectile is launched from a `wrap around' gas breech where helium gas is pressurized to relatively low pressure. This gas is used to accelerate the projectile down a 3m barrel. Upon impact, the speed of the projectile and the flatness of the impact is measured, via a stepped circular pin array circuit. The next stage of development for the Gas Gun is to integrate a Velocity Interferometer System for Any Reflector (VISAR). The VISAR sees all the waves that flow through the target plate as a result of the impact. This is a key diagnostic for determining material properties under dynamic loading conditions.

  5. Enhanced flue gas conditioning study

    SciTech Connect

    Miller, S.J.; Laudal, D.L.

    1991-11-01

    Many electrostatic precipitators (ESPS) do not achieve acceptable particulate removal efficiencies because of high-resistivity ash. One method to improve ESP performance is to employ chemical conditioning agents to reduce fly ash resistivity. Widely used agents include sulfur trioxide (SO[sub 3]) and ammonia, which are sometimes used simultaneously. For some fly ashes, that have a low affinity for SO[sub 3], conditioning with SO[sub 3] alone is not adequate to reduce resistivity without excessive amounts of SO[sub 3] exiting the stack. In such cases, the use of ammonia in addition to SO[sub 3] may reduce the amount of required SO[sub 3] and prevent the emission of excess SO[sub 3] out of the stack. The general objective of the work was to test enhanced flue gas conditioning methods to improve the performance of ESPS. Specific objectives were to (1) verify the relationship between the required SO[sub 3] injection rates to maintain the desired fly ash resistivity and temperature for four coals, (2) verify that dual conditioning with both ammonia and SO[sub 3] promotes SO[sub 3] utilization and allows for resistivity modification with moderate SO[sub 3] injection rates, and (3) verify the effectiveness and practicality of an enhanced flue gas conditioning (EFGC) method. The EFGC method is a proprietary development of Wahlco, Inc.

  6. Laminar segregation of GABAergic neurons in the avian nucleus isthmi pars magnocellularis: a retrograde tracer and comparative study.

    PubMed

    Faunes, Macarena; Fernández, Sara; Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Wylie, Douglas R; Mpodozis, Jorge; Karten, Harvey J; Marín, Gonzalo

    2013-06-01

    The isthmic complex is part of a visual midbrain circuit thought to be involved in stimulus selection and spatial attention. In birds, this circuit is composed of the nuclei isthmi pars magnocellularis (Imc), pars parvocellularis (Ipc), and pars semilunaris (SLu), all of them reciprocally connected to the ipsilateral optic tectum (TeO). The Imc conveys heterotopic inhibition to the TeO, Ipc, and SLu via widespread γ-aminobutyric acid (GABA)ergic axons that allow global competitive interactions among simultaneous sensory inputs. Anatomical studies in the chick have described a cytoarchitectonically uniform Imc nucleus containing two intermingled cell types: one projecting to the Ipc and SLu and the other to the TeO. Here we report that in passerine species, the Imc is segregated into an internal division displaying larger, sparsely distributed cells, and an external division displaying smaller, more densely packed cells. In vivo and in vitro injections of neural tracers in the TeO and the Ipc of the zebra finch demonstrated that neurons from the external and internal subdivisions project to the Ipc and the TeO, respectively, indicating that each Imc subdivision contains one of the two cell types hodologically defined in the chick. In an extensive survey across avian orders, we found that, in addition to passerines, only species of Piciformes and Rallidae exhibited a segregated Imc, whereas all other groups exhibited a uniform Imc. These results offer a comparative basis to investigate the functional role played by each Imc neural type in the competitive interactions mediated by this nucleus.

  7. Tracers in rainfall simulation experiments to study the onset of the wet season in Eastern Mediterranean limestone environments

    NASA Astrophysics Data System (ADS)

    Lange, Jens

    2010-05-01

    from adjacent rocky areas. Once the plot was saturated, 80-90% of the applied rainfall became surface runoff. About 14% of the flow collected during the second day originated from water applied during the first day. Both water sources obviously mixed in saturated soil reservoirs and contributed in variable percentages to surface flow. The second plot was located above a karstic cave. Additionally to soil moisture and surface runoff, the drip response of cave stalactites was measured. This time electrical conductivity and bromide were used to study recharge processes, water origin and mixing inside a 28 m vadose zone. Bromide tracing allowed identification of quick direct flow paths. Under dry preconditions, 80 mm of artificial rainfall applied in less than seven hours was not enough to initiate significant downward water percolation. Most water was required to fill uppermost soil and rock storages. During the second day of sprinkling, higher water contents in soils and karst cavities facilitated piston flow effects and a more intense response of the cave drips. Both experiments yielded point estimates for seasonal thresholds of runoff generation and groundwater recharge. The filling of the unsaturated zone, including soil and rock storages, was found to be an important precondition for the onset of surface runoff and groundwater recharge. By mixing analysis, continuously applied tracers identified the dominating processes: saturation excess overland flow for runoff generation and piston flow for water percolation. Overall, a higher seasonal threshold for water percolation than for the generation of surface runoff was found.

  8. Tracer Partitioning in Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Hesse, M. A.

    2012-12-01

    The concentration distributions of geochemical tracers in a subsurface reservoir can be used as an indication of the reservoir flow paths and constituent fluid origin. In this case, we are motivated by the origin of marked geochemical gradients in the Bravo Dome natural CO2 reservoir in northeastern New Mexico. This reservoir contains 99% CO2 with various trace noble gas components and overlies the formation brine in a sloping aquifer. It is thought that magmatic CO2 entered the reservoir, and displaced the brine. This displacement created gradients in the concentrations of the noble gases. Two models to explain noble gas partitioning in two-phase flow are presented here. The first model assumes that the noble gases act as tracers and uses a first order non-linear partial differential equation to compute the volume fraction of each phase along the displament path. A one-way coupled partial differential equation determines the tracer concentration, which has no effect on the overall flow or phase saturations. The second model treats each noble gas as a regular component resulting in a three-component, two-phase system. As the noble gas injection concentration goes to zero, we see the three-component system behave like the one-way coupled system of the first model. Both the analytical and numerical solutions are presented for these models. For the process of a gas displacing a liquid, we see that a noble gas tracer with greater preference for the gas phase, such as Helium, will move more quickly along the flowpath than a heavier tracer that will more easily enter the liquid phase, such as Argon. When we include partial miscibility of both the major and trace components, these differences in speed are shown in a bank of the tracer at the saturation front. In the three component model, the noble gas bank has finite width and concentration. In the limit where the noble gas is treated as a tracer, the width of the bank is zero and the concentration increases linearly

  9. PET tracer development—a tale of mice and men

    PubMed Central

    Hicks, Rodney J; Dorow, Donna; Roselt, Peter

    2006-01-01

    PET scanning is an emerging technology for the clinical evaluation of many disease processes in man. The vast majority of clinical positron emission tomography (PET) studies are performed using a single tracer, fluorodeoxyglucose. Despite the excellent diagnostic performance of this tracer, it has recognised limitations. New tracers offer the potential to both address these limitations, and to establish new applications for PET. Small animal PET is a logical technique for validating new tracers relevant to human diseases. However, interspecies differences in the handling of chemicals may significantly influence the handling of novel tracers. This requires caution in extrapolating findings in animals to expectations of performance in man. Already there are several examples where biodistribution studies in mice would not have predicted the clinical utility of existing PET tracers. Nevertheless, application of a systematic approach to tracer development is likely to speed transition of new tracers from animals into man. PMID:17114061

  10. Monitoring High Velocity Salt Tracer via 4D Electrical Resistivity Tomography - Possibility for Salt Tracer Tomography

    NASA Astrophysics Data System (ADS)

    Doro, K. O.; Cirpka, O. A.; Patzelt, A.; Leven, C.

    2014-12-01

    Hydrogeological testing in a tomographic sequence as shown by the use of hydraulic tomography, allows an improvement of the spatial resolution of subsurface parameters. In this regard, recent studies show increasing interest in tracer tomography which involves sequential and spatially separated tracer injections and the measurement of their corresponding tracer breakthrough at different locations and depths. Such concentration measurements however require large experimental efforts and can be simplified by geophysical tracer monitoring techniques such as electrical resistivity. In this study, we present the use of 4-D, cross-hole electrical resistivity tomography (ERT) for monitoring salt tracer experiments in high velocity flow fields. For our study, we utilized a set up that enables the conduction of salt tracer experiments with complete recovery within 84 hours over a transport distance of 16 m. This allows the repetition of the experiments with different injection depths for a tomographic salt tracer testing. For ERT monitoring, we designed modular borehole electrodes for repeated usage in a flexible manner. We also assess the use of a high speed resistivity data acquisition mode for field scale tracer monitoring ensuring high spatial and temporal resolution without sacrificing data accuracy. We applied our approach at the Lauswiesen test site, Tübingen, Germany. In our 10 m × 10 m tracer monitoring domain with 16 borehole electrodes, we acquired 4650 data points in less than 18 minutes for each monitoring cycle. Inversion results show that the tracer could be successfully imaged using this approach. The results show that repeated salt tracer tests can be efficiently monitored at a high resolution with ERT which gives the possibility for salt tracer tomography at field scale. Our results also provide a data base for extending current hydrogeophysical inversion approaches to field scale data.

  11. Achievements and opportunities from ESF Research Networking Programme: Natural molecular structures as drivers and tracers of terrestrial C fluxes, and COST Action 639: Greenhouse gas budget of soils under changing climate and land use

    NASA Astrophysics Data System (ADS)

    Boeckx, P.; Rasse, D.; Jandl, R.

    2009-04-01

    One of the activities of the European Science Foundation (ESF, www.esf.org) is developing European scale Research Networking Programmes (RNPs). RNPs lay the foundation for nationally funded research groups to address major scientific and research infrastructure issues, in order to advance the frontiers of existing science. MOLTER (www.esf.org/molter or www.molter.no) is such an RNP. MOLTER stands for "Natural molecular structures as drivers and tracers of terrestrial C fluxes" aims at stimulating the use of isotopic and organic chemistry to study carbon stabilization and biogeochemistry in terrestrial ecosystems and soils in particular. The understanding of the formation, stabilization and decomposition of complex organic compounds in the environment is currently being revolutionized by advanced techniques in identification, quantification, and origin tracing of functional groups and individual molecules. MOLTER focuses on five major research themes: - Molecular composition and turnover time of soil organic matter; - Plant molecular structures as drivers of C stabilisation in soils; - Fire transformations of plant and soil molecular structures - Molecular markers in soils; - Dissolved organic molecules in soils: origin, functionality and transport. These research themes are covered via the following activities: - Organisation of international conferences; - Organisation of specific topical workshops; - Organisation of summer schools for PhD students; - Short- and long-term exchange grants for scientists. MOLTER is supported by research funding or performing agencies from Austria, Belgium, France, Germany, the Netherlands, Norway, Romania, Spain, Sweden, Switzerland and the United Kingdom. The ESF is also the implementing agency of COST (European Cooperation in Science and Technology, www.cost.esf.org), one of the longest-running European instruments supporting cooperation among scientists and researchers across Europe. COST Action 639 "Greenhouse gas budget of

  12. Losses in the fluorescent tracer used in hydrodynamic modeling of constructed wetlands studied by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Plazas, Lucero; Rosero, Edison; Solarte, Efraín; Sandoval, Jhon; Peña, Miguel

    2009-08-01

    Fluorescent tracer trials are performed to obtain useful information for hydrodynamic modeling. Particularly they have been used in constructed wetlands, aimed for residual water treatment, in order to find residence time distribution for particles entering the system and, in general, to know the flux pattern. Nevertheless, it has been reported that some tracers, as Rhodamine WT, exhibit adsorption phenomena over the substrate. This situation has to be considered in the analysis of residence time distribution curves, taking into account advection-dispersion processes which are given by the diffusion modified equation. Laser Induced Fluorescence (LIF) with a Nd:YAG laser (532 nm; 35mW), was used to determine Rhodamine WT accumulated concentration. Through adsorption coefficients obtained experimentally, an advection - dispersion model for solute transport in a subsurface flow constructed wetland was evaluated. Including this phenomenon allows to optimize the model, and another important condition is added in the behavior prediction of these complex ecosystems.

  13. Methodology Measuring Rare Earth Elements in High TDS Reservoir Brines Application as Natural Tracers in CCUS Studies

    NASA Astrophysics Data System (ADS)

    Smith, W.; Mcling, T. L.; Smith, R. W.; Neupane, H.

    2013-12-01

    In recent years rare earth elements (REE) have been demonstrated to be useful natural tracers for geochemical processes in aqueous environments. The application of REE's to carbon dioxide utilization and storage (CCUS) could provide researchers with a sensitive, inexpensive tool for tracking the movement of CO2 and displaced formation brines. By definition, geologic reservoirs that have been deemed suitable for carbon capture and storage contain formation brine with total dissolved solids (TDS) greater than 10,000 ppm and often these formation brines exceed 75,000 ppm TDS. This high TDS water makes it very difficult to measure REE, which typically occur at part per trillion concentrations. Critical to the use of REE for CCUS studies is the development of a procedure, which allows for the pre-concentration of REE's across a wide range of water quality. Additionally, due to the large number of samples that will need analysis, any developed procedure must be inexpensive, reproducible, and quick to implement. As part of the Big Sky Carbon Sequestration Project the INL's Center for Advance Energy Studies is developing REE pre-concentration procedures based on methods reported in the literature. While there are many REE pre-concentration procedures in the literature, our tests have shown these methods have difficulty at TDS greater than seawater (roughly 35,000 ppm TDS). Therefore, the ability to quantitatively measure REE's in formation brines with very high TDS has required the modification of an already developed procedure. After careful consideration and testing we selected methods modified after those described by Kingston et al., 1978 and Strachan et al., 1989 utilizing chelating media for very high TDS waters and ion-exchange media as detailed by Crock et al., 1984; Robinson et al., 1985; and Stetzenbach et al., 1994 for low TDS (<10,000 ppm TDS) waters. These modified procedures have been successfully tested in our laboratory and have proven effective in greatly

  14. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  15. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  16. High upwind concentrations observed during an upslope tracer event

    SciTech Connect

    Ciolek, J.T. Jr.

    1993-10-01

    In February of 1991 the Rocky Flats Plant conducted twelve tracer experiments to validate an emergency response dispersion model known as the Terrain-Responsive Atmospheric Code (TRAC) (Hodgin 1985). Experimenters released 140 to 260 kilograms of inert tracer gas (sulfur hexafloride) from the plant over an 11 hour period. During each release, one hundred and sixty-five samples, most of which formed concentric rings of 8 and 16 km radius from the plant, recorded cumulative hourly concentrations of the tracer at one meter above ground level (AGL). Figure 1 contains a depiction of the sampler location, the terrain, and the meteorological stations available within the tracer study area. Brown (1991) describes the experimental setup in more detail. The subject of this paper is an event that occurred early in the fifth experiment, on February 9, 1991. In this experiment, tracer material released from 13:00 to 17:00 LST appeared both downwind and upwind of the source, with the highest concentrations upwind. During the fifth experiment, high pressure in Utah produced mostly sunny skis around Rocky Flats. For most of the day, one could find moderate (5 to 10 ms{sup {minus}1}) northerly (from the North) flow within the 700 to 500 mb level of the atmosphere (approximately 3000 to 5500 meters above Mean Sea Level (MSL)). Synoptic scale motions were isolated enough from the surface layer and heating was great enough to produce a 1 km deep upslope flow (flow from the East to the West) by late afternoon. The winds reversed and became downslope at approximately 17:30 LST.

  17. Molecular dynamics studies on nanoscale gas transport

    NASA Astrophysics Data System (ADS)

    Barisik, Murat

    Three-dimensional molecular dynamics (MD) simulations of nanoscale gas flows are studied to reveal surface effects. A smart wall model that drastically reduces the memory requirements of MD simulations for gas flows is introduced. The smart wall molecular dynamics (SWMD) represents three-dimensional FCC walls using only 74 wall Molecules. This structure is kept in the memory and utilized for each gas molecule surface collision. Using SWMD, fluid behavior within nano-scale confinements is studied for argon in dilute gas, dense gas, and liquid states. Equilibrium MD method is employed to resolve the density and stress variations within the static fluid. Normal stress calculations are based on the Irving-Kirkwood method, which divides the stress tensor into its kinetic and virial parts. The kinetic component recovers pressure based on the ideal gas law. The particle-particle virial increases with increased density, while the surface-particle virial develops due to the surface force field effects. Normal stresses within nano-scale confinements show anisotropy induced primarily by the surface force-field and local variations in the fluid density near the surfaces. For dilute and dense gas cases, surface-force field that extends typically 1nm from each wall induces anisotropic normal stress. For liquid case, this effect is further amplified by the density fluctuations that extend beyond the three field penetration region. Outside the wall force-field penetration and density fluctuation regions the normal stress becomes isotropic and recovers the thermodynamic pressure, provided that sufficiently large force cut-off distances are utilized in the computations. Next, non-equilibrium SWMD is utilized to investigate the surface-gas interaction effects on nanoscale shear-driven gas flows in the transition and free molecular flow regimes. For the specified surface properties and gas-surface pair interactions, density and stress profiles exhibit a universal behavior inside the

  18. Development of Kinetic Interface Sensitive Tracers (KIS-Tracer) for Supercritical Carbon Dioxide Injections into Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Schaffer, M.; Maier, F.; Licha, T.; Sauter, M.

    2012-04-01

    The storage of captured CO2 into geological formations is recently one of the most promising technologies to mitigate anthropogenic greenhouse gas emissions into the earth's atmosphere. Deep saline aquifers are considered as the most potential sequestration sites of CO2 due to their huge storage capacities of several thousand Gt. Ongoing research deals mainly with the investigation of relevant physico-chemical processes, the fate of CO2 and the risk assessment during and after supercritical CO2 (scCO2) injections. The occurring processes at the interface between injected scCO2 and formation brine play a major role to evaluate the fate and behavior of scCO2 in the reservoir. This is because the interface represents a reactive zone where numerous physico-chemical processes like dissolution of scCO2 in water as well as dissolution and precipitation of minerals take place. In most cases it is desired to maximize the interface size to increase the storage efficiency. Therefore, knowledge on interface size and dynamics would allow the observation of plume spreading and the detection of mixing or fingering effects. In order to gain this information innovative tracers are necessary which are able to quantify the temporal and spatial development of scCO2/water interfaces. As a result, it may be possible to assess the storage efficiency and to optimize subsequent injections. Up to now, such time-dependent tracers for reservoir studies are not available and limited to equilibrium tracers (known as partitioning and interfacial tracers, respectively). Therefore, novel reactive tracers (KIS-Tracers) are developed to overcome this gap. The idea is to find suitable molecules which allow the implementation of a defined chemical reaction at the interface. Due to the known kinetic constants the change of interface size can be characterized over time. The new tracer is injected together with the supercritical CO2 (scCO2) into a deep saline aquifer. Afterwards, the tracer adsorbs at

  19. Effect of wind and currents on gas exchange in an estuarine system. Final technical report, 1 August 1986-31 July 1987

    SciTech Connect

    Broecker, W.S.; Ledwell, J.R.; Bopp, R.

    1987-11-01

    The objectives were to develop a non-volatile tracer to use in gas exchange experiments in laterally unconfined systems and to study applications of deliberate tracers in limnology and oceanography. Progress was made on both fronts but work on the development of the non-volatile tracer proved to be more difficult and labor intensive that anticipated so no field experiments using non-volatile tracers was performed as yet. In the search for a suitable non-volatile tracer for an ocean scale gas exchange experiment a tracer was discovered which does not have the required sensitivity for a large scale experiment, but is very easy to analyze and will be well suited for smaller experiments such as gas exchange determinations on rivers and streams. Sulfur hexafluoride, SF/sub 6/, was used successfully as a volatile tracer along with tritium as a non-volatile tracer to study gas exchange rates from a primary stream. This is the first gas exchange experiment in which gas exchange rates were determined on a head water stream where significant groundwater input occurs along the reach. In conjunction with SF/sub 6/, Radon-222 measurements were performed on the groundwater and in the stream. The feasibility of using a combination of SF/sub 6/ and radon is being studied to determine groundwater inputs and gas exchange of rates in streams with significant groundwater input without using a non-volatile tracer.

  20. Gas geochemistry studies at the gas hydrate occurrence in the permafrost environment of Mallik (NWT, Canada)

    NASA Astrophysics Data System (ADS)

    Wiersberg, T.; Erzinger, J.; Zimmer, M.; Schicks, J.; Dahms, E.; Mallik Working Group

    2003-04-01

    We present real-time mud gas monitoring data as well as results of noble gas and isotope investigations from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. Mud gas monitoring (extraction of gas dissolved in the drill mud followed by real-time analysis) revealed more or less complete gas depth profiles of Mallik 4L-38 and Mallik 5L-38 wells for N_2, O_2, Ar, He, CO_2, H_2, CH_4, C_2H_6, C_3H_8, C_4H10, and 222Rn; both wells are approx. 1150 m deep. Based on the molecular and and isotopic composition, hydrocarbons occurring at shallow depth (down to ˜400 m) are mostly of microbial origin. Below 400 m, the gas wetness parameter (CH_4/(C_2H_6 + C_3H_8)) and isotopes indicate mixing with thermogenic gas. Gas accumulation at the base of permafrost (˜650 m) as well as δ13C and helium isotopic data implies that the permafrost inhibits gas flux from below. Gas hydrate occurrence at Mallik is known in a depth between ˜890 m and 1100 m. The upper section of the hydrate bearing zone (890 m--920 m) consists predominantly of methane bearing gas hydrates. Between 920 m and 1050 m, concentration of C_2H_6, C_3H_8, and C_4H10 increases due to the occurrence of organic rich sediment layers. Below that interval, the gas composition is similar to the upper section of the hydrate zone. At the base of the hydrate bearing zone (˜1100 m), elevated helium and methane concentrations and their isotopic composition leads to the assumption that gas hydrates act as a barrier for gas migration from below. In mud gas

  1. Use of geochemical and isotope tracers to assess groundwater dependency of a terrestrial ecosystem: case study from southern Poland

    NASA Astrophysics Data System (ADS)

    Zurek, Anna J.; Witczak, Stanislaw; Kania, Jaroslaw; Rozanski, Kazimierz; Dulinski, Marek; Wachniew, Przemyslaw

    2015-04-01

    The presented study was aimed at better understanding of the functioning of groundwater dependent terrestrial ecosystem (GDTE) located in the south of Poland. The studied GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Bloto fen). It relies not only on shallow, unconfined aquifer but indirectly also on groundwater originating from the deeper confined aquifer, underlying the Quaternary cover and separated from it by an aquitard of variable thickness. The main objective of the study was to evaluate the contribution of groundwater to the water balance of the studied GDTE and thereby assess the potential risk to this system associated with intense exploitation of the deeper aquifer. The Wielkie Błoto fen area and the adjacent parts of Niepolomice Forest are drained by the Dluga Woda stream with 8.2 km2 of gauged catchment area. Hydrometric measurements, carried out on the Dluga Woda stream over two-year period (August 2011 - August 2013) were supplemented by chemical and isotope analyses of stream water, monitored on monthly basis. Physico-chemical parameters of the stream water (SEC, pH, Na content, Na/Cl molar ratio) and isotope tracers (deuterium, oxygen-18 and tritium) were used to quantify the expected contribution of groundwater seepage from the deeper aquifer to the water balance of the Dluga Woda catchment. The mean transit time of water through the catchment, derived from temporal variations of δ18O and tritium content in the Dluga Woda stream, was in the order of three months. This fast component of the total discharge of Dluga Woda stream is associated surface runoff and groundwater flow paths through the Quaternary cover. The slow component devoid of tritium and probably originated from the deeper Neogene aquifer is equal to approximately 30% of the total discharge. The relationships between the physico-chemical parameters of the stream water and the flow rate of Dluga Woda clearly indicate that the monitored

  2. A tracer analysis study on the redistribution and oxidization of endogenous carbon monoxide in the human body.

    PubMed

    Sawano, Makoto; Shimouchi, Akito

    2010-09-01

    Past studies have suggested that some carbon monoxide (CO) moves from blood haemoglobin to tissue cells and that mitochondrial cytochrome c oxidase oxidizes CO to carbon dioxide (CO(2)). However, no study has demonstrated this redistribution and oxidization of CO under physiological conditions. The objective of this study was to trace the redistribution and oxidization of CO in the human body by detecting (13)CO(2) production after the inhalation of (13)CO. In Experiment 1, we asked a healthy subject to inhale 50 ppm (13)CO gas. In Experiment 2, we circulated heparinized human blood in a cardio-pulmonary bypass circuit and supplied 50 ppm (13)CO gas to the oxygenator. We sequentially sampled exhaled and output gases and measured the (13)CO(2)/(12)CO(2) ratios. In Experiment 1, the exhaled (13)CO(2)/(12)CO(2) ratio increased significantly between 4 to 31 h of (13)CO inhalation. In Experiment 2, the output (13)CO(2)/(12)CO(2) ratio showed no significant increase within 36 h of (13)CO input. Experiment 1 demonstrated the oxidization of CO in the human body under physiological conditions. Experiment 2 confirmed that oxidization does not occur in the circulating blood and indicated the redistribution of CO from blood carboxyhaemoglobin to tissue cells.

  3. Asian Tracer Experiment and Atmospheric Modeling (TEAM) Project: Draft Field Work Plan for the Asian Long-Range Tracer Experiment

    SciTech Connect

    Allwine, K Jerry; Flaherty, Julia E.

    2007-08-01

    This report provides an experimental plan for a proposed Asian long-range tracer study as part of the international Tracer Experiment and Atmospheric Modeling (TEAM) Project. The TEAM partners are China, Japan, South Korea and the United States. Optimal times of year to conduct the study, meteorological measurements needed, proposed tracer release locations, proposed tracer sampling locations and the proposed durations of tracer releases and subsequent sampling are given. Also given are the activities necessary to prepare for the study and the schedule for completing the preparation activities leading to conducting the actual field operations. This report is intended to provide the TEAM members with the information necessary for planning and conducting the Asian long-range tracer study. The experimental plan is proposed, at this time, to describe the efforts necessary to conduct the Asian long-range tracer study, and the plan will undoubtedly be revised and refined as the planning goes forward over the next year.

  4. Selection of Actinide Chemical Analogues for WIPP Tests: Potential Nonradioactive Sorbing and Nonsorbing Tracers for Study of Ion Transport in the Environment

    SciTech Connect

    Dale Spall; Robert Villarreal

    1998-08-01

    Chemical characteristics of the actinides (Th, U, Np, Pu, Am) have been studied relative to nonradioactive chemical elements that have similar characteristics in an attempt to identify a group of actinide chemical analogues that are nonradioactive. In general, the chemistries of the actinides, especially U, Np, Pu, and Am, are very complex and attempts to identify a single chemical analogue for each oxidation state were not successful. However, the rationale for selecting a group of chemical analogues that would mimic the actinides as a group is provided. The categorization of possible chemical analogues (tracers) with similar chemical properties was based on the following criteria. Categorization was studied according.

  5. Single-well tracer test sensitivity w. r. to hydrofrac and matrix parameters (case study for the Horstberg site in the N-German Sedimentary Basin)

    NASA Astrophysics Data System (ADS)

    Ghergut, I.; Behrens, H.; Holzbecher, E.; Jung, R.; Sauter, M.; Tischner, T.

    2012-04-01

    are, as well, sensitive w. r. to X, but the effects of increasing X, upon tracer signals, are largely indistinguishable from those of increasing Solling porosity. Further numerical simulations of heat and solute tracer transport in above-named test settings reveal significant disparities between parameter sensitivities attainable in the same kind of test (A, B) conducted at different layers, as well as between solute concentration and temperature signal sensitivities w. r. to transport parameters in one and the same test (C). Why? - Test A features fracture flow, and dual-continuum transport, whereas test B features single-continuum flow and transport (within the host rock, with negligible losses to the hydrofrac). Flow is rapid in test A (being fracture-dominated), but slow in test B (being confined to the host rock). In test C, fluid first flows through the hydrofrac mainly, next it 'must' flow through the upper sandstone; heat transport is dominated by matrix diffusion across the hydrofrac (along which it thus experiences strong retardation), whereas solute transport is dominated by matrix micro-fissure and intra-particle diffusion within the upper sandstone (where it experiences strong retardation). We examine the implications of these findings upon the inversion of transport-effective hydrofrac parameters from measured tracer signals, and upon the tracer-based predictability of the system's thermal lifetime under different operation schemes. [1]http://www.geothermal-energy.org/pdf/IGAstandard/SGW/2005/jung.pdf [2]http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/2272.pdf Acknowledgement: This study is funded by MWK Niedersachsen (Lower-Saxony's Science and Culture Ministry) and by Baker Hughes (Celle) within task units 'G6' and 'G7' of the Collaborative Research Project 'gebo' (Geothermal Energy and High-Performance Drilling).

  6. Experimental study of the effect of test-well arrangement for partitioning interwell tracer test on the estimation of NAPL saturation

    NASA Astrophysics Data System (ADS)

    Kim, B.; Kim, Y.; Yeo, I.; Yongcheol Kim, In Wook Yeo

    2011-12-01

    Partitioning interwell tracer test (PITT) is a method to quantify and qualify a contaminated site with NAPLs through a degree of retardation of partitioning tracers compared to a conservative one. Although PITT is known to be a more effective method to measure the saturation of spatially-distributed NAPL contaminant than the point investigation method, the saturation estimation from PITT is reported to be underestimated due to various factors including heterogeneity of the media, adsorption, source zone NAPL architecture, and long tailing in breakthrough curves of partitioning tracers. Analytical description of PITT assumes that the injection-pumping well pair is on the line of ambient groundwater flow direction, but the test-well pair could easily be off the line in the field site, which could be another erroneous factor in analyzing PITT data. The purpose of this work is to study the influence of the angle of the test-well pair to ambient groundwater flow direction based on the result from PITT. The experiments were conducted in a small-scale 3D sandbox with dimensions of 0.5 m × 0.4 m × 0.15 m (LWH) of stainless steel. The surface is covered and sealed with a plexiglass plate to make the physical model a confined aquifer. Eight full-screened wells of Teflon material were installed along the perimeter of a 50 mm circle with 45 degree intervals in the middle of the physical model. Both ends of the sand box are connected to constant head reservoirs. The physical model was wet-packed with sieved and washed sand. Trichloroethylene (TCE) and bromide were used as the contaminant and the conservative tracer, respectively. Hexanol, 2,4-dimethyl-3-pentanol and 6-methyl-2-heptanol were used as partitioning tracers. Before the injection of TCE, a PITT was conducted to measure adsorption coefficient of partitioning tracers to the sand material. TCE of 4.5 mL, dyed with Sudan IV, was injected into the inner part of the circle of the wells. PITTs using the test-well pair

  7. High temperature gas-cooled reactor: gas turbine application study

    SciTech Connect

    Not Available

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  8. Testing and comparison of four ionic tracers to measure stream flow loss by multiple tracer injection

    USGS Publications Warehouse

    Zellweger, G.W.

    1994-01-01

    An injectate containing lithium, sodium, chloride and bromide was added continuously at five sites along a 507 m study reach of St Kevin Gulch, Lake County, Colorado to determine which sections of the stream were losing water to the stream bed and to ascertain how well the four tracers performed. The acidity of the stream (pH 3.6) made it possible for lithium and sodium, which are normally absorbed by ion exchange with stream bed sediment, to be used as conservative tracers. Net flow losses as low as 0.81 s-1, or 8% of flow, were calculated between measuring sites. By comparing the results of simultaneous injection it was determined whether subsections of the study reach were influent or effluent. Evaluation of tracer concentrations along 116 m of stream indicated that all four tracers behaved conservatively. Discharges measured by Parshall flumes were 4-18% greater than discharges measured by tracer dilution. -from Author

  9. Dating of young groundwater using tritium and gaseous tracers (SF6, SF5CF3, CFC-12, H-1301): case study from southern Poland

    NASA Astrophysics Data System (ADS)

    Rozanski, Kazimierz; Bartyzel, Jakub; Dulinski, Marek; Kuc, Tadeusz; Sliwka, Ireneusz; Mochalski, Pawel; Kania, Jaroslaw; Witczak, Stanislaw

    2013-04-01

    Groundwater is an important source of potable water in many countries. While it covers ca. 50% of the global drinking water needs, in Europe this share is even higher, reaching approximately 70%. Nowadays, this strategic resource is at risk due to anthropogenic pollutants of various nature entering shallow aquifers. Proper management of groundwater resources requires thorough understanding of groundwater dynamics on time scales characteristic for the history of pollutant input to groundwater. The bomb-tritium has been used for several decades now as a tracer of choice to detect recent recharge and to quantify groundwater residence times on time scales extending from several years to several decades. The lumped-parameter modeling was the most often employed approach in this context. Since nowadays atmospheric concentrations of tritium are approaching natural levels in most parts of the world, the usage of this tracer has become more problematic. Therefore, there is a growing interest in alternative indicators of groundwater age in shallow aquifers. Anthropogenic trace gases present in the atmosphere, such as freons (CFC-11, CFC-12, CFC-113) and sulfur hexafluoride (SF6), have been applied in numerous case studies as substitutes of tritium. Here we present the results of a comprehensive study aimed at quantifying mean residence time of groundwater in the recharge area of porous sandy aquifer system located in the southern Poland. The principal economic role of the aquifer, consisting of two water-bearing strata, is to provide potable water for public and private users. The yield of the aquifer is insufficient to meet all the needs and, as a consequence, licensing conflicts arise between water supply companies and industry on the amount of water available for safe exploitation. To quantify residence time distribution (RTD) functions of water parcels arriving at the production wells located in the recharge area of the aquifer, tritium along with several gaseous tracers

  10. 20 CFR 718.105 - Arterial blood-gas studies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Arterial blood-gas studies. 718.105 Section... blood-gas studies. (a) Blood-gas studies are performed to detect an impairment in the process of... either at rest or during exercise. No blood-gas study shall be performed if medically contraindicated....

  11. Tracer-based prediction of thermal reservoir lifetime: scope, limitations, and the role of thermosensitive tracers

    NASA Astrophysics Data System (ADS)

    Ghergut, I.; Behrens, H.; Karmakar, S.; Licha, T.; Nottebohm, M.; Sauter, M.

    2012-04-01

    correlation between (early) tracer signals and (later) thermal breakthrough can be re-established. Thus, thermosensitive tracers are indispensable for predicting thermal breakthrough, in such geothermal reservoirs whose 'hydrogeological personality' is given by a finite set of fractures, with flow occurring both across and along the fractures. In terms of the 'gebo benchmark-model' typology investigated by Hördt et al. (2011) [http://eposters.agu.org/abstracts/models-of-geothermal-reservoirs-as-a-basis-for-interdisciplinary-cooperation/] , such systems combine flow and transport patterns of the 'petrothermal' type and of the so-called 'deep-aquifer' type: across the fractures, heat is travelling faster than conservative-solute tracers; along the fractures, conservative-solute tracers experience much less retardation by transversal exchange (matrix diffusion), than heat; fluid (and tracer) flow is not limited to the fractures; matrix flow yields essential contribution to prolonging the fluid (and tracer) residence time. Thermal lifetime results from the opposite effects of fracture aperture as an: advection-related parameter: fluid travel time increases with increasing fracture aperture advection-unrelated parameter: fracture - matrix exchange rate increases with decreasing fracture aperture, which accelerates transport across the fracture, but retards transport along the fracture. In conservative-solute tracer signals, all these fracture aperture effects on tracer transport are masked by the very long residence time associated with the matrix flow component. Thermosensitive tracers are able to 'magnify' the visibility of fracture aperture effects against matrix flow effects. Acknowledgment: This study benefits from thermosensitive-tracer research conducted within the projects Smart Tracers and LOGRO, funded by the German Ministry for Environment, Nature Conservation and Nuclear Safety (BMU, 0327579 and 0325111B) and by Energie Baden-Württemberg (EnBW).

  12. Universal tracer monitored titrations.

    PubMed

    DeGrandpre, Michael D; Martz, Todd R; Hart, Robert D; Elison, David M; Zhang, Alice; Bahnson, Anna G

    2011-12-15

    Titrations, while primarily known as the chemical rite of passage for fledgling science students, are still widely used for chemical analysis. With its many years of existence and improvement, the method would seem an unlikely candidate for innovation, yet it is desirable, in this age of autonomous sensing where analyzers may be sent into space or to the bottom of the ocean, to have a simplified titrimetric method that does not rely upon volumetric or gravimetric measurement of sample and titrant. In previous work on the measurement of seawater alkalinity, we found that use of a tracer in the titrant eliminates the need to measure mass or volume. Here, we show the versatility of the method for diverse types of titrations and tracers. The results suggest that tracers may be employed in all types of titrations, opening the door for greatly simplified laboratory and field-based chemical analysis.

  13. Behavior of organophosphates and hydrophilic ethers during bank filtration and their potential application as organic tracers. A field study from the Oderbruch, Germany.

    PubMed

    Stepien, D K; Regnery, J; Merz, C; Püttmann, W

    2013-08-01

    The behavior of organophosphates and ethers during riverbank filtration and groundwater flow was assessed to determine their suitability as organic tracers. Four sampling campaigns were conducted at the Oderbruch polder, Germany to establish the presence of chlorinated flame retardants (TCEP, TCPP, TDCP), non-chlorinated plasticizers (TBEP, TiBP, TnBP), and hydrophilic ethers (1,4-dioxane, monoglyme, diglyme, triglyme, tetraglyme) in the Oder River, main drainage ditch, and anoxic aquifer. Selected parameters were measured in order to determine the hydro-chemical composition of both, river water and groundwater. The results of the study confirm that organophosphates (OPs) are more readily attenuated during bank filtration compared to ethers. Both in the river and the groundwater, TCPP was the most abundant OP with concentrations in the main drainage ditch ranging between 105 and 958 ng L(-1). 1,4-dioxane, triglyme, and tetraglyme demonstrated persistent behavior during bank filtration and in the anoxic groundwater. In the drainage ditch concentrations of 1,4-dioxane, triglyme, and tetraglyme ranged between 1090 and 1467 ng L(-1), 37 and 149 ng L(-1), and 496 and 1403 ng L(-1), respectively. A positive correlation was found for the inorganic tracer chloride with 1,4-dioxane and tetraglyme. These results confirm the possible application of these ethers as environmental organic tracers. Both inorganic and organic compounds showed temporal variability in the surface- and groundwater. Discharge of the river water, concentrations of analytes at the time of infiltration and attenuation were identified as factors influencing the variable amounts of the analytes in the surface and groundwater. These findings are also of great importance for the production of drinking water via bank filtration and natural and artificial groundwater recharge as the physicochemical properties of ethers create challenges in their removal.

  14. Application of the SO4(2-)/Se tracer technique to study SO2 oxidation in cloud and fog on a time scale of minutes.

    PubMed

    Husain, Liaquat; Ghauri, Badar; Yang, Karl; Khan, Adil R; Rattigan, O V

    2004-01-01

    We have demonstrated the use of Se as a tracer to quantitatively determine in situ SO4(2-) production from SO2 oxidation in clouds and fogs. Until now, it has not been possible to study the kinetics of SO2 oxidation because the aerosol sampling interval for Se determination was limited to 2 h or longer. Here we report results of 5-min aerosol measurements carried out at Lahore, Pakistan, during January 9-11, 2001, using new methodology for Se analysis coupled with hydride generation and ICP-MS detection. These improvements will enable the tracer technique to determine in situ SO4(2-) production in clouds and fogs on a time scale of several minutes and possibly 1 min. The method may prove useful for kinetic studies of in-cloud SO2 oxidation and in the study of other phenomena such as atmospheric mixing, cloud drop lifetimes, and aerosol formation that occur on the time scale of a few minutes.

  15. 20 CFR 718.105 - Arterial blood-gas studies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Arterial blood-gas studies. 718.105 Section... blood-gas studies. (a) Blood-gas studies are performed to detect an impairment in the process of alveolar gas exchange. This defect will manifest itself primarily as a fall in arterial oxygen...

  16. 20 CFR 718.105 - Arterial blood-gas studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Arterial blood-gas studies. 718.105 Section... blood-gas studies. (a) Blood-gas studies are performed to detect an impairment in the process of alveolar gas exchange. This defect will manifest itself primarily as a fall in arterial oxygen...

  17. Hydrochemistry and boron isotopes as natural tracers in the study of groundwaters from North Chianan Plain, Taiwan.

    PubMed

    Lu, Hsueh-Yu

    2014-01-01

    In this paper, hydrochemistry and boron isotopes are successfully applied to elucidate hydrogeological processes by the use of natural tracers. The hydrochemical analysis identifies four end-members in the hydrochemical evolution of groundwater from the North Chianan plain groundwater district. A few groundwater contain extraordinary chlorine concentrations of up to 48,000 mg l(-1). However, the hydrochemistry of groundwater only reveals that high saline water is a dominant factor in groundwater hydrochemistry. It is thought that these groundwater experienced precipitation of carbonates during seawater evaporation that did not involve the precipitation of gypsum. Boron isotopes are very efficient tracers in determining the source of salinisation. The boron isotopes reveal the results of mixing of evaporated seawater and water-sediment interaction. In general, the boron isotope ratio of the groundwater is controlled by a two-end-member mixing system, which is composed of evaporated seawater (isotopically heavy) and fresh surface water (isotopically light). Due to a long lagoonal period in the coastal plain, the groundwaters in the downstream area generally have high Cl/B ratios and relatively heavy boron isotope ratios while those in the upstream area are composed of low Cl/B and light boron isotopes. However, there is not a resolvable mixing trend between the Cl/B ratio and the isotopic composition of boron. It is probably obscured by a highly variable boron isotope ratio in fresh surface water and through fractionation associated with water-rock interaction. Both factors would decrease the boron isotope ratio but one effect cannot be distinguished from the other.

  18. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1989-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.

  19. Spark decomposition studies of dielectric gas mixtures

    NASA Astrophysics Data System (ADS)

    Sauers, I.; Christophorou, L. G.

    The ultimate usefulness of a high voltage insulating gas depends not only on the ability of the gas to withstand high voltages, but also on the degradation of the gas resulting from spark discharges, corona or prolonged electrical stress and the effect(s) of the by-products on the equipment and, possibly, the environment. In view of these considerations, the study of long-range spark decomposition was undertaken in an effort to improve the decomposition characteristics of dielectric gases through proper tailoring of gas mixtures while maintaining high breakdown strengths. The data reported are on the analyses of gases sparked by capactive (0.1 micro F) discharge into a 0.5-mm gap, resulting in an energy input of approximately 5 J per spark. The nature of the decomposition products of SF6 formed by high voltage discharges observed is found to be critically dependent on impurities (particularly H2O), electrode material and insulating materials present in the system.

  20. Real-time whole-plant imaging of 11C translocation using positron-emitting tracer imaging system

    NASA Astrophysics Data System (ADS)

    Kawachi, Naoki; Suzui, Nobuo; Ishii, Satomi; Ito, Sayuri; Ishioka, Noriko S.; Yamazaki, Haruaki; Hatano-Iwasaki, Aya; Ogawa, Ken'Ichi; Fujimaki, Shu

    2011-08-01

    Whole-plant imaging for studying the complete carbon kinetics involved in photosynthesis and subsequent photoassimilate translocation and unloading was achieved using a positron-emitting tracer imaging system (PETIS) in combination with 11CO2 gas tracer. In an experiment with a soybean (Glycine max cultivar Jack) plant, it was confirmed that the dynamic PETIS image data obtained followed the conservation law for total carbon. Thus, the proposed PETIS technique is a feasible noninvasive and quantitative solution to study the carbon dynamics over an entire plant in environmental and agricultural studies.

  1. DETECTION OF HIGH MOLECULAR WEIGHT ORGANIC TRACERS IN VEGETATION SMOKE SAMPLES BY HIGH-TEMPERATURE GAS CHROMATOGRAPHY-MASS SPECTROMETRY. (R823990)

    EPA Science Inventory

    High-temperature high-resolution gas chromatography
    (HTGC) is an established technique for the separation of
    complex mixtures of high molecular weight (HMW) compounds
    which do not elute when analyzed on conventional GC
    columns. The combination of this technique wit...

  2. Isotopic Tracer Study of Hydraulic Transfer Between Native Woody Shrubs and Associated Annual Crops Under Dry Conditions in the Sahel

    NASA Astrophysics Data System (ADS)

    Bogie, Nathaniel; Bayala, Roger; Diedhiou, Ibrahima; Fogel, Marilyn; Dick, Richard; Ghezzehei, Teamrat A.

    2015-04-01

    Erratic precipitation at the beginning and end of the rainy season combined with short drought periods during the cropping season pose a major challenge for rain-fed agriculture and food security in the Sahel. Research has shown that intercropping annual crops with native evergreen woody shrubs in Senegal can greatly increase crop productivity. Hydraulic redistribution (HR), or the diurnal rewetting of dry soil by the pathway of the root system that extends into wetter soil has been found in many plants and climates worldwide. The HR pathway could be a factor in Senegal where water provided by shrubs aids crop growth during dry periods but this has not been confirmed. Therefore, the objective was to determine the ability of shrubs to provide water to millet plants using the deuterium tracer. Penisetum glaucum (Pearl Millet) was grown in association with the native woody shrub Guiera senegalensis under drip irrigation until 68 days after sowing, followed by a with holding of water during late flowering and early grain-filling stage. Within 10 days the soils in the stressed plots became extremely dry with water potentials ranging from -0.5 Mpa to -3.0 Mpa at 20cm depth. Twenty days after the initiation of water stress, vials of isotopically enriched deuterium tracer was sealed around cut roots of three separate shrubs at a depth of 1.0 m followed by sampling of aboveground tissue from injection shrubs and closely growing crop plants over a period of five days. Using cryogenic vacuum distillation, plant water samples were extracted from plant tissue. With lab work completed on two replications, a highly enriched deuterium signal was observed in the tissue water of the shrub beginning twelve hours after the injection. In the same replication thirty-six hours after the beginning of injection, a highly enriched pulse of deuterium in the crop growing directly adjacent to the injection shrub was observed. In a concurrent injection to a nearby shrub under much drier

  3. 3-D numerical evaluation of density effects on tracer tests.

    PubMed

    Beinhorn, M; Dietrich, P; Kolditz, O

    2005-12-01

    In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow. PMID:16183165

  4. Use of Naturally Occurring Noble Gas Tracers to Evaluate the Freshwater/Saline Water Interface of the Edwards Aquifer, South-Central Texas.

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.; Lambert, R. B.; Landis, G. P.; Waugh, J. R.

    2002-12-01

    The Edwards Aquifer currently is the primary source of water in south central Texas for agriculture, municipal, industrial, and ecological needs, supplying over 1.5 million people and supporting unique habitats for endangered species. The aquifer consists of limestone with some dolostone members of the Edwards Group that dip in a southeasterly direction. The up-dip freshwater zone of the aquifer is recharged with fresh water along the northern area of the outcropping Edwards Group. Adjacent to the freshwater zone is the saline-water zone that forms an interface at the down-dip limit of the fresh water. Though the freshwater/saline-water interface is spatially defined within the aquifer, little is known about the nature of groundwater flow between and along its surface. Structural, lithologic and hydrologic features may influence the possible up-dip migration of the saline water into the freshwater zone and may adversely affect current freshwater supplies. Freshwater/saline-water monitoring well transects were sampled for dissolved gas using both conventional and un-conventional methods to establish vertical profiles across the aquifer. Data revealed two highly distinct gas compositions between the zones. The upper freshwater zone is characterized by normal, atmospherically saturated water gas concentrations with slight enrichments due to excess air (4He ~ 60 μcc/kg). The lower saline zone displayed a very different gas composition, highlighted by extremely high concentrations of radiogenic 4He (>20,000 μcc/kg) and minor amounts of excess 40Ar contained in a gas composition rich in CO2, H2S and other hydrocarbons. Vertical profiles of dissolved gas compositions across the interface show active flowing water along the interface, and sluggish, stagnant flow within the saline zone. These sharply contrasting zones are strongly influenced by the faulting in the aquifer and by the hydrostatic head within the freshwater zone. Both the faulting and the hydrostatic head in

  5. Estimates of tracer-based piston-flow ages of groundwater from selected sites: National Water-Quality Assessment Program, 2006-2010

    USGS Publications Warehouse

    Shapiro, Stephanie D.; Plummer, L. Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.; Runkle, Donna L.

    2012-01-01

    Piston-flow age dates were interpreted from measured concentrations of environmental tracers from 812 National Water-Quality Assessment (NAWQA) Program groundwater sites from 27 Study Units across the United States. The tracers of interest include chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis were collected from 2006 to 2010 from groundwater wells in NAWQA studies, including: * Land-Use Studies (LUS, shallow wells, usually monitoring wells, located in recharge areas under dominant land-use settings), * Major-Aquifer Studies (MAS, wells, usually domestic supply wells, located in principal aquifers and representing the shallow drinking water supply), * Flow System Studies (FSS, networks of clustered wells located along a flowpath extending from a recharge zone to a discharge zone, preferably a shallow stream) associated with Land-Use Studies, and * Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) also associated with Land-Use Studies. Tracer data were evaluated using documented methods and are presented as aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), and tracer-based piston-flow ages. Selected ancillary data, such as redox data, well-construction data, and major dissolved-gas (N2, O2, Ar, CH4, and CO2) data, also are presented. Recharge temperature was inferred using climate data (approximated by mean annual air temperature plus 1°C [MAAT +1°C]) as well as major dissolved-gas data (N2-Ar-based) where available. The N2-Ar-based temperatures showed significantly more variation than the climate-based data, as well as the effects of denitrification and degassing resulting from reducing conditions. The N2-Ar-based temperatures were colder than the climate-based temperatures in networks where recharge was limited to the winter months when evapotranspiration was reduced. The tracer-based piston-flow ages

  6. Searching for FUV line emission from 107 K gas in massive elliptical galaxies and galaxy clusters as a tracer of turbulent velocities

    NASA Astrophysics Data System (ADS)

    Anderson, Michael E.; Sunyaev, Rashid

    2016-07-01

    Non-thermal pressure from turbulence and bulk flows is a fundamental ingredient in hot gaseous haloes, and in the intracluster medium, it will be measured through emission line kinematics with calorimeters on future X-ray spacecraft. In this paper, we present a complementary method for measuring these effects, using forbidden FUV emission lines of highly ionized Iron which trace 107 K gas. The brightest of these is [Fe XXI] λ1354.1. We search for these lines in archival Hubble Space Telescope (HST)-Cosmic Origins Spectrograph (COS) spectra from the well-known elliptical galaxies M87 and NGC4696, which harbor large reservoirs of 107 K gas. We report a 2.2σ feature which we attribute to [Fe XXI] from a filament in M87, and positive residuals in the nuclei of M87 and NGC4696, for which the 90 per cent upper limits on the line flux are close to the predicted fluxes based on X-ray observations. In a newer reduction of the data from the Hubble Spectroscopic Legacy Archive, these limits become tighter and the [Fe XXI] feature reaches a formal significance of 5.3σ, neglecting uncertainty in fitting the continuum. Using our constraints, we perform emission measure analysis, constraining the characteristic path length and column density of the ˜107 K gas. We also examine several sightlines towards filaments or cooling flows in other galaxy clusters, for which the fraction of gas at 107 K is unknown, and place upper limits on its emission measure in each case. A medium-resolution HST-COS observation of the M87 filament for ˜10 orbits would confirm our detection of [Fe XXI] and measure its width.

  7. Communication: Ab initio study of O{sub 4}H{sup +}: A tracer molecule in the interstellar medium?

    SciTech Connect

    Xavier, George D.; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón

    2014-08-28

    The structure and energetics of the protonated molecular oxygen dimer calculated via ab initio methods is reported. We find structures that share analogies with the eigen and zundel forms for the protonated water dimer although the symmetrical sharing of the proton is more prevalent. Analysis of different fragmentation channels show charge transfer processes which indicate the presence of conical intersections for various states including the ground state. An accurate estimate for the proton affinity of O{sub 4} leads to a significantly larger value (5.6 eV) than for O{sub 2} (4.4 eV), implying that the reaction H{sub 3}{sup +} + O{sub 4} → O{sub 4}H{sup +} + H{sub 2} is exothermic by 28 Kcal/mol as opposed to the case of O{sub 2} which is nearly thermoneutral. This opens up the possibility of using O{sub 4}H{sup +} as a tracer molecule for oxygen in the interstellar medium.

  8. Novel and non-traditional use of stable isotope tracers to study metal bioavailability from natural particles

    USGS Publications Warehouse

    Croteau, Marie-Noële; Cain, Daniel J.; Fuller, Christopher C.

    2013-01-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails (Lymnaea stagnalis) to synthetic water spiked with Cu that was 99.4% 65Cu to increase the relative abundance of 65Cu in the snail’s tissues from 32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe–Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used 63Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  9. Seasonal variation of secondary organic aerosol tracers in Central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shen, R.-Q.; Ding, X.; He, Q.-F.; Cong, Z.-Y.; Yu, Q.-Q.; Wang, X.-M.

    2015-08-01

    Secondary organic aerosol (SOA) affects the earth's radiation balance and global climate. High-elevation areas are sensitive to global climate change. However, at present, SOA origins and seasonal variations are understudied in remote high-elevation areas. In this study, particulate samples were collected from July 2012 to July 2013 at the remote Nam Co (NC) site, Central Tibetan Plateau and analyzed for SOA tracers from biogenic (isoprene, monoterpenes and β-caryophyllene) and anthropogenic (aromatics) precursors. Among these compounds, isoprene SOA (SOAI) tracers represented the majority (26.6 ± 44.2 ng m-3), followed by monoterpene SOA (SOAM) tracers (0.97 ± 0.57 ng m-3), aromatic SOA (SOAA) tracer (2,3-dihydroxy-4-oxopentanoic acid, DHOPA, 0.25 ± 0.18 ng m-3) and β-caryophyllene SOA tracer (β-caryophyllenic acid, 0.09 ± 0.10 ng m-3). SOAI tracers exhibited high concentrations in the summer and low levels in the winter. The similar temperature dependence of SOAI tracers and isoprene emission suggested that the seasonal variation of SOAI tracers at the NC site was mainly influenced by the isoprene emission. The ratio of high-NOx to low-NOx products of SOAI (2-methylglyceric acid to 2-methyltetrols) was highest in the winter and lowest in the summer, due to the influence of temperature and relative humidity. The seasonal variation of SOAM tracers was impacted by monoterpenes emission and gas-particle partitioning. During the summer to the fall, temperature effect on partitioning was the dominant process influencing SOAM tracers' variation; while the temperature effect on emission was the dominant process influencing SOAM tracers' variation during the winter to the spring. SOAM tracer levels did not elevate with increased temperature in the summer, probably resulting from the counteraction of temperature effects on emission and partitioning. The concentrations of DHOPA were 1-2 orders of magnitude lower than those reported in the urban regions of the world

  10. Gas Gun Studies of Interface Wear Effects

    NASA Astrophysics Data System (ADS)

    Jackson, Tyler; Kennedy, Greg; Thadhani, Naresh

    2011-06-01

    The characteristics of interface wear were studied by performing gas gun experiments at velocities up to 1 km/s. The approach involved developing coefficients of constitutive strength models for Al 6061 and OFHC-Cu, then using those to design die geometry for interface wear gas gun experiments. Taylor rod-on-anvil impact experiments were performed to obtain coefficients of the Johnson-Cook constitutive strength model by correlating experimentally obtained deformed states of impacted samples with those predicted using ANSYS AUTODYN hydrocode. Simulations were used with validated strength models to design geometry involving acceleration of Al rods through a copper concentric cylindrical angular extrusion die. Experiments were conducted using 7.62 mm and 80 mm diameter gas guns. Differences in the microstructure of the interface layer and microhardness values illustrate that stress-strain conditions produced during acceleration of Al through the hollow concentric copper die, at velocities less than 800 m/s, result in formation of a layer via solid state alloying due to severe plastic deformation, while higher velocities produce an interface layer consisting of melted and re-solidified aluminum.

  11. Past leaded gasoline emissions as a nonpoint source tracer in riparian systems: A study of river inputs to San Francisco Bay

    USGS Publications Warehouse

    Dunlap, C.E.; Bouse, R.; Flegal, A.R.

    2000-01-01

    Variations in the isotopic composition of lead in 1995-1998 river waters flowing into San Francisco Bay trace the washout of lead deposited in the drainage basin from leaded gasoline combustion. At the confluence of the Sacramento and San Joaquin rivers where they enter the Bay, the isotopic compositions of lead in the waters define a linear trend away from the measured historical compositions of leaded gas in California. The river waters are shifted away from leaded gasoline values and toward an isotopic composition similar to Sierra Nevadan inputs which became the predominant source of sedimentation in San Francisco Bay following the onset of hydraulic gold mining in 1853. Using lead isotopic compositions of hydraulic mine sediments and average leaded gasoline as mixing end members, we calculate that more than 50% of the lead in the present river water originated from leaded gasoline combustion. The strong adsorption of lead (log K(d) > 7.4) to particulates appears to limit the flushing of gasoline lead from the drainage basin, and the removal of that lead from the system may have reached an asymptotic limit. Consequently, gasoline lead isotopes should prove to be a useful nonpoint source tracer of the environmental distribution of particle- reactive anthropogenic metals in freshwater systems.

  12. Tracer for circulation determinations

    SciTech Connect

    Moore, H.; Santos, S.; Wysong, R. D.

    1985-03-19

    An improved tracer particle is described comprising an ion exchange core having a polymer coating thereon, the coated ion exchange core having a reaction site capable of reacting with a compound containing an oxirane group, said coated ion exchange core having been treated with a compound containing an oxirane group to react with said coated ion exchange core causing an increase in mass of the tracer particle. Preferably, the ion exchange core is labelled with a radionuclide. These particles have improved characteristics including improved stability against leaching and improved handling properties. Such particles are useful in circulatory determinations involving the injection of the particles as a suspension in a physiologically acceptable carrier or medium into the circulatory system of animals.

  13. HST/COS detection of a Ne VIII absorber towards PG 1407+265: an unambiguous tracer of collisionally ionized hot gas?

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Muzahid, S.; Narayanan, A.; Srianand, R.; Wakker, B. P.; Charlton, J. C.; Pathak, A.

    2015-01-01

    We report the detection of Ne VIII in a zabs = 0.599 61 absorber towards the QSO PG1407+265 (zem= 0.94). Besides Ne VIII, absorption from H I Lyman series lines (H I λ1025-λ915), several other low (C II, N II, O II and S II), intermediate (C III, N III, N IV, O III, S IV and S V) and high (S VI, O VI and Ne VIII) ionization metal lines are detected. Disparity in the absorption line kinematics between different ions implies that the absorbing gas comprises of multiple ionization phases. The low and the intermediate ions (except S V) trace a compact (˜410 pc), metal-rich (Z ˜ Z⊙) and overdense (log nH ˜ -2.6) photoionized region that sustained star formation for a prolonged period. The high ions, Ne VIII and O VI, can be explained as arising in a low density (-5.3 ≤ log nH ≤ -5.0), metal-rich (Z ≳ Z⊙) and diffuse (˜180 kpc) photoionized gas. The S V, S VI and C IV [detected in the Faint Object Spectrograph (FOS) spectrum] require an intermediate photoionization phase with -4.2 < log nH < -3.5. Alternatively, a pure collisional ionization model, as used to explain the previous known Ne VIII absorbers, with 5.65 < log T < 5.72, can reproduce the S VI, O VI and Ne VIII column densities simultaneously in a single phase. However, even such models require an intermediate phase to reproduce any observable S V and/or C IV. Therefore, we conclude that when multiple phases are present, the presence of Ne VIII is not necessarily an unambiguous indication of collisionally ionized hot gas.

  14. Boron isotopes as an artificial tracer.

    PubMed

    Quast, Konrad W; Lansey, Kevin; Arnold, Robert; Bassett, Randy L; Rincon, Martha

    2006-01-01

    A field study was conducted using a combination of intrinsic and artificial tracers to estimate travel times and dilution during transport of infiltrate from a reclaimed water infiltration basin to nearby monitoring wells. A major study objective was to validate boric acid enriched in (10)B as an artificial tracer. Basin 10E at the Rio Hondo Spreading Grounds in Whittier, California, was the site of the test. The basin normally receives a mixture of treated municipal waste water, purchased State Project water, and local runoff from the San Gabriel River. Approximately 3.5 kg of (10)B-enriched boric acid was dispersed among 2.05 x 10(5) m(3) of basin water to initiate the experiment. The resultant median delta(11)B in the infiltration basin was -71 per thousand. Prior to tracer addition, the basin water had an intrinsic delta(11)B of +2 per thousand. Local monitoring wells that were used to assess travel times had delta(11)B values of +5 per thousand and +8 per thousand at the time of tracer addition. Analytic results supported an assumption that boron is conserved during ground water transport and that boron enriched in (10)B is a useful artificial tracer. Several intrinsic tracers were used to reinforce the boric acid tracer findings. These included stable isotopes of oxygen (delta(18)O) and hydrogen (deltaD), sulfate concentration, and the boron to chloride ratio. Xenon isotopes, (136)Xe and (124)Xe, also supported boron isotope results. Xenon isotopes were added to the recharge basin as dissolved gases by investigators from the Lawrence Livermore National Laboratory.

  15. Ultrastructural examination of the corticocollicular pathway in the guinea pig: a study using electron microscopy, neural tracers, and GABA immunocytochemistry.

    PubMed

    Nakamoto, Kyle T; Mellott, Jeffrey G; Killius, Jeanette; Storey-Workley, Megan E; Sowick, Colleen S; Schofield, Brett R

    2013-01-01

    Projections from auditory cortex (AC) can alter the responses of cells in the inferior colliculus (IC) to sounds. Most IC cells show excitation and inhibition after stimulation of the AC. AC axons release glutamate and excite their targets, so inhibition is presumed to result from cortical activation of GABAergic IC cells that inhibit other IC cells via local projections. However, it is not known whether cortical axons contact GABAergic IC cells directly. We labeled corticocollicular axons by injecting fluorescent dextrans into the AC in guinea pigs. We visualized the tracer with diaminobenzidine and processed the tissue for electron microscopy. We identified presumptive GABAergic profiles with post-embedding anti-GABA immunogold histochemistry on ultrathin sections. We identified dextran-labeled cortical boutons in the IC and identified their postsynaptic targets according to morphology (e.g., spine, dendrite) and GABA-reactivity. Cortical synapses were observed in all IC subdivisions, but were comparatively rare in the central nucleus. Cortical boutons contain round vesicles and few mitochondria. They form asymmetric synapses with spines (most frequently), dendritic shafts and, least often, with cell bodies. Excitatory boutons in the IC can be classified as large, medium or small; most cortical boutons belong to the small excitatory class, while a minority (~14%) belong to the medium excitatory class. Approximately 4% of the cortical targets were GABA-positive; these included dendritic shafts, spines, and cell bodies. We conclude that the majority of cortical boutons contact non-GABAergic (i.e., excitatory) IC cells and a small proportion (4%) contact GABAergic cells. Given that most IC cells show inhibition (as well as excitation) after cortical stimulation, it is likely that the majority of cortically-driven inhibition in the IC results from cortical activation of a relatively small number of IC GABAergic cells that have extensive local axons. PMID:23734104

  16. Evaluation of C-14 as a natural tracer for injected fluids at theAidlin sector of The Geysers geothermal system through modeling ofmineral-water-gas Reactions

    SciTech Connect

    Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

    2006-06-01

    A reactive-transport model for 14C was developed to test its applicability to the Aidlin geothermal system. Using TOUGHREACT, we developed a 1-D grid to evaluate the effects of water injection and subsequent water-rock-gas interaction on the compositions of the produced fluids. A dual-permeability model of the fracture-matrix system was used to describe reaction-transport processes in which the permeability of the fractures is many orders of magnitude higher than that of the rock matrix. The geochemical system included the principal minerals (K-feldspar, plagioclase, calcite, silica polymorphs) of the metagraywackes that comprise the geothermal reservoir rocks. Initial simulation results predict that the gas-phase CO2 in the reservoir will become more enriched in 14C as air-equilibrated injectate water (with a modern carbon signature) is incorporated into the system, and that these changes will precede accompanying decreases in reservoir temperature. The effects of injection on 14C in the rock matrix will be lessened somewhat because of the dissolution of matrix calcite with ''dead'' carbon.

  17. Lidar Tracking of Multiple Fluorescent Tracers: Method and Field Test

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Willis, Ron J.

    1992-01-01

    Past research and applications have demonstrated the advantages and usefulness of lidar detection of a single fluorescent tracer to track air motions. Earlier researchers performed an analytical study that showed good potential for lidar discrimination and tracking of two or three different fluorescent tracers at the same time. The present paper summarizes the multiple fluorescent tracer method, discusses its expected advantages and problems, and describes our field test of this new technique.

  18. Experimental Study of Coal and Gas Outbursts Related to Gas-Enriched Areas

    NASA Astrophysics Data System (ADS)

    Tu, Qingyi; Cheng, Yuanping; Guo, Pinkun; Jiang, Jingyu; Wang, Liang; Zhang, Rong

    2016-09-01

    A coal and gas outburst can lead to a catastrophic failure in a coal mine. These outbursts usually occur where the distribution of coal seam gas is abnormal, commonly in tectonic belts. To study the effects of the abnormal distribution of this gas on outbursts, an experimental apparatus to collect data on simulated coal seam outbursts was constructed. Experiments on specimens containing discrete gas-enriched areas were run to induce artificial gas outbursts and further study of these outbursts using data from the experiment was conducted. The results suggest that more gas and outburst energy are contained in gas-enriched areas and this permits these areas to cause an outburst easily, even though the gas pressure in them is lower. During mining, the disappearance of the sealing effect of a coal pillar establishes the occurrence conditions for an outburst. When the enriched gas and outburst energy in the gas-enriched area is released suddenly, a reverse unloading wave and a high gas pressure gradient are formed, which have tension effects on the coal. Under these effects, the fragmentation degree of the coal intensifies and the intensity of the outburst increases. Because a high gas pressure gradient is maintained near the exposed surface and the enriched energy release reduces the coal strength, the existence of a gas-enriched area in coal leads to a faster outburst and the average thickness of the spall is smaller than where is no gas-enriched area.

  19. Evaluating short-term changes in recreational water quality during a hydrograph event using a combination of microbial tracers, environmental microbiology, microbial source tracking and hydrological techniques: a case study in Southwest Wales, UK.

    PubMed

    Wyer, Mark D; Kay, David; Watkins, John; Davies, Cheryl; Kay, Chris; Thomas, Rod; Porter, Jonathan; Stapleton, Carl M; Moore, Heather

    2010-09-01

    Quantitative assessment of multiple sources to short-term variations in recreational water quality, as indexed by faecal indicator organism (FIO) concentrations, is becoming increasingly important with adoption of modern water quality standards and catchment-based water quality management requirements (e.g. the EU Water Framework Directive, Article 11 'Programmes of Measures' and the US Clean Water Act, 'Total Maximum Daily Loads'). This paper describes a study combining microbial tracers, intensive FIO measurement, open channel hydrology and molecular microbial source tracking (MST) to enhance understanding of recreational water quality at Amroth in southwest Wales, UK. Microbial tracers were released from four stream inputs during a moderate hydrograph event. Tracers from two local streams impacted simultaneously with a period of maximum FIO concentrations at the near-shore compliance monitoring site. Connection between these inputs and this site were rapid (9-33 min). Water quality impairment from a more remote stream input followed, 12.85 h after tracer release, sustaining FIO concentrations above desired compliance levels. MST analysis showed dominance of ruminant Bacteroidales genetic markers, associated with agricultural pollution. This integration of tracers and MST offers additional information on the movement and individual sources causing water quality impairment. PMID:20630556

  20. Studies in skeletal tracer kinetics. V: Computer-simulated Tc-99m (Sn)MDP bone-scan changes in some systemic disorders: concise communication

    SciTech Connect

    Charkes, N.D.; Makler, P.T. Jr.

    1981-07-01

    Using compartmental analysis techniques, we modeled the biodistribution of Tc-99m(Sn)methylene diphosphonate in humans on a computer, and by selectively perturbing appropriate rate constants, we simulated changes in contrast between bone and soft tissue in a number of systemic disorders. The model predicts low contrast in patients with moderate to marked edema, obesity, congestive heart failure or decreased cardiac output states and high contrast with as little as 25% increase in bone avidity for the tracer. In acute renal failure without fluid-volume imbalance, image contrast should be normal. The model predicts greater contrast shortly after injection in patients with increased cardiac output, skeletal blood flow, or bone avidity; images made at these times would be indistinguishable. These simulations are in keeping with reports in the literature of bone images and bone-to-soft tissue ratios in many of these conditions, suggesting that modeling studies could play an important role image interpretation.

  1. Studies in skeletal tracer kinetics. V. Computer-simulated Tc-99m(Sn)MDP bone-scan changes in some systemic disorders: concise communication

    SciTech Connect

    Charkes, N.D.; Makler, P.T. Jr.

    1981-07-01

    Using compartmental analysis techniques, we modeled the biodistribution of Tc-99m(Sn)methylene diphosphonate in humans on a computer, and by selectively perturbing appropriate rate constants, we simulated changes in contrast between bone and soft tissue in a number of systemic disorders. The model predicts low contrast in patients with moderate to marked edema, obesity, congestive heart failure, or decreased cardiac output states and high contrast with as little as 25% increase in bone avidity for the tracer. In acute renal failure without fluid-volume imbalance, image contrast should be normal. The model predicts greater contrast shortly after injection in patients with increased cardiac output, skeletal blood flow, or bone avidity; images made at these times would be indistinguishable. These simulations are in keeping with reports in the literature of bone images and bone-to-soft tissue ratios in many of these conditions, suggesting that modeling studies could play an important role in image interpretation.

  2. A study of interstellar aldehydes and enols as tracers of a cosmic ray-driven nonequilibrium synthesis of complex organic molecules.

    PubMed

    Abplanalp, Matthew J; Gozem, Samer; Krylov, Anna I; Shingledecker, Christopher N; Herbst, Eric; Kaiser, Ralf I

    2016-07-12

    Complex organic molecules such as sugars and amides are ubiquitous in star- and planet-forming regions, but their formation mechanisms have remained largely elusive until now. Here we show in a combined experimental, computational, and astrochemical modeling study that interstellar aldehydes and enols like acetaldehyde (CH3CHO) and vinyl alcohol (C2H3OH) act as key tracers of a cosmic-ray-driven nonequilibrium chemistry leading to complex organics even deep within low-temperature interstellar ices at 10 K. Our findings challenge conventional wisdom and define a hitherto poorly characterized reaction class forming complex organic molecules inside interstellar ices before their sublimation in star-forming regions such as SgrB2(N). These processes are of vital importance in initiating a chain of chemical reactions leading eventually to the molecular precursors of biorelevant molecules as planets form in their interstellar nurseries. PMID:27382172

  3. A study of interstellar aldehydes and enols as tracers of a cosmic ray-driven nonequilibrium synthesis of complex organic molecules.

    PubMed

    Abplanalp, Matthew J; Gozem, Samer; Krylov, Anna I; Shingledecker, Christopher N; Herbst, Eric; Kaiser, Ralf I

    2016-07-12

    Complex organic molecules such as sugars and amides are ubiquitous in star- and planet-forming regions, but their formation mechanisms have remained largely elusive until now. Here we show in a combined experimental, computational, and astrochemical modeling study that interstellar aldehydes and enols like acetaldehyde (CH3CHO) and vinyl alcohol (C2H3OH) act as key tracers of a cosmic-ray-driven nonequilibrium chemistry leading to complex organics even deep within low-temperature interstellar ices at 10 K. Our findings challenge conventional wisdom and define a hitherto poorly characterized reaction class forming complex organic molecules inside interstellar ices before their sublimation in star-forming regions such as SgrB2(N). These processes are of vital importance in initiating a chain of chemical reactions leading eventually to the molecular precursors of biorelevant molecules as planets form in their interstellar nurseries.

  4. Tracers and Tracer Testing: Design, Implementation, Tracer Selection, and Interpretation Methods

    SciTech Connect

    G. Michael Shook; Shannon L.; Allan Wylie

    2004-01-01

    Conducting a successful tracer test requires adhering to a set of steps. The steps include identifying appropriate and achievable test goals, identifying tracers with the appropriate properties, and implementing the test as designed. When these steps are taken correctly, a host of tracer test analysis methods are available to the practitioner. This report discusses the individual steps required for a successful tracer test and presents methods for analysis. The report is an overview of tracer technology; the Suggested Reading section offers references to the specifics of test design and interpretation.

  5. Neurotoxicity after intracarotid 1,3-bis(2-chloroethyl)-1-nitrosourea administration in the rat: Hemodynamic changes studied by double-tracer autoradiography

    SciTech Connect

    Nagahiro, S.; Yamamoto, Y.L.; Diksic, M.; Mitsuka, S.; Sugimoto, S.; Feindel, W. )

    1991-07-01

    Changes in blood-brain (BBB) permeability and local cerebral blood flow after intracarotid administration of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) were examined quantitatively in rats with double-tracer autoradiography using (14C)alpha-amino-isobutyric acid and (18F)fluoroantipyrine. Forty-eight female Wistar rats were divided into four groups. The control group (Group 1) received 1 ml of 5% dextrose. The other three groups received three different doses of BCNU dissolved in 5% dextrose: Group 2 rats received 1 mg, Group 3 3 mg, and Group 4 10 mg. The tracer study was performed on Day 1 or Days 4 to 12 after intracarotid administration of BCNU. In 11 rats in Group 2, there were no changes of BBB permeability. Transient BBB permeability changes were seen in the striatum or hippocampus in 3 of the 5 rats (60%) in Group 3 within 24 hours. In 8 of 9 rats (89%) in the same group, late BBB permeability changes were observed in the hypothalamus with or without histological changes. BBB permeability changes were seen in all rats of Group 4. Focal increase of local cerebral blood flow on the infused side compared with the non-infused side of the brain was observed, although not at a significant level, in 5 of 25 rats examined with (18F)fluoroantipyrine. The results of BBB permeability and histological examinations and study of heterogenous distribution by (18F)fluorodeoxyglucose indicated that the ipsilateral subcortical structures such as the hypothalamus, amygdala, internal capsule, and caudate putamen have the highest incidence of neurotoxicity, which are closely related to histopathological damage seen in human BCNU leucoencephalopathy.

  6. 20 CFR 718.105 - Arterial blood-gas studies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Arterial blood-gas studies. 718.105 Section... MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS' TOTAL DISABILITY... blood-gas studies. (a) Blood-gas studies are performed to detect an impairment in the process...

  7. 20 CFR 718.105 - Arterial blood-gas studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Arterial blood-gas studies. 718.105 Section 718.105 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR FEDERAL COAL MINE...-gas studies. (a) Blood-gas studies are performed to detect an impairment in the process of...

  8. Droplet tracer characterization in shock-driven multiphase flow

    NASA Astrophysics Data System (ADS)

    Vigil, Francisco; Trujillo, Miquela; Vorobieff, Peter; Truman, C. Randall

    2014-11-01

    Small glycol droplets have long been introduced into shock-accelerated gas as a tracer, to track the evolution of Richtmyer-Meshkov instability (RMI). However, it was observed that droplets are not passive tracers when shock-accelerated - to the extent that their introduction itself can lead to vortex formation. Because of the complex interplay between the droplets and surrounding gas, it is imperative to know the droplet size and population density. The absence of this knowledge has led to differences between results from numerical models, Planar Laser-Induced Fluorescence (PLIF) measurements, and Mie scattering observations. To gain a better understanding of the droplet velocity and inertial flow fields, a more involved study of droplet sizing is required. A Malvern laser diagnostic system is used to determine the sizes of the glycol droplets seeded into the flow. A series of tests are performed to analyze differences in glycol droplet size and population distribution that result from changing gaseous mediums in the test section. These measurements facilitate better quantification of the velocity fields in shock accelerated flow and improve interpretation of results from Mie scattering. This research is supported by the US DOE National Nuclear Security Administration (NNSA) Grant DE-NA0002220.

  9. Particle and tracer diffusion in complex liquids

    NASA Astrophysics Data System (ADS)

    Koynov, Kaloian; Butt, Hans-Jürgen

    2013-02-01

    The diffusion of fluorescent tracers can be studied using fluorescence correlation spectroscopy (FCS). This powerful method offers the possibility to monitor very small tracers at low concentrations, down to single molecules. Furthermore it possesses a sub-femtoliter detection volume that can be precisely positioned in a heterogeneous environment to probe the local dynamics. Despite its great potential and high versatility in addressing the diffusion and transport properties in complex systems, FCS has been predominantly applied in molecular and cell biology. Here we present some applications that are more relevant for material and soft matter science. First, we study the diffusion of single tracers with molecular sizes in undiluted polymer systems. Next, the diffusion of small molecules and semiconductor nanoparticles (quantum dots) in silica inverse opals is studied and correlated to the size and morphology of the inverse opals. Finally, we show how FCS can be used to measure the diffusion coefficient of nanoparticles at water-oil interfaces.

  10. Determination of ketone body kinetics using a D-(-)-3-hydroxy(4,4,4-/sub 2/H/sup 3/)butyrate tracer

    SciTech Connect

    Bougneres, P.F.; Balasse, E.O.; Ferre, P.; Bier, D.M.

    1986-02-01

    In studies where D-(-)-3-hydroxy(4,4,4-/sub 2/H/sup 3/)butyrate is employed as isotopic tracer in vivo, we have described a selected ion monitoring, gas-liquid chromatography-mass spectrometry micromethod which measures (/sub 2/H/sup 3/) tracer enrichment in 3-hydroxybutyrate and acetoacetate from 300-microliters blood samples. For plasma samples in the physiologic range, intra- and interassay precisions for each ketone averaged better than +/- 1% and +/- 2%, respectively. The use of the method was validated by comparing kinetic data obtained with the above tracer with simultaneous flux data obtained with conventional D-(-)-3-hydroxy(3-/sup 14/C)butyrate tracer in five fasted rats.

  11. Use of environmental tracers to study the chemical evolution of shallow ground water in a karst area of northern Florida

    SciTech Connect

    Katz, B.G. ); Plummer, L.N.; Busenberg, E. )

    1993-03-01

    The pathways of shallow ground-water flow in poorly confined aquifer systems of northern FL are influenced by inflow to and outflow from numerous sinkhole lakes that are characteristic of the Sand Hills karst region. Ground-water samples were collected immediately upgradient and downgradient from Lake Barco at depths of 1.6--29 m below the water table from observation wells completed in the surficial aquifer system, the intermediate confining unit (icu), and the Upper Floridan aquifer. Samples were also collected of rainfall, lake water, and ground water at a depth of 4.1 m beneath the lake bottom. The environmental tracers tritium and chlorofluorocarbons were used to estimate mean residence times of water and rates of chemical mass transfer along flow paths. Water samples collected from wells upgradient of the lake were oxic and had CFC-model recharge dates between 1971 and 1986. The content of delta H-2 and delta O-18 of water from the two aquifer systems and the icu was nearly identical to the isotopic composition of rainfall. Changes in the chemical composition of the ground water with depth were simulated by reacting rainfall with minerals and dissolved gases that exist in the hydrogeologic units. Ground-water samples collected from sites beneath and downgradient of the lake were anoxic, with measured concentrations of hydrogen sulfide and methane ranging from 0.02--0.58 mg/l and 0.30--6.1 mg/l, respectively. CFC-model recharge dates ranged from 1956 to 1983. The data indicated that ground water downgradient of the lake is being recharged by leakage of lake water. The chemical composition of ground water is influenced by the movement of lake water through reducing, organic-rich sediments accumulated at the bottom. Along the downgradient flow paths, the water chemistry evolves from the composition of lake water and is modified by subsequent reactions including reduction of sulfate and ferric iron, methanogenesis, and dissolution and precipitation of minerals.

  12. Results from air-injection and tracer testing in the upper Tiva Canyon, Bow Ridge Fault, and upper Paintbrush contact alcoves of the Exploratory Studies Facility, August 1994 through July 1996, Yucca Mountain, Nevada

    USGS Publications Warehouse

    LeCain, Gary D.

    1998-01-01

    Air-injection and tracer testing were conducted in the upper Tiva Canyon, Bow Ridge Fault, and upper Paintbrush contact alcoves in the Exploratory Studies Facility at Yucca Mountain, Nevada, from August 1994 to July 1991. The study was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy.

  13. Local and regional contributions to the atmospheric aerosol over Tel Aviv, Israel: a case study using elemental, ionic and organic tracers

    NASA Astrophysics Data System (ADS)

    Graham, Bim; Falkovich, Alla H.; Rudich, Yinon; Maenhaut, Willy; Guyon, Pascal; Andreae, Meinrat O.

    Changes in aerosol composition associated with a cold front passage were examined during a field experiment in Tel Aviv, Israel (2-15 Dec, 2000). In addition to monitoring aerosol scattering and optical thickness, aerosol samples were collected for detailed chemical analyses. Data were compared to simultaneous measurements made at Sde Boker, a semi-remote site in the Negev Desert, to help determine what changes were due to local pollution as opposed to regional phenomena. During the pre-frontal period (2-7 Dec) both sites were influenced by air masses containing a relatively high content of sulphate and dust, originating from neighbouring regions of the Middle East. A steady build-up of local pollution was then observed in Tel Aviv due to vehicular emissions/industrial activities, as indicated by increasing concentrations of black carbon, organic carbon, V, Cu, Ni, Zn, Br, Pb, NO 3- and PAHs. Identification of a number of organic biomass burning tracers (e.g., levoglucosan) indicates that smoke also contributed to the pollution build-up in Tel Aviv, while a range of sugars/sugar alcohols point to a microbial/bioaerosol component. Locally emitted pollutants tended to exhibit higher nighttime concentrations due to trapping of pollution under a nocturnal inversion. Fine aerosol iodine was the only element exhibiting higher daytime concentrations, hinting at a photochemical source. Post-frontal measurements (12-15 Dec) revealed a significant decrease in all pollutants due to dispersal of the haze by the cold front (8-9 Dec), with the air initially being dominated by marine aerosol. Concentrations of pollutants then began to increase, with backward trajectories indicating a possible contribution from Eastern Europe. Overall, the study identified a range of useful tracers for monitoring the contribution of different sources to the aerosol over Israel.

  14. A personal exposure study employing scripted activities and paths in conjunction with atmospheric releases of perfluorocarbon tracers in Manhattan, New York

    PubMed Central

    LIOY, PAUL J; VALLERO, DANIEL; FOLEY, GARY; GEORGOPOULOS, PANOS; HEISER, JOHN; WATSON, TOM; REYNOLDS, MICHAEL; DALOIA, JAMES; TONG, SAI; ISUKAPALLI, SASTRY

    2014-01-01

    A personal exposure study was conducted in New York City as part of the Urban Dispersion Program (UDP). It examined the contact of individuals with four harmless perflourocarbon tracers (PFT) released in Midtown Manhattan with approval by city agencies at separate locations, during two types of experiments, completed during each release period. Two continuous 1 h release periods separated by a 1.5 h ventilation time were completed on 3 October 2005. Stationary site and personal exposure measurements were taken during each period, and the first half hour after the release ended. Two types of scripted exposure activities are reported: Outdoor Source Scale, and Outdoor Neighborhood Scale; requiring 1- and 10-min duration samples, respectively. The results showed that exposures were influenced by the surface winds, the urban terrain, and the movements of people and vehicles typical in urban centers. The source scale exposure data indicated that local conditions significantly affected the distribution of each tracer, and consequently the exposures. The highest PFT exposures resulted from interaction of the scripted activities with local surface conditions. The range measured for 1- min exposures were large with measured values exceeding 5000 ppqv (parts per quadrillion by volume). The neighborhood scale measurements quantified exposures at distances up to seven blocks away from the release points. Generally, but not always, the PFT levels returned quickly to zero indicating that after cessation of the emissions the concentrations decrease rapidly, and reduce the intensity of local exposures. The near source and neighborhood personal exposure route results provided information to establish a baseline for determining how a release could affect both the general public and emergency responders, and evaluate the adequacy of re-entry or exit strategies from a local area. Finally, the data also show that local characteristics can produce “hot spots”. PMID:17505505

  15. Geologic studies of deep natural gas resources

    USGS Publications Warehouse

    Dyman, T. S., (Edited By); Kuuskraa, V.A.

    2001-01-01

    In 1995, the USGS estimated a mean resource of 114 trillion cubic feet of undiscovered technically recoverable natural gas in plays deeper than 15,000 feet/4,572 meters in onshore regions of the United States. This volume summarizes major conclusions of ongoing work. Chapters A and B address the areal extent of drilling and distribution of deep basins in the U.S. Chapter C summarizes distribution of deep sedimentary basins and potential for deep gas in the former Soviet Union. Chapters D and E are geochemical papers addressing source-rock issues and deep gas generation. Chapter F develops a probabilistic method for subdividing gas resources into depth slices, and chapter G analyzes the relative uncertainty of estimates of deep gas in plays in the Gulf Coast Region. Chapter H evaluates the mechanism of hydrogenation of deep, high-rank spent kerogen by water, with subsequent generation of methane-rich HC gas.

  16. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The l ifetime of gas in a disk has far-reaching consequences. including lim iting the time available for giant planet formation and controlling t he migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from i nfrared studies with the Spitzer Space Telescope. Exciting upcoming o pportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be p erformed using the Herschel Space Observatory, as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Project.

  17. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The lifetime of gas in a disk has far-reaching consequences, including limiting the time available for giant planet formation and controlling the migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from infrared studies with the Spitzer Space Telescope. Exciting upcoming opportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be performed using the Herschel Space Observatory, as part of the 'Gas in Protoplanetary Systems' (GASPS) Open Time Key Project.

  18. Experimental Study of Gas Hydrate Dynamics

    NASA Astrophysics Data System (ADS)

    Fandino, O.; Ruffine, L.

    2011-12-01

    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  19. Helium as a Dynamical Tracer in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Thayer, J. P.; Liu, X.; Wang, W.; Burns, A. G.

    2014-12-01

    Helium has been a missing constituent in current thermosphere general circulation models. Although typically a minor gas relative to the more abundant major gasses, its unique properties of being chemically inert and light make it an excellent tracer of thermosphere dynamics. Studying helium can help simplify understanding of transport effects. This understanding can then be projected to other gasses whose overall structure and behavior are complex but, by contrasting with helium, can be evaluated for its transport dependencies. The dynamical influences on composition impact estimates of thermosphere mass density, where helium during solar minima can have a direct contribution, as well as ionosphere electron density. Furthermore, helium estimates in the upper thermosphere during solar minima have not been observed since the 1976 minimum. Indirect estimates of helium in the upper thermosphere during the recent extreme solar minimum indicates winter-time helium concentrations exceeded NRL-MSISE00 estimates by 30%-70% during periods of quiet geomagnetic activity. For times of active geomagnetic conditions, helium concentrations near ~450 km altitude are estimated to decrease while oxygen concentrations increase. An investigation of the altitude structure in thermosphere mass density storm-time perturbations reveal the important effects of composition change with maximum perturbation occurring near the He/O transition region and a much weaker maximum occurring near the O/N2 transition region. However, evaluating helium behavior and its role as a dynamical tracer is not straightforward and model development is necessary to adequately establish the connection to specific dynamical processes. Fortunately recent efforts have led to the implementation of helium modules in the NCAR TIEGCM and TIME-GCM. In this invited talk, the simulated helium behavior and structure will be shown to reproduce observations (such as the wintertime helium bulge and storm-time response) and its

  20. Multiphase, multicomponent parameter estimation for liquid and vapor fluxes in deep arid systems using hydrologic data and natural environmental tracers

    USGS Publications Warehouse

    Kwicklis, E.M.; Wolfsberg, A.V.; Stauffer, P.H.; Walvoord, M.A.; Sully, M.J.

    2006-01-01

    Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to

  1. Evaluation of groundwater residence time in a high mountain aquifer system (Sacramento Mountains, USA): insights gained from use of multiple environmental tracers

    NASA Astrophysics Data System (ADS)

    Land, Lewis; Timmons, Stacy

    2016-06-01

    The New Mexico Bureau of Geology and Mineral Resources (USA) has conducted a regional investigation of groundwater residence time within the southern Sacramento Mountains aquifer system using multiple environmental tracers. Results of the tracer surveys indicate that groundwater in the southern Sacramento Mountains ranges in age from less than 1 year to greater than 50 years, although the calculated ages contain uncertainties and vary significantly depending on which tracer is used. A distinctive feature of the results is discordance among the methods used to date groundwater in the study area. This apparent ambiguity results from the effects of a thick unsaturated zone, which produces non-conservative behavior among the dissolved gas tracers, and the heterogeneous character and semi-karstic nature of the aquifer system, which may yield water from matrix porosity, fractures, solution-enlarged conduits, or a combination of the three. The data also indicate mixing of groundwater from two or more sources, including recent recharge originating from precipitation at high elevations, old groundwater stored in the matrix, and pre-modern groundwater upwelling along fault zones. The tracer data have also been influenced by surface-water/groundwater exchange via losing streams and lower elevation springs (groundwater recycling). This study highlights the importance of using multiple tracers when conducting large-scale investigations of a heterogeneous aquifer system, and sheds light on characteristics of groundwater flow systems that can produce discrepancies in calculations of groundwater age.

  2. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    SciTech Connect

    Unknown

    2001-12-05

    Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as to how they could serve multiple applications

  3. Quantification of methane and nitrous oxide emissions from various waste treatment facilities by tracer dilution method

    NASA Astrophysics Data System (ADS)

    Mønster, Jacob; Rella, Chris; Jacobson, Gloria; Kjeldsen, Peter; Scheutz, Charlotte

    2013-04-01

    tracer gas concentrations while another measured the nitrous oxide concentration. We present the performance of these instruments at different waste treatment facilities (waste water treatment plants, composting facilities, sludge mineralization beds, anaerobic digesters and landfills) in Denmark, and discuss the strengths and limitations of the method of the method for quantifying methane and nitrous oxide emissions from the different sources. Furthermore, we have measured the methane emissions from 10 landfills with emission rates ranging from 5 to 135 kg/h depending on the age, state, content and aftercare of the landfill. In addition, we have studied 3 waste water treatment plants, and found nitrous oxide emission of 200 to 700 g/h from the aeration tanks and a total methane emission ranging from 2 to 15 kg/h, with the primary emission coming from the sludge treatment. References Galle, B., Samuelsson, J., Svensson, B.H., and Börjesson, G. (2001). Measurements of methane emissions from landfills using a time correlation tracer method based on FTIR absorption spectroscopy. Environmental Science & Technology 35 (1), 21-25 Scheutz, C., Samuelsson, J., Fredenslund, A. M., and Kjeldsen, P. (2011). Quantification of multiple methane emission sources at landfills using a double tracer technique. Waste Management, 31(5), 1009-17 Solomon, S., D. Qin, M. Manning, R.B. Alley, T. Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. Gregory, G.C. Hegerl, M. Heimann, B. Hewitson, B.J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T.Matsuno, M. Molina, N. Nicholls, J.Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T.F. Stocker, P. Whetton, R.A.Wood and D. Wratt, 2007: Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  4. High performance simulation of environmental tracers in heterogeneous domains.

    PubMed

    Gardner, William P; Hammond, Glenn; Lichtner, Peter

    2015-04-01

    In this study, we use PFLOTRAN, a highly scalable, parallel, flow, and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, and the mean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2D and 3D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer to the tracer age limit. Age distributions in 3D domains differ significantly from 2D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3D systems. PMID:24372403

  5. High performance simulation of environmental tracers in heterogeneous domains.

    PubMed

    Gardner, William P; Hammond, Glenn; Lichtner, Peter

    2015-04-01

    In this study, we use PFLOTRAN, a highly scalable, parallel, flow, and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, and the mean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2D and 3D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer to the tracer age limit. Age distributions in 3D domains differ significantly from 2D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3D systems.

  6. Isotope tracer studies of diffusion in silicates and of geological transport processes using actinide elements. Progress report

    SciTech Connect

    Wasserburg, G.J.

    1992-12-31

    The following are reported: high abundance sensitivity mass spectrometer for U-Th studies; {sup 238}U-{sup 230}Th disequilibrium in recent lavas from Iceland; water-rock interaction from U-Th studies; resonance ionization mass spectrometry of Os and Ti isotopes; and self-diffusion of Mg.

  7. Cellular accumulation of 18F-labelled boronophenylalanine depending on DNA synthesis and melanin incorporation: a double-tracer microautoradiographic study of B16 melanomas in vivo.

    PubMed

    Kubota, R; Yamada, S; Ishiwata, K; Tada, M; Ido, T; Kubota, K

    1993-04-01

    The cellular distribution of 4-borono-2-[18F]fluoro-L-phenylalanine ([18F]FBPA, an analog of p-boronophenylaline), a potential agent for boron neutron capture therapy (BNCT), and [6-3H]thymidine ([3H]Thd, a DNA precursor) in murine two B16 melanoma sublines and FM3A mammary carcinoma was studied in vivo using double-tracer microautoradiography. Tumour volume, tumour age, cell density in the tissues and the proportion of S phase cells in the cell cycle were the same in the three tumour models. Volume doubling time, which represents tumour growth rate, was fastest in B16F10, followed by B16F1 (P < 0.05), the slowest being in FM3A (P < 0.001). The rate of DNA synthesis in S phase cells corresponded to the volume doubling time. The greatest amount of [18F]FBPA was observed in S phase melanocytes and the lowest amount was found in non-S phase non-melanocytes. The [18F]FBPA accumulation was primarily related to the activity of DNA synthesis and, secondarily, to the degree of pigmentation in melanocytes. The therapeutic efficacy of BNCT with p-boronophenylalanine may be greater in melanoma that exhibits greater DNA synthesis activity and higher melanin content.

  8. Cellular accumulation of 18F-labelled boronophenylalanine depending on DNA synthesis and melanin incorporation: a double-tracer microautoradiographic study of B16 melanomas in vivo.

    PubMed Central

    Kubota, R.; Yamada, S.; Ishiwata, K.; Tada, M.; Ido, T.; Kubota, K.

    1993-01-01

    The cellular distribution of 4-borono-2-[18F]fluoro-L-phenylalanine ([18F]FBPA, an analog of p-boronophenylaline), a potential agent for boron neutron capture therapy (BNCT), and [6-3H]thymidine ([3H]Thd, a DNA precursor) in murine two B16 melanoma sublines and FM3A mammary carcinoma was studied in vivo using double-tracer microautoradiography. Tumour volume, tumour age, cell density in the tissues and the proportion of S phase cells in the cell cycle were the same in the three tumour models. Volume doubling time, which represents tumour growth rate, was fastest in B16F10, followed by B16F1 (P < 0.05), the slowest being in FM3A (P < 0.001). The rate of DNA synthesis in S phase cells corresponded to the volume doubling time. The greatest amount of [18F]FBPA was observed in S phase melanocytes and the lowest amount was found in non-S phase non-melanocytes. The [18F]FBPA accumulation was primarily related to the activity of DNA synthesis and, secondarily, to the degree of pigmentation in melanocytes. The therapeutic efficacy of BNCT with p-boronophenylalanine may be greater in melanoma that exhibits greater DNA synthesis activity and higher melanin content. Images Figure 1 PMID:8471428

  9. Fluid dynamic studies on scattering aerosol and its generation for application as tracer particles in supersonic flow measurements utilizing laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Hoyle, B. D.; Kirsch, K. J.

    1974-01-01

    An experimental study on the particle-fluid interactions of scattering aerosols was performed using monodisperse aerosols of different particle sizes for the application of laser Doppler velocimeters in subsonic turbulence measurements. Particle response was measured by subjecting the particles to an acoustically excited oscillatory fluid velocity field and by comparing the ratio of particle velocity amplitude to the fluid velocity amplitude as a function of particle size and the frequency of oscillation. Particle velocity was measured by using a differential laser Doppler velocimeter. The test aerosols were fairly monodisperse with a mean diameter that could be controlled over the size range from 0.1 to 1.0 micron. Experimental results on the generation of a fairly monodisperse aerosol of solid particles and liquid droplets and on the aerosol response in the frequency range 100 Hz to 100 kHz are presented. It is indicated that a unit density spherical scatterer of 0.3 micron-diameter would be an optimum choice as tracer particles for subsonic air turbulence measurements.

  10. Using predictive uncertainty analysis to optimise tracer test design and data acquisition

    NASA Astrophysics Data System (ADS)

    Wallis, Ilka; Moore, Catherine; Post, Vincent; Wolf, Leif; Martens, Evelien; Prommer, Henning

    2014-07-01

    Tracer injection tests are regularly-used tools to identify and characterise flow and transport mechanisms in aquifers. Examples of practical applications are manifold and include, among others, managed aquifer recharge schemes, aquifer thermal energy storage systems and, increasingly important, the disposal of produced water from oil and shale gas wells. The hydrogeological and geochemical data collected during the injection tests are often employed to assess the potential impacts of injection on receptors such as drinking water wells and regularly serve as a basis for the development of conceptual and numerical models that underpin the prediction of potential impacts. As all field tracer injection tests impose substantial logistical and financial efforts, it is crucial to develop a solid a-priori understanding of the value of the various monitoring data to select monitoring strategies which provide the greatest return on investment. In this study, we demonstrate the ability of linear predictive uncertainty analysis (i.e. “data worth analysis”) to quantify the usefulness of different tracer types (bromide, temperature, methane and chloride as examples) and head measurements in the context of a field-scale aquifer injection trial of coal seam gas (CSG) co-produced water. Data worth was evaluated in terms of tracer type, in terms of tracer test design (e.g., injection rate, duration of test and the applied measurement frequency) and monitoring disposition to increase the reliability of injection impact assessments. This was followed by an uncertainty targeted Pareto analysis, which allowed the interdependencies of cost and predictive reliability for alternative monitoring campaigns to be compared directly. For the evaluated injection test, the data worth analysis assessed bromide as superior to head data and all other tracers during early sampling times. However, with time, chloride became a more suitable tracer to constrain simulations of physical transport

  11. Using neural networks to describe tracer correlations

    NASA Astrophysics Data System (ADS)

    Lary, D. J.; Müller, M. D.; Mussa, H. Y.

    2003-11-01

    Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural 5 network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co-efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the 10 dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4 (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download

  12. Using neural networks to describe tracer correlations

    NASA Astrophysics Data System (ADS)

    Lary, D. J.; Müller, M. D.; Mussa, H. Y.

    2004-01-01

    Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and methane volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4 (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.

  13. Using Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Mueller, M. D.; Mussa, H. Y.

    2003-01-01

    Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co- efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4, (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.

  14. Delta N-15 of N[sub 2] in air trapped in polar ice - a tracer of gas transport in the firn and a possible constraint on ice age-gas age differences

    SciTech Connect

    Sowers, T.; Bender, M.; Raynaud, D.; Korotkevich, IU.S. CNRS, Lab. de Glaciologie et Geophysique de l'Environnement, St.-Martin-d'Heres Arctic and Antarctic Research Inst., St. Petersburg )

    1992-10-01

    Factors which influence the distribution of air in present-day firn are examined on the basis of the analysis of delta N-15 of trapped N[sub 2] in 12 ice-core samples taken from Greenland and Antarctica, and this information is used to determine how air may have been mixed in glacial firn. The upper and the lower limits of ice-age/gas-age differences (Delta age) are then calculated for the ice core at the Vostok, the Dome C, and the Byrd locations, and the results are compared with previous estimates. Finally, the surface-temperature and CO[sub 2] records from Byrd and Vostok over the last 30,000 years are compared to provide independent means of establishing the best estimates of the Delta age difference for Vostok, and of the nature of gas transport in firn during the last glacial termination. 39 refs.

  15. Organic tracer-based source analysis of PM2.5 organic and elemental carbon: A case study at Dongguan in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Wang, Qiong Qiong; Huang, X. H. Hilda; Zhang, Ting; Zhang, Qingyan; Feng, Yongming; Yuan, Zibing; Wu, Dui; Lau, Alexis K. H.; Yu, Jian Zhen

    2015-10-01

    Organic carbon (OC) and elemental carbon (EC) are major constituents of PM2.5 and their source apportionment remains a challenging task due to the great diversity of their sources and lack of source-specific tracer data. In this work, sources of OC and EC are investigated using positive matrix factorization (PMF) analysis of PM2.5 chemical composition data, including major ions, OC, EC, elements, and organic molecular source markers, for a set of 156 filter samples collected over three years from 2010 to 2012 at Dongguan in the Pearl River Delta, China. The key organic tracers include levoglucosan, mannosan, hopanes, C27-C33n-alkanes, and polycyclic aromatic hydrocarbons (PAHs). Using these species as input for the PMF model, nine factors were resolved. Among them, biomass burning and coal combustion were significant sources contributing 15-17% of OC and 24-30% and 34-35% of EC, respectively. Industrial emissions and ship emissions, identified through their characteristic metal signatures, contributed 16-24% and 7-8% of OC and 8-11% and 16-17% of EC, respectively. Vehicle exhaust was a less significant source, accounting for 3-4% of OC and 5-8% of EC. Secondary OC, taken to be the sum of OC present in secondary sulfate and nitrate formation source factors, made up 27-36% of OC. Plastic burning, identified through 1,3,5-triphenylbenzene as a tracer, was a less important source for OC(≤4%) and EC (5-10%), but a significant source for PAHs at this site. The utility of organic source tracers was demonstrated by comparing PMF runs with different combinations of organic tracers removed from the input species list. Levoglucosan and mannosan were important additions to distinguish biomass burning from coal combustion by reducing collinearity among source profiles. Inclusion of hopanes and 1,3,5-triphenylbenzene was found to be necessary in resolving the less significant sources vehicle exhaust and plastic burning. Inclusion of C27-C33n-alkanes and PAHs can influence the

  16. Assessment of zinc loading in an acid rock drainage alpine catchment using a tracer-injection and synoptic-sampling study

    NASA Astrophysics Data System (ADS)

    Crouch, C. M.; McKnight, D. M.; Todd, A.

    2010-12-01

    Seasonal low flow conditions in acid rock drainage (ARD) streams result in increased acidity and metal ion concentrations - changes that have been shown to become more pronounced with longer dry periods. These resulting increases in acidity and metals concentrations may pose an increasing danger to aquatic ecosystems and drinking water supplies. For example, in many ARD-impacted mountain streams, fish populations are not self-sustaining. The study site in the Upper Snake River watershed in Colorado is an alpine catchment impacted by acid rock drainage thought to originate from the natural weathering of pyrite whereas the main stem of the Snake River and its other tributaries are impacted by accelerated ARD resulting from historic mining activities. Because concentrations toxic to aquatic life persist well downstream of the ARD inputs, dissolved zinc is the primary metal of concern in this study. A compilation of historic data from the Snake River Watershed during the low flow months of September and October indicates that zinc concentrations have increased four-fold over the past 30 years. We hypothesize that this increase is due to changes in groundwater flow patterns caused by climate change and associated earlier peak snowmelt (by 2-3 weeks), resulting in lower stream flows and drier soils in late summer. The observed increase in background metals concentrations has implications for mitigation of former mining sites. A synoptic study to identify discrete surface water sources of zinc loading indicated a significant input from a tributary on the north side of the catchment. Zinc concentrations here measured an order of magnitude higher than in the main stem of the stream, and were correlated with increases in sulfate, hardness, and total metals, supporting our contention that increasing zinc concentrations are driven by the acceleration of ARD in the watershed. The current research further investigates sources of metal-rich inflows to the tributary using a tracer

  17. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    PubMed

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate. PMID:26978895

  18. A comparative study of SG-HMXBS and SFXTS using iron K-alpha line as a tracer

    NASA Astrophysics Data System (ADS)

    Pradhan, Pragati; Paul, Biswajit; Bozzo, Enrico

    2016-07-01

    We present a comparative study of classical supergiant HMXB and SFXT systems by making a detailed study of the variation of the equivalent width of iron k-alpha line with the absorption column density using out-of-eclipse observations from Suzaku, XMM, and Chandra (and taking care not to mix observations in different spectral states). Analysis of the entire archival Suzaku observations of these systems show that the equivalent width of SFXTs is significantly smaller compared to those of classical supergiant HMXBs even when the hydrogen column density of both are comparable. We discuss the results of the analysis in the light of two theories on SFXTS: the clumpy wind and the magnetic gating model. The findings are also used to make a comparison between these two systems as a class.

  19. Gas release and conductivity modification studies

    NASA Technical Reports Server (NTRS)

    Linson, L. M.; Baxter, D. C.

    1979-01-01

    The behavior of gas clouds produced by releases from orbital velocity in either a point release or venting mode is described by the modification of snowplow equations valid in an intermediate altitude regime. Quantitative estimates are produced for the time dependence of the radius of the cloud, the average internal energy, the translational velocity, and the distance traveled. The dependence of these quantities on the assumed density profile, the internal energy of the gas, and the ratio of specific heats is examined. The new feature is the inclusion of the effect of the large orbital velocity. The resulting gas cloud models are used to calculate the characteristics of the field line integrated Pedersen conductivity enhancements that would be produced by the release of barium thermite at orbital velocity in either the point release or venting modes as a function of release altitude and chemical payload weight.

  20. Study the gas sensing properties of boron nitride nanosheets

    SciTech Connect

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH{sub 4} gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO{sub 2} laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor.

  1. The use of radon as tracer in environmental sciences

    NASA Astrophysics Data System (ADS)

    Quindos Poncela, Luis; Sainz Fernandez, Carlos; Fuente Merino, Ismael; Gutierrez Villanueva, Jose; Gonzalez Diez, Alberto

    2013-08-01

    Radon can be used as a naturally occurring tracer for environmental processes. By means of grab-sampling or continuous monitoring of radon concentration, it is possible to assess several types of dynamic phenomena in air and water. We present a review of the use of radon and its progeny at the University of Cantabria. Radon can be an atmospheric dynamics indicator related with air mass interchange near land-sea discontinuities as well as for the study of vertical variations of air parameters (average values of different types of stability: 131-580 Bq m-3). Concerning indoor gas, we present some results obtained at Altamira Cave (Spain): from 222 to 6549 Bq m-3 (Hall) and from 999 to 6697 Bq m-3 (Paintings Room). Finally, variations of radon concentration in soil (0.3 to 9.1 kBq m-3) and underground water (values up to 500 Bq l-1) provide relevant information about different geophysical phenomena.

  2. Comparative dual-tracer studies of carbon-14 tryptophan and iodine-131 HIPDM in animal models of pancreatic diseases

    SciTech Connect

    Kubota, K.; Som, P.; Brill, A.B.; Sacker, D.F.; Meinken, G.E.; Srivastava, S.C.; Atkins, H.L. )

    1989-11-01

    Our previous studies have shown that a significant amount of the diamine derivative {sup 131}I-N,N,N'-trimethyl-N'-(2-hydroxy-3-methyl-5-iodobenzyl)-1,3- propanediamine (HIPDM) is taken up and retained by the normal pancreas. Therefore, we studied the uptake of ({sup 13}1I)HIPDM in various pathophysiological models in mice (chronic alcoholism, diabetes with beta-cell atrophy and obesity with beta-cell hypertrophy) and compared to {sup 14}C-L-Tryptophan (TRY) distribution in order to determine the factors influencing their pancreatic uptake. In normal animals, the pancreas uptake of TRY was generally higher than HIPDM. In diabetes, the relative concentration of both compounds was higher over the controls; however, in obesity, TRY showed lower accumulation than in controls while HIPDM showed no significant difference. Chronic ethanol (20%) ingestion increased TRY uptake in the pancreas compared to controls (36.88 {plus minus} 3.21 vs. 30.03 {plus minus} 4.17% ID/g; p less than 0.01) after 5 wk study period, but it decreased by 10 wk (22.36 {plus minus} 0.95% ID/g; p less than 0.005). There were no significant changes in ({sup 131}I)HIPDM distribution in alcoholics as compared to the controls. Radioiodinated HIPDM has potential advantages over ({sup 11}C)TRY for pancreatic imaging since conventional imaging techniques can be employed. Our data, however, suggest that {sup 11}C-L-TRY is a more sensitive indicator of various pancreatic disorders.

  3. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.

    2014-12-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.

  4. Simple Spreadsheet Models For Interpretation Of Fractured Media Tracer Tests

    EPA Science Inventory

    An analysis of a gas-phase partitioning tracer test conducted through fractured media is discussed within this paper. The analysis employed matching eight simple mathematical models to the experimental data to determine transport parameters. All of the models tested; two porous...

  5. Isotope tracer studies of diffusion in silicates and of geological transport processes in aqueous systems using actinide elements

    SciTech Connect

    Wasserburg, G.J.

    1999-02-01

    This research program has moved ahead with success in several areas. The isotopic composition of osmium in seawater and in some rivers was directly determined for the first time. The concentration of osmium was first estimated in both seawater and rivers. A major effort was directed toward the transport of the U,Th series nuclides in a watershed in Sweden. A serious effort was directed at developing a transport model for the U,Th series nuclides in aquifers. A detailed study of {sup 238}U-{sup 230}Th dating of a cave in Israel was carried out collaboratively. The Os-Re fractionation between silicate and sulfide melts were determined in MORB basalts and glasses and the isotopic composition of Os was measured in sulfide samples.

  6. {Use of isotopic tracers for the study of the interaction of surface water and groundwater in a karst environment.}

    NASA Astrophysics Data System (ADS)

    Cuomo, A.

    2009-04-01

    Domenico Guida1, Michele Guida2, Albina Cuomo1, Davide Guadagnuolo2, Antonia Longobardi1, Vincenzo Siervo3 1 Dipartimento di Ingegneria Civile dell'Università di Salerno 2 Dipartimento di Fisica dell'Università di Salerno 3 C.U.G. RI., Salerno Groundwater and surface water resources management represents a present key issue, both in the hydrogeological and the hydrological fields. An integrated approach, accounting for hydrogeological, hydrological, geochemical and biological features can be a valuable tool, being fundamental in karstic landscape because of the great system variability and because of the frequently complex anthropic interaction. In this study we focus on a particular case study, the Bussento river basin, located in the Campania region, Southern Italy, which is well known to hydrogeology and geomorphology scientists for its karstic features, as summit highland with dolines and poljes, lowland with blind valleys, disappearing streams into sinkholes and cave systems. The catchment groundwater circulation is very complex and frequently groundwater inflows from the outside of the hydrological watershed and groundwater outflows toward surrounding drainage systems occur. We aim at propose a validation of a conceptual hydro-geological model (Guida D. et al., 1980; Iaccarino G., et al., 1986; e Guida D. et al.,1988, Guida D. et al., 2005) and to this purpose a measurements campaign, of about one year, has been undertaken along the Bussento for the acquisition of data about the Rn222 concentration in the waters, using a Rad7 water probe and a Rad7H2O (Durridge Inc., South Australia). Besides radon concentration, more chemical and physical variables have been measured, such as pH, water temperature, dissolved oxygen, atmospheric pressure, water conductivity, water resistivity. The preliminary results enable us to consider this as an useful methodology for the localization of the contributions of the groundwaters, diffused along the riverbed, and for their

  7. Metal hydrides studied in gas discharge tube

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Kolev, S.; Popov, Tsv.; Pashov, A.; Dimitrova, M.

    2016-05-01

    A novel construction of gas discharge tube has been tested for production of high densities of metal hydrydes. Its performance turned out to be comparable with the existing sources of the same type and even better. First results of the tests on NiH are reported and critically analysed. Plans for future modifiaction of the construction and application of the tube are discussed.

  8. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  9. Pore-scale studies of gas shale

    NASA Astrophysics Data System (ADS)

    Silin, D.; Ajo Franklin, J. B.; Cabrini, S.; Kneafsey, T. J.; MacDowell, A.; Nico, P. S.; Radmilovic, V.

    2010-12-01

    Natural gas is the cleanest hydrocarbon fuel. The contribution of natural gas produced from shale to the United States energy portfolio has been steadily increasing over the past several years. The projections into the coming decades expect this trend to remain stable. Although the advancements in well stimulation technologies have made it possible to convert huge resources into recoverable reserves, the mechanisms of gas recovery from these practically impermeable rocks are not yet fully understood. We employed the powerful imaging facilities at Lawrence Berkeley National Laboratory to gain insights into the pore geometry and structure of shale at micron and submicron scales. The X-ray micro-tomography facility at the Advanced Light Source produces 3D reconstructions of the pore space at resolutions approaching one micron. The Focused Ion-Beam sequential milling and imaging at the Molecular Foundry and National Center for Electron Microscopy allows for 3D shale structure and mineral composition at a resolution on the order of ten nanometers. We find that even a miniscule volume of reservoir shale includes an extremely rich diversity of minerals and geometries. Organic matter is consistently present as pore filling among solid grains. Some samples show a connected networks of pores in kerogen, apparently indicating its thermal maturity. Understanding the features controlling gas flow will help increase the ultimate recovery and extend the productive lifetime of a given well.

  10. A new methyl bromide gas generator for inhalation toxicity studies.

    PubMed

    Hori, H; Hyakudo, T; Tanaka, I

    1992-09-01

    A simple generator for methyl bromide gas has been newly developed by us. For inhalation toxicity studies, until now, there have been few generators capable of producing a constant and stable concentration of methyl bromide gas easily because of its high volatility. The principle of this new generator is based on gas-liquid equilibrium. The gas is generated from the surface of liquid methyl bromide in an evaporator made of a Teflon tube. The generator can produce up to 10,000 ppm of methyl bromide gas in a 0.1 m3 exposure chamber, and the concentration of this generated gas is able to be kept within +/- 0.8% over a long period of time. The generator has proved to be useful for investigating the effects of methyl bromide on health in inhalation toxicity studies.

  11. Tracer Brownian Motion in Complex Fluids

    NASA Astrophysics Data System (ADS)

    van Zanten, John; Amin, Samiul; Kloxin, Christopher

    2003-03-01

    The utility of tracer tracer Brownian motion in probing the structure and dynamics of complex fluids is gaining increasing recognition. This is primarily due to the significant advantages that so-called tracer microrheology provides over traditional mechanical rheometry such as gently probing a material's linear response over a wide frequency range and small sample volumes. The underlying basis of the technique relies on having a correct understanding of the connection between the Brownian or thermal motion of the probe particles and the viscoelastic response of the suspending media. Although this connection has been well established for simple viscous fluids it is still not well understood for viscoelastic media. This to primarily due to:(i) the presence of local heterogeneities in these complex systems, (ii) the possible perturbation of the local rheological properties brought about by the probe particles and (iii) the influence of longitudinal dynamical modes. Previous experimental investigations have primarily focused on aqueous biopolymer solutions where the above mentioned factors do not seem to play a significant role. Recent investigations indicate that the above-mentioned factors may significantly influence tracer Brownian motion. In order to gain a deeper understanding of the connection between the probe Brownian motion and the viscoelastic response of the suspending media, comprehensive studies of several polymer and surfactant solutions-semi-dilute PEO solutions, CTAB/KBr & CTAB/NaSal wormlike micelle solutions, Pluronic F108 micellar dispersions & FCC soft crystals-were undertaken. Tracer microrheology results are reported for both ensemble diffusing wave spectroscopy-based ensemble and one & two particle tracking measurements.

  12. Study of tropospheric CO and O3 enhancement episode over Indonesia during Autumn 2006 using the Model for Ozone and Related chemical Tracers (MOZART-4)

    NASA Astrophysics Data System (ADS)

    Srivastava, Shuchita; Sheel, Varun

    2013-03-01

    An intense biomass burning event occurred over Indonesia in Autumn of 2006. We study the impact of this event on the free tropospheric abundances of carbon monoxide (CO) and ozone (O3) using MOPITT (Measurements of Pollution In The Troposphere) observations, ozonesonde measurements and 3D chemistry transport model MOZART (Model for Ozone and Related chemical Tracers). MOPITT observations showed an episode of enhanced CO in the free troposphere over the Indonesian region during October-November 2006. This feature is reproduced well by MOZART. The model mass diagnostics identifies the source of enhanced CO mixing ratio in the free troposphere (100-250 ppbv) as due to convective processes. The implication of the fire plume on the vertical distribution of O3 over Kuala Lumpur has been studied. The tropospheric O3 increased over this location by 10-25 ppbv during Autumn 2006 as compared to Autumn 2005 and 2007. The MOZART model simulation significantly underestimated this tropospheric O3 enhancement. The model is run both with and without Indonesian biomass burning emissions to estimate the contribution of fire emission in CO and O3 enhancement. Biomass burning emission is found to be responsible for an average increase in CO by 104 ± 56 ppbv and O3 by 5 ± 1 ppbv from surface to 100 hPa range. The model results also showed that biomass burning and El Niño related dynamical changes both contributed (˜4 ppbv-12 ppbv) to the observed increase in tropospheric O3 over the Indonesian region during Autumn 2006.

  13. Validation And Application Of Global Atmospheric Tracer Model (NIES-08) For Studies Of The Regional And Global Budgets Of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Belikov, D.; Maksyutov, S.; Nakatsuka, Y.

    2008-12-01

    In this work, we present validation of flux version of the NIES-08 (National Institute for Environmental Studies) off-line global atmospheric tracer transport model. This version was improved by adding a wind correction that guarantees exact mass conservation, and high order advection algorithm. As previous, the model transport is driven by analyzed meteorological fields and designed to simulate seasonal and diurnal cycles, synoptic variations, and spatial distributions of atmospheric chemical constituents in the troposphere. Several configurations have been tested and validated against observations and other models. Comparison of inter hemispheric gradients in fossil fuel carbon dioxide, radon-222 averaged concentration and SF6 show better model performance compared to previous version. In addition, we optimized Carnegie-Ames-Stanford Approach (CASA) using the data from several airborne observation sites globally. We applied the atmospheric transport inversion method, which is widely used to estimate regional fluxes of CO2, to estimate two parameters of the CASA flux model independently for each of the 11 vegetation types. By analyzing the vertical profiles of simulated and observed carbon dioxide, it was found that the transport model used in this study has a weak vertical mixing especially in the northern mid latitude during winter and this inaccuracy of the mixing led to the underestimation of NEP seasonality when near-surface data was used exclusively. The optimization with partial column data of CO2, on the other hand, is less affected by mixing scheme of a transport model and expected to result in more accurate optimization of seasonal cycles of NEP field. The optimized global flux dataset was used for simulation of seasonal cycles and vertical profiles of carbon dioxide. Comparison with old fluxes and observation data show better model performance.

  14. /sup 18/F-2-deoxy-2-fluoro-D-glucose as a tracer in the positron emission tomographic study of senile dementia

    SciTech Connect

    Farkas, T.; Ferris, S.H.; Wolf, A.P.; De Leon, M.J.; Christman, D.R.; Reisberg, B.; Alavi, A.; Fowler, J.S.; George, A.E.; Reivich, M.

    1982-03-01

    Using /sup 18/F-2-deoxy-2-fluoro-D-glucose as a tracer, the authors obtained positron emission tomographic scans of 11 patients with senile dementia and 6 age-matched controls. The rate of glucose metabolism was significantly lower in the patients with senile dementia and significantly correlated with the degree of cognitive impairment.

  15. Comparison of different tracers for PIV measurements in EHD airflow

    NASA Astrophysics Data System (ADS)

    Hamdi, M.; Havet, M.; Rouaud, O.; Tarlet, D.

    2014-04-01

    In this study, a proposed method for selecting a tracer for particle imaging velocimetry (PIV) measurement in electrohydrodynamics flows was developed. To begin with, several published studies were identified that exploit different tracers, such as oil smoke, cigarette smoke and titanium dioxide (TiO2). An assortment of tracers was then selected based on comparisons with conventional dimensionless numbers; Stokes number ( St), Archimedes number ( Ar) and electrical mobility ratio ( M). Subsequently, an experimental study for testing tracers was developed, which enabled the velocity profile of an ionic wind generated by a needle/ring configuration to be measured. Air velocity measurements carried out with a Pitot tube, considered as the reference measurements, were compared to PIV measurements for each tracer. In addition, the current-voltage curves and the evolution of the current during seeding were measured. All the experimental results show that TiO2, SiO2 microballoons and incense smoke are the ideal tracers in the series of tracers investigated.

  16. Nitrogen isotope tracers of high-temperature fluid-rock interactions: Case study of the Catalina Schist, California

    NASA Astrophysics Data System (ADS)

    Bebout, Gray E.

    1997-09-01

    Nitrogen isotope data for metasomatized rocks, veins, and pegmatites in the Catalina Schist subduction zone metamorphic complex allow futher characterization of complex, high-P/T metasomatic proceses and evaluation of the scales of isotopic equilibration and fluid transport during subduction-zone metamorphism. Throughout the Catalina Schist, N resides predominantly as NH 4+ in white mica, which occurs in nearly all bulk compositions (i.e., metasedimentary, metamafic and, to a lesser extent, metaultramafic mélange) at all grades. Within each metamorphic unit of the Catalina Schist (ranging in grade from lawsonite-albite to amphibolite facies), δ 15N values of mica in metasomatized metamafic and metaultramafic rocks are consistent with the metasomatic addition of N from nearby, devolatilizing metasedimentary rocks into the initially N-poor mafic and ultramafic rocks. Within each unit, uniformity of mica δ 15N in metasomatized rocks relative to the δ 15N of metasedimentary rocks in the same unit implies mixing of N from nearby, heterogeneous metasedimentary sources, perhaps producing fluids with unifrom δ 15N at up to the kilometer scale. However, the trend in δ 15N of metasedimentary sources, with increasing metamorphic grade is inconsistent with larger scale up-temperature transfer of fluid (in this case, N 2-bearing) in the Catalina Schist paleosubduction zone; such flow (at scales of up to tens of kilometers) has been inferred through previous oxygen isotope study. Nitrogen isotope compositions are instead believed to have been controlled at a more local scale than the O isotope systematics, due to the more rock-dominated fluid-rock mass balance for N. The δ 15N of muscovite in leucosomes and pegmatites in amphibolite-grade metasedimentary exposures matches that of muscovite in metasedimentary hosts, implying minimal N-isotope fractionation during migmatization processes and possible transfer of metasedimentary N-isotope signatures in silicate melts. These

  17. High temperature heat exchanger studies for applications to gas turbines

    NASA Astrophysics Data System (ADS)

    Min, June Kee; Jeong, Ji Hwan; Ha, Man Yeong; Kim, Kui Soon

    2009-12-01

    Growing demand for environmentally friendly aero gas-turbine engines with lower emissions and improved specific fuel consumption can be met by incorporating heat exchangers into gas turbines. Relevant researches in such areas as the design of a heat exchanger matrix, materials selection, manufacturing technology, and optimization by a variety of researchers have been reviewed in this paper. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.

  18. Experimental studies of gas-aerosol reactions

    NASA Astrophysics Data System (ADS)

    Gupta, Anand

    1991-05-01

    The aqueous phase oxidation of SO2 by H2O2 is believed to the principle mechanism for atmospheric sulfate formation in cloud droplets. However, no studies in noncloud aerosol systems have been reported. The objective is to quantify the importance of the noncloud liquid phase reactions of SO2 by H2O2 in the atmosphere. Growth rates of submicron droplets exposed to SO2 and H2O2 were measured using the tandem differential mobility analyzer (TDMA) technique (Rader and McMurry, 1986). The technique uses differential mobility analyzers (DMA's) to generate monodisperse particles and to measure particle size after the reaction. To facilitate submicron monodisperse droplet production with the DMA, a low-ion-concentration charter capable of generating singly charged particles up to 1.0 microns was developed and experimentally evaluated. The experiments were performed using dry and deliquesced (NH4)2SO4 particles with SO2 and H2O2 concentrations from 0-860 ppb and 0-150 ppb, respectively. No growth was observed for dry particles. For droplets greater than or equal to 0.3 microns, the fractional diameter growth was independent of particle size and for droplets less than or equal to 0.2 microns, it decreased as particle size decreased. The observed decrease is due to NH3 evaporation. As ammonia evaporates, droplet pH decreases causing the oxidation rate to decrease, leading to a lower growth rate. To predict the size-dependent growth rates, a theoretical model was developed using solution thermodynamics, gas/particle equilibrium, and chemical kinetics. The experimental and theoretical results are in reasonable agreement. For dry (NH4)2SO4 particles exposed to SO2, H2O2, NH3, and H2O vapor, surface reaction-controlled growth was observed. Particle growth was very sensitive to particle composition. No growth was observed for Polystyrene latex particles, whereas (NH4)2SO4 particles doped with catalysts (Fe(2+), Fe(3+), Mn(2+) and Cu(2+)) in a molar ratio of 1:500 grew slower than

  19. Redesigning TRACER trial after TRITON.

    PubMed

    Serebruany, Victor L

    2015-10-15

    Designing of smart clinical trials is critical for regulatory approval and future drug utilization. Importantly, trial design should be reconsidered if the interim analyses suggest unexpected harm, or conflicting results were yielded from the other trials within the same therapeutic area. With regard to antiplatelet agents, the perfect example is redesigning of the ongoing PRoFESS trial by eliminating aspirin from clopidogrel arm after the earlier MATCH trial results became available. The goal was to aseess the unchanged TRACER trial design in light of the evidence yielded from the earlier completed TRITON trial. TRACER was designed as a triple versus dual antiplatelet trial in NSTEMI patients with no previous long-term outcome data supporting such aggressive strategy. TRITON data represented dual versus dual antiplatelet therapy, and became available before TRACER enrollment starts revealing prasugrel front-loaded early vascular benefit predominantly in STEMI patients with the growing over time bleeding and cancer risks. Moreover, large prasugrel NSTEMI TRITON cohort exhibited trend towards excess mortality in experimental arm warning against aggressive TRACER design. The long-term TRITON results in general, and especially in the NSTEMI patients challenge unchanged TRACER trial design. Applying dual, rather than triple antiplatelet therapy protocol modification should be considered in TRACER to minimize bleeding, cancer, and non-cardiovascular death risks. PMID:26126053

  20. Parabrachial innervation of the cat's dorsal lateral geniculate nucleus: an electron microscopic study using the tracer Phaseolus vulgaris leucoagglutinin (PHA-L).

    PubMed

    Cucchiaro, J B; Uhlrich, D J; Sherman, S M

    1988-12-01

    Ascending pathways from the brain stem play a key role, generally facilitatory, in controlling the transmission of retinal information through the lateral geniculate nucleus to the visual cortex (for reviews, see Singer, 1977; Burke and Cole, 1978; Sherman and Koch, 1986). In order to characterize the morphological basis of this brain-stem control, we used the electron microscope to study synaptic terminals labeled anterogradely from injections of the tracer Phaseolus vulgaris leucoagglutinin into the parabrachial region of the brain stem. The labeled axons, which are fine and unmyelinated in our material, form conventional synaptic contacts onto both relay cells and interneurons. These connections are surprisingly selective for certain postsynaptic elements such as the dendritic shafts and appendages of relay cells and the presynaptic dendritic terminals of interneurons. That is, the morphology of contacts made from parabrachial axons varies with the specific postsynaptic profile. Even a single axon can form symmetrical contacts onto F2 terminals, which are synaptic terminals deriving from dendrites of interneurons, and dendritic shafts of relay X cells, and form asymmetrical contacts onto dendritic appendages of the same relay X cells. Reconstructions of the dendritic segments postsynaptic to the labeled terminals show that the dendritic appendages receive retinal and parabrachial input in triadic relationships with F2 terminals: a retinal or parabrachial axon contacts the F2 terminal, and the F2 terminal plus the retinal or parabrachial axon contact the dendritic appendage. This positioning of the parabrachial innervation is well suited for control of retinal transmission. Finally, the dual morphology of the parabrachial synaptic contacts suggests that their actions may differ depending on the postsynaptic target. PMID:3199193

  1. Hydroxy fatty acids in remote marine aerosols as microbial tracers: Long term study on β-hydroxy fatty acids from the remote marine Island, Chichi-Jima

    NASA Astrophysics Data System (ADS)

    Tyagi, P.

    2014-12-01

    To better understand the long-range atmospheric transport of microbial aerosols from Southeast Asia to the western North Pacific, marine aerosols were collected at a remote Island, Chichi-Jima on a biweekly basis during 1990-1993. These samples were investigated for the atmospheric abundances of hydroxy fatty acids (OH FAs). β-OH FAs are the major structural components of endotoxins in the outer membrane of Gram-negative bacteria (GNB) whereas w-OH FAs are present in cell walls of higher plants. Thus, we tested the applicability of the β-OH FAs (C10-C18) and ω-OH FAs (C16-C26) to assess the Gram-negative bacteria (GNB) and contribution of terrestrial higher plants, respectively. The average concentrations of β- and ω-OH FAs show pronounced seasonal variability with spring maximum (~301 ng/m-3 and ~ 272 ng/m-3, respectively). The concentrations of total OH FAs increased in winter/spring and decreased in summer/autumn, except for 1992-93. This seasonal trend can be interpreted by the atmospheric transport of microbial soil dust and higher plant metabolites from the Asian continent during winter/spring, when westerly winds dominate over the western North Pacific. The even carbon predominance of β- and ω-OH FAs (80 and 74 % of total) in marine aerosols could be explained by their significant contribution from GNB and terrestrial higher plants. These results have implications towards assessing the bacterial transport in the continental outflows. This study also confirms that β-OH FAs can be used as bacterial tracers in ambient aerosol samples.Keywords: β- and ω-hydroxy fatty acids, terrestrial biomarkers, marine aerosols, GC-MS

  2. Assessment of a Geothermal Doublet in the Malm Aquifer Using a Push-Pull Tracer Test

    NASA Astrophysics Data System (ADS)

    Lafogler, Mark; Somogyi, Gabriella; Nießner, Reinhard; Baumann, Thomas

    2013-04-01

    Geothermal exploration of the Malm aquifer in Bavaria is highly successful. Data about the long-term operation, however, is still scarce, although detailed knowledge about the processes occurring in the aquifer is a key requirement to run geothermal facilities efficiently and economically. While there usually is a constant flow of data from the production well (temperatures, hydraulic data, hydrochemical conditions, gas composition) not even the temperatures in the immediate surrounding of the reinjection well are accessible or known. In 2011 the geothermal facility in Pullach was extended with a third geothermal well reaching into the Malm aquifer which is now used as a reinjection well. The former reinjection well was converted to a production well after 5 years of operation. This setting offers a unique opportunity to study the processes in the vicinity of a reinjection well and provides the data base to describe the hydraulic, thermal and hydrochemical performance of the reservoir. The viscosity of the reinjected cold water is increasing by 60% compared to the production well, thus one would expect an increase of the reinjection pressure as the cold water plume spreads around the reinjection well. Measurements, however, show a significant decrease of the reinjection pressure, suggesting processes in the aquifer which positively change the hydraulic properties and overcompensate the viscosity effects. Hydrochemical data and modeling indicate that a dissolution of the matrix along the flow pathways is responsible for the decreasing reinjection pressures. The change of the flow direction from reinjection to production was used to conduct a push-pull tracer test. Here, a series of fluorescent dye pulses was added to the reinjected water before the former reinjection well was shut down (push phase). These tracers included a conservative tracer (Fluorescein), surface-sensitive tracers (Eosin/Sulforhodamin B), and a NAPL-sensitive tracer (Na-Naphthionate). After

  3. Characterization of thermal tracer tests and heat exchanges in fractured media

    NASA Astrophysics Data System (ADS)

    de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Florian; Gerard, Marie-Françoise; Lavenant, Nicolas; Le Borgne, Tanguy

    2016-04-01

    Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (< 100m), because of the low permeability of the medium. In some cases, fractures may enhance permeability, but thermal energy storage at these shallow depths is still remaining very challenging because of the low storativity of the medium. Within this framework, the purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, several heat tracer tests have been achieved along a borehole between two connected fractures. The heat tracer tests have been achieved at the experimental site of Ploemeur (H+ observatory network). The tracer tests consist in monitoring the temperature in the upper fracture while injecting hot water in the deeper one thanks to a field boiler. For such an experimental setup, the main difficulty to interpret the data comes from the requirement for separating the temperature advective signal of the tracer test (temperature recovery) from the heat increase due to injection of hot water through the borehole which induces heat losses all along the injection tube in the water column. For doing so, in addition to a double straddle packer used for isolating the injection chamber, the particularity of the experimental set up is the use of fiber optic distributed temperature sensing (FO-DTS); an innovative technology which allows spatial and temporal monitoring of the temperature all along the well. Thanks to this tool, we were able to estimate heat increases coming from diffusion along the injection tube which is found much lower than localized temperature increases resulting from tracer test recovery. With local temperatures probes, separating both effects would not have been feasible. We

  4. Integrating Source Apportionment Tracers into a Bottom-up Inventory of Methane Emissions in the Barnett Shale Hydraulic Fracturing Region.

    PubMed

    Townsend-Small, Amy; Marrero, Josette E; Lyon, David R; Simpson, Isobel J; Meinardi, Simone; Blake, Donald R

    2015-07-01

    A growing dependence on natural gas for energy may exacerbate emissions of the greenhouse gas methane (CH4). Identifying fingerprints of these emissions is critical to our understanding of potential impacts. Here, we compare stable isotopic and alkane ratio tracers of natural gas, agricultural, and urban CH4 sources in the Barnett Shale hydraulic fracturing region near Fort Worth, Texas. Thermogenic and biogenic sources were compositionally distinct, and emissions from oil wells were enriched in alkanes and isotopically depleted relative to natural gas wells. Emissions from natural gas production varied in δ(13)C and alkane ratio composition, with δD-CH4 representing the most consistent tracer of natural gas sources. We integrated our data into a bottom-up inventory of CH4 for the region, resulting in an inventory of ethane (C2H6) sources for comparison to top-down estimates of CH4 and C2H6 emissions. Methane emissions in the Barnett are a complex mixture of urban, agricultural, and fossil fuel sources, which makes source apportionment challenging. For example, spatial heterogeneity in gas composition and high C2H6/CH4 ratios in emissions from conventional oil production add uncertainty to top-down models of source apportionment. Future top-down studies may benefit from the addition of δD-CH4 to distinguish thermogenic and biogenic sources.

  5. Integrating Source Apportionment Tracers into a Bottom-up Inventory of Methane Emissions in the Barnett Shale Hydraulic Fracturing Region.

    PubMed

    Townsend-Small, Amy; Marrero, Josette E; Lyon, David R; Simpson, Isobel J; Meinardi, Simone; Blake, Donald R

    2015-07-01

    A growing dependence on natural gas for energy may exacerbate emissions of the greenhouse gas methane (CH4). Identifying fingerprints of these emissions is critical to our understanding of potential impacts. Here, we compare stable isotopic and alkane ratio tracers of natural gas, agricultural, and urban CH4 sources in the Barnett Shale hydraulic fracturing region near Fort Worth, Texas. Thermogenic and biogenic sources were compositionally distinct, and emissions from oil wells were enriched in alkanes and isotopically depleted relative to natural gas wells. Emissions from natural gas production varied in δ(13)C and alkane ratio composition, with δD-CH4 representing the most consistent tracer of natural gas sources. We integrated our data into a bottom-up inventory of CH4 for the region, resulting in an inventory of ethane (C2H6) sources for comparison to top-down estimates of CH4 and C2H6 emissions. Methane emissions in the Barnett are a complex mixture of urban, agricultural, and fossil fuel sources, which makes source apportionment challenging. For example, spatial heterogeneity in gas composition and high C2H6/CH4 ratios in emissions from conventional oil production add uncertainty to top-down models of source apportionment. Future top-down studies may benefit from the addition of δD-CH4 to distinguish thermogenic and biogenic sources. PMID:26148556

  6. Quantifying Methane Fluxes Simply and Accurately: The Tracer Dilution Method

    NASA Astrophysics Data System (ADS)

    Rella, Christopher; Crosson, Eric; Green, Roger; Hater, Gary; Dayton, Dave; Lafleur, Rick; Merrill, Ray; Tan, Sze; Thoma, Eben

    2010-05-01

    Methane is an important atmospheric constituent with a wide variety of sources, both natural and anthropogenic, including wetlands and other water bodies, permafrost, farms, landfills, and areas with significant petrochemical exploration, drilling, transport, or processing, or refining occurs. Despite its importance to the carbon cycle, its significant impact as a greenhouse gas, and its ubiquity in modern life as a source of energy, its sources and sinks in marine and terrestrial ecosystems are only poorly understood. This is largely because high quality, quantitative measurements of methane fluxes in these different environments have not been available, due both to the lack of robust field-deployable instrumentation as well as to the fact that most significant sources of methane extend over large areas (from 10's to 1,000,000's of square meters) and are heterogeneous emitters - i.e., the methane is not emitted evenly over the area in question. Quantifying the total methane emissions from such sources becomes a tremendous challenge, compounded by the fact that atmospheric transport from emission point to detection point can be highly variable. In this presentation we describe a robust, accurate, and easy-to-deploy technique called the tracer dilution method, in which a known gas (such as acetylene, nitrous oxide, or sulfur hexafluoride) is released in the same vicinity of the methane emissions. Measurements of methane and the tracer gas are then made downwind of the release point, in the so-called far-field, where the area of methane emissions cannot be distinguished from a point source (i.e., the two gas plumes are well-mixed). In this regime, the methane emissions are given by the ratio of the two measured concentrations, multiplied by the known tracer emission rate. The challenges associated with atmospheric variability and heterogeneous methane emissions are handled automatically by the transport and dispersion of the tracer. We present detailed methane flux

  7. Some design considerations for the proposed Dixie Valley tracer test

    SciTech Connect

    Doughty, C.; Bodvarsson, G.S.

    1988-06-01

    A tracer test for the Dixie Valley, Nevada, geothermal resource is planned for the summer of 1988, in order to study the fluid flow paths that will develop under typical operating conditions. During the test six production wells will provide the power plant with steam sufficient for generation of 60 MWe, requiring fluid production at a rate of approximately 600 kg/sec. Up to 75% by mass of the extracted fluid will be reinjected into the reservoir, using four injection wells. Tracer will be added to the injected fluid for a twenty-minute period, and subsequently the produced fluid will be monitored for the tracer. 5 refs., 9 figs., 5 tabs.

  8. Inferring residence time distributions from hillslope tracer experiments

    NASA Astrophysics Data System (ADS)

    McGuire, K. J.; Weiler, M.; McDonnell, J. J.

    2003-12-01

    Water residence time in catchments is typically determined by black-box modeling of environmental tracers (e.g., 18O and 2H), in which input (rainfall) and output (discharge) tracer concentrations are used to estimate parameters of an assumed distribution that represents the residence time. In this study, a different approach was taken, where the residence time distribution (RTD) was determined directly from an artificial tracer experiment. Two tracers (Amino G acid and bromide) were applied as line sources (20 and 40 m from the stream, respectively) to the soil surface of a steep forested hillslope in the H.J. Andrews Experimental Forest. Tracer concentrations and seepage flow were monitored for approximately 100 days. The resulting breakthrough curves were modeled using a simple, process-based hillslope model conditional on spatially varying soil depth and depth-varying drainable porosity and hydraulic conductivity. The model preserved internal hydrological behavior such as water table dynamics and satisfactorily reproduced seepage discharge and tracer concentrations. Using the model and assuming the same parameterization, we infer the RTD of conservative tracers applied to the entire hillslope. The derived RTDs were then compared to functions that represent RTDs used in black-box models.

  9. Off-gassing induced tracer release from molten basalt pools

    SciTech Connect

    Cronenberg, A.W.; Callow, R.A.

    1994-01-01

    Two in situ vitrification (ISV) field tests were conducted at the Idaho National Engineering Laboratory (INEL) during the summer of 1990 to assess ISV suitability for long-term stabilization of buried waste that contains transuranic and other radionuclide contaminants. The ISV process uses electrical resistance heating to melt buried waste and soil in place, which upon cooldown and resolidification fixes the waste into a vitrified (glass-like) form. In these two ISV field tests, small quantities of rare-earth oxides (tracers DY{sub 2}O{sub 3}, Yb{sub 2}O{sub 3}, and Tb{sub 4}O{sub 7}) were placed in the test pits to simulate the presence of plutonium oxides and assess plutonium retention/release behavior. The analysis presented in this report indicates that dissolution of tracer oxides into basaltic melts can be expected with subsequent tracer molecular or microparticle carry-off by escaping gas bubbles, which is similar to adsorptive bubble separation and ion flotation processes employed in the chemical industry to separate dilute heavy species from liquids under gas sparging conditions. Gaseous bubble escape from the melt surface and associated aerosolization is believed to be responsible for small quantities of tracer ejection from the melt surface to the cover hood and off-gas collection system. Methods of controlling off-gassing during ISV would be expected to improve the overall retention of such heavy oxide contaminants during melting/vitrification of buried waste.

  10. The Active Magnetospheric Particle Tracer Explorers program

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Mcentire, R. W.; Haerendel, G.; Paschmann, G.; Bryant, D. A.

    1983-01-01

    In order to study the access of solar wind ions to the magnetosphere, together with the processes that transport and accelerate magnetospheric particles, the Active Magnetospheric Particle Tracer Explorers (AMPTE) mission will release and monitor lithium and barium tracer ions in both the solar wind and the magnetosphere. A single, massive release of barium in the dawn magnetosheath will in addition create a visible artificial comet in the flowing solar wind plasma, within which studies of a range of different plasma effects will be undertaken. The AMPTE will obtain comprehensive measurements of natural magnetospheric particle populations' elemental composition and dynamics. AMPTE comprises three spacecraft: the Ion Release Module, the Charge Composition Explorer, and the United Kingdom Subsatellite.

  11. Evaluating 10B-enriched Boric Acid, Bromide, and Heat as Tracers of Recycled Groundwater Flow near MAR Operations

    NASA Astrophysics Data System (ADS)

    Becker, T.; Clark, J. F.

    2012-12-01

    Coupled with the unpredictability of a changing climate, the projected growth in human population over the next century requires new and innovative ways to augment already-depleted water supplies. An increasingly popular and promising development is managed aquifer recharge (MAR), a cost-effective method of intentionally storing potable water in groundwater aquifers at engineered sites worldwide. Reclaimed (or recycled) water, defined as cleaned and treated wastewater, will account for a larger portion of MAR water in future years. A crucial component for managing groundwater recharged with reclaimed water is its subsurface travel time. The California Department of Public Health (CDPH), with the most recent draft of regulations issued on November 21, 2011, requires the application of groundwater tracers to demonstrate subsurface residence time. Residence time increases the quality of reclaimed water via soil-aquifer treatment (SAT), which includes mechanisms such as sorption, biological degradation, and microbial inactivation to remove potential contaminants or pathogens. This study addresses the need for an appropriate tracer to determine groundwater residence times near MAR facilities. Standard shallow groundwater dating techniques, such as T/3He and chlorofluorocarbon (CFC) methods, cannot be used because their uncertainties are typically ± 2 years, longer than the target CDPH retention time of ~6 months. These methods also cannot map preferential flow paths. Sulfur hexafluoride (SF6), a nonreactive synthetic gas, is well-established as a deliberate tracer for determining subsurface travel time; however, SF6 is a very strong greenhouse gas and the California Air Resources Board (CARB) is regulating its emission. Other tracers, such as noble gas isotopes, that have successfully determined subsurface retention times are impractical due to their high cost. A multi-tracer experiment at the San Gabriel Spreading Grounds test basin (Montebello Forebay, Los Angeles

  12. Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: a 3-d numerical modeling approach.

    PubMed

    Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant

    2014-09-16

    Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well. PMID:25144442

  13. Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: a 3-d numerical modeling approach.

    PubMed

    Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant

    2014-09-16

    Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well.

  14. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.

    2013-12-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need

  15. Tracking thermal fronts with temperature-sensitive, chemically reactive tracers

    SciTech Connect

    Robinson, B.A.; Birdsell, S.A.

    1987-01-01

    Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts in fractured geothermal reservoirs. If a nonadsorbing tracer flowing from the injection to production well chemically reacts, its reaction rate will be a strong function of temperature. Thus the extent of chemical reaction will be greatest early in the lifetime of the system, and less as the thermal front progresses from the injection to production well. Early laboratory experiments identified tracers with chemical kinetics suitable for reservoirs in the temperature range of 75 to 100/sup 0/C. Recent kinetics studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene. This class of reactions can be used in reservoirs ranging in temperature from 150 to 275/sup 0/C, which is of greater interest to the geothermal industry. Future studies will include laboratory adsorption experiments to identify possibly unwanted adsorption on granite, development of sensitive analytical techniques, and a field demonstration of the reactive tracer concept.

  16. A Comparative Study of the Hypoxia PET Tracers [{sup 18}F]HX4, [{sup 18}F]FAZA, and [{sup 18}F]FMISO in a Preclinical Tumor Model

    SciTech Connect

    Peeters, Sarah G.J.A.; Zegers, Catharina M.L.; Lieuwes, Natasja G.; Elmpt, Wouter van; Eriksson, Jonas; Dongen, Guus A.M.S. van; Dubois, Ludwig; Lambin, Philippe

    2015-02-01

    Purpose: Several individual clinical and preclinical studies have shown the possibility of evaluating tumor hypoxia by using noninvasive positron emission tomography (PET). The current study compared 3 hypoxia PET tracers frequently used in the clinic, [{sup 18}F]FMISO, [{sup 18}F]FAZA, and [{sup 18}F]HX4, in a preclinical tumor model. Tracer uptake was evaluated for the optimal time point for imaging, tumor-to-blood ratios (TBR), spatial reproducibility, and sensitivity to oxygen modification. Methods and Materials: PET/computed tomography (CT) images of rhabdomyosarcoma R1-bearing WAG/Rij rats were acquired at multiple time points post injection (p.i.) with one of the hypoxia tracers. TBR values were calculated, and reproducibility was investigated by voxel-to-voxel analysis, represented as correlation coefficients (R) or Dice similarity coefficient of the high-uptake volume. Tumor oxygen modifications were induced by exposure to either carbogen/nicotinamide treatment or 7% oxygen breathing. Results: TBR was stabilized and maximal at 2 hours p.i. for [{sup 18}F]FAZA (4.0 ± 0.5) and at 3 hours p.i. for [{sup 18}F]HX4 (7.2 ± 0.7), whereas [{sup 18}F]FMISO showed a constant increasing TBR (9.0 ± 0.8 at 6 hours p.i.). High spatial reproducibility was observed by voxel-to-voxel comparisons and Dice similarity coefficient calculations on the 30% highest uptake volume for both [{sup 18}F]FMISO (R = 0.86; Dice coefficient = 0.76) and [{sup 18}F]HX4 (R = 0.76; Dice coefficient = 0.70), whereas [{sup 18}F]FAZA was less reproducible (R = 0.52; Dice coefficient = 0.49). Modifying the hypoxic fraction resulted in enhanced mean standardized uptake values for both [{sup 18}F]HX4 and [{sup 18}F]FAZA upon 7% oxygen breathing. Only [{sup 18}F]FMISO uptake was found to be reversible upon exposure to nicotinamide and carbogen. Conclusions: This study indicates that each tracer has its own strengths and, depending on the question to be answered, a different tracer can be put

  17. Non-universal tracer diffusion in crowded media of non-inert obstacles.

    PubMed

    Ghosh, Surya K; Cherstvy, Andrey G; Metzler, Ralf

    2015-01-21

    We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer-obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer-obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer-crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids.

  18. North American Natural Gas Markets: Selected technical studies

    SciTech Connect

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  19. North American Natural Gas Markets: Selected technical studies. Volume 3

    SciTech Connect

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  20. 210Po and 210Pb as Tracers of Particle Cycling and Resuspension in a Dynamic Freshwater System: Case Study from the Clinton River, Southeast Michigan

    NASA Astrophysics Data System (ADS)

    Mudbidre, R.; Baskaran, M. M.; Schweitzer, L.

    2013-12-01

    Polonium-210 and 210Pb are constantly delivered to the surface waters through atmospheric deposition with a 210Po/210Pb activity ratio (AR) of < 0.10. Freshly produced suspended particles in surface waters are ';tagged' with this ratio which tends to grow towards the secular equilibrium value of 1.0. This disequilibrium between 210Po and 210Pb in freshwater system with a relatively short hydrological residence time can be utilized to quantify sediment resuspension rates and to investigate the extent of recycling of sedimentary particulate matter. From the measurements of 210Po and 210Pb in particulate matter collected in sediment traps and surficial bottom sediments at 5 different sites in the Clinton River in southeast Michigan over a period of 6 months (April - September, 2005) and subsequent modeling of these data, we report the following: i) The direct atmospheric deposition of 210Po and 210Pb collected in the sediment trap materials accounted for 1% and 0.1%, respectively, of the total deposited in the sediment trap; ii) The ranges and mean values of the 210Po and 210Pb in the sediment trap material and bottom sediments are comparable, with near identical 210Po/210Pb ratios, indicating that most of the trapped 210Po and 210Pb were delivered by the resuspension of bottom sediments; iii) The particle residence times varied from 0.3 to 4 days for 210Pb and 0.9 to 13.4 days for 210Po; and iv) The sediment resuspension rates calculated via single box model approach yielded resuspension rates ranging from 0.2 to 14.2 g cm-2 yr-1 using 210Pb and 0.1 to 1.0 g cm-2 yr-1 using 210Po. We propose that the distribution of 210Bi (and 210Bi/210Pb) would provide better insight on particle cycling in short-time scales and a brief discussion will be presented on the utility of 210Bi/210Pb ratio as a powerful tool for short-term particle cycling and as tracers of POC, PON export studies in deeper freshwater lakes.

  1. Is fully coupled hydrogeophysical inversion really better than uncoupled? A comparison study using ensemble Kalman filter assimilation of ERT-monitored tracer test data. (Invited)

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.; Binley, A. M.

    2013-12-01

    Recent advances in geophysical methods have been increasingly exploited as inverse modeling tools in groundwater hydrology. In particular, several attempts to constrain the hydrogeophysical inverse problem to reduce inversion error have been made using time-lapse geophysical measurements through both coupled and uncoupled inversion approaches. On one hand, the main advantage of coupled approaches is that the numerical models for the geophysical and hydrological processes are linked together such that the geophysical data are inverted directly for the hydrological properties of interest, avoiding artifacts related to the classical geophysical inversions. On the other hand, uncoupled approaches, relying upon a geophysical inversion that is carried out before estimating the hydrological variable of interest, could reveal something about the process that is not accounted for in a model, i.e., they are not constrained by the conceptualization of the hydrological model. In spite of the appeal and popularity of fully coupled inversion approaches, their superiority over more traditional uncoupled methods still needs to be objectively proven; the aim of this work is to shed some light on this debate. An approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) is here applied to assess the spatial distribution of hydraulic conductivity (K) by assimilating time-lapse cross-hole electrical resistivity tomography (ERT) data generated for a synthetic tracer test in a heterogeneous aquifer. In the coupled version of the proposed inverse modeling approach, the K distribution is retrieved by assimilating raw ERT resistance data without the need for a preliminary geoelectrical inversion. In the uncoupled version, K is estimated by assimilating electrical conductivity data derived from a previously performed classical geophysical inversion of the same resistance dataset. We compare the performance of the two approaches in a number of simulation

  2. N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment

    NASA Astrophysics Data System (ADS)

    Bourbonnais, Annie; Altabet, Mark A.; Charoenpong, Chawalit N.; Larkum, Jennifer; Hu, Haibei; Bange, Hermann W.; Stramma, Lothar

    2015-06-01

    Mesoscale eddies in Oxygen Minimum Zones (OMZs) have been identified as important fixed nitrogen (N) loss hotspots that may significantly impact both the global rate of N-loss as well as the ocean's N isotope budget. They also represent "natural tracer experiments" with intensified biogeochemical signals that can be exploited to understand the large-scale processes that control N-loss and associated isotope effects (ɛ; the ‰ deviation from 1 in the ratio of reaction rate constants for the light versus heavy isotopologues). We observed large ranges in the concentrations and N and O isotopic compositions of nitrate (NO3-), nitrite (NO2-), and biogenic N2 associated with an anticyclonic mode-water eddy in the Peru OMZ during two cruises in November and December 2012. In the eddy's center where NO3- was nearly exhausted, we measured the highest δ15N values for both NO3- and NO2- (up to ~70‰ and 50‰) ever reported for an OMZ. Correspondingly, N deficit and biogenic N2-N concentrations were also the highest near the eddy's center (up to ~40 µmol L-1). δ15N-N2 also varied with biogenic N2 production, following kinetic isotopic fractionation during NO2- reduction to N2 and, for the first time, provided an independent assessment of N isotope fractionation during OMZ N-loss. We found apparent variable ɛ for NO3- reduction (up to ~30‰ in the presence of NO2-). However, the overall ɛ for N-loss was calculated to be only ~13-14‰ (as compared to canonical values of ~20-30‰) assuming a closed system and only slightly higher assuming an open system (16-19‰). Our results were similar whether calculated from the disappearance of DIN (NO3- + NO2-) or from the appearance of N2 and changes in isotopic composition. Further, we calculated the separate ɛ values for NO3- reduction to NO2- and NO2- reduction to N2 of ~16-21‰ and ~12‰, respectively, when the effect of NO2- oxidation could be removed. These results, together with the relationship between N and O of NO

  3. Development of Standardized Mobile Tracer Correlation Approach for Large Area Emission Measurements (DRAFT UNDER EPA REVIEW)

    NASA Astrophysics Data System (ADS)

    Foster-wittig, T. A.; Thoma, E.; Green, R.; Hater, G.; Swan, N.; Chanton, J.

    2013-12-01

    Improved understanding of air emissions from large area sources such as landfills, waste water ponds, open-source processing, and agricultural operations is a topic of increasing environmental importance. In many cases, the size of the area source, coupled with spatial-heterogeneity, make direct (on-site) emission assessment difficult; methane emissions, from landfills for example, can be particularly complex [Thoma et al, 2009]. Recently, whole-facility (remote) measurement approaches based on tracer correlation have been utilized [Scheutz et al, 2011]. The approach uses a mobile platform to simultaneously measure a metered-release of a conservative gas (the tracer) along with the target compound (methane in the case of landfills). The known-rate tracer release provides a measure of atmospheric dispersion at the downwind observing location allowing the area source emission to be determined by a ratio calculation [Green et al, 2010]. Although powerful in concept, the approach has been somewhat limited to research applications due to the complexities and cost of the high-sensitivity measurement equipment required to quantify the part-per billion levels of tracer and target gas at kilometer-scale distances. The advent of compact, robust, and easy to use near-infrared optical measurement systems (such as cavity ring down spectroscopy) allow the tracer correlation approach to be investigated for wider use. Over the last several years, Waste Management Inc., the U.S. EPA, and collaborators have conducted method evaluation activities to determine the viability of a standardized approach through execution of a large number of field measurement trials at U.S. landfills. As opposed to previous studies [Scheutz et al, 2011] conducted at night (optimal plume transport conditions), the current work evaluated realistic use-scenarios; these scenarios include execution by non-scientist personnel, daylight operation, and full range of atmospheric condition (all plume transport

  4. Characterizing building ventilation with the pollutant concentration index: Results from field studies

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.; Thomas, J.M. Jr.

    1997-04-01

    A new method for characterizing ventilation in commercial buildings using the Pollutant Concentration Index (PCI) was evaluated via field studies in four buildings. The PCI parameter quantifies the effectiveness of ventilation in controlling air pollutant exposures for pollutants released continuously and spatially uniformly within the building. For the measurements, passive tracer gas sources spaced uniformly per unit floor area, simulated an indoor pollutant. The sources continuously released the tracer gas at a known rate. During the occupied periods of several days, air samples from seated breathing-level locations were collected in gas storage bags. The PCI values were based on the tracer gas concentrations in the sample storage bags and on the indoor tracer gas emission rate. The technique was successfully implemented in buildings ranging in floor area from 129 m{sup 2} to 4475 m{sup 2}. Results of these studies indicated that the spacing of tracer gas sources, between 8 and 73 m{sup 2}/source, had little effect upon measured values of the PCI. The agreement between PCI values measured simultaneously with two different tracers was usually within 15%. The precision of PCI measurements made with a single tracer gas was approximately 5%. Measured PCI values were referenced to predicted values for buildings that meet minimum ventilation standards. PCI values also indicated the spatial and temporal variability of the effectiveness of ventilation in controlling pollutant exposures.

  5. Quantification of brain perfusion with tracers retained by the brain

    SciTech Connect

    Pupi, A.; Bacciottini, L.; De Cristofaro, M.T.R.; Formiconi, A.R.; Castagnoli, A.

    1991-12-31

    Almost a decade ago, tracers, labelled with {sup 123}I and {sup 99m}Tc, that are retained by the brain, started to be used for studies of regional brain perfusion (regional cerebral blood flow, rCBF). To date, these