Sample records for gas utilization technologies

  1. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  2. Solar-gas systems impact analysis study

    NASA Astrophysics Data System (ADS)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  3. The Reduction of NOx Using Pulsed Electron Beams

    DTIC Science & Technology

    2015-12-30

    flue gas (SFG) is described. The SFG is a simulant for exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed electron...a surrogate flue gas (SFG) is described. The SFG simulates exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed...temperature combustion in air-breathing engines and coal power plants. The gases are also produced in nature during thunderstorms by lightning

  4. Low Carbon Technology Options for the Natural Gas ...

    EPA Pesticide Factsheets

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic

  5. 17 CFR 250.58 - Exemption of investments in certain nonutility companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facilities relating to electric and compressed natural gas powered vehicles; (iv) The sale of electric and gas appliances; equipment to promote new technologies, or new applications for existing technologies... and commercialization of technologies or processes that utilize coal waste by-products as an integral...

  6. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  7. The quest to be "modern": The adoption of electric light, heat, and power technology in small-town America, 1883-1929

    NASA Astrophysics Data System (ADS)

    Hellrigel, Mary Ann

    This dissertation is a social, business, and technological history of electrification in the United States. It examines the origins of the electric utility industry, the development of light, heat and power technology, the marketing of electric service, and the adoption of electricity and domestic appliances in the late nineteenth and early twentieth centuries in two communities: Harrisburg and West Chester, Pennsylvania. Beginning in the 1880s, manufactured gas and electric utilities waged an intense and lengthy battle for the urban energy marketplace. Many villages, small towns and big cities had multiple gas and electric companies, driving technological change as they worked to increase reliability, lower costs, and improve lamps, lighting fixtures, and appliances. Producers as well as consumers grappled with these new sources of energy, looking for profitable and practical ways to incorporate them into everyday life. Gas and utility executives, locked in head-to-head competition, realized that marketing their invisible product was an uncertain process. Utilities redefined the concepts of "tradition" and "modernity" to attract investors and offer appliances and installation in addition to selling energy. Upper and middle class households seeking a modern comfortable home could use gas or electricity (and often both), while working classes made do with kerosene, coal and wood. Mixed technologies, based on consumer preference, access, product availability, price, and service greatly influenced the creation of "modern" America. Initially, Pennsylvania law mandated local energy systems-electricity and gas had to be consumed within the same town. Only in the early twentieth century were these laws amended to permit inter-connections, allowing merger and consolidation of utilities to serve a wider geographic area. By the 1910s, law, technology, and capital made it possible to abandon local central stations. In only a few decades, the industry shifted from locally-owned small scale generation plants to larger regional systems capable of long distance transmission and directed by a cadre of engineering, financial, and managerial experts. In 1928, Harrisburg's electric utility merged into the Pennsylvania Power & Light Company and the next year West Chester's electric and gas companies became part of the Philadelphia Electric Company, marking the beginning of a new era.

  8. EMERGING TECHNOLOGIES FOR THE MANAGEMENT AND UTILIZATION OF LANDFILL GAS

    EPA Science Inventory

    The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3) for the management of landfill gas (LFG) emissions or for the ...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrer, C.W.; Layne, A.W.; Guthrie, H.D.

    The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Actionmore » Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.« less

  10. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologiesmore » because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.« less

  11. STATUS OF COMMERCIAL UTILITY FGD (FLUE GAS DESULFURIZATION) TECHNOLOGY

    EPA Science Inventory

    The paper summarizes the status of FGD technology as of March 1983 and highlights recent trends in process selection, design, and performance of FGD systems. The information collected in the program is stored in the Flue Gas Desulfurization Information System (FGDIS), a collectio...

  12. A Survey on Gas Sensing Technology

    PubMed Central

    Liu, Xiao; Cheng, Sitian; Liu, Hong; Hu, Sha; Zhang, Daqiang; Ning, Huansheng

    2012-01-01

    Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches. PMID:23012563

  13. An assessment of advanced technology for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Moore, N.

    1983-01-01

    The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.

  14. The German collaborative project SUGAR Utilization of a natural treasure - Developing innovative techniques for the exploration and production of natural gas from hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Haeckel, M.; Bialas, J.; Wallmann, K. J.

    2009-12-01

    Gas hydrates occur in nature at all active and passive continental margins as well as in permafrost regions, and vast amounts of natural gas are bound in those deposits. Geologists estimate that twice as much carbon is bound in gas hydrates than in any other fossil fuel reservoir, such as gas, oil and coal. Hence, natural gas hydrates represent a huge potential energy resource that, in addition, could be utilized in a CO2-neutral and therefore environmentally friendly manner. However, the utilization of this natural treasure is not as easy as the conventional production of oil or natural gas and calls for new and innovative techniques. In the framework of the large-scale collaborative research project SUGAR (Submarine Deposits of Gas Hydrates - Exploration, Production and Transportation), we aim to produce gas from methane hydrates and to sequester carbon dioxide from power plants and other industrial sources as CO2 hydrates in the same host sediments. Thus, the SUGAR project addresses two of the most pressing and challenging topics of our time: development of alternative energy strategies and greenhouse gas mitigation techniques. The SUGAR project is funded by two federal German ministries and the German industry for an initial period of three years. In the framework of this project new technologies starting from gas hydrate exploration techniques over drilling technologies and innovative gas production methods to CO2 storage in gas hydrates and gas transportation technologies will be developed and tested. Beside the performance of experiments, numerical simulation studies will generate data regarding the methane production and CO2 sequestration in the natural environment. Reservoir modelling with respect to gas hydrate formation and development of migration pathways complete the project. This contribution will give detailed information about the planned project parts and first results with focus on the production methods.

  15. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    NASA Astrophysics Data System (ADS)

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  16. Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review.

    PubMed

    Saha, Dipendu; Grappe, Hippolyte A; Chakraborty, Amlan; Orkoulas, Gerassimos

    2016-10-12

    In today's perspective, natural gas has gained considerable attention, due to its low emission, indigenous availability, and improvement in the extraction technology. Upon extraction, it undergoes several purification protocols including dehydration, sweetening, and inert rejection. Although purification is a commercially established technology, several drawbacks of the current process provide an essential impetus for developing newer separation protocols, most importantly, adsorption and membrane separation. This Review summarizes the needs of natural gas separation, gives an overview of the current technology, and provides a detailed discussion of the progress in research on separation and purification of natural gas including the benefits and drawbacks of each of the processes. The transportation sector is another growing sector of natural gas utilization, and it requires an efficient and safe on-board storage system. Compressed natural gas (CNG) and liquefied natural gas (LNG) are the most common forms in which natural gas can be stored. Adsorbed natural gas (ANG) is an alternate storage system of natural gas, which is advantageous as compared to CNG and LNG in terms of safety and also in terms of temperature and pressure requirements. This Review provides a detailed discussion on ANG along with computation predictions. The catalytic conversion of methane to different useful chemicals including syngas, methanol, formaldehyde, dimethyl ether, heavier hydrocarbons, aromatics, and hydrogen is also reviewed. Finally, direct utilization of methane onto fuel cells is also discussed.

  17. In-situ resource utilization technologies for Mars life support systems.

    PubMed

    Sridhar, K R; Finn, J E; Kliss, M H

    2000-01-01

    The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant.

  18. 40 CFR 63.9991 - What emission limitations, work practice standards, and operating limits must I meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Emission Limitations and Work... this subpart only if your EGU: (1) Has a system using wet or dry flue gas desulfurization technology... operate the wet or dry flue gas desulfurization technology installed on the unit consistent with § 63...

  19. 40 CFR 63.9991 - What emission limitations, work practice standards, and operating limits must I meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Emission Limitations and Work... this subpart only if your EGU: (1) Has a system using wet or dry flue gas desulfurization technology... operate the wet or dry flue gas desulfurization technology installed on the unit consistent with § 63...

  20. 40 CFR 63.9991 - What emission limitations, work practice standards, and operating limits must I meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Emission Limitations and Work... this subpart only if your EGU: (1) Has a system using wet or dry flue gas desulfurization technology... operate the wet or dry flue gas desulfurization technology installed on the unit consistent with § 63...

  1. Mars in Situ Resource Utilization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Santago-Maldonado, Edgardo

    2012-01-01

    We have examined the technologies required to enable Mars In-Situ Resource Utilization (ISRU) because our understanding of Mars resources has changed significantly in the last five years as a result of recent robotic missions to the red planet. Two major developments, (1) confirmation of the presence of near-surface water in the form of ice in very large amounts at high latitudes by the Phoenix Lander and (2) the likely existence of water at lower latitudes in the form of hydrates or ice in the top one meter of the regolith, have the potential to change ISRU technology selection. A brief technology assessment was performed for the most promising Mars atmospheric gas processing techniques: Reverse Water Gas Shift (RWGS) and Methanation (aka Sabatier), as well as an overview of soil processing technology to extract water from Martian soil.

  2. Mars In-Situ Resource Utilization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Muscatello, Anthony

    2011-01-01

    We have examined the technologies required to enable Mars Tn-Situ Resource Utilization (ISRU) because our understanding of Mars resources has changed significantly in the last five years as a result of recent robotic missions to the red planet [1-4]. Two major developments, (1) confirmation of the presence of near-surface water in the form of ice in very large amounts at high latitudes by the Phoenix Lander and (2) the likely existence of water at lower latitudes in the form of hydrates or ice in the top one meter of the regolith, have the potential to change ISRU technology selection. A brief technology assessment was performed for the most promising Mars atmospheric gas processing techniques: Reverse Water Gas Shift (RWGS) and Methanation (aka Sabatier), as well as an overview of soil.processing technology to extract water from Martian soil.

  3. Feasibility study for liquefied natural gas utilization for commercial vehicles on the Pennsylvania Turnpike.

    DOT National Transportation Integrated Search

    2012-10-01

    Recent advances in horizontal drilling and fracturing technology in gas shale formations have increased natural gas supply : such that its price has decoupled from petroleum and is likely to remain significantly lower for the foreseeable future. In t...

  4. Solar-assisted gas-energy water-heating feasibility for apartments

    NASA Technical Reports Server (NTRS)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  5. Liquid-cooling technology for gas turbines - Review and status

    NASA Technical Reports Server (NTRS)

    Van Fossen, G. J., Jr.; Stepka, F. S.

    1978-01-01

    After a brief review of past efforts involving the forced-convection cooling of gas turbines, the paper surveys the state of the art of the liquid cooling of gas turbines. Emphasis is placed on thermosyphon methods of cooling, including those utilizing closed, open, and closed-loop thermosyphons; other methods, including sweat, spray and stator cooling, are also discussed. The more significant research efforts, design data, correlations, and analytical methods are mentioned and voids in technology are summarized.

  6. A preliminary investigation of cryogenic CO2 capture utilizing a reverse Brayton Cycle

    NASA Astrophysics Data System (ADS)

    Yuan, L. C.; Pfotenhauer, J. M.; Qiu, L. M.

    2014-01-01

    Utilizing CO2 capture and storage (CCS) technologies is a significant way to reduce carbon emissions from coal fired power plants. Cryogenic CO2 capture (CCC) is an innovative and promising CO2 capture technology, which has an apparent energy and environmental advantage compared to alternatives. A process of capturing CO2 from the flue gas of a coal-fired electrical power plant by cryogenically desublimating CO2 has been discussed and demonstrated theoretically. However, pressurizing the inlet flue gas to reduce the energy penalty for the cryogenic process will lead to a more complex system. In this paper, a modified CCC system utilizing a reverse Brayton Cycle is proposed, and the energy penalty of these two systems are compared theoretically.

  7. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baselinemore » CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.« less

  8. Analysis of potential benefits of integrated-gasifier combined cycles for a utility system

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.

    1983-01-01

    Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units.

  9. Conceptual design of closed Brayton cycle for coal-fired power generation

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The objectives to be realized in developing a closed cycle gas turbine are (1) to exploit high temperature gas turbine technology while maintaining a working fluid which is free from combustion gas contamination, (2) to achieve compact turbo-equipment designs through pressurization of the working fluid, and (3) to obtain relatively simple cycle configurations. The technical/economic performance of a specific closed cycle gas turbine system was evaluated through the development of a conceptual plant and system design. This energy conversion system is designed for electric utility service and to utilize coal directly in an environmentally acceptable manner.

  10. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks

    DOE PAGES

    Hill, Eric A.; Chrisler, William B.; Beliaev, Alex S.; ...

    2017-01-03

    A new co-cultivation technology is presented that converts greenhouse gasses, CH 4 and CO 2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O 2 limitations on the cyanobacterium and methanotroph, respectively. Continuous co-cultivation resulted in an O 2 depleted reactor and does not require CH 4/O 2 mixturesmore » to be fed into the system, thereby enhancing process safety considerations over traditional methanotroph mono-culture platforms. This co-culture technology is scalable with respect to its ability to utilize different gas streams and its biological components constructed from model bacteria that can be metabolically customized to produce a range of biofuels and bioproducts.« less

  11. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Eric A.; Chrisler, William B.; Beliaev, Alex S.

    A new co-cultivation technology is presented that converts greenhouse gasses, CH 4 and CO 2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O 2 limitations on the cyanobacterium and methanotroph, respectively. Continuous co-cultivation resulted in an O 2 depleted reactor and does not require CH 4/O 2 mixturesmore » to be fed into the system, thereby enhancing process safety considerations over traditional methanotroph mono-culture platforms. This co-culture technology is scalable with respect to its ability to utilize different gas streams and its biological components constructed from model bacteria that can be metabolically customized to produce a range of biofuels and bioproducts.« less

  12. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 2; Gas Separation Technology--State of the Art

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Eklund, Thor I.; Haack, Gregory A.

    2001-01-01

    This purpose of this contract study task was to investigate the State of the Art in Gas Separation Technologies utilized for separating air into both nitrogen and oxygen gases for potential applications on commercial aircraft. The intended applications included: nitrogen gas for fuel tank inerting, cargo compartment fire protection, and emergency oxygen for passenger and crew use in the event of loss of cabin pressure. The approach was to investigate three principle methods of gas separation: Hollow Fiber Membrane (HFM), Ceramic Membrane (CM), and liquefaction: Total Atmospheric Liquefaction of Oxygen and Nitrogen (TALON). Additional data on the performance of molecular sieve pressure swing adsorption (PSA) systems was also collected and discussed. Performance comparisons of these technologies are contained in the body of the report.

  13. AMMONIA REMOVAL AND NITROUS OXIDE PRODUCTION IN GAS-PHASE COMPOST BIOFILTERS

    USDA-ARS?s Scientific Manuscript database

    Biofiltration technology is widely utilized for treating ammonia gas (NH3), with one of its potential detrimental by-products being nitrous oxide (N2O), a greenhouse gas approximately 300 times more reactive to infrared than CO2. The present work intends to provide the relation between NH3 removal d...

  14. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    Discussed are acid rain control options available to the electric utility industry. They include coal switching, flue gas desulfurization, and such emerging lower cost technologies as Limestone Injection Multistage Burners (LIMB) and Advanced Silicate (ADVACATE), both developed ...

  15. Gas-turbine critical research and advanced technology support project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Lowell, C. E.; Niedzwiecki, R. W.; Nainiger, J. J.

    1979-01-01

    The technical progress made during the first 15 months of a planned 40-month project to provide a critical-technology data base for utility gas-turbine systems capable of burning coal-derived fuels is summarized. Tasks were included in the following areas: (1) combustion, to study the combustion of coal-derived fuels and conversion of fuel-bound nitrogen to NOx; (2) materials, to understand and prevent hot corrosion; and (3) system studies, to integrate and guide the other technologies. Significant progress was made.

  16. A GIS-based Model for Natural Gas Data Conversion

    NASA Astrophysics Data System (ADS)

    Bitik, E.; Seker, D. Z.; Denli, H. H.

    2014-12-01

    In Turkey gas utility sector has undergone major changes in terms of increased competition between gas providers, efforts in improving services, and applying new technological solutions. This paper discusses the challenges met by gas companies to switch from long workflows of gas distribution, sales and maintenance into IT driven efficient management of complex information both spatially and non-spatially. The aim of this study is migration of all gas data and information into a GIS environment in order to manage and operate all infrastructure investments with a Utility Management System. All data conversion model for migration was designed and tested during the study. A flowchart is formed to transfer the old data layers to the new structure based on geodatabase.

  17. Evaluation of Mars CO2 Capture and Gas Separation Technologies

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper summarizes the results of an extensive literature review of candidate technologies for the capture and separation of CO2 and other relevant gases. This information will be used to prioritize the technologies to be developed further during this and other ISRU projects.

  18. Gas Conversion Systems Reclaim Fuel for Industry

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A human trip to Mars will require astronauts to utilize resources on the Red Planet to generate oxygen and fuel for the ride home, among other things. Lakewood, Colorado-based Pioneer Energy has worked under SBIR agreements with Johnson Space Center to develop technology for those purposes, and now uses a commercialized version of the technology to recover oil and gas that would otherwise be wasted at drilling sites.

  19. Development and industrial application of oil-reburning for NO{sub x} emission control in utility boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Michele, G.; Pasini, S.; Tarli, R.

    1996-01-01

    ENEL is conducting a comprehensive modification program within its generating system, in order to comply with the new Italian air quality standards for fossil fuel-fired power plants, which set a limit for NO{sub x} of 200 mg/Nm{sup 3} corrected to 3% O{sub 2} for oil and gas and to 6% O{sub 2} for coal. Among all combustion modification technologies reburning has proven particularly attractive, since it has been demonstrated that it generally permits to satisfy the regulatory requirements in gas and oil fired units, thus avoiding the use of SCR. The ENEL generating system essentially employs tangentially fired (TF) andmore » front/opposed wall fired boilers belonging, respectively, to the CEI and Babcock & Wilcox (B&W) technology, designed and constructed by Ansaldo and Franco Tosi (now bought by Ansaldo). In this framework ENEL has signed respectively with Ansaldo Energia and Combustion Engineering Inc. (CEI), and with Ansaldo Energia two separate agreements to apply Reburn Technology in oil and gas, tangentially-fired (TF) utility boilers, the first, and oil and gas wall-fired (WF) utility boilers, the second, both in Italy and abroad. This paper outlines the technical knowledge available for the design of reburn systems for a retrofit application and describes the main results obtained, after retrofit, at Torvaldaliga No. 2 power station, 320 MW{sub e} (TF), firing both oil and gas as reburn fuels, and at Cassano unit No. 1, 75 MW{sub e} (WF), firing gas as main and reburn fuels. Reference is also made to the development of the projects for the application of the technology at Monfalcone, 320 MW{sub e} (WF), in the oil over oil configuration, whose demonstration is planned for the Autumn of 1995, and at Porto Tolle unit No. 1, 660 MW{sub e} (TF), that is planned to start in January 1996.« less

  20. BMDO Technology and the Electric Utility Industry

    DTIC Science & Technology

    1997-01-01

    use flue gas desulfurization systems, called scrubbers, to control the emissions of S02. In general, such systems allow combustion gases to pass...M) of flue gas desulfurization systems were about .0114 cents per kilowatt-hour. This small fraction of a penny translates to hundreds of millions...diluent gas , and opacity of units (the percentage of light that one can see through the flue gas ). According to requirements, CEM equipment must be

  1. A study on the oil-based drilling cutting pyrolysis residue resource utilization by the exploration and development of shale gas.

    PubMed

    Wang, Chao-Qiang; Jin, Ji-Zhong; Lin, Xiao-Yan; Xiong, De-Ming; Mei, Xu-Dong

    2017-07-01

    Based on the requirement of national energy conservation and environmental protection, attention has been given to building an environment-friendly and resource-saving society. Shale gas oil-based drilling cutting pyrolysis residues (ODPRs) have been used as the main research object to developing new technology which can convert the residues into a harmless and recyclable material. Using the test data of ODPR, we analyze the development prospect in the building material industry and provide a scheme to utilize this particular solid-waste efficiently. Theoretically speaking, the ODPR resource utilization such as admixture of cement, making sintered brick, and non-fired brick, by the exploration and development of Fuling shale gas is feasible.

  2. REMOVAL OF SO2 FROM INDUSTRIAL WASTE GASES

    EPA Science Inventory

    The paper discusses technology for sulfur dioxide (SO2) pollution control by flue gas cleaning (called 'scrubbing') in the utility industry, a technology that has advanced significantly during the past 5 years. Federal Regulations are resulting in increasingly large-scale applica...

  3. Acoustic-based Technology to Detect Buried Pipes

    DOT National Transportation Integrated Search

    2011-07-29

    The objective of this project is to build a pre-commercial device, improve its performance to detect multiple buried pipes, and evaluate the pre-commercial device at utility sites. In the past, Gas Technology Institute (GTI) and SoniVerse Inc. (SVI) ...

  4. Color Changing Material for Hydrogen Leak Detection

    NASA Technical Reports Server (NTRS)

    Victor, Megan E.

    2014-01-01

    Kennedy Space Center scientists developed a hydrogen leak sensor utilizing a combination of chemochromic pigment and polymer that can be molded or fiber spun into rigid or flexible shapes such as tape. The sensor turns a dark color when exposed to hydrogen gas. This sensor has proven to be very effective for pinpointing the exact location of leaks in hydrogen gas lines and fittings at launch pads. Kennedy Space Center exclusively licensed this technology to the University of Central Florida (UCF), who also holds patents that are complimentary to KSC's. UCF has bundled the patents and exclusively licensed the portfolio to HySense Technology LLC, a startup company founded by a UCF professor who supports the UCF Florida Solar Energy Center (FSEC). HySense has fully developed its product (known as Intellipigment"TM"), and currently has five commercial customers. The company recently won the $100,000 first-place award at the CAT5 innovation competition at the Innovation Concourse of the Southeast: Safety & Manufacturing event in Orlando, FL. Commercial production and sales of this technology by HySense Technology will make this leak sensor widely available for use by NASA, DoD, and industries that utilize hydrogen gas.

  5. Multi-wavelength mid-IR light source for gas sensing

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Alajoki, Teemu; Cherchi, Matteo; Ollila, Jyrki; Harjanne, Mikko; Heinilehto, Noora; Suomalainen, Soile; Viheriälä, Jukka; Zia, Nouman; Guina, Mircea; Buczyński, Ryszard; Kasztelanic, Rafał; Kujawa, Ireneusz; Salo, Tomi; Virtanen, Sami; Kluczyński, Paweł; Sagberg, Hâkon; Ratajczyk, Marcin; Kalinowski, Przemyslaw

    2017-02-01

    Cost effective multi-wavelength light sources are key enablers for wide-scale penetration of gas sensors at Mid-IR wavelength range. Utilizing novel Mid-IR Si-based photonic integrated circuits (PICs) filter and wide-band Mid-IR Super Luminescent Light Emitting Diodes (SLEDs), we show the concept of a light source that covers 2.5…3.5 μm wavelength range with a resolution of <1nm. The spectral bands are switchable and tunable and they can be modulated. The source allows for the fabrication of an affordable multi-band gas sensor with good selectivity and sensitivity. The unit price can be lowered in high volumes by utilizing tailored molded IR lens technology and automated packaging and assembling technologies. The status of the development of the key components of the light source are reported. The PIC is based on the use of micron-scale SOI technology, SLED is based on AlGaInAsSb materials and the lenses are tailored heavy metal oxide glasses fabricated by the use of hot-embossing. The packaging concept utilizing automated assembly tools is depicted. In safety and security applications, the Mid-IR wavelength range covered by the novel light source allows for detecting several harmful gas components with a single sensor. At the moment, affordable sources are not available. The market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity.

  6. Research on Utilization of Geo-Energy

    NASA Astrophysics Data System (ADS)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field of growing economic and ecologic relevance.

  7. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    NASA Astrophysics Data System (ADS)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  8. Application of Modern Coal Technologies to Military Facilities. Volume II. Evaluation of the Applicability and Cost of Current and Emerging Coal Technologies for the Utilization of Coal as a Primary Energy Source

    DTIC Science & Technology

    1968-05-01

    flue gas . Is one. The more popular method Is wet limestone scrubbing. In the limestone Injection system, ground limestone Is mixed with the coal and...is removed. The remainder must be eliminated from the flue gas as SO2 by wet scrubbing. Reduced boiler efficiency, due to ash accumulation on the...use of the fluldlzed-bed boiler, rather than a conventional coal-fired boiler requiring a flue gas cleanup system, will result In an

  9. Instabilities and the Development of Density Waves in Gas-Particle and Granular Flows

    NASA Astrophysics Data System (ADS)

    Glasser, Benjamin J.; Liss, Elizabeth D.; Conway, Stephen L.; Johri, Jayati

    2002-11-01

    The dynamics of gas-particle and granular flows impact numerous technologies related to the local utilization of Lunar and Martian soils and the Martian atmosphere. On earth, such flows occur in a large number of industries including the chemical, pharmaceutical, materials, mining and food industries.

  10. BIOMASS AND NATURAL GAS AS CO-FEEDSTOCKS FOR PRODUCTION OF FUEL FOR FUEL-CELL VEHICLES

    EPA Science Inventory

    The article gives results of an examination of prospects for utilizing renewable energy crops as a source of liquid fuel to mitigate greenhouse gas emissions from mobile sources and reduce dependence on imported petroleum. Fuel cells would provide an optimum vehicle technology fo...

  11. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios.

    PubMed

    Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad

    2014-12-02

    The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.

  12. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linville, B.

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  13. Technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  14. A high fusion power gain tandem mirror

    NASA Astrophysics Data System (ADS)

    Fowler, T. K.; Moir, R. W.; Simonen, T. C.

    2017-10-01

    Utilizing advances in high field superconducting magnet technology and microwave gyrotrons we illustrate the possibility of a high power gain (Q = 10-20) tandem mirror fusion reactor. Inspired by recent Gas Dynamic Trap (GDT) achievements we employ a simple axisymmetric mirror magnet configuration. We consider both DT and cat. DD fuel options that utilize existing as well as future technology development. We identify subjects requiring further study such as hot electron physics, trapped particle modes and plasma startup.

  15. The Problem of Ensuring Reliability of Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Nozhnitsky, Yu A.

    2018-01-01

    Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.

  16. Capability of the Gas Analysis and Testing Laboratory at the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Jimenez, Javier; Sweterlitsch, Jeff

    2012-01-01

    The Gas Analysis and Testing Laboratory is an integral part of the testing performed at the NASA Johnson Space Center. The Gas Analysis and Testing Laboratory is a high performance laboratory providing real time analytical instruments to support manned and unmanned testing. The lab utilizes precision gas chromatographs, gas analyzers and spectrophotometers to support the technology development programs within the NASA community. The Gas Analysis and Testing Laboratory works with a wide variety of customers and provides engineering support for user-specified applications in compressed gas, chemical analysis, general and research laboratory.

  17. Capability of the Gas Analysis and Testing Laboratory at the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Jimenez, Javier; Sweterlitsch, Jeff

    2011-01-01

    The Gas Analysis and Testing Laboratory is an integral part of the testing performed at the NASA Johnson Space Center. The Gas Analysis and Testing Laboratory is a high performance laboratory providing real time analytical instruments to support manned and unmanned testing. The lab utilizes precision gas chromatographs, gas analyzers and spectrophotometers to support the technology development programs within the NASA community. The Gas Analysis and Testing Laboratory works with a wide variety of customers and provides engineering support for user-specified applications in compressed gas, chemical analysis, general and research laboratory

  18. Improving combustion characteristics and NO(x) emissions of a down-fired 350 MW(e) utility boiler with multiple injection and multiple staging.

    PubMed

    Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi

    2011-04-15

    Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash.

  19. EUV tools: hydrogen gas purification and recovery strategies

    NASA Astrophysics Data System (ADS)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  20. Activities of the Institute of Chemical Processing of Coal at Zabrze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less

  1. The use of information systems to transform utilities and regulatory commissions: The application of geographic information systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirick, D.W.; Montgomery, G.E.; Wagman, D.C.

    1995-09-01

    One technology that can assist utilities remain financially viable in competitive markets and help utilities and regulators to better serve the public is information technology. Because geography is an important part of an electric, natural gas, telecommunications, or water utility, computer-based Geographic Information Systems (GIS) and related Automated Mapping/Facilities Management systems are emerging as core technologies for managing an ever-expanding variety of formerly manual or paper-based tasks. This report focuses on GIS as an example of the types of information systems that can be used by utilities and regulatory commissions. Chapter 2 provides general information about information systems and effectsmore » of information on organizations; Chapter 3 explores the conversion of an organization to an information-based one; Chapters 4 and 5 set out GIS as an example of the use of information technologies to transform the operations of utilities and commissions; Chapter 6 describes the use of GIS and other information systems for organizational reengineering efforts; and Chapter 7 examines the regulatory treatment of information systems.« less

  2. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Jayesh; Hess, Fernando; Horzen, Wessel van

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability ofmore » implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO 2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO 2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam in the existing combined cycle power plant provides sufficient power for all plant loads. The lifecycle GHG profile of the produced jet fuel is 95% of conventional jet fuel. Without converting the fuel gas to a low carbon fuel gas, the emissions would be 108% of conventional jet fuel and without any GHG mitigation, the profile would be 206%. Oil prices greater than $120 per barrel are required to reach a targeted internal rate of return on equity (IRROE) of 12%. Although capital expenditure is much less than if a greenfield facility was built, the relatively small size of the plant, assumed coal price, and the CTL risk profile used in the economic assumptions lead to a high cost of production. Assuming more favorable factors, the economic oil price could be reduced to $78 per barrel with GHG mitigation and $55 per barrel with no GHG mitigation.« less

  3. Liquid-cooling technology for gas turbines review and status

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J., Jr.; Stepka, F. S.

    1978-01-01

    A review of research related to liquid cooling of gas turbines was conducted and an assessment of the state of the art was made. Various methods of liquid cooling turbines were reviewed. Examples and results with test and demonstrator turbines utilizing these methods along with the advantages and disadvantages of the various methods are discussed.

  4. Coal Utilization in Schools: Issues and Answers.

    ERIC Educational Resources Information Center

    Pusey, Robert H.

    Coal, at one-third the cost of natural gas and one-fifth the cost of oil, is our cheapest source of energy and is also in abundant supply. Because of significant technological advances, coal-fired equipment now approaches the clean and automatic operational characteristics of gas- and oil-fired boilers. For these reasons, and because schools are…

  5. Policy Considerations for Commercializing Natural Gas and Biomass CCUS

    NASA Astrophysics Data System (ADS)

    Abrahams, L.; Clavin, C.

    2017-12-01

    Captured CO2 from power generation has been discussed as an opportunity to improve the environmental sustainability of fossil fuel-based electricity generation and likely necessary technological solution necessary for meeting long-term climate change mitigation goals. In our presentation, we review the findings of a study of natural gas CCUS technology research and development and discuss their applications to biomass CCUS technology potential. Based on interviews conducted with key stakeholders in CCUS technology development and operations, this presentation will discuss these technical and economic challenges and potential policy opportunities to support commercial scale CCUS deployment. In current domestic and electricity and oil markets, CCUS faces economic challenges for commercial deployment. In particular, the economic viability of CCUS has been impacted by the sustained low oil prices that have limited the potential for enhanced oil recovery (EOR) to serve as a near-term utilization opportunity for the captured CO2. In addition, large scale commercial adoption of CCUS is constrained by regulatory inconsistencies and uncertainties across the United States, high initial capital costs, achieving familiarity with new technology applications to existing markets, developing a successful performance track record to acquire financing agreements, and competing against well-established incumbent technologies. CCUS also has additional technical hurdles for measurement, verification, and reporting within states that have existing policy and regulatory frameworks for climate change mitigation. In addition to fossil-fuel based CCUS, we will discuss emerging opportunities to utilize CCUS fueled by gasified biomass resulting in carbon negative power generation with expanded economic opportunities associated with the enhanced carbon sequestration. Successful technology development of CCUS technology requires a portfolio of research leading to technical advances, advances in financial instruments to leverage the benefits of multiple commodity markets (e.g. natural gas, oil, biomass), and policy instruments that address regulatory hurdles posed CCUS technology deployment.

  6. Space benefits: The secondary application of aerospace technology in other sectors of the economy. [(information dissemination and technology transfer from NASA programs)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Space Benefits is a publication that has been prepared for the NASA Technology Utilization Office by the Denver Research Institute's Program for Transfer Research and Impact Studies, to provide the Agency with accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The technological innovations derived from NASA space programs and their current applications in the following areas are considered: (1) manufacturing consumer products, (2) manufacturing capital goods, (3) new consumer products and retailing, (4) electric utilities, (5) environmental quality, (6) food production and processing, (7) government, (8) petroleum and gas, (9) construction, (10) law enforcement, and (11) highway transportation.

  7. Evaluation of two typical distributed energy systems

    NASA Astrophysics Data System (ADS)

    Han, Miaomiao; Tan, Xiu

    2018-03-01

    According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.

  8. Proceedings of the American Power Conference. Volume 58-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1996-10-01

    This is volume 58-I of the proceedings of the American Power Conference, 1996, Technology for Competition and Globalization. The topics of the papers include power plant DC issues; cost of environmental compliance; advanced coal systems -- environmental performance; technology for competition in dispersed generation; superconductivity technologies for electric utility applications; power generation trends and challenges in China; aging in nuclear power plants; innovative and competitive repowering options; structural examinations, modifications and repairs; electric load forecasting; distribution planning; EMF effects; fuzzy logic and neural networks for power plant applications; electrokinetic decontamination of soils; integrated gasification combined cycle; advances in fusion; coolingmore » towers; relays; plant controls; flue gas desulfurization; waste product utilization; and improved technologies.« less

  9. Information Technology: Making It All Fit. Track I: Policy and Planning.

    ERIC Educational Resources Information Center

    CAUSE, Boulder, CO.

    Seven papers from the 1988 CAUSE conference's Track I, Policy and Planning, are presented. They include: "Developing a Strategic Plan for Academic Computing" (Arthur S. Gloster II); "New Technologies Are Presenting a Crisis for Middle Management" (M. Lewis Temares and Ruben Lopez); "An Information Utility: The Light, Gas,…

  10. Utility Computing: Reality and Beyond

    NASA Astrophysics Data System (ADS)

    Ivanov, Ivan I.

    Utility Computing is not a new concept. It involves organizing and providing a wide range of computing-related services as public utilities. Much like water, gas, electricity and telecommunications, the concept of computing as public utility was announced in 1955. Utility Computing remained a concept for near 50 years. Now some models and forms of Utility Computing are emerging such as storage and server virtualization, grid computing, and automated provisioning. Recent trends in Utility Computing as a complex technology involve business procedures that could profoundly transform the nature of companies' IT services, organizational IT strategies and technology infrastructure, and business models. In the ultimate Utility Computing models, organizations will be able to acquire as much IT services as they need, whenever and wherever they need them. Based on networked businesses and new secure online applications, Utility Computing would facilitate "agility-integration" of IT resources and services within and between virtual companies. With the application of Utility Computing there could be concealment of the complexity of IT, reduction of operational expenses, and converting of IT costs to variable `on-demand' services. How far should technology, business and society go to adopt Utility Computing forms, modes and models?

  11. If Your Technology has an Application for the Natural Gas Industry, OTD is Interested in Learning About It

    NASA Astrophysics Data System (ADS)

    Droessler, M. S.

    2017-12-01

    It's as easy as clicking on the "Submit Your Idea" tab on our website and sending us a short description of your technology. Operations Technology Development (OTD) funds 30 to 40 new projects each year. We have a research budget of $10 million annually and it doesn't always get spent. So who are we and what are we interested in? OTD is a membership company made up of 24 members representing the largest natural gas distribution utilities in North America. We represent 60% of the households currently served by natural gas. With OTD, natural gas utilities work together to identify their needs, leverage their funds, and prioritize and solve common problems. Our research ranges from addressing environmental issues, pipeline and worker safety, risk reduction, pipeline inspection, and reducing the costs of daily operations. Some specific examples include locating buried nonmetallic pipe and improving ways to pinpoint and quantify the release of methane. Analyzing "big data" sets and dealing with cyber security have our IT departments up at night so these are some of the newer topics of interest. Please see if our needs match the research you are passionate about by glancing through our current Research Project Summaries at otd-co.org. So what's your great idea? We want to hear about it.

  12. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.

  13. Advanced Seal Development for Large Industrial Gas Turbines

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  14. Rapid Building Assessment Project

    DTIC Science & Technology

    2014-05-01

    Efficiency Buildings Hub EISA Energy Independence Security Act EPRI The Electric Power and Research Institute ESTCP Environmental Security Technology...Ordinary Least Squares PG&E Pacific Gas & Electric R&D research and development RBA Remote Building Analytics REST representational state...utilities across North America and Europe. Requiring only hourly utility electric meter data, the building type, and address, FirstFuel can produce a

  15. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europemore » on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.« less

  16. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    NASA Technical Reports Server (NTRS)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  17. Aerospace Fuels From Nonpetroleum Raw Materials

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.; Hepp, Aloysius F.; Kulis, Michael J.; Jaworske, Donald A.

    2013-01-01

    Recycling human metabolic and plastic wastes minimizes cost and increases efficiency by reducing the need to transport consumables and return trash, respectively, from orbit to support a space station crew. If the much larger costs of transporting consumables to the Moon and beyond are taken into account, developing waste recycling technologies becomes imperative and possibly mission enabling. Reduction of terrestrial waste streams while producing energy and/or valuable raw materials is an opportunity being realized by a new generation of visionary entrepreneurs; several relevant technologies are briefly compared, contrasted and assessed for space applications. A two-step approach to nonpetroleum raw materials utilization is presented; the first step involves production of supply or producer gas. This is akin to synthesis gas containing carbon oxides, hydrogen, and simple hydrocarbons. The second step involves production of fuel via the Sabatier process, a methanation reaction, or another gas-to-liquid technology, typically Fischer-Tropsch processing. Optimization to enhance the fraction of product stream relevant to transportation fuels via catalytic (process) development at NASA Glenn Research Center is described. Energy utilization is a concern for production of fuels whether for operation on the lunar or Martian surface, or beyond. The term green relates to not only mitigating excess carbon release but also to the efficiency of energy usage. For space, energy usage can be an essential concern. Another issue of great concern is minimizing impurities in the product stream(s), especially those that are potential health risks and/or could degrade operations through catalyst poisoning or equipment damage; technologies being developed to remove heteroatom impurities are discussed. Alternative technologies to utilize waste fluids, such as a propulsion option called the resistojet, are discussed. The resistojet is an electric propulsion technology with a powered thruster to vaporize and heat a propellant to high temperature, hot gases are subsequently passed through a converging-diverging nozzle expanding gases to supersonic velocities. A resistojet can accommodate many different fluids, including various reaction chamber (by-)products.

  18. Aerospace Fuels from Nonpetroleum Raw Materials

    NASA Technical Reports Server (NTRS)

    Palaszewski, B. A.; Hepp, A. F.; Kulis, M. J.; Jaworske, D. A.

    2013-01-01

    Recycling human metabolic and plastic wastes minimizes cost and increases efficiency by reducing the need to transport consumables and return trash, respectively, from orbit to support a space station crew. If the much larger costs of transporting consumables to the Moon and beyond are taken into account, developing waste recycling technologies becomes imperative and possibly mission enabling. Reduction of terrestrial waste streams while producing energy and/or valuable raw materials is an opportunity being realized by a new generation of visionary entrepreneurs; several relevant technologies are briefly compared, contrasted and assessed for space applications. A two-step approach to nonpetroleum raw materials utilization is presented; the first step involves production of supply or producer gas. This is akin to synthesis gas containing carbon oxides, hydrogen, and simple hydrocarbons. The second step involves production of fuel via the Sabatier process, a methanation reaction, or another gas-to-liquid technology, typically Fischer- Tropsch processing. Optimization to enhance the fraction of product stream relevant to transportation fuels via catalytic (process) development at NASA GRC is described. Energy utilization is a concern for production of fuels whether for operation on the lunar or Martian surface, or beyond. The term "green" relates to not only mitigating excess carbon release but also to the efficiency of energy usage. For space, energy usage can be an essential concern. Other issues of great concern include minimizing impurities in the product stream(s), especially those that are potential health risks and/or could de-grade operations through catalyst poisoning or equipment damage; technologies being developed to remove heteroatom impurities are discussed. Alternative technologies to utilize waste fluids, such as a propulsion option called the resistojet, are discussed. The resistojet is an electric propulsion technology with a powered thruster to vaporize and heat a propellant to high temperature, hot gases are subsequently passed through a converging-diverging nozzle expanding gases to supersonic velocities. A resistojet can accommodate many different fluids, including various reaction chamber (by-)products.

  19. Gasification Product Improvement Facility (GPIF). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less

  20. Challenges and Opportunities of Gas Engine Driven Heat Pumps: Two Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac; Mehdizadeh Momen, Ayyoub

    Gas engine driven heat pumps (GHP) currently hold a small market share. This share is considerably smaller than what the full potential of GHP technology can realize. Of the main benefits of the GHP technology is their better primary energy utilization mainly due to the ability to recover the engine heat. However, development and market penetration of GHP technology have been challenged by various market and technical barriers. The main barriers are the high initial cost, low awareness of the technology, and poor perception. On the other hand, several opportunities arise that the GHP technology can take advantage of tomore » increase its market share. The most direct opportunity is the abundance of cheap natural gas. This translates directly into monetary savings and higher ROI. GHPs offer the advantage of reducing the peak demand by 80% compared to electric counterpart. From the point of view of utilities, this eliminates the need for lower-efficiency peaking power plants and over-expansion only to cover maximum peak times. From the point of view of renewable customers, GHPs eliminate the need to buy power from the grid at a high price. This is especially important in hot climates with high cooling loads. When built and operated as distributed generation, GHPs can improve the reliability of power delivery to consumers. The paper discusses the challenges and opportunities as seen during the development and commercialization of two different GHP products; a 10-ton packaged unit and 5-ton split unit.« less

  1. Economics of liquefied natural gas production, transport and distribution for end use as a transportation fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkins, R.E.; Sutton, H.E.

    1994-12-31

    Natural gas vehicles have been operating in the United States for over 30 years. With few exceptions, these vehicles are owned and operated by local gas utilities that utilize the natural gas in the compressed form (CNG), at pressures of up to 3,600 psi. However, the limited range, system weight and the high cost of fueling facilities presents a serious handicap for these compressed fuel systems. Liquefied natural gas (LNG) automotive fuel systems, on the other hand, are a relatively new player in the emerging clean fuels market. While the technical feasibility, safety, and operational suitability of LNG fuel systemsmore » have been demonstrated during the past 20 years, in a variety of test projects including automotive, marine, aviation, and rail systems, little has been done to commercialize or promote this technology. Recent independent cost comparisons and technical evaluations have been conducted by several major transit organizations and national truck fleets with interesting results. They have concluded that LNG automotive fuel systems can meet the performance and operational criteria of their gasoline and diesel fuel systems without compromising vehicle range or imposing unacceptable weight and payload penalties on their vehicles. The purpose of this paper is to further define the economics of LNG production, transportation and distribution costs. The liquefaction of natural gas is a mature technology and was first accomplished by Faraday in 1855. The first large scale plants were installed in the United States in 1941 and this paper provides a summary of the issues and costs associated with the procurement, installation, and operation of modern day natural gas liquefaction systems. There are no technical barriers to building LNG plants where needed. In addition to these {open_quotes}peak shaving{close_quotes} liquefaction plants, operated by utilities, there are many liquefaction plants owned and operated by the industrial gas business sector.« less

  2. Mobile natural gas leak surveys indicate that two utilities have high false negative rates

    NASA Astrophysics Data System (ADS)

    von Fischer, J. C.; Brewer, P. E.; Chamberlain, S.; Gaylord, A.; von Fischer, J.

    2016-12-01

    In the distribution systems that carry natural gas to consumers, leaks need to be discovered for safety reasons and to reduce greenhouse gas emissions. However, few utilities have adopted newer laser-based technologies that have greater sensitivity and precision, and instead rely on "industry standard" equipment that is far less sensitive. In partnership with the Environmental Defense Fund and Google, we mapped natural gas leaks in the domains of two anonymous utilities (Utility "A" and "B") using high sensitivity Picarro methane analyzers in Google Street View Cars. Surprisingly, when we shared these results with utilities, their survey crews were unable to find most of the leaks that our survey indicated (84% in A and 80% in B). To investigate this phenomenon, our team visited a subset of the leaks in each utility domain (n=32 in A and n=30 in B), and worked alongside utility surveyors to search the leak indication area, using a Los Gatos Research ultraportable methane analyzer to pinpoint leak locations. We found evidence of natural gas leaks at 69% and 68% of the locations in Utilities A and B respectively where survey crews had found nothing. We describe this as a "false negative" rate for the utility because the utility survey falsely indicated that there was no leak at these locations. Of these false negatives, 7% (n=2 of 32 in A, n=2 of 30 in B) were determined to be Grade 1 leaks requiring immediate repair due to high safety risk. Instrument sensitivity appears to explain some of the false negative rates. In particular, use of some industry standard equipment appears to have created a false sense of confidence among utility surveyors that leaks were not present. However, there was also evidence of communication failures and that surveyors did not use optimal approaches in their search. Based on these findings, we suggest that: 1) mobile deployment of high-precision methane analyzers can help find more natural gas leaks, and 2) use of some hand-held survey instruments may lead to higher rates of false negatives in leak survey and 3) there may be room for improvement in leak survey methodologies.

  3. Gas-turbine critical research and advanced technology support project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Hodge, P. E.; Lowell, C. E.; Anderson, D. N.; Schultz, D. F.

    1981-01-01

    A technology data base for utility gas turbine systems capable of burning coal derived fuels was developed. The following areas are investigated: combustion; materials; and system studies. A two stage test rig is designed to study the conversion of fuel bound nitrogen to NOx. The feasibility of using heavy fuels in catalytic combustors is evaluated. A statistically designed series of hot corrosion burner rig tests was conducted to measure the corrosion rates of typical gas turbine alloys with several fuel contaminants. Fuel additives and several advanced thermal barrier coatings are tested. Thermal barrier coatings used in conjunction with low critical alloys and those used in a combined cycle system in which the stack temperature was maintained above the acid corrosion temperature are also studied.

  4. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard, S.; Lu, Yingzhong

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries thatmore » utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.« less

  5. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations.

    PubMed

    Yasin, Muhammad; Jeong, Yeseul; Park, Shinyoung; Jeong, Jiyeong; Lee, Eun Yeol; Lovitt, Robert W; Kim, Byung Hong; Lee, Jinwon; Chang, In Seop

    2015-02-01

    Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Advanced gas turbine systems program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of themore » utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.« less

  7. Thermal-barrier coatings for utility gas turbines

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.

    1982-01-01

    The potential of thermal barrier coatings for use in utility gas turbines was assessed. Pressurized passage and ambient pressure doped fuel burner rig tests revealed that thermal barrier coatings are not resistant to dirty combustion environments. However, present thermal barrier coatings, such as duplex partially stabilized zirconia and duplex Ca2SiO4 have ample resistance to the thermo-mechanical stress and temperature levels anticipated for heavy duty gas turbines firing clean fuel as revealed by clean fuel pressurized passage and ambient pressure burner rig tests. Thus, it is appropriate to evaluate such coatings on blades, vanes and combustors in the field. However, such field tests should be backed up with adequate effort in the areas of coating application technology and design analysis so that the field tests yield unequivocal results.

  8. Simplified gas sensor model based on AlGaN/GaN heterostructure Schottky diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Subhashis, E-mail: subhashis.ds@gmail.com; Majumdar, S.; Kumar, R.

    2015-08-28

    Physics based modeling of AlGaN/GaN heterostructure Schottky diode gas sensor has been investigated for high sensitivity and linearity of the device. Here the surface and heterointerface properties are greatly exploited. The dependence of two dimensional electron gas (2DEG) upon the surface charges is mainly utilized. The simulation of Schottky diode has been done in Technology Computer Aided Design (TCAD) tool and I-V curves are generated, from the I-V curves 76% response has been recorded in presence of 500 ppm gas at a biasing voltage of 0.95 Volt.

  9. The NOXSO clean coal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% ofmore » the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).« less

  10. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.

    2015-12-01

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  11. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  12. A techno-economic & environmental analysis of a novel technology utilizing an internal combustion engine as a compact, inexpensive micro-reformer for a distributed gas-to-liquids system

    NASA Astrophysics Data System (ADS)

    Browne, Joshua B.

    Anthropogenic greenhouse gas emissions (GHG) contribute to global warming, and must be mitigated. With GHG mitigation as an overarching goal, this research aims to study the potential for newfound and abundant sources of natural gas to play a role as part of a GHG mitigation strategy. However, recent work suggests that methane leakage in the current natural gas system may inhibit end-use natural gas as a robust mitigation strategy, but that natural gas as a feedstock for other forms of energy, such as electricity generation or liquid fuels, may support natural-gas based mitigation efforts. Flaring of uneconomic natural gas, or outright loss of natural gas to the atmosphere results in greenhouse gas emissions that could be avoided and which today are very large in aggregate. A central part of this study is to look at a new technology for converting natural gas into methanol at a unit scale that is matched to the size of individual natural gas wells. The goal is to convert stranded or otherwise flared natural gas into a commercially valuable product and thereby avoid any unnecessary emission to the atmosphere. A major part of this study is to contribute to the development of a novel approach for converting natural gas into methanol and to assess the environmental impact (for better or for worse) of this new technology. This Ph. D. research contributes to the development of such a system and provides a comprehensive techno-economic and environmental assessment of this technology. Recognizing the distributed nature of methane leakage associated with the natural gas system, this work is also intended to advance previous research at the Lenfest Center for Sustainable Energy that aims to show that small, modular energy systems can be made economic. This thesis contributes to and analyzes the development of a small-scale gas-to-liquids (GTL) system aimed at addressing flared natural gas from gas and oil wells. This thesis includes system engineering around a design that converts natural gas to synthesis gas (syngas) in a reciprocating internal combustion engine and then converts the syngas into methanol in a small-scale reactor. With methanol as the product, this research aims to show that such a system can not only address current and future natural gas flaring regulation, but eventually can compete economically with historically large-scale, centralized methanol production infrastructure. If successful, such systems could contribute to a shift away from large, multi-billion dollar capital cost chemical plants towards smaller systems with shorter lifetimes that may decrease the time to transition to more sustainable forms of energy and chemical conversion technologies. This research also quantifies the potential for such a system to contribute to mitigating GHG emissions, not only by addressing flared gas in the near-term, but also supporting future natural gas infrastructure ideas that may help to redefine the way the current natural gas pipeline system is used. The introduction of new, small-scale, distributed energy and chemical conversion systems located closer to the point of extraction may contribute to reducing methane leakage throughout the natural gas distribution system by reducing the reliance and risks associated with the aging natural gas pipeline infrastructure. The outcome of this thesis will result in several areas for future work. From an economic perspective, factors that contribute to overall system cost, such as operation and maintenance (O&M) and capital cost multiplier (referred to as the Lang Factor for large-scale petro-chemical plants), are not yet known for novel systems such as the technology presented here. From a technical perspective, commercialization of small-scale, distributed chemical conversion systems may create a demand for economical compression and air-separation technologies at this scale that do not currently exist. Further, new business cases may arise aimed at utilizing small, remote sources of methane, such as biogas from agricultural and municipal waste. Finally, while methanol was selected as the end-product for this thesis, future applications of this technology may consider methane conversion to hydrogen, ammonia, and ethylene for example, challenging the orthodoxy in the chemical industry that "bigger is better."

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Major

    The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability andmore » leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.« less

  14. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, F.E.; Hedenhag, J.G.; Marchant, S.K.

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, airmore » toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.« less

  15. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU

    NASA Technical Reports Server (NTRS)

    Walton, Krista S.; LeVan, M. Douglas

    2004-01-01

    The atmosphere of Mars has many resources that can be processed to produce things such as oxygen, fuel, buffer gas, and water for support of human exploration missions. Successful manipulation of these resources is crucial for safe, cost-effective, and self-sufficient long-term human exploration of Mars. In our research, we are developing enabling technologies that require fundamental knowledge of adsorptive gas storage and separation processes. In particular, we are designing and constructing an innovative, low mass, low power separation device to recover carbon dioxide and carbon monoxide for Mars ISRU (in-situ resource utilization). The technology has broad implications for gas storage and separations for gas-solid systems that are ideally suited for reduced gravitational environments. This paper describes our separation process design and experimental procedures and reports results for the separation of CO2 and CO by a four-step adsorption cycle.

  16. Nanostructured ZnO films for potential use in LPG gas sensors

    NASA Astrophysics Data System (ADS)

    Latyshev, V. M.; Berestok, T. O.; Opanasyuk, A. S.; Kornyushchenko, A. S.; Perekrestov, V. I.

    2017-05-01

    The aim of the work was to obtain ZnO nanostructures with heightened surface area and to study relationship between formation method and gas sensor properties towards propane-butane mixture (LPG). In order to synthesize ZnO nanostructures chemical and physical formation methods have been utilized. The first one was chemical bath deposition technology and the second one magnetron sputtering of Zn followed by oxidation. Optimal method and technological parameters corresponding to formation of material with the highest sensor response have been determined experimentally. Dynamical gas sensor response at different temperature values and dependencies of the sensor sensitivity on the temperature at different LPG concentrations in air have been investigated. It has been found, that sensor response depends on the sample morphology and has the highest value for the structure consisting of thin nanowires. The factors that lead to the decrease in the gas sensor operating temperature have been determined.

  17. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, W.J.; Brown, W.R.; Siwajek, L.

    1998-09-01

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfillmore » gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.« less

  18. A New Dry Flue Gas Desulfurization Process-Underfeed Circulating Spouted Bed

    NASA Astrophysics Data System (ADS)

    Tao, M.; Jin, B. S.; Yang, Y. P.

    Applying an underfeed system, the underfeed circulating spouted bed was designed as a desulfurization reactor. The main objective of the technology is to improve the mixing effect and distribution uniformity of solid particles, and therefore to advance the desulfurization efficiency and calcium utility. In this article, a series of experimental studies were conducted to investigate the fluidization behavior of the solid-gas two-phase flow in the riser. The results show that the technology can distinctly improve the distribution of gas velocity and particle flux on sections compared with the facefeed style. Analysis of pressure fluctuation signals indicates that the operation parameters have significant influence on the flow field in the reaction bed. The existence of injecting flow near the underfeed nozzle has an evident effect on strengthening the particle mixing.

  19. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    NASA Astrophysics Data System (ADS)

    Klāvs, G.; Kundziņa, A.; Kudrenickis, I.

    2016-10-01

    Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 - the investment support (IS) and the feed-in tariff (FIT) - on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors' estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.

  20. 30 CFR 250.1606 - Control of wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations... utilize the best available and safest drilling technologies and state-of-the-art methods to evaluate and... protection of personnel, equipment, natural resources, and the environment. ...

  1. A Simple and Inexpensive Solar Energy Experiment.

    ERIC Educational Resources Information Center

    Evans, J. H.; Pedersen, L. G.

    1979-01-01

    An experiment is presented which utilizes the current solid state technology to demonstrate electrochemical generation of hydrogen gas, direct generation of electricity for pumping water, and energy conversion efficiency. The experimental module costs about $100 and can be used repeatedly. (BB)

  2. Development of natural gas rotary engines

    NASA Astrophysics Data System (ADS)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  3. Treatment of Produced Water from Carbon Sequestration Sites for Water Reuse and Mineral Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renew, Jay; Jenkins, Kristen; Bhagavatula, Abhijit

    Southern Research along with Advanced Resources International, Inc. (ARI), Heartland Technology Partners, LLC (Heartland), New Logic Research, Inc. (New Logic), and Mr. Michael N. DiFilippo, Consultant developed a concept for an on-site strategy and design for management of produced water from CO 2 sequestration sites for maximum water reuse. When CO 2 is injected into deep saline aquifers, it may be necessary to produce water from the reservoir to reduce reservoir pressure. The New Logic Research, vibratory shear enhanced process (VSEP) membrane technology, and Heartland Technology Partners, low momentum-high turbulence (LM-HT) evaporation technology was selected for evaluation for treating thismore » produced water from a 530 MW natural gas combined cycle (NGCC) power plant by utilizing waste heat from the plant to drive the evaporation process. The technology was also evaluated for application to a coal-fired power plant in lieu of the NGCC power plant. The results from the project show that the application of the proposed technology to the 530 MW NGCC power plant scenario could be feasible. The results indicate that formation water TDS has a very large impact on the technical and economic feasibility of the process. One advantage of formations with low TDS water is that the VSEP membrane can be utilized to pre-concentrate the produced water upstream of the LM-HT. The results indicate that a significant portion of the exhaust gas from the NGCC power plant will have to be utilized to provide waste heat for the LM-HT evaporator; however, less will be required with low-TDS formation water. The CAPEX costs for LM-HT for all three formations (97.8USD to 122.7USD MM/year) and VSEP plus LM-HT (106.6USD MM/year) for the Keg River formation is high in cost but lower than all technology compared including crystallization, VSEP plus crystallization, FO plus LM-HT, VCE plus LM-HT, and VCE plus crystallization. The OPEX for the LM-HT for all three formations (6.33USD to 7.97USD MM/year) and VSEP plus LM-HT (13.29USD MM/year) for the Keg River formation is lower than crystallization, VSEP plus crystallization, FO plus LM-HT, and FO plus crystallization. Only VCE plus LM-HT and VCE plus crystallization have a comparable OPEX costs to LM-HT for all three formation and VSEP plus LM-HT for the Keg River formation. The coal-fired power plant comparison showed that it is not feasible to apply the technology to that type of fossil fuel plant. Even utilizing 20% of the flue gas, produced water could only be treated from sequestration of approximately 6% to 9% of the CO 2 produced by the coal-fired power plant. This technology operates better when applied to a NGCC power plant due to the higher temperature of the exhaust gas, approximately 1,149 oF/621 oC versus 650 oF/343 oC for flue gas at a coal fired-power plant. The high heat content of the gas turbine significantly improves system performance compared to cooler coal-fired flue gas. The results indicate that a successful S/S process could potentially be achieved with only the minimal addition of binder (4%-10% of CaO or PC). The addition of a SO 4 2- to the S/S process can enhance Ba 2+ immobilization. However, it is noted that metal or other contaminant stabilization could be more difficult based on the particular contaminant content of the produced water. Stabilization additives may be required on a case by case basis. The capital costs and operational costs for a S/S are difficult to estimate due to few large-scale installations of this process. However, the capital costs appears to be fairly small while the operational costs can be significant due to the cost of pozzolanic agents. A review of available literature on the concentrations of valuable metals in produced water from the upstream oil and gas industry indicates that Li + may be present at concentrations that would make recovery attractive. However, more research is needed on Li + concentrations in produced water from CO 2 sequestrations sites.« less

  4. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Closemore » control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.« less

  5. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  6. Additive Manufacturing of Porous Metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Kirka, Michael M.

    2017-06-01

    Currently, helium is obtained through separation from natural gas. The current industrial process incurs significant costs and requires large energy resources to successfully achieve separation. Through utilizing Additive Manufacturing (AM) technologies it is possible to reduce both of these burdens when refining helium gas. The ability to engineer porosity levels within Inconel 718 discs for controlled separation of helium from natural gas was investigated. Arrays of samples fabricated using the electron beam melting process were analyzed for their relative porosity density. Based upon the measurements, full scale discs were fabricated, and subsequently tested to determine their effectiveness in separating heliummore » from liquefied natural gas.« less

  7. BIOWINOL TECHNOLOGIES: A HYBRID GREEN PROCESS FOR BIOFUEL PRODUCTION – PHASE 2

    EPA Science Inventory

    The development of hollow fiber membrane (HFM) reactor will result in improved gas utilization that will positively impact overall process efficiencies. Successful completion of this project could result in the development of many decentralized biofuel production systems near ...

  8. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.

    PubMed

    Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L

    2016-12-20

    A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO 2 e/m 3 SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of natural gas as fuel in the rest of the process units' heaters (39%). OSTUM's results are in agreement with those of a process simulation model developed by CanmetENERGY, other literature, and confidential data of a commercial upgrading operation. For the application of the model, emissions are found to be most sensitive to the amount of natural gas utilized as feedstock by the steam methane reformer. OSTUM is capable of evaluating the impact of different technologies, feedstock qualities, operating conditions, and fuel mixes on upgrading emissions, and its life cycle perspective allows easy incorporation of results into well-to-wheel analyses.

  9. Multifuel evaluation of rich/quench/lean combustor

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Novick, A. S.; Troth, D. L.

    1982-01-01

    The fuel flexible combustor technology was developed for application to the Model 570-K industrial gas turbine engine. The technology, to achieve emission goals, emphasizes dry NOx reduction methods. Due to the high levels of fuel-bound nitrogen (FBN), control of NOx can be effected through a staged combustor with a rich initial combustion zone. A rich/quench/lean variable geometry combustor utilizes the technology presented to achieve low NOx from alternate fuels containing FBN. The results focus on emissions and durability for multifuel operation.

  10. Boring in the Big City - part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuliani, A.J.

    This paper describes technologies being utilized or tested by Brooklyn Union for gas main installation. Trenchless technologies described include pipe splitting, key holes to minimize excavations, and boring. Areas in lining system technology which require further development by vendors and manufacturers of trenchless equipment are also addressed. Specific needs identified include: (1) improving instrumentation for locating and controlling underground boring; (2) repairing soft and hard lining systems; and (3) developing a window cutter to safely remove the old carrier pipes without damaging the newly fitted internal plastic pipes.

  11. Pulse energization; A precipitator performance upgrade technology following low sulfur coal switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, K.S.; Feldman, P.L.; Jacobus, P.L.

    1992-01-01

    Madison Gas and Electric operates two 50 MWe pulverized coal fired boilers at its Blount station. This paper reports that these two units have been designed to operate with gas or coalfiring in combination with refuse derived fuel. Both these units are fitted with electrostatic precipitators for particulate control. Historically, these units have utilized Midwestern and Appalachian coals varying in sulfur contents between 2 and 5 %, with the SO{sub 2} emission level in the 3.5 pounds per million Btu range. Wisconsin's acid rain control law goes into effect in 1993 requiring utilities to control sulfur dioxide emissions below 1.2more » pounds per million Btu.« less

  12. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B,; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    There are a variety of both portable and fixed gas monitors onboard the International Space Station (ISS). Devices range from rack-mounted mass spectrometers to hand-held electrochemical sensors. An optical Multi-Gas Monitor has been developed as an ISS Technology Demonstration to evaluate long-term continuous measurement of 4 gases. Based on tunable diode laser spectroscopy, this technology offers unprecedented selectivity, concentration range, precision, and calibration stability. The monitor utilizes the combination of high performance laser absorption spectroscopy with a rugged optical path length enhancement cell that is nearly impossible to misalign. The enhancement cell serves simultaneously as the measurement sampling cell for multiple laser channels operating within a common measurement volume. Four laser diode based detection channels allow quantitative determination of ISS cabin concentrations of water vapor (humidity), carbon dioxide, ammonia and oxygen. Each channel utilizes a separate vertical cavity surface emitting laser (VCSEL) at a different wavelength. In addition to measuring major air constituents in their relevant ranges, the multiple gas monitor provides real time quantitative gaseous ammonia measurements between 5 and 20,000 parts-per-million (ppm). A small ventilation fan draws air with no pumps or valves into the enclosure in which analysis occurs. Power draw is only about 3 W from USB sources when installed in Nanoracks or when connected to 28V source from any EXPRESS rack interface. Internal battery power can run the sensor for over 20 hours during portable operation. The sensor is controlled digitally with an FPGA/microcontroller architecture that stores data internally while displaying running average measurements on an LCD screen and interfacing with the rack or laptop via USB. Design, construction and certification of the Multi-Gas Monitor were a joint effort between Vista Photonics, Nanoracks and NASA-Johnson Space Center (JSC). Vista Photonics developed the core technology and built the sensor. Nanoracks designed, constructed the enclosure, interfaces, and battery power management circuitry, integrated all subsystems into the enclosure, and then managed the certification tests, documentation and manifesting. The unit was calibrated in the JSC Toxicology Laboratory. The Multi-Gas Monitor is manifested to fly as a technology demonstration to the ISS in November 2013 and will operate for at least 6 months with data sent to the ground for evaluation. The primary goal is to demonstrate long term interference free operation in the real spacecraft environment.

  13. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galowitz, Stephen

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven andmore » reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.« less

  14. Structural change in industry and futures for the electricity industry. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, P.; Harris, G.

    1995-06-01

    The electricity supply industry in the United States has been experiencing major technological changes and economics of the business have altered dramatically since the passage of the Public Utilities Regulatory Policies Act of 1978 (PURPA). This opening of power generation business to competition was under-pinned by significant increases in gas turbine efficiency, commercialization of smaller units with high efficiencies, low gas prices, and cost consciousness on the part of independent power producers (IPPs) and major industrial customers. The pace of change continues to accelerate, driven by ongoing technological innovations and customer demands for better, more customized services and lower costs.more » The purpose of this report is to provoke further thought on the likely course of structural change in the electric utility industry over the next twenty years. The prime focus of the report is on technological change and its impact on economics, and the resulting organizational and structural change. This report begins with a brief look at structural change in several capital-intensive industries to identify common patterns applicable to the electricity industry. The industries selected have network-like operations, similar to the electric utility industry. This is followed by two scenarios which illuminate different plausible futures for the electric power industry. The report concludes with insights on the potential course of regulations and suitable strategies to prosper during the transition phase.« less

  15. Sectoral roles in greenhouse gas emissions and policy implications for energy utilization and carbon emissions trading: a case study of Beijing, China.

    PubMed

    Ge, Jianping; Lei, Yalin; Xu, Qun; Wang, Xibo

    2016-01-01

    In this study, a decomposition and emissions matrix is developed to identify the roles (giver or taker) played by the sectors in the greenhouse gas emissions for the economy of Beijing in China. Our results indicate that services were the most important emitter if we consider the total (direct and indirect) emissions. In addition to Construction, Scientific studies and technical services and Finance sectors of services were the largest takers. They have a large role in boosting greenhouse gas emissions throughout the economy of Beijing. As the basis and supporter of production activities, the electricity production and the transportation sectors were the greatest givers. More emphasis should be placed on using clean energy and carbon capture and storage technologies to reduce emissions within these sectors. Based on the roles played by these sectors in greenhouse gas emissions, some policy implications were proposed for energy utilization and carbon emissions trading.

  16. Mars Atmospheric Capture and Gas Separation

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.

  17. Fixed bed gasification for production of industrial fuel gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-10-01

    This report summarizes the results of technical and economic evaluations of six commercially available, fixed-bed coal gasification processes for the production of industrial fuel gas. The study was performed for DOE and is intended to assist industrial companies in exploring the feasibility of producing gaseous fuels for both retrofit and new industrial plant situations. The report includes a technical analysis of the physical configuration, performance capabilities, and commercial experiments to-date for both air-blown and oxygen-blown fixed bed gasifiers. The product gas from these gasifiers is analyzed economically for three different degrees of cleanliness: (1) hot raw gas, (2) dust-, tar-,more » and oil-free gas, and (3) dust-, tar-, oil-free and desulfurized gas. The evaluations indicate that low-Btu gases produced from fixed bed gasifiers constitute one of the most logical short-term solutions for helping ease the shortage of natural gas for industrial fuel applications because the technology is well-proven and has been utilized on a commercial scale for several decades both in this country and overseas; time from initiation of design to commercial operation is about two years; the technology is not complicated to construct, operate, or maintain; and a reliable supply of product gas can be generated on-site. The advantages and disadvantages of fixed bed gasification technology are listed. The cost of the low Btu gas is estimated at $2 to $4 per MM Btu depending on gas purity, cost of coal ($20 to $50 per ton) and a number of specified assumptions with respect to financing, reliability, etc. (LTN)« less

  18. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    NASA Astrophysics Data System (ADS)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  19. MEMS-based thin-film fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  20. Shale Gas Implications for C2-C3 Olefin Production: Incumbent and Future Technology.

    PubMed

    Stangland, Eric E

    2018-06-07

    Substantial natural gas liquids recovery from tight shale formations has produced a significant boon for the US chemical industry. As fracking technology improves, shale liquids may represent the same for other geographies. As with any major industry disruption, the advent of shale resources permits both the chemical industry and the community an excellent opportunity to have open, foundational discussions on how both public and private institutions should research, develop, and utilize these resources most sustainably. This review summarizes current chemical industry processes that use ethane and propane from shale gas liquids to produce the two primary chemical olefins of the industry: ethylene and propylene. It also discusses simplified techno-economics related to olefins production from an industry perspective, attempting to provide a mutually beneficial context in which to discuss the next generation of sustainable olefin process development.

  1. Water Availability for Shale Gas Development in Sichuan Basin, China.

    PubMed

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  2. NIST Gas Hydrate Research Database and Web Dissemination Channel.

    PubMed

    Kroenlein, K; Muzny, C D; Kazakov, A; Diky, V V; Chirico, R D; Frenkel, M; Sloan, E D

    2010-01-01

    To facilitate advances in application of technologies pertaining to gas hydrates, a freely available data resource containing experimentally derived information about those materials was developed. This work was performed by the Thermodynamic Research Center (TRC) paralleling a highly successful database of thermodynamic and transport properties of molecular pure compounds and their mixtures. Population of the gas-hydrates database required development of guided data capture (GDC) software designed to convert experimental data and metadata into a well organized electronic format, as well as a relational database schema to accommodate all types of numerical and metadata within the scope of the project. To guarantee utility for the broad gas hydrate research community, TRC worked closely with the Committee on Data for Science and Technology (CODATA) task group for Data on Natural Gas Hydrates, an international data sharing effort, in developing a gas hydrate markup language (GHML). The fruits of these efforts are disseminated through the NIST Sandard Reference Data Program [1] as the Clathrate Hydrate Physical Property Database (SRD #156). A web-based interface for this database, as well as scientific results from the Mallik 2002 Gas Hydrate Production Research Well Program [2], is deployed at http://gashydrates.nist.gov.

  3. Development of guided horizontal boring tools. Final report, June 1984-March 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, W.J.; Herben, W.C.; Pittard, G.T.

    Maurer Engineering Inc. (MEI), under a contract with the Gas Research Institute (GRI), has led a team of research and manufacturing companies with the goal of developing a guided boring tool for installing gas distribution piping. Studies indicated guided horizontal boring systems can provide gas utilities with a more effective and economical method for installing pipe than conventional techniques with a potential cost savings of at least 15% to 50%. A comprehensive state of technology review of horizontal boring tools identified concepts appropriate to being directionally controlled. Development of a universal system was found impractical because the requirements for shortmore » and extended range systems are significantly different. Concepts for steering and tracking were evaluated through lab and field experiments which progressed from proof of concept tests to cooperative field tests with gas utilities at the various stages of system development. The systems were brought to commercial status with needed modifications and the technology transferred to licensees who would market the systems. The program resulted in the development and commercialization of five distinct guided boring system. Pipe can now be installed more rapidly over longer distances with a minimal amount of excavation required for launching and retrieval. This means increased work crew productivity, reduced disturbance to landscaping and environmentally sensitive areas, and reduced traffic disruption and public inconvenience.« less

  4. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinton, W.S.; Maxwell, J.D.; Healy, E.C.

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test programmore » was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.« less

  5. Do not disturb the animals! or, how Con Edison saved $300,000 using a trenchless technology to renew 3,000 feet of leaking gas main at the Bronx Zoo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufe, M.

    Every leaking gas main presents a challenge. But when that leaking main follows a series of sweeping bends on its route through North America`s largest urban wildlife park, it presents a special challenge. That was the situation Consolidated Edison Company of New York Inc. recently faced when numerous leaks were discovered along 3,000 feet of a 95-year-old, 12-inch cast-iron main that winds through New York City`s Bronx Zoo. Con Edison knew it needed a long-term solution to this increasingly common problem. Thanks to the cooperative efforts of the utility`s operations and research departments and the Gas Research Institute (GRI), Conmore » Edison also knew about a trenchless technology that could renew the pipe with minimal impact to the environment--while saving the utility a substantial sum of money in the process. In the Paltem system, a woven polyester hose is injected with an epoxy resin and then inverted (turned inside out) into a pipe at an access pit. The liner then bonds to the inside wall of the pipe, forming a smooth, flexible and pressure-resistant lining. The process is environmentally safe, requires very little excavation and can be installed in days, rather than the weeks or months it can take to dig up and replace existing pipe.« less

  6. Technologies for the Comprehensive Exploitation of the Geothermal Resources of the North Caucasus Region

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.

    2018-03-01

    Technology for the integrated development of low-temperature geothermal resources using the thermal and water potentials for various purposes is proposed. The heat of the thermal waters is utilized in a low-temperature district heating system and for heating the water in a hot water supply system. The water cooled in heat exchangers enters a chemical treatment system where it is conditioned into potable water quality and then forwarded to the household and potable water supply system. Efficient technologies for removal of arsenic and organic contaminants from the water have been developed. For the uninterrupted supply of the consumers with power, the technologies that use two and more types of renewable energy sources (RESs) have the best prospects. Technology for processing organic waste using the geothermal energy has been proposed. According to this technology, the geothermal water is divided into two flows, one of which is delivered to a biomass conversion system and the other is directed to a geothermal steam-gas power plant (GSGP). The wastewater arrives at the pump station from which it is pumped back into the bed. Upon drying, the biogas from the conversion system is delivered into the combustion chamber of a gas-turbine plant (GTP). The heat of the turbine exhaust gases is used in the GSGP to evaporate and reheat the low-boiling working medium. The working medium is heated in the GSGP to the evaporation temperature using the heat of the thermal water. High-temperature geothermal brines are the most promising for the comprehensive processing. According to the proposed technology, the heat energy of the brines is utilized to generate the electric power at a binary geothermal power station; the electric power is then used to extract the dissolved chemical components from the rest of the brine. The comprehensive utilization of high-temperature brines of the East-Precaucasian Artesian Basin will allow to completely satisfy the demand of Russia for lithium carbonate and sodium chloride.

  7. Systems Simulation of NASA Shooting Star Experiment Using Matlab/Simulink

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn

    1997-01-01

    The Shooting Star Experiment (SSE) is an experiment that incorporates advance propulsion technology. This project is being managed by the Marshall Space Flight Center, Huntsville, Alabama. Whenever spacecraft are launched from Low Earth Orbit (LEO), (typically 150 nautical miles) they are powered by a upper propulsive stage utilizing either a solid or liquid propellant engine. A typically mission for a spacecraft utilizing an upper stage would be a transfer from LEO to a Geostationary Orbit (GEO) or an interplanetary mission. These upper stages are heavy and bulky because they must carry propellants to provide sufficient energy to perform the mission. The SSE utilizes the energy of the Sun by focusing this energy by means of a Frensel lens into an engine where hydrogen (or nitrogen) gas is injected. The focusing of the solar energy heats the engine to very high temperatures. When the gas is injected into the hot engine, the gas is expelled at very high velocities. This process is extremely efficient. Because of the efficiency of the SSE type engine, more payload can be carried for a typical mission since the propulsive element is much smaller.

  8. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  9. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1986-01-01

    The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

  11. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  12. CELSS experiment model and design concept of gas recycle system

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  13. Research and technology annual report, FY 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Given here is the annual report of the John C. Stennis Space Center (SSC), a NASA center responsible for testing NASA's large propulsion systems, developing supporting test technologies, conducting research in a variety of earth science disciplines, and facilitating the commercial uses of NASA-developed technologies. Described here are activities of the Earth Sciences Research Program, the Technology Development Program, commercial programs, the Technology Utilization Program, and the Information Systems Program. Work is described in such areas as forest ecosystems, land-sea interface, wetland biochemical flux, thermal imaging of crops, gas detectors, plume analysis, synthetic aperture radar, forest resource management, applications engineering, and the Earth Observations Commercial Applications Program.

  14. Use of Biochar to sequester nutrients from dairy manure lagoons

    USDA-ARS?s Scientific Manuscript database

    We are developing technology to utilize dairy waste as an alternative energy and fertilizer source. The fiber component exiting a GHD™ Plugged Flow anaerobic digester as well as feedstocks from softwood sources were used to produce bio-gas or bio-oil under low temperature pyrolysis, the co-product, ...

  15. Universal(ly Bad) Service: Providing Infrastructure Services to Rural and Poor Urban Consumers. Policy Research Working Paper.

    ERIC Educational Resources Information Center

    Clarke, George R. G.; Wallsten, Scott J.

    Utility services (telecommunications, power, water, and gas) throughout the world were traditionally provided by large, usually state-owned, monopolies. However, encouraged by technological change, regulatory innovation, and pressure from international organizations, many developing countries are privatizing state-owned companies and introducing…

  16. Characterization of Coal Combustion Residues from Electric Utilities--Leaching and Characterization Data

    EPA Science Inventory

    This report evaluates changes in composition and constituent release by leaching that may occur to fly ash and other coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants. The addition of flue-gas desulfurization (FG...

  17. Measuring Methane from Cars, Ships, Airplanes, Helicopters and Drones Using High-Speed Open-Path Technology

    NASA Astrophysics Data System (ADS)

    Burba, George; Anderson, Tyler; Biraud, Sebastien; Caulton, Dana; von Fischer, Joe; Gioli, Beniamino; Hanson, Chad; Ham, Jay; Kohnert, Katrin; Larmanou, Eric; Levy, Peter; Polidori, Andrea; Pikelnaya, Olga; Sachs, Torsten; Serafimovich, Andrei; Zaldei, Alessandro; Zondlo, Mark; Zulueta, Rommel

    2017-04-01

    Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of methane include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban methane emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such methane emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill methane emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural methane production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of methane flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil methane flux surveys, etc. This presentation will describe the latest state of the key projects utilizing the novel lightweight low-power high-resolution open-path technology, and will highlight several novel approaches where such instrumentation was used in mobile deployments in urban, agricultural and natural environments by academic institutions, regulatory agencies and industry.

  18. Mobile Measurements of Methane Using High-Speed Open-Path Technology

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Anderson, T.; Ediger, K.; von Fischer, J.; Gioli, B.; Ham, J. M.; Hupp, J. R.; Kohnert, K.; Levy, P. E.; Polidori, A.; Pikelnaya, O.; Price, E.; Sachs, T.; Serafimovich, A.; Zondlo, M. A.; Zulueta, R. C.

    2016-12-01

    Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of CH4 include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban CH4 emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such CH4 emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill CH4 emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural CH4 production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of CH4 flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil CH4 flux surveys, etc. This presentation will describe key projects utilizing the novel lightweight low-power high-resolution open-path technology, and will highlight several novel approaches where such instrumentation was used in mobile deployments in urban, agricultural and natural environments by academic institutions, regulatory agencies and industry.

  19. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    PubMed Central

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  20. Gas production strategy of underground coal gasification based on multiple gas sources.

    PubMed

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  1. Technology Being Developed at Lawrence Berkeley National Laboratory: Ultra-Low- Emission Combustion Technologies for Heat and Power Generation

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.

    2001-01-01

    The Combustion Technologies Group at Lawrence Berkeley National Laboratory has developed simple, low-cost, yet robust combustion technologies that may change the fundamental design concept of burners for boilers and furnaces, and injectors for gas turbine combustors. The new technologies utilize lean premixed combustion and could bring about significant pollution reductions from commercial and industrial combustion processes and may also improve efficiency. The technologies are spinoffs of two fundamental research projects: An inner-ring burner insert for lean flame stabilization developed for NASA- sponsored reduced-gravity combustion experiments. A low-swirl burner developed for Department of Energy Basic Energy Sciences research on turbulent combustion.

  2. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less

  3. Amplitude versus offset analysis to marine seismic data acquired in Nankai Trough, offshore Japan where methane hydrate exists

    NASA Astrophysics Data System (ADS)

    Hato, M.; Inamori, T.; Matsuoka, T.; Shimizu, S.

    2003-04-01

    Occurrence of methane hydrates in the Nankai Trough, located off the south-eastern coast of Japan, was confirmed by the exploratory test well drilling conducted by Japan’s Ministry of International Trade and Industry in 1999. Confirmation of methane hydrate has given so big impact to the Japan's future energy strategy and scientific and technological interest was derived from the information of the coring and logging results at the well. Following the above results, Japan National Oil Corporation (JNOC) launched the national project, named as MH21, for establishing the technology of methane hydrate exploration and related technologies such as production and development. As one of the research project for evaluating the total amount of the methane hydrate, Amplitude versus Offset (AVO) was applied to the seismic data acquired in the Nankai Trough area. The main purpose of the AVO application is to evaluate the validity of delineation of methane hydrate-bearing zones. Since methane hydrate is thought to accompany with free-gas in general just below the methane hydrate-bearing zones, the AVO has a possibility of describing the presence of free-gas. The free-gas is thought to be located just below the base of methane hydrate stability zone which is characterized by the Bottom Simulating Reflectors (BSRs) on the seismic section. In this sense, AVO technology, which was developed as gas delineation tools, can be utilized for methane hydrate exploration. The result of AVO analysis clearly shows gas-related anomaly below the BSRs. Appearance of the AVO anomaly has so wide variety. Some of the anomalies might not correspond to the free-gas existence, however, some of them may show free-gas. We are now going to develop methodology to clearly discriminate free-gas from non-gas zone by integrating various types of seismic methods such as seismic inversion and seismic attribute analysis.

  4. Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.D.

    1995-11-01

    The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in themore » NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.« less

  5. Lightweight Approaches to Natural Gas Hydrate Exploration & Production

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2017-12-01

    Lower-cost approaches to drilling and reservoir utilization are made possible by adapting both emerging and new technology to the unique, low risk NGH natural gas resource. We have focused on drilling, wellbore lining technology, and reservoir management with an emphasis on long-term sand control and adaptive mechanical stability during NGH conversion to its constituent gas and water. In addition, we suggest that there are opportunities for management of both the gas and water with respect to maintaining desired thermal conditions. Some of the unique aspects of NGH deposits allow for new, more efficient technology to be applied to development, particularly in drilling. While NGH-bearing sands are in deepwater, they are confined to depths beneath the seafloor of 1.2 kilometers or less. As a result, they will not be significantly above hydrostatic pressure, and temperatures will be less than 30 oC. Drilling will be through semi-consolidated sediment without liquid hydrocarbons. These characteristics mean that high capability drillships are not needed. What is needed is a new perspective about drilling and producing NGH. Drilling from the seafloor will resolve the high-pressure differential between a wellhead on the sea surface in a vessel and reservoir to about the hydrostatic pressure difference between the seafloor and, at most, the base of the GHSZ. Although NGH production will begin using "off-the-shelf" technology, innovation will lead to new technology that will bring down costs and increase efficiency in the same way that led to the shale breakthrough. Commercial success is possible if consideration is given to what is actually needed to produce NGH in a safe and environmentally manner. Max, M.D. 2017. Wellbore Lining for Natural Gas Hydrate. U.S. Patent Application US15644947 Max, M.D. & Johnson, A.H. 2017. E&P Cost Reduction Opportunities for Natural Gas Hydrate. OilPro. . Max, M.D. & Johnson, A.H. 2016. Exploration and Production of Oceanic Natural Gas Hydrate: Critical Factors for Commercialization. Springer International Publishing AG, 405pp.

  6. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less

  7. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study on Leadership: Roaring Fork Transportation Authority (Presentation); NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, A.

    The Roaring Fork Transportation Authority (RFTA) represents a series of unique successes in alternative fuel deployment by pushing the envelope with innovative solutions. In the last year, RFTA demonstrated the ability to utilize compressed natural gas buses at a range of altitudes, across long distances, in extreme weather conditions and in a modern indoor fueling and maintenance facility - allwhile saving money and providing high-quality customer service. This case study will highlight how the leadership of organizations and communities that are implementing advances in natural gas vehicle technology is paving the way for broader participation.

  8. Gas Engine-Driven Heat Pump with Desiccant Dehumidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abu-Heiba, Ahmad

    About 40% of total U.S. energy consumption was consumed in residential and commercial buildings. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. This paper describes the development of an innovative natural gas, propane, LNG or bio-gas IC engine-driven heat pump (GHP) with desiccant dehumidification (GHP/DD). This integrated system has higher overall efficiencies than conventional equipment for space cooling, addresses both new and existing commercial buildings, and more effectively controls humidity in humid areas. Waste heat is recovered from the GHP to provide energy for regenerating themore » desiccant wheel and to augment heating capacity and efficiency. By combining the two technologies, an overall source COP of greater that 1.5 (hot, humid case) can be achieved by utilizing waste heat from the engine to reduce the overall energy required to regenerate the desiccant. Moreover, system modeling results show that the sensible heat ratio (SHR- sensible heat ratio) can be lowered to less 60% in a dedicated outdoor air system application with hot, humid cases.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almond, P.; Livingston, R.; Traver, L.

    The Savannah River National Laboratory (SRNL) 3013 destructive examination program performs surveillances on 3013 containers originating from multiple sites across the DOE complex. The bases for the packaging, storage, and surveillance activities are derived from the Department of Energy's 3013 Standard (DOE-STD-3013-2004). During destructive examination, headspace gas samples are obtained from the 3013 inner container and the annulus between the outer and inner containers. To characterize gas species, the samples are analyzed by gas chromatography (GC), direct-inlet mass spectrometry (DIMS), and Fourier-transform infrared spectroscopy (FTIR). The GC results, as well as other parameters, are utilized as input into the gasmore » evaluation software tool (GEST) program for computation of pre-puncture gas compositions and pressures. Over 30 containers from the Hanford Site and the Rocky Flats Environmental Technology Site (RFETS) have been examined in the first three years of the surveillance program. Several containers were shown to have appreciable hydrogen content (some greater than 30 mol %), yet little or no oxygen was detected in any of the containers, including those exhibiting high hydrogen concentrations. Characteristics including moisture content, surface area, and material composition, along with the headspace gas composition, are utilized in an attempt to explain the chemical behavior of the packaged materials.« less

  10. Development and Applications of Pipeline Steel in Long-Distance Gas Pipeline of China

    NASA Astrophysics Data System (ADS)

    Chunyong, Huo; Yang, Li; Lingkang, Ji

    In past decades, with widely utilizing of Microalloying and Thermal Mechanical Control Processing (TMCP) technology, the good matching of strength, toughness, plasticity and weldability on pipeline steel has been reached so that oil and gas pipeline has been greatly developed in China to meet the demand of strong domestic consumption of energy. In this paper, development history of pipeline steel and gas pipeline in china is briefly reviewed. The microstructure characteristic and mechanical performance of pipeline steel used in some representative gas pipelines of china built in different stage are summarized. Through the analysis on the evolution of pipeline service environment, some prospective development trend of application of pipeline steel in China is also presented.

  11. Status of the DOE/NASA critical gas turbine research and technology project

    NASA Technical Reports Server (NTRS)

    Clark, J. S.

    1980-01-01

    Activities performed in order to provide an R&T data base for utility gas turbine systems burning coal-derived fuels are described. Experiments were run to determine the corrosivity effects of trace metal contaminants (and potential fuel additives) on gas turbine materials and these results were correlated in a corrosion-life prediction model. Actual fuels were burned in a burner rig hot corrosion test to verify the model. A deposition prediction model was assembled and compared with results of actual coal-derived fuel deposition tests. Thermal barrier coatings were tested to determine their potential for protecting gas turbine hardware from the corrosive contaminants. Several coatings were identified with significantly improved spallation-resistance (and, hence, corrosion resistance).

  12. Instrumentation for optimizing an underground coal-gasification process

    NASA Astrophysics Data System (ADS)

    Seabaugh, W.; Zielinski, R. E.

    1982-06-01

    While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.

  13. Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Barna, G. J.; Burns, R. K.; Sagerman, G. D.

    1980-01-01

    Various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications were compared to provide information needed by DOE to establish research and development funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment as compared with purchasing electricity from a utility and providing process heat with an on-site boiler. Also included in the comparisons and evaluations are results extrapolated to the national level.

  14. Cogeneration Technology Alternatives Study (CTAS). Volume 2: Comparison and evaluation of results

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CTAS compared and evaluated various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications. The principal aim of the study was to provide information needed by DOE to establish research and development (R&D) funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for a wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment (ROI) as compared with purchasing electricity from a utility and providing process heat with an on-site boiler.

  15. Co-Flow Hollow Cathode Technology

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Goebel, Dan M.

    2011-01-01

    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  16. ENGINEERING AND ECONOMIC EVALUATION OF GAS RECOVERY AND UTILIZATION TECHNOLOGIES AT SELECTED U.S. MINES

    EPA Science Inventory

    Methane liberated in underground coal mines is a severe safety hazard to miners. It is also a major contributor to the build-up of greenhouse gases in the global atmosphere. This report presents an engineering and economic evaluation of several methane recovery and end-use techno...

  17. Characterization of Coal Combustion Residues from Electric Utilities Using Wet Scrubbers for Multi-Pollutant Control

    EPA Science Inventory

    This report evaluates changes that may occur to coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants, which will reduce emissions from the flue gas stack by transferring pollutants to fly ash and other air pollution...

  18. The Petrol Station and the Internet Cafe: Rural Technospaces for Youth.

    ERIC Educational Resources Information Center

    Laegran, Anne Sofie

    2002-01-01

    A study in two Norwegian villages focused on the local gas station and the Internet cafe as "technospaces" for rural youth cultures--spaces at the intersection of technology and human interaction. The car and the Internet were given different symbolic and utility values in various youth subcultures. Local contexts influenced technology…

  19. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  20. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  1. High quality fuel gas from biomass pyrolysis with calcium oxide.

    PubMed

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. SOXAL{trademark} pilot plant demonstration at Niagara Mohawk`s Dunkirk Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strangway, P.K.

    The Clean Air Act Amendments of 1990 made it necessary to accelerate the development of scrubber systems for use by some utilities burning sulfur-containing fuels, primarily coal. While many types of Flue Gas Desulfurization (FGD) systems operate based on lime and limestone scrubbing, these systems have drawbacks when considered for incorporation into long-term emissions control plans. Although the costs associated with disposal of large amounts of scrubber sludge may be manageable today, the trend is toward increased disposal costs. Many new SO{sub 2} control technologies are being pursued in the hope of developing an economical regenerable FGD system did recoversmore » the SO{sub 2} as a saleable commercial product, thus minimizing the formation of disposal waste. Some new technologies include the use of exotic chemical absorbents which are alien to the utility industry and utilities` waste treatment facilities. These systems present utilities with new environmental issues. The SOXAL{trademark} process has been developed so as to eliminate such issues.« less

  3. Research and Development of Large Area Color AC Plasma Displays

    NASA Astrophysics Data System (ADS)

    Shinoda, Tsutae

    1998-10-01

    Plasma display is essentially a gas discharge device using discharges in small cavities about 0. 1 m. The color plasma displays utilize the visible light from phosphors excited by the ultra-violet by discharge in contrast to monochrome plasma displays utilizing visible light directly from gas discharges. At the early stage of the color plasma display development, the degradation of the phosphors and unstable operating voltage prevented to realize a practical color plasma display. The introduction of the three-electrode surface-discharge technology opened the way to solve the problems. Two key technologies of a simple panel structure with a stripe rib and phosphor alignment and a full color image driving method with an address-and-display-period-separated sub-field method have realized practically available full color plasma displays. A full color plasma display has been firstly developed in 1992 with a 21-in.-diagonal PDP and then a 42-in.-diagonal PDP in 1995 Currently a 50-in.-diagonal color plasma display has been developed. The large area color plasma displays have already been put into the market and are creating new markets, such as a wall hanging TV and multimedia displays for advertisement, information, etc. This paper will show the history of the surface-discharge color plasma display technologies and current status of the color plasma display.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudd, M.J.

    The successful Clean Coal Technology projects which are being discussed in this conference are all a testament to the positive advancements that can be made with environmentally superior technologies when the government and industry cooperate in the context of a properly funded and a well thought-out program. Many of the technologies developed in the Clean Coal Technology Program have taken a competitive position in the marketplace, and many others are on the verge of being competitive in the marketplace. Based on the success of the Clean Coal Technology Program, one would expect that they would be ready for full deploymentmore » in the marketplace with the approach of the next millennium. This is not happening. There are several hurdles that impede their deployment. Some of those hurdles, such as the higher first-of-a-kind cost and technology risk factors that accompany not-yet mature technologies, have existed since the initiation of the Clean Coal Technology Program. However, several new hurdles are impeding the market penetration of Clean Coal Technologies. Those hurdles include the radically different marketplace due to the restructuring of the electric utility industry, a soft market, the difficulty in financing new power plants, low natural gas prices, and lower-cost and higher-efficiency natural gas combined cycle technology.« less

  5. Utilization of coal-water fuel in heat power industry and by public utilities of Ukraine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papayani, F.A.; Switly, Y.G.

    1995-12-31

    One of the major problems of the fuel and energy balance of Ukraine is acute shortage of its own resources of organic fuel. At present the steam coal output in Ukraine approaches 100 mln t, oil production makes up about 5 min t and that of gas reaches 22 bln. m{sup 3}, which in terms of equivalent fuel (e.f ) totals 94 min t, the annual demand being approximately 300 mln t e.f. To make up for fuel deficiency Ukraine has to annually import 120 bln. m{sup 3} of gas, 50 mln t of oil and about 10 mln tmore » of coal, their approximate cost being U.S.$ 15.6 bln. At the same time coal reserves in developed fields only make up 10 bln. t, the total reserves of this fuel being 100 bln. t. Thus the whole burden of meeting the requirements of Ukraine in power resources when nuclear power plants capacities are being reduced and expected to be reducing in the nearest future falls on coal. Under wasting conditions a problem of today is to develop and introduce new technologies of coal mining and utilization with due regard for technical, economic and ecological aspects which are particularly important for densely populated industrial regions. Ecological problems associated with a dramatic increase in the volume of coal combustion can be solved by developing new methods and means for flue gas cleaning in the first place and by wide-scale introduction of coal-water fuel (CWF) in the second place. Investigations have shown that the second way is more preferable since it is based on the integrated technology for original coal demineralization and CWT production, advantages of each process being used in full measure. Thus demineralization of coal is among major requirements to development of a CWT production technology.« less

  6. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    NASA Astrophysics Data System (ADS)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  7. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.

    PubMed

    Dong, Jun; Tang, Yuanjun; Nzihou, Ange; Chi, Yong; Weiss-Hortala, Elsa; Ni, Mingjiang

    2018-06-01

    Municipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Relevance between SV and components based on water quality inspection by gas plumes

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Aoyama, C.; Fukuoka, H.; Tajima, H.; Kumagai, H.; Takahashi, A.

    2017-12-01

    Gas and hydrate seeping from the seafloor into ocean water can be monitored on board, as images on echogram (acoustic equipment display inboard) by utilizing acoustic measurement equipment such as multi-beam sonars. Colors and shades of these images displayed on the monitor vary depending on the acoustic impedance. Backscattering strength (hereinafter referred as SV) depends on the type and density of plume components. Therefore, plume components should not be determined only by examining volume scattering density. By standardizing the relevance between gas plume SV and the components, types of plume components can be presumed just by calculating plume SV based on multi-beam data.Data from the following explorations will be utilized to perform the analysis of metal sensor, CTD measurement, and sampling. July, 2017 KAIYO-MARU2 (KAIYO ENGINEERING CO., LTD) @ Sea of Japan July, 2017 SIHNYO MARU (Tokyo University of Marine Science and Technology) @ Sea of Japan. And Chemical data obtained through YK16-07 cruise is also to be discussed.

  9. Intelligent hypertext manual development for the Space Shuttle hazardous gas detection system

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Hoyt, W. Andes

    1989-01-01

    This research is designed to utilize artificial intelligence (AI) technology to increase the efficiency of personnel involved with monitoring the space shuttle hazardous gas detection systems at the Marshall Space Flight Center. The objective is to create a computerized service manual in the form of a hypertext and expert system which stores experts' knowledge and experience. The resulting Intelligent Manual will assist the user in interpreting data timely, in identifying possible faults, in locating the applicable documentation efficiently, in training inexperienced personnel effectively, and updating the manual frequently as required.

  10. Architecture in outer space. [multilayer shell systems filled with gas

    NASA Technical Reports Server (NTRS)

    Pokrovskiy, G. I.

    1974-01-01

    Mulilayer thin film structures consisting of systems of shells filled with gas at some pressure are recommended for outer space structures: Large mirrors to collect light and radio waves, protection against meteoric impact and damage, and for connectors between state space stations in the form of orbital rings. It is projected that individual orbital rings will multiply and completely seal a star trapping its high temperature radiation and transforming it into low temperature infrared and short wave radio emission; this radiation energy could be utilized for technological and biological processes.

  11. American Security and the International Energy Situation. Volume 2. World Energy and the Security of Supply

    DTIC Science & Technology

    1975-04-15

    flue gas desulfurization technology seems to oe progressing so that by the late 1970s utilities may be able to burn high-sultur coal directly with...CObHqat ion•.V Conferva 1i on 0’ I , gas . and shale Coa I Lir.’I ronmcntal control Nuclear fission Nuclear fusion Other a. So I a r B...abandonment of all import controls , its findings on th: key problem of import dependence and security did not reflect a dear conviction that a

  12. CO2 Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain.

    PubMed

    Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi

    2017-12-08

    Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

  13. Sustainable Solution for Crude Oil and Natural Gas Separation using Concentrated Solar Power Technology

    NASA Astrophysics Data System (ADS)

    Choudhary, Piyush; Srivastava, Rakesh K.; Nath Mahendra, Som; Motahhir, Saad

    2017-08-01

    In today’s scenario to combat with climate change effects, there are a lot of reasons why we all should use renewable energy sources instead of fossil fuels. Solar energy is one of the best options based on features like good for the environment, independent of electricity prices, underutilized land, grid security, sustainable growth, etc. This concept paper is oriented primarily focused on the use of Solar Energy for the crude oil heating purpose besides other many prospective industrial applications to reduce cost, carbon footprint and moving towards a sustainable and ecologically friendly Oil & Gas Industry. Concentrated Solar Power technology based prototype system is proposed to substitute the presently used system based on natural gas burning method. The hybrid system which utilizes the solar energy in the oil and gas industry would strengthen the overall field working conditions, safety measures and environmental ecology. 40% reduction on natural gas with this hybrid system is estimated. A positive implication for an environment, working conditions and safety precautions is the additive advantage. There could also decrease air venting of CO2, CH4 and N2O by an average of 30-35%.

  14. Innovative nuclear thermal propulsion technology evaluation - Results of the NASA/DOE task team study

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.

  15. Standby Rates for Combined Heat and Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedano, Richard; Selecky, James; Iverson, Kathryn

    2014-02-01

    Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas formore » improvement in standby rates.« less

  16. CONSOL`s perspective on CCT deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, F.P.; Statnick, R.M.

    1997-12-31

    The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, throughmore » programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.« less

  17. Studies in Pressurized Oxy-Combustion: Process Development and Control of Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Gopan, Akshay

    Fossil fuels supply over 80% of the world's primary energy and more than two-thirds of the world's electricity. Of this, coal alone accounts for over 41% of the electricity supplied globally. Though coal is globally well-distributed and can provide stable and reliable energy on demand, it emits a large amount of carbon dioxide--a greenhouse gas responsible for global warming. Serious concerns over the implication of the increased global temperature have prompted the investigation into low carbon energy alternatives. The idea of capturing the carbon dioxide emitted from the combustion sources is considered as one of the viable alternatives. This would allow the utilization of vast and widespread fuel resources (coal, oil, gas and biomass) that are capable of delivering power on demand, while mitigating the potentially harmful impact of CO2. Support for carbon capture, utilization and sequestration (CCUS) for power plants is, however, limited due to the high cost of electricity associated with the currently available technologies. The ultimate requirement of high pressure CO2 for either sequestration or utilization has led to the investigation of pressurized oxy-combustion technologies. Since at higher pressure, the dew point of the flue gas is higher than at atmospheric pressure, pressurized oxy-combustion can be utilized to extract the latent heat of condensation of the flue gas moisture, leading to an increase in plant efficiency. A new staged, pressurized oxy-combustion (SPOC) process for power generation with carbon capture is presented in the first part of this dissertation. The proposed staged, pressurized oxy-combustion process not only extracts the latent heat of condensation of the flue gas moisture, but unlike first generation oxy-combustion or even other pressurized oxy-combustion processes, it also minimizes the recycle of flue gas. The net plant efficiency of this proposed process is more than 25% higher than that of first generation oxy-combustion. A detailed analysis of the capital and operating costs shows that the cost of electricity generated from this process would meet the U.S. Dept. of Energy target for power generation with carbon capture. The design of a low-recycle oxy-combustion boiler is not trivial. A number of designs have been proposed, but were deemed unfit for the utility industry due to much higher heat flux than could be safely tolerated by the boiler tubes. In the second part of this dissertation, a new burner and boiler design is proposed that could be utilized in the low-recycle SPOC process. The proposed burner/boiler design 1) accommodates low flue gas recycle without exceeding wall heat flux limits, 2) increases the share of radiative over convective heat transfer in the boiler, 3) significantly reduces ash fouling and slagging, and 4) is flexible in that it is able to operate under various thermal loads. The proposed burner design would also lead to reduced soot, as compared to a normal burner. These aspects of the burner/boiler design are investigated in the dissertation.

  18. SMES: Redefining the path to commerical demonstration

    NASA Astrophysics Data System (ADS)

    Bingham, W. G.; Lighthipe, R. W.

    1995-04-01

    SMES (Superconducting Magnetic Energy Storage) is an emerging technology offering tremendous potential benefits to the utility industry. San Diego Gas & Electric (SDG&E) and Bechtel are leading a team of companies and national laboratories working towards design and construction of the world's first demonstration facility for large, commercial SMES for enhancing transmission stability in the Southwestern United States.

  19. NATIONAL ASSESSMENT OF ENVIRONMENTAL AND ECONOMIC BENEFITS FROM METHANE CONTROL AND UTILIZATION TECHNOLOGIES AT U.S. UNDERGROUND COAL MINES

    EPA Science Inventory

    The report gives results of EPA research into the emission processes and control strategies associated with underground coal mines in the U.S. (NOTE: Methane is a greenhouse gas in the atmosphere which ranks behind carbon dioxide as the second largest contributor to global warmin...

  20. SMES: Redefining the path to commerical demonstration

    NASA Technical Reports Server (NTRS)

    Bingham, W. G.; Lighthipe, R. W.

    1995-01-01

    SMES (Superconducting Magnetic Energy Storage) is an emerging technology offering tremendous potential benefits to the utility industry. San Diego Gas & Electric (SDG&E) and Bechtel are leading a team of companies and national laboratories working towards design and construction of the world's first demonstration facility for large, commercial SMES for enhancing transmission stability in the Southwestern United States.

  1. SMES: Redefining the path to commercial demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, W.G.; Lighthipe, R.W.

    1994-12-31

    SMES (Superconducting Magnetic Energy Storage) is an emerging technology offering tremendous potential benefits to the utility industry. San Diego Gas & Electric (SDG&E) and Bechtel are leading a team of companies and national laboratories working towards design and construction of the world`s first demonstration facility for large, commercial SMES for enhancing transmission stability in the Southwestern United States.

  2. Military Hazardous Wastes: An Overview and Analysis.

    DTIC Science & Technology

    1981-12-01

    the soil as fertilizers or soil conditioners * Mining overburden returned to the mine site Utility wastes (fly ash, flue gas desulfurization sludge...19 3.3.2 What Is the Significance of Superfund to Military Wastes? ...... ............... 20 3.4 Toxic Substances Control Act...Hazardous Wastes From Current and Future Operations .... ......... 34 4.4 Organizational Responsibilities ... ............. .. 42 5. CONTROL TECHNOLOGY

  3. Green power: A renewable energy resources marketing plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, R.C.

    Green power is electricity generated from renewable energy sources such as power generated from the sun, the wind, the heat of the earth, and biomass. Green pricing is the marketing strategy to sell green power to customers who voluntarily pay a premium for it. Green pricing is evolving from the deregulation of the electric industry, the need for clean air, reflected in part as concern over global warming, and technology advances. The goal of the renewable energy marketing plan is to generate enough revenues for a utility to fund power purchase agreements (PPAs) with renewable energy developers or construct itsmore » own renewable facilities. Long-term, fixed price PPAs enable developers to obtain financing to construct new facilities, sometimes taking technological risks which a utility might not take otherwise. The marketing plan is built around different rate premiums for different categories of ratepayers, volunteer customer participation, customer participation recognition, and budget allocations between project costs and power marketing costs. Green prices are higher than those for conventional sources, particularly prices from natural gas fired plants. Natural gas is abundant relative to oil in price per British thermal unit (Btu). Green pricing can help bridge the gap between the current oversupply of gas and the time, not far off, when all petroleum prices will exceed those for renewable energy. The rapid implementation of green pricing is important. New marketing programs will bolster the growing demand for renewable energy evidenced in many national surveys thus decreasing the consumption of power now generated by burning hydrocarbons. This paper sets forth a framework to implement a green power marketing plan for renewable energy developers and utilities working together.« less

  4. Torrefaction of wood pellets: New solutions

    NASA Astrophysics Data System (ADS)

    Zaichenko, V. M.; Shterenberg, V. Ya.

    2017-10-01

    The current state of the market of conventional and torrefied wood pellets and the trends of its development have been analyzed. The advantages and disadvantages of pellets of both types have been compared with other alternative fuels. The consumer segment in which wood pellets are the most competitive has been determined. The original torrefaction technology using exhaust gas heat from a standard gas engine that was developed at the Joint Institute for High Technologies and the scheme of an experimental unit for the elaboration of the technology have been presented. The scheme of the combined operation of a torrefaction unit and a standard hot water boiler, which makes it possible to utilize the heat of exhaust steam-and-gas products of torrefaction with the simultaneous prevention of emissions of harmful substances into the environment, has been proposed. The required correlation between the capacity of the torrefaction unit and the heating boiler house has been estimated for optimal operation under the conditions of the isolated urban village in a region that is distant from the areas of extraction of traditional fuels and, at the same time, has quite sufficient resources of raw materials for the production of wood pellets.

  5. Thermodynamic analysis of tar reforming through auto-thermal reforming process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhadi, N., E-mail: nurhadi@tekmira.esdm.go.id; Diniyati, Dahlia; Efendi, M. Ade Andriansyah

    2015-12-29

    Fixed bed gasification is a simple and suitable technology for small scale power generation. One of the disadvantages of this technology is producing tar. So far, tar is not utilized yet and being waste that should be treated into a more useful product. This paper presents a thermodynamic analysis of tar conversion into gas producer through non-catalytic auto-thermal reforming technology. Tar was converted into components, C, H, O, N and S, and then reacted with oxidant such as mixture of air or pure oxygen. Thus, this reaction occurred auto-thermally and reached chemical equilibrium. The sensitivity analysis resulted that the mostmore » promising process performance occurred at flow rate of air was reached 43% of stoichiometry while temperature of process is 1100°C, the addition of pure oxygen is 40% and preheating of oxidant flow is 250°C. The yield of the most promising process performance between 11.15-11.17 kmol/h and cold gas efficiency was between 73.8-73.9%.The results of this study indicated that thermodynamically the conversion of tar into producer gas through non-catalytic auto-thermal reformingis more promising.« less

  6. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhang; He, Wenjie; Duan, Chenlong

    2016-01-15

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation betweenmore » the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.« less

  7. Macroalgae for CO 2 Capture and Renewable Energy - A Pilot Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, Kristine

    2011-01-31

    The objective of this project was to demonstrate, at a pilot scale, the beneficial use of carbon dioxide (CO 2) through a technology designed to capture CO 2 from fossil-fuel fired power plant stack gas, generating macroalgae and converting the macroalgae at high efficiency to renewable methane that can be utilized in the power plant or introduced into a natural gas pipeline. The proposed pilot plant would demonstrate the cost-effectiveness and CO 2/ NO x flue-gas removal efficiency of an innovative algal scrubber technology where seaweeds are grown out of water on specially-designed supporting structures contained within greenhouses where themore » plants are constantly bathed by recycled nutrient sprays enriched by flue gas constituents. The work described in this document addresses Phase 1 of the project only. The scope of work for Phase 1 includes the completion of a preliminary design package; the collection of additional experimental data to support the preliminary and detailed design for a pilot scale utilization of CO 2 to cultivate macroalage and to process that algae to produce methane; and a technological and economic analysis to evaluate the potential of the system. Selection criteria for macroalgae that could survive the elevated temperatures and potential periodic desiccation of near desert project sites were identified. Samples of the selected macroalgae species were obtained and then subjected to anaerobic digestion to determine conversions and potential methane yields. A Process Design Package (PDP) was assembled that included process design, process flow diagram, material balance, instrumentation, and equipment list, sizes, and cost for the Phase 2 pilot plant. Preliminary economic assessments were performed under the various assumptions made, which are purposely conservative. Based on the results, additional development work should be conducted to delineate the areas for improving efficiency, reducing contingencies, and reducing overall costs.« less

  8. Wide-band gas leak imaging detection system using UFPA

    NASA Astrophysics Data System (ADS)

    Jin, Wei-qi; Li, Jia-kun; Dun, Xiong; Jin, Minglei; Wang, Xia

    2014-11-01

    The leakage of toxic or hazardous gases not only pollutes the environment, but also threatens people's lives and property safety. Many countries attach great importance to the rapid and effective gas leak detection technology and instrument development. However, the gas leak imaging detection systems currently existing are generally limited to a narrow-band in Medium Wavelength Infrared (MWIR) or Long Wavelength Infrared (LWIR) cooled focal plane imaging, which is difficult to detect the common kinds of the leaking gases. Besides the costly cooled focal plane array is utilized, the application promotion is severely limited. To address this issue, a wide-band gas leak IR imaging detection system using Uncooled Focal Plane Array (UFPA) detector is proposed, which is composed of wide-band IR optical lens, sub-band filters and switching device, wide-band UFPA detector, video processing and system control circuit. A wide-band (3µm~12µm) UFPA detector is obtained by replacing the protection window and optimizing the structural parameters of the detector. A large relative aperture (F#=0.75) wide-band (3μm~12μm) multispectral IR lens is developed by using the focus compensation method, which combining the thickness of the narrow-band filters. The gas leak IR image quality and the detection sensitivity are improved by using the IR image Non-Uniformity Correction (NUC) technology and Digital Detail Enhancement (DDE) technology. The wide-band gas leak IR imaging detection system using UFPA detector takes full advantage of the wide-band (MWIR&LWIR) response characteristic of the UFPA detector and the digital image processing technology to provide the resulting gas leak video easy to be observed for the human eyes. Many kinds of gases, which are not visible to the naked eyes, can be sensitively detected and visualized. The designed system has many commendable advantages, such as scanning a wide range simultaneously, locating the leaking source quickly, visualizing the gas plume intuitively and so on. The simulation experiment shows that the gas IR imaging detection has great advantages and widely promotion space compared with the traditional techniques, such as point-contact or line-contactless detection.

  9. 2017 Annual Technology Baseline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J; Hand, M. M; Eberle, Annika

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), the National Renewable Energy Laboratory annually provides an organized and centralized set of such cost and performance data. The ATB uses the best information from the Department of Energy national laboratories' renewable energy analysts as well as information from the Energy Information Administration for fuel-based technologies. The ATB has been reviewed by experts and it includes the following electricity generation technologies: land-based wind, offshore wind, utility-scale solar photovoltaics (PV), commercial-scale solar PV,more » residential-scale solar PV, concentrating solar power, geothermal power, hydropower, coal, natural gas, nuclear, and conventional biopower. This webinar presentation introduces the 2017 ATB.« less

  10. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the targetmore » contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.« less

  11. Selection of alternative central-station technologies for the Satellite Power System (SPS) comparative assessment

    NASA Technical Reports Server (NTRS)

    Samsa, M.

    1980-01-01

    An important effort is the Satellite Power System (SPS) comparative Assessment is the selection and characterization of alternative technologies to be compared with the SPS concept. The ground rules, criteria, and screening procedure applied in the selection of those alternative technologies are summarized. The final set of central station alternatives selected for comparison with the SPS concept includes: (1) light water reactor with improved fuel utilization, (2) conventional coal combustion with improved environmental controls, (3) open cycle gas turbine with integral low Btu gasifier, (4) terrestrial photovoltaic, (5) liquid metal fast breeder reactor, and (6) magnetic confinement fusion.

  12. Application of hybrid life cycle approaches to emerging energy technologies--the case of wind power in the UK.

    PubMed

    Wiedmann, Thomas O; Suh, Sangwon; Feng, Kuishuang; Lenzen, Manfred; Acquaye, Adolf; Scott, Kate; Barrett, John R

    2011-07-01

    Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy.

  13. Technology initiatives with government/business overlap

    NASA Astrophysics Data System (ADS)

    Knapp, Robert H., Jr.

    2015-03-01

    Three important present-day technology development settings involve significant overlap between government and private sectors. The Advanced Research Project Agency for Energy (ARPA-E) supports a wide range of "high risk, high return" projects carried out in academic, non-profit or private business settings. The Materials Genome Initiative (MGI), based in the White House, aims at radical acceleration of the development process for advanced materials. California public utilities such as Pacific Gas & Electric operate under a structure of financial returns and political program mandates that make them arms of public policy as much as independent businesses.

  14. Block-Module Electric Machines of Alternating Current

    NASA Astrophysics Data System (ADS)

    Zabora, I.

    2018-03-01

    The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).

  15. Lbs Augmented Reality Assistive System for Utilities Infrastructure Management Through Galileo and Egnos

    NASA Astrophysics Data System (ADS)

    Stylianidis, E.; Valaria, E.; Smagas, K.; Pagani, A.; Henriques, J.; Garca, A.; Jimeno, E.; Carrillo, I.; Patias, P.; Georgiadis, C.; Kounoudes, A.; Michail, K.

    2016-06-01

    There is a continuous and increasing demand for solutions, both software and hardware-based, that are able to productively handle underground utilities geospatial data. Innovative approaches that are based on the use of the European GNSS, Galileo and EGNOS, sensor technologies and LBS, are able to monitor, document and manage utility infrastructures' data with an intuitive 3D augmented visualisation and navigation/positioning technology. A software and hardware-based system called LARA, currently under develop- ment through a H2020 co-funded project, aims at meeting that demand. The concept of LARA is to integrate the different innovative components of existing technologies in order to design and develop an integrated navigation/positioning and information system which coordinates GNSS, AR, 3D GIS and geodatabases on a mobile platform for monitoring, documenting and managing utility infrastruc- tures on-site. The LARA system will guide utility field workers to locate the working area by helping them see beneath the ground, rendering the complexity of the 3D models of the underground grid such as water, gas and electricity. The capacity and benefits of LARA are scheduled to be tested in two case studies located in Greece and the United Kingdom with various underground utilities. The paper aspires to present the first results from this initiative. The project leading to this application has received funding from the European GNSS Agency under the European Union's Horizon 2020 research and innovation programme under grant agreement No 641460.

  16. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, D.F.

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologiesmore » mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.« less

  18. Technology for robotic surface inspection in space

    NASA Technical Reports Server (NTRS)

    Volpe, Richard; Balaram, J.

    1994-01-01

    This paper presents on-going research in robotic inspection of space platforms. Three main areas of investigation are discussed: machine vision inspection techniques, an integrated sensor end-effector, and an orbital environment laboratory simulation. Machine vision inspection utilizes automatic comparison of new and reference images to detect on-orbit induced damage such as micrometeorite impacts. The cameras and lighting used for this inspection are housed in a multisensor end-effector, which also contains a suite of sensors for detection of temperature, gas leaks, proximity, and forces. To fully test all of these sensors, a realistic space platform mock-up has been created, complete with visual, temperature, and gas anomalies. Further, changing orbital lighting conditions are effectively mimicked by a robotic solar simulator. In the paper, each of these technology components will be discussed, and experimental results are provided.

  19. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galowitz, Stephen

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven andmore » reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh's of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.« less

  20. Evaluation of Geothermal and Natural Gas Resources Beneath Camp Dawson and Opportunities for Deep Direct Use of Geothermal Energy or Natural Gas for Heat and Electricity Production; NETL-TRS-8-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2017; p 148.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Means, Ken; Muring, Timothy M.; Sams, Neal W.

    NETL has reviewed available information and evaluated the deep geothermal and natural gas resources located beneath the Camp Dawson National Guard Training Center in West Virginia. This facility is located in the northeastern portion of the state in Preston County, near the town of Kingwood. This study reviews options for the onsite drilling of wells for the production of geothermal heat or natural gas, as well as the utilization of these resources for on-site power and heating needs. Resources of potential interest are at subsurface depths between 7,000 feet and 15,000 feet.

  1. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has beenmore » developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.« less

  2. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT). Quarterly report No. 7, January--March 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less

  3. Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid

    NASA Astrophysics Data System (ADS)

    Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha

    2017-03-01

    Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.

  4. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  5. Zeolite-based Impedimetric Gas Sensor Device in Low-cost Technology for Hydrocarbon Gas Detection

    PubMed Central

    Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2008-01-01

    Due to increasing environmental concerns the need for inexpensive selective gas sensors is increasing. This work deals with transferring a novel zeolite-based impedimetric hydrocarbon gas sensor principle, which has been originally manufactured in a costly combination of photolithography, thin-film processes, and thick-film processes to a low-cost technology comprising only thick-film processes and one electroplating step. The sensing effect is based on a thin chromium oxide layer between the interdigital electrodes and a Pt-loaded ZSM-5 zeolite film. When hydrocarbons are present in the sensor ambient, the electrical sensor impedance increases strongly and selectively. In the present work, the chromium oxide film is electroplated on Au screen-printed interdigital electrodes and then oxidized to Cr2O3. The electrode area is covered with the screen-printed zeolite. The sensor device is self-heated utilizing a planar platinum heater on the backside. The best sensor performance is obtained at a frequency of 3 Hz at around 350 °C. The good selectivity of the original sensor setup could be confirmed, but a strong cross-sensitivity to ammonia occurs, which might prohibit its original intention for use in automotive exhausts. PMID:27873966

  6. Directional Dark Matter Detector Prototype (Time Projection Chamber)

    NASA Astrophysics Data System (ADS)

    Oliver-Mallory, Kelsey; Garcia-Sciveres, Maurice; Kadyk, John; Lopex-Thibodeaux, Mayra

    2013-04-01

    The time projection chamber is a mature technology that has emerged as a promising candidate for the directional detection of the WIMP particle. In order to utilize this technology in WIMP detection, the operational parameters must be chosen in the non-ideal regime. A prototype WIMP detector with a 10cm field cage, double GEM amplification, and ATLAS FEI3 pixel chip readout was constructed for the purpose of investigating effects of varying gas pressure in different gas mixtures. The rms radii of ionization clusters of photoelectrons caused by X-rays from a Fe-55 source were measured for several gas pressures between 760torr and 99torr in Ar(70)/ CO2(30), CF4, He(80)/Isobutane(20), and He(80)/CF4(20) mixtures. Average radii were determined from distributions of the data for each gas mixture and pressure, and revealed a negative correlation between pressure and radius in Ar(70)/CO2(30) and He(80)/Isobutane(20) mixtures. Investigation of the pressure-radius measurements are in progress using distributions of photoelectron and auger electron practical ranges (Univ. of Pisa) and diffusion, using the Garfield Monte Carlo program.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zygarlicke, C J; Schmidt, D D; Olson, E S

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area ofmore » developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.« less

  8. Intermediate-sized natural gas fueled carbonate fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Sudhoff, Frederick A.; Fleming, Donald K.

    1994-04-01

    This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.

  9. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resourcesmore » (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.« less

  10. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Steven

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds formore » the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.E.; Singleton, A.H.; McAllister, K.K.

    During the past twenty-five years, there have been significant developments in Underground Coal Gasification technology in the US. Government-funded programs have focused on the development of two process configurations: the Controlled Retracting Injection Point (CRIP) and the Steeply Dipping Bed (SDB). Private industry has participated in these programs and is continuing its activities in the development and commercialization of these technologies. This paper will trace the evolution of today`s processes from their origins in the Russian technologies and advancements that are continuing to be made in bringing the technologies to commercial reality in both the US and overseas. The statusmore » of both the CRIP and SDB technologies will be discussed along with developments in processes for utilization of the UCG product gas to generate power and to make chemicals and liquid fuels.« less

  12. Some operational aspects of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.

    1988-01-01

    The study of an Advanced Technology Space Station which would utilize the capabilities of subsystems projected for the time frame of the years 2000 to 2025 is discussed. The study includes tradeoffs of nuclear versus solar dynamic power systems that produce power outputs of 2.5 megawatts and analyses of the dynamics of the spacecraft of which portions are rotated for artificial gravity. The design considerations for the support of a manned Mars mission from low Earth orbit are addressed. The studies extend to on-board manufacturing, internal gas composition effects, and locomotion and material transfer under artificial gravity forces. The report concludes with an assessment of technology requirements for the Advanced Technology Space Station.

  13. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Parag Kulkarni; Wei Wei

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.« less

  14. Commercial-scale demonstration of the Liquid Phase Methanol process. Technical progress report number 8, April 1--June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less

  15. Accelerating Technology Development through Integrated Computation and Experimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhawat, Dushyant; Srivastava, Rameshwar D.; Ciferno, Jared

    2013-08-15

    This special section of Energy & Fuels comprises a selection of papers presented at the topical conference “Accelerating Technology Development through Integrated Computation and Experimentation”, sponsored and organized by the United States Department of Energy’s National Energy Technology Laboratory (NETL) as part of the 2012 American Institute of Chemical Engineers (AIChE) Annual Meeting held in Pittsburgh, PA, Oct 28-Nov 2, 2012. That topical conference focused on the latest research and development efforts in five main areas related to fossil energy, with each area focusing on the utilization of both experimental and computational approaches: (1) gas separations (membranes, sorbents, and solventsmore » for CO{sub 2}, H{sub 2}, and O{sub 2} production), (2) CO{sub 2} utilization (enhanced oil recovery, chemical production, mineralization, etc.), (3) carbon sequestration (flow in natural systems), (4) advanced power cycles (oxy-combustion, chemical looping, gasification, etc.), and (5) fuel processing (H{sub 2} production for fuel cells).« less

  16. ONR Tokyo Scientific Bulletin. Volume 4, Number 4, October-December 1979,

    DTIC Science & Technology

    1979-12-01

    describing various biological rhythms, from oscillatory electrical activities of the brain to circadian fluctuations in bodily functions and task...Technology Division, Naval Research Laboratory, has concentrated his activities on the design and utilization of far infrared gas lasers for the study... activities of the International Indian Ocean Expedition (IIOE) and the plankton sorting center established at Cochin, for plankton samples taken during the

  17. JPRS Report, Science & Technology, Japan

    DTIC Science & Technology

    1987-10-27

    large untapped deposits of low-grade coal in such countries as Thailand and Indonesia . China has large shares of both the production and consumption...their supply and demand situations well balanced. Among these nations, production and consumption of coal are also well balanced, and there are...of coal in this region. Among other energy sources, natural gas is still in the initial stages of development and utilization, and hydropower

  18. Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process - Final Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lux, Kenneth; Imam, Thamina; Chevanan, Nehru

    This Final Technical Report describes the work and accomplishments of the project entitled, “Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process”. The main objective of the project was to raise the Technology Readiness Level (TRL) of the GHGR-CBTL fuel-production technology from TRL 4 to TRL 5 by producing a drop-in synthetic Jet Propellant 8 (JP-8) with a greenhouse-gas footprint less than or equal to petroleum-based JP-8 by utilizing mixtures of coal and biomass as the feedstock. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. While the system was not fabricated and tested, majormore » efforts were expended to design the 1-TPD and a full-scale plant. The system was designed, a Block-Flow Diagram (BFD), a Process-Flow Diagram (PFD), and Piping-and-Instrumentation Diagrams (P&IDs) were produced, a Bill of Materials (BOM) and associated spec sheets were produced, commercially available components were selected and procured, custom components were designed and fabricated, catalysts were developed and screened for performance, and permitting activities were conducted. Optimization tests for JP-8 production using C2 olefin as the feed were performed over a range of temperatures, pressures and WHSVs. Liquid yields of between 63 to 65% with 65% JP-8 fraction (41-42% JP-8 yield) at 50 psig were achieved. Life-Cycle Analysis (LCA) was performed by Argonne National Laboratory (ANL), and a GHGR-CBTL module was added to the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. Based upon the experimental results, the plant design was reconfigured for zero natural-gas imports and minimal electricity imports. The LCA analysis of the reconfigured process utilizing the GREET model showed that if the char from the process was utilized to produce combined heat and power (CHP) then a feed containing 23 wt% biomass and 77 wt% lignite would be needed for parity with petroleum-based JP-8. If the char is not utilized for CHP, but sequestered in a land fill, 24 wt% biomass and 76 wt% lignite would be required. A TEA was performed on this configuration following DOE guidelines and using the ANL-developed GREET module that showed that the GHGR-CBTL TOC and ECO are 69% and 58% of those for the DOE FT-Liquids Baseline Case, respectively. This analysis shows that the economics of the GHGR-CBTL process are significantly better than a gasification/FT process. No technical barriers were identified. The lower costs and the detailed design that was performed under this project are being used by Altex to attract funding partners to move the GHGR-CBTL development forward.« less

  19. Supercritical fluid technology: concepts and pharmaceutical applications.

    PubMed

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.

  20. Coal Gasification - section in Kirk-Othmer Concise Encyclopedia of Chemical Technology, 5th Edition, 2-vol. set, July 2007, ISBN 978-0-470-04748-4, pp. 580-587

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadle, L.J.; Berry, D.A.; Syamlal, Madhava

    2007-07-01

    Coal gasification is the process of reacting coal with oxygen, steam, and carbon dioxide to form a product gas containing hydrogen and carbon monoxide. Gasification is essentially incomplete combustion. The chemical and physical processes are quite similar, the main difference being the nature of the final products. From a processing point of view the main operating difference is that gasification consumes heat evolved during combustion. Under the reducing environment of gasification the sulfur in the coal is released as hydrogen sulfide rather than sulfur dioxide and the coal's nitrogen is converted mostly to ammonia rather than nitrogen oxides. These reducedmore » forms of sulfur and nitrogen are easily isolated, captured, and utilized, and thus gasification is a clean coal technology with better environmental performance than coal combustion. Depending on the type of gasifier and the operating conditions, gasification can be used to produce a fuel gas suitable for any number of applications. A low heating value fuel gas is produced from an air blown gasifier for use as an industrial fuel and for power production. A medium heating value fuel gas is produced from enriched oxygen blown gasification for use as a synthesis gas in the production of chemicals such as ammonia, methanol, and transportation fuels. A high heating value gas can be produced from shifting the medium heating value product gas over catalysts to produce a substitute or synthetic natural gas (SNG).« less

  1. Comparative analyses for selected clean coal technologies in the international marketplace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment ofmore » existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.« less

  2. Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2013-11-01

    To understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz., bio-gas, bio-oil and bio-char can serve the two major energy sectors, viz., electricity and transportation. The process suits best for high bio-gas and electrical energy production when energy input is satisfied from bio-char in form of steam (scheme-1). The bio-gas generated through the process shows its direct utility as a transportation fuel while the bio-oil produced can serve as fuel or raw material to chemical synthesis. On a commercial scale the process is a potent technology towards sustainable development. The process is self-sustained when operated on a continuous mode. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less

  4. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less

  5. The NASA Hydrogen Energy Systems Technology study - A summary

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.

    1976-01-01

    This study is concerned with: hydrogen use, alternatives and comparisons, hydrogen production, factors affecting application, and technology requirements. Two scenarios for future use are explained. One is called the reference hydrogen use scenario and assumes continued historic uses of hydrogen along with additional use for coal gasification and liquefaction, consistent with the Ford technical fix baseline (1974) projection. The expanded scenario relies on the nuclear electric economy (1973) energy projection and assumes the addition of limited new uses such as experimental hydrogen-fueled aircraft, some mixing with natural gas, and energy storage by utilities. Current uses and supply of hydrogen are described, and the technological requirements for developing new methods of hydrogen production are discussed.

  6. Life cycle Greenhouse gas emissions of current Oil Sands Technologies: surface mining and in situ applications.

    PubMed

    Bergerson, Joule A; Kofoworola, Oyeshola; Charpentier, Alex D; Sleep, Sylvia; Maclean, Heather L

    2012-07-17

    Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.

  7. Orbital transfer vehicle oxygen turbopump technology. Volume 3: Hot oxygen testing

    NASA Technical Reports Server (NTRS)

    Urke, Robert L.

    1992-01-01

    This report covers the work done in preparation for a liquid oxygen rocket engine turbopump test utilizing high pressure hot oxygen gas for the turbine drive. The turbopump (TPA) is designed to operate with 400 F oxygen turbine drive gas. The goal of this test program was to demonstrate the successful operation of the TPA under simulated engine conditions including the hot oxygen turbine drive. This testing follows a highly successful series of tests pumping liquid oxygen with gaseous nitrogen as the turbine drive gas. That testing included starting of the TPA with no assist to the hydrostatic bearing. The bearing start entailed a rubbing start until the pump generated enough pressure to support the bearing. The articulating, self-centering hydrostatic bearing exhibited no bearing load or stability problems. The TPA was refurbished for the hot gas drive tests and facility work was begun, but unfortunately funding cuts prohibited the actual testing.

  8. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong

    2013-01-01

    As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media. PMID:23938301

  9. Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-01-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  10. Development of on-site PAFC stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hotta, K.; Matsumoto, Y.; Horiuchi, H.

    1996-12-31

    PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{supmore » 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.« less

  11. Impact of Adsorption on Gas Transport in Nanopores.

    PubMed

    Wu, Tianhao; Zhang, Dongxiao

    2016-03-29

    Given the complex nature of the interaction between gas and solid atoms, the development of nanoscale science and technology has engendered a need for further understanding of gas transport behavior through nanopores and more tractable models for large-scale simulations. In the present paper, we utilize molecular dynamic simulations to demonstrate the behavior of gas flow under the influence of adsorption in nano-channels consisting of illite and graphene, respectively. The results indicate that velocity oscillation exists along the cross-section of the nano-channel, and the total mass flow could be either enhanced or reduced depending on variations in adsorption under different conditions. The mechanisms can be explained by the extra average perturbation stress arising from density oscillation via the novel perturbation model for micro-scale simulation, and approximated via the novel dual-region model for macro-scale simulation, which leads to a more accurate permeability correction model for industrial applications than is currently available.

  12. Hydrogen Fuel Cell on a Helicopter: A System Engineering Approach

    NASA Astrophysics Data System (ADS)

    Nesheiwat, Rod

    Hydrogen fuel cells have been previously investigated as a viable replacement to traditional gas turbine auxiliary power unit onboard fixed wing commercial jets. However, so far no study has attempted to extend their applicability to rotary wing aircrafts. To aid in the advancement of such innovative technologies, a holistic technical approach is required to ensure risk reduction and cost effectiveness throughout the product lifecycle. This paper will evaluate the feasibility of replacing a gas turbine auxiliary power unit on a helicopter with a direct hydrogen, air breathing, proton exchange membrane fuel cell, all while emphasizing a system engineering approach that utilize a specialized set of tools and artifacts.

  13. Large-Scale Power Production Potential on U.S. Department of Energy Lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, Alicen J.; Elgqvist, Emma M.; Gagne, Douglas A.

    This report summarizes the potential for independent power producers to generate large-scale power on U.S. Department of Energy (DOE) lands and export that power into a larger power market, rather than serving on-site DOE loads. The report focuses primarily on the analysis of renewable energy (RE) technologies that are commercially viable at utility scale, including photovoltaics (PV), concentrating solar power (CSP), wind, biomass, landfill gas (LFG), waste to energy (WTE), and geothermal technologies. The report also summarizes the availability of fossil fuel, uranium, or thorium resources at 55 DOE sites.

  14. Kent and Riegel's Handbook of industrial chemistry and biotechnology. 11th ed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, James A.

    2007-07-01

    This handbook provides extensive information on plastics, rubber, adhesives, textile fibers, pharmaceutical chemistry, synthetic organic chemicals, soaps and detergents, as well as various other major classes of industrial chemistry. There is detailed coverage of coal utilization technology, dyes and dye intermediates, chlor-alkali and heavy chemicals, paints and pigments, chemical explosives, propellants, petroleum and petrochemicals, natural gas, industrial gases, synthetic nitrogen products, fats and oils, sulfur and sulfuric acid, phosphorous and phosphates, wood products, and sweeteners. The chapter on coal is entitled: coal technology for power, liquid fuels and chemicals. 100 ills.

  15. 2016 Annual Technology Baseline (ATB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values usingmore » best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.« less

  16. Utilities bullish on meter-reading technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, W.L.

    1995-01-15

    By the end of 1996, the 400,000 customers of Kansas City Power & Light Company (KCPL) will have their electric meters read by a real-time wireless network that will relay electrical consumption readings back to computers at the utility`s customer service office. KCPL`s executives believe the new radio and cellular network will greatly improve the company`s ability to control its power distribution, manage its load requirements, monitor outages, and in the near future, allow time-of-use and offpeak pricing. The KCPL system represents the first systemwide, commercial application of wireless automated meter reading (AMR) by a U.S. utility. The article alsomore » describes other AMR systems for reading water and gas meters, along with saying that $18 billion in future power plant investments can be avoided by using time-of-use pricing for residential customers.« less

  17. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU performance over its full operating range. The primary test variables used in operating the Brayton PCU were heater input power and rotor speed. Testing demonstrated a maximum steady-state alternating-current power output of 1835 W at a gas heater power of 9000 W and a rotor speed of 52000 rpm. The corresponding measured turbine inlet gas temperature was 1076 K, and the compressor inlet gas temperature was 282 K. When insulation losses from the gas heater were neglected, the Brayton cycle efficiency for the maximum power point was calculated to be 24 percent. The net direct-current power output was 1750 W, indicating a PMAD efficiency of about 95 percent.

  18. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units AGENCY... Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units.'' The EPA is making... for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units, and...

  19. NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance

    Science.gov Websites

    in Borrego Springs, California | Energy Systems Integration Facility | NREL NREL, San Diego Gas & Electric Models Utility Microgrid in Borrego Springs NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance in Borrego Springs, California San Diego Gas & Electric Company

  20. How to Access and Sample the Deep Subsurface of Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G.; Blacic, J.; Dreesen, D.; Mockler, T.

    2000-01-01

    We are developing a technology roadmap to support a series of Mars lander missions aimed at successively deeper and more comprehensive explorations of the Martian subsurface. The proposed mission sequence is outlined. Key to this approach is development of a drilling and sampling technology robust and flexible enough to successfully penetrate the presently unknown subsurface geology and structure. Martian environmental conditions, mission constraints of power and mass and a requirement for a high degree of automation all limit applicability of many proven terrestrial drilling technologies. Planetary protection and bioscience objectives further complicate selection of candidate systems. Nevertheless, recent advances in drilling technologies for the oil & gas, mining, underground utility and other specialty drilling industries convinces us that it will be possible to meet science and operational objectives of Mars subsurface exploration.

  1. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir (Appendix)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  2. Automated potentiometric electrolyte analysis system. [for use in weightlessness

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility is demonstrated of utilizing chemical sensing electrode technology as the basis for an automatically-controlled system for blood gas and electrolyte analyses under weightlessness conditions. The specific measurements required were pH, pCO2, sodium, chloride, potassium ions, and ionized calcium. The general electrode theory, and ion activity measurements are described along with the fluid transport package, electronics unit, and controller for the automated potentiometric analysis system.

  3. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael; Booth, Robert; Fairchild, James

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  4. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at leastmore » 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.« less

  5. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Energy conversion system characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.

  6. Power Systems Development Facility Gasification Test Campaing TC18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifiermore » train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.« less

  7. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    NASA Astrophysics Data System (ADS)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  8. Gas turbine critical research and advanced technology (CRT) support project

    NASA Technical Reports Server (NTRS)

    Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.

    1982-01-01

    The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.

  9. Advancements Toward Oil-Free Rotorcraft Propulsion

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; Radil, Kevin C.

    2010-01-01

    NASA and the Army have been working for over a decade to advance the state-of-the-art (SOA) in Oil-Free Turbomachinery with an eye toward reduced emissions and maintenance, and increased performance and efficiency among other benefits. Oil-Free Turbomachinery is enabled by oil-free gas foil bearing technology and relatively new high-temperature tribological coatings. Rotorcraft propulsion is a likely candidate to apply oil-free bearing technology because the engine size class matches current SOA for foil bearings and because foil bearings offer the opportunity for higher speeds and temperatures and lower weight, all critical issues for rotorcraft engines. This paper describes an effort to demonstrate gas foil journal bearing use in the hot section of a full-scale helicopter engine core. A production engine hot-core location is selected as the candidate foil bearing application. Rotordynamic feasibility, bearing sizing, and load capability are assessed. The results of the program will help guide future analysis and design in this area by documenting the steps required and the process utilized for successful application of oil-free technology to a full-scale engine.

  10. Cogeneration Technology Alternatives Study (CTAS) Volume 5: Analytical approach and results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Data and information in the area of advanced energy conversion systems for industrial cogeneration applications in the 1985 to 2000 time period are provided. Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasification systems.

  11. Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms.

    PubMed

    Woo, Han Min

    2017-06-01

    Recent development of carbon capture utilization (CCU) for reduction of greenhouse gas emission are reviewed. In the case of CO 2 utilization, I describe development of solar-to-chemical and solar-to-fuel technology that refers to the use of solar energy to convert CO 2 to desired chemicals and fuels. Photoautotrophic cyanobacterial platforms have been extensively developed on this principle, producing a diverse range of alcohols, organic acids, and isoprenoids directly from CO 2 . Recent breakthroughs in the metabolic engineering of cyanobacteria were reviewed. In addition, adoption of the light harvesting mechanisms from nature, photovoltaics-derived water splitting technologies have recently been integrated with microbial biotechnology to produce desired chemicals. Studies on the integration of electrode material with next-generation microbes are showcased for alternative solar-to-chemical and solar-to-fuel platforms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Financial analysis of biogas utilization : input cattle, pig feces and coffee waste in Karo, Indonesia

    NASA Astrophysics Data System (ADS)

    Ginting, N.; Zuhri, F.; Hasnudi; Mirwandhono, E.; Sembiring, I.; Daulay, A. H.

    2018-02-01

    The community's need for renewable energy was very urgent. In addition, efforts to preserve the environment from waste caused biogas technology feasible to apply. This study aims to provide biogas technology with minimal cost and utilize agricultural waste that were coffee and livestock waste. The study was conducted from July to October 2016. The theoretical and empirical methods used in this study were included data from officials resources, field survey on 16 biogas locations, focus group discussion and interview with stake holders. Data were tabulated by Excel Program which then were analysed by SAS. Parameters were included Production Cost, Production Result, Profit Loss Analysis, Revenue Cost Ratio (R/C Ratio), Return On Investment (ROI), Net B/C, and IRR. The result of this research showed that the application of bioplastic gas with cow dung and coffee waste as bioplasticgas input cause the best results.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udengaard, Niels; Knight, Richard; Wendt, Jesper

    This final report presents the results of a four-year technology demonstration project carried out by a consortium of companies sponsored in part by a $25 million funding by the Department of Energy (DOE) under the American Recovery and Reinvestment Act (ARRA). The purpose of the project was to demonstrate a new, economical technology for the thermochemical conversion of woody biomass into gasoline and to demonstrate that the gasoline produced in this way is suitable for direct inclusion in the already existing gasoline pool. The process that was demonstrated uses the Andritz-Carbona fluidized-bed steam-oxygen gasification technology and advanced tar reforming catalyticmore » systems to produce a clean syngas from waste wood, integrated conventional gas cleanup steps, and finally utilizes Haldor Topsoe’s (Topsoe) innovative Topsoe Improved Gasoline Synthesis (TIGASTM) syngas-to-gasoline process. Gas Technology Institute (GTI) carried out the bulk of the testing work at their Flex Fuel development facility in Des Plaines, Illinois; UPM in Minnesota supplied and prepared the feedstocks, and characterization of liquid products was conducted in Phillips 66 labs in Oklahoma. The produced gasoline was used for a single-engine emission test at Southwest Research Institute (SwRI®) in San Antonio, TX, as well as in a fleet test at Transportation Research Center, Inc. (TRC Inc.) in East Liberty, Ohio. The project benefited from the use of existing pilot plant equipment at GTI, including a 21.6 bone dry short ton/day gasifier, tar reformer, Morphysorb® acid gas removal, associated syngas cleanup and gasifier feeding and oxygen systems.« less

  14. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and utilization...

  15. Development of Gas-Lubricated Pistons for Heavy Duty Diesel Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Shapiro, W.

    1984-01-01

    Static testing of a segmented, gas-lubricated, piston-ring was accomplished. The ring utilizes high-pressure gas generated during the diesel cycle to energize a hydrostatic gas film between the piston and cylinder liner. The configuration was deficient in overall performance, because all segments of a ring set failed to form a fluid-film simultaneously, when exposed to internal preload. The difficulty was traced to the moment balance required to prevent the segments from overturning and contacting the cylinder walls. Some individual sectors formed a film and performed well in every respect including load capability to 6,000 N. These results produce optimism as to the ultimate feasibility of hydrostatic, gas-lubricated piston rings. In addition to test results, the principles of operation, and theoretical developments are presented. Breathable liner concepts are suggested for future consideration. In these configurations, solid hydrostatic pistons are coupled with flexible liners that elastically deform to form a gas-film under hydrostatic pressurization. Breathable liners afford the mechanical simplicity required for mass produced engines, and initial examination indicates satisfactory operation.

  16. Turboexpanders with dry gas seals and active magnetic bearings in hydrocarbon processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agahi, R.R.

    1999-07-01

    Since its first application in hydrocarbon processing in the early 1960s, turboexpander design has changed, evolved and improved tremendously. Today, hydrocarbon process designers use turboexpanders for almost all hydrocarbon liquid rejection and hydrocarbon dew point control for onshore and offshore installations. There are presently more than 3,000 turboexpanders operating in hydrocarbon gas processing plants worldwide. Due to the wide application of turboexpanders in hydrocarbon processing, the API-617 committee has assigned a task force to prepare an appendix to API-617 to cover design and manufacturing standards for turboexpanders. Dry gas seals (DGS) were cautiously introduced in the early 1980s for compressorsmore » used in hydrocarbon processing. It took almost a decade before dry gas seals found their application in turboexpanders. Dry gas seals were originally utilized to protect cryogenic hydrocarbon process gas from contamination by lubricating oil. Later on, dry gas seals were used to minimized hydrocarbon process gas leakage and also to provide an inert-gas-purged environment for both oil bearings and active magnetic bearings. The former eliminates the lubricating oil dilution problem and the latter made certification of active magnetic bearings by international certifying agencies possible. Active magnetic bearings (AMB), similar to dry gas seals, were originally introduced into hydrocarbon process gas compressors in the mid 1980s. The hydrocarbon processing industry waited half a decade to adopt this innovative technology for turboexpanders in the hydrocarbon process. The first turboexpander with active magnetic bearings was installed on an offshore platform in 1991. High reliability, low capital investment, low capital investment, low operating costs and more compact design have accelerated demand in recent years for turboexpanders with active magnetic bearings. In this paper, the author describes the technology of turboexpanders with dry gas seals and active magnetic bearings. Several applications are presented and performance, reliability and availability data will be presented.« less

  17. Staged Catalytic Partial Oxidation (SCPO) System - The State of Art Integrated Short Contact Time Hydrogen Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke Liu; Jin Ki Hong; Wei Wei

    Research and development on hydrogen and syngas production have great potential in addressing the following challenges in energy arena: (1) produce more clean fuels to meet the increasing demands for clean liquid and gaseous fuels for transportation and electricity generation, (2) increase the efficiency of energy utilization for fuels and electricity production, and (3) eliminate the pollutants and decouple the link between energy utilization and greenhouse gas emissions in end-use systems [Song, 2006, Liu, Song & Subramani 2009]. In this project, GE Global Research (GEGR) collaborated with Argonne National Laboratory (ANL) and the University of Minnesota (UoMn), developed and demonstratedmore » a low cost, compact staged catalytic partial oxidation (SCPO) technology for distributed hydrogen generation. GEGR analyzed different reforming system designs, and developed the SCPO reforming system which is a unique technology staging and integrating 3 different short contact time catalysts in a single, compact reactor: catalytic partial oxidation (CPO), steam methane reforming (SMR) and water-gas shift (WGS). This integration is demonstrated via the fabrication of a prototype scale unit of each key technology. Approaches for key technical challenges of the program includes: · Analyzed different system designs · Designed the SCPO hydrogen production system · Developed highly active and sulfur tolerant CPO catalysts · Designed and built different pilot-scale reactors to demonstrate each key technology · Evaluated different operating conditions · Quantified the efficiency and cost of the system · Developed process design package (PDP) for 1500 kg H2/day distributed H2 production unit. SCPO met the Department of Energy (DOE) and GE’s cost and efficiency targets for distributed hydrogen production.« less

  18. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  19. Two-step rapid sulfur capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the rangemore » of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.« less

  20. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    NASA Astrophysics Data System (ADS)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition, results suggest that the regional electricity fuel mix and volatile energy prices significantly influence the benefits of employing GSHP technologies in Minnesota from both environmental and economic perspectives. It is worthy noting that with the historically low natural gas price in 2012, the conventional system's energy bill reduction would be large enough to bring its life-cycle cost below those of the GSHPs. As a result, the environmentally favorable GSHP technologies would become economically unfavorable, unless they are additionally subsidized. Improved understanding these effects, along with design and performance characteristics of GSGP technologies specific to Minnesota's cold climate, allows better decision making among homeowners considering these technologies and policy makers providing incentives for alternative energy solutions.

  1. Synthesis of Trigeneration Systems: Sensitivity Analyses and Resilience

    PubMed Central

    Carvalho, Monica; Lozano, Miguel A.; Ramos, José; Serra, Luis M.

    2013-01-01

    This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs. PMID:24453881

  2. Synthesis of trigeneration systems: sensitivity analyses and resilience.

    PubMed

    Carvalho, Monica; Lozano, Miguel A; Ramos, José; Serra, Luis M

    2013-01-01

    This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs.

  3. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2009-01-01

    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  4. 18 CFR 141.400 - FERC Form No. 3-Q, Quarterly financial report of electric utilities, licensees, and natural gas...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Quarterly financial report of electric utilities, licensees, and natural gas companies. 141.400 Section 141..., licensees, and natural gas companies. (a) Prescription. The quarterly report of electric utilities, licensees, and natural gas companies, designated as FERC Form No. 3-Q, is prescribed for the reporting...

  5. 18 CFR 260.300 - FERC Form No. 3-Q, Quarterly financial report of electric utilities, licensees, and natural gas...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Quarterly financial report of electric utilities, licensees, and natural gas companies. 260.300 Section 260... ENERGY APPROVED FORMS, NATURAL GAS ACT STATEMENTS AND REPORTS (SCHEDULES) § 260.300 FERC Form No. 3-Q, Quarterly financial report of electric utilities, licensees, and natural gas companies. (a) Prescription...

  6. Fossil fuels in a sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute themore » air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.« less

  7. Qualification of the GASGUARD® SAS GGT Arsine Sub-Atmospheric Gas Delivery System for Ion Implantation

    NASA Astrophysics Data System (ADS)

    Dunn, James P.; Rolland, James L.; Grim, James S.; Machado, Reinaldo M.; Hartz, Christopher L.

    2006-11-01

    A beta level evaluation of the GASGUARD® SAS GGT Arsine ion implant dopant supply developed by Air Products and Chemicals, Inc. was conducted by Atmel Corporation. The evaluation included characterization of the normalized wafer yield, mass spectra, ionization efficiency, flow rate, beam current, extraction of usable material and cylinder lifetime. This new and novel sub-atmospheric dopant gas delivery system utilizes a unique electrochemical process, which can generate, on demand, high flows of arsine at a constant 400 torr pressure while limiting net inventory of arsine to only 1 gram. This paper illustrates how Atmel Corporation evaluated and released this new arsine dopant delivery system for commercial production and verified high delivery capacity, resulting in reduced gas costs and increased cylinder life compared to the traditional adsorbent based technology.

  8. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    NASA Technical Reports Server (NTRS)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, M.J.; Kramer, S.R.; Pittard, G.T.

    Jason Consultants International, Inc., under the sponsorship of the Gas Research Institute (GRI), has developed guidelines, procedures and software, which are described in this paper, for the installation of polyethylene gas pipe using guided horizontal drilling. Jason was aided in this development by two key subcontractors; Maurer Engineering who wrote the software and NICOR Technologies who reviewed the software and guidelines from a utility perspective. This program resulted in the development of commerically viable software for utilities, contractors, engineering firms, and others involved with the installation of pipes using guided horizontal drilling. The software is an interactive design tool thatmore » allows the user to enter ground elevation data, alignment information and pipe data. The software aides the engineer in designing a drill path and provides plan and profile views along with tabular data for pipe depth and surface profile. Finally, the software calculates installation loads and pipe stresses, compares these values against pipe manufacturer`s recommendations, and provides this information graphically and in tabular form. 5 refs., 18 figs., 2 tabs.« less

  10. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Alexis T.; Alger, Monty M.; Flytzani-Stephanopoulos, Maria

    A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world’s highest-cost producer in 2005 to among the lowest-cost producers today. The low cost and increased supply of natural gas and natural gas liquids provides an opportunity tomore » discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel. To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.« less

  11. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    PubMed

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Determination of Parameters for Development of a Physiologically Based Model for the Toxicokinetics of C(+)P(+)-Soman

    DTIC Science & Technology

    1993-06-01

    In conducting research utilizing recombinant DNA technology , the investigator(s) adhered to current guidelines promulgated by the National...zur Rtickstandanalyse), saponin (BDH, Poole, UK), aluminium sulfate.16 H2 0 (BDH Analar, Ž 98%), sodium bicarbonate (Lamens en Indemans, ’s...isopropanol). The mixture was extracted with 3 ml ethyl acetate. Gas chromatographic analysis of the soman stereoisomers in the ethyl acetate phase was

  13. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  14. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  15. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  16. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  17. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  18. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  19. Writing to Think: The Intellectual Journey of a Naval Career

    DTIC Science & Technology

    2014-02-01

    progenitor, a clear intellectual audit trail winds through the developmental events, includ ing a war game and work- shops, to the published strategy. In...projected utility, it is still a gas- turbine - powered destroyer that employs chemical-based weapons. As the technologies of rail guns, electromagnetic...one off the Falklands in 1982, had there been sufficient wind for the Argentine carrier to launch its strike aircraft and had the aircraft then

  20. Technical Feasibility of Compressed Air Energy Storage (CAES) Utilizing a Porous Rock Reservoir, Appendix — Chapter 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Michael

    Pacific Gas & Electric Company (PG&E) conducted a project to explore the viability of underground compressed air energy storage (CAES) technology. CAES uses low-cost, off-peak electricity to compress air into a storage system in an underground space such as a rock formation or salt cavern. When electricity is needed, the air is withdrawn and used to drive a generator for electricity production.

  1. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    PubMed

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    CONSPECTUS: The previous decade has witnessed the expeditious uptake of flow chemistry techniques in modern synthesis laboratories, and flow-based chemistry is poised to significantly impact our approach to chemical preparation. The advantages of moving from classical batch synthesis to flow mode, in order to address the limitations of traditional approaches, particularly within the context of organic synthesis are now well established. Flow chemistry methodology has led to measurable improvements in safety and reduced energy consumption and has enabled the expansion of available reaction conditions. Contributions from our own laboratories have focused on the establishment of flow chemistry methods to address challenges associated with the assembly of complex targets through the development of multistep methods employing supported reagents and in-line monitoring of reaction intermediates to ensure the delivery of high quality target compounds. Recently, flow chemistry approaches have addressed the challenges associated with reactions utilizing reactive gases in classical batch synthesis. The small volumes of microreactors ameliorate the hazards of high-pressure gas reactions and enable improved mixing with the liquid phase. Established strategies for gas-liquid reactions in flow have relied on plug-flow (or segmented flow) regimes in which the gas plugs are introduced to a liquid stream and dissolution of gas relies on interfacial contact of the gas bubble with the liquid phase. This approach confers limited control over gas concentration within the liquid phase and is unsuitable for multistep methods requiring heterogeneous catalysis or solid supported reagents. We have identified the use of a gas-permeable fluoropolymer, Teflon AF-2400, as a simple method of achieving efficient gas-liquid contact to afford homogeneous solutions of reactive gases in flow. The membrane permits the transport of a wide range of gases with significant control of the stoichiometry of reactive gas in a given reaction mixture. We have developed a tube-in-tube reactor device consisting of a pair of concentric capillaries in which pressurized gas permeates through an inner Teflon AF-2400 tube and reacts with dissolved substrate within a liquid phase that flows within a second gas impermeable tube. This Account examines our efforts toward the development of a simple, unified methodology for the processing of gaseous reagents in flow by way of development of a tube-in-tube reactor device and applications to key C-C, C-N, and C-O bond forming and hydrogenation reactions. We further describe the application to multistep reactions using solid-supported reagents and extend the technology to processes utilizing multiple gas reagents. A key feature of our work is the development of computer-aided imaging techniques to allow automated in-line monitoring of gas concentration and stoichiometry in real time. We anticipate that this Account will illustrate the convenience and benefits of membrane tube-in-tube reactor technology to improve and concomitantly broaden the scope of gas/liquid/solid reactions in organic synthesis.

  2. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  3. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas

    2014-05-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be injected in the scope of the scheduled EGR operation. Our techno-economic modeling results considering EGR reservoir simulations demonstrate that an economic and carbon neutral operation of UCG combined with fertilizer production and CCS is feasible. The suggested approach may provide a bridging technology to tackle fertilizer and power supply shortages in Bangladesh, and in addition support further production from depleting natural gas deposits. References Kempka, T., Plötz, M.L., Hamann, J., Deowan, S.A., Azzam, R. (2010) Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 4: 2200-2205. Nakaten, N., Schlüter, R., Azzam, R., Kempka, T. (2014) Development of a techno-economic model for dynamic calculation of COE, energy demand and CO2 emissions of an integrated UCG-CCS process. Energy (in print). Doi 10.1016/j.energy.2014.01.014

  4. The Stratospheric Aerosol and Gas Experiment (SAGE) IV Pathfinder

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Damadeo, R. P.; Gasbarre, J. F.

    2017-12-01

    Stratospheric ozone has been the subject of observation and research for decades. Measurements from satellites provided data on the initial decline in the late 1970s and early 1980s that supported the adoption of the Montreal Protocol to current observations hinting at potential recovery. Adequate determination of that recovery requires continuous and, in the case of multiple instruments, overlapping data records. However, most current satellite systems are well beyond their expected lifetimes and thus, with only a few "younger" instruments available, we look towards the future of satellite observations of stratospheric ozone to develop the Stratospheric Aerosol and Gas Experiment (SAGE) IV Pathfinder. The SAGE IV Pathfinder project will develop and validate a technology demonstration that will pave the way for a future SAGE IV mission. Utilizing solar occultation imaging, SAGE IV will be capable of measuring ozone, aerosol, and other trace gas species with the same quality as previous SAGE instruments but with greatly improved pointing knowledge. Furthermore, current technological advancements allow SAGE IV to fit within a CubeSat framework and make use of commercial hardware, significantly reducing the size and cost when compared with traditional missions and enabling sustainability of future measurements.

  5. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  6. Financial and environmental impacts of new technologies in the energy sector

    NASA Astrophysics Data System (ADS)

    Duthu, Ray Charles, III

    Energy industries (generation, transmission and distribution of fuels and electricity) have a long history as the key elements of the US energy economy and have operated within a mostly consistent niche in our society for the past century. However, varieties of interrelated drivers are forcing changes to these industries' business practices, relationship to their customers, and function in society. In the electric utility industry, the customer is moving towards acting as a fuller partner in the energy economy: buying, selling, and dispatching its demand according to its own incentives. Natural gas exploration and production has long operated out in rural areas farther from public concerns or regulations, but now, due to hydraulic fracturing, new exploration is occurring in more urbanized, developed regions of the country and is creating significant public concern. For these industries, the challenges to their economic development and to improvements to the energy sector are not necessarily technological; but are social, business, and policy problems. This dissertation seeks to understand and design towards these issues by building economic and life cycle assessment models that quantify value, potential monetization, and the potential difference between the monetization and value for two new technologies: customer-owned distributed generation systems and integrated development plans with pipeline water transport in hydraulically fractured oil and gas fields. An inclusive business model of a generic customer in Fort Collins, Co and its surrounding utilities demonstrates that traditional utility rates provide customers with incentives that encourage over-monetization of a customer's distributed generation resource at the expense of the utilities. Another model which compares customer behavior incented by traditional rates in three New England cities with the behavior incented through a real-time pricing market corroborates this conclusion. Daily customer load peak-shaving is shown to have a negligible and unreliable value in reducing the average cost of electricity and in some cases can increase these costs. These models support the hypothesis that distributed generation systems provide much greater value when operated during a few significant electricity price events than according to a daily cycle. New business practices which foster greater cooperation between customers and utilities, such as a real-time price market with a higher fidelity price signal, reconnect distributed generation's potential monetization to its value in the marketplace. These new business models are required to ensure that these new technologies are integrated into the electric grid and into the energy market in such a way that all of the market participants are interested and invested stakeholders. The truck transport of water associated with hydraulic fracturing creates significant local costs. A life cycle analysis of a hypothetical oil and gas field generic to the northern Colorado Denver-Julesburg basin quantifies the economic, environmental, and social costs associated with truck transport and compares these results with water pipeline systems. A literature review of incident data demonstrates that pipelines historically have spilled less hazardous material and caused fewer injuries and fatalities than truck transport systems. The life cycle analysis demonstrates that pipeline systems also emit less pollutants and cause less local road damage than comparable trucking systems. Pipeline systems are shown to be superior to trucking systems across all the metrics considered in this project. In each of these domains, this research has developed expanded-scope models of these new technologies and systems to quantify the tradeoffs that are present between monetization, environment, and economic value. The results point towards those business models, policies, and management practices that enable the development of more equitable, efficient, and sustainable energy systems.

  7. Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark

    Expanding production of the United States’ vast shale gas reserves in recent years has put the country on a path towards greater energy independence, enhanced economic prosperity, and (potentially) reduced emissions of greenhouse gases and other pollutants. The corresponding expansion of gas-fired generation in the power sector – driven primarily by lower natural gas prices – has also made it easier and cheaper to integrate large amounts of variable renewable generation, such as wind power, into the grid. At the same time, however, low natural gas prices have suppressed wholesale power prices across the nation, making it harder for windmore » and other renewable power technologies to compete on cost alone – even despite their recent cost and performance improvements. A near-term softening in policy-driven demand from state-level renewable energy mandates, coupled with a possible phase-out of a key federal tax incentive over time, may exacerbate wind’s challenge in the coming years. As wind power finds it more difficult to compete with gas-fired generation on the basis of near-term cost, it will increasingly need to rely on other attributes, such as its “portfolio” or “hedge” value, as justification for inclusion in the power mix. This article investigates the degree to which wind power can still serve as a cost-effective hedge against rising natural gas prices, given the significant reduction in gas prices in recent years, coupled with expectations that prices will remain low for many years to come. It does so by drawing upon a rich sample of long-term power purchase agreements (“PPAs”) between existing wind generators and electric utilities in the U.S., and comparing the contracted prices at which utilities will be buying wind power from these existing projects for decades to come to a variety of long-term projections of the fuel costs of gas-fired generation modeled by the Energy Information Administration (“EIA”).« less

  8. Gas Main Sensor and Communications Network System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen Schempf

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetoothmore » PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.« less

  9. National Conference on Integrated Resource Planning: Proceedings

    NASA Astrophysics Data System (ADS)

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners' (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; and key regulatory issues facing gas utilities during the next five years.

  10. Producing ammonium sulfate from flue gas desulfurization by-products

    USGS Publications Warehouse

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  11. Intermetallic and ceramic matrix composites for 815 to 1370 C (1500 to 2500 F) gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1989-01-01

    Light weight and potential high temperature capability of intermetallic compounds, such as the aluminides, and structural ceramics, such as the carbides and nitrides, make these materials attractive for gas turbine engine applications. In terms of specific fuel consumption and specific thrust, revolutionary improvements over current technology are being sought by realizing the potential of these materials through their use as matrices combined with high strength, high temperature fibers. The U.S. along with other countries throughout the world have major research and development programs underway to characterize these composites materials; improve their reliability; identify and develop new processing techniques, new matrix compositions, and new fiber compositions; and to predict their life and failure mechanisms under engine operating conditions. The status is summarized of NASA's Advanced High Temperature Engine Materials Technology Program (HITEMP) and the potential benefits are described to be gained in 21st century transport aircraft by utilizing intermetallic and ceramic matrix composite materials.

  12. Gas-liquid countercurrent integration process for continuous biodiesel production using a microporous solid base KF/CaO as catalyst.

    PubMed

    Hu, Shengyang; Wen, Libai; Wang, Yun; Zheng, Xinsheng; Han, Heyou

    2012-11-01

    A continuous-flow integration process was developed for biodiesel production using rapeseed oil as feedstock, based on the countercurrent contact reaction between gas and liquid, separation of glycerol on-line and cyclic utilization of methanol. Orthogonal experimental design and response surface methodology were adopted to optimize technological parameters. A second-order polynomial model for the biodiesel yield was established and validated experimentally. The high determination coefficient (R(2)=98.98%) and the low probability value (Pr<0.0001) proved that the model matched the experimental data, and had a high predictive ability. The optimal technological parameters were: 81.5°C reaction temperature, 51.7cm fill height of catalyst KF/CaO and 105.98kPa system pressure. Under these conditions, the average yield of triplicate experiments was 93.7%, indicating the continuous-flow process has good potential in the manufacture of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Potential Application of NASA Aerospace Technology to Ground-Based Power System

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Welch, Gerard E.; Bakhle, Milind A.; Brown, Gerald V.

    2000-01-01

    A review of some of the basic gas turbine technology being developed at the NASA John H. Glenn Research Center at Lewis Field, which may have the potential to be applied to ground-based systems, is presented in this paper. Only a sampling of the large number of research activities underway at the Glenn Research Center can be represented here. The items selected for presentation are those that may lead to increased power and efficiency, reduced cycle design time and cost, improved thermal design, reduced fatigue and fracture, reduced mechanical friction and increased operating margin. The topic of improved material will be presented in this conference and shall not be discussed here. The topics selected for presentation are key research activities at the Glenn Center of Excellence on Turbo-machinery. These activities should be of interest and utility to this ISABE (International Symposium on Air Breathing Engines) Special Forum on Aero-Derivative Land-Based Gas Turbines and to the power industry.

  14. Cogeneration technology alternatives study. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.

  15. Technology developments for a compound cycle engine

    NASA Technical Reports Server (NTRS)

    Bobula, George A.; Wintucky, William T.; Castor, J. G.

    1988-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the light weight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hour (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. Results of recent activities in a program to establish the technology base for a CCE are presented. The objective of this program is to research and develop those critical technologies which are necessary for the demonstration of a multicylinder diesel core in the early 1990s. A major accomplishment was the initial screening and identification of a lubricant which has potential for meeting the material wear rate limits of the application. An in-situ wear measurement system also was developed to provide accurate, readily obtainable, real time measurements of ring and liner wear. Wear data, from early single cylinder engine tests, are presented to show correlation of the in-situ measurements and the system's utility in determining parametric wear trends. A plan to demonstrate a compound cycle engine by the mid 1990s is included.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitratemore » waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.« less

  17. Carbon dioxide gas purification and analytical measurement for leading edge 193nm lithography

    NASA Astrophysics Data System (ADS)

    Riddle Vogt, Sarah; Landoni, Cristian; Applegarth, Chuck; Browning, Matt; Succi, Marco; Pirola, Simona; Macchi, Giorgio

    2015-03-01

    The use of purified carbon dioxide (CO2) has become a reality for leading edge 193 nm immersion lithography scanners. Traditionally, both dry and immersion 193 nm lithographic processes have constantly purged the optics stack with ultrahigh purity compressed dry air (UHPCDA). CO2 has been utilized for a similar purpose as UHPCDA. Airborne molecular contamniation (AMC) purification technologies and analytical measurement methods have been extensively developed to support the Lithography Tool Manufacturers purity requirements. This paper covers the analytical tests and characterizations carried out to assess impurity removal from 3.0 N CO2 (beverage grade) for its final utilization in 193 nm and EUV scanners.

  18. Iodine in foods. February 1974-December 1979 (citations from the Food Science and Technology Abstracts data base). Report for February 1974-December 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, C.G.

    The bibliography cites reports dealing with determination, content and effects of iodine in foods and beverages such as milk and water. Methods of determination include utilization of ion-selective electrodes, gas chromatography and neutron activation analysis. I values of fats and oils are reported, as well as effects of iodophor preparations used for washing udders and milk equipment. (Contains 188 abstracts)

  19. Bio-Oxo Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashide, Wendy; Rohlin, Lars

    Easel Biotechnologies, LLC’s Bio-Oxo process has demonstrated that isobutyraldehyde can be biologically produced from corn stover hydrolysate up to 56 g/L in a 14L fermentor. This was accomplished by metabolically engineering bacterial strains to not only produce isobutyraldehyde, but to do so by co-utilizing corn stover hydrolysate sugars, glucose and xylose. Also essential to the success of the Bio-Oxo process was that it utilized gas stripping as a means of product separation, allowing for the continuous removal of isobutyraldehyde. This aided in not only reducing energy costs associated with separation, but also alleviating product toxicity, resulting in higher production. Althoughmore » we were not able to complete our economic analysis based on pilot scale fermentations, the improvements we have made from strain engineering to product separation, should result in the reduced cost of isobutyraldehyde. Still, as the project has ended prematurely, there is room for additional optimization. Improvements in productivity and sugar utilization would result in a further reduction in capital and recovery costs. As a biological-based process, the utilization of corn stover results in reduced greenhouse gas emissions as compared to petroleum-based chemical synthesis. In addition, as a true replacement chemical “drop in” system, no downstream production units need to be changed. Jobs can also be created as farm waste needs to be collected and transported to the new production facility.« less

  20. Recent advances in quartz enhanced photoacoustic sensing

    NASA Astrophysics Data System (ADS)

    Patimisco, Pietro; Sampaolo, Angelo; Dong, Lei; Tittel, Frank K.; Spagnolo, Vincenzo

    2018-03-01

    This review aims to discuss the latest advancements in quartz-enhanced photoacoustic spectroscopy (QEPAS) based trace-gas sensing. Starting from the QEPAS basic physical principles, the most used QEPAS configurations will be described. This is followed by a detailed theoretical analysis and experimental study regarding the influence of quartz tuning forks (QTFs) geometry on their optoacoustic transducer performance. Furthermore, an overview of the latest developments in QEPAS trace-gas sensor technology employing custom QTFs will be reported. Results obtained by exploiting novel micro-resonator configurations, capable of increasing the QEPAS signal-to-noise ratio by more than two orders of magnitude and the utilization of QTF overtone flexural modes for QEPAS based sensing will be presented. A comparison of the QEPAS performance of different spectrophone configurations is reported based upon signal-to-noise ratio. Finally, a novel QEPAS approach allowing simultaneous dual-gas detection will be described.

  1. Anaerobic Digestion and Combined Heat and Power Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank J. Hartz

    2011-12-30

    One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted thismore » study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.« less

  2. Field Testing of Cryogenic Carbon Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, Aaron; Frankman, Dave; Baxter, Andrew

    Sustainable Energy Solutions has been developing Cryogenic Carbon Capture™ (CCC) since 2008. In that time two processes have been developed, the External Cooling Loop and Compressed Flue Gas Cryogenic Carbon Capture processes (CCC ECL™ and CCC CFG™ respectively). The CCC ECL™ process has been scaled up to a 1TPD CO2 system. In this process the flue gas is cooled by an external refrigerant loop. SES has tested CCC ECL™ on real flue gas slip streams from subbituminous coal, bituminous coal, biomass, natural gas, shredded tires, and municipal waste fuels at field sites that include utility power stations, heating plants, cementmore » kilns, and pilot-scale research reactors. The CO2 concentrations from these tests ranged from 5 to 22% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at a modest rate. The CCC CFG™ process has been scaled up to a .25 ton per day system. This system has been tested on real flue gas streams including subbituminous coal, bituminous coal and natural gas at field sites that include utility power stations, heating plants, and pilot-scale research reactors. CO2 concentrations for these tests ranged from 5 to 15% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at 90+%. Hg capture was also verified and the resulting effluent from CCC CFG™ was below a 1ppt concentration. This paper will focus on discussion of the capabilities of CCC, the results of field testing and the future steps surrounding the development of this technology.« less

  3. Financial vulnerability of the electricity sector to drought, and the impacts of changes in generation mix

    NASA Astrophysics Data System (ADS)

    Kern, J.

    2015-12-01

    Electric power utilities are increasingly cognizant of the risks water scarcity and rising temperatures pose for generators that use water as a "fuel" (i.e., hydroelectric dams) and generators that use water for cooling (i.e., coal, natural gas and nuclear). At the same time, utilities are under increasing market and policy pressure to retire coal-fired generation, the primary source of carbon emissions in the electric power sector. Due to falling costs of renewables and low natural gas prices, retiring coal fired generation is mostly being replaced with combined cycle natural gas, wind and solar. An immediate benefit of this shift has been a reduction in water withdrawals per megawatt-hour and reduced thermal impacts in surface water systems. In the process of retiring older coal-fired power plants, many of which use water intensive open-loop cooling systems, utilities are making their systems less vulnerable to water scarcity and higher water temperatures. However, it is not clear whether financial risks from water scarcity will decrease as result of this change. In particular, the choice to replace coal with natural gas combined cycle plants leaves utilities financially exposed to natural gas prices, especially during droughts when natural gas generation is used to replace lost hydropower production. Utility-scale solar, while more expensive than natural gas combined cycle generation, gives utilities an opportunity to simultaneously reduce their exposure to water scarcity and fuel price risk. In this study, we assess how switching from coal to natural gas and solar changes a utility's financial exposure to drought. We model impacts on retail prices and a utility's rate of return under current conditions and non-stationarity in natural gas prices and temperature and streamflows to determine whether increased exposure to natural gas prices offsets corresponding gains in water use efficiency. We also evaluate whether utility scale solar is an effective hedge against the combined effects of drought and natural gas price volatility—one that increases costs on average but reduces exposure to large drought-related losses.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, Stephanie H.; Patton, Kaara K.; Jubin, Robert Thomas

    In off-gas treatment systems within a nuclear fuel reprocessing plant, capture materials will be exposed to a gas stream for extended periods during their lifetime. This gas stream may be at elevated temperature and could contain water, NOx gas, or a variety of other constituents. For this reason, it is important to understand the effects of long-term exposure, or aging, on proposed capture materials. One material under consideration for iodine sequestration is silver-functionalized silica aerogel (Ag 0-aerogel). The aim of this study was to determine the effect of extended exposure at 150°C to an air stream containing NO on themore » iodine capture capacity of Ag 0-aerogel. Ag 0-aerogel was provided by the Pacific Northwest National Laboratory (PNNL), which manufactures the material at a lab scale. Prior to aging, the material has an iodine loading capacity of approximately 290 mg I/g Ag 0-aerogel. Previous studies have aged the material in a dry air stream or in a moist air stream for up to 6 months. Both tests resulted in a 22% loss in iodine capacity. Aging the material in a static 2% NO 2 environment for up to 2 months results in a 15% loss of iodine capacity.3 In this study, exposure of Ag 0-aerogel to 1% NO at 150°C for 2 months produced a loss of 43% in iodine loading capacity. This is largest loss observed for aerogel aging studies to date. The performance of Ag 0-aerogel in this study was compared to the performance of reduced silver mordenite (Ag 0Z) in similar studies. Ag 0Z is a zeolite mineral considered to be the current standard technology for iodine removal from off-gas streams of a potential US used fuel processing plant. In an aging study exposing Ag 0Z to 1% NO for 2 months, an iodine capacity loss of over 80% was observed. This corresponds to a silver utilization of 13.5% for 2 month NO-aged Ag 0Z, compared to 57% silver utilization for 2 month NO-aged aerogel. While iodine loading capacity and silver utilization are critical parameters in evaluating these materials, other properties must also be considered when selecting the appropriate material (e.g., relative material densities and potential waste form production technology). The resistance of Ag 0-aerogel to NO is promising, and investigations of this material for use in iodine capture should continue to be pursued.« less

  5. Modules for estimating solid waste from fossil-fuel technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less

  6. Space Technology for the Iron Foundry

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Electric Power Research Institute (EPRI) initiated development of a plasma melter intended to solve a major problem in the U.S. foundry industry. EPRI is a non-profit organization that manages research and development for some 600 electric utility member companies. For the plasma melter program, EPRI enlisted as co-sponsors Westinghouse Electric's Environmental Systems and Services Division, General Motors Corporation, and Modern Equipment Company, supplier of equipment and services to the foundry industry. General Motor's plasma melter, first in the U.S., is an advanced technology system designed to improve the efficiency of coke-burning cupolas that melt iron to produce automotive castings. The key elements are six Westinghouse plasma torches. Electrically-powered plasma torch creates an ionized gas that superheats air entering the cupola to 10,000 degrees Fahrenheit. That great heat, three times higher than that attainable by oil or natural gas systems, is the key to making iron cheaper, cleaner, and faster. System offers an environmental bonus in reduced cupola emissions. Plasma torches increase GM's electric bill at Defiance, but that cost is more than compensated by the savings in charge material. The EPRI-sponsored Center for Materials Production (CMP) is evaluating the potential of plasma cupola technology.

  7. Survey of synfuel technology for lignite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sondreal, E.A.

    1982-01-01

    The most important market for lignite will continue to be the electric utility industry, where it is used to fuel large pc-fired boilers serving major regional power grids. However, the growth of this market and thechnology is being challenged by new and more stringent environmental control requirements, including the international concern over acid rain. Environmental and economic issues could either encourage or limit the development of a synfuels market for lignite depending on the cost effectiveness of the technological solutions that are developed. Clearly the United States needs to develop its coal resources to reduce dependence on imported oil. However,more » demand for coal derived substitute petroleum will be constrained by cost for the forseeable future. Government policy initiatives and new technology will be the keys to removing these constraints in the decades ahead. A crossover point with respect to petroleum and natural gas will be reached at some point in the future, which will allow synthetic fuels to penetrate the markets now served by oil and gas. Those of us who are today concerned with the development of lignite resources can look forward to participating in the major synfuels market that will emerge when those economic conditions are realized.« less

  8. Layouts of trigeneration plants for centralized power supply

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Il'ina, I. P.; Rozhnatovskii, V. D.; Burmakina, A. V.

    2016-06-01

    One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration plants designed to supply electricity, heat, and cold to the users are shown and the principles of their operation are described. The article presents results of qualitative analysis of different engineering solutions applied to select one combination of power- and heat-generating equipment and thermotransformers or another.

  9. Subtask 2.18 - Advancing CO 2 Capture Technology: Partnership for CO 2 Capture (PCO 2C) Phase III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, John; Azenkeng, Alexander; Fiala, Nathan

    2016-03-31

    Industries and utilities continue to investigate ways to decrease their carbon footprint. Carbon capture and storage (CCS) can enable existing power generation facilities to meet the current national CO 2 reduction goals. The Partnership for CO2 Capture Phase III focused on several important research areas in an effort to find ways to decrease the cost of capture across both precombustion and postcombustion platforms. Two flue gas pretreatment technologies for postcombustion capture, an SO 2 reduction scrubbing technology from Cansolv Technologies Inc. and the Tri-Mer filtration technology that combines particulate, NOx, and SO 2 control, were evaluated on the Energy &more » Environmental Research Center’s (EERC’s) pilot-scale test system. Pretreating the flue gas should enable more efficient, and therefore less expensive, CO 2 capture. Both technologies were found to be effective in pretreating flue gas prior to CO 2 capture. Two new postcombustion capture solvents were tested, one from the Korea Carbon Capture and Sequestration R&D Center (KCRC) and one from CO 2 Solutions Incorporated. Both of these solvents showed the ability to capture CO 2 while requiring less regeneration energy, which would reduce the cost of capture. Hydrogen separation membranes from Commonwealth Scientific and Industrial Research Organisation were evaluated through precombustion testing. They are composed of vanadium alloy, which is less expensive than the palladium alloys that are typically used. Their performance was comparable to that of other membranes that have been tested at the EERC. Aspen Plus® software was used to model the KCRC and CO 2 Solutions solvents and found that they would result in significantly improved overall plant performance. The modeling effort also showed that the parasitic steam load at partial capture of 45% is less than half that of 90% overall capture, indicating savings that could be accrued if 90% capture is not required. Modeling of three regional power plants using the Carnegie Mellon Integrated Environmental Control Model showed that, among other things, the use of a bypass during partial capture may minimize the size of the capture tower(s) and result in a slight reduction in the revenue required to operate the capture facility. The results reinforced that a one-size-fits-all approach cannot be taken to adding capture to a power plant. Laboratory testing indicated that Fourier transform infrared spectroscopy could be used to continuously sample stack emissions at CO 2 capture facilities to detect and quantify any residual amine or its degradation products, particularly nitrosamines. The information gathered during Phase III is important for utility stakeholders as they determine how to reduce their CO 2 emissions in a carbon-constrained world. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the North Dakota Industrial Commission, PPL Montana, Nebraska Public Power District, Tri-Mer Corporation, Montana–Dakota Utilities Co., Basin Electric Power Cooperative, KCRC/Korean Institute of Energy Research, Cansolv Technologies, and CO 2 Solutions, Inc.« less

  10. Emissions of sulfur trioxide from coal-fired power plants.

    PubMed

    Srivastava, R K; Miller, C A; Erickson, C; Jambhekar, R

    2004-06-01

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.

  11. WWREX: A case study in the development of Internet E-Commerce in the energy industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeich, K.; Horner, D.; Dunn, A.

    Even more so than the World Wide Web, the utility industry is undergoing a massive deregulation that is turning it into a Wild West environment that has fostered fierce competition, new technology and new services in the energy marketplace. It has become increasingly complex for consumers, suppliers and utilities to buy and sell energy at the best prices. With the help of the Internet, Per-Se Technologies and North American Power have developed the World Wide Retail Energy eXchange (WWREX): a real-time, Web-based electronic commerce application that matches suppliers of electricity and natural gas with potential customers online. This service ismore » the first online application to facilitate the buying and selling of energy via the Internet. Designed to take advantage of the deregulated utilities marketplace, REX benefits multiple market players. With REX, business energy consumers can buy energy at the best price, from multiple suppliers and with significant time and cost reductions. Suppliers can instantly access new customer bases and close efficient, bulk transactions without the traditional sales and marketing costs associated with selling to a diverse set of consumers. The challenges and solutions of this project illustrate the technologies and techniques in creating a viable E-Commerce application. The resulting system provides effective electronic commerce and solves a critical business need at a relatively low cost.« less

  12. Technological Innovations of Carbon Dioxide Injection in EAF-LF Steelmaking

    NASA Astrophysics Data System (ADS)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Dong, Kai; Yang, Lingzhi; Liu, Runzao

    2018-06-01

    In this study, the recent innovations and improvements in carbon dioxide (CO2) injection technologies for electric arc furnace (EAF)-ladle furnace (LF) steelmaking processes have been reviewed. The utilization of CO2 in the EAF-LF steelmaking process resulted in improved efficiency, purity and environmental impact. For example, coherent jets with CO2 and O2 mixed injection can reduce the amount of iron loss and dust generation, and submerged O2 and powder injection with CO2 in an EAF can increase the production efficiency and improve the dephosphorization and denitrification characteristics. Additionally, bottom-blowing CO2 in an EAF can strengthen molten bath stirring and improve nitrogen removal, while bottom-blowing CO2 in a LF can increase the rate of desulfurization and improve the removal of inclusions. Based on these innovations, a prospective process for the cyclic utilization of CO2 in the EAF-LF steelmaking process is introduced that is effective in mitigating greenhouse gas emissions from the steelmaking shop.

  13. Technological Innovations of Carbon Dioxide Injection in EAF-LF Steelmaking

    NASA Astrophysics Data System (ADS)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Dong, Kai; Yang, Lingzhi; Liu, Runzao

    2018-03-01

    In this study, the recent innovations and improvements in carbon dioxide (CO2) injection technologies for electric arc furnace (EAF)-ladle furnace (LF) steelmaking processes have been reviewed. The utilization of CO2 in the EAF-LF steelmaking process resulted in improved efficiency, purity and environmental impact. For example, coherent jets with CO2 and O2 mixed injection can reduce the amount of iron loss and dust generation, and submerged O2 and powder injection with CO2 in an EAF can increase the production efficiency and improve the dephosphorization and denitrification characteristics. Additionally, bottom-blowing CO2 in an EAF can strengthen molten bath stirring and improve nitrogen removal, while bottom-blowing CO2 in a LF can increase the rate of desulfurization and improve the removal of inclusions. Based on these innovations, a prospective process for the cyclic utilization of CO2 in the EAF-LF steelmaking process is introduced that is effective in mitigating greenhouse gas emissions from the steelmaking shop.

  14. Developments in abatement technology for MOCVD processing

    NASA Astrophysics Data System (ADS)

    Sweeney, Joseph; Marganski, Paul; Olander, Karl; Watanabe, Tadaharu; Tomita, Nobuyasu; Orlando, Gary; Torres, Robert

    2004-12-01

    A newly developed technical solution has been developed for hydride gas abatement that utilizes a new material. The ULTIMA-Sorb™ material provides high capacity but low heat of reaction with the hydride gases. The new technology results in a low cost of ownership (COO) with stable operation and also reduces the cost and quantity of waste disposal. This can be significant benefit for device manufacturers since it provides a viable and cost effective solution without any risk of arsenic leakage that is a primary concern with wet chemical scrubber systems. The contents of this paper will discuss the technical and economic benefits of the newly developed material in comparison to conventional abatement materials and systems. The capacity of the dry abatement materials significantly influences both COO relating to cash outflow and the cost of lost production. High capacity materials enable significant savings in cost of lost production in cases of low and high factory utilization conditions. Capacity of the abatement material appears to be the largest single factor to reduce COO of dry abatement systems.

  15. Low NO/x/ heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1980-01-01

    The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  16. USAF solar thermal applications case studies

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The potential of solar energy technologies to meet mission related applications for process heat was investigated. The reduction of the dependence of military installations on fossil fuels by promoting the use of more abundant resources where liquid hydrocarbons and natural gas are now used is examined. The evaluation and utilization of renewable energy systems to provide process heat and space heating are emphasized. The application of thermal energy systems is divided into four steps: (1) investigation of the potential operational cost effectiveness of selected thermal technologies; (2) selection of a site and preliminary design of point focussing solar thermal plant; (3) construction and test of an engineering prototype; and (4) installation and operation of a solar thermal energy plant.

  17. Low NO(x) heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1979-01-01

    The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  18. Principle and Performance of Gas Self-inducing Reactors and Applications to Biotechnology.

    PubMed

    Ye, Qin; Li, Zhimin; Wu, Hui

    2016-01-01

    Gas-liquid contacting is an important unit operation in chemical and biochemical processes, but the gas utilization efficiency is low in conventional gas-liquid contactors especially for sparingly soluble gases. The gas self-inducing impeller is able to recycle gas in the headspace of a reactor to the liquid without utilization of additional equipment such as a gas compressor, and thus, the gas utilization efficiency is significantly enhanced. Gas induction is caused by the low pressure or deep vortex at a sufficiently high impeller speed, and the speed at which gas induction starts is termed the critical speed. The critical impeller speed, gas-induction flow rate, power consumption, and gas-liquid mass transfer are determined by the impeller design and operation conditions. When the reactor is operated in a dead-end mode, all the introduced gas can be completely used, and this feature is especially favorable to flammable and/or toxic gases. In this article, the principles, designs, characteristics of self-inducing reactors, and applications to biotechnology are described.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increasemore » efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8« less

  20. Modern technologies of processing municipal solid waste: investing in the future

    NASA Astrophysics Data System (ADS)

    Rumyantseva, A.; Berezyuk, M.; Savchenko, N.; Rumyantseva, E.

    2017-06-01

    The problem of effective municipal solid waste (MSW) management is known to all the municipal entities of the Russian Federation. The problem is multifaceted and complex. The article analyzes the dynamics of municipal solid waste formation and its utilization within the territory of the EU and Russia. The authors of the paper suggest a project of a plant for processing municipal solid waste into a combustible gas with the help of high temperature pyrolysis. The main indicators of economic efficiency are calculated.

  1. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

    PubMed

    Liew, FungMin; Martin, Michael E; Tappel, Ryan C; Heijstra, Björn D; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.

  2. Gas Fermentation—A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks

    PubMed Central

    Liew, FungMin; Martin, Michael E.; Tappel, Ryan C.; Heijstra, Björn D.; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields. PMID:27242719

  3. The impact of municipal solid waste management on greenhouse gas emissions in the United States.

    PubMed

    Weitz, Keith A; Thorneloe, Susan A; Nishtala, Subba R; Yarkosky, Sherry; Zannes, Maria

    2002-09-01

    Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.

  4. Final technical report for the Center for Catalytic Hydrocarbon Functionalization (an EFRC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunnoe, Thomas Brent

    Greater than 95% of all materials produced by the chemical industry are derived from a small slate of simple hydrocarbons that are derived primarily from natural gas and petroleum, predominantly through oxygenation, C–C bond formation, halogenation or amination. Yet, current technologies for hydrocarbon conversion are typically high temperature, multi-step processes that are energy and capital intensive and result in excessive emissions (including carbon dioxide). The Center for Catalytic Hydrocarbon Functionalization (CCHF) brought together research teams with the broad coalition of skills and knowledge needed to make the fundamental advances in catalysis required for next-generation technologies to convert hydrocarbons (particularly lightmore » alkanes and methane) at high efficiency and low cost. Our new catalyst technologies offer many opportunities including enhanced utilization of natural gas in the transportation sector (via conversion to liquid fuels), more efficient generation of electricity from natural gas using direct methane fuel cells, reduced energy consumption and waste production for large petrochemical processes, and the preparation of high value molecules for use in biological/medical applications or the agricultural sector. The five year collaborative project accelerated fundamental understanding of catalyst design for the conversion of C–H bonds to functionalized products, essential to achieve the goals listed above, as evidenced by the publication of 134 manuscripts. Many of these fundamental advancements provide a foundation for potential commercialization, as evidenced by the submission of 11 patents from research support by the CCHF.« less

  5. Major challenges loom for natural gas industry, study says

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Driscoll, M.

    The 1994 edition of Natural Gas Trends, the annual joint study by Cambridge Energy Research Associates and Arthur Anderson Co., says that new oil-to-gas competition, price risks and the prospect of unbundling for local distribution companies loom as major challenges for the natural gas industry. With a tighter supply-demand balance in the past two years compounded by the fall in oil prices, gas is in head-to-head competition with oil for marginal markets, the report states. And with higher gas prices in 1993, industrial demand growth slowed while utility demand for gas fell. Some of this was related to fuel switching,more » particularly in the electric utility sector. Total electric power demand for gas has risen slightly due to the growth in industrial power generation, but there has yet to be a pronounced surge in gas use during the 1990s - a decade in which many had expected gas to make major inroads into the electric power sector, the report states. And while utilities still have plans to add between 40,000 and 45,000 megawatts of gas-fired generating capacity, gas actually has lost ground in the utility market to coal and nuclear power: In 1993, electricity output from coal and nuclear rose, while gas-fired generation fell to an estimated 250 billion kilowatt-hours - the lowest level since 1986, when gas generated 246 billion kwh.« less

  6. 77 FR 3255 - Notice of Intent To Prepare an Environmental Impact Statement for the Acquisition of a Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Acquisition of a Natural Gas Pipeline and Natural Gas Utility Service at the Hanford Site, Richland, WA, and... Environmental Impact Statement for the Acquisition of a Natural Gas Pipeline and Natural Gas Utility Service at the Hanford Site, Richland, Washington (Natural Gas Pipeline or NGP EIS), and initiate a 30-day public...

  7. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less

  8. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less

  9. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less

  10. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 6, October 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coalmore » gasifiers. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology will be integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading. An off-site product testing program will be conducted to demonstrate the suitability of the methanol product as a transportation fuel and as a fuel for stationary applications for small modular electric power generators for distributed power.« less

  11. Associated petroleum gas utilization in Tomsk Oblast: energy efficiency and tax advantages

    NASA Astrophysics Data System (ADS)

    Vazim, A.; Romanyuk, V.; Ahmadeev, K.; Matveenko, I.

    2015-11-01

    This article deals with oil production companies activities in increasing the utilization volume of associated petroleum gas (APG) in Tomsk Oblast. Cost-effectiveness analysis of associated petroleum gas utilization was carried out using the example of gas engine power station AGP-350 implementation at Yuzhno-Cheremshanskoye field, Tomsk Oblast. Authors calculated the effectiveness taking into account the tax advantages of 2012. The implementation of this facility shows high profitability, the payback period being less than 2 years.

  12. Deployment of FlexCHP System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cygan, David

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissionsmore » standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.« less

  13. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tawfik, Hazem

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as wellmore » as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.« less

  14. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 9, July 1--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries,more » product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.« less

  15. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needsmore » of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.« less

  16. Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation. PMID:20195442

  17. Sorbent-based Oxygen Production for Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethi, Vijay

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO 2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a majormore » advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O 2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overend, R.P.; Rivard, C.J.

    Gasification is being developed to enable a diverse range of biomass resources to meet modern secondary energy uses, especially in the electrical utility sector. Biological or anaerobic gasification in US landfills has resulted in the installation of almost 500 MW(e) of capacity and represents the largest scale application of gasification technology today. The development of integrated gasification combined cycle generation for coal technologies is being paralleled by bagasse and wood thermal gasification systems in Hawaii and Scandinavia, and will lead to significant deployment in the next decade as the current scale-up activities are commercialized. The advantages of highly reactive biomassmore » over coal in the design of process units are being realized as new thermal gasifiers are being scaled up to produce medium-energy-content gas for conversion to synthetic natural gas and transportation fuels and to hydrogen for use in fuel cells. The advent of high solids anaerobic digestion reactors is leading to commercialization of controlled municipal solid waste biological gasification rather than landfill application. In both thermal and biological gasification, high rate process reactors are a necessary development for economic applications that address waste and residue management and the production and use of new crops for energy. The environmental contribution of biomass in reducing greenhouse gas emission will also be improved.« less

  19. Biogas upgrading and utilization: Current status and perspectives.

    PubMed

    Angelidaki, Irini; Treu, Laura; Tsapekos, Panagiotis; Luo, Gang; Campanaro, Stefano; Wenzel, Henrik; Kougias, Panagiotis G

    Biogas production is an established sustainable process for simultaneous generation of renewable energy and treatment of organic wastes. The increasing interest of utilizing biogas as substitute to natural gas or its exploitation as transport fuel opened new avenues in the development of biogas upgrading techniques. The present work is a critical review that summarizes state-of-the-art technologies for biogas upgrading and enhancement with particular attention to the emerging biological methanation processes. The review includes comprehensive description of the main principles of various biogas upgrading methodologies, scientific and technical outcomes related to their biomethanation efficiency, challenges that have to be addressed for further development and incentives and feasibility of the upgrading concepts. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Utility negotiating strategies for end-users

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studebaker, J.M.

    This exciting new book discusses how retail electricity and natural gas consumers can learn to negotiate a concessionary rate with their utility service -- new, and post-deregulation. This includes survey resources that are available to the retail customer and negotiation processes that one should become familiar with in the electric utility industry. The contents include: Electricity -- an overview; Regulation of electricity -- now; Basic procedures for reducing electricity costs; Negotiation of electricity costs; Negotiation on electricity that is provided by marketers; The retail wheeling transaction; The retail wheeling contract process; Natural gas negotiation strategies; Regulation of natural gas utilities;more » Developing a strategy for reducing natural gas costs; Process of getting the natural gas to the customer; How to select an agent; and Negotiating with an agent.« less

  1. Review and assessment of the database and numerical modeling for turbine heat transfer

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Simoneau, R. J.

    1989-01-01

    The objectives of the NASA Hot Section Technology (HOST) Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.

  2. McIntosh Unit 4 PCFB demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, A.M.; Dryden, R.J.; Morehead, H.T.

    1997-12-31

    The City of Lakeland, Foster Wheeler Corporation and Westinghouse Electric Corporation have embarked on a utility scale demonstration of Pressurized Circulating Fluidized Bed (PCFB) technology at Lakeland`s McIntosh Power Station in Lakeland, Florida. The US Department of Energy will be providing approximately $195 million of funding for the project through two Cooperative Agreements under the auspices of the Clean Coal Technology Program. The project will involve the commercial demonstration of Foster Wheeler Pyroflow PCFB technology integrated with Westinghouse`s Hot Gas Filter (HGF) and power generation technologies. The total project duration will be approximately eight years and will be structured intomore » three separate phases; two years of design and permitting, followed by an initial period of two years of fabrication and construction and concluding with a four year demonstration (commercial operation) period. It is expected that the project will show that Foster Wheeler`s Pyroflow PCFB technology coupled with Westinghouse`s HGF and power generation technologies represents a cost effective, high efficiency, low emissions means of adding greenfield generation capacity and that this same technology is also well suited for repowering applications.« less

  3. Integrated underground gas storage of CO2 and CH4 for renewable energy storage for a test case in China

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Li, Qi; Nakaten, Natalie, Christine; Kempka, Thomas

    2017-04-01

    Integration and further development of the energy supply system in China is a major challenge for the years to come. Part of the strategy is the implementation of a low carbon energy system based on carbon dioxide capture and storage (CCS). The innovative idea presented here is based on an extension of the power-to-gas-to-power (PGP) technology by establishing a closed carbon dioxide cycle [1]. Thereto, hydrogen generated from excess renewable energy is transformed into methane for combustion in a combined cycle gas power plant. To comply with the fluctuating energy demand, carbon dioxide produced during methane combustion and required for the methanation process as well as excess methane are temporarily stored in two underground reservoirs located close to each other [2]. Consequently, renewable energy generation units can be operated even if energy demand is below consumption, while stored energy can be fed into the grid as energy demand exceeds production [3]. We studied a show case for Xinjiang in China [4] to determine the energy demand of the entire process chain based on numerical computer simulations for the operation of the CO2 and CH4 storage reservoirs, and to ascertain the pressure regimes present in the storage formations during the injection and production phases of the annual cycle. [1] Streibel M., Nakaten N., Kempka T., Kühn M. (2013) Analysis of an integrated carbon cycle for storage of renewables. Energy Procedia 40, 202-211. doi: 10.1016/j.egypro.2013.08.024. [2] Kühn M., Streibel M., Nakaten N.C., Kempka T. (2014) Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the "Power-to-gas-to-gas-to-power" Technology. Energy Procedia 59, 9-15. doi: 10.1016/j.egypro.2014.10.342 [3] Kühn M., Nakaten N.C., Streibel M., Kempka T. (2014) CO2 Geological Storage and Utilization for a Carbon Neutral "Power-to-gas-to-power" Cycle to Even Out Fluctuations of Renewable Energy Provision. Energy Procedia 63, 8044-8049. doi: 10.1016/j.egypro.2014.11.841 [4] Li Q., Chen Z.A., Zhang J.T., Liu L.C., Li X.C., Jia L. (2016) Positioning and Revision of CCUS Technology Development in China. International Journal of Greenhouse Gas Control 46, 282-293. doi: 10.1016/j.ijggc.2015.02.024

  4. Feasibility study of algae-based Carbon Dioxide capture ...

    EPA Pesticide Factsheets

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertaken to evaluate the benefits of using algae to reduce CO2 emissions from industrial and small-scale utility power boilers. The operations are being studied for the use of CO2 from flue gas for algae growth along with the production of biofuels and other useful products to prepare a comprehensive characterization of the economic feasibility of using algae to capture CO2. Information is being generated for analyses of the potential for these technologies to advance in the market and assist in meeting environmental goals, as well as to examine their associated environmental implications. Three electric power generation plants (coal and fuel oil fired) equipped to send flue-gas emissions to algae culture at demonstration facilities are being studied. Data and process information are being collected and developed to facilitate feasibility and modeling evaluations of the CO2 to algae technology. An understanding of process requirements to apply this technology to existing industries would go far in advancing carbon capture opportunities. Documenting the successful use of this technology could help bring “low-tech”, low-cost, CO2 to algae, carbon capture to multiple size industries and

  5. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parag Kulkarni; Jie Guan; Raul Subia

    In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOEmore » NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No. DE-FC26-00NT40974). The report focuses on the major accomplishments and lessons learned in analyzing the risks of the novel UFP technology during Phase II of the DOE program.« less

  6. An Adjustable Gas-Mixing Device to Increase Feasibility of In Vitro Culture of Plasmodium falciparum Parasites in the Field

    PubMed Central

    Volkman, Sarah K.; Ahouidi, Ambroise D.; Ndiaye, Daouda; Mboup, Souleymane; Wirth, Dyann F.

    2014-01-01

    A challenge to conducting high-impact and reproducible studies of the mechanisms of P. falciparum drug resistance, invasion, virulence, and immunity is the lack of robust and sustainable in vitro culture in the field. While the technology exists and is routinely utilized in developed countries, various factors–from cost, to supply, to quality–make it hard to implement in malaria endemic countries. Here, we design and rigorously evaluate an adjustable gas-mixing device for the in vitro culture of P. falciparum parasites in the field to circumvent this challenge. The device accurately replicates the gas concentrations needed to culture laboratory isolates, short-term adapted field isolates, cryopreserved previously non-adapted isolates, as well as to adapt ex vivo isolates to in vitro culture in the field. We also show an advantage over existing alternatives both in cost and in supply. Furthermore, the adjustable nature of the device makes it an ideal tool for many applications in which varied gas concentrations could be critical to culture success. This adjustable gas-mixing device will dramatically improve the feasibility of in vitro culture of Plasmodium falciparum parasites in malaria endemic countries given its numerous advantages. PMID:24603696

  7. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, April--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    AQUATECH Systems, a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler No. 4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfurmore » or sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL demonstration Program began September 10, 1991 and is approximately 22 months in duration.« less

  8. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, October--December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    AQUATECH Systems a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 2--3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler {number_sign}4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfur ormore » sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL Demonstration Program began September 10, 1991 and is approximately 22 months in duration.« less

  9. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B.

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flowmore » rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.« less

  10. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  11. Distributed Energy Generation Systems Based on Renewable Energy and Natural Gas Blending: New Business Models for Economic Incentives, Electricity Market Design and Regulatory Innovation

    NASA Astrophysics Data System (ADS)

    Nyangon, Joseph

    Expansion of distributed energy resources (DERs) including solar photovoltaics, small- and medium-sized wind farms, gas-fired distributed generation, demand-side management, and energy storage poses significant complications to the design, operation, business model, and regulation of electricity systems. Using statistical regression analysis, this dissertation assesses if increased use of natural gas results in reduced renewable energy capacity, and if natural gas growth is correlated with increased or decreased non-fossil renewable fuels demand. System Generalized Method of Moments (System GMM) estimation of the dynamic relationship was performed on the indicators in the econometric model for the ten states with the fastest growth in solar generation capacity in the U.S. (e.g., California, North Carolina, Arizona, Nevada, New Jersey, Utah, Massachusetts, Georgia, Texas, and New York) to analyze the effect of natural gas on renewable energy diffusion and the ratio of fossil fuels increase for the period 2001-2016 to policy driven solar demand. The study identified ten major drivers of change in electricity systems, including growth in distributed energy generation systems such as intermittent renewable electricity and gas-fired distributed generation; flat to declining electricity demand growth; aging electricity infrastructure and investment gaps; proliferation of affordable information and communications technologies (e.g., advanced meters or interval meters), increasing innovations in data and system optimization; and greater customer engagement. In this ongoing electric power sector transformation, natural gas and fast-flexing renewable resources (mostly solar and wind energy) complement each other in several sectors of the economy. The dissertation concludes that natural gas has a positive impact on solar and wind energy development: a 1% rise in natural gas capacity produces 0.0304% increase in the share of renewable energy in the short-run (monthly) compared to the long-term effect estimated at 0.9696% (15-year period). Evidence from the main policy, environmental, and economic indicators for solar and wind-power development such as feed-in tariffs, state renewable portfolio standards, public benefits fund, net metering, interconnection standards, environmental quality, electricity import ratio, per-capita energy-related carbon dioxide emissions, average electricity price, per-capita real gross domestic product, and energy intensity are discussed and evaluated in detail in order to elucidate their effectiveness in supporting the utility industry transformation. The discussion is followed by a consideration of a plausible distributed utility framework that is tailored for major DERs development that has emerged in New York called Reforming the Energy Vision. This framework provides a conceptual base with which to imagine the utility of the future as well as a practical solution to study the potential of DERs in other states. The dissertation finds this grid and market modernization initiative has considerable influence and importance beyond New York in the development of a new market economy in which customer choice and distributed utilities are prominent.

  12. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W.

    1996-04-01

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Stationmore » for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.« less

  13. Fuel cell programs in the United States for stationary power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued governmentmore » and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.« less

  14. Lower cost offshore field development utilizing autonomous vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frisbie, F.R.; Vie, K.J.; Welch, D.W.

    1996-12-31

    The offshore oil and gas industry has the requirement to inspect offshore oil and gas pipelines for scour, corrosion and damage as well as inspect and intervene on satellite production facilities. This task is currently performed with Remotely Operated Vehicles (ROV) operated from dynamically positioned (DP) offshore supply or diving support boats. Currently, these tasks are expensive due to the high day rates for DP ships and the slow, umbilical impeded, 1 knot inspection rates of the tethered ROVs, Emerging Autonomous Undersea Vehicle (AUV) technologies offer opportunities to perform these same inspection tasks for 50--75% lower cost, with comparable ormore » improved quality. The new generation LAPV (Linked Autonomous Power Vehicles) will operate from fixed facilities such as TLPs or FPFs and cover an operating field 10 kms in diameter.« less

  15. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-01-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  16. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  17. The water footprint of hydraulic fracturing in Sichuan Basin, China.

    PubMed

    Zou, Caineng; Ni, Yunyan; Li, Jian; Kondash, Andrew; Coyte, Rachel; Lauer, Nancy; Cui, Huiying; Liao, Fengrong; Vengosh, Avner

    2018-07-15

    Shale gas is likely to play a major role in China's transition away from coal. In addition to technological and infrastructural constraints, the main challenges to China's sustainable shale gas development are sufficient shale gas production, water availability, and adequate wastewater management. Here we present, for the first time, actual data of shale gas production and its water footprint from the Weiyuan gas field, one of the major gas fields in Sichuan Basin. We show that shale gas production rates during the first 12 months (24 million m 3 per well) are similar to gas production rates in U.S. shale basins. The amount of water used for hydraulic fracturing (34,000 m 3 per well) and the volume of flowback and produced (FP) water in the first 12 months (19,800 m 3 per well) in Sichuan Basin are also similar to the current water footprints of hydraulic fracturing in U.S. basins. We present salinity data of the FP water (5000 to 40,000 mgCl/L) in Sichuan Basin and the treatment operations, which include sedimentation, dilution with fresh water, and recycling of the FP water for hydraulic fracturing. We utilize the water use data, empirical decline rates of shale gas and FP water productions in Sichuan Basin to generate two prediction models for water use for hydraulic fracturing and FP water production upon achieving China's goals to generate 100 billion m 3 of shale gas by 2030. The first model utilizes the current water use and FP production data, and the second assumes a yearly 5% intensification of the hydraulic fracturing process. The predicted water use for hydraulic fracturing in 2030 (50-65 million m 3 per year), FP water production (50-55 million m 3 per year), and fresh water dilution of FP water (25 million m 3 per year) constitute a water footprint that is much smaller than current water consumption and wastewater generation for coal mining, but higher than those of conventional gas production in China. Given estimates for water availability in Sichuan Basin, our predictions suggest that water might not be a limiting factor for future large-scale shale gas development in Sichuan Basin. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.

    PubMed

    Clark, Victoria R; Herzog, Howard J

    2014-07-15

    On September 20, 2013, the US Environmental and Protection Agency (EPA) proposed a revised rule for "Standards of Performance for Greenhouse Gas Emissions from New Stationary Sources: Electric Utility Generating Units". These performance standards set limits on the amount of carbon dioxide (CO2) that can be emitted per megawatt-hour (MWh) of electricity generation from new coal-fired and natural gas-fired power plants built in the US. These limits were based on determinations of "best system of emission reduction (BSER) adequately demonstrated". Central in this determination was evaluating whether Carbon Dioxide Capture and Storage (CCS) qualified as BSER. The proposed rule states that CCS qualifies as BSER for coal-fired generation but not for natural gas-fired generation. In this paper, we assess the EPA's analysis that resulted in this determination. We are not trying to judge what the absolute criteria are for CCS as the BSER but only the relative differences as related to coal- vs natural gas-fired technologies. We conclude that there are not enough differences between "base load" coal-fired and natural gas-fired power plants to justify the EPA's determination that CCS is the BSER for coal-fired power plants but not for natural gas-fired power plants.

  19. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less

  20. HOST turbine heat transfer program summary

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Simoneau, Robert J.

    1988-01-01

    The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding with the remainder going to analytical efforts. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali T-Raissi

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammoniamore » and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.« less

  2. Evaluation of pilot-scale pulse-corona-induced plasma device to remove NO{sub x} from combustion exhausts from a subscale combustor and from a hush house at Nellis AFB, Nevada. Final report, August 1994--January 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haythornthwaite, S.M.; Durham, M.D.; Anderson, G.L.

    1997-05-01

    Jet engine test cells (JETCs) are used to test-fire new, installed, and reworked jet engines. Because JETCs have been classified as stationary sources of pollutant emissions, they are subject to possible regulation under Title 1 of the Clean Air Act (CAA) as amended in 1990. In Phase 1 of the Small Business Innovation Research (SBIR) program, a novel NOx-control approach utilizing pulsed-corona-induced plasma successfully showed 90% removal of NOx in the laboratory. The objective of Phase 2 was to reproduce the laboratory-scale results in a pilot-scale system. The technology was successfully demonstrated at pilot scale in the field, on amore » slipstream of JETC flue gas at Nellis Air Force Base. Based on the field data, cost projections were made for a system to treat the full JETC exhaust. The technology efficiently converted NO into ONO, and a wet scrubber was required to achieve the treatment goal of 50-percent removal and destruction of NOx. The plasma simultaneously removes hydrocarbons from the flue gas stream. This project demonstrated that pulse-corona-induced plasma technology is scalable to practical industrial dimensions.« less

  3. 78 FR 65427 - Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0097] Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied Petroleum Gas Pipeline Systems AGENCY: Pipeline and Hazardous Materials Safety Administration...

  4. 78 FR 16494 - Notice of Effectiveness of Foreign Utility Company Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... AtlaGas Utilities Inc FC13-2-000 Heritage Gas Ltd FC13-3-000 McNair Creek Hydro Limited Partnership FC13-4-000 AtlaGas Pipeline Partnership FC13-5-000 Bear Mountain Wind Limited Partnership FC13-6-000...

  5. Estimating potential stranded commitments for U.S. investor-owned electric utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, L.; Hirst, E.

    New technologies, low natural gas prices, and federal and state utility regions are restructuring the electricity industry. Yesterday`s vertically integrated utility with a retail monopoly franchise may be a very different organization in a few years. Conferences, regulatory-commission hearings, and other industry fora are dominated by debates over the extent and form of utility deintegration, wholesale competition, and retail wheeling. A key obstacle to restructuring the electricity industry is stranded commitments. Past investments, power-purchase contracts, and public-policy-driven programs that made sense in an era of cost-of-service regulation may not be cost-effective in a competitive power market. Regulators, utilities, and othermore » parties face tough decisions concerning the mitigation and allocation of these stranded commitments. The authors developed and applied a simple method to calculate the amount of stranded commitments facing US investor-owned electric utilities. The results obtained with this method depend strongly on a few key assumptions: (1) the fraction of utility sales that is at risk with respect to competition, (2) the market price of electric generation, and (3) the number of years during which the utility would lose money because of differences between its embedded cost of production and the market price.« less

  6. Impact of Casing Expansion on the Mechanical and Petro-Physical Properties of Wellbore Cements

    NASA Astrophysics Data System (ADS)

    Oyibo, A. E.

    2014-12-01

    The main objective of this research is to investigate the applicability of expandable casing technology as a remediation technique for leaky wells resulting in gas migration problems. Micro annulus is usually created at the cement-formation/cement-casing interface or within the cement matrix either due to poor primary cementing or as a result of activities such as temperature and pressure variation or fracturing operations. Recent reports on gas migration in hydraulically fractured wellbores, has raised concerns on the contamination of fresh water aquifers resulting from fluid migration though this flow path. A unique bench-scale physical model which utilizes expandable tubulars in the remediation of micro annular gas flow has been used to simulate expansion of a previously-cemented casing under field-like conditions. Three different designs of cement slurry: regular 16.4 lb. /gal, 16.4 lb. /gal base slurry foamed to 13 lb. /gal and 16.4 lb. /gal cement slurry with 10% salt concentration. Gas flow path (microannulus) was artificially created at the pipe-cement interface by rotating the inner pipe in a pipe inside pipe assembly with cement in the annulus within the first few hours of hydration to create debonding at the cement-casing interface. Nitrogen gas flow-through experiments were performed before and after the expansion to confirm the sealing of the microannulus. The results obtained confirmed the effectiveness of this technique in the complete closure of gas leakage path, providing seal-tight cement-formation interface free of microannulus. The manipulation of the cement sheath during the casing expansion resulted in improved porosity, permeability and the strength of the cement sheath. SEM micrographs revealed decrease in pore size and fracturing of unhydrated cement grains within the cement matrix. This technology has great potential to become one of the leading cement remediation techniques for leaks behind the casing if implemented. Keywords: Wellbore Integrity, Casing Expansion, Well Gas Leaks, CSH, Pore Collapse, Cement Pore Water.

  7. Methods and approaches of utilizing ionic liquids as gas sensing materials

    PubMed Central

    Rehman, Abdul

    2017-01-01

    Gas monitoring is of increasing significance for a broad range of applications in the fields of environmental and civil infrastructures, climate and energy, health and safety, industry and commerce. Even though there are many gas detection devices and systems available, the increasing needs for better detection technologies that not only satisfy the high analytical standards but also meet additional device requirements (e.g., being robust to survive under field conditions, low cost, small, smart, more mobile), demand continuous efforts in developing new methods and approaches for gas detection. Ionic Liquids (ILs) have attracted a tremendous interest as potential sensing materials for the gas sensor development. Being composed entirely of ions and with a broad structural and functional diversity, i.e., bifunctional (organic/inorganic), biphasic (solid/liquid) and dual-property (solvent/electrolyte), they have the complementing attributes and the required variability to allow a systematic design process across many sensing components to enhance sensing capability especially for miniaturized sensor system implementation. The emphasis of this review is to describe molecular design and control of IL interface materials to provide selective and reproducible response and to synergistically integrate IL sensing materials with low cost and low power electrochemical, piezoelectric/QCM and optical transducers to address many gas detection challenges (e.g., sensitivity, selectivity, reproducibility, speed, stability, cost, sensor miniaturization, and robustness). We further show examples to justify the importance of understanding the mechanisms and principles of physicochemical and electrochemical reactions in ILs and then link those concepts to developing new sensing methods and approaches. By doing this, we hope to stimulate further research towards the fundamental understanding of the sensing mechanisms and new sensor system development and integration, using simple sensing designs and flexible sensor structures both in terms of scientific operation and user interface that can be miniaturized and interfaced with modern wireless monitoring technologies to achieve specifications heretofore unavailable on current markets for the next generation of gas sensor applications. PMID:29142738

  8. Atmospheric Capture On Mars (and Processing)

    NASA Technical Reports Server (NTRS)

    Muscatello, Tony

    2017-01-01

    The ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to enable such missions, as first proposed by Prof. Robert Ash in 1976. This presentation will review progress in the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. For many years, NASA, commercial companies, and academia have been developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Other gases will be required to be separated from Martian atmospheric gases to provide pure CO2 for processing elements. Significant progress has been demonstrated in CO2 collection via adsorption by molecular sieves, freezing, and direct compression. Early stage work in adsorption in Ionic Liquids followed by electrolysis to oxygen is also underway. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and could be captured as well. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (CO2-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, and (3) carbon oxides from oxygen from a trash/waste processing reaction.

  9. Assessment of steam-injected gas turbine systems and their potential application

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1982-01-01

    Results were arrived at by utilizing and expanding on information presented in the literature. The results were analyzed and compared with those for simple gas turbine and combined cycles for both utility power generation and industrial cogeneration applications. The efficiency and specific power of simple gas turbine cycles can be increased as much as 30 and 50 percent, respectively, by the injection of steam into the combustor. Steam-injected gas turbines appear to be economically competitive with both simple gas turbine and combined cycles for small, clean-fuel-fired utility power generation and industrial cogeneration applications. For large powerplants with integrated coal gasifiers, the economic advantages appear to be marginal.

  10. Mechanical pumps for superfluid helium transfer in space

    NASA Technical Reports Server (NTRS)

    Izenson, M. G.; Swift, W. L.

    1988-01-01

    Two alternate mechanical pump concepts have been identified for the transfer of superfluid helium in space. Both pumps provide flow at sufficient head and have operating characteristics suitable for the Space Infrared Telescope Facility (SIRTF) refill mission. One pump operates at a relatively low speed and utilizes mechanical roller bearings, while the other operates at a higher rotational speed using either electromagnetic or tilting pad gas-dynamic bearings. The use of gas bearings requires transfer of normal helium so that the gas pressure within the pump casing is high enough to operate the bearings. The operating characteristics of both pumps are predicted, the dimensions are estimated and major technology issues are identified. The major issues for each pump design are cavitation performance and bearing development. Roller bearings require quantified reliability for operation in space while electromagnetic bearings require basic development as well as a complex control system. The low speed pump has significantly poorer hydraulic efficiency than the high speed pump.

  11. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  12. Gasoline from natural gas by sulfur processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erekson, E.J.; Miao, F.Q.

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogenmore » production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatheway, A.W.; Anderson, D.R.

    Missouri's first gas works began operation in 1845 (St. Louis). By 1900, gas works operated in many northern-Missouri coal belt towns, major cities, and Hannibal and Cape Girardeau (Mississippi River supply). Today's 40-odd former manufactured gas plant (FMPGs) sites are fiscal nightmares for parent utility companies; all hazardous waste groups are prevalent to the plants. Tar residuals may migrate along/through geologic anomalies. Tar-water emulsions typically were disposed in tar wells or nearby drainages or many times plumbed directly into sewers, which typically leaked into the environment at unpredictable down gradient locations. Just as well site geologic characteristics and current groundwatermore » usage may render FMPGs relatively harmless from the human exposure standpoint. Geologic deduction, photo interpretation, careful subsurface exploration and engineering geophysics can locate hot spots and delimit contaminant migration. Many types of historic documents chronicle changes in plant character and equipment, as well as mode of operation. Without such details, mistakes in characterization are likely and errors in risk assessment and selection of remedial technologies are possible.« less

  14. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  15. Adsorbents for capturing mercury in coal-fired boiler flue gas.

    PubMed

    Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Bland, Alan E; Judkins, Roddie R

    2007-07-19

    This paper reviews recent advances in the research and development of sorbents used to capture mercury from coal-fired utility boiler flue gas. Mercury emissions are the source of serious health concerns. Worldwide mercury emissions from human activities are estimated to be 1000 to 6000 t/annum. Mercury emissions from coal-fired power plants are believed to be the largest source of anthropogenic mercury emissions. Mercury emissions from coal-fired utility boilers vary in total amount and speciation, depending on coal types, boiler operating conditions, and configurations of air pollution control devices (APCDs). The APCDs, such as fabric filter (FF) bag house, electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD), can remove some particulate-bound and oxidized forms of mercury. Elemental mercury often escapes from these devices. Activated carbon injection upstream of a particulate control device has been shown to have the best potential to remove both elemental and oxidized mercury from the flue gas. For this paper, NORIT FGD activated carbon was extensively studied for its mercury adsorption behavior. Results from bench-, pilot- and field-scale studies, mercury adsorption by coal chars, and a case of lignite-burned mercury control were reviewed. Studies of brominated carbon, sulfur-impregnated carbon and chloride-impregnated carbon were also reviewed. Carbon substitutes, such as calcium sorbents, petroleum coke, zeolites and fly ash were analyzed for their mercury-adsorption performance. At this time, brominated activated carbon appears to be the best-performing mercury sorbent. A non-injection regenerable sorbent technology is briefly introduced herein, and the issue of mercury leachability is briefly covered. Future research directions are suggested.

  16. Field Trial Results of a 14-channel GPR Integrated with a U.S. Program for 3-D Utility Mapping

    NASA Astrophysics Data System (ADS)

    Anspach, James H.

    2013-04-01

    Existing underground utilities continue to be a leading cause of highway construction delay claims in the United States. Although 80-90% of existing utilities can typically be discovered and mapped using a wide range of geophysical tools, there is a recognizable need to improve the process. Existing shortcomings to the utility mapping process include a lack of viable depth attributes, long field occupation times, low experience level of the field technicians, and separate survey / geophysics functions. The U.S. National Academies and its Transportation Research Board recently concluded a project on alleviating the existing utility mapping shortcomings through the development of enhanced GPR. An existing commercial 400MHz 14-channel towed array was enhanced with positioning and interpretation hardware and software over a 3-year US 2M program. Field trials for effectiveness were conducted in a city suburb commercialized environment where the relative permittivity values averaged 9.4. The effectiveness of enhanced GPR was compared to traditional utility mapping techniques (Single Channel GPR, FDEM, Acoustic, Sondes, Gradiometric Magnetometers) during the project. The project area utilities included natural gas, water, electric, telephone, cable, storm, sanitary, traffic control, and several unknown function lines. Depths for these utilities were mostly unknown. 81% of known (from records and field appurtenance visual observation) utilities were detected via traditional geophysical means. These traditional geophysical means also detected 14% additional and previously "unknown" utilities. The enhanced GPR detected approximately 40% of the known and unknown utilities, and found an additional 6% of utilities that were previously undetected. These additional utilities were subsequently determined to be small diameter abandoned water and gas systems in very poor and broken condition. Although it did well with metallic water and gas lines, communication and electric utilities were mostly undetectable. Through a ground-truthing program of test holes to expose utilities, the depth values derived from the enhanced GPR were fairly consistent and within 15 cm of actual depth. The incomplete underground picture determined by the enhanced GPR reinforces previous studies that show that the mapping of existing underground utilities is a multi-tool effort that takes highly trained and skilled field technicians and data interpreters. The addition of a new GPR tool is valuable in determining continuous depth profiles of imaged utilities. A second and significant benefit is the interpretation of other geotechnical data that benefit project designers. This might include showing geometry, location, intensity, and depths of either areas of anomalies, or of known structures, such as paving thickness, substrate thickness, voids, water table, soil lenses, boulders, bedrock, and so forth. The Florida Department of Transportation has decided to take advantage of this new technology and has entered into an experimental contract with Cardno TBE to incorporate several enhanced GPR arrays with traditional utility detection tools. The goal of this contract will be to provide a 3-D model of existing underground utilities for use in automated construction. The GPR 3-D data model will be melded with conventional subsurface utility engineering and mapping practices and will be required to follow the ASCE 38 standard for utility data reliability.

  17. Emerging electrochemical energy conversion and storage technologies

    NASA Astrophysics Data System (ADS)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  18. Emerging electrochemical energy conversion and storage technologies

    PubMed Central

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  19. CFB: technology of the future?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankship, S.

    2008-02-15

    Fuel flexibility and a smaller carbon footprint are behind renewed interest in circulating fluidized bed (CFB) technology. The article explains the technology of CFB and discusses development of CFB units since the late 1990s. China is seeing an explosion in the number of utility-size CFBs. Alstom, Foster Wheeler, Babcock and Wilson and Alex Kvaener are today's major CFB boiler manufacturers. Alstom is testing and developing oxy-firing and post-combustion carbon capture strategies on CFB boilers. One CFB asset is its ability to burn a variety of fuels including waste coal, high sulfur coal and even discarded tires. The article mentions successfulmore » CFB projects at the Seward Station using waste coal and at the Gilbert 3 plant in the USA. Lamar is converting its Light and Power Plant from natural gas to burn coal in a 38.5 MW CFB boiler. 1 tab., 3 photos.« less

  20. Proceedings of the 1985 NASA Ames Research Center's Ground-Effects Workshop

    NASA Technical Reports Server (NTRS)

    Mitchell, Kerry (Editor)

    1987-01-01

    The purpose of the workshop was to discuss the current technology base for aerodynamic ground effects and to establish directions for further research of advanced, high performance aircraft designs, particularly those concepts utilizing powered lift systems; e.g., V/STOL, ASTOVL, and STOL aircraft. Fourteen papers were presented in the following areas: suckdown and fountain effects in hover; STOL ground vortex and hot gas ingestion; and vortex lift and jet flaps in ground effect. These subject areas were chosen with regard to current activities in the field of aircraft ground effects research.

  1. A New Image for the Water Hyacinth

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Walt Disney Company activated a sewage treatment plan using NASA technology to create water hyacinths to clean wastewater by absorbing and metabolizing pollutants. Plants have exciting promise as a natural water purification system which can be established at a fraction of the cost of a conventional sewage treatment facility. Harvested plants can be used as fertilizer. They can also be heat-treated to produce consumer energy in the form of methane gas. If an economical method of drying plants can be developed they may find further utility as high protein animal feed.

  2. Methods, systems, and devices for deep desulfurization of fuel gases

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA; Liu, Jun [Richland, WA; Huo, Qisheng [Richland, WA

    2012-04-17

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  3. State Electricity Profiles

    EIA Publications

    2017-01-01

    The annual report presents data tables describing the electricity industry in each State. Data include: summary statistics; the 10 largest plants by generating capacity; the top five entities ranked by sector; electric power industry generating capacity by primary energy source; electric power industry generation by primary energy source; utility delivered fuel prices for coal, petroleum, and natural gas; electric power industry emissions estimates; retail sales, revenue, and average retail price by sector; retail electricity sales statistics; and supply and disposition of electricity; net metering counts and capacity by technology and customer type; and advanced metering counts by customer type.

  4. Palm oil mill effluent treatment and CO2 sequestration by using microalgae-sustainable strategies for environmental protection.

    PubMed

    Hariz, Harizah Bajunaid; Takriff, Mohd Sobri

    2017-09-01

    In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO 2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, H.G.; Sun, S.; Han, W.

    This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversionmore » and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.« less

  6. Utilization requirements. A southern California Gas Company project SAGE report: Utilization requirements

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Schoen, R.; Hirshberg, A. S.

    1978-01-01

    Utilization requirements are given and comparisons made of two phase III SAGE (solar assisted gas energy) installations in California: (1) a retrofit installation in an existing apartment building in El Toro, and (2) an installation in a new apartment building in Upland. Such testing in the field revealed the requirements to be met if SAGE-type installations are to become commercially practical on a widespread basis in electric and gas energy usage.

  7. Novel Catalysts and Processing Technologies for Production of Aerospace Fuels from Non-Petroleum Raw Materials

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Kulis, Michael J.; Psarras, Peter C.; Ball, David W.; Timko, Michael T.; Wong, Hsi-Wu; Peck, Jay; Chianelli, Russell R.

    2014-01-01

    Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these nontraditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and H2) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tröpsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activities are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.

  8. Novel Catalysts and Processing Technologies for Production of Aerospace Fuels from Non-Petroleum Raw Materials

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Kulis, M. J.; Psarras, P. C.; Ball, D. W.; Timko, M. T.; Wong, H.-W.; Peck, J.; Chianelli, R. R.

    2014-01-01

    Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these non-traditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and hydrogen) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tropsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activity are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.

  9. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  10. Baltimore Zoo digester project. Final report. [Elephants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, P.W.

    The results of a project to produce methane using the manure from zoo animals as a feedstock is presented. Two digesters are in operation, the first (built in 1974) utilizing wastes from the Hippo House and a second (built in 1980) utilizing wastes from the Elephant House. Demonstrations on the utilization of the gas were performed during zoo exhibits. The Elephant House Digester has a capacity of 4200 gallons and a floating gas dome which can retain at least 150 cu ft of gas. Solar energy has been incorporated into the design to maintain digester temperature at 95/sup 0/F. Themore » system produces 50 cu ft per day. After cleaning the gas, it is used to generate electricity to power an electric light, a roof fan, and an air conditioner. The gas is also used to operate a gas range and a gas lamp. During the opening day exhibit, 50 meals were cooked using the bio-gas from just 2 elephants. (DMC)« less

  11. Development of an Acoustic Sensor for On-Line Gas Temperature Measurement in Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Ariessohn; Hans Hornung

    2006-01-15

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2-Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. Since 1989 the U.S. Department of Energy has supported development of advanced coal gasification technology. The Wabash River and TECO IGCC demonstration projects supported by the DOE have demonstrated the ability of these plantsmore » to achieve high levels of energy efficiency and extremely low emissions of hazardous pollutants. However, a continuing challenge for this technology is the tradeoff between high carbon conversion which requires operation with high internal gas temperatures, and limited refractory life which is exacerbated by those high operating temperatures. Attempts to control internal gas temperature so as to operate these gasifiers at the optimum temperature have been hampered by the lack of a reliable technology for measuring internal gas temperatures. Thermocouples have serious survival problems and provide useful temperature information for only a few days or weeks after startup before burning out. For this reason, the Department of Energy has funded several research projects to develop more robust and reliable temperature measurement approaches for use in coal gasifiers. Enertechnix has developed a line of acoustic gas temperature sensors for use in coal-fired electric utility boilers, kraft recovery boilers, cement kilns and petrochemical process heaters. Acoustic pyrometry provides several significant advantages for gas temperature measurement in hostile process environments. First, it is non-intrusive so survival of the measurement components is not a serious problem. Second, it provides a line-of-sight average temperature rather than a point measurement, so the measured temperature is more representative of the process conditions than those provided by thermocouples. Unlike radiation pyrometers, the measured temperature is a linear average over the full path rather than a complicated function of gas temperature and the exponential Beer's law. For this reason, acoustic pyrometry is well suited to tomography allowing detailed temperature maps to be created through the use of multiple path measurements in a plane. Therefore, acoustic pyrometry is an attractive choice for measuring gas temperature inside a coal gasifier. The objective of this project is to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project is organized in three phases, each of approximately one year duration. The first phase consists of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that can be tested on an operating gasifier. The second phase consists of designing and fabricating a series of prototype sensors, testing them in the lab and at a gasifier facility, and developing a conceptual design for an engineering prototype sensor. The third phase consists of designing and fabricating the engineering prototype, testing it in the lab and in a commercial gasifier, and conducting extended field trials to demonstrate sensor performance and investigate the ability to improve gasifier performance through the use of the sensor.« less

  12. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    DOEpatents

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  13. Dust Removal Technolgy for a Mars In Situ Resource Utilization System

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Johansen, M. R.; Williams, B. S.; Hogue, M. D.; Mackey, P. J.; Clements, J. S.

    2011-01-01

    Several In Situ Resource Utilization (lSRU) systems being considered to enable future manned exploration of Mars require capture of Martian atmospheric gas to extract oxygen and other commodities. However, the Martian atmosphere contains relatively large amounts of dust which must be removed in tbe collection systems of the ISRU chambers. The amount of atmospheric dust varies largely with the presence of daily dust devils and the less frequent but much more powerful global dust storms. A common and mature dust removal technology for terrestrial systems is the electrostatic precipitator. With this technology, dust particles being captured are imparted an electrostatic charge by means of a corona discharge. Charged dust particles are then driven to a region of high electric field which forces the particles onto a collector for capture. Several difficulties appear when this technology is adapted to the Martian atmospheric environment At the low atmospheric pressure of Mars, electrical breakdown occurs at much lower voltages than on Earth and corona discharge is difficult to sustain. In this paper, we report on our efforts to obtain a steady corona/glow discharge in a simulated Martian atmosphere of carbon dioxide at 9 millibars of pressure. We also present results on the design of a dust capture system under these atmospheric conditions.

  14. Advanced secondary batteries: Their applications, technological status, market and opportunity

    NASA Astrophysics Data System (ADS)

    Yao, M.

    1989-03-01

    Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.

  15. Solar powered Stirling cycle electrical generator

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  16. Technology Development for Human Exploration Beyond LEO in the New Millennium IAA-13-3 Strategies and Plans for Human Mars Missions

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Lueck, Dale E.; Parrish, Clyde F.; Sanders, Gerald B.; Trevathan, Joseph R.; Baird, R. Scott; Simon, Tom; Peters, T.; Delgado, H. (Technical Monitor)

    2001-01-01

    As we look forward into the new millennium, the extension of human presence beyond Low-Earth Orbit (LEO) looms large in the plans of NASA. The Agency's Strategic Plan specifically calls out the need to identify and develop technologies for 100 and 1000-day class missions beyond LEO. To meet the challenge of these extended duration missions, it is important that we learn how to utilize the indigenous resources available to us on extraterrestrial bodies. This concept, known as In-Situ Resource Utilization (ISRU) can greatly reduce the launch mass & cost of human missions while reducing the risk. These technologies may also pave the way for the commercial development of space. While no specific target beyond LEO is identified in NASA's Strategic Plan, mission architecture studies have been on-going for the Moon, Mars, Near-Earth Asteroids and Earth/Moon & Earth/Sun Libration Points. As a result of these studies, the NASA Office of Space Flight (Code M) through the Johnson and Kennedy Space Centers, is leading the effort to develop ISRU technologies and systems to meet the current and future needs of human missions beyond LEO and on to Mars. This effort also receives support from the NASA Office of Biological and Physical Research (Code U), the Office of Space Science (Code S), and the Office of Aerospace Technology (Code R). This paper will present unique developments in the area of fuel and oxidizer production, breathing air production, water production, C02 collection, separation of atmospheric gases, and gas liquefaction and storage. A technology overview will be provided for each topic along with the results achieved to date, future development plans, and the mission architectures that these technologies support.

  17. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  18. Conceptual design study of improved automotives gas turbine powertrain

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Twenty-two candidate engine concepts and nineteen transmission concepts. Screening of these concepts, predominantly for fuel economy, cost and technical risk, resulted in a recommended powertrain consisting of a single-shaft engine, with a ceramic radial turbine rotor, connected through a differential split-power transmission utilizing a variable stator torque converter and a four speed automatic gearbox. Vehicle fuel economy and performance projections, preliminary design analyses and installation studies in a were completed. A cost comparison with the conventional spark ignited gasoline engine showed that the turbine engine would be more expensive initially, however, lifetime cost of ownership is in favor of the gas turbine. A powertrain research and development plan was constructed to gain information on timing and costs to achieve the required level of technology and demonstrate the engine in a vehicle by the year 1983.

  19. Hybrid membrane--PSA system for separating oxygen from air

    DOEpatents

    Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  20. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  1. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less

  2. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  3. Automotive gas turbine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. (Inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics ofmore » conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to DME, which is subsequently converted via homologation reactions to high-octane, gasoline-range hydrocarbon products.« less

  5. New and future heat pump technologies

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  6. Design and performance of A 3He-free coincidence counter based on parallel plate boron-lined proportional technology

    DOE PAGES

    Henzlova, D.; Menlove, H. O.; Marlow, J. B.

    2015-07-01

    Thermal neutron counters utilized and developed for deployment as non-destructive assay (NDA) instruments in the field of nuclear safeguards traditionally rely on 3He-based proportional counting systems. 3He-based proportional counters have provided core NDA detection capabilities for several decades and have proven to be extremely reliable with range of features highly desirable for nuclear facility deployment. Facing the current depletion of 3He gas supply and the continuing uncertainty of options for future resupply, a search for detection technologies that could provide feasible short-term alternative to 3He gas was initiated worldwide. As part of this effort, Los Alamos National Laboratory (LANL) designedmore » and built a 3He-free full scale thermal neutron coincidence counter based on boron-lined proportional technology. The boronlined technology was selected in a comprehensive inter-comparison exercise based on its favorable performance against safeguards specific parameters. This paper provides an overview of the design and initial performance evaluation of the prototype High Level Neutron counter – Boron (HLNB). The initial results suggest that current HLNB design is capable to provide ~80% performance of a selected reference 3He-based coincidence counter (High Level Neutron Coincidence Counter, HLNCC). Similar samples are expected to be measurable in both systems, however, slightly longer measurement times may be anticipated for large samples in HLNB. The initial evaluation helped to identify potential for further performance improvements via additional tailoring of boron-layer thickness.« less

  7. Bioenergy Potential Based on Vinasse From Ethanol Industrial Waste to Green Energy Sustainability

    NASA Astrophysics Data System (ADS)

    Harihastuti, Nani; Marlena, Bekti

    2018-02-01

    The waste water from alcohol industry is called vinasse has a high organic content, with BOD5 = 109.038 mg / l, COD = 353.797 mg / l and TSS = 7200 mg / l, pH 4-5 with a temperature of around 40-50ºC. The current treatment of alcohol waste water, most still using facultative anaerobic technology with open ponds that are only covered with HDPE plastics. This technology produces less optimal biogas and has a weakness that is the hydraulic residence time (HRT) for long (40-50 days), wide land needs, low COD reduction efficiency as well as high risk of fire and leakage of biogas release high to trigger the occurrence of greenhouse gas and global warming effects. Development of technology with innovation reactor integration model Fixed Dome-Hybrid Anaerobic Filter aims to expand the contact area between the substrate and microbial with modification of the substrate flow system and the area of the filter and integrate with the gas accumulator. The design of this Fixed Dome-Hybrid Anaerobic filter integration model technology, has the advantage of producing optimal bioenergy with CH4 more than 50% content with decrease of COD more than 85% and hydraulic residence time of about 10 (ten) days, bioenergy result is renewable energy made from raw material vinasse from alcohol industrial waste which can be utilized for fuel substitution on the distillation process or boiler process of the industry in a sustainable and cleaner environment.

  8. Fusion technologies for Laser Inertial Fusion Energy (LIFE)

    NASA Astrophysics Data System (ADS)

    Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.

    2013-11-01

    The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Color Changing Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous benefits over the traditional hydrogen sensors: The technology has excellent temperature stability (4K to 373 K), it can be used in cryogenic fluid applications, it is easy to apply and remove; it requires no power to operate; it has a quick response time; the leak points can be detected visually or electronically; it is nonhazardous, thus environmentally friendly; it can be reversible or irreversible; it does not require on-site monitoring; has a long shelf life; the detector is very durable; and the technology is inexpensive to manufacture.

  10. Flue-gas and direct-air capture of CO2 by porous metal–organic materials

    PubMed Central

    2017-01-01

    Sequestration of CO2, either from gas mixtures or directly from air (direct air capture), is a technological goal important to large-scale industrial processes such as gas purification and the mitigation of carbon emissions. Previously, we investigated five porous materials, three porous metal–organic materials (MOMs), a benchmark inorganic material, Zeolite 13X and a chemisorbent, TEPA-SBA-15, for their ability to adsorb CO2 directly from air and from simulated flue-gas. In this contribution, a further 10 physisorbent materials that exhibit strong interactions with CO2 have been evaluated by temperature-programmed desorption for their potential utility in carbon capture applications: four hybrid ultramicroporous materials, SIFSIX-3-Cu, DICRO-3-Ni-i, SIFSIX-2-Cu-i and MOOFOUR-1-Ni; five microporous MOMs, DMOF-1, ZIF-8, MIL-101, UiO-66 and UiO-66-NH2; an ultramicroporous MOM, Ni-4-PyC. The performance of these MOMs was found to be negatively impacted by moisture. Overall, we demonstrate that the incorporation of strong electrostatics from inorganic moieties combined with ultramicropores offers improved CO2 capture performance from even moist gas mixtures but not enough to compete with chemisorbents. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’. PMID:27895255

  11. Analyses in Support of Risk-Informed Natural Gas Vehicle Maintenance Facility Codes and Standards: Phase II.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaylock, Myra L.; LaFleur, Chris Bensdotter; Muna, Alice Baca

    Safety standards development for maintenance facilities of liquid and compressed natural gas fueled vehicles is required to ensure proper facility design and operating procedures. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase II work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest using risk ranking. Detailed simulations and modeling were performed to estimate the location and behaviormore » of natural gas releases based on these scenarios. Specific code conflicts were identified, and ineffective code requirements were highlighted and resolutions proposed. These include ventilation rate basis on area or volume, as well as a ceiling offset which seems ineffective at protecting against flammable gas concentrations. ACKNOWLEDGEMENTS The authors gratefully acknowledge Bill Houf (SNL -- Retired) for his assistance with the set-up and post-processing of the numerical simulations. The authors also acknowledge Doug Horne (retired) for his helpful discussions. We would also like to acknowledge the support from the Clean Cities program of DOE's Vehicle Technology Office.« less

  12. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  13. Review and assessment of the database and numerical modeling for turbine heat transfer

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Simoneau, R. J.

    1988-01-01

    The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.

  14. 17 CFR 250.7 - Companies deemed not to be electric or gas utility companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Companies deemed not to be electric or gas utility companies. 250.7 Section 250.7 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, PUBLIC UTILITY HOLDING COMPANY ACT OF 1935...

  15. After the Fire! Returning to Normal

    MedlinePlus

    ... department will make sure the utility services (water, electricity and gas) are safe to use. If they ... department will tell you if your utilities (water, electricity and gas) are safe to use. If not, ...

  16. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    PubMed

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Qiang; Guarnieri, Michael T.; Tao, Ling

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of convertingmore » methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.« less

  18. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Q; Guarnieri, MT; Tao, L

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methanemore » into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.« less

  19. Geothermal Energy Production from Oil/Gas Wells and Application for Building Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Honggang; Liu, Xiaobing

    One significant source of low-temperature geothermal energy is the coproduced hot water from oil/gas field production. In the United States, daily oil production has reached above 8 million barrels in recent years. Considering various conditions of wells, 5-10 times or more water can be coproduced in the range of temperature 120 F to 300 F. Like other geothermal resources, such energy source from oil/gas wells is under-utilized for its typical long distance from consumption sites. Many oil/gas fields, however, are relatively close (less than 10 miles) to consumers around cities. For instance, some petroleum fields in Pennsylvania are only amore » few miles away from the towns in Pittsburg area and some fields in Texas are quite close to Houston. In this paper, we evaluate geothermal potential from oil/gas wells by conducting numerical simulation and analysis of a fractured oil well in Hastings West field, Texas. The results suggest that hot water can be continuously coproduced from oil wells at a sufficient rate (about 4000 gallons/day from one well) for more than 100 years. Viable use of such geothermal source requires economical transportation of energy to consumers. The recently proposed two-step geothermal absorption (TSGA) system provides a promising energy transport technology that allows large-scale use of geothermal energy from thousands of oil/gas wells.« less

  20. Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles

    Science.gov Websites

    Public Utilities operates the largest municipal fleet of natural gas vehicles in Connecticut. For Shopping Nov. 4, 2017 Photo of a truck Natural Gas Vehicles Make a Difference in Tennessee Oct. 28, 2017 with Natural Gas Trucks June 23, 2017 Photo of a bus New Hampshire Cleans up with Biodiesel Buses May

  1. Plasma Processing of Materials

    DTIC Science & Technology

    1985-02-22

    inert gas or in a reduced pressure environment) one can obtain rapidly solidified metastable (i.e., amorphous, microcrystalline, and supersaturated...integrated circuits dnd thus is an area of’vital : importance to our electronics industry. Applications utilizing noble gas plasmas, such as ion-plating...phenomena and probably will not benefit -ubstantially from acditional basic research. Applications utilizing molecular gas plasmas, where reactive species

  2. 75 FR 26904 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability; Default Emission Factors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... mass of each fluorinated GHG by-product formed as a fraction of the mass of the dominant fluorinated... factors that account for gas utilization and by-product formation for multi-gas chemistries. X The...-product formation factors. X Alternatives to the analogies EPA used to assign gas utilization and by...

  3. Current experiences in applied underground coal gasification

    NASA Astrophysics Data System (ADS)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is set to become the leading producer of cleaner liquid fuels and other associated products. UCG has now been developed to a point where the commercialisation of the process is no longer questioned, the economics of the process are compelling, and is now seen as a method that resolves energy security for countries that have access to deep coal previously thought to have no economic value.

  4. Methanation process utilizing split cold gas recycle

    DOEpatents

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  5. Carbon dioxide capture from power or process plant gases

    DOEpatents

    Bearden, Mark D; Humble, Paul H

    2014-06-10

    The present invention are methods for removing preselected substances from a mixed flue gas stream characterized by cooling said mixed flue gas by direct contact with a quench liquid to condense at least one preselected substance and form a cooled flue gas without substantial ice formation on a heat exchanger. After cooling additional process methods utilizing a cryogenic approach and physical concentration and separation or pressurization and sorbent capture may be utilized to selectively remove these materials from the mixed flue gas resulting in a clean flue gas.

  6. An empirical analysis of ERP adoption by oil and gas firms

    NASA Astrophysics Data System (ADS)

    Romero, Jorge

    2005-07-01

    Despite the growing popularity of enterprise-resource-planning (ERP) systems for the information technology infrastructure of large and medium-sized businesses, there is limited empirical evidence on the competitive benefits of ERP implementations. Case studies of individual firms provide insights but do not provide sufficient evidence to draw reliable inferences and cross-sectional studies of firms in multiple industries provide a broad-brush perspective of the performance effects associated with ERP installations. To narrow the focus to a specific competitive arena, I analyze the impact of ERP adoption on various dimensions of performance for firms in the Oil and Gas Industry. I selected the Oil and Gas Industry because several companies installed a specific type of ERP system, SAP R/3, during the period from 1990 to 2002. In fact, SAP was the dominant provider of enterprise software to oil and gas companies during this period. I evaluate performance of firms that implemented SAP R/3 relative to firms that did not adopt ERP systems in the pre-implementation, implementation and post-implementation periods. My analysis takes two different approaches, the first from a financial perspective and the second from a strategic perspective. Using the Sloan (General Motors) model commonly applied in financial statement analysis, I examine changes in performance for ERP-adopting firms versus non-adopting firms along the dimensions of asset utilization and return on sales. Asset utilization is more closely aligned with changes in leanness of operations, and return on sales is more closely aligned with customer-value-added. I test hypotheses related to the timing and magnitude of the impact of ERP implementation with respect to leanness of operations and customer value added. I find that SAP-adopting companies performed relatively better in terms of asset turnover than non-SAP-adopting companies during both the implementation and post-implementation periods and that SAP-adopting firms outperformed non-SAP-adopting firms in terms of return on sales during the post-implementation period. These findings indicate that the impact of ERP implementation on return on sales occurred after an assimilation period. I perform an analysis of the impact of ERP in the Oil and Gas Industry using strategic performance metrics described in Banker et al. (1996) including profitability, productivity, price recovery, product mix, and capacity utilization. My results show that the benefits obtained from ERP implementation in terms of productivity and capacity utilization are persistently positive during and after the installation.

  7. Pros and cons of power combined cycle in Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, C.; Hernandez, S.

    1997-09-01

    In Venezuela combined cycle power has not been economically attractive to electric utility companies, mainly due to the very low price of natural gas. Savings in cost of natural gas due to a higher efficiency, characteristic of this type of cycle, does not compensate additional investments required to close the simple cycle (heat recovery steam generator (HRSG) and steam turbine island). Low gas prices have contributed to create a situation characterized by investors` reluctance to commit capital in gas pipe lines and associated equipment. The Government is taking measures to improve economics. Recently (January 1, 1997), the Ministry of Energymore » and Mines raised the price of natural gas, and established a formula to tie its price to the exchange rate variation (dollar/bolivar) in an intent to stimulate investments in this sector. This is considered a good beginning after a price freeze for about three years. Another measure that has been announced is the implementation of a corporate policy of outsourcing to build new gas facilities such as pipe lines and measuring and regulation stations. Under these new circumstances, it seems that combined cycle will play an important role in the power sector. In fact, some power generation projects are considering building new plants using this technology. An economical comparative study is presented between simple and combined cycles power plant. Screening curves are showed with a gas price forecast based on the government decree recently issued, as a function of plant capacity factor.« less

  8. 18 CFR 281.202 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Algonquin Gas Transmission Company. Arkansas Louisiana Natural Gas Company. Cities Service Gas Company.... Florida Gas Transmission Company. Great Lakes Gas Transmission Company. Inter-City Minnesota Pipelines... River Transmission Company. Montana Dakota Utilities Company. National Fuel Gas Supply Company. North...

  9. Low cost forged Y-pattern valves control hot corrosive/erosive gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaines, A.

    The Morgantown Energy Technology Center in Morgantown, West Virginia is a research facility of the US Department of Energy (DOE) that does research on fossil fuels utilization and conversion to provide improved and environmentally acceptable energy sources. One area of investigation in the Morgantown facility is the use of gaseous fuels derived from coal from fluidized-bed and fixed-bed gasification technologies. The corrosive and slightly erosive gases and vapors at about 1000F and from 100 to 300 psi are treated in an experimental desulfurization unit to produce fuel gas with greatly enhanced environmental characteristics. The valves in use were constructed ofmore » Type 347 stainless steel, a stabilized version of 316 SS, and cost about $6000 for the 2'' size and about $4000 for the 1'' size. Despite the high cost, the valve sometimes became difficult or impossible to operate due to metal failures. The Technology Center had a number of new Class 1500 Y-pattern (angle-style) globe valves in inventory. The control valve body and bonnet are forged chrome moly steel (ASTM-H182-F22), the stem assembly is a 13% chrome alloy with an erosion resistant hard faced disc, and the seat ring is a cobalt-base alloy fused in place as an integral part of the body. Stem packing as an either wire inserted molded asbestos or Grafoil flexible graphite. The Y-pattern globe valves in 1 and 2'' sizes, which were judged potentially suitable and on hand, were installed in the experimental desulfization unit as well as in the connecting hot gas piping system to a new coal gasification process. The Class 1500 Y-pattern valves have provided reliable control of the hot corrosive and erosive gas streams with very little maintenance.« less

  10. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less

  11. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025–2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300–350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25–$1.00/mi depending on timeframe and vehicle-fuel technology. In all cases, vehicle cost represents the major (60–90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less

  12. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.

    PubMed

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Mark; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J

    2018-02-20

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO 2 e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H 2 FCEVs, and BEVs range from 300-350 gCO 2 e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO 2 /mi for ICEVs and ∼250 gCO 2e /mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  13. A Boundary Delineation System for the Bureau of Ocean Energy Management

    NASA Astrophysics Data System (ADS)

    Vandegraft, Douglas L.

    2018-05-01

    Federal government mapping of the offshore areas of the United States in support of the development of oil and gas resources began in 1954. The first mapping system utilized a network of rectangular blocks defined by State Plane coordinates which was later revised to utilize the Universal Transverse Mercator grid. Creation of offshore boundaries directed by the Submerged Lands Act and Outer Continental Shelf Lands Act were mathematically determined using early computer programs that performed the required computations, but required many steps. The Bureau of Ocean Energy Management has revised these antiquated methods using GIS technology which provide the required accuracy and produce the mapping products needed for leasing of energy resources, including renewable energy projects, on the outer continental shelf. (Note: this is an updated version of a paper of the same title written and published in 2015).

  14. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    NASA Technical Reports Server (NTRS)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-01-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  15. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.

    PubMed

    Clack, Herek L

    2017-08-01

    Among the technologies available for reducing mercury emissions from coal-fired electric utilities is the injection of a powdered sorbent, often some form of activated carbon, into the flue gas upstream of the particulate control device, most commonly an electrostatic precipitator (ESP). Detailed measurements of mercury removal within ESPs are lacking due to the hazardous environment they pose, increasing the importance of analysis and numerical simulation in understanding the mechanisms involved. Our previous analyses revealed that mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are not additive removal mechanisms but rather are competitive. The present study expands on this counterintuitive finding. Presented are results from numerical simulations reflecting the complete range of possible mass transfer boundary conditions representing mercury adsorption by the accumulated dust cake covering internal ESP collection electrodes. Using the two mercury removal mechanisms operating concurrently and interdependently always underperforms the sum of the two mechanisms' individual contributions. The dual use of electrostatic precipitators (ESPs) for particulate removal and adsorption of trace gaseous pollutants such as mercury is increasing as mercury regulations become more widespread. Under such circumstances, mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are competitive. Together, the two mercury removal mechanisms always underperform the sum of their two independent contributions. These findings can inform strategies sought by electric utilities for reducing the usage costs of mercury sorbents.

  16. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    NASA Astrophysics Data System (ADS)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-05-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  17. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    PubMed

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  18. Proceedings: 1995 SO{sub 2} control symposium. Volume 1, Sessions 1, 2, 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    Cosponsored by EPRI, DOE, and EPA, this conference provided a forum for the exchange of economic, technical, and regulatory information on sulfur dioxide control technology. From March 28--31, 1995, participants presented 100 technical papers to an audience of 525 people from around the world. Given in thirteen technical sessions, the papers included regulatory and economic issues, wet and dry SO{sub 2} control processes, emerging technologies, and experience with Clean Air Act Amendments (CAAA) Phase I startups. The fifteenth in a series of symposia over the past two decades, the conference included these key points: the domestic flue gas desulfurization (FGD)more » market is likely to be modest over the next ten years, with most activity overseas; FGD awards could reach over $4 billion a year from 1996--2003, with more than half going to Eastern Europe and Asia; worldwide, at the start of 1994, FGD systems were installed on 609 coal-fired power plants; the average capital cost for Phase I retrofits has been $233/kW; and, trends point to simpler designs, such as towers that operate at higher gas velocities with fewer internals. Published proceedings from these regularly scheduled symposia are valuable resources for engineers and utility planners who need up-to-date information to comply with clean air legislation. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.« less

  19. Proceedings: 1995 SO{sub 2} control symposium. Volume 4, Sessions Ba, 8b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    Cosponsored by EPRI, DOE, and EPA, this conference provided a forum for the exchange of economic, technical, and regulatory information on sulfur dioxide control technology. From March 28--31, 1995, participants presented 100 technical papers to an audience of 525 people from around the world. Given in thirteen technical sessions, the papers included regulatory and economic issues, wet and dry SO{sub 2} control processes, emerging technologies, and experience with Clean Air Act Amendments (CAAA) Phase I startups. The fifteenth in a series of symposia over the past two decades, the conference included these key points: the domestic flue gas desulfurization (FGD)more » market is likely to be modest over the next ten years, with most activity overseas; FGD awards could reach over $4 billion a year from 1996--2003, with more than half going to Eastern Europe and Asia; worldwide, at the start of 1994, FGD systems were installed on 609 coal-fired power plants; the average capital cost for Phase I retrofits has been $233/kW; and, trends point to simpler designs, such as towers that operate at higher gas velocities with fewer internals. Published proceedings from these regularly scheduled symposia are valuable resources for engineers and utility planners who need up-to-date information to comply with clean air legislation. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.« less

  20. Applicability of interferometric SAR technology to ground movement and pipeline monitoring

    NASA Astrophysics Data System (ADS)

    Grivas, Dimitri A.; Bhagvati, Chakravarthy; Schultz, B. C.; Trigg, Alan; Rizkalla, Moness

    1998-03-01

    This paper summarizes the findings of a cooperative effort between NOVA Gas Transmission Ltd. (NGTL), the Italian Natural Gas Transmission Company (SNAM), and Arista International, Inc., to determine whether current remote sensing technologies can be utilized to monitor small-scale ground movements over vast geographical areas. This topic is of interest due to the potential for small ground movements to cause strain accumulation in buried pipeline facilities. Ground movements are difficult to monitor continuously, but their cumulative effect over time can have a significant impact on the safety of buried pipelines. Interferometric synthetic aperture radar (InSAR or SARI) is identified as the most promising technique of those considered. InSAR analysis involves combining multiple images from consecutive passes of a radar imaging platform. The resulting composite image can detect changes as small as 2.5 to 5.0 centimeters (based on current analysis methods and radar satellite data of 5 centimeter wavelength). Research currently in progress shows potential for measuring ground movements as small as a few millimeters. Data needed for InSAR analysis is currently commercially available from four satellites, and additional satellites are planned for launch in the near future. A major conclusion of the present study is that InSAR technology is potentially useful for pipeline integrity monitoring. A pilot project is planned to test operational issues.

  1. Noble Gas Release Signal as a Precursor to Fracture

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Lee, H.; Gardner, W. P.

    2017-12-01

    We present empirical results of rock strain, microfracturing, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite, basalt, shale and bedded rock salt. Noble gases are released and measured real-time during deformation using mass spectrometry. The gas release represents a precursive signal to macrofracture. Gas release is associated with increased acoustic emissions indicating that microfracturing is required to release gas and create pathways for the gas to be sensed. The gas released depends on initial gas content, pore structure and its evolution during deformation, the deformation amount, matrix permeability, deformation style and the stress/strain history. Gases are released from inter and intracrystalline sites; release rate increases as strain and microfracturing increases. The gas composition depends on lithology, geologic history and age, fluids present, and radioisotope concentrations that affect radiogenic noble gas isotope (e.g. 4He,40Ar) production. Noble gas emission and its relationship to crustal processes such as seismicity and volcanism, tectonic velocities, qualitative estimates of deep permeability, age dating of groundwater, and a signature of nuclear weapon detonation. Our result show that mechanical deformation of crustal materials is an important process controlling gas release from rocks and minerals, and should be considered in techniques which utilize gas release and/or accumulation. We propose using noble gas release to signal rock deformation in boreholes, mines and waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress, strain, and/or permanent deformation dependent. Calibration of such relationships, for example relating gas release per rock unit volume to strain may be used to quantify rock deformation and develop predictive models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7823A

  2. Application of gas-fluid atomization technology in ultrosonic vibration cutting titanium alloy workpiece

    NASA Astrophysics Data System (ADS)

    Zhou, Zhimin; Zhang, Yuangliang; Li, Xiaoyan; Sun, Baoyuan

    2009-11-01

    To further improve machined surface quality of diamond cutting titanium workpiece and reduce diamond tool wear, it puts forward a kind of machining technology with mixture of carbon dioxide gas, water and vegetable oil atomized mist as cooling media in the paper. The cooling media is sprayed to cutting area through gas-liquid atomizer device to achieve purpose of cooling, lubricating, and protecting diamond tool. Experiments indicate that carbon dioxide gas can touch cutting surface more adequately through using gas-liquid atomization technology, which makes iron atoms of cutting surface cause a chemical reaction directly with carbon in carbon dioxide gas and reduce graphitizing degree of diamond tool. Thus, this technology of using gas-liquid atomization and ultrasonic vibration together for cutting Titanium Alloy is able to improve machined surface quality of workpiece and slow of diamond tool wear.

  3. Novel Silica Nanostructured Platforms with Engineered Surface Functionality and Spherical Morphology for Low-Cost High-Efficiency Carbon Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Cheng-Yu; Radu, Daniela R.; Pizzi, Nicholas

    Carbon capture is an integral part of the CO 2 mitigation efforts, and encompasses, among other measures, the demonstration of effective and inexpensive CO 2 capture technologies. The project demonstrated a novel platform—the amine-functionalized stellate mesoporous silica nanosphere (MSN)—for effective CO 2 absorption. The reported CO 2 absorption data are superior to the performance of other reported silica matrices utilized for carbon capture, featuring an amount of over 4 milimoles CO 2/g sorbent at low temperatures (in the range of 30-45 ºC), selected for simulating the temperature of actual flue gas. The reported platform is highly resilient, showing recyclability andmore » 85 % mass conservation of sorbent upon nine tested cycles. Importantly, the stellate MSNs show high CO 2 selectivity at room temperature, indicating that the presence of nitrogen in flue gas will not impair the CO 2 absorption performance. The results could lead to a simple and inexpensive new technology for CO 2 mitigation which could be implemented as measure of CO 2 mitigation in current fossil-fuel burning plants in the form of solid sorbent.« less

  4. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform.

    PubMed

    Hoganson, David M; Pryor, Howard I; Bassett, Erik K; Spool, Ira D; Vacanti, Joseph P

    2011-02-21

    There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.

  5. Comparison of municipal solid waste treatment technologies from a life cycle perspective in China.

    PubMed

    Dong, Jun; Chi, Yong; Zou, Daoan; Fu, Chao; Huang, Qunxing; Ni, Mingjiang

    2014-01-01

    China has endured the increasing generation of municipal solid waste; hence, environmental analysis of current waste management systems is of crucial importance. This article presents a comprehensive life cycle assessment of three waste treatment technologies practiced in Hangzhou, China: landfill with and without energy recovery, and incineration with waste-to-energy. Adopting region-specific data, the study covers various environmental impacts, such as global warming, acidification, nutrient enrichment, photochemical ozone formation, human toxicity and ecotoxicity. The results show that energy recovery poses a positive effect in environmental savings. Environmental impacts decrease significantly in landfill with the utilization of biogas owing to combined effects by emission reduction and electricity generation. Incineration is preferable to landfill, but toxicity-related impacts also need to be improved. Furthermore, sensitivity analysis shows that the benefit of carbon sequestration will noticeably decrease global warming potential of both landfill scenarios. Gas collection efficiency is also a key parameter influencing the performance of landfill. Based on the results, improvement methods are proposed. Energy recovery is recommended both in landfill and incineration. For landfill, gas collection systems should be upgraded effectively; for incineration, great efforts should be made to reduce heavy metals and dioxin emissions.

  6. Counter-Rotating Tandem Motor Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively comparedmore » to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.« less

  7. Selection of technology for the low calorific synthetic gas combustion in the gas turbine combustion chamber

    NASA Astrophysics Data System (ADS)

    Filippov, Prokopy; Levin, Evgeny; Ryzhkov, Alexander

    2017-10-01

    The leading gas turbines manufacturers are developing the technologies of the environmental friendly combustion of industrial and synthetic gases of low calorific values. In this case they are faced with critical problems concerning combustion stability assurance and the necessity of the gas turbines significant modernization due to the differences between the low calorific and natural gases. The numerical simulation results of the low calorific value synthetic gas combustion in the combustion chamber by means of different technologies are considered in the paper.

  8. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Larkin, T. R.

    1986-01-01

    The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.

  9. Review of Facility Technology Options and their Development Status

    DTIC Science & Technology

    1989-06-01

    added to these commercial technologies, such as flue gas desulfurization and low-NO x burners. " New coal-fired power technologies, such as AFBC, CFBC...Issues When compared to conventional technologies with pollution control equipment (such as pulverized coal/ flue gas desulfurization ), AFBC/CFBC systems...performance trade- offs exist. Since less energy is available in the flue gas as a result of heating water, less refrigerant vapor will be

  10. Environmental assessment of gas management options at the Old Ammässuo landfill (Finland) by means of LCA-modeling (EASEWASTE).

    PubMed

    Manfredi, Simone; Niskanen, Antti; Christensen, Thomas H

    2009-05-01

    The current landfill gas (LFG) management (based on flaring and utilization for heat generation of the collected gas) and three potential future gas management options (LFG flaring, heat generation and combined heat and power generation) for the Old Ammässuo landfill (Espoo, Finland) were evaluated by life-cycle assessment modeling. The evaluation accounts for all resource utilization and emissions to the environment related to the gas generation and management for a life-cycle time horizon of 100 yr. The assessment criteria comprise standard impact categories (global warming, photo-chemical ozone formation, stratospheric ozone depletion, acidification and nutrient enrichment) and toxicity-related impact categories (human toxicity via soil, via water and via air, eco-toxicity in soil and in water chronic). The results of the life-cycle impact assessment show that disperse emissions of LFG from the landfill surface determine the highest potential impacts in terms of global warming, stratospheric ozone depletion, and human toxicity via soil. Conversely, the impact potentials estimated for other categories are numerically-negative when the collected LFG is utilized for energy generation, demonstrating that net environmental savings can be obtained. Such savings are proportional to the amount of gas utilized for energy generation and the gas energy recovery efficiency achieved, which thus have to be regarded as key parameters. As a result, the overall best performance is found for the heat generation option - as it has the highest LFG utilization/energy recovery rates - whereas the worst performance is estimated for the LFG flaring option, as no LFG is here utilized for energy generation. Therefore, to reduce the environmental burdens caused by the current gas management strategy, more LFG should be used for energy generation. This inherently requires a superior LFG capture rate that, in addition, would reduce fugitive emissions of LFG from the landfill surface, bringing further environmental benefits.

  11. Technical Path Evaluation for High Efficiency, Low Emission Natural Gas Engine

    DTIC Science & Technology

    2002-05-01

    Modeling and Mitigation for Large Bore Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine ...Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine Water Spray Injection for Knock...91 vi D. MICROFINE WATER SPRAY INJECTION FOR

  12. Protective Mechanisms of Respiratory Tract Streptococci against Streptococcus pyogenes Biofilm Formation and Epithelial Cell Infection

    PubMed Central

    Fiedler, Tomas; Riani, Catur; Koczan, Dirk; Standar, Kerstin

    2013-01-01

    Streptococcus pyogenes (group A streptococci [GAS]) encounter many streptococcal species of the physiological microbial biome when entering the upper respiratory tract of humans, leading to the question how GAS interact with these bacteria in order to establish themselves at this anatomic site and initiate infection. Here we show that S. oralis and S. salivarius in direct contact assays inhibit growth of GAS in a strain-specific manner and that S. salivarius, most likely via bacteriocin secretion, also exerts this effect in transwell experiments. Utilizing scanning electron microscopy documentation, we identified the tested strains as potent biofilm producers except for GAS M49. In mixed-species biofilms, S. salivarius dominated the GAS strains, while S. oralis acted as initial colonizer, building the bottom layer in mixed biofilms and thereby allowing even GAS M49 to form substantial biofilms on top. With the exception of S. oralis, artificial saliva reduced single-species biofilms and allowed GAS to dominate in mixed biofilms, although the overall two-layer structure was unchanged. When covered by S. oralis and S. salivarius biofilms, epithelial cells were protected from GAS adherence, internalization, and cytotoxic effects. Apparently, these species can have probiotic effects. The use of Affymetrix array technology to assess HEp-2 cell transcription levels revealed modest changes after exposure to S. oralis and S. salivarius biofilms which could explain some of the protective effects against GAS attack. In summary, our study revealed a protection effect of respiratory tract bacteria against an important airway pathogen and allowed a first in vitro insight into local environmental processes after GAS enter the respiratory tract. PMID:23241973

  13. High-reliability gas-turbine combined-cycle development program: Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, K.G.; Sanderson, R.A.; Smith, M.J.

    This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. This volume presents information of the reliability, availability, and maintainability (RAM) analysis of a representative plant and the preliminary design of the gas turbine, the gas turbine ancillaries, and the balance of plant including themore » steam turbine generator. To achieve the program goals, a gas turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000 hours. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and mandual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-hour EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricity compared to present market offerings.« less

  14. Ground Based Ultraviolet Remote Sensing of Volcanic Gas Plumes

    PubMed Central

    Kantzas, Euripides P.; McGonigle, Andrew J. S.

    2008-01-01

    Ultraviolet spectroscopy has been implemented for over thirty years to monitor volcanic SO2 emissions. These data have provided valuable information concerning underground magmatic conditions, which have been of utility in eruption forecasting efforts. During the last decade the traditionally used correlation spectrometers have been upgraded with miniature USB coupled UV spectrometers, opening a series of exciting new empirical possibilities for understanding volcanoes and their impacts upon the atmosphere. Here we review these technological developments, in addition to the scientific insights they have precipitated, covering the strengths and current limitations of this approach. PMID:27879780

  15. Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source

    PubMed Central

    Huang, Jinqing; Parobek, Alexander; Ganim, Ziad

    2016-01-01

    Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100 fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700 cm−1 with a 190 pJ pulse energy and 0.5% RMS stability. PMID:27805634

  16. Mathematical modeling of solid oxide fuel cells

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  17. Proceedings: Twenty years of energy policy: Looking toward the twenty-first century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    In 1973, immediately following the Arab Oil Embargo, the Energy Resources Center, University of Illinois at Chicago initiated an innovative annual public service program called the Illinois Energy Conference. The objective was to provide a public forum each year to address an energy or environmental issue critical to the state, region and nation. Twenty years have passed since that inaugural program, and during that period we have covered a broad spectrum of issues including energy conservation nuclear power, Illinois coal, energy policy options, natural gas, alternative fuels, new energy technologies, utility deregulation and the National Energy Strategy.

  18. Evaluation of an F100 multivariable control using a real-time engine simulation

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Soeder, J. F.; Skira, C.

    1977-01-01

    The control evaluated has been designed for the F100-PW-100 turbofan engine. The F100 engine represents the current state-of-the-art in aircraft gas turbine technology. The control makes use of a multivariable, linear quadratic regulator. The evaluation procedure employed utilized a real-time hybrid computer simulation of the F100 engine and an implementation of the control logic on the NASA LeRC digital computer/controller. The results of the evaluation indicated that the control logic and its implementation will be capable of controlling the engine throughout its operating range.

  19. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingerich, Daniel B; Bartholomew, Timothy V; Mauter, Meagan S

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient tomore » passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon capture and sequestration, the NETL 550 MW model coal fired power plant with carbon capture and sequestration, and Plant Bowen in Eularhee, Georgia. For each case, we identify the design that minimizes the cost of wastewater treatment given the safely recoverable waste heat. We benchmark the cost minimum waste-heat forward osmosis solutions to two conventional options that rely on electricity, reverse osmosis and mechanical vapor recompression. Furthermore, we quantify the environmental damages from the emissions of carbon dioxide and criteria air pollutants for each treatment option. With this information we can assess the trade-offs between treatment costs, energy consumption, and air emissions between the treatment options.« less

  20. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James L. Gaddy, PhD; Ching-Whan Ko, PhD

    2009-05-04

    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide andmore » simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T. crunogena produces a reasonable return when treating a sour gas stream of 120 million SCFD containing 2.5 percent H2S. In this case, the primary source of revenue is from desulfurization of the gas stream. While the technology has significant application in sequestering carbon dioxide in cell biomass or single cell proten (SCP), perhaps the most immediate application is in desulfurizing LGNG or other gas streams. This biological approach is a viable economical alternative to existing hydrogen sulfide removal technology, and is not sensitive to the presence of hydrocarbons which act as catalyst poisons.« less

  1. Intermediate Temperature Hybrid Fuel Cell System for the Conversion of Natural to Electricity and Liquid Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, Theodore

    This goal of this project was to develop a new hybrid fuel cell technology that operates directly on natural gas or biogas to generate electrical energy and to produce ethane or ethylene from methane, the main component of natural gas or biogas, which can be converted to a liquid fuel or high-value chemical using existing process technologies. By taking advantage of the modularity and scalability of fuel cell technology, this combined fuel cell/chemical process technology targets the recovery of stranded natural gas available at the well pad or biogas produced at waste water treatment plants and municipal landfills by convertingmore » it to a liquid fuel or chemical. By converting the stranded gas to a liquid fuel or chemical, it can be cost-effectively transported to market thus allowing the stranded natural gas or biogas to be monetized instead of flared, producing CO2, a greenhouse gas, because the volumes produced at these locations are too small to be economically recovered using current gas-to-liquids process technologies.« less

  2. Transitioning to an uncertain and competitive environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, J.C.

    1996-08-01

    The move to greater competition by natural gas and electric utilities has meant change unparalleled since the 1930s. To adapt to this revolution, utilities will have to, first, understand the nature of the restructuring and, second, answer such fundamental questions as what they are selling and how they can operate profitably. Answering these and related questions will likely result in the utility evaluating its own structure and deciding how it can bring the most value to its customers. Both natural gas and electric utilities ultimately may have to choose what business niche they will most profitably operate in as themore » days of operating as vertically integrated entities in a cost-plus environment are all but gone. This paper analyzes the changing natural gas and electric utility industries and presents a model of the utility industry in the future. It explains why restructure is inevitable, what form it may take and how newly configured utilities might withstand the brutality of competition by using GIS predictive tools, such as business geographies.« less

  3. DUV light source availability improvement via further enhancement of gas management technologies

    NASA Astrophysics Data System (ADS)

    Riggs, Daniel J.; O'Brien, Kevin; Brown, Daniel J. W.

    2011-04-01

    The continuous evolution of the semiconductor market necessitates ever-increasing improvements in DUV light source uptime as defined in the SEMI E10 standard. Cymer is developing technologies to exceed current and projected light source availability requirements via significant reduction in light source downtime. As an example, consider discharge chamber gas management functions which comprise a sizable portion of DUV light source downtime. Cymer's recent introduction of Gas Lifetime Extension (GLXTM) as a productivity improvement technology for its DUV lithography light sources has demonstrated noteworthy reduction in downtime. This has been achieved by reducing the frequency of full gas replenishment events from once per 100 million pulses to as low as once per 2 billion pulses. Cymer has continued to develop relevant technologies that target further reduction in downtime associated with light source gas management functions. Cymer's current subject is the development of technologies to reduce downtime associated with gas state optimization (e.g. total chamber gas pressure) and gas life duration. Current gas state optimization involves execution of a manual procedure at regular intervals throughout the lifetime of light source core components. Cymer aims to introduce a product enhancement - iGLXTM - that eliminates the need for the manual procedure and, further, achieves 4 billion pulse gas lives. Projections of uptime on DUV light sources indicate that downtime associated with gas management will be reduced by 70% when compared with GLX2. In addition to reducing downtime, iGLX reduces DUV light source cost of operation by constraining gas usage. Usage of fluorine rich Halogen gas mix has been reduced by 20% over GLX2.

  4. Modeling of Liquefaction of Cryogenic Propellant in a Tank

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Bolshinskiy, L. G.; Majumdar, A. K.

    2017-01-01

    Over the past decades NASA has been focusing to develop technology that would to allow for production of cryogenic propellants on the surface of Mars. The in-situ propellant production reduces the amount of propellants needed to be taken to Mars and ultimately to reduce mission cost. Utilizing Martian resources, the produced gaseous propellants (i.e., oxygen and methane) are liquefied and stored prior to use on the Mars ascent vehicle. In this paper, a model for the liquefaction process of gaseous propellants in a cryogenically refrigerated tank is presented. The tank is considered to be cylindrical with elliptical top and bottom domes. A multi-node transient model is developed based on the mass and energy conservation equations and wall-gas and liquid-gas interface mass and heat transfer correlations. Description of the model and predicted results will be presented in the final paper.

  5. Identification of volatiles by headspace gas chromatography with simultaneous flame ionization and mass spectrometric detection.

    PubMed

    Tiscione, Nicholas B; Yeatman, Dustin Tate; Shan, Xiaoqin; Kahl, Joseph H

    2013-10-01

    Volatiles are frequently abused as inhalants. The methods used for identification are generally nonspecific if analyzed concurrently with ethanol or require an additional analytical procedure that employs mass spectrometry. A previously published technique utilizing a capillary flow technology splitter to simultaneously quantitate and confirm ethyl alcohol by flame ionization and mass spectrometric detection after headspace sampling and gas chromatographic separation was evaluated for the detection of inhalants. Methanol, isopropanol, acetone, acetaldehyde, toluene, methyl ethyl ketone, isoamyl alcohol, isobutyl alcohol, n-butyl alcohol, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane (Norflurane, HFC-134a), chloroethane, trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), dichlorofluoromethane (Freon®-21), chlorodifluoromethane (Freon®-22) and 1,2-dichlorotetrafluoroethane (Freon®-114) were validated for qualitative identification by this method. The validation for qualitative identification included evaluation of matrix effects, sensitivity, carryover, specificity, repeatability and ruggedness/robustness.

  6. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    NASA Astrophysics Data System (ADS)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  7. The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freemire, B.; Chung, M.; Hanlet, P. M.

    An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less

  8. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, T.; Sjostrom, S.; Smith, J.

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine themore » mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.« less

  9. Industry/University Consortium for ATS research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.P.; Golan, L.P.

    1993-11-01

    The Industry/University ATS research program is the result of two planning workshops. Workshop I was held April 8--10, 1991 and had the goal of identifying research needs for advanced gas turbine cycles that would permit rapid commercialization of cycles with significant improvements over the machines currently under development, in terms of the cost of electricity produced and the environmental burdens resulting from their use in power producing. Workshop II was held in January 1992 and continued the identification of the research needs to develop advanced gas turbine systems. The goals established for the ATS systems were: (1) efficiency exceeding 60%more » for large utility turbine system and 15% improvement in heat rate for industrial systems; (2) busbar energy costs 10% less than current state of the art and (3) fuel flexible designs. In addition Workshop II participants agreed that an industry driven research consortium was an acceptable mechanism to achieve base technology development needs.« less

  10. The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    DOE PAGES

    Freemire, B.; Chung, M.; Hanlet, P. M.; ...

    2018-01-30

    An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less

  11. Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF

    NASA Astrophysics Data System (ADS)

    Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.

    2017-08-01

    The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.

  12. CERA: 1996 To be watershed year for electric power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Driscoll, M.

    1994-05-03

    How broadly regulators define open access transmission tops the list of six crucial events that Cambridge Energy Research Associates says will converge in 1996 and create a [open quotes]watershed[close quotes] period that will determine the electric power industry's direction for the next century. Those events likely will involve state regulators and lawmakers, and will be driven by a combination of lower fuel costs and surprising technological advances that make gas turbines more efficient, environmental imperatives and the growing support for competition over regulation. And while some see conventional utilities inevitably weakened because of these changes, it is possible they mightmore » emerge stronger. Besides open access transmission, the other events are: A second generation of independent power producers; A transformation of demand side management programs; Air pollution restrictions; Premature closure of nuclear plants; and Management of risks in long-term natural gas contracting.« less

  13. Oil shale as an energy source in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fainberg, V.; Hetsroni, G.

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis ofmore » the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.« less

  14. Scanning, standoff TDLAS leak imaging and quantification

    NASA Astrophysics Data System (ADS)

    Wainner, Richard T.; Aubut, Nicholas F.; Laderer, Matthew C.; Frish, Michael B.

    2017-05-01

    This paper reports a novel quantitative gas plume imaging tool, based on active near-infrared Backscatter Tunable Diode Laser Absorption Spectroscopy (b-TDLAS) technology, designed for upstream natural gas leak applications. The new tool integrates low-cost laser sensors with video cameras to create a highly sensitive gas plume imager that also quantifies emission rate, all in a lightweight handheld ergonomic package. It is intended to serve as a lower-cost, higherperformance, enhanced functionality replacement for traditional passive non-quantitative mid-infrared Optical Gas Imagers (OGI) which are utilized by industry to comply with natural gas infrastructure Leak Detection and Repair (LDAR) requirements. It addresses the need for reliable, robust, low-cost sensors to detect and image methane leaks, and to quantify leak emission rates, focusing on inspections of upstream oil and gas operations, such as well pads, compressors, and gas plants. It provides: 1) Colorized quantified images of path-integrated methane concentration. The images depict methane plumes (otherwise invisible to the eye) actively interrogated by the laser beam overlaid on a visible camera image of the background. The detection sensitivity exceeds passive OGI, thus simplifying the manual task of leak detection and location; and 2) Data and algorithms for using the quantitative information gathered by the active detection technique to deduce plume flux (i.e. methane emission rate). This key capability will enable operators to prioritize leak repairs and thereby minimize the value of lost product, as well as to quantify and minimize greenhouse gas emissions, using a tool that meets EPA LDAR imaging equipment requirements.

  15. Understanding the life cycle surface land requirements of natural gas-fired electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. We present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m 2 MWh -1, 95% confidence intervals +/-0.01 m 2 MWh -1) was dominated by midstream infrastructure,more » particularly pipelines (74%). These results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.« less

  16. Understanding the life cycle surface land requirements of natural gas-fired electricity

    DOE PAGES

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; ...

    2017-10-02

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. We present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m 2 MWh -1, 95% confidence intervals +/-0.01 m 2 MWh -1) was dominated by midstream infrastructure,more » particularly pipelines (74%). These results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.« less

  17. Sounding experiments of high pressure gas discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biele, Joachim K.

    A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at themore » combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.« less

  18. Understanding the life cycle surface land requirements of natural gas-fired electricity

    NASA Astrophysics Data System (ADS)

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; Bush, Brian W.; Mohammadi, Ehsan; Ben-Horin, Dan; Urrea, Victoria; Marceau, Danielle

    2017-10-01

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. Here we present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m2 MWh-1, 95% confidence intervals ±0.01 m2 MWh-1) was dominated by midstream infrastructure, particularly pipelines (74%). Our results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.

  19. Hardware simulation of fuel cell/gas turbine hybrids

    NASA Astrophysics Data System (ADS)

    Smith, Thomas Paul

    Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the capabilities of HILS as a research tool for investigating the dynamic behavior of SOFC/GT hybrid power generation systems.

  20. Rotor-Bearing Dynamics Technology Design Guide. Part VI. Status of Gas Bearing Technology Applicable to Aero Propulsion Machinery

    DTIC Science & Technology

    1980-10-01

    by block number) Air bearings, gas bearings, air lubrication, gas lubrication, rotor dynamics , gas turbines, turbomachinery, foil bearings, compliant...coverage of the subject at this time. Therefore, as a part of the Rotor -Bearing Dynamics Technology Design Guide update, this document is prepared...of the inertia and flexure properties of the rotor together with the dynamic character- istics of the bearing(s). However, an examination of the

  1. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.

    PubMed

    Inglezakis, Vassilis J; Rojas-Solórzano, Luis; Kim, Jong; Aitbekova, Aisulu; Ismailova, Aizada

    2015-05-01

    The city of Astana, the capital of Kazakhstan, which has a population of 804,474, and has been experiencing rapid growth over the last 15 years, generates approximately 1.39 kg capita(-1) day(-1) of municipal solid waste (MSW). Nearly 700 tonnes of MSW are collected daily, of which 97% is disposed of at landfills. The newest landfill was built using modern technologies, including a landfill gas (LFG) collection system.The rapid growth of Astana demands more energy on its path to development, and the viability analysis of MSW to generate electricity is imperative. This paper presents a technical-economic pre-feasibility study comparing landfill including LFG utilization and waste incineration (WI) to produce electricity. The performance of LFG with a reciprocating engine and WI with steam turbine power technologies were compared through corresponding greenhouse gases (GHG) reduction, cost of energy production (CEP), benefit-cost ratio (BCR), net present value (NPV) and internal rate of return (IRR) from the analyses. Results demonstrate that in the city of Astana, WI has the potential to reduce more than 200,000 tonnes of GHG per year, while LFG could reduce slightly less than 40,000 tonnes. LFG offers a CEP 5.7% larger than WI, while the latter presents a BCR two times higher than LFG. WI technology analysis depicts a NPV exceeding 280% of the equity, while for LFG, the NPV is less than the equity, which indicates an expected remarkable financial return for the WI technology and a marginal and risky scenario for the LFG technology. Only existing landfill facilities with a LFG collection system in place may turn LFG into a viable project. © The Author(s) 2015.

  2. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  3. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  4. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, Robert E.

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  5. FIELD TEST MEASUREMENTS AT FIVE MUNICIPAL SOLID WASTE LANDFILLS WITH LANDFILL GAS CONTROL TECHNOLOGY--FINAL REPORT

    EPA Science Inventory

    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  6. High temperature tubular solid oxide fuel cell development

    NASA Astrophysics Data System (ADS)

    Ray, E. R.

    Important to the development commercialization of any new technology is a field test program. This is a mutually beneficial program for both the developer and the prospective user. The developer is able to acquire valuable field operating experience that is not available in a laboratory while the user has the opportunity to become familiar with the new technology and gains a working knowledge of it through hands-on experience. Westinghouse, recognizing these benefits, initiated a program in 1986 by supplying a 400 W SOFC generator to Tennessee Valley Authority. This generator operated for approximately 1,760 hours and was constructed of twenty-four 30 cm thick-wall PST cells. In 1987, three, 3 kW SOFC generators were installed and operated at the facilities of the Tokyo Gas Company and the Osaka Gas Company. At Osaka Gas, two generators were used. First a training generator, operated for 2900 hours before it was replaced on a preplanned schedule with the second generator. The second generator operated for 3,600 hours. Tokyo Gas generator was operated for 4,900 hours. These generators had a 98 percent availability and measured NO(x) levels of less than 1.3 ppm. The 3 kW SOFC generators were constructed of 144 36 cm thick-wall PST cells. The 3 kW generators, as was the TVA generator, were fueled with hydrogen and carbon monoxide. The next major milestone in the field unit program was reached in early 1992 with the delivery to the UTILITIES, a consortium of the Kansai Electric Power company, the Tokyo Gas Company, and the Osaka Gas Company, of a natural gas fueled all electric SOFC system. This system is rated at a nominal 25 kW dc with a peak capacity of 40 kW dc. The NO(x) was measured at less than 0.3 ppM (corrected to 15 percent oxygen). The system consists of 1152 cells (thin-wall PST) of 50 cm active length, manufactured at the PPMF. Cells are contained in two independently controlled and operated generators.

  7. Assessment of institutional barriers to the use of natural gas fuel in automotive vehicle fleets

    NASA Technical Reports Server (NTRS)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-01-01

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified. Recommendations for barrier removal were developed. Eight types of institutional barriers were assessed: (1) lack of a national standard for the safe design and certification of natural gas vehicles and refueling stations; (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements; (3) need for clarification of EPA's tampering enforcement policy; (4) the U.S. hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale for resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufactures warranties; and (8) need for a natural gas to gasoline equivalent units conversion factor for use in calculation of state road use taxes.

  8. Convergence of electric, gas markets prompts cross-industry mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warkentin, D.

    1997-03-01

    The upsurge in the number of mergers between electric utilities and natural gas companies over the last couple of years has largely resulted from two occurrences: the convergence of the two industries and the related concern many electric and gas companies have about becoming complete energy providers in order to vie for survival in an increasingly competitive atmosphere. According to a Prudential Securities Equity Research wrap-up report, {open_quotes}Electricity and Natural Gas: Two Deregulated Markets on a Merger Path,{close_quotes} a single market for energy has emerged, where Btus and killowatt hours are being blended together. The convergence of the electricity andmore » gas markets, the study said, is the reason for cross-industry mergers. Barry Abramson and M. Carol Coale, Prudential Securities senior energy and utilities analysts and authors of the report, said, {open_quotes}We believe that in the future, few large players will be content without a presence in both the electricity and gas markets. Hence, natural gas providers should continue to buy electric utilities, and vice versa, as deregulation advances.« less

  9. 10 CFR 436.30 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (3) Entering into negotiations with electric, water, and gas utilities to design cost-effective... regulations. The provisions of this subpart are controlling with regard to energy savings performance... manage electricity demand conducted by gas, water, or electric utilities and generally available to...

  10. New FERC chairman says plenty of activity yet to come

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Share, J.

    Utility executives may have slowed their merger and acquisition activity to catch their breath, but it`s far from over, says Jim Hoecker, the new chairman of the Federal Energy Regulatory Commission. He doesn`t think we`ve seen the last of this phenomenon. As the industry begins to understand the shape of market developments to come in the future, increasingly creative M and A activities will be seen. But there`s also many other contractual arrangements among utilities and between utilities, pipelines, and gas distribution companies that reflect the more dynamic market of today. In the interview, he referred to a survey ofmore » utility executives in which as many as 45% indicated that their companies were involved in merger or acquisition activity. That survey found about 70% of these executives felt there is going to be more consolidation within the utility industry and an even larger proportion concluded there would be increased mergers between the electric and natural gas industries. In addition, Hoecker discusses gas versus electric, gas versus coal, and FERC`s future.« less

  11. Exergetic life cycle assessment of hydrogen production from renewables

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38-76 times for hydrogen from wind and 16-32 times for hydrogen from solar energy. By comparison, substitution of gasoline with hydrogen from natural gas allows reductions in GHG emissions only as a result of the increased efficiency of a fuel cell engine, and a reduction of AP emissions of 2.5-5 times. These data suggest that "renewable" hydrogen represents a potential long-term solution to many environmental problems.

  12. NASA/General Electric broad-specification fuels combustion technology program - Phase I results and status

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.; Bahr, D. W.; Fear, J. S.

    1982-01-01

    A program is being conducted to develop the technology required to utilize fuels with broadened properties in aircraft gas turbine engines. The first phase of this program consisted of the experimental evaluation of three different combustor concepts to determine their potential for meeting several specific emissions and performance goals, when operated on broadened property fuels. The three concepts were a single annular combustor; a double annular combustor; and a short single annular combustor with variable geometry. All of these concepts were sized for the General Electric CF6-80 engine. A total of 24 different configurations of these concepts were evaluated in a high pressure test facility, using four test fuels having hydrogen contents between 11.8 and 14%. Fuel effects on combustor performance, durability and emissions, and combustor design features to offset these effects were demonstrated.

  13. Investigation of Novel Membrane Technologies for Hydrogen Separation

    NASA Astrophysics Data System (ADS)

    Van Cleave, William M., III

    The production of hydrogen gas via its separation from multicomponent syngas derived from biomass is an important process in the burgeoning carbon-neutral hydrogen economy. Current methods utilize membranes made from expensive materials such as palladium or bulky pressure vessels that use adsorption properties. Holey graphene and doped perovskite ceramics are alternative membrane materials that are relatively inexpensive and easily produced. A range of holey graphene membranes was produced using dry pressing and other techniques, including high temperature reduction, to examine the efficiency of this material. Experimental results using these holey graphene membranes are presented from a lab-scale facility designed to test various membrane types. These results showed decreasing flux and increasing selectivity as membrane thickness increased. Comparison with results from literature indicate these membranes exhibit higher overall flux but lower selectivity when compared to palladium-based membrane technologies.

  14. Method of increasing anhydrosugars, pyroligneous fractions and esterified bio-oil

    DOEpatents

    Steele, Philip H; Yu, Fei; Li, Qi; Mitchell, Brian

    2014-12-30

    The device and method are provided to increase anhydrosugars yield during pyrolysis of biomass. This increase is achieved by injection of a liquid or gas into the vapor stream of any pyrolysis reactor prior to the reactor condensers. A second feature of our technology is the utilization of sonication, microwave excitation, or shear mixing of the biomass to increase the acid catalyst rate for demineralization or removal of hemicellulose prior to pyrolysis. The increased reactivity of these treatments reduces reaction time as well as the required amount of catalyst to less than half of that otherwise required. A fractional condensation system employed by our pyrolysis reactor is another feature of our technology. This system condenses bio-oil pyrolysis vapors to various desired fractions by differential temperature manipulation of individual condensers comprising a condenser chain.

  15. Variability of absorption heat pump efficiency for domestic water heating and space heating based on time-weighted bin analysis

    DOE PAGES

    Ally, Moonis Raza; Sharma, Vishaldeep

    2017-11-02

    Natural gas-driven absorption heat pumps are under renewed scrutiny as a viable technology for space conditioning and water heating for residential and commercial applications because of natural gas production trends, pricing, and the speculation that it might be a “bridge fuel” in the global transition towards energy sustainability. Since any level of natural gas combustion contributes to atmospheric carbon dioxide accumulation, the merits of natural gas consuming absorption technology are re-examined in this paper from the point of view of expected efficiency throughout the United States using a time-weighted bin temperature analysis. Such analyses are necessary because equipment standards formore » rated performance is restricted to one set ambient condition, whereas in actual practice, the absorption heat pump (AHP) must perform over a considerably wider range of external conditions, where its efficiency may be vastly different from that at the rated condition. Quantification of variation in efficiency and system performance are imperative to address how to provide the desired utility with the least environmental impact. In this paper, we examine limiting features in absorption heat pumps and relate it to systemic performances in sixteen cities across all eight climate zones in the U.S, each containing fifteen bin temperatures. The results indicate that the true expectation of performance of an AHP is significantly less than what might be optimized for the rated condition. Statistical measures of the variation in water heating COPs show that for most cities, the COP at the rated conditions is outside the 95% Confidence Interval. Moreover, it is concluded that deployment of absorption heat pump water heaters (AHPWH) may be restricted geographically by outdoor temperature constraints.« less

  16. Variability of absorption heat pump efficiency for domestic water heating and space heating based on time-weighted bin analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ally, Moonis Raza; Sharma, Vishaldeep

    Natural gas-driven absorption heat pumps are under renewed scrutiny as a viable technology for space conditioning and water heating for residential and commercial applications because of natural gas production trends, pricing, and the speculation that it might be a “bridge fuel” in the global transition towards energy sustainability. Since any level of natural gas combustion contributes to atmospheric carbon dioxide accumulation, the merits of natural gas consuming absorption technology are re-examined in this paper from the point of view of expected efficiency throughout the United States using a time-weighted bin temperature analysis. Such analyses are necessary because equipment standards formore » rated performance is restricted to one set ambient condition, whereas in actual practice, the absorption heat pump (AHP) must perform over a considerably wider range of external conditions, where its efficiency may be vastly different from that at the rated condition. Quantification of variation in efficiency and system performance are imperative to address how to provide the desired utility with the least environmental impact. In this paper, we examine limiting features in absorption heat pumps and relate it to systemic performances in sixteen cities across all eight climate zones in the U.S, each containing fifteen bin temperatures. The results indicate that the true expectation of performance of an AHP is significantly less than what might be optimized for the rated condition. Statistical measures of the variation in water heating COPs show that for most cities, the COP at the rated conditions is outside the 95% Confidence Interval. Moreover, it is concluded that deployment of absorption heat pump water heaters (AHPWH) may be restricted geographically by outdoor temperature constraints.« less

  17. Efficiency optimization of a closed indirectly fired gas turbine cycle working under two variable-temperature heat reservoirs

    NASA Astrophysics Data System (ADS)

    Ma, Zheshu; Wu, Jieer

    2011-08-01

    Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.

  18. Fischer-Tropsch Catalyst for Aviation Fuel Production

    NASA Technical Reports Server (NTRS)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  19. Fischer-Tropsch Catalyst for Aviation Fuel Production

    NASA Technical Reports Server (NTRS)

    deLaRee, Ana B.; Best, Lauren M.; Hepp, Aloysius F.

    2011-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  20. Challenges and opportunities of torrefaction technology

    NASA Astrophysics Data System (ADS)

    Kosov, V. F.; Kuzmina, J. S.; Sytchev, G. A.; Zaichenko, V. M.

    2016-11-01

    Since the active exploitation and usage of classical non-renewable energy resources the most promising direction is the development of technologies of heat and electricity production from renewable sources—biomass. This is important in terms of reducing the harmful man-made influence of fuel-and-energy sector on the ecological balance. One of the most important aims when using biomass is its pre-treatment. The paper describes the fuel preliminary preparation for combustion with such technological process as torrefaction. Torrefaction allows bringing the biomass fuel as close as it possible to fossil coals for the main thermotechnical parameters. During torrefaction moisture is removed from initial material and the partial thermal decomposition of its components appears. The final torrefied product can be recommended for utilization in existing coal-fired boilers without their major reconstruction. Thus torrefaction technology enables the partial or complete replacement of fossil coal. At JIHT RAS, a torrefaction pilot plant is developed. As heat transfer medium the gas-piston engine exhaust gases were used. Results of researching and proposals for further development are showed in this paper.

Top