Pressure Dependence of Gas-Phase Reaction Rates
ERIC Educational Resources Information Center
De Persis, Stephanie; Dollet, Alain; Teyssandier, Francis
2004-01-01
It is presented that only simple concepts, mainly taken from activated-complex or transition-state theory, are required to explain and analytically describe the influence of pressure on gas-phase reaction kinetics. The simplest kind of elementary gas-phase reaction is a unimolecular decomposition reaction.
Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A
2014-07-23
We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill
1988-01-01
A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.
NASA Technical Reports Server (NTRS)
Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.; Derr, R. L.
1980-01-01
The inadequacies of the two commonly used assumptions are shown, along with the need for considering gas phase reactions. Kinetic parameters that describe the gas phase reactions for several ingredients are provided, and the first steps in convective combustion leading to deflagration to detonation transition are described.
The kinetics of mercury chlorination (with HC1) were studied using a flow reactor system with an on-line Hg analyzer and spciation sampling using a set of impingers. Kinetic parameters, such as reaction order (a), activation energy (Eu) and the overall rate constant (k') were es...
A kinetic mechanism was used to link and model the gas-phase reactions and
aerosol accumulation resulting from src="/ncer/pubs/images/alpha.gif">-pinene reactions in the presence of sunlight,
ozone (O3), and oxides of nitrogen
(NO
NASA Astrophysics Data System (ADS)
Chan, A. W. H.; Kroll, J. H.; Ng, N. L.; Seinfeld, J. H.
2007-08-01
The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.
NASA Astrophysics Data System (ADS)
Chan, A. W. H.; Kroll, J. H.; Ng, N. L.; Seinfeld, J. H.
2007-05-01
The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Bittker, David A.
1993-01-01
A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.
Ji, Ho-Il; Davenport, Timothy C.; Gopal, Chirranjeevi Balaji; ...
2016-07-18
The redox kinetics of undoped ceria (CeO 2-δ) are investigated by the electrical conductivity relaxation method in the oxygen partial pressure range of -4.3 ≤ log(pO 2/atm) ≤ -2.0 at 1400 °C. It is demonstrated that extremely large gas flow rates, relative to the mass of the oxide, are required in order to overcome gas phase limitations and access the material kinetic properties. Using these high flow rate conditions, the surface reaction rate constant k chem is found to obey the correlation log(k chem/cm s -1) = (0.84 ± 0.02) × log(pO 2/atm) - (0.99 ± 0.05) and increases withmore » oxygen partial pressure. This increase contrasts the known behavior of the dominant defect species, oxygen vacancies and free electrons, which decrease in concentration with increasing oxygen partial pressure. For the sample geometries employed, diffusion was too fast to be detected. At low gas flow rates, the relaxation process becomes limited by the capacity of the sweep gas to supply/remove oxygen to/from the oxide. An analytical expression is derived for the relaxation in the gas-phase limited regime, and the result reveals an exponential decay profile, identical in form to that known for a surface reaction limited process. Thus, measurements under varied gas flow rates are required to differentiate between surface reaction limited and gas flow limited behavior.« less
Ji, Ho-Il; Davenport, Timothy C; Gopal, Chirranjeevi Balaji; Haile, Sossina M
2016-08-03
The redox kinetics of undoped ceria (CeO2-δ) are investigated by the electrical conductivity relaxation method in the oxygen partial pressure range of -4.3 ≤ log(pO2/atm) ≤ -2.0 at 1400 °C. It is demonstrated that extremely large gas flow rates, relative to the mass of the oxide, are required in order to overcome gas phase limitations and access the material kinetic properties. Using these high flow rate conditions, the surface reaction rate constant kchem is found to obey the correlation log(kchem/cm s(-1)) = (0.84 ± 0.02) × log(pO2/atm) - (0.99 ± 0.05) and increases with oxygen partial pressure. This increase contrasts the known behavior of the dominant defect species, oxygen vacancies and free electrons, which decrease in concentration with increasing oxygen partial pressure. For the sample geometries employed, diffusion was too fast to be detected. At low gas flow rates, the relaxation process becomes limited by the capacity of the sweep gas to supply/remove oxygen to/from the oxide. An analytical expression is derived for the relaxation in the gas-phase limited regime, and the result reveals an exponential decay profile, identical in form to that known for a surface reaction limited process. Thus, measurements under varied gas flow rates are required to differentiate between surface reaction limited and gas flow limited behavior.
Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A
2014-11-12
Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.
OH REACTION KINETICS OF GAS-PHASE A- AND G-HEXACHLOROCYCLOHEXANE AND HEXACHLOROBENZENE. (R825377)
Rate constants for the gas-phase reactions of the hydroxyl
radical (OH) with
- and
-hexachlorocyclohexane (
-
and Kinetics of SiHCl3 chemical vapor deposition and fluid dynamic simulations.
Cavallotti, Carlo; Masi, Maurizio
2011-09-01
Though most of the current silicon photovoltaic technology relies on trichlorosilane (SiHCl3) as a precursor gas to deposit Si, only a few studies have been devoted to the investigation of its gas phase and surface kinetics. In the present work we propose a new kinetic mechanism apt to describe the gas phase and surface chemistry active during the deposition of Si from SiHCl3. Kinetic constants of key reactions were either taken from the literature or determined through ab initio calculations. The capability of the mechanism to reproduce experimental data was tested through the implementation of the kinetic scheme in a fluid dynamic model and in the simulation of both deposition and etching of Si in horizontal reactors. The results of the simulations show that the reactivity of HCl is of key importance in order to control the Si deposition rate. When HCl reaches a critical concentration in the gas phase it starts etching the Si surface, so that the net deposition rate is the net sum of the adsorption rate of the gas phase precursors and the etching rate due to HCl. In these conditions the possibility to further deposit Si is directly related to the rate of consumption of HCl through its reaction with SiHCl3 to give SiCl4. The proposed reaction mechanism was implemented in a 3D fluid dynamic model of a simple Siemens reactor. The simulation results indicate that the proposed interpretation of the growth process applies also to this class of reactors, which operate in what can be defined as a mixed kinetic-transport controlled regime.
Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kee, R.J.; Rupley, F.M.; Miller, J.A.
1989-09-01
This document is the user's manual for the second-generation Chemkin package. Chemkin is a software package for whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides an especially flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutinemore » Library. This library is a collection of about 100 highly modular Fortran subroutines that may be called to return information on equation of state, thermodynamic properties, and chemical production rates.« less
Reacting Flow in the Entrance to a Channel with Surface and Gas-Phase Kinetics
NASA Astrophysics Data System (ADS)
Mikolaitis, David; Griffen, Patrick
2006-11-01
In many catalytic reactors the conversion process is most intense at the very beginning of the channel where the flow is not yet fully developed; hence there will be important interactions between the developing flow field and reaction. To study this problem we have written an object-oriented code for the analysis of reacting flow in the entrance of a channel where both surface reaction and gas-phase reaction are modeled with detailed kinetics. Fluid mechanical momentum and energy equations are modeled by parabolic ``boundary layer''-type equations where streamwise gradient terms are small and the pressure is constant in the transverse direction. Transport properties are modeled with mixture-averaging and the chemical kinetic sources terms are evaluated using Cantera. Numerical integration is done with Matlab using the function pdepe. Calculations were completed using mixtures of methane and air flowing through a channel with platinum walls held at a fixed temperature. GRI-Mech 3.0 was used to describe the gas-phase chemistry and Deutchmann's methane-air-platinum model was used for the surface chemistry. Ignition in the gas phase is predicted for high enough wall temperatures. A hot spot forms away from the walls just before ignition that is fed by radicals produced at the surface.
Kazemian, Mohammad Amin; Habibi-Khorassani, Sayyed Mostafa; Maghsoodlu, Malek Taher; Ebrahimi, Ali
2014-04-01
In the present work, the proposed multiple-mechanisms have been investigated theoretically for the reaction between triphenyl phosphite and dimethyl acetylenedicarboxylate in the presence of N-H acid such as aniline for generation of phosphonate esters using ab initio molecular orbital theory in gas phase. The profile of the potential energy surface was constructed at the HF/6-311G(d,p) level of theory. The kinetics of the gas phase reaction was studied by evaluating the reaction path of various mechanisms. Between 12 speculative proposed mechanisms {step₁, step₂ (with four possibilities), step₃ (with three possibilities), and step₄} only the third speculative mechanism was recognized as a desirable mechanism. Theoretical kinetics data involving k and E(a), activation (ΔG(‡), ΔS(‡) and ΔH(‡)), and thermodynamic parameters (ΔG°, ΔS° and ΔH°) were calculated for each step of the various mechanisms. Step₁ of the desirable mechanism was identified as the rate determining step. Comparison of the theoretical desirable mechanism with the rate law that has been previously obtained by UV spectrophotometry experiments indicated that the results are in good agreement.
Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z; Kennedy, Eric M; Mackie, John C
2008-04-24
This study investigates the kinetic parameters of the formation of the chlorophenoxy radical from the 2-chlorophenol molecule, a key precursor to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCCD/F), in unimolecular and bimolecular reactions in the gas phase. The study develops the reaction potential energy surface for the unimolecular decomposition of 2-chlorophenol. The migration of the phenolic hydrogen to the ortho-C bearing the hydrogen atom produces 2-chlorocyclohexa-2,4-dienone through an activation barrier of 73.6 kcal/mol (0 K). This route holds more importance than the direct fission of Cl or the phenolic H. Reaction rate constants for the bimolecular reactions, 2-chlorophenol + X --> X-H + 2-chlorophenoxy (X = H, OH, Cl, O2) are calculated and compared with the available experimental kinetics for the analogous reactions of X with phenol. OH reaction with 2-chlorophenol produces 2-chlorophenoxy by direct abstraction rather than through addition and subsequent water elimination. The results of the present study will find applications in the construction of detailed kinetic models describing the formation of PCDD/F in the gas phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kee, R.J.; Rupley, F.M.; Meeks, E.
1996-05-01
This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library.more » This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.« less
Kinetics and Product Channels in Combustion Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershberger, John F.
We report study of the chemical kinetics and/or photochemistry of several chemical reactions of potential interest in understanding the gas phase combustion chemistry of nitrogen-containing molecules. Studies completed during the final grant period include determination of quantum yields of the photolysis of HCNO, fulminic acid, a kinetics and product channel study of the reaction of CN radicals with methyl bromide, and study of the products of the reaction of hydroxymethyl radical with nitric oxide.
A Computational Fluid Dynamic Model for a Novel Flash Ironmaking Process
NASA Astrophysics Data System (ADS)
Perez-Fontes, Silvia E.; Sohn, Hong Yong; Olivas-Martinez, Miguel
A computational fluid dynamic model for a novel flash ironmaking process based on the direct gaseous reduction of iron oxide concentrates is presented. The model solves the three-dimensional governing equations including both gas-phase and gas-solid reaction kinetics. The turbulence-chemistry interaction in the gas-phase is modeled by the eddy dissipation concept incorporating chemical kinetics. The particle cloud model is used to track the particle phase in a Lagrangian framework. A nucleation and growth kinetics rate expression is adopted to calculate the reduction rate of magnetite concentrate particles. Benchmark experiments reported in the literature for a nonreacting swirling gas jet and a nonpremixed hydrogen jet flame were simulated for validation. The model predictions showed good agreement with measurements in terms of gas velocity, gas temperature and species concentrations. The relevance of the computational model for the analysis of a bench reactor operation and the design of an industrial-pilot plant is discussed.
Fundamental studies of gas phase ionic reactions by ion mobility spectrometry
NASA Technical Reports Server (NTRS)
Giles, K.; Knighton, W. B.; Sahlstrom, K. E.; Grimsrud, E. P.
1995-01-01
Ion mobility spectrometry (IMS) provides a promising approach to the study of gas phase ionic reactions in buffer gases at unusually high pressures. This point is illustrated here by studies of the Sn2 nucleophilic displacement reaction, Cl(-) + CH3Br yields Br + CH3Br, using IMS at atmospheric pressure. The equilibrium clustering reaction, Cl(-)(CHCI3)(n - 1) + CHCI3 yields Cl(-)(CHCI3)(n), where n = 1 and 2, and the effect of clustering on the Sn2 reaction with CH3Br have also been characterized by this IMS-based kinetic method. Present problems and anticipated improvements in the application of ion mobility spectrometry to studies of other gas phase ionic processes are discussed.
National Institute of Standards and Technology Data Gateway
SRD 17 NIST Chemical Kinetics Database (Web, free access) The NIST Chemical Kinetics Database includes essentially all reported kinetics results for thermal gas-phase chemical reactions. The database is designed to be searched for kinetics data based on the specific reactants involved, for reactions resulting in specified products, for all the reactions of a particular species, or for various combinations of these. In addition, the bibliography can be searched by author name or combination of names. The database contains in excess of 38,000 separate reaction records for over 11,700 distinct reactant pairs. These data have been abstracted from over 12,000 papers with literature coverage through early 2000.
Variational Transition State Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truhlar, Donald G.
2016-09-29
This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, William H.
2013-05-28
The 7th International Conference on Chemical Kinetics (ICCK) was held July 10-14, 2011, at Massachusetts Institute of Technology (MIT), in Cambridge, MA, hosted by Prof. William H. Green of MIT's Chemical Engineering department. This cross-disciplinary meeting highlighted the importance of fundamental understanding of elementary reactions to the full range of chemical investigations. The specific conference focus was on elementary-step kinetics in both the gas phase and in condensed phase. The meeting provided a unique opportunity to discuss how the same reactive species and reaction motifs manifest under very different reaction conditions (e.g. atmospheric, aqueous, combustion, plasma, in nonaqueous solvents, onmore » surfaces.). The conference featured special sessions on new/improved experimental techniques, improved models and data analysis for interpreting complicated kinetics, computational kinetics (especially rate estimates for large kinetic models), and a panel discussion on how the community should document/archive kinetic data. In the past, this conference had been limited to homogeneous gas-phase and liquid-phase systems. This conference included studies of heterogeneous kinetics which provide rate constants for, or insight into, elementary reaction steps. This Grant from DOE BES covered about half of the subsidies we provided to students and postdocs who attended the conference, by charging them reduced-rate registration fees. The complete list of subsidies provided are listed in Table 1 below. This DOE funding was essential to making the conference affordable to graduate students, and indeed the attendance at this conference was higher than at previous conferences in this series. Donations made by companies provided additional subsidies, leveraging the DOE funding. The conference was very effective in educating graduate students and important in fostering scientific interactions, particularly between scientists studying gas phase and liquid phase kinetics, since those two communities do not meet very often (it had been 6 years since the last time this conference had been held). The conference at MIT was so successful that European scientists decided to organize a similar conference (it will be held in Seville, Spain in July 2013). Almost 200 scientists participated, with more than 100 oral presentations and many poster presentations. A complete list of the presentations and their abstracts are given in the attachment. The conference led to many peer-reviewed papers published in several Special Issues of the International Journal of Chemical Kinetics in early 2012.« less
Unraveling reaction pathways and specifying reaction kinetics for complex systems.
Vinu, R; Broadbelt, Linda J
2012-01-01
Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed.
Mechanisms of kinetic trapping in self-assembly and phase transformation
Hagan, Michael F.; Elrad, Oren M.; Jack, Robert L.
2011-01-01
In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions. PMID:21932884
Statistical and Microscopic Approach to Gas Phase Chemical Kinetics.
ERIC Educational Resources Information Center
Perez, J. M.; Quereda, R.
1983-01-01
Describes advanced undergraduate laboratory exercise examining the dependence of the rate constants and the instantaneous concentrations with the nature and energy content in a gas-phase complex reaction. Computer program (with instructions and computation flow charts) used with the exercise is available from the author. (Author/JN)
This study focuses on the review and evaluation of mechanistic and kinetic data for the gas-phase reactions that lead to the production of acidic substances in the environment. A master mechanism is designed that treats oxides, sulfur dioxide, ozone, hydrogen peroxide, ammonia, t...
A STUDY OF GAS-PHASE MERCURY SPECIATION USING DETAILED CHEMICAL KINETICS
Mercury (Hg) speciation in combustion-generated flue gas is modeled using a detailed chemical mechanism consisting of 60 reactions and 21 species. This speciation model accounts for chlorination and oxidation of key flue-gas components, including elemental mercury. Results indica...
Ab initio kinetics of gas phase decomposition reactions.
Sharia, Onise; Kuklja, Maija M
2010-12-09
The thermal and kinetic aspects of gas phase decomposition reactions can be extremely complex due to a large number of parameters, a variety of possible intermediates, and an overlap in thermal decomposition traces. The experimental determination of the activation energies is particularly difficult when several possible reaction pathways coexist in the thermal decomposition. Ab initio calculations intended to provide an interpretation of the experiment are often of little help if they produce only the activation barriers and ignore the kinetics of the decomposition process. To overcome this ambiguity, a theoretical study of a complete picture of gas phase thermo-decomposition, including reaction energies, activation barriers, and reaction rates, is illustrated with the example of the β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule by means of quantum-chemical calculations. We study three types of major decomposition reactions characteristic of nitramines: the HONO elimination, the NONO rearrangement, and the N-NO(2) homolysis. The reaction rates were determined using the conventional transition state theory for the HONO and NONO decompositions and the variational transition state theory for the N-NO(2) homolysis. Our calculations show that the HMX decomposition process is more complex than it was previously believed to be and is defined by a combination of reactions at any given temperature. At all temperatures, the direct N-NO(2) homolysis prevails with the activation barrier at 38.1 kcal/mol. The nitro-nitrite isomerization and the HONO elimination, with the activation barriers at 46.3 and 39.4 kcal/mol, respectively, are slow reactions at all temperatures. The obtained conclusions provide a consistent interpretation for the reported experimental data.
Parkhurst, David L.; Appelo, C.A.J.
1999-01-01
PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.
ERIC Educational Resources Information Center
Field, Christopher Ryan
2009-01-01
Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…
Simulations of the thermodynamics and kinetics of NH3 at the RuO2 (110) surface
NASA Astrophysics Data System (ADS)
Erdtman, Edvin; Andersson, Mike; Lloyd Spetz, Anita; Ojamäe, Lars
2017-02-01
Ruthenium(IV)oxide (RuO2) is a material used for various purposes. It acts as a catalytic agent in several reactions, for example oxidation of carbon monoxide. Furthermore, it is used as gate material in gas sensors. In this work theoretical and computational studies were made on adsorbed molecules on RuO2 (110) surface, in order to follow the chemistry on the molecular level. Density functional theory calculations of the reactions on the surface have been performed. The calculated reaction and activation energies have been used as input for thermodynamic and kinetics calculations. A surface phase diagram was calculated, presenting the equilibrium composition of the surface at different temperature and gas compositions. The kinetics results are in line with the experimental studies of gas sensors, where water has been produced on the surface, and hydrogen is found at the surface which is responsible for the sensor response.
NASA Technical Reports Server (NTRS)
Bittker, David A.; Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 3 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 3 explains the kinetics and kinetics-plus-sensitivity analysis problems supplied with LSENS and presents sample results. These problems illustrate the various capabilities of, and reaction models that can be solved by, the code and may provide a convenient starting point for the user to construct the problem data file required to execute LSENS. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
Ocaña, A. J.; Jiménez, E.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejo, J.; Agúndez, M.; Cernicharo, J.; Zanchet, A.; del Mazo, P.; Roncero, O.; Aguado, A.
2018-01-01
Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients (k) of the gas-phase OH+H2CO reaction between 22 and 107 K. k values greatly increase from 2.1×10-11 cm3 s-1 at 107 K to 1.2×10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10K (2.6×10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented. PMID:29880977
NASA Astrophysics Data System (ADS)
Ocaña, A. J.; Jiménez, E.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejo, J.; Agúndez, M.; Cernicharo, J.; Zanchet, A.; del Mazo, P.; Roncero, O.; Aguado, A.
2017-11-01
The chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T ˜ 10-100 K). Scarce kinetic information is currently available for these kinds of reactions at T < 200 K. In this work, we use the Cinétique de Réaction en Ecoulement Supersonique Uniforme (CRESU; Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients (k) of the gas-phase OH+H2CO reaction between 22 and 107 K. The k values greatly increase from 2.1 × 10-11 cm3 s-1 at 107 K to 1.2 × 10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface that generates highly accurate potential and includes long-range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10 K (2.6 × 10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yr. The different sources of production of HCO are presented and the uncertainties in the chemical networks are discussed. The present reaction is shown to account for a few percent of the total HCO production rate. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. Extensions to photodissociation regions and diffuse cloud environments are also addressed.
Ocaña, A J; Jiménez, E; Ballesteros, B; Canosa, A; Antiñolo, M; Albaladejo, J; Agúndez, M; Cernicharo, J; Zanchet, A; Del Mazo, P; Roncero, O; Aguado, A
2017-11-20
Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU ( Cinétique de Réaction en Ecoulement Supersonique Uniforme , which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients ( k ) of the gas-phase OH+H 2 CO reaction between 22 and 107 K. k values greatly increase from 2.1×10 -11 cm 3 s -1 at 107 K to 1.2×10 -10 cm 3 s -1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H 2 CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10K (2.6×10 -10 cm 3 s -1 ). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 10 5 -10 6 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented.
Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek
2015-02-03
In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.
Enzymatic oxidation of ethanol in the gaseous phase.
Barzana, E; Karel, M; Klibanov, A M
1989-11-01
The enzymatic conversion of gaseous substrates represents a novel concept in bioprocessing. A critical parameter in such systems is the water activity, A(w) The present article reports the effect of A(w) on the catalytic performance of alcohol oxidase acting on ethanol vapors. Enzyme activity in the gas-phase reaction increases several orders of magnitude, whereas the thermostability decreases drastically when A(w) is increased from 0.11 to 0.97. The enzyme is active on gaseous substrates even at hydration levels below the monolayer coverage. Enhanced thermostability at lower hydrations results in an increase in the optimum temperature of the gas-phase reaction catalyzed by alcohol oxidase. The apparent activation energy decreases as A(w) increases, approaching the value obtained for the enzyme in aqueous solution. The formation of a pread-sorbed ethanol phase on the surface of the support is not a prerequisite for the reaction, suggesting that the reaction occurs by direct interaction of the gaseous substrate with the enzyme. The gas-phase reaction follows Michaelis-Menten kinetics, with a K(m) value almost 100 times lower than that in aqueous solution. Based on vapor-liquid equilibrium data and observed K(m) values, it is postulated that during the gas-phase reaction the ethanol on the enzyme establishes an equilibrium with the ethanol vapor similar to that between ethanol in water and ethanol in the gas phase.
NASA Astrophysics Data System (ADS)
Poryazov, V. A.; Krainov, A. Yu.
2016-05-01
A physicomathematical model of combustion of a metallized composite solid propellant based on ammonium perchlorate has been presented. The model takes account of the thermal effect of decomposition of a condensed phase (c phase), convection, diffusion, the exothermal chemical reaction in a gas phase, the heating and combustion of aluminum particles in the gas flow, and the velocity lag of the particles behind the gas. The influence of the granulometric composition of aluminum particles escaping from the combustion surface on the linear rate of combustion has been investigated. It has been shown that information not only on the kinetics of chemical reactions in the gas phase, but also on the granulometric composition of aluminum particles escaping from the surface of the c phase into the gas, is of importance for determination of the linear rate of combustion.
Tosta, María M; Mora, José R; Córdova, Tania; Chuchani, Gabriel
2010-08-05
The elimination kinetics of methyl trifluoropyruvate in the gas phase was determined in a static system, where the reaction vessel was always deactivated with allyl bromide, and in the presence of at least a 3-fold excess of the free-radical chain inhibitor toluene. The working temperature range was 388.5-430.1 degrees C, and the pressure range was 38.6-65.8 Torr. The reaction was found to be homogeneous and unimolecular and to obey a first-order rate law. The products of the reaction are methyl trifluoroacetate and CO gas. The Arrhenius equation of this elimination was found to be as follows: log k(1) (s(-1)) = (12.48 +/- 0.32) - (204.2 +/- 4.2) kJ mol(-1)(2.303RT)(-1) (r = 0.9994). The theoretical calculation of the kinetic and thermodynamic parameters and the mechanism of this reaction were carried out at the B3LYP/6-31G(d,p), B3LYP/6-31++G(d,p), MPW1PW91/6-31G(d,p), MPW1PW91/6-31++G(d,p), PBEPBE/6-31G(d,p), and PBEPBE/6-31G++(d,p) levels of theory. The theoretical study showed that the preferred reaction channel is a 1,2-migration of OCH(3) involving a three-membered cyclic transition state in the rate-determining step.
Khairallah, George N; da Silva, Gabriel; O'Hair, Richard A J
2014-10-06
A combination of gas-phase ion-molecule reaction experiments and theoretical kinetic modeling is used to examine how a salt can influence the kinetic basicity of organometallates reacting with water. [HC≡CLiCl](-) reacts with water more rapidly than [HC≡CMgCl2](-), consistent with the higher reactivity of organolithium versus organomagnesium reagents. Addition of LiCl to [HC≡CLiCl](-) or [HC≡CMgCl2](-) enhances their reactivity towards water by a factor of about 2, while addition of MgCl2 to [HC≡CMgCl2](-) enhances its reactivity by a factor of about 4. Ab initio calculations coupled with master equation/RRKM theory kinetic modeling show that these reactions proceed via a mechanism involving formation of a water adduct followed by rearrangement, proton transfer, and acetylene elimination as either discrete or concerted steps. Both the energy and entropy requirements for these elementary steps need to be considered in order to explain the observed kinetics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An index of the literature for bimolecular gas phase cation-molecule reaction kinetics
NASA Technical Reports Server (NTRS)
Anicich, V. G.
2003-01-01
This is an index to the literature for gas phase bimolecular positive ionmolecule reactions. Over 2300 references are cited. Reaction rate coefficients and product distributions of the reactions are abstracted out of the original citations where available. This index is intended to cover the literature from 1936 to 2003. This is a continuation of several surveys: the original (Huntress Astrophys. J. Suppl. Ser., 33, 495 (1977)), an expansion (Anicich and Huntress, Astrophys. J. Suppl. Ser. 62, 553 (1986)), a supplement (Anicich, Astrophys. J. Suppl. Ser. 84, 215 (1993)), and an evaluation (Anicich, V. G. J. Phys. Chem. Ref. Data 22,1469 (1993b). The Table of reactions is listed by reactant ion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roldin, P.; Eriksson, A. C.; Nordin, E. Z.
2014-08-11
We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3)more » and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.« less
Becerra, Rosa; Cannady, J Pat; Walsh, Robin
2011-05-05
Time-resolved kinetic studies of silylene, SiH(2), generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol, and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modeled using RRKM theory, based on E(0) values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k(∞) values in the range (1.9-4.5) × 10(-10) cm(3) molecule(-1) s(-1). These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16% and 67% of the collision rates for these reactions. In the reaction of SiH(2) + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalyzed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H(2)O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.
Rate coefficients are reported for the gas-phase reaction of the hydroxyl radical (OH) with C2HCl3 (k1) and C2Cl4 (k2) over an extended temperature range at 740±10 Torr in a He bath gas. These...
Gas-phase chemical kinetics: Three is the magic number
NASA Astrophysics Data System (ADS)
Skodje, Rex T.
2017-11-01
Although predicted many years ago, chemically reactive termolecular reactions were thought to be unimportant in defining the behaviour of combustion systems. Now, calculations have shown that such reactions between radicals and long-lived bimolecular complexes can actually play an important role in hydrogen combustion.
Limbach, Hans-Heinrich; Pery, Tal; Rothermel, Niels; Chaudret, Bruno; Gutmann, Torsten; Buntkowsky, Gerd
2018-04-25
The equilibration of H2, HD and D2 between the gas phase and surface hydrides of solid organic-ligand-stabilized Ru metal nanoparticles has been studied by gas phase 1H NMR spectroscopy using closed NMR tubes as batch reactors at room temperature and 800 mbar. When two different nanoparticle systems, Ru/PVP (PVP ≡ polyvinylpyrrolidone) and Ru/HDA (HDA ≡ hexadecylamine) were exposed to D2 gas, only the release of HD from the hydride containing surface could be detected in the initial stages of the reaction, but no H2. In the case of Ru/HDA also the reverse experiment was performed where surface deuterated nanoparticles were exposed to H2. In that case, the conversion of H2 into gaseous HD was detected. In order to analyze the experimental kinetic and spectroscopic data, we explored two different mechanisms taking into account potential kinetic and equilibrium H/D isotope effects. Firstly, we explored the dissociative exchange mechanism consisting of dissociative adsorption of dihydrogen, fast hydride surface diffusion and associative desorption of dihydrogen. It is shown that if D2 is the reaction partner, only H2 will be released in the beginning of the reaction, and HD only in later reaction stages. The second mechanism, dubbed here associative exchange consists of the binding of dihydrogen to Ru surface atoms, followed by a H-transfer to or by H-exchange with an adjacent hydride site, and finally of the associative desorption of dihydrogen. In that case, in the exchange with D2, only HD will be released in the beginning of the reaction. Our experimental results are not compatible with the dissociative exchange but can be explained in terms of the associative exchange. Whereas the former will dominate at low temperatures and pressures, the latter will prevail around room temperature and normal pressures where transition metal nanoparticles are generally used as reaction catalysts.
Arcjet thruster research and technology, phase 1
NASA Technical Reports Server (NTRS)
Knowles, Steven C.
1987-01-01
The objectives of Phase 1 were to evaluate analytically and experimentally the operation, performance, and lifetime of arcjet thrusters operating between 0.5 and 3.0 kW with catalytically decomposed hydrazine (N2H4) and to begin development of the requisite power control unit (PCU) technology. Fundamental analyses were performed of the arcjet nozzle, the gas kinetic reaction effects, the thermal environment, and the arc stabilizing vortex. The VNAP2 flow code was used to analyze arcjet nozzle performance with non-uniform entrance profiles. Viscous losses become dominant beyond expansion ratios of 50:1 because of the low Reynolds numbers. A survey of vortex phenomena and analysis techniques identified viscous dissipation and vortex breakdown as two flow instabilities that could affect arcjet operation. The gas kinetics code CREK1D was used to study the gas kinetics of high temperature N2H4 decomposition products. The arc/gas energy transfer is a non-equilibrium process because of the reaction rate constants and the short gas residence times. A thermal analysis code was used to guide design work and to provide a means to back out power losses at the anode fall based on test thermocouple data. The low flow rate and large thermal masses made optimization of a regenerative heating scheme unnecessary.
Nuñez-Reyes, Dianailys; Hickson, Kevin M
2018-06-18
The gas-phase reaction of metastable atomic nitrogen N(2D) with nitric oxide has been investigated over the 296-50 K temperature range using a supersonic flow reactor. As N(2D) could not be produced photolytically in the present work, these excited state atoms were generated instead through the C(3P) + NO → N(2D) + CO reaction while C(3P) atoms were created in situ by the 266 nm pulsed laser photolysis of CBr4 precursor molecules. The kinetics of N(2D) atoms were followed on-resonance by vacuum ultraviolet laser induced fluorescence at 116.7 nm. The measured rate constants for the N(2D) + NO reaction are in excellent agreement with most of the earlier work at room temperature and represent the only available kinetic data for this process below 296 K. The rate constants are seen to increase slightly as the temperature falls to 100 K with a more substantial increase at even lower temperature; a finding which is not reproduced by theoretical work. The prospects for using this chemical source of N(2D) atoms in future studies of a wide range of N(2D) atom reactions are discussed.
A facility for gas- and condensed-phase measurements behind shock waves
NASA Astrophysics Data System (ADS)
Petersen, Eric L.; Rickard, Matthew J. A.; Crofton, Mark W.; Abbey, Erin D.; Traum, Matthew J.; Kalitan, Danielle M.
2005-09-01
A shock-tube facility consisting of two, single-pulse shock tubes for the study of fundamental processes related to gas-phase chemical kinetics and the formation and reaction of solid and liquid aerosols at elevated temperatures is described. Recent upgrades and additions include a new high-vacuum system, a new gas-handling system, a new control system and electronics, an optimized velocity-detection scheme, a computer-based data acquisition system, several optical diagnostics, and new techniques and procedures for handling experiments involving gas/powder mixtures. Test times on the order of 3 ms are possible with reflected-shock pressures up to 100 atm and temperatures greater than 4000 K. Applications for the shock-tube facility include the study of ignition delay times of fuel/oxidizer mixtures, the measurement of chemical kinetic reaction rates, the study of fundamental particle formation from the gas phase, and solid-particle vaporization, among others. The diagnostic techniques include standard differential laser absorption, FM laser absorption spectroscopy, laser extinction for particle volume fraction and size, temporally and spectrally resolved emission from gas-phase species, and a scanning mobility particle sizer for particle size distributions. Details on the set-up and operation of the shock tube and diagnostics are given, the results of a detailed uncertainty analysis on the accuracy of the test temperature inferred from the incident-shock velocity are provided, and some recent results are presented.
Combustion modeling of RDX, HMX and GAP with detailed kinetics
NASA Astrophysics Data System (ADS)
Davidson, Jeffrey Edward
A one-dimensional, steady-state numerical model of the combustion of homogeneous solid propellant has been developed. The combustion processes is modeled in three regions: solid, two-phase (liquid and gas) and gas. Conservation of energy and mass equations are solved in the two-phase and gas regions and the eigenvalue of the system (the mass burning rate) is converged by matching the heat flux at the interface of these two regions. The chemical reactions of the system are modeled using a global kinetic mechanism in the two-phase region and an elementary kinetic mechanism in the gas region. The model has been applied to RDX, HMX and GAP. There is very reasonable agreement between experimental data and model predictions for burning rate, temperature sensitivity, surface temperature, adiabatic flame temperature, species concentration profiles and melt-layer thickness. Many of the similarities and differences in the combustion of RDX and HMX are explained from sensitivity analysis results. The combustion characteristics of RDX and HMX are similar because of their similar chemistry. Differences in combustion characteristics arise due to differences in melting temperature, vapor pressure and initial decomposition steps. A reduced mechanism consisting of 18 species and 39 reactions was developed from the Melius-Yetter RDX mechanism (45 species, 232 reactions). This reduced mechanism reproduces most of the predictions of the full mechanism but is 7.5 times faster. Because of lack of concrete thermophysical property data for GAP, the modeling results are preliminary but indicate what type of experimental data is necessary before GAP can be modeled with more certainty.
Xiao, Ruiyang; Zammit, Ian; Wei, Zongsu; Hu, Wei-Ping; MacLeod, Matthew; Spinney, Richard
2015-11-17
The ubiquitous presence of cyclic volatile methylsiloxanes (cVMS) in the global atmosphere has recently raised environmental concern. In order to assess the persistence and long-range transport potential of cVMS, their second-order rate constants (k) for reactions with hydroxyl radical ((•)OH) in the gas phase are needed. We experimentally and theoretically investigated the kinetics and mechanism of (•)OH oxidation of a series of cVMS, hexamethylcyclotrisiloxane (D3), octamethycyclotetrasiloxane (D4), and decamethycyclopentasiloxane (D5). Experimentally, we measured k values for D3, D4, and D5 with (•)OH in a gas-phase reaction chamber. The Arrhenius activation energies for these reactions in the temperature range from 313 to 353 K were small (-2.92 to 0.79 kcal·mol(-1)), indicating a weak temperature dependence. We also calculated the thermodynamic and kinetic behaviors for reactions at the M06-2X/6-311++G**//M06-2X/6-31+G** level of theory over a wider temperature range of 238-358 K that encompasses temperatures in the troposphere. The calculated Arrhenius activation energies range from -2.71 to -1.64 kcal·mol(-1), also exhibiting weak temperature dependence. The measured k values were approximately an order of magnitude higher than the theoretical values but have the same trend with increasing size of the siloxane ring. The calculated energy barriers for H-atom abstraction at different positions were similar, which provides theoretical support for extrapolating k for other cyclic siloxanes from the number of abstractable hydrogens.
Rhenium/Oxygen Interactions at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Jacobson, Nathan; Myers, Dwight; Zhu, Dong-Ming; Humphrey, Donald
2000-01-01
The oxidation of pure rhenium is examined from 600-1400 C in oxygen/argon mixtures. Linear weight loss kinetics are observed. Gas pressures, flow rates, and temperatures are methodically varied to determine the rate controlling steps. The reaction at 600 and 800 C appears to be controlled by a chemical reaction step at the surface; whereas the higher temperature reactions appear to be controlled by gas phase diffusion of oxygen to the rhenium surface. Attack of the rhenium appears to be along grain boundaries and crystallographic planes.
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1984-01-01
A general chemical kinetics code is described for complex, homogeneous ideal gas reactions in any chemical system. The main features of the GCKP84 code are flexibility, convenience, and speed of computation for many different reaction conditions. The code, which replaces the GCKP code published previously, solves numerically the differential equations for complex reaction in a batch system or one dimensional inviscid flow. It also solves numerically the nonlinear algebraic equations describing the well stirred reactor. A new state of the art numerical integration method is used for greatly increased speed in handling systems of stiff differential equations. The theory and the computer program, including details of input preparation and a guide to using the code are given.
NASA Astrophysics Data System (ADS)
Piansawan, Tammarat; Saccon, Marina; Laumer, Werner; Gensch, Iulia; Kiendler-Scharr, Astrid
2015-04-01
Modeling of the global distribution of atmospheric ethane sources and sinks by using the 13C isotopic composition requires accurate knowledge of the carbon kinetic isotope effect (KIE) of its atmospheric removal reactions. The quantum mechanical prediction implies the necessity to elucidate the temperature dependence of KIE within atmospherically relevant temperature range by experiment. In this study, the KIE and its temperature dependence for ethane oxidation by OH radicals was investigated at ambient pressure in a temperature range of 243 K to 303 K. The chemical reactions were carried out in a 15 L PFE reaction chamber, suspended in a thermally controlled oven. The isotope ratios of the gas phase components during the course of the reactions were measured by Thermal Desorption -- Gas Chromatography -- Isotope Ratio Mass Spectrometry (TD-GC-IRMS). For each temperature, the KIE was derived from the temporal evolution of the concentration and stable carbon isotope ratio (δ13C) of ethane using a method adapted from the relative reaction rate concept. The room temperature KIE of the ethane reaction with OH radicals was found to be 6.85 ± 0.32 ‰. This value is in agreement with the previously reported value of 8.57 ± 1.95 ‰ [Anderson et al. 2004] but has a substantially lower uncertainty. The experimental results will be discussed with the KIE temperature dependence predicted by quantum mechanical calculations. Reference: Rebecca S. Anderson, Lin Huang, Richard Iannone, Alexandra E. Thompson, and Jochen Rudolph (2004), Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes and Ethene with the OH Radical at 296 ± 4 K, J. Phys. Chem. A, 108, 11537--11544
Rate constants for reactions of ClO/x/ of atmospheric interest
NASA Technical Reports Server (NTRS)
Watson, R. T.
1977-01-01
Chemical kinetics measurements on 82 gas phase reactions of chlorine containing species are reviewed. Recommended rate constants are given. The principal species of interest are Cl, Cl2, ClO, Cl2O, ClOO, OClO, CINO, HCl and halo derivatives of methane and ethane. Absorption spectra are given for 21 species. In addition the chemical kinetics methods used to obtain these data are discussed with regard to their applicability and reliability.
Across-phase biomass pyrolysis stoichiometry, energy balance, and product formation kinetics
USDA-ARS?s Scientific Manuscript database
Predictive correlations between reactions occurring in the gas-, liquid- and solid-phases are necessary to economically utilize the thermochemical conversion of agricultural wastes impacting the food, water, and energy nexus. On the basis of an empirical mass balance (99.7%), this study established...
NASA Technical Reports Server (NTRS)
Frenklach, Michael
1990-01-01
A variety of seemingly different carbon formation processes -- polycyclic aromatic hydrocarbons and diamond in the interstellar medium, soot in hydrocarbon flames, graphite and diamond in plasma-assisted-chemical vapor deposition reactors -- may all have closely related underlying chemical reaction mechanisms. Two distinct mechanisms for gas-phase carbon growth are discussed. At high temperatures it proceeds via the formation of carbon clusters. At lower temperatures it follows a polymerization-type kinetic sequence of chemical reactions of acetylene addition to a radical, and reactivation of the resultant species through H-abstraction by a hydrogen atom.
Vapor Wall Deposition in Chambers: Theoretical Considerations
NASA Astrophysics Data System (ADS)
McVay, R.; Cappa, C. D.; Seinfeld, J.
2014-12-01
In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.
Program Helps To Determine Chemical-Reaction Mechanisms
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Radhakrishnan, K.
1995-01-01
General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code developed for use in solving complex, homogeneous, gas-phase, chemical-kinetics problems. Provides for efficient and accurate chemical-kinetics computations and provides for sensitivity analysis for variety of problems, including problems involving honisothermal conditions. Incorporates mathematical models for static system, steady one-dimensional inviscid flow, reaction behind incident shock wave (with boundary-layer correction), and perfectly stirred reactor. Computations of equilibrium properties performed for following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. Written in FORTRAN 77 with exception of NAMELIST extensions used for input.
Advanced deposition model for thermal activated chemical vapor deposition
NASA Astrophysics Data System (ADS)
Cai, Dang
Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface reactions on the substrate surface, conductive, convective, inductive and radiative heat transfer, species transport and thereto-elastic stress distributions. Gas phase and surface reactions are studied thermodynamically and kinetically. Based on experimental results, detailed reaction mechanisms are proposed and the deposition rates are predicted. The deposition model proposed could be used for other experiments with similar operating conditions. Four different growth systems are presented in this thesis to discuss comprehensive transport phenomena in crystal growth from vapor. The first is the polysilicon bulk growth by modified Siemens technique in which a silicon tube is used as the starting material. The research effort has been focused on system design, geometric and operating parameters optimization, and heterogeneous and homogeneous silane pyrolysis analysis. The second is the GaN thin film growth by iodine vapor phase epitaxy technique. Heat and mass transport is studied analytically and numerically. Gas phase and surface reactions are analyzed thermodynamically and kinetically. Quasi-equilibrium and kinetic deposition models are developed to predict the growth rate. The third one is the AlN thin film growth by halide vapor phase epitaxy technique. The effects of gas phase and surface reactions on the crystal growth rate and deposition uniformity are studied. The last one is the AlN sublimation growth system. The research effort has been focused on the effect of thermal environment evolution on the crystal growth process. The thermoelastic stress formed in the as-grown AlN crystal is also calculated.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
Microwave Heating-Assisted Catalytic Dry Reforming of Methane to Syngas.
Hamzehlouia, Sepehr; Jaffer, Shaffiq A; Chaouki, Jamal
2018-06-12
Natural gas is a robust and environmentally friendlier alternative to oil resources for energy and chemicals production. However, gas is distributed globally within shales and hydrates, which are generally remote and difficult reserves to produce. The accessibility, transportation, and distribution, therefore, bring major capital costs. With today's low and foreseen low price of natural gas, conversion of natural gas to higher value-added chemicals is highly sought by industry. Dry reforming of methane (DRM) is a technology pathway to convert two critical greenhouse gas components, CH 4 and CO 2 , to syngas, a commodity chemical feedstock. To date, the challenges of carbon deposition on the catalyst and evolution of secondary gas-phase products have prevented the commercial application of the DRM process. The recent exponential growth of renewable electricity resources, wind and solar power, provides a major opportunity to activate reactions by harnessing low-cost carbon-free energy via microwave-heating. This study takes advantage of differences in dielectric properties of materials to enable selective heating by microwave to create a large thermal gradient between a catalyst surface and the gas phase. Consequently, the reaction kinetics at the higher temperature catalyst surface are promoted while the reactions of lower temperature secondary gas-phase are reduced.
Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons
DOE R&D Accomplishments Database
Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi
2006-08-23
Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.
Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R
2015-11-05
Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major role in the lifecycle of atmospheric OA.
NASA Astrophysics Data System (ADS)
Stiegler, J.; Lang, T.; von Kaenel, Y.; Michler, J.; Blank, E.
1997-01-01
The growth kinetics of diamond films deposited at low substrate temperatures (600-400 °C) from the carbon-hydrogen gas system have been studied. When the substrate temperature alone was varied, independently of all other process parameters in the microwave plasma reactor, an activation energy in the order of 7 kcal/mol was observed. This value did not change with different carbon concentrations in hydrogen. It is supposed that growth kinetics in this temperature range are controlled by a single chemical reaction, probably the abstraction of surface bonded hydrogen by gas phase atomic hydrogen.
Local Dynamics of Chemical Kinetics at Different Phases of Nitriding Process
NASA Astrophysics Data System (ADS)
Özdemir, İ. Bedii; Akar, Firat
2015-08-01
The local dynamics of chemical kinetics at different phases of the nitriding process have been studied. The calculations are performed under the conditions where the temperature and composition data are provided experimentally from an in-service furnace. Results are presented in temporal variations of gas concentrations and the nitrogen coverage on the surface. It is shown that if it is available in the furnace, the adsorption of the N2 gas can seemingly start at temperatures as low as 200 °C. However, at such low temperatures, as the diffusion into the material is very unlikely, this results in the surface poisoning. It becomes clear that, contrary to common knowledge, the nitriding heat treatment with ammonia as a nitrogen-providing medium is possible at temperatures like 400 °C. Under these conditions, however, the presence of excess amounts of product gas N2 in the furnace atmosphere suppresses the forward kinetics in the nitriding process. It seems that the best operating point in the nitriding heat treatment is achieved with a mixture of 6% N2. When the major nitriding species NH3 is substituted by N2 and the N2 fraction increases above 30%, the rate of the forward reaction decreases drastically, so that there is no point to continue the furnace operation any further. Hence, during the initial heating phase, the N2 gas must be purged from the furnace to keep its fraction less than 30% before the furnace reaches the temperature where the reaction starts.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Bittker, David A.
1994-01-01
LSENS, the Lewis General Chemical Kinetics Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 2 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 2 describes the code, how to modify it, and its usage, including preparation of the problem data file required to execute LSENS. Code usage is illustrated by several example problems, which further explain preparation of the problem data file and show how to obtain desired accuracy in the computed results. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions. Part 1 (NASA RP-1328) derives the governing equations describes the numerical solution procedures for the types of problems that can be solved by lSENS. Part 3 (NASA RP-1330) explains the kinetics and kinetics-plus-sensitivity-analysis problems supplied with LSENS and presents sample results.
Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K
2018-01-03
Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.
Chemical reactions at aqueous interfaces
NASA Astrophysics Data System (ADS)
Vecitis, Chad David
2009-12-01
Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1) Adsorption of dilute PFOS(aq) and PFOA(aq) to acoustically cavitating bubble interfaces was greater than equilibrium expectations due to high-velocity bubble radial oscillations; 2) Relative ozone oxidation kinetics of aqueous iodide, sulfite, and thiosulfate were at variance with previously reported bulk aqueous kinetics; 3) Organics that directly chelated with the anode surface were oxidized by direct electron transfer, resulting in immediate carbon dioxide production but slower overall oxidation kinetics. Chemical reactions at aqueous interfaces can be the rate-limiting step of a reaction network and often display novel mechanisms and kinetics as compared to homogeneous chemistry.
Research in Chemical Kinetics. Annual Report, 1993
DOE R&D Accomplishments Database
Rowland, F. S.
1993-01-01
Progress on the seven projects under this contract is reported. The projects are: (1) Chlorine atom reactions with vinyl bromide. Mass spectrometric investigations of the anti-Markownikoff rule. (2) Chlorine atom reactions with CF{sub 2}{double_bond}CFBr. (3) Gas phase thermal {sup 38}Cl reactions with (CH{sub 2}{double_bond}CH){sub n}M (M=Sn, Si, n=4; M=Sb, n=3; M=Hg, n=2). (4) Gas phase reactions of thermal chlorine atoms with (CH{sub 3}){sub 4}M (M=C, Si, Ge, Sn, Pb). (5) Hydrogen abstraction reactions by thermal chlorine atoms with HFCs, HCFCs, and halomethanes. (6) Half-stabilization pressure of chlorine atoms plus ethylene in a nitrogen bath. (7) {sup 14}C content of atmospheric OCS, C{sub 2}H{sub 6} and C{sub 3}H{sub 8}.
NASA Astrophysics Data System (ADS)
Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.
2017-09-01
The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.
Jang, Su-Chan; Choi, Jong-Ho
2014-11-21
The gas-phase radical-radical reaction dynamics of ground-state atomic oxygen O((3)P) with vinyl radicals C2H3 has been studied by combining the results of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration with ab initio calculations. The two radical reactants O((3)P) and C2H3 were produced by photolysis of NO2 and supersonic flash pyrolysis of C2H3I, respectively. Doppler profile analysis of the kinetic energy release of the nascent H-atom products from the title reaction O((3)P) + C2H3→ H((2)S) + CH2CO (ketene) revealed that the average translational energy of the products and the average fraction of the total available energy were 7.03 ± 0.30 kcal mol(-1) and 7.2%. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title oxygen-hydrogen exchange reaction is a major reaction channel, through an addition-elimination mechanism involving the formation of a short-lived, dynamical complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed kinetic energy release can be explained in terms of the weak impulse at the moment of decomposition in the loose transition state with a product-like geometry and a small reverse barrier along the exit channel.
NASA Astrophysics Data System (ADS)
Chandramouli, Bharadwaj; Kamens, Richard M.
Decamethyl cyclopentasiloxane (D 5) and decamethyl tetrasiloxane (MD 2M) were injected into a smog chamber containing fine Arizona road dust particles (95% surface area <2.6 μM) and an urban smog atmosphere in the daytime. A photochemical reaction - gas-particle partitioning reaction scheme, was implemented to simulate the formation and gas-particle partitioning of hydroxyl oxidation products of D 5 and MD 2M. This scheme incorporated the reactions of D 5 and MD 2M into an existing urban smog chemical mechanism carbon bond IV and partitioned the products between gas and particle phase by treating gas-particle partitioning as a kinetic process and specifying an uptake and off-gassing rate. A photochemical model PKSS was used to simulate this set of reactions. A Langmuirian partitioning model was used to convert the measured and estimated mass-based partitioning coefficients ( KP) to a molar or volume-based form. The model simulations indicated that >99% of all product silanol formed in the gas-phase partition immediately to particle phase and the experimental data agreed with model predictions. One product, D 4TOH was observed and confirmed for the D 5 reaction and this system was modeled successfully. Experimental data was inadequate for MD 2M reaction products and it is likely that more than one product formed. The model set up a framework into which more reaction and partitioning steps can be easily added.
Reactions of chlorine nitrate with HCl and H2O. [ozone controlling chemistry in stratosphere
NASA Technical Reports Server (NTRS)
Hatakeyama, Shiro; Leu, Ming-Taun
1986-01-01
The kinetics of the reactions of chlorine nitrate with HCl and H2O are characterized using a static photolysis/Fourier transform infrared spectrophotometer apparatus. For the homogeneous gas-phase reaction with HCl, an upper limit for the rate constant of less than 8.4 x 10 to the -21st, and for the reaction with H2O, a limit of less than 3.4 x 10 to the -21st cu cm/molecule per s, were obtained at 296 + or - 2 K. The yield of HNO3 is almost unity in both cases, and no synergistic effect is noted between HCl and H2O. The kinetic behavior of the reaction with H2O is well described by simple first-order kinetics, while the behavior of the reaction with HCl is described in terms of the Langmuir adsorption isotherm.
A users manual for a revised version of the Langley charring ablator program
NASA Technical Reports Server (NTRS)
Stroud, C. W.; Brinkley, K. L.
1975-01-01
A computer program is described that will compute the transient response of a thermal protection material to a prescribed heat input at the surface. The program has the capability of analyzing pyrolysis gas chemical kinetics in detail and treating pyrolysis reactions-in-depth. Deposition of solid products produced by chemical reactions in the gas phase is included in the analysis. An outline is given for the theory. detailed operating instructions for the computer program are included.
Melo, André; Alfaia, António J I; Reis, João Carlos R; Calado, António R T
2006-02-02
The quaternization reaction between 2-amino-1-methylbenzimidazole and iodomethane was investigated in the gas phase and in liquid acetonitrile. Both experimental and theoretical techniques were used in this study. In the experimental part of this work, accurate second-order rate constants were obtained for this reaction in acetonitrile from conductivity data in the 293-323 K temperature range and at ambient pressure. From two different empirical equations describing the effect of temperature on reaction rates, thermodynamic functions of activation were calculated. In the theoretical part of this work, the mechanism of this reaction was investigated in the gas phase and in acetonitrile. Two different quantum levels (B3LYP/[6-311++G(3df,3pd)/LanL2DZ]//B3LYP/[6-31G(d)/LanL2DZ] and B3LYP/[6-311++G(3df,3pd)/LanL2DZ]//B3LYP/[6-31+G(d)/LanL2DZ]) were used in the calculations, and the acetonitrile environment was modeled using the polarized continuum model (PCM). In addition, an atoms in molecules (AIM) analysis was made aiming to characterize possible hydrogen bonding. The results obtained by both techniques are in excellent agreement and lead to new insight into the mechanism of the reaction under examination. These include the identification and thermodynamic characterization of the relevant stationary species, the rationalization of the mechanistic role played by the solvent and the amine group adjacent to the nucleophile nitrogen atom, the proposal of alternative paths on the modeled potential energy surfaces, and the origin of the marked non-Arrhenius behavior of the kinetic data in solvent acetonitrile. In particular, the AIM analysis confirmed the operation of intermolecular hydrogen bonds between reactants and between products, both in the gas phase and in solution. It is also concluded that the unusual solvent effect on this Menshutkin reaction stems from the conjunction of a nucleophile possessing a relatively complex chemical structure with a dipolar aprotic solvent that is protophobic.
Zhang, Jun-Jun; Lv, Li-Bing; Zhao, Tian-Jian; Lin, Yun-Xiao; Yu, Qiu-Ying; Su, Juan; Hirano, Shin-Ichi; Li, Xin-Hao; Chen, Jie-Sheng
2018-05-30
Electrochemical gas evolution and activation reactions are complicated processes, involving not only active electrocatalysts but also the interaction among solid electrodes, electrolyte, and gas-phase products and reactants. In this study, multiphase interfaces of superadsorbing graphene-based electrodes were controlled without changing the active centers to significantly facilitate mass diffusion kinetics for superior performance. The achieved in-depth understanding of how to regulate the interfacial properties to promote the electrochemical performance could provide valuable clues for electrode manufacture and for the design of more active electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gaona Colmán, Elizabeth; Blanco, María B.; Barnes, Ian; Teruel, Mariano A.
2015-05-01
Rate coefficients for the gas-phase reactions of O3 molecules with three unsaturated oxygenated compounds have been determined using the relative kinetic technique in an environmental chamber with FTIR detection of the reactants at (298 ± 2) K in 760 Torr total pressure of synthetic air. The following rate coefficients (in units of 10-17 cm3 molecule-1 s-1) were determined: ethyl 3,3-dimethyl acrylate (0.82 ± 0.19), 2-methyl-2-pentenal (0.71 ± 0.16) and 6-methyl-5-hepten-2-one (26 ± 7). The different reactivity of the unsaturated oxygenated compounds toward O3 is discussed in terms of their chemical structure. In addition, a correlation between the reactivity of structurally different unsaturated compounds (alkenes and unsaturated oxygenated VOCs, such as ethers, esters, aldehydes, ketones and alcohols) toward O3 molecules and the HOMO (Highest Occupied Molecular Orbital) of the compounds is presented. Using the kinetic parameters determined in this work, residence times of these unsaturated compounds in the atmosphere with respect to reaction with O3 have been calculated. In urban and rural areas the main sink of 6-methyl-5-hepten-2-one is reaction with O3 molecules with a residence time in the order of few minutes.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Bittker, David A.
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part II of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part II describes the code, how to modify it, and its usage, including preparation of the problem data file required to execute LSENS. Code usage is illustrated by several example problems, which further explain preparation of the problem data file and show how to obtain desired accuracy in the computed results. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions. Part I (NASA RP-1328) derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved by LSENS. Part III (NASA RP-1330) explains the kinetics and kinetics-plus-sensitivity-analysis problems supplied with LSENS and presents sample results.
NASA Technical Reports Server (NTRS)
Niki, Hiromi
1990-01-01
Tropospheric chemical transformations of alternative hydrofluorocarbons (HCF's) and hydrochlorofluorocarbons (HCFC's) are governed by hydroxyl radical initiated oxidation processes, which are likely to be analogous to those known for alkanes and chloroalkanes. A schematic diagram is used to illustrate plausible reaction mechanisms for their atmospheric degradation, where R, R', and R'' denote the F- and/or Cl-substituted alkyl groups derived from HCF's and HCFC's subsequent th the initial H atom abstraction by HO radicals. At present, virtually no kinetic data exist for the majority of these reactions, particularly for those involving RO. Potential degradation intermediates and final products include a large variety of fluorine- and/or chlorine-containing carbonyls, acids, peroxy acids, alcohols, hydrogen peroxides, nitrates and peroxy nitrates, as summarized in the attached table. Probably atmospheric lifetimes of these compounds were also estimated. For some carbonyl and nitrate products shown in this table, there seem to be no significant gas-phase removal mechanisms. Further chemical kinetics and photochemical data are needed to quantitatively assess the atmospheric fate of HCF's and HCFC's, and of the degradation products postulated in this report.
Gas uptake and chemical aging of semisolid organic aerosol particles
Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich
2011-01-01
Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350
Transient Numerical Modeling of Catalytic Channels
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the first case. Finally, the results show that different initial surface-species distribution leads to different steady-states under certain conditions. These results demonstrate the utility of a lumped two-phase model of a transient catalytic combustor with detailed chemistry.
Interests Vivek's interests broadly span across protein structure and dynamics, reaction mechanisms, and energetics and kinetics from first principles Protein structure prediction and docking Education PhD structure on the fumarate addition mechanism - a gas-phase ab initio study," Physical Chemistry
Oxidation kinetics of molten copper sulfide
NASA Astrophysics Data System (ADS)
Alyaser, A. H.; Brimacombe, J. K.
1995-02-01
The oxidation kinetics of molten Cu2S baths, during top lancing with oxygen/nitrogen (argon) mixtures, have been investigated as a function of oxygen partial pressure (0.2 to 0.78), bath temperature (1200 °C to 1300 °C), gas flow rate (1 to 4 L/min), and bath mixing. Surface-tension-driven flows (the Marangoni effect) were observed both visually and photographically. Thus, the oxidation of molten Cu2S was found to progress in two distinct stages, the kinetics of which are limited by the mass transfer of oxygen in the gas phase to the melt surface. During the primary stage, the melt is partially desulfurized while oxygen dissolves in the liquid sulfide. Upon saturation of the melt with oxygen, the secondary stage commences in which surface and bath reactions proceed to generate copper and SO2 electrochemically. A mathematical model of the reaction kinetics has been formulated and tested against the measurements. The results of this study shed light on the process kinetics of the copper blow in a Peirce-Smith converter or Mitsubishi reactor.
Minakata, Daisuke; Crittenden, John
2011-04-15
The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.
Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu
2015-05-14
Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.
Gas-phase kinetics during diamond growth: CH4 as-growth species
NASA Astrophysics Data System (ADS)
Harris, Stephen J.
1989-04-01
We have used a one-dimensional kinetic analysis to model the gas-phase chemistry that occurred during the diamond growth experiments of Chauhan, Angus, and Gardner [J. Appl. Phys. 47, 4746 (1976)]. In those experiments the weight of diamond seed crystals heated by lamps in a CH4/H2 environment was monitored by a microbalance. No filament or electric discharge was present. Our analysis shows that diamond growth occurred in this system by direct reaction of CH4 on the diamond surface. C2H2 and CH3, which have been proposed as diamond growth species, played no significant role there, although our results do not address their possible contributions in other systems such as filament- or plasma-assisted diamond growth.
NASA Astrophysics Data System (ADS)
Chen, Shuzhen; Artiglia, Luca; Orlando, Fabrizio; Corral-Arroyo, Pablo; Edebeli, Jacinta; Ammann, Markus
2017-04-01
Oxidation of bromide by gas phase ozone (O3) in the absence of photochemistry is believed to be one of the important dark reactions to produce HOBr as the starting point of the multiphase cycling reaction mechanisms that release bromide out of sea water, sea spray or marine aerosols from aqueous solution that later drive O3 depleting chemistry in the troposphere [1]. The reaction of bromide with O3 occurs through an acid catalyzed mechanism involving a BrOOO- complex as an intermediate [2]. Slow oxidation of bromide by O3 in the bulk aqueous phase is of limited relevance; previous kinetic experiments have suspected the reaction to be enhanced at the surface of aqueous solutions. Thus, identifying BrOOO- at the interface would be a major step to understanding the multiphase oxidation of bromide with O3. Here, we provide a direct experimental evidence for the formation of a BrOOO- reaction intermediate at the surface by investigating the reaction of aqueous solutions NaBr with gas phase O3 after millisecond time scale exposure using the surface sensitive in situ liquid jet X-ray photoelectron spectroscopy (XPS) at the Swiss Light Source (SLS). We acquired Br 3d core level spectra of 0.125 M NaBr solution in presence and absence of ozone in the gas phase. We found a new feature with a peak position shifted towards higher binding energy (by ˜0.7 eV) compared to Br-, which was clearly different from the Br 3d core levels spectra of hypobromite and bromate measured with reference solutions. Our results suggest the appearance of the formation of the BrOOO- reaction intermediate as a new component, in agreement with theoretical calculations of the Br- ozonolysis mechanism [3]. Additionally, by varying the photoelectron kinetic energy and thus probe depth via variation of the probing photon energy, the new feature appears to be present near the liquid/vapor interface. Besides, kinetic experiments for the reaction of O3 with bromide are ongoing to investigate the dependence on the temperature, ozone concentration, which may give further information such as the relative oxidation rate at the liquid/vapor interface versus that in the bulk phase. [1] S. Wang, et al., Proceedings of the National Academy of Sciences, 2015, 112, 9281-9286. [2] Q. Liu, et al., Inorganic Chemistry, 2001, 40, 4436-4442. [3] I. Gladich, et al., The Journal of Physical Chemistry A, 2015, 119, 4482-4488.
Stefanić, I; Ljubić, I; Bonifacić, M; Sabljić, A; Asmus, K-D; Armstrong, D A
2009-04-07
A pulse radiolysis study was carried out of the reaction rate constants and kinetic isotope effects of hydroxyl-radical-induced H/D abstraction from the most-simple alpha-amino acid glycine in its anionic form in water. The rate constants and yields of three predominantly formed radical products, glycyl (NH2-*CH-CO2-), aminomethyl (NH2-*CH2), and aminyl (*NH-CH2-CO2-) radicals, as well as of their partially or fully deuterated analogs, were found to be of comparable magnitude. The primary, secondary, and primary/secondary H/D kinetic isotope effects on the rate constants were determined with respect to each of the three radicals. The unusual variety of products for such an elementary reaction between two small and simple species indicates a complex mechanism with several reactions taking place simultaneously. Thus, a theoretical modeling of the reaction mechanism and kinetics in the gas- and aqueous phase was performed by using the unrestricted density functional theory with the BB1K functional (employing the polarizable continuum model for the aqueous phase), unrestricted coupled cluster UCCSD(T) method, and improved canonical variational theory. Several hydrogen-bonded prereaction complexes and transition states were detected. In particular, the calculations pointed to a significant mechanistic role of the three-electron two-orbital (sigma/sigma* N therefore O) hemibonded prereaction complexes in the aqueous phase. A good agreement with the experimental rate constants and kinetic isotope effects was achieved by downshifting the calculated reaction barriers by 3 kcal mol(-1) and damping the NH(D) stretching frequency by a factor of 0.86.
Nonisothermal Carbothermal Reduction Kinetics of Titanium-Bearing Blast Furnace Slag
NASA Astrophysics Data System (ADS)
Hu, Mengjun; Wei, Ruirui; Hu, Meilong; Wen, Liangying; Ying, Fangqing
2018-05-01
The kinetics of carbothermal reduction of titanium-bearing blast furnace (BF) slag has been studied by thermogravimetric analysis and quadrupole mass spectrometry. The kinetic parameters (activation energy, preexponential factor, and reaction model function) were determined using the Flynn-Wall-Ozawa and Šatava-Šesták methods. The results indicated that reduction of titanium-bearing BF slag can be divided into two stages, namely reduction of phases containing iron and gasification of carbon (< 1095°C), followed by reduction of phases containing titanium (> 1095°C). CO2 was the main off-gas in the temperature range of 530-700°C, whereas CO became the main off-gas when the temperature was greater than 900°C. The activation energy calculated using the Flynn-Wall-Ozawa method was 221.2 kJ/mol. D4 is the mechanism function for carbothermal reduction of titanium-bearing BF slag. Meanwhile, a nonisothermal reduction model is proposed based on the obtained kinetic parameters.
Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation
Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.
2013-01-01
Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634
Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.
Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H
2013-07-16
Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.
A Chain of Modeling Tools For Gas and Aqueous Phase Chemstry
NASA Astrophysics Data System (ADS)
Audiffren, N.; Djouad, R.; Sportisse, B.
Atmospheric chemistry is characterized by the use of large set of chemical species and reactions. Handling with the set of data required for the definition of the model is a quite difficult task. We prsent in this short article a preprocessor for diphasic models (gas phase and aqueous phase in cloud droplets) named SPACK. The main interest of SPACK is the automatic generation of lumped species related to fast equilibria. We also developped a linear tangent model using the automatic differentiation tool named ODYSSEE in order to perform a sensitivity analysis of an atmospheric multi- phase mechanism based on RADM2 kinetic scheme.Local sensitivity coefficients are computed for two different scenarii. We focus in this study on the sensitivity of the ozone,NOx,HOx, system with respect to some aqueous phase reactions and we inves- tigate the influence of the reduction in the photolysis rates in the area below the cloud region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coda Zabetta, Edgardo; Hupa, Mikko
2008-01-15
A detailed chemical kinetic mechanism for the simulation of the gas-phase combustion and pyrolysis of biomass-derived fuels was compiled by assembling selected reaction subsets from existing mechanisms (parents). The mechanism, here referred to as ''AaA,'' includes reaction subsets for the oxidation of hydrogen (H{sub 2}), carbon monoxide (CO), light hydrocarbons (C{sub 1} and C{sub 2}), and methanol (CH{sub 3}OH). The mechanism also takes into account reaction subsets of nitrogen pollutants, including the reactions relevant to staged combustion, reburning, and selective noncatalytic reduction (SNCR). The AaA mechanism was validated against suitable experimental data from the literature. Overall, the AaA mechanism gavemore » more accurate predictions than three other mechanisms of reference, although the reference mechanisms performed better occasionally. The predictions from AaA were also found to be consistent with the predictions of its parent mechanisms within most of their range of validity, thus transferring the validity of the parents to the inheriting mechanism (AaA). In parametric studies the AaA mechanism predicted that the effect of methanol on combustion and pollutants is often similar to that of light hydrocarbons, but it also showed that there are important exceptions, thus suggesting that methanol should be taken into account when simulating biomass combustion. To our knowledge, the AaA mechanism is currently the only mechanism that accounts for the chemistry of methanol and nitrogen relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels. (author)« less
Aromatic sulfonation with sulfur trioxide: mechanism and kinetic model.
Moors, Samuel L C; Deraet, Xavier; Van Assche, Guy; Geerlings, Paul; De Proft, Frank
2017-01-01
Electrophilic aromatic sulfonation of benzene with sulfur trioxide is studied with ab initio molecular dynamics simulations in gas phase, and in explicit noncomplexing (CCl 3 F) and complexing (CH 3 NO 2 ) solvent models. We investigate different possible reaction pathways, the number of SO 3 molecules participating in the reaction, and the influence of the solvent. Our simulations confirm the existence of a low-energy concerted pathway with formation of a cyclic transition state with two SO 3 molecules. Based on the simulation results, we propose a sequence of elementary reaction steps and a kinetic model compatible with experimental data. Furthermore, a new alternative reaction pathway is proposed in complexing solvent, involving two SO 3 and one CH 3 NO 2 .
Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T
2013-10-01
Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200-3,000 K as [Formula: see text]. The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations [Formula: see text] allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.
CHEMKIN2. General Gas-Phase Chemical Kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupley, F.M.
1992-01-24
CHEMKIN is a high-level tool for chemists to use to describe arbitrary gas-phase chemical reaction mechanisms and systems of governing equations. It remains, however, for the user to select and implement a solution method; this is not provided. It consists of two major components: the Interpreter and the Gas-phase Subroutine Library. The Interpreter reads a symbolic description of an arbitrary, user-specified chemical reaction mechanism. A data file is generated which forms a link to the Gas-phase Subroutine Library, a collection of about 200 modular subroutines which may be called to return thermodynamic properties, chemical production rates, derivatives of thermodynamic properties,more » derivatives of chemical production rates, or sensitivity parameters. Both single and double precision versions of CHEMKIN are included. Also provided is a set of FORTRAN subroutines for evaluating gas-phase transport properties such as thermal conductivities, viscosities, and diffusion coefficients. These properties are an important part of any computational simulation of a chemically reacting flow. The transport properties subroutines are designed to be used in conjunction with the CHEMKIN Subroutine Library. The transport properties depend on the state of the gas and on certain molecular parameters. The parameters considered are the Lennard-Jones potential well depth and collision diameter, the dipole moment, the polarizability, and the rotational relaxation collision number.« less
Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth
NASA Astrophysics Data System (ADS)
Zhang, Hong; Zuo, Ran; Zhang, Guoyi
2017-11-01
In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.
Modeling aerosol surface chemistry and gas-particle interaction kinetics with K2-SURF: PAH oxidation
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Garland, R.; Pöschl, U.
2009-04-01
Atmospheric aerosols are ubiquitous in the atmosphere. They have the ability to impact cloud properties, radiative balance and provide surfaces for heterogeneous reactions. The uptake of gaseous species on aerosol surfaces impacts both the aerosol particles and the atmospheric budget of trace gases. These subsequent changes to the aerosol can in turn impact the aerosol chemical and physical properties. However, this uptake, as well as the impact on the aerosol, is not fully understood. This uncertainty is due not only to limited measurement data, but also a dearth of comprehensive and applicable modeling formalizations used for the analysis, interpretation and description of these heterogeneous processes. Without a common model framework, comparing and extrapolating experimental data is difficult. In this study, a novel kinetic surface model (K2-SURF) [Ammann & Pöschl, 2007; Pöschl et al., 2007] was used to describe the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs). Integrated into this consistent and universally applicable kinetic and thermodynamic process model are the concepts, terminologies and mathematical formalizations essential to the description of atmospherically relevant physicochemical processes involving organic and mixed organic-inorganic aerosols. Within this process model framework, a detailed master mechanism, simplified mechanism and parameterizations of atmospheric aerosol chemistry are being developed and integrated in analogy to existing mechanisms and parameterizations of atmospheric gas-phase chemistry. One of the key aspects to this model is the defining of a clear distinction between various layers of the particle and surrounding gas phase. The processes occurring at each layer can be fully described using known fluxes and kinetic parameters. Using this system there is a clear separation of gas phase, gas-surface and surface bulk transport and reactions. The partitioning of compounds can be calculated using the flux values between the layers. By describing these layers unambiguously, the interactions of all species in the system can be appropriately modeled. In describing the oxidation of PAHs, the focus was on the interactions between the sorption layer and quasi-static surface layer. The results from a variety of published experimental studies [Pöschl et al., 2001; Kahan et al., 2006; Kwamena et al., 2004, 2006, 2007; Mmereki and Donaldson, 2003; Mmereki et al., 2004; Dubowski et al., 2004; Donaldson et al., 2005; Segal-Rosenheimer and Dubowski, 2007] were analyzed and compared utilizing K2-SURF. The heterogeneous reaction of PAH and O3 are found to follow a Langmuir-Hinshelwood mechanism, in which ozone first absorbs to the surface and then reacts with PAH. The Langmuir equilibrium constants and second-order-rate coefficients of surface reaction were estimated. In PAH/O3/solid substrate system, they showed similar reaction rate (×10), but large difference (×1000) in adsorption. The mean residence time and adsorption enthalpy were estimated for O3 at the surface of substrates, suggesting the chemisorption of O3 molecules or O atoms, respectively. Initial uptake coefficients of O3 under different conditions were also investigated. The observed dependence on gas-phase O3 concentration was well explained with K2-SURF model in five-order range. In addition, competitive adsorption of other gas phase species (NO2, H2O) was well described by the model. Possible mechanism of PAH degradation system and atmospheric implications are discussed.
LSENS, The NASA Lewis Kinetics and Sensitivity Analysis Code
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
2000-01-01
A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS (the NASA Lewis kinetics and sensitivity analysis code), are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include: static system; steady, one-dimensional, inviscid flow; incident-shock initiated reaction in a shock tube; and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method (LSODE, the Livermore Solver for Ordinary Differential Equations), which works efficiently for the extremes of very fast and very slow reactions, is used to solve the "stiff" ordinary differential equation systems that arise in chemical kinetics. For static reactions, the code uses the decoupled direct method to calculate sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters. Solution methods for the equilibrium and post-shock conditions and for perfectly stirred reactor problems are either adapted from or based on the procedures built into the NASA code CEA (Chemical Equilibrium and Applications).
NASA Astrophysics Data System (ADS)
Skouteris, Dimitrios; Balucani, Nadia; Ceccarelli, Cecilia; Vazart, Fanny; Puzzarini, Cristina; Barone, Vincenzo; Codella, Claudio; Lefloch, Bertrand
2018-02-01
Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star-forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesized is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this paper, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid, and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid, and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of 10, which might imply a yet incomplete reaction network.
Antiñolo, M.; Agúndez, M.; Jiménez, E.; Ballesteros, B.; Canosa, A.; Dib, G. El; Albaladejo, J.; Cernicharo, J.
2016-01-01
In the last years, ultra-low temperature chemical kinetic experiments have demonstrated that some gas-phase reactions are much faster than previously thought. One example is the reaction between OH and CH3OH, which has been recently found to be accelerated at low temperatures yielding CH3O as main product. This finding opened the question of whether the CH3O observed in the dense core Barnard 1b could be formed by the gas-phase reaction of CH3OH and OH. Several chemical models including this reaction and grain-surface processes have been developed to explain the observed abundance of CH3O with little success. Here we report for the first time rate coefficients for the gas-phase reaction of OH and CH3OH down to a temperature of 22 K, very close to those in cold interstellar clouds. Two independent experimental set-ups based on the supersonic gas expansion technique coupled to the pulsed laser photolysis-laser induced fluorescence technique were used to determine rate coefficients in the temperature range 22-64 K. The temperature dependence obtained in this work can be expressed as k(22-64 K) = (3.6 ± 0.1) × 10−12(T/300 K)−(1.0±0.2) cm3 molecule−1 s−1. Implementing this expression in a chemical model of a cold dense cloud results in CH3O/CH3OH abundance ratios similar or slightly lower than the value of ∼ 3 × 10−3 observed in Barnard 1b. This finding confirms that the gas-phase reaction between OH and CH3OH is an important contributor to the formation of interstellar CH3O. The role of grain-surface processes in the formation of CH3O, although it cannot be fully neglected, remains controversial. PMID:27279655
Antiñolo, M; Agúndez, M; Jiménez, E; Ballesteros, B; Canosa, A; Dib, G El; Albaladejo, J; Cernicharo, J
2016-05-20
In the last years, ultra-low temperature chemical kinetic experiments have demonstrated that some gas-phase reactions are much faster than previously thought. One example is the reaction between OH and CH 3 OH, which has been recently found to be accelerated at low temperatures yielding CH 3 O as main product. This finding opened the question of whether the CH 3 O observed in the dense core Barnard 1b could be formed by the gas-phase reaction of CH 3 OH and OH. Several chemical models including this reaction and grain-surface processes have been developed to explain the observed abundance of CH 3 O with little success. Here we report for the first time rate coefficients for the gas-phase reaction of OH and CH 3 OH down to a temperature of 22 K, very close to those in cold interstellar clouds. Two independent experimental set-ups based on the supersonic gas expansion technique coupled to the pulsed laser photolysis-laser induced fluorescence technique were used to determine rate coefficients in the temperature range 22-64 K. The temperature dependence obtained in this work can be expressed as k (22-64 K) = (3.6 ± 0.1) × 10 -12 ( T/ 300 K) -(1.0±0.2) cm 3 molecule -1 s -1 . Implementing this expression in a chemical model of a cold dense cloud results in CH 3 O/CH 3 OH abundance ratios similar or slightly lower than the value of ∼ 3 × 10 -3 observed in Barnard 1b. This finding confirms that the gas-phase reaction between OH and CH 3 OH is an important contributor to the formation of interstellar CH 3 O. The role of grain-surface processes in the formation of CH 3 O, although it cannot be fully neglected, remains controversial.
NASA Astrophysics Data System (ADS)
Canosa, A.; Ocaña, A. J.; Antiñolo, M.; Ballesteros, B.; Jiménez, E.; Albaladejo, J.
2016-09-01
A series of three de Laval nozzles initially designed to generate uniform supersonic flows in helium at 23 and 36 K and in argon at 50 K have been used with either pure nitrogen or mixtures of nitrogen with helium or argon in order to make a sequence of pulsed supersonic flows working at different temperatures. For this, a computer homemade program has been used to design de Laval nozzles contours for gas mixtures in order to determine the theoretical pressure P and temperature T in these supersonic flows. Spatial evolution of T along the flow axis downstream of the nozzle exit has been characterized with a fast response Pitot tube instrument newly developed. Twenty-eight different gas mixture conditions have been tested, indicating a very good agreement with the corresponding calculated flow conditions. The length of uniformity Δ L of the supersonic flows have been found to be >30 cm in more than 80 % of the situations and >50 cm for more than 50 % of the tested conditions. Fine temperature tunability was achieved in the range 22-107 K with very small fluctuations of the mean temperature along Δ L. Advantages and limits of these new developments for studies of gas-phase reaction kinetics are discussed.
Analysis of the gas phase reactivity of chlorosilanes.
Ravasio, Stefano; Masi, Maurizio; Cavallotti, Carlo
2013-06-27
Trichlorosilane is the most used precursor to deposit silicon for photovoltaic applications. Despite of this, its gas phase and surface kinetics have not yet been completely understood. In the present work, it is reported a systematic investigation aimed at determining what is the dominant gas phase chemistry active during the chemical vapor deposition of Si from trichlorosilane. The gas phase mechanism was developed calculating the rate constant of each reaction using conventional transition state theory in the rigid rotor-harmonic oscillator approximation. Torsional vibrations were described using a hindered rotor model. Structures and vibrational frequencies of reactants and transition states were determined at the B3LYP/6-31+G(d,p) level, while potential energy surfaces and activation energies were computed at the CCSD(T) level using aug-cc-pVDZ and aug-cc-pVTZ basis sets extrapolating to the complete basis set limit. As gas phase and surface reactivities are mutually interlinked, simulations were performed using a microkinetic surface mechanism. It was found that the gas phase reactivity follows two different routes. The disilane mechanism, in which the formation of disilanes as reaction intermediates favors the conversion between the most stable monosilane species, and the radical pathway, initiated by the decomposition of Si2HCl5 and followed by a series of fast propagation reactions. Though both mechanisms are active during deposition, the simulations revealed that above a certain temperature and conversion threshold the radical mechanism provides a faster route for the conversion of SiHCl3 into SiCl4, a reaction that favors the overall Si deposition process as it is associated with the consumption of HCl, a fast etchant of Si. Also, this study shows that the formation of disilanes as reactant intermediates promotes significantly the gas phase reactivity, as they contribute both to the initiation of radical chain mechanisms and provide a catalytic route for the conversion between the most stable monosilanes.
Study on Kinetic Mechanism of Bastnaesite Concentrates Decomposition Using Calcium Hydroxide
NASA Astrophysics Data System (ADS)
Cen, Peng; Wu, Wenyuan; Bian, Xue
2018-06-01
The thermal decomposition of bastnaesite concentrates using calcium hydroxide was studied. Calcium hydroxide can effectively inhibit the emission of fluorine during roasting by transforming it to calcium fluoride. The decomposition rate increased with increasing reaction temperature and amount of calcium hydroxide. The decomposition kinetics were investigated. The decomposition reaction was determined to be a heterogeneous gas-solid reaction, and it followed an unreacted shrinking core model. By means of the integrated rate equation method, the reaction was proven to be kinetically first order. Different reaction models were fit to the experimental data to determine the reaction control process. The chemical reaction at the phase interface controlled the reaction rate in the temperatures ranging from 673 K to 773 K (400 °C to 500 °C) with an apparent activation energy of 82.044 kJ·mol-1. From 773 K to 973 K (500 °C to 700 °C), diffusion through the solid product's layer became the determining step, with a lower activation energy of 15.841 kJ·mol-1.
Song, Lei; Kästner, Johannes
2016-10-26
Investigating how formamide forms in the interstellar medium is a hot topic in astrochemistry, which can contribute to our understanding of the origin of life on Earth. We have constructed a QM/MM model to simulate the hydrogenation of isocyanic acid on amorphous solid water surfaces to form formamide. The binding energy of HNCO on the ASW surface varies significantly between different binding sites, we found values between ∼0 and 100 kJ mol -1 . The barrier for the hydrogenation reaction is almost independent of the binding energy, though. We calculated tunneling rate constants of H + HNCO → NH 2 CO at temperatures down to 103 K combining QM/MM with instanton theory. Tunneling dominates the reaction at such low temperatures. The tunneling reaction is hardly accelerated by the amorphous solid water surface compared to the gas phase for this system, even though the activation energy of the surface reaction is lower than the one of the gas-phase reaction. Both the height and width of the barrier affect the tunneling rate in practice. Strong kinetic isotope effects were observed by comparing to rate constants of D + HNCO → NHDCO. At 103 K we found a KIE of 231 on the surface and 146 in the gas phase. Furthermore, we investigated the gas-phase reaction NH 2 + H 2 CO → NH 2 CHO + H and found it unlikely to occur at cryogenic temperatures. The data of our tunneling rate constants are expected to significantly influence astrochemical models.
The Hydroxyl Radical Reaction Rate Constant and Products of Cyclohexanol
2007-10-01
Analysis Samples from kinetic studies were quantitativelymon- itored using a Hewlett-Packard (HP) gas chromato- graph (GC) 5890 with a flame ionization...excluded from the reaction mixture and the COL concentration was approximately doubled (4.9–9 ppm). Product Study Analysis Reactant mixtures and standards...from product identi- fication experiments were sampled by exposing a 100% polydimethylsiloxane solid phase microextrac- tion fiber (SPME) in the
A study of hydriding kinetics of metal hydrides using a physically based model
NASA Astrophysics Data System (ADS)
Voskuilen, Tyler G.
The reaction of hydrogen with metals to form metal hydrides has numerous potential energy storage and management applications. The metal hydrogen system has a high volumetric energy density and is often reversible with a high cycle life. The stored hydrogen can be used to produce energy through combustion, reaction in a fuel cell, or electrochemically in metal hydride batteries. The high enthalpy of the metal-hydrogen reaction can also be used for rapid heat removal or delivery. However, improving the often poor gravimetric performance of such systems through the use of lightweight metals usually comes at the cost of reduced reaction rates or the requirement of pressure and temperature conditions far from the desired operating conditions. In this work, a 700 bar Sievert system was developed at the Purdue Hydrogen Systems Laboratory to study the kinetic and thermodynamic behavior of high pressure hydrogen absorption under near-ambient temperatures. This system was used to determine the kinetic and thermodynamic properties of TiCrMn, an intermetallic metal hydride of interest due to its ambient temperature performance for vehicular applications. A commonly studied intermetallic hydride, LaNi5, was also characterized as a base case for the phase field model. The analysis of the data obtained from such a system necessitate the use of specialized techniques to decouple the measured reaction rates from experimental conditions. These techniques were also developed as a part of this work. Finally, a phase field model of metal hydride formation in mass-transport limited interstitial solute reactions based on the regular solution model was developed and compared with measured kinetics of LaNi5 and TiCrMn. This model aided in the identification of key reaction features and was used to verify the proposed technique for the analysis of gas-solid reaction rates determined volumetrically. Additionally, the phase field model provided detailed quantitative predictions of the effects of multidimensional phase growth and transitions between rate-limiting processes on the experimentally determined reaction rates. Unlike conventional solid state reaction analysis methods, this model relies fully on rate parameters based on the physical mechanisms occurring in the hydride reaction and can be extended to reactions in any dimension.
Utilization of the Recycle Reactor in Determining Kinetics of Gas-Solid Catalytic Reactions.
ERIC Educational Resources Information Center
Paspek, Stephen C.; And Others
1980-01-01
Describes a laboratory scale reactor that determines the kinetics of a gas-solid catalytic reaction. The external recycle reactor construction is detailed with accompanying diagrams. Experimental details, application of the reactor to CO oxidation kinetics, interphase gradients, and intraphase gradients are discussed. (CS)
The Kinetics and Dynamics of Elementary Gas-Phase Reactions
2002-09-01
We report CRDS measurements of thin films of oxazine 1, oxazine 170 and malachite green dyes deposited on borosilicate substrates. The method...measure monolayer and sub-monolayer quantities of dye. The minimum observed concentration of malachite green in the present work was calculated to be...the dyes: at surface coverages of ~ 2.8 × 10-7 mol m-2, the ratio of malachite green dimers to monomers was estimated as Cd/Cm = 0.22. The Kinetics
Shakhova, Margarita V; Muravyev, Nikita V; Gritsan, Nina P; Kiselev, Vitaly G
2018-04-19
Thermochemistry, kinetics, and mechanism of thermal decomposition of 1,5-diaminotetrazole (DAT), a widely used "building block" of nitrogen-rich energetic compounds, were studied theoretically at a high and reliable level of theory (viz., using the explicitly correlated CCSD(T)-F12/aug-cc-pVTZ procedure). Quantum chemical calculations provided detailed insight into the thermolysis mechanism of DAT missing in the existing literature. Moreover, several contradictory assumptions on the mechanism and key intermediates of thermolysis were resolved. The unimolecular primary decomposition reactions of the seven isomers of DAT were studied in the gas phase and in the melt using a simplified model of the latter. The two-step reaction of N 2 elimination from the diamino tautomer was found to be the primary decomposition process of DAT in the gas phase and melt. The effective Arrhenius parameters of this process were calculated to be E a = 43.4 kcal mol -1 and log( A/s -1 ) = 15.2 in a good agreement with the experimental values. Contrary to the existing literature data, all other decomposition channels of DAT isomers turned out to be kinetically unimportant. Apart from this, a new primary decomposition channel yielding N 2 , cyanamide, and 1,1-diazene was found for some H-bonded dimers of DAT. We also determined a reliable and mutually consistent set of thermochemical values for DAT (Δ f H solid 0 = 74.5 ± 1.5 kcal·mol -1 ) by combining theoretically calculated (W1 multilevel procedure along with an isodesmic reaction) gas phase enthalpy of formation (Δ f H gas 0 = 100.7 ± 1.0 kcal·mol -1 ) and experimentally measured sublimation enthalpy (Δ sub H 0 = 26.2 ± 0.5 kcal·mol -1 ).
Moussa, Samar G; Finlayson-Pitts, Barbara J
2010-08-28
The kinetics and mechanisms of the reaction of gas phase OH radicals with organics on surfaces are of fundamental chemical interest, as well as relevant to understanding the degradation of organics on tropospheric surfaces or when they are components of airborne particles. We report here studies of the oxidation of a terminal alkene self-assembled monolayer (7-octenyltrichlorosilane, C8= SAM) on a germanium attenuated total reflectance crystal by OH radicals at a concentration of 2.1 x 10(5) cm(-3) at 1 atm total pressure and 298 K in air. Loss of the reactant SAM and the formation of surface products were followed in real time using infrared spectroscopy. From the rate of loss of the C=C bond, a reaction probability within experimental error of unity was derived. The products formed on the surface include organic nitrates and carbonyl compounds, with yields of 10 +/- 4% and < or = 7 +/- 4%, respectively, and there is evidence for the formation of organic products with C-O bonds such as alcohols, ethers and/or alkyl peroxides and possibly peroxynitrates. The yield of organic nitrates relative to carbonyl compounds is higher than expected based on analogous gas phase mechanisms, suggesting that the branching ratio for the RO(2) + NO reaction is shifted to favor the formation of organic nitrates when the reaction occurs on a surface. Water uptake onto the surface was only slightly enhanced upon oxidation, suggesting that oxidation per se cannot be taken as a predictor of increased hydrophilicity of atmospheric organics. These experiments indicate that the mechanisms for the surface reactions are different from gas phase reactions, but the OH oxidation of surface species will still be a significant contributor to determining their lifetimes in air.
Enhanced elemental mercury removal from coal-fired flue gas by sulfur-chlorine compounds.
Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray L; Chang, Shih-Ger; Miller, Charles
2009-07-15
Oxidation of Hg(0) with any oxidant or converting itto a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg(0) by gas-phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas-phase reaction between Hg(0) and SCl2 is shown to be more rapid than the gas-phase reaction with chlorine, and the second order rate constant was 9.1 (+/- 0.5) x 10(-18) mL-molecules(-1) x s(-1) at 373 K. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg(0) removal is about 90% with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that coinjection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90% of Hg(0) can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3% of SCl2 or S2Cl2 is used. Mercuric sulfide was identified as one of the principal products of the Hg(0)/SCl2 or Hg(0)/S2Cl2 reactions. Additionally, about 8% of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.
Rangel, Cipriano; Espinosa-Garcia, Joaquin
2018-02-07
Within the Born-Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system. This surface presents a valence-bond/molecular mechanics functional form dependent on 60 parameters and is fitted to high-level ab initio calculations. This reaction presents little exothermicity, -2.30 kcal mol -1 , with a low height barrier, 2.44 kcal mol -1 , and intermediate complexes in the entrance and exit channels. We found that the energetic description was strongly dependent on the ab initio level used and it presented a very flat topology in the entrance channel, which represents a theoretical challenge in the fitting process. In general, PES-2017 reproduces the ab initio information used as input, which is merely a test of self-consistency. As a first test of the quality of the PES-2017, a theoretical kinetics study was performed in the temperature range 200-1400 K using two approaches, i.e. the variational transition-state theory and quasi-classical trajectory calculations, with spin-orbit effects. The rate constants show reasonable agreement with experiments in the whole temperature range, with the largest differences at the lowest temperatures, and this behaviour agrees with previous theoretical studies, thus indicating the inherent difficulties in the theoretical simulation of the kinetics of the title reaction. Different sources of error were analysed, such as the limitations of the PES and theoretical methods, recrossing effects, and the tunnelling effect, which is negligible in this reaction, and the manner in which the spin-orbit effects were included in this non-relativistic study. We found that the variation of spin-orbit coupling along the reaction path, and the influence of the reactivity of the excited Cl( 2 P 1/2 ) state, have relative importance, but do not explain the whole discrepancy. Finally, the activation energy and the kinetics isotope effects reproduce the experimental information.
Desulfurization kinetics of molten copper by gas bubbling
NASA Astrophysics Data System (ADS)
Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.
1991-02-01
Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.
NASA Astrophysics Data System (ADS)
Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.
2016-11-01
Gas-grain and gas-phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas-grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas-grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5-400 K] across seven different temperatures of dust grains [10-70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99-0.22.
NASA Astrophysics Data System (ADS)
Li, Nana; Zhang, Peng; Yang, Bo; Shu, Jinian; Wang, Youfeng; Sun, Wanqi
2014-08-01
Chlorpyrifos is a typical chlorinated organophosphorus pesticide. The heterogeneous reaction of chlorpyrifos particles with NO3 radicals was investigated using a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS) and a real-time atmospheric gas analysis mass spectrometer. Chlorpyrifos oxon, 3,5,6-trichloro-2-pyridinol, O,O-diethyl O-hydrogen phosphorothioate, O,O-diethyl ester thiophosphoric acid, diethyl hydrogen phosphate and a phosphinyl disulfide compound were identified as the main degradation products. The heterogeneous reaction pathways were proposed and their kinetic processes were investigated via a mixed-phase relative rate method. The observed effective rate constant is 3.4 ± 0.2 × 10-12 cm3 molecule-1 s-1.
Cantera and Cantera Electrolyte Thermodynamics Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Hewson, Harry Moffat
Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia's contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Cantera that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction,more » and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a "Get the numbers out" utility for Cantera, and as such it is very useful as a verification tool. These add-on utilities are encapsulated into a directory structure named cantera_apps, whose installation uses autoconf and also utilizes Cantera's application environment (i.e., they utilize Cantera as a library).« less
Chemical stability of levoglucosan: An isotopic perspective
NASA Astrophysics Data System (ADS)
Sang, X. F.; Gensch, I.; Kammer, B.; Khan, A.; Kleist, E.; Laumer, W.; Schlag, P.; Schmitt, S. H.; Wildt, J.; Zhao, R.; Mungall, E. L.; Abbatt, J. P. D.; Kiendler-Scharr, A.
2016-05-01
The chemical stability of levoglucosan was studied by exploring its isotopic fractionation during the oxidation by hydroxyl radicals. Aqueous solutions as well as mixed (NH4)2SO4-levoglucosan particles were exposed to OH. In both cases, samples experiencing different extents of processing were isotopically analyzed by Thermal Desorption-Gas Chromatography-Isotope Ratio Mass Spectrometry (TD-GC-IRMS). From the dependence of levoglucosan δ13C and concentration on the reaction extent, the kinetic isotope effect (KIE) of the OH oxidation reactions was determined to be 1.00187±0.00027 and 1.00229±0.00018, respectively. Both show good agreement within the uncertainty range. For the heterogeneous oxidation of particulate levoglucosan by gas-phase OH, a reaction rate constant of (2.67±0.03)·10-12 cm3 molecule-1S-1 was derived. The laboratory kinetic data, together with isotopic source and ambient observations, give information on the extent of aerosol chemical processing in the atmosphere.
NASA Astrophysics Data System (ADS)
Anderson, Rebecca S.; Iannone, Richard; Thompson, Alexandra E.; Rudolph, Jochen; Huang, Lin
2004-08-01
The carbon kinetic isotope effects (KIEs) of the room temperature reactions of benzene and several light alkyl benzenes with OH radicals were studied in a reaction chamber at ambient pressure using gas chromatography coupled with online combustion and isotope ratio mass spectrometry (GCC-IRMS). The KIEs are reported in per mil according to $\\varepsilon$ (‰) = (KIE - 1) × 1000, where KIE = k12/k13. The following average KIEs were obtained, (all in ‰): benzene 7.53 +/- 0.50; toluene 5.95 +/- 0.28; ethylbenzene 4.34 +/- 0.28; o-xylene 4.27 +/- 0.05, p-xylene 4.83 +/- 0.81; o-ethyltoluene 4.71 +/- 0.12 and 1,2,4-trimethylbenzene 3.18 +/- 0.09. Our KIE value for benzene + OH agrees with the only reported value known to us [Rudolph et al., 2000]. It is shown that measurements of the stable carbon isotope ratios of light aromatic compounds should be extremely useful to study atmospheric processing by the OH radical.
Kinetics of Reduction of CaO-FeO x -MgO-PbO-SiO2 Slags by CO-CO2 Gas Mixtures
NASA Astrophysics Data System (ADS)
Jahanshahi, Sharif; Wright, Steven
2017-08-01
Kinetics of the reaction of lead slags (PbO-CaO-SiO2-FeO x -MgO) with CO-CO2 gas mixtures was studied by monitoring the changes in the slag composition when a stream of CO-CO2 gas mixture was blown on the surface of thin layers of slags (3 to 10 mm) at temperatures in the range of 1453 K to 1593 K (1180 °C to 1320 °C). These measurements were carried out under conditions where mass transfer in the gas phase was not the rate-limiting step and the reduction rates were insensitive to factors affecting mass transfer in the slag phase. The results show simultaneous reduction of PbO and Fe2O3 in the slag. The measured specific rate of oxygen removal from the melts varied from about 1 × 10-6 to 4 × 10-5 mol O cm-2 s-1 and was strongly dependent on the slag chemistry and its oxidation state, partial pressure of CO in the reaction gas mixture, and temperature. The deduced apparent first-order rate constant increased with increasing iron oxide content, oxidation state of the slag, and temperature. The results indicate that under the employed experimental conditions, the rate of formation of CO2 at the gas-slag interface is likely to be the rate-limiting step.
Effects of Gas-Phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
2001-01-01
This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include Surface radiation only and gas-phase and surface radiation using a black surface model. The analysis includes discussion of detailed flame chemistry over the flammable regime and, in particular, at the low stretch extinction limit. We emphasize the low stretch regime of the radiatively participating flame, since this is the region representative of microgravity flames. When only surface radiation is included, two extinction limits exist (the blow-off limit, and the low stretch radiative limit), and the burning rate and maximum flame temperatures are lower, as expected. With the inclusion of surface and gas-phase radiation, results show that, while flame temperatures are lower, the burning rate of the trioxane diffusion flame may actually increase at low stretch rate due to radiative feedback from the flame to the surface.
The laser photolysis/laser induced flourescence (LP/LIF) technique has been applied to studies of gas-phase mercury (Hg) chlorination. Mercury (I) chloride (HgCl) has been detected via LIF at 272 nm from reactions of elemental Hg and Cl atoms generated from the 193 nm photolysis ...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions
NASA Astrophysics Data System (ADS)
Piersall, Shannon D.; Anderson, James B.
1991-07-01
In applications to several simple reaction systems we have explored a ``direct simulation'' method for predicting and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird, has been found remarkably successful in treating a number of difficult problems in rarefied dynamics. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal distributions, with coupled gas-dynamic and reaction effects, with emission and adsorption of radiation, and with many other effects difficult to treat in any other way. The usual differential equations of chemical kinetics are eliminated. For a bimolecular reaction of the type A+B→C+D with a rate sufficiently low to allow a continued thermal equilibrium of reactants we find that direct simulation reproduces the expected second order kinetics. Simulations for a range of temperatures yield the activation energies expected for the reaction models specified. For faster reactions under conditions leading to a depletion of energetic reactant species, the expected slowing of reaction rates and departures from equilibrium distributions are observed. The minimum sample sizes required for adequate simulations are as low as 1000 molecules for these cases. The calculations are found to be simple and straightforward for the homogeneous systems considered. Although computation requirements may be excessively high for very slow reactions, they are reasonably low for fast reactions, for which nonequilibrium effects are most important.
Tosta, Maria; Oliveros, Jhenny C; Mora, Jose R; Córdova, Tania; Chuchani, Gabriel
2010-02-25
The gas-phase elimination kinetics of N-benzylglycine ethyl ester was examined in a static system, seasoned with allyl bromide, and in the presence of the free chain radical suppressor toluene. The working temperature and pressure range were 386.4-426.7 degrees C and 16.7-40.0 torr, respectively. The reaction showed to be homogeneous, unimolecular, and obeys a first-order rate law. The elimination products are benzylglycine and ethylene. However, the intermediate benzylglycine is unstable under the reaction conditions decomposing into benzyl methylamine and CO(2) gas. The variation of the rate coefficients with temperature is expressed by the following Arrhenius equation: log k(1) (s(-1)) = (11.83 +/- 0.52) - (190.3 +/- 6.9) kJ mol(-1) (2.303RT)(-1). The theoretical calculation of the kinetic parameters and mechanism of elimination of this ester were performed at B3LYP/6-31G*, B3LYP/6-31+G**, MPW1PW91/6-31G*, and MPW1PW91/6-31+G** levels of theory. The calculation results suggest a molecular mechanism of a concerted nonsynchronous six-membered cyclic transition state process. The analysis of bond order and natural bond orbital charges implies that the bond polarization of C(=O)O-C, in the sense of C(=O)O(delta-)...C(delta+), is rate determining. The experimental and theoretical parameters have been found to be in reasonable agreement.
NASA Astrophysics Data System (ADS)
Orlov, A. M.; Yavtushenko, I. O.; Bodnarskii, D. S.
2013-03-01
The variation of the pressure of a gas phase activated by spark discharges between an aqueous electrolyte solution (liquid cathode) and a metallic electrode (anode) hanging over the solution is studied. A mathematical model of the proceeding reaction kinetics is constructed, and the variation of the partial pressures of all initial and produced components in the gas phase is calculated. Both the Faraday and non-Faraday mechanisms of gas component production from water are confirmed. It is found that a large overhanging drop responsible for additional supply of simultaneously produced H2 and O2 molecules forms rapidly at the end face of the anodically polarized electrode.
NASA Astrophysics Data System (ADS)
Hasson, A. S.; Algrim, L.; Abdelhamid, A.; Tyndall, G. S.; Orlando, J. J.
2013-12-01
Carbonyls are important products from the gas phase degradation of most volatile organic compounds. Their atmospheric reactions therefore have a significant impact on atmospheric composition, particularly in aged air masses. While the reactions of short-chain linear carbonyls are well understood, the chemistry of larger (> C6) and branched carbonyl is more uncertain. To provide insight into these reactions, the reactions of three carbonyls (methyl isopropyl ketone, MIK; di-isopropyl ketone, DIK; and diethyl ketone, DEK) with chlorine atoms were investigated between 250 and 340 K and 1 atm in the presence and absence of NOx and an HO2 source (methanol). Experiments were performed in a photochemical reactor using a combination of long-path Fourier transform infra-red spectroscopy, proton transfer reaction mass spectrometry and gas chromatography with flame ionization detection. The kinetics were studied using the relative rate technique with butanone and isopropanol as the reference compounds. The Arrhenius expression for the three rate coefficients was determined to be k(DEK+Cl) = 3.87 x 10-11e(2 × 7 kJ/mol)/RT cm3 molecules-1 s-1 , k(MIPK+Cl) = 7.20 x 10-11e(0.2× 8 kJ/mol)/RT cm3 molecules-1 s-1 , and k(DIPK+Cl) = 3.33 x 10-10e(-3× 8 kJ/mol)/RT cm3 molecules-1 s-1 . Measured reaction products accounted for 38-72 % of the reacted carbon and were consistent with strong deactivation of the carbon atom adjacent to the carbonyl group with respect to H-atom abstraction by Cl atoms. The product distributions also provide insight into radical recycling from the organic peroxy + HO2 reaction, and the relative rates of isomerization, fragmentation and reaction with O2 for carbonyl-containing alkoxy radicals. Implications of these results will be discussed.
NASA Technical Reports Server (NTRS)
Dietz, N.; McCall, S.; Bachmann, K. J.
2001-01-01
This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.
Hydrolysis reaction of 2,4-dichlorophenoxyacetic acid. A kinetic and computational study
NASA Astrophysics Data System (ADS)
Romero, Jorge Marcelo; Jorge, Nelly Lidia; Grand, André; Hernández-Laguna, Alfonso
2015-10-01
The degradation of the 2,4-dichlorophenoxyacetic acid in aqueous solution is an hydrolysis reaction. Two products are identified: 2,4-dichlorophenol and glycolic acid. Reaction is investigated as a function of pH and temperature, and it is first-order kinetics and pH-dependent. Reaction is modeled in gas phase, where a proton catalyses the reaction. Critical points of PES are calculated at B3LYP/6-311++G(3df,2p), and aug-cc-pvqz//6-311++G(3df,2p) levels plus ZPE at 6-311++G(3df,2p) level. The activation barrier is 21.2 kcal/mol. Theoretical results agree with the experimental results. A second mechanism related with a Cl2Phsbnd Osbnd CH2sbnd COOH⋯H2O complex is found, but with a rate limiting step of 38.4 kcal/mol.
NASA Technical Reports Server (NTRS)
Stroud, C. W.
1994-01-01
The transient response of a thermal protection material to heat applied to the surface can be calculated using the CHAP III computer program. CHAP III can be used to analyze pyrolysis gas chemical kinetics in detail and examine pyrolysis reactions-indepth. The analysis includes the deposition of solid products produced by chemical reactions in the gas phase. CHAP III uses a modelling technique which can approximate a wide range of ablation problems. The energy equation used in CHAP III incorporates pyrolysis (both solid and gas reactions), convection, conduction, storage, work, kinetic energy, and viscous dissipation. The chemically reacting components of the solid are allowed to vary as a function of position and time. CHAP III employs a finite difference method to approximate the energy equations. Input values include specific heat, thermal conductivity, thermocouple locations, enthalpy, heating rates, and a description of the chemical reactions expected. The output tabulates the temperature at locations throughout the ablator, gas flow within the solid, density of the solid, weight of pyrolysis gases, and rate of carbon deposition. A sample case is included, which analyzes an ablator material containing several pyrolysis reactions subjected to an environment typical of entry at lunar return velocity. CHAP III is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer operating under NOS with a central memory requirement of approximately 102K (octal) of 60 bit words. This program was developed in 1985.
3D CFD Modeling of the LMF System: Desulfurization Kinetics
NASA Astrophysics Data System (ADS)
Cao, Qing; Pitts, April; Zhang, Daojie; Nastac, Laurentiu; Williams, Robert
A fully transient 3D CFD modeling approach capable of predicting the three phase (gas, slag and steel) fluid flow characteristics and behavior of the slag/steel interface in the argon gas bottom stirred ladle with two off-centered porous plugs (Ladle Metallurgical Furnace or LMF) has been recently developed. The model predicts reasonably well the fluid flow characteristics in the LMF system and the observed size of the slag eyes for both the high-stirring and low-stirring conditions. A desulfurization reaction kinetics model considering metal/slag interface characteristics is developed in conjunction with the CFD modeling approach. The model is applied in this study to determine the effects of processing time, and gas flow rate on the efficiency of desulfurization in the studied LMF system.
Catalytic Ignition and Upstream Reaction Propagation in a Platinum Tube
NASA Technical Reports Server (NTRS)
Struk, P. M.; Dietrich, D. L.; Mellish, B. P.; Miller, F. J.; T'ien, J. S.
2007-01-01
A challenge for catalytic combustion in monolithic reactors at elevated temperatures is the start-up or "light-off" from a cold initial condition. In this work, we demonstrate a concept called "back-end catalytic ignition that potentially can be utilized in the light-off of catalytic monoliths. An external downstream flame or Joule heating raises the temperature of a small portion of the catalyst near the outlet initiating a localized catalytic reaction that propagates upstream heating the entire channel. This work uses a transient numerical model to demonstrate "back-end" ignition within a single channel which can characterize the overall performance of a monolith. The paper presents comparisons to an experiment using a single non-adiabatic channel but the concept can be extended to the adiabatic monolith case. In the model, the time scales associated with solid heat-up are typically several orders of magnitude larger than the gas-phase and chemical kinetic time-scales. Therefore, the model assumes a quasi-steady gas-phase with respect to a transient solid. The gas phase is one-dimensional. Appropriate correlations, however, account for heat and mass transfer in a direction perpendicular to the flow. The thermally-thin solid includes axial conduction. The gas phase, however, does not include axial conduction due to the high Peclet number flows. The model includes both detailed gas-phase and catalytic surface reactions. The experiment utilizes a pure platinum circular channel oriented horizontally though which a CO/O2 mixture (equivalence ratios ranging from 0.6 to 0.9) flows at 2 m/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coltrin, M.E.; Kee, R.J.; Rupley, F.M.
1996-05-01
This document is the user`s manual for the SURFACE CHEMKIN-III package. Together with CHEMKIN-III, this software facilitates the formation, solution, and interpretation of problems involving elementary heterogeneous and gas-phase chemical kinetics in the presence of a solid surface. The package consists of two major software components: an Interpreter and a Surface Subroutine Library. The Interpreter is a program that reads a symbolic description of a user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Surface Subroutine Library, which is a collection of about seventy modular Fortran subroutines that may bemore » called from a user`s application code to return information on chemical production rates and thermodynamic properties. This version of SURFACE CHEMKIN-III includes many modifications to allow treatment of multi-fluid plasma systems, for example modeling the reactions of highly energetic ionic species with a surface. Optional rate expressions allow reaction rates to depend upon ion energy rather than a single thermodynamic temperature. In addition, subroutines treat temperature as an array, allowing an application code to define a different temperature for each species. This version of SURFACE CHEMKIN-III allows use of real (non-integer) stoichiometric coefficients; the reaction order with respect to species concentrations can also be specified independent of the reaction`s stoichiometric coefficients. Several different reaction mechanisms can be specified in the Interpreter input file through the new construct of multiple materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Futrell, Jean H.
2015-02-01
We introduce a new approach for studying the kinetics of large ion fragmentation in the gas phase by coupling surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer with resonant ejection of selected fragment ions using a relatively short (5 ms) ejection pulse. The approach is demonstrated for singly protonated angiotensin III ions excited by collisions with a self-assembled monolayer of alkylthiol on gold (HSAM). The overall decomposition rate and rate constants of individual reaction channels are controlled by varying the kinetic energy of the precursor ion in a range of 65–95 eV. The kinetics of peptidemore » fragmentation are probed by varying the delay time between resonant ejection and fragment ion detection at a constant total reaction time. RRKM modeling indicates that the shape of the kinetics plots is strongly affected by the shape and position of the energy deposition function (EDF) describing the internal energy distribution of the ion following ion-surface collision. Modeling of the kinetics data provides detailed information on the shape of the EDF and energy and entropy effects of individual reaction channels.« less
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
1988-01-01
This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.
Lakey, P S J; Wisthaler, A; Berkemeier, T; Mikoviny, T; Pöschl, U; Shiraiwa, M
2017-07-01
Ozone reacts with skin lipids such as squalene, generating an array of organic compounds, some of which can act as respiratory or skin irritants. Thus, it is important to quantify and predict the formation of these products under different conditions in indoor environments. We developed the kinetic multilayer model that explicitly resolves mass transport and chemical reactions at the skin and in the gas phase (KM-SUB-Skin). It can reproduce the concentrations of ozone and organic compounds in previous measurements and new experiments. This enabled the spatial and temporal concentration profiles in the skin oil and underlying skin layers to be resolved. Upon exposure to ~30 ppb ozone, the concentrations of squalene ozonolysis products in the gas phase and in the skin reach up to several ppb and on the order of ~10 mmol m -3 . Depending on various factors including the number of people, room size, and air exchange rates, concentrations of ozone can decrease substantially due to reactions with skin lipids. Ozone and dicarbonyls quickly react away in the upper layers of the skin, preventing them from penetrating deeply into the skin and hence reaching the blood. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Computation of Kinetics for the Hydrogen/Oxygen System Using the Thermodynamic Method
NASA Technical Reports Server (NTRS)
Marek, C. John
1996-01-01
A new method for predicting chemical rate constants using thermodynamics has been applied to the hydrogen/oxygen system. This method is based on using the gradient of the Gibbs free energy and a single proportionality constant D to determine the kinetic rate constants. Using this method the rate constants for any gas phase reaction can be computed from thermodynamic properties. A modified reaction set for the H/O system is determined. A11 of the third body efficiencies M are taken to be unity. Good agreement was obtained between the thermodynamic method and the experimental shock tube data. In addition, the hydrogen bromide experimental data presented in previous work is recomputed with M's of unity.
Neveux, Laure; Chiche, David; Pérez-Pellitero, Javier; Favergeon, Loïc; Gay, Anne-Sophie; Pijolat, Michèle
2013-02-07
Zinc oxide based materials are commonly used for the final desulfurization of synthesis gas in Fischer-Tropsch based XTL processes. Although the ZnO sulfidation reaction has been widely studied, little is known about the transformation at the crystal scale, its detailed mechanism and kinetics. A model ZnO material with well-determined characteristics (particle size and shape) has been synthesized to perform this study. Characterizations of sulfided samples (using XRD, TEM and electron diffraction) have shown the formation of oriented polycrystalline ZnS nanoparticles with a predominant hexagonal form (wurtzite phase). TEM observations also have evidenced an outward development of the ZnS phase, showing zinc and oxygen diffusion from the ZnO-ZnS internal interface to the surface of the ZnS particle. The kinetics of ZnO sulfidation by H(2)S has been investigated using isothermal and isobaric thermogravimetry. Kinetic tests have been performed that show that nucleation of ZnS is instantaneous compared to the growth process. A reaction mechanism composed of eight elementary steps has been proposed to account for these results, and various possible rate laws have been determined upon approximation of the rate-determining step. Thermogravimetry experiments performed in a wide range of H(2)S and H(2)O partial pressures have shown that the ZnO sulfidation reaction rate has a nonlinear variation with H(2)S partial pressure at the same time no significant influence of water vapor on reaction kinetics has been observed. From these observations, a mixed kinetics of external interface reaction with water desorption and oxygen diffusion has been determined to control the reaction kinetics and the proposed mechanism has been validated. However, the formation of voids at the ZnO-ZnS internal interface, characterized by TEM and electron tomography, strongly slows down the reaction rate. Therefore, the impact of the decreasing ZnO-ZnS internal interface on reaction kinetics has been taken into account in the reaction rate expression. In this way the void formation at the interface has been modeled considering a random nucleation followed by an isotropic growth of cavities. Very good agreement has been observed between both experimental and calculated rates after taking into account the decrease in the ZnO-ZnS internal interface.
Compressible Heating in the Condense Phase due to Pore Collapse in HMX
NASA Astrophysics Data System (ADS)
Zhang, Ju; Jackson, Thomas
Axisymmetric pore collapse in HMX is studied numerically by solving multi-phase reactive Euler equations. The generation of hot spots in the condense phase due to compressible heating is examined. The motivation is to improve the understanding of the role of embedded cavities in the initiation of reaction in explosives, and to investigate the effect of hot spots in the condense phase due to compressible heating alone, complementing previous study on hot spots due to the reaction in the gas phase and at the interface. It is found that the shock-cavity interaction results in pressures and thus temperatures that are substantially higher than the post-shock values in the condense phase. However, these hot spots in the condense phase due to compressible heating alone do not seem to be sufficiently hot to lead to ignition at shock pressures of 1-3 GPa. Thus, compressible heating in the condense phase may be excluded as a mechanism for initiation of explosives. It should be pointed out that the ignition threshold for the temperature, the so-called ``switch-on'' temperature, of hot spots depend on chemistry kinetics parameters. Switch-on temperature is lower for faster reaction rate. The current chemistry kinetics parameters are based on previous experimental work. This work was supported in part by the Defense Threat Reduction Agency and by the U.S. Department of Energy.
Synergistic effects of plasma-catalyst interactions for CH4 activation.
Kim, Jongsik; Go, David B; Hicks, Jason C
2017-05-24
The elucidation of catalyst surface-plasma interactions is a challenging endeavor and therefore requires thorough and rigorous assessment of the reaction dynamics on the catalyst in the plasma environment. The first step in quantifying and defining catalyst-plasma interactions is a detailed kinetic study that can be used to verify appropriate reaction conditions for comparison and to discover any unexpected behavior of plasma-assisted reactions that might prevent direct comparison. In this paper, we provide a kinetic evaluation of CH 4 activation in a dielectric barrier discharge plasma in order to quantify plasma-catalyst interactions via kinetic parameters. The dry reforming of CH 4 with CO 2 was studied as a model reaction using Ni supported on γ-Al 2 O 3 at temperatures of 790-890 K under atmospheric pressure, where the partial pressures of CH 4 (or CO 2 ) were varied over a range of ≤25.3 kPa. Reaction performance was monitored by varying gas hourly space velocity, plasma power, bulk gas temperature, and reactant concentration. After correcting for gas-phase plasma reactions, a linear relationship was observed in the log of the measured rate constant with respect to reciprocal power (1/power). Although thermal catalysis displays typical Arrhenius behavior for this reaction, plasma-assisted catalysis occurs from a complex mixture of sources and shows non-Arrhenius behavior. However, an energy barrier was obtained from the relationship between the reaction rate constant and input power to exhibit ≤∼20 kJ mol -1 (compared to ∼70 kJ mol -1 for thermal catalysis). Of additional importance, the energy barriers measured during plasma-assisted catalysis were relatively consistent with respect to variations in total flow rates, types of diluent, or bulk reaction temperature. These experimental results suggest that plasma-generated vibrationally-excited CH 4 favorably interacts with Ni sites at elevated temperatures, which helps reduce the energy barrier required to activate CH 4 and enhance CH 4 reforming rates.
NASA Astrophysics Data System (ADS)
Zahardis, J.; Petrucci, G. A.
2007-02-01
The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS): the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the commonly observed aldehyde and organic acid products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal) is described. The relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide oligomers and polymers, and their formation is in accord with solution and liquid-phase ozonolysis. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei (CCN). The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, the main atmospheric implications of oxidative processing of particulate containing fatty acids are presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semi-solids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas-phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation.
The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.
1997-01-01
Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different density are produced at or ahead of the propagating combustion front settling of the higher density phase will occur resulting in a non-uniform product microstructure and properties.
A Detailed Chemical Kinetic Model for TNT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitz, W J; Westbrook, C K
2005-01-13
A detailed chemical kinetic mechanism for 2,4,6-tri-nitrotoluene (TNT) has been developed to explore problems of explosive performance and soot formation during the destruction of munitions. The TNT mechanism treats only gas-phase reactions. Reactions for the decomposition of TNT and for the consumption of intermediate products formed from TNT are assembled based on information from the literature and on current understanding of aromatic chemistry. Thermodynamic properties of intermediate and radical species are estimated by group additivity. Reaction paths are developed based on similar paths for aromatic hydrocarbons. Reaction-rate constant expressions are estimated from the literature and from analogous reactions where themore » rate constants are available. The detailed reaction mechanism for TNT is added to existing reaction mechanisms for RDX and for hydrocarbons. Computed results show the effect of oxygen concentration on the amount of soot precursors that are formed in the combustion of RDX and TNT mixtures in N{sub 2}/O{sub 2} mixtures.« less
Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D
2016-03-10
Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.
Simple model of inhibition of chain-branching combustion processes
NASA Astrophysics Data System (ADS)
Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.
2017-11-01
A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.
NASA Astrophysics Data System (ADS)
Gao, Ru-qin; Sun, Qian; Fang, Zhi; Li, Guo-ting; Jia, Meng-zhe; Hou, Xin-mei
2018-01-01
Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650°C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ = 0.576 mg·m-3·min-1 and K = 0.048 m3/mg.
Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.
Graves, Christopher; Chatzichristodoulou, Christodoulos; Mogensen, Mogens B
2015-01-01
The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e(-) ↔ CO + O(2-) and H2O + 2e(-) ↔ H2 + O(2-), for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni-SZ). Ni-SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current-overpotential data measured in the two gas environments for several different electrodes comprised of Ni-SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities.Comparing model and porous Ni-SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the CGOn/gas two phase boundary in CO/CO2 and in cathodic polarization can explain why the highest reaction rate is obtained for CO2 electrolysis. Large differences observed between model electrode kinetics and porous electrode kinetics are discussed.
NASA Astrophysics Data System (ADS)
Richards-Henderson, N. K.; Ward, M.; Goldstein, A. H.; Wilson, K. R.
2014-12-01
Gas-phase oxidation mechanisms for organic gases are often used as a starting point to understand heterogeneous oxidation. The reaction of a simple alkane hydrocarbon by OH proceeds through hydrogen abstraction and under ambient conditions leads to peroxy radical (RO2) formation. RO2 can further react to form: (1) smaller molecular weight products (i.e. fragmentation) via alkoxy radical formation and dissociation and/or (2) higher molecular weight products with oxygenated functional groups (i.e. functionalization). The ability to perturb these two pathways (functionalization vs. fragmentation) is critical for understanding the detailed reaction mechanism that control atmospheric aging chemistry of particles. At high temperatures the presence of sulfur dioxide (SO2) during organic-OH gas-phase oxidation enhances the fragmentation pathway leading to increased alkoxy formation. It is unknown if a comparative affect occurs at room temperature during a heterogeneous reaction. We used the heterogeneous reaction of OH radicals with sub-micron squalane particles in the presence and absence of SO2 as a model system to explore changes in individual mechanistic pathways. Detailed kinetic measurements were made in a flow tube reactor using a vacuum ultraviolet (VUV) photoionization aerosol mass spectrometer and oxidation products are identified from samples collected on quartz filters using thermal desorption two-dimensional chromatographic separation and ionization by either VUV (10.5 eV) or electron impact (70 eV), with detection by high resolution time of flight mass spectrometry (GCxGC-VUV/EI-HRTOFMS). In the presence of SO2 the yields of alcohols were enhanced compared to without SO2, suggesting that the alkoxy formation pathway was dominant. The results from this work will provide an experimentally-confirmed kinetic framework that could be used to model atmospheric aging mechanisms.
Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL
2009-11-17
A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.
NASA Astrophysics Data System (ADS)
Lindsay, Alexander; Byrns, Brandon; Knappe, Detlef; Graves, David; Shannon, Steven
2014-10-01
Transport and reactions of charged species, neutrals, and photons at the interface between plasmas and liquids must be better quantified. The work presented here combines theoretical and experimental investigations of conditions in the gas and liquid phases in proximity to the interface for various discharges. OES is used to determine rotational and vibrational temperatures of OH, NO, and N2+; the relationship between these temperatures that characterize the distribution of internal energy states and gas and electron kinetic temperatures is considered. The deviation of OH rotational states from equilibrium under high humidity conditions is also presented. In contradiction with findings of other groups, high energy rotational states appear to become underpopulated with increasing humidity. In the aqueous phase, concentrations of longer-lived species such as nitrate, nitrite, hydrogen peroxide, and ozone are determined using ion chromatography and colorimetric methods. Spin-traps and electron paramagnetic resonance (EPR) are investigated for characterization of short-lived aqueous radicals like OH, O2-, NO, and ONOO-. Finally, experimental results are compared to a numerical model which couples transport and reactions within and between the bulk gas and liquid phases.
Marek, Aleš; Tureček, František
2014-05-01
Gas-phase dissociations were investigated for several peptide ions containing the Gly-Leu* N-terminal motif where Leu* was a modified norleucine residue containing the photolabile diazirine ring. Collisional activation of gas-phase peptide cations resulted in facile N₂ elimination that competed with backbone dissociations. A free lysine ammonium group can act as a Brønsted acid to facilitate N₂ elimination. This dissociation was accompanied by insertion of a lysine proton in the side chain of the photoleucine residue, as established by deuterium labeling and gas-phase sequencing of the products. Electron structure calculations were used to provide structures and energies of reactants, intermediates, and transition states for Gly-Leu*-Gly-Gly-Lys amide ions that were combined with RRKM calculations of unimolecular rate constants. The calculations indicated that Brønsted acid-catalyzed eliminations were kinetically preferred over direct loss of N₂ from the diazirine ring. Mechanisms are proposed to explain the proton-initiated reactions and discuss the reaction products. The non-catalyzed diazirine ring cleavage and N₂ loss is proposed as a thermometer dissociation for peptide ion dissociations.
Evaluated kinetic and photochemical data for atmospheric chemistry
NASA Technical Reports Server (NTRS)
Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J.; Watson, R. T.
1980-01-01
This paper contains a critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10-55 km altitude). Data sheets have been prepared for 148 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each reaction a preferred value of the rate coefficient at 298 K is given together with a temperature dependency where possible. The selection of the preferred value is discussed, and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available data on enthalpies of formation of the reactant and product species.
NASA Astrophysics Data System (ADS)
Detwiler, Michael D.; Milligan, Cory A.; Zemlyanov, Dmitry Y.; Delgass, W. Nicholas; Ribeiro, Fabio H.
2016-06-01
Formic acid dehydrogenation turnover rates (TORs) were measured on Pt(111), Pt(100), and polycrystalline Pt foil surfaces at a total pressure of 800 Torr between 413 and 513 K in a batch reactor connected to an ultra-high vacuum (UHV) system. The TORs, apparent activation energies, and reaction orders are not sensitive to the structure of the Pt surface, within the precision of the measurements. CO introduced into the batch reactor depressed the formic acid dehydrogenation TOR and increased the reaction's apparent activation energies on Pt(111) and Pt(100), consistent with behavior predicted by the Temkin equation. Two reaction mechanisms were explored which explain the formic acid decomposition mechanism on Pt, both of which include dissociative adsorption of formic acid, rate limiting formate decomposition, and quasi-equilibrated hydrogen recombination and CO adsorption. No evidence was found that catalytic supports used in previous studies altered the reaction kinetics or mechanism.
Kinetics of low pressure CVD growth of SiO2 on InP and Si
NASA Technical Reports Server (NTRS)
Iyer, R.; Lile, D. L.
1988-01-01
The kinetics of low pressure CVD growth of SiO2 from SiH4 and O2 has been investigated for the case of an indirect (remote) plasma process. Homogeneous (gas phase) and heterogeneous operating ranges have been experimentally identified. The process was shown to be consistent within the heterogeneous surface-reaction dominated range of operation. A kinetic rate equation is given for growth at 14 W RF power input and 400 mtorr total pressure on both InP and Si substrates. The process exhibits an activation energy of 8.4 + or - 0.6 kcal/mol.
NASA Astrophysics Data System (ADS)
Uecker, Hannes
2004-04-01
The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.
Somogyi, Arpád
2008-12-01
The usefulness of gas-phase H/D exchange is demonstrated to probe heterogeneous fragment and parent ion populations. Singly and multiply protonated peptides/proteins were fragmented by using sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The fragments and the surviving precursor ions then all undergo H/D exchange in the gas-phase with either D(2)O or CD(3)OD under the same experimental conditions. Usually, 10 to 60 s of reaction time is adequate to monitor characteristic differences in the H/D exchange kinetic rates. These differences are then correlated to isomeric ion structures. The SORI-HDX method can be used to rapidly test fragment ion structures and provides useful insights into peptide fragmentation mechanisms.
Numerical Simulation of Combustion and Extinction of a Solid Cylinder in Low-Speed Cross Flow
NASA Technical Reports Server (NTRS)
Tien, J. S.; Yang, Chin Tien
1998-01-01
The combustion and extinction behavior of a diffusion flame around a solid fuel cylinder (PMMA) in low-speed forced flow in zero gravity was studied numerically using a quasi-steady gas phase model. This model includes two-dimensional continuity, full Navier Stokes' momentum, energy, and species equations with a one-step overall chemical reaction and second-order finite-rate Arrhenius kinetics. Surface radiation and Arrhenius pyrolysis kinetics are included on the solid fuel surface description and a parameter Phi, representing the percentage of gas-phase conductive heat flux going into the solid, is introduced into the interfacial energy balance boundary condition to complete the description for the quasi-steady gas-phase system. The model was solved numerically using a body-fitted coordinate transformation and the SIMPLE algorithm. The effects of varying freestream velocity and Phi were studied. These parameters have a significant effect on the flame structure and extinction limits. Two flame modes were identified: envelope flame and wake flame. Two kinds of flammability limits were found: quenching at low-flow speeds due to radiative loss and blow-off at high flow speeds due to insufficient gas residence time. A flammability map was constructed showing the existence of maximum Phi above which the solid is not flammable at any freestream velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oßwald, Patrick; Köhler, Markus
A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimentalmore » data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.« less
Further analytical study of hybrid rocket combustion
NASA Technical Reports Server (NTRS)
Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.
1972-01-01
Analytical studies of the transient and steady-state combustion processes in a hybrid rocket system are discussed. The particular system chosen consists of a gaseous oxidizer flowing within a tube of solid fuel, resulting in a heterogeneous combustion. Finite rate chemical kinetics with appropriate reaction mechanisms were incorporated in the model. A temperature dependent Arrhenius type fuel surface regression rate equation was chosen for the current study. The governing mathematical equations employed for the reacting gas phase and for the solid phase are the general, two-dimensional, time-dependent conservation equations in a cylindrical coordinate system. Keeping the simplifying assumptions to a minimum, these basic equations were programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and, the Crank-Nicolson scheme for the solid phase.
The molecular composition of dense interstellar clouds
NASA Technical Reports Server (NTRS)
Allen, M.; Robinson, G. W.
1977-01-01
Presented in this paper is an ab initio chemical model for dense interstellar clouds that incorporates 598 grain surface reactions, with small grains providing the reaction area. Gas-phase molecules are depleted through collisions with grains. The abundances of 372 chemical species are calculated as a function of time and are found to be of sufficient magnitude to explain most observations. Peak abundances are achieved on time scales of the order of 100,000 to 1 million years, depending on cloud density and kinetic temperature. The reaction rates for ion-molecule chemistry are approximately the same, indicating that surface and gas-phase chemistry may be coupled in certain regions. The composition of grain mantles is shown to be a function of grain radius. In certain grain-size ranges, large molecules containing two or more heavy atoms are more predominant than lighter 'ices' - H2O, NH3, and CH4. It is possible that absorption due to these large molecules in the mantle may contribute to the observed 3-micron band in astronomical spectra.
Astrochemistry and the Role of Laboratory and Theoretical Support
NASA Technical Reports Server (NTRS)
Herbst, E.
2006-01-01
We emphasize some current needs of astrochemists for laboratory data. The data are urgently required both to detect molecules in assorted regions and to produce robust models of these regions. Three areas of laboratory-based research are particularly crucial and yet are not being studied in the United States: (i) reactions more complex than the formation of molecular hydrogen occurring on interstellar grain analogs, (ii) molecular spectroscopy in the THz (far-infrared) region of the electromagnetic spectrum, and (iii) gas-phase kinetics of reactions leading to complex molecules. Without solid knowledge of many unstudied but key reactions, both in the gas and on grains, astrochemists will not be in position to keep up with the large amount of new information expected to come from the next generation of telescopes.
Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption
NASA Astrophysics Data System (ADS)
Renbaum, L. H.; Smith, G. D.
2011-03-01
In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid) are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.
Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo
2016-01-01
We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.
Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder.
Cremer, D R; Eichner, K
2000-06-01
Spice paprika (red pepper; Capsicum annuum) is the most cultivated spice worldwide and is used mainly for its color and pungency. However, current research is also focusing on the flavor as an important parameter. This paper deals with the kinetics of the formation of those volatiles that indicate a decrease in spice paprika quality due to Maillard reaction, hydrolytic reactions, and oxidative degradation reactions of lipids such as fatty acids and carotenoids. Spice paprika volatiles were quantitatively analyzed by means of headspace gas chromatography (HS-GC) and solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The kinetics of their formation were investigated, and the respective activation energies determined. Strecker aldehyde, acetone, and methanol formation followed a pseudo-zero-order reaction kinetic, and formation of dimethyl sulfide (DMS) was characterized by a first-order kinetic. The activation energies determined were between 86.3 and 101.8 for the Strecker aldehydes acetaldehyde (AA), 2-methylpropanal (2-MP), 3-methylbutanal (3-MB), and 2-methylbutanal (2-MB), 130.7 for acetone, 114.2 for methanol, and 109.7 kJ/mol for DMS. The amounts of Strecker aldehydes formed were correlated to the concentrations of the corresponding free amino acids present in the samples. The formation of hexanal and 6-methyl-5-hepten-2-one in Capsicum annuum during processing was confirmed, and the formation of beta-ionone was probably described for the first time. During heating, the concentration of hexanal increased rapidly. The formation of 6-methyl-5-hepten-2-one confirms that Capsicum annuum fruits contain lycopene.
Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheps, Leonid; Chandler, David W.
Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transientmore » reaction intermediates in a simple, inexpensive, and robust experimental package.« less
NASA Astrophysics Data System (ADS)
Guerra, Raul J.; Lezama, Jesus; Cordova-Sintjago, Tania; Chuchani, Gabriel
2018-05-01
The mechanisms of gas-phase elimination kinetics of 2,2-dimethoxypropane in the presence of hydrogen chloride, trifluoroacetic acid and acetic acid were studied using Moller Plesset, ab initio combined method Complete Basis Set (CBS)-QB3 and various density functional theory methods with 6-311G(d,p) and 6-311++G(d,p) basis sets. The M06-2X/6-311++G(d,p) method provided reasonable agreement with the experimental enthalpy and energy of activation. Formation of 2-methoxypropene and methanol products occurs through six-membered cyclic ring transition state (TS) structure. The TS was characterised by single imaginary frequency, and confirmed through intrinsic reaction coordinate (IRC) calculations. The IRC calculations suggest the development of a van der Waal complex between the 2, 2-dimethoxy propane and the acid catalyst, leading to the TS formation. The process of decomposition in the absence of the acid catalyst requires much higher temperature with an energy of activation above 200 kJ/mol. This fact appears to be a consequence of a four-membered cyclic TS-type of mechanism in the non-catalysed reaction. Structural parameters, analyses of natural bond orbital charges and bond orders of the acid-catalysed elimination reactions in this study suggest that the polarisation of the C-O bond, in the direction Cδ+-Oδ-, is rate-determining in the TS. These reactions are non-synchronous concerted polar in nature.
A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction
NASA Technical Reports Server (NTRS)
Lian, Yongsheng; Xu, Kun
1999-01-01
This paper concerns the extension of the multicomponent gas-kinetic BGK-type scheme to multidimensional chemical reactive flow calculations. In the kinetic model, each component satisfies its individual gas-kinetic BGK equation and the equilibrium states of both components are coupled in space and time due to the momentum and energy exchange in the course of particle collisions. At the same time, according to the chemical reaction rule one component can be changed into another component with the release of energy, where the reactant and product could have different gamma. Many numerical test cases are included in this paper, which show the robustness and accuracy of kinetic approach in the description of multicomponent reactive flows.
Perspective: chemical dynamics simulations of non-statistical reaction dynamics
Ma, Xinyou; Hase, William L.
2017-01-01
Non-statistical chemical dynamics are exemplified by disagreements with the transition state (TS), RRKM and phase space theories of chemical kinetics and dynamics. The intrinsic reaction coordinate (IRC) is often used for the former two theories, and non-statistical dynamics arising from non-IRC dynamics are often important. In this perspective, non-statistical dynamics are discussed for chemical reactions, with results primarily obtained from chemical dynamics simulations and to a lesser extent from experiment. The non-statistical dynamical properties discussed are: post-TS dynamics, including potential energy surface bifurcations, product energy partitioning in unimolecular dissociation and avoiding exit-channel potential energy minima; non-RRKM unimolecular decomposition; non-IRC dynamics; direct mechanisms for bimolecular reactions with pre- and/or post-reaction potential energy minima; non-TS theory barrier recrossings; and roaming dynamics. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320906
NASA Astrophysics Data System (ADS)
Sio, Hong; Rinderknecht, Hans; Rosenberg, Michael; Zylstra, Alex; Séguin, Fredrick; Gatu Johnson, Maria; Li, Chikang; Petrasso, Richard; Hoffman, Nelson; Kagan, Krigory; Molvig, Kim; Amendt, Peter; Bellei, Claudio; Wilks, Scott; Stoeckl, Christian; Glebov, Vladimir; Betti, Riccardo; Sangster, Thomas; Katz, Joseph
2014-10-01
To explore kinetic and multi-ion-fluid effects in D3He and T3He gas-filled shock-driven implosions, multiple nuclear reaction histories were measured using the upgraded Particle Temporal Diagnostic (PTD) on OMEGA. For D3He gas-filled implosions, the relative timing of the DD and D3He reaction histories were measured with 20 ps precision. For T3He gas-filled implosions (with 1-2% deuterium), the relative timing of the DT and D3He reaction histories were measured with 10 ps precision. The observed differences between the reaction histories on these two OMEGA experiments are contrasted to 1-D single-ion hydro simulations for different gas-fill pressure and gas mixture. This work is supported in part by the U.S. DOE, LLNL, LLE, and NNSA SSGF.
A Novel Study of Methane-Rich Gas Reforming to Syngas and Its Kinetics over Semicoke Catalyst
Zhang, Guojie; Su, Aiting; Qu, Jiangwen; Du, Yannian
2014-01-01
A small-size gasification unit is improved through process optimization to simulate industrial United Gas Improvement Company gasification. It finds that the reaction temperature has important impacts on semicoke catalyzed methane gas mixture. The addition of water vapor can enhance the catalytic activity of reforming, which is due to the fact that addition of water vapor not only removes carbon deposit produced in the reforming and gasification reaction processes, but also participates in gasification reaction with semicoke to generate some active oxygen-containing functional groups. The active oxygen-containing functional groups provide active sites for carbon dioxide reforming of methane, promoting the reforming reaction. It also finds that the addition of different proportions of methane-rich gas can yield synthesis gas with different H2/CO ratio. The kinetics study shows that the semicoke can reduce the activation energy of the reforming reaction and promote the occurrence of the reforming reaction. The kinetics model of methane reforming under the conditions of steam gasification over semicoke is as follows: k-=5.02×103·pCH40.71·pH20.26·exp(−74200/RT). PMID:24959620
NASA Technical Reports Server (NTRS)
Miron, Y.; Perlee, H. E.
1974-01-01
The various chemical reactions that occur and that could possibly occur in the RCS engines utilizing hydrazine-type fuel/nitrogen tetroxide propellant systems, prior to ignition (preignition), during combustion, and after combustion (postcombustion), and endeavors to relate the hard-start phenomenon to some of these reactions are discussed. The discussion is based on studies utilizing a variety of experimental techniques and apparatus as well as current theories of chemical reactions and reaction kinetics. The chemical reactions were studied in low pressure gas flow reactors, low temperature homogeneous- and heterogeneous-phase reactors, simulated two-dimensional (2-D) engines, and scaled and full size engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coltrin, M.E.; Kee, R.J.; Rupley, F.M.
1991-07-01
Heterogeneous reaction at the interface between a solid surface and adjacent gas is central to many chemical processes. Our purpose for developing the software package SURFACE CHEMKIN was motivated by our need to understand the complex surface chemistry in chemical vapor deposition systems involving silicon, silicon nitride, and gallium arsenide. However, we have developed the approach and implemented the software in a general setting. Thus, we expect it will find use in such diverse applications as chemical vapor deposition, chemical etching, combustion of solids, and catalytic processes, and for a wide range of chemical systems. We believe that it providesmore » a powerful capability to help model, understand, and optimize important industrial and research chemical processes. The SURFACE CHEMKIN software is designed to work in conjunction with the CHEMKIN-2 software, which handles the chemical kinetics in the gas phase. It may also be used in conjunction with the Transport Property Package, which provides information about molecular diffusion. Thus, these three packages provide a foundation on which a user can build applications software to analyze gas-phase and heterogeneous chemistry in flowing systems. These packages should not be considered programs'' in the ordinary sense. That is, they are not designed to accept input, solve a particular problem, and report the answer. Instead, they are software tools intended to help a user work efficiently with large systems of chemical reactions and develop Fortran representations of systems of equations that define a particular problem. It is up the user to solve the problem and interpret the answer. 11 refs., 15 figs., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Liu, Haitao; Huang, Zhaohui; Zhang, Xiaoguang; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Min, Xin
2018-01-01
Understanding the kinetic barrier and driving force for crystal nucleation and growth is decisive for the synthesis of nanowires with controllable yield and morphology. In this research, we developed an effective reaction system to synthesize very large scale α-Si3N4 nanowires (hundreds of milligrams) and carried out a comparative study to characterize the kinetic influence of gas precursor supersaturation and liquid metal catalyst. The phase composition, morphology, microstructure and photoluminescence properties of the as-synthesized products were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and room temperature photoluminescence measurement. The yield of the products not only relates to the reaction temperature (thermodynamic condition) but also to the distribution of gas precursors (kinetic condition). As revealed in this research, by controlling the gas diffusion process, the yield of the nanowire products could be greatly improved. The experimental results indicate that the supersaturation is the dominant factor in the as-designed system rather than the catalyst. With excellent non-flammability and high thermal stability, the large scale α-Si3N4 products would have potential applications to the improvement of strength of high temperature ceramic composites. The photoluminescence spectrum of the α-Si3N4 shows a blue shift which could be valued for future applications in blue-green emitting devices. There is no doubt that the large scale products are the base of these applications.
Kinetics and products of the OH radical-initiated reaction of 3-methyl-2-butenal.
Tuazon, Ernesto C; Aschmann, Sara M; Nishino, Noriko; Arey, Janet; Atkinson, Roger
2005-06-07
Kinetics and products of the gas-phase reaction of OH radicals with 3-methyl-2-butenal [(CH3)2C=CHCHO] have been investigated at room temperature and atmospheric pressure of air. Using a relative rate method with methacrolein as the reference compound, a rate constant for the reaction of OH radicals with 3-methyl-2-butenal of (6.21 +/- 0.18) x 10(-11) cm3 molecule(-1) s(-1) at 296 +/- 2 K was measured, where the indicated error does not include the uncertainty in the rate constant for the methacrolein reference compound. Products of this reaction were investigated using in situ Fourier transform infrared (FT-IR) spectroscopy and solid phase microextraction (SPME) fibers coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine for on-fiber derivatization of carbonyl compounds, with subsequent thermal desorption and analysis by gas chromatography. The products observed and the molar formation yields were: glyoxal, 40 +/- 3%; acetone, 74 +/- 6%; 2-hydroxy-2-methylpropanal, 4.6 +/- 0.7%; CO2, 39% initially, decreasing to 30% at greater extents of reaction; peroxyacyl nitrate(s) [RC(O)OONO2], 5-8%, increasing with the extent of reaction and with the sum of the CO2 and RC(O)OONO2 yields being 38 +/- 6%; and organic nitrates [RONO2], 8.5 +/- 2.3%. The formation of these products is readily explained by a reaction mechanism based on those previously formulated for the corresponding reactions of the alpha,beta-unsaturated aldehydes acrolein, crotonaldehyde and methacrolein. Based on the mechanism proposed, at room temperature H-atom abstraction from the CHO group accounts for 40 +/- 6% of the overall reaction, and OH radical addition to the carbon atoms of the C=C bond accounts for 53 +/- 4% of the overall reaction. Hence 93 +/- 8% of the reaction products and pathways are accounted for.
Kinetics of liquid-solid reactions in naphthenic acid conversion and Kraft pulping
NASA Astrophysics Data System (ADS)
Yang, Ling
Two liquid-solid reactions, in which the morphology of the solid changes as the reactions proceeds, were examined. One is the NA conversion in oil by decarboxylation on metal oxides and carbonates, and the other is the Kraft pulping in which lignin removal by delignification reaction. In the study of the NA conversion, CaO was chosen as the catalyst for the kinetic study from the tested catalysts based on NA conversion. Two reaction mixtures, carrier oil plus commercial naphthenic acids and heavy vacuum gas oil (HVGO) from Athabasca bitumen, were applied in the kinetic study. The influence of TAN, temperature, and catalyst loading on the NA conversion and decarboxylation were studied systematically. The results showed that the removal rate of TAN and the decarboxylation of NA were both independent of the concentration of NA over the range studied, and significantly dependent on reaction temperature. The data from analyzing the spent catalyst demonstrated that calcium naphthenate was an intermediate of the decarboxylation reaction of NA, and the decomposition of calcium naphthenate was a rate-determining step. In the study on the delignification of the Kraft pulping, a new mechanism was proposed for the heterogeneous delignification reaction during the Kraft pulping process. In particular, the chemical reaction mechanism took into account the heterogeneous nature of Kraft pulping. Lignin reacted in parallel with sodium hydroxide and sodium sulfide. The mechanism consists of three key kinetic steps: (1) adsorption of hydroxide and hydrosulfide ions on lignin; (2) surface reaction on the solid surface to produce degraded lignin products; and (3) desorption of degradation products from the solid surface. The most important step for the delignification process is the surface reaction, rather than the reactions occurring in the liquid phase. A kinetic model has, thus, been developed based on the proposed mechanism. The derived kinetic model showed that the mechanism could be employed to predict the pulping behavior under a variety of conditions with good accuracy.
El Masri, Ahmad; Laversin, Hélène; Chakir, Abdelkhaleq; Roth, Estelle
2016-12-01
Heterogeneous oxidation of chlorpyrifos ethyl (CLP) coated sand particles by gaseous ozone was studied. Mono-size sand was coated with CLP at different coating levels between 10 and 100 μg g -1 and exposed to ozone. Results were analyzed thanks to Gas Surface Reaction and Surface Layer Reaction Models. Kinetic parameters derived from these models were analyzed and led to several conclusions. The equilibrium constant of O 3 between the gas phase and the CLP-coated sand was independent on the sand contamination level. Ozone seems to have similar affinity for coated or uncoated sand surface. Meanwhile, the kinetic parameters decreased with an increasing coating level. Chlorpyrifos Oxon, (CLPO) has been identified and quantified as an ozonolysis product. The product yield of CLPO remains constant (53 ± 10%) for the different coating level. The key parameter influencing the CLP reactivity towards ozone was the CLP-coating level. This dependence had a great influence on the lifetime of the CLP coated on sand particles, with respect to ozone, which could reach several years at high contamination level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Soot Structure on Soot Oxidation Kinetics
2011-06-01
information from PSDs, temperature, gas -phase composition was used to develop an oxidation kinetic expression that accounts for the effects of...from PSDs, temperature, gas -phase composition was used to develop an oxidation kinetic expression that accounts for the effects of temperature, O2, and...systematic studies of these effects under the temperatures and times of interest to soot oxidation in gas turbine engines. Studies have shown that soot
Heterogeneous reaction kinetics and mechanism of the nitration of aerosolized protein by O3 and NO2
NASA Astrophysics Data System (ADS)
Shiraiwa, Manabu; Sosedova, Yulia; Rouvière, Aurélie; Ammann, Markus; Pöschl, Ulrich
2010-05-01
The effects of air pollution on allergic diseases are not yet well-understood. Proteins contained in biogenic aerosol particles (pollen, spores, bacteria, etc.), which accounts for up to 5% of urban air particulate matter, are efficiently nitrated in polluted environments before inhalation and deposition in the human respiratory tract [1], which is likely to trigger immune reactions for allergies. Proteins undergo a nitration reaction that leads to the formation of 3-nitrotyrosine residues. The kinetics and reaction mechanism of protein nitration are still largely unknown. The kinetics of nitration of protein particles by O3 and NO2 was measured using the short-lived radioactive tracer 13N. The routine for the online production of 13N-labeled nitrogen dioxide and the main experimental setup were reported previously [2]. Bovine serum albumin (BSA) was used as a model protein compound. Deliquesced NaCl particles were also used as a reference. Particles generated by an ultrasonic nebulizer were mixed with O3 (0 - 150 ppb) and NO2 (5 - 100 ppb) in a flow tube reactor under humid conditions (30 - 75 % RH), which lead to gel-like swelling of the protein [3, 4]. The reaction time was varied in the range of 4 -10 min by changing the position of the inlet of the reactor. The surface concentration of particles was monitored by a scanning mobility particle sizer (SMPS). After passing through the flow tube reactor, the gas and aerosol flow entered a narrow parallel-plate diffusion denuder coated to selectively absorb gas phase NO2, followed by a particle filter collecting the particles. The γ detectors were attached to each denuders and the filter to count the amount of gamma quanta, which are emitted in the decay of 13N. From the count-rate, the concentration of the corresponding species was derived, which was used for the calculation of uptake coefficients of NO2 (γNO2). In absence of O3 in the flow tube reactor, NO2 uptake by both BSA and deliquesced NaCl were below the detection limit (γNO2 < ~10-6). The γNO2 by BSA is of the order of 10-5, strongly depending on gas phase ozone concentration, which indicates that O3 plays an important role in NO2 uptake. The γNO2 by deliquesced NaCl is one order of magnitude smaller, which is likely to be attributed to the formation of gas phase NO3 and N2O5, as neither O3 nor NO2 is expected to rapidly react with deliquesced NaCl. This amount of uptake is considered to be maximum contribution of gas phase NO3 radicals and N2O5 to uptake of 13N-labeled species by protein particles. The possible mechanisms of high NO2 uptake by protein particles are: 1) surface reaction between adsorbed O3 and NO2 forming NO3 radicals on the surface which react with protein [5], 2) O3 first reacts with protein forming intermediates, followed by reaction with NO2. Further experiments and modelling are under way. REFERENCES [1] Franze et al., Environ. Sci. Tech., 39, 1673 (2005). [2] Sosedova et al., J. Phys. Chem A., 113, 10979 (2009). [3] Mikhailov et al., Atmos. Chem. Phys., 4, 323 (2004). [4] Mikhailov et al., Atmos. Chem. Phys., 9, 9491 (2009). [5] Shiraiwa et al., Atmos. Chem. Phys., 9, 9571 (2009)
Hsu, Hui-Tsung; Chen, Ming-Jen; Tseng, Tzu-Ping; Cheng, Li-Hsin; Huang, Li-Jen; Yeh, Tai-Sheng
2016-11-15
Kinetic analysis for the formation of acrylamide in heated foods has been typically performed using only measured data of acrylamide in foods; however, its possible loss caused by release from heated foods into fried oil and air has seldom been considered. The results obtained from the monitoring of acrylamide by frying French fries indicated that acrylamide is distributed in three phases: French fries, frying oil, and air. From the evolved gas analysis of acrylamide and the measured concentration profile of the total acrylamide amount present in these phases, the kinetic behaviour for acrylamide formation does not obey the commonly used model of two-step consecutive reactions during frying, while a lumped kinetic model was proposed for the total acrylamide amount. Moreover, a high acrylamide level in air was observed, implying that, apart from consumers of French fries, fast-food restaurant workers are potentially subject to occupational hazards from acrylamide inhalation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaporation kinetics of Mg2SiO4 crystals and melts from molecular dynamics simulations
NASA Technical Reports Server (NTRS)
Kubicki, J. D.; Stolper, E. M.
1993-01-01
Computer simulations based on the molecular dynamics (MD) technique were used to study the mechanisms and kinetics of free evaporation from crystalline and molten forsterite (i.e., Mg2SiO4) on an atomic level. The interatomic potential employed for these simulations reproduces the energetics of bonding in forsterite and in gas-phase MgO and SiO2 reasonably accurately. Results of the simulation include predicted evaporation rates, diffusion rates, and reaction mechanisms for Mg2SiO4(s or l) yields 2Mg(g) + 20(g) + SiO2(g).
Stressed Oxidation Life Prediction for C/SiC Composites
NASA Technical Reports Server (NTRS)
Levine, Stanley R.
2004-01-01
The residual strength and life of C/SiC is dominated by carbon interface and fiber oxidation if seal coat and matrix cracks are open to allow oxygen ingress. Crack opening is determined by the combination of thermal, mechanical and thermal expansion mismatch induced stresses. When cracks are open, life can be predicted by simple oxidation based models with reaction controlled kinetics at low temperature, and by gas phase diffusion controlled kinetics at high temperatures. Key life governing variables in these models include temperature, stress, initial strength, oxygen partial pressure, and total pressure. These models are described in this paper.
Becerra, Rosa; Bowes, Sarah-Jane; Ogden, J Steven; Cannady, J Pat; Adamovic, Ivana; Gordon, Mark S; Almond, Matthew J; Walsh, Robin
2005-08-07
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O(2). The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: [see text] The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H(2)SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O+SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T-->S process in H2SiOO. This process has a small spin-orbit coupling matrix element, consistent with an estimate of its rate constant of 1x10(9) s-1 obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2+O2 and SiCl2+O2.
Influence of Antimony-Halogen Additives on Flame Propagation.
Babushok, Valeri I; Deglmann, Peter; Krämer, Roland; Linteris, Gregory T
2017-01-01
A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium calculations with a set of possible Sb-Br-C-H-O species, and these are used to develop the species and reactions in a detailed kinetic model for antimony flame inhibition. The complete thermodynamic data set and kinetic mechanism are presented. Laminar burning velocity simulations are used to validate the mechanism against available data in the literature, as well as to explore the relative performance of the antimony-halogen compounds. Further analysis of the premixed flame simulations has unraveled the catalytic radical recombination cycle of antimony. It includes (primarily) the species Sb, SbO, SbO 2 , and HOSbO, and the reactions: Sb+O+M=SbO+M; Sb+O 2 +M=SbO 2 +M; SbO+H=Sb+OH; SbO+O=Sb+O 2 ; SbO+OH+M=HOSbO+M; SbO 2 +H 2 O=HOSbO+OH; HOSbO+H=SbO+H 2 O; SbO+O+M=SbO 2 +M. The inhibition cycles of antimony are shown to be more effective than those of bromine, and intermediate between the highly effective agents CF 3 Br and trimethylphosphate. Preliminary examination of a Sb/Br gas-phase system did not show synergism in the gas-phase catalytic cycles (i.e., they acted essentially independently).
Influence of Antimony-Halogen Additives on Flame Propagation*
Babushok, Valeri I.; Deglmann, Peter; Krämer, Roland; Linteris, Gregory T.
2016-01-01
A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium calculations with a set of possible Sb-Br-C-H-O species, and these are used to develop the species and reactions in a detailed kinetic model for antimony flame inhibition. The complete thermodynamic data set and kinetic mechanism are presented. Laminar burning velocity simulations are used to validate the mechanism against available data in the literature, as well as to explore the relative performance of the antimony-halogen compounds. Further analysis of the premixed flame simulations has unraveled the catalytic radical recombination cycle of antimony. It includes (primarily) the species Sb, SbO, SbO2, and HOSbO, and the reactions: Sb+O+M=SbO+M; Sb+O2+M=SbO2+M; SbO+H=Sb+OH; SbO+O=Sb+O2; SbO+OH+M=HOSbO+M; SbO2+H2O=HOSbO+OH; HOSbO+H=SbO+H2O; SbO+O+M=SbO2+M. The inhibition cycles of antimony are shown to be more effective than those of bromine, and intermediate between the highly effective agents CF3Br and trimethylphosphate. Preliminary examination of a Sb/Br gas-phase system did not show synergism in the gas-phase catalytic cycles (i.e., they acted essentially independently). PMID:28133390
Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep
2016-09-01
The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.
Ion Kinetics in Silane Plasmas
1988-02-01
stimulated emission. Rg2 + is then a classical excimer laser scheme which ought to apply generally to the homonuclear and heteronuclear rare- gas dimer...kinetics of ion formation by electron impact and subsequent reaction in silane:noble- gas mixtures have been examined using pulsed ion cyclotron reso...charge transfer reactions such as X + + SiH4 -- SiH + + X + (4 - n)(H, H2) where X+ is a rare- gas or s:licon-hydride ion. Room-temperature rate constants
Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.
2015-10-27
In this paper we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10–50 fold acceleration originates from free radical chain reactions, propagated by alkoxy radicals that form inside the aerosol by the reaction of NO with peroxy radicals, which do not appear to produce chain terminating products (e.g., alkyl nitrates), unlike gas phase mechanisms. Lastly, a kinetic model, constrained by experiments, suggests that in polluted regions heterogeneous oxidation plays a much more prominent role in the daily chemical evolution of organic aerosol than previously believed.
Gonzalez, Javier; Anglada, Josep M
2010-09-02
The gas phase reaction between nitric acid and hydroxyl radical, without and with a single water molecule, has been investigated theoretically using the DFT-B3LYP, MP2, QCISD, and CCSD(T) theoretical approaches with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction without water begins with the formation of a prereactive hydrogen-bonded complex and has several elementary reactions processes. They include proton coupled electron transfer, hydrogen atom transfer, and proton transfer mechanisms, and our kinetic study shows a quite good agreement of the behavior of the rate constant with respect to the temperature and to the pressure with the experimental results from the literature. The addition of a single water molecule results in a much more complex potential energy surface although the different elementary reactions found have the same electronic features that the naked reaction. Two transition states are stabilized by the effect of a hydrogen bond interaction originated by the water molecule, and in the prereactive hydrogen bond region there is a geometrical rearrangement necessary to prepare the HO and HNO(3) moieties to react to each other. This step contributes the reaction to be slower than the reaction without water and explains the experimental finding, pointing out that there is no dependence for the HNO(3) + HO reaction on water vapor.
Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste
Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming
2017-01-01
This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste. PMID:28546964
Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste.
Feng, Lei; Gao, Yuan; Kou, Wei; Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming
2017-01-01
This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste.
The Dynamics of Solid Propellant Combustion.
1980-12-31
review the theory and summarize most of the nume- rical and experimental findings by our research group . The complete literature so far published by this...deradiation reported by the Princeton group (Refs. 58-59). Ciepluch (Refs.20-22) conducted one of the first systematic experimental studies of depressurization...is the reaction order of the overall, one-step, irreversible kinetics controlling the gas phase heat release. Taking into account the quasi -steady
NASA Astrophysics Data System (ADS)
Zahardis, J.; Petrucci, G. A.
2006-11-01
The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS): the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the primary products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal) is described. Anomalies in the relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide polymers. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, a series of atmospheric implications of oxidative processing of particulate containing fatty acids is presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semisolids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation. Other effects, including the potential role of aldehydic products of ozonolysis in increasing the oxidative capacity of the troposphere, are also discussed.
Ocaña, A J; Blázquez, S; Ballesteros, B; Canosa, A; Antiñolo, M; Albaladejo, J; Jiménez, E
2018-02-21
Ethanol, CH 3 CH 2 OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH 3 CH 2 OH (k(T)) between 21 and 107 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(107 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10 -11 (T/300 K) -(0.71±0.10) cm 3 molecule -1 s -1 . In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (∼10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10 -11 cm 3 molecule -1 s -1 at 100 K and around 1 × 10 -10 cm 3 molecule -1 s -1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.
NASA Astrophysics Data System (ADS)
Ocaña, A. J.; Blázquez, S.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejoab, J.; Jiménez, E.
2018-02-01
Ethanol, CH3CH2OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH3CH2OH (k(T)) between 21 and 10^7 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(10^7 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10^-11 (T/300 K)-(0.71±0.10) cm^3 molecule^-1 s^-1. In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (˜10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10^-11 cm^3 molecule^-1 s^-1 at 100 K and around 1 × 10^-10 cm^3 molecule^-1 s^-1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeTuri, V.F.; Ervin, K.M.
Energy-resolved competitive collision-induced dissociation methods are used to measure the gas-phase acidities of a series of alcohols (methanol, ethanol, 2-propanol, and 2-methyl-2-propanol). The competitive dissociation reactions of fluoride-alcohol, [F{sup {minus}}{center{underscore}dot}HOR], alkoxide-water, [RO{sup {minus}}{center{underscore}dot}HOH], and alkoxide-methanol [RO{+-}{center{underscore}dot}HOCH{sub 3}] proton-bound complexes are studied using a guided ion beam tandem mass spectrometer. The reaction cross sections and product branching fractions to the two proton transfer channels are measured as a function of collision energy. The enthalpy difference between the two product channels is found by modeling the reaction cross sections near threshold using RRKM theory to account for the energy-dependent product branching ratiomore » and kinetic shift. From the enthalpy difference, the alcohol gas-phase acidities are determined relative to the well-known values of HF and H{sub 2}O. The measured gas-phase acidities are {Delta}{sub acid}H{sub 298}(CH{sub 3}OH) = 1599 {+-} 3 kJ/mol, {Delta}{sub acid}H{sub 298}(CH{sub 3}CH{sub 2}OH) = 1586 {+-} 5 kJ/mol, {Delta}{sub acid}H{sub 298}((CH{sub 3}){sub 2}CHOH) = 1576 {+-} 4 kJ/mol, and {Delta}{sub acid}H{sub 298}((CH{sub 3}){sub 3}COH) = 1573 {+-} 3 kJ/mol.« less
Development of an Advanced Computational Model for OMCVD of Indium Nitride
NASA Technical Reports Server (NTRS)
Cardelino, Carlos A.; Moore, Craig E.; Cardelino, Beatriz H.; Zhou, Ning; Lowry, Sam; Krishnan, Anantha; Frazier, Donald O.; Bachmann, Klaus J.
1999-01-01
An advanced computational model is being developed to predict the formation of indium nitride (InN) film from the reaction of trimethylindium (In(CH3)3) with ammonia (NH3). The components are introduced into the reactor in the gas phase within a background of molecular nitrogen (N2). Organometallic chemical vapor deposition occurs on a heated sapphire surface. The model simulates heat and mass transport with gas and surface chemistry under steady state and pulsed conditions. The development and validation of an accurate model for the interactions between the diffusion of gas phase species and surface kinetics is essential to enable the regulation of the process in order to produce a low defect material. The validation of the model will be performed in concert with a NASA-North Carolina State University project.
Methane chemistry involved in a low-pressure electron cyclotron wave resonant plasma discharge
NASA Astrophysics Data System (ADS)
Morrison, N. A.; William, C.; Milne, W. I.
2003-12-01
Radio frequency (rf) generated methane plasmas are commonly employed in the deposition of hydrogenated amorphous carbon (a-C:H) thin films. However, very little is known about the rf discharge chemistry and how it relates to the deposition process. Consequently, we have characterized a low-pressure methane plasma and compared the results with those obtained theoretically by considering the steady-state kinetics of the chemical processes present in a low-pressure plasma reactor, in order to elucidate the dominant reaction channels responsible for the generation of the active precursors required for film growth. Mass spectrometry measurements of the gas phase indicated little variation in the plasma chemistry with increasing electron temperature. This was later attributed to the partial saturation of the electron-impact dissociation and ionization rate constants at electron temperatures in excess of ˜4 eV. The ion densities in the plasma were also found to be strongly dependent upon the parent neutral concentration in the gas phase, indicating that direct electron-impact reactions exerted greater influence on the plasma chemistry than secondary ion-neutral reactions.
Comet 67P/Churyumov-Gerasimenko during the Rosetta mission: numerical simulation of dusty gas coma
NASA Astrophysics Data System (ADS)
Tenishev, Valeriy; Combi, Michael; Rubin, Martin; Hansen, Kenneth; Gombosi, Tamas
The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Having a limited amount of information regarding its coma, interpretation of measurements and safety consideration of the spacecraft will require modeling of the comet's environment. Such models should be able to simulate both the gas and dust phases of the coma as well as the interaction between them in a self-consistent manner. The relevant physical processes in the coma include photolytic reactions and interaction with the nucleus for the gas phase and drag by the gas, gravity of the nucleus, solar gravity and radiation pressure, and charging by the ambient plasma for the dust phase. Developing of such modeling capabilities will be able to link measurements obtained by different instruments onboard of spacecraft. Some examples of cometary comae simulations can be found in [1-3]. In this work we present our kinetic model of a dusty gas coma [4] with results of its application to the case of comet Churyumov-Gerasimenko at conditions corresponding to some stages the during the Rosetta mission. Based on the surface properties and local production rates obtained by MIRO, RSI and VIRTIS the model will be able to propagate the injected gas and dust into the coma linking the measurements to those obtained by ALICE, MIDAS and ROSINA for the gas phase and COSIMA and GIADA for the dust phase of the coma. A simultaneous simulation of the major components of the multi-phase coma will allow us to link observations of the gas and dust phases. In this work we present results of a numerical study of neutral/ionized multispecies gaseous and electrically charged dust environment of the comet Churyumov-Gerasimenko at a helio-centric distance of 1.3 AU. The simulation is performed in fully 3D geometry with a realistic nucleus model that describes its topological features and source distribution. Both, neutral and ionized components of the gas phase of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation [5] of the coma connected to the solar wind. Those parameters are used for calculation of the electric charge of dust grains. Trajectories of ions and electrically charged dust grains are simulated by accounting for the gas drag, Lorentz force, nucleus gravity and radiation pressure. REFFERENCES [1] M.R. Combi, Icarus, 123, 207-226 (1996) [2] Y. Skorov, G.N. Markelov, H.U. Keller, Solar Sys. Res. 38, 455-475 (2004) [3] V.V. Zakharov, A.V. Rodionov, G. A. Lukianov, J.F. Crifo, Icarus 201, 358-380 (2009) [4] V. Tenishev, M. R. Combi, B. Davidsson, Astrophysical Journal, 685, 659-677 (2008) [5] M. Rubin, K. C. Hansen, T. Gombosi, M. R. Combi, K. Altwegg, H. Balsiger, Icarus, 199, 505-519 (2009)
NASA Astrophysics Data System (ADS)
Guo, Qin; Zhang, Ni; Uchimaru, Tadafumi; Chen, Liang; Quan, Hengdao; Mizukado, Junji
2018-04-01
The rate constants for the gas-phase reactions of cyc-CF2CF2CF2CH=CH- with OH radicals were determined by a relative rate method between 253 and 328 K. The rate constant k1 at 298 K was measured to be (1.08 ± 0.04) × 10-13 cm3 molecule-1 s-1, and the Arrhenius expression was k1 = (3.72 ± 0.14) × 10-13 exp [(-370 ± 12)/T]. The atmospheric lifetime of cyc-CF2CF2CF2CH=CH- was calculated to be 107 d. The products and mechanism for the reaction of cyc-CF2CF2CF2CH=CH- with OH radicals were also investigated. CO, CO2, and COF2 were identified as the main carbon-containing products following the OH-initiated reaction. Moreover, the radiative efficiency (RE) was determined to be 0.143 W m-2 ppb-1, and the global warming potentials (GWPs) for 20, 100, and 500 yr were 54, 15, and 4, respectively. The photochemical ozone creation potential of the title compound was estimated to be 1.3.
NASA Astrophysics Data System (ADS)
Slade, Jonathan H.; Knopf, Daniel A.
2014-07-01
Organic aerosol can exhibit different phase states in response to changes in relative humidity (RH), thereby influencing heterogeneous reaction rates with trace gas species. OH radical uptake by laboratory-generated levoglucosan and methyl-nitrocatechol particles, serving as surrogates for biomass burning aerosol, is determined as a function of RH. Increasing RH lowers the viscosity of amorphous levoglucosan aerosol particles enabling enhanced OH uptake. Conversely, OH uptake by methyl-nitrocatechol aerosol particles is suppressed at higher RH as a result of competitive coadsorption of H2O that occupies reactive sites. This is shown to have substantial impacts on organic aerosol lifetimes with respect to OH oxidation. The results emphasize the importance of organic aerosol phase state to accurately describe the multiphase chemical kinetics and thus chemical aging process in atmospheric models to better represent the evolution of organic aerosol and its role in air quality and climate.
NASA Astrophysics Data System (ADS)
Liu, Hao; Lan, Peiqiang; Lu, Shangqing; Wu, Sufang
2018-06-01
Phosphogypsum (PG) as a low-cost calcium resource was used to prepare nano-CaCO3 in a three-phase system by reactions. Based on the population balance equation, nano-CaCO3 crystal nucleation and growth model in the gas (CO2)-liquid (NH3·H2O)-solid (CaSO4) three-phase system was established. The crystallization kinetic model of nano-CaCO3 in CO2-NH3·H2O-CaSO4 reactions system was experimental developed over an optimized temperature range of 20-40 °C and CO2 flow rate range of 138-251 ml/min as rCaCO3 =kn 32 πM2γ3/3R3ρ2T3 (C -C∗)0.8/[ ln (C /C∗) ]3 + πρ/3M kg3 kn(C -C∗) 2t3 , where nano-CaCO3 nucleation rate constant was kn = 6.24 ×1019 exp(-15940/RT) and nano-CaCO3 growth rate constant was kg = 0.79 exp(-47650/RT) respectively. Research indicated that nucleation rates and growth rates both increased with the increasing of temperature and CO32- ion concentration. And crystal growth was dependent on temperature more than that of nucleation process because the activation energy of CaCO3 growth was bigger than that of CaCO3 nucleation. Decreasing the reaction temperature and CO2 flow rate was more beneficial for producing nano-size CaCO3 because of the lower CaCO3 growth rates. The deduced kinetic equation could briefly predict the average particle sizes of nano-CaCO3.
Burke, Michael P.; Klippenstein, Stephen J.
2017-08-14
Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Michael P.; Klippenstein, Stephen J.
Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less
Influence of physical state on the ozonolysis of shikimic acid
NASA Astrophysics Data System (ADS)
Steimer, Sarah; Krieger, Ulrich; Lampimäki, Markus; Peter, Thomas; Ammann, Markus
2014-05-01
Atmospheric aerosols are an important focus of environmental research due to their effect on climate, air quality and human health. They undergo continuous transformation, changing their physical and chemical properties. Recent findings show that secondary organic aerosol (SOA) particles can form amorphous solids and semi-solids under atmospheric conditions [1]. Since such physical states are highly viscous, diffusivity within the bulk decreases. The decrease in mass transport could slow down chemical reactions, thereby increasing the lifetime of the organic compounds involved. First indications of such behavior were recently shown for reaction of thin protein films with ozone [2], formation of organonitrogen from ammonia uptake to α-pinene secondary organic material [3] and reaction of SOA-coated benzo[a]pyrene with ozone [4]. In this study, we investigated the influence of physical state on the ozonolysis of shikimic acid. Said carboxylic acid is a constituent of biomass burning aerosols and used here as a proxy for oxygenated organic material. Its viscosity was adjusted by varying the humidity of the system between 0% and 92% RH, assuming correlation between the two parameters since water acts as a plasticizer. The system was probed with three complementary techniques: an electrodynamic balance (EDB), measuring the response of single particles to changes in humidity, coated wall flow tube measurements, where uptake of ozone is measured via loss from the gas phase and in situ X-ray microspectroscopy on single particles, where oxidation of the bulk can be observed. Additionally, a kinetic model was used to facilitate data analysis. EDB measurements showed clear evidence of humidity dependent glass formation and correlation of water content and water diffusivity. The dependence of the ozonolysis on relative humidity was observed with both flow tube and microspectroscopy measurements. The coated wall flow tube experiments showed a long term, gradually changing ozone uptake over more than 15 hours, the magnitude of which varied over nearly two orders between lowest and highest humidity. It was possible to separate the uptake into two distinct kinetic regimes, the first of which displayed a Langmuir-Hinshelwood type behavior regarding the ozone gas phase concentration. Microspectroscopy showed that the speed at which the characteristic double bond peak of shikimic acid disappeared was humidity dependent. The measured dependence of the reaction kinetics on humidity supports the hypothesis that the uptake coefficient is highly dependent on the diffusion coefficients of ozone and/or shikimic acid in the organic film. [1] Virtanen, A., et al., An amorphous solid state of biogenic secondary organic aerosol particles. Nature, 2010. 467(7317): p. 824-827. [2] Shiraiwa, M., et al., Gas uptake and chemical aging of semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(27): p. 11003-11008. [3] Kuwata, M. and Martin, S. T., Phase of atmospheric secondary organic material affects its reactivity. Proceedings of the National Academy of Sciences of the United States of America, 109(43): p. 17354-17359. [4] Zhou, S., et al., Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discussions, 2013. 165: p. 391-406.
The Gaseous Explosive Reaction : A Study of the Kinetics of Composite Fuels
NASA Technical Reports Server (NTRS)
Stevens, F W
1929-01-01
This report deals with the results of a series of studies of the kinetics of gaseous explosive reactions where the fuel under observation, instead of being a simple gas, is a known mixture of simple gases. In the practical application of the gaseous explosive reaction as a source of power in the gas engine, the fuels employed are composite, with characteristics that are apt to be due to the characteristics of their components and hence may be somewhat complex. The simplest problem that could be proposed in an investigation either of the thermodynamics or kinetics of the gaseous explosive reaction of a composite fuel would seem to be a separate study of the reaction characteristics of each component of the fuel and then a study of the reaction characteristics of the various known mixtures of those components forming composite fuels more and more complex. (author)
NASA Astrophysics Data System (ADS)
Wittwer, D.; Abdullin, F. Sh.; Aksenov, N. V.; Albin, Yu. V.; Bozhikov, G. A.; Dmitriev, S. N.; Dressler, R.; Eichler, R.; Gäggeler, H. W.; Henderson, R. A.; Hübener, S.; Kenneally, J. M.; Lebedev, V. Ya.; Lobanov, Yu. V.; Moody, K. J.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Polyakov, A. N.; Piguet, D.; Rasmussen, P.; Sagaidak, R. N.; Serov, A.; Shirokovsky, I. V.; Shaughnessy, D. A.; Shishkin, S. V.; Sukhov, A. M.; Stoyer, M. A.; Stoyer, N. J.; Tereshatov, E. E.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K.; Wegrzecki, M.; Wilk, P. A.
2010-01-01
Currently, gas phase chemistry experiments with heaviest elements are usually performed with the gas-jet technique with the disadvantage that all reaction products are collected in a gas-filled thermalisation chamber adjacent to the target. The incorporation of a physical preseparation device between target and collection chamber opens up the perspective to perform new chemical studies. But this approach requires detailed knowledge of the stopping force (STF) of the heaviest elements in various materials. Measurements of the energy loss of mercury (Hg), radon (Rn), and nobelium (No) in Mylar and argon (Ar) were performed at low kinetic energies of around (40-270) keV per nucleon. The experimentally obtained values were compared with STF calculations of the commonly used program for calculating stopping and ranges of ions in matter (SRIM). Using the obtained data points an extrapolation of the STF up to element 114, eka-lead, in the same stopping media was carried out. These estimations were applied to design and to perform a first chemical experiment with a superheavy element behind a physical preseparator using the nuclear fusion reaction 244Pu( 48Ca; 3n) 289114. One decay chain assigned to an atom of 285112, the α-decay product of 289114, was observed.
The α-effect in gas-phase SN2 reactions of microsolvated anions: methanol as a solvent.
Thomsen, Ditte L; Reece, Jennifer N; Nichols, Charles M; Hammerum, Steen; Bierbaum, Veronica M
2014-09-18
The α-effect, an enhanced reactivity of nucleophiles with a lone-pair adjacent to the reaction center, has been studied in solution for several decades. The gas-phase α-effect has recently been documented in studies of SN2 reactions as well as in competing reactions for both bare and microhydrated anions. In the present work we extend our studies of the significance of microsolvation on the α-effect, employing methanol as the solvent, in the expectation that the greater stability of the methanol cluster relative to the water cluster will lower the reactivity and thereby allow studies over a wider efficiency range. We compare the gas-phase reactivity of the microsolvated α-nucleophile HOO(-)(CH3OH) to that of microsolvated normal alkoxy nucleophiles, RO(-)(CH3OH) in reactions with CH3Cl and CH3Br. The results reveal enhanced reactivity of HOO(-)(CH3OH) toward both methyl halides relative to the normal nucleophiles, and clearly demonstrate the presence of an α-effect for the microsolvated α-nucleophile. The highly exothermic reactions with methyl bromide result in a smaller Brønsted βnuc value than observed for methyl chloride, and the α-effect in turn influences the reactions with methyl chloride more than with methyl bromide. Computational investigations reveal that reactions with methyl bromide proceed through earlier transition states with less advanced bond formation compared to the related reactions of methyl chloride. In addition, solvent interactions for HOO(-) are quite different from those with the normal nucleophiles at the transition state, indicating that differential solvation may well contribute to the α-effect. The greater thermodynamic and kinetic stability of the anion-methanol clusters relative to the anion-water clusters accounts well for the differences in the influence of solvation with the two protic polar solvents.
Review on hydroxylamine, a precursor to amino-acids
NASA Astrophysics Data System (ADS)
Lemaire, Jean Louis
2015-08-01
Does life on earth come from interstellar space (IS)?It has been recently demonstrated that part of the terrestrial water is of IS origin [Cleeves et al. Science 2014]. This raises the question whether materials like amino-acids or their pre-biotic molecular precursors could have been formed and brought to earth in the same way than water. Another question is whether these molecules were formed in the gas phase or through reactions on the surface/volume of ice-covered grains. This may then have occurred in the vicinity of proto-stellar cores or deep into a pristine dense molecular clouds at very low temperatures.As far as bio-related molecules are concerned, chemistry with nitrogen-bearing molecules (like NH3 and NO) is involved. I review recent experimental work showing that hydroxylamine (NH2OH) could be formed either by surface or by volume reactions in conditions close to those prevailing in dense media. They use either electron-UV irradiation of water-ammonia ices [Zheng & Kaiser JCPA 2010] or successive hydrogenation of solid nitric oxide[Congiu, Fedoseev & al. ApJL.2012] or the simple oxidation of ammonia [He, Vidali, Lemaire & Garrod, ApJ, 2015] or the reaction of ammonia with hydroxyl radicals in a rare gas matrix [Zins & Krim, 2014, 69th ISMS]. A step further, the synthesis of the simplest amino-acids, glycine (NH2CH2COOH) and L- or D-alanine (NH2CH3CHCOOH) has already been obtained via reactions in the gas phase involving NH2OH+ [Blagojevic & al. MNRAS 2003].In addition to several earlier models demonstrating that the formation of all these molecules is possible in the gas phase, a new recent three-phase gas-grain chemical kinetics model of hot cores [Garrod ApJ 2013] shows that the results of ammonia oxidation we obtain are plausible by surface/volume reactions.Although none of the aforementioned molecules (except glycine in a sample of cometary origin) has been yet detected in the IS, they all are considered by many observers and modelers as likely targets of detection with ALMA.A review of the present observational status will be presented and suggestions of conditions for future observations will be provided.
Highly sensitive silicon microreactor for catalyst testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henriksen, Toke R.; Hansen, Ole; Department of Physics, Danish National Research Foundation's Center for Individual Nanoparticle Functionality
2009-12-15
A novel microfabricated chemical reactor for highly sensitive measurements of catalytic activity and surface kinetics is presented. The reactor is fabricated in a silicon chip and is intended for gas-phase reactions at pressures ranging from 0.1 to 5.0 bar. A high sensitivity is obtained by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model catalysts which canmore » only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally. A corresponding theoretical model is presented, and the gas flow through an on-chip flow-limiting capillary is predicted to be in the intermediate regime. The experimental data for the gas flow are found to be in good agreement with the theoretical model. At typical experimental conditions, the total gas flow through the reaction zone is around 3x10{sup 14} molecules s{sup -1}, corresponding to a gas residence time in the reaction zone of about 11 s. To demonstrate the operation of the microreactor, CO oxidation on low-area platinum thin film circles is employed as a test reaction. Using temperature ramping, it is found that platinum catalysts with areas as small as 15 {mu}m{sup 2} are conveniently characterized with the device.« less
Solid Fuel Burning in Steady, Strained, Premixed Flow Fields: The Graphite/Air/Methane System
NASA Technical Reports Server (NTRS)
Egolfopoulos, Fokion N.; Wu, Ming-Shin (Technical Monitor)
2000-01-01
A detailed numerical investigation was conducted on the simultaneous burning of laminar premixed CH4/air flames and solid graphite in a stagnation flow configuration. The graphite and methane were chosen for this model, given that they are practical fuels and their chemical kinetics are considered as the most reliable ones among solid and hydrocarbon fuels, respectively. The simulation was performed by solving the quasi-one-dimensional equations of mass, momentum, energy, and species. The GRI 2.1 scheme was used for the gas-phase kinetics, while the heterogeneous kinetics were described by a six-step mechanism including stable and radical species. The effects of the graphite surface temperature, the gas-phase equivalence ratio, and the aerodynamic strain rate on the graphite burning rate and NO, production and destruction mechanisms were assessed. Results indicate that as the graphite temperature increases, its burning rate as well as the NO, concentration increase. Furthermore, it was found that by increasing the strain rate, the graphite burning rate increases as a result of the augmented supply of the gas-phase reactants towards the surface, while the NO, concentration decreases as a result of the reduced residence time. The effect of the equivalence ratio on both the graphite burning rate and NO, concentration was found to be non-monotonic and strongly dependent on the graphite temperature. Comparisons between results obtained for a graphite and a chemically inert surface revealed that the chemical activity of the graphite surface can result to the reduction of NO through reactions of the CH3, CH2, CH, and N radicals with NO.
NASA Astrophysics Data System (ADS)
Braun, James; Guéneau, Christine; Alpettaz, Thierry; Sauder, Cédric; Brackx, Emmanuelle; Domenger, Renaud; Gossé, Stéphane; Balbaud-Célérier, Fanny
2017-04-01
Silicon carbide-silicon carbide (SiC/SiC) composites are considered to replace the current zirconium-based cladding materials thanks to their good behavior under irradiation and their resistance under oxidative environments at high temperature. In the present work, a thermodynamic analysis of the UO2±x/SiC system is performed. Moreover, using two different experimental methods, the chemical compatibility of SiC towards uranium dioxide, with various oxygen contents (UO2±x) is investigated in the 1500-1970 K temperature range. The reaction leads to the formation of mainly uranium silicides and carbides phases along with CO and SiO gas release. Knudsen Cell Mass Spectrometry is used to measure the gas release occurring during the reaction between UO2+x and SiC powders as function of time and temperature. These experimental conditions are representative of an open system. Diffusion couple experiments with pellets are also performed to study the reaction kinetics in closed system conditions. In both cases, a limited chemical reaction is observed below 1700 K, whereas the reaction is enhanced at higher temperature due to the decomposition of SiC leading to Si vaporization. The temperature of formation of the liquid phase is found to lie between 1850 < T < 1950 K.
Barrientos, Carmen; Rayón, Víctor Manuel; Largo, Antonio; Sordo, José Ángel; Redondo, Pilar
2013-08-22
Thermodynamics and kinetics theoretical studies on the gas-phase reactions of fluoromethane with main fourth-period monocations (Ga(+), Ge(+), As(+), and Se(+)) have been carried out. Density functional theory (in particular mPW1K functional) was employed in the description of the potential energy surfaces, and refinement of the energies were done at the CCSD(T) level. The reaction rate constants were estimated using variational/conventional microcanonical transition state theory. From a thermodynamic viewpoint, the fluorine abstraction product is predicted for Ga(+) and Ge(+), whereas for As(+) and Se(+) the elimination product, MCH2(+) (M = As, Se) + HF, is the preferred one. Nevertheless, the most favorable channel for the reactions of CH3F with Ga(+) and Se(+) cations present a net activation barrier. In the case of Ga(+), the reaction proceeds via an addition channel forming the adduct complex, CH3FGa(+), whereas for Se(+) no reaction is found, in agreement with the experiments. The predicted reaction rate constants are in reasonable good agreement with the experimental values available. Apart from the harpoon-like mechanism, our results suggest that an oxidative addition mechanism seems to play a relevant role.
Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption
NASA Astrophysics Data System (ADS)
Renbaum, L. H.; Smith, G. D.
2011-07-01
In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kliewer, Christopher J.; Bieri, Marco; Somorjai, Gabor A.
Sum-frequency generation (SFG) surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to study the adsorption and hydrogenation of pyrrole over both Pt(111) and Rh(111) single-crystal surfaces at Torr pressures (3 Torr pyrrole, 30 Torr H{sub 2}) to form pyrrolidine and the minor product butylamine. Over Pt(111) at 298 K it was found that pyrrole adsorbs in an upright geometry cleaving the N-H bond to bind through the nitrogen evidenced by SFG data. Over Rh(111) at 298 K pyrrole adsorbs in a tilted geometry relative to the surface through the p-aromatic system. A pyrroline surface reaction intermediate,more » which was not detected in the gas phase, was seen by SFG during the hydrogenation over both surfaces. Significant enhancement of the reaction rate was achieved over both metal surfaces by adsorbing 1-methylpyrrole before reaction. SFG vibrational spectroscopic results indicate that reaction promotion is achieved by weakening the bonding between the N-containing products and the metal surface because of lateral interactions on the surface between 1-methylpyrrole and the reaction species, reducing the desorption energy of the products. It was found that the ring-opening product butylamine was a reaction poison over both surfaces, but this effect can be minimized by treating the catalyst surfaces with 1-methylpyrrole before reaction. The reaction rate was not enhanced with elevated temperatures, and SFG suggests desorption of pyrrole at elevated temperatures.« less
NASA Technical Reports Server (NTRS)
Rosner, D. E.
1978-01-01
Processes related to the hot corrosion of gas turbine components were examined in two separate investigations. Monochromatic laser light was used to probe condensation onset and condensate film growth (via interference of reflected light) on electrically heated ribbons immersed in seeded, flat flame combustion product gases. Boron trichloride is used as the seed gas in these preliminary experiments conducted to obtain precise measurements of the dew point/deposition rates. Because of the importance of gaseous Na(g) as a precursor to NaSO4 formation, the kinetics and mechanisms of the heterogeneous reaction H(g) + NaCl(s) yields Na(g) + HCl(g) was studied using atomic absorption spectroscopy combined with microwave discharge-vacuum flow reactor techniques at moderate temperatures. Preliminary results indicate the H-atom attack of solid NaCl vaporization is negligible; hence the corresponding gas phase (homogeneous) reaction no role in the observed Na(g) production.
Gas-phase cationic benzoylation of ambient aromatic substrates studied with the decay technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Occhiucci, G.; Cacace, F.; Speranza, M.
1986-03-05
The gas-phase benzoylation of typical ambient aromatic substrates PhY (Y = OH, OMe, and NH/sub 2/) has been investigated by a combination of the decay technique and of FT ICR mass spectrometry. Labeled phenylium ions, C/sub 6/X/sub 5//sup +/ (X = H and T), from the decay of multiply tritiated benzene, C/sub 6/X/sub 6/, have been allowed to react with excess CO-containing traces of PhY (Y = OH, OMe, and NH/sub 2/), in the pressure range from 90 to 650 torr. Radio GLC and HPLC of the tritiated products demonstrate two competitive reaction channels, i.e., phenylation and benzoylation of themore » aromatic substrates. The results indicate a sharp kinetic bias of the gaseous phenylium ions for the aromatic substrates, measured by an apparent k/sub CO//k/sub PhY/ ratio of 0.12 (Y = OH), 0.13 (Y = OMe), and 0.04 (Y = NH/sub 2/) in the systems at nearly atmospheric pressure. Gas-phase benzoylation displays a high intramolecular selectivity, occurring exclusively at the n-type center of PhOH and PhNH/sub 2/. In the case of PhOMe, appreciable ring benzoylation is observed, characterized by a remarkably high (up to 30:1) bias for the para position. The mechanistic features of the gas-phase benzoylation and phenylation processes, deduced from the decay and the ICR experiments, are discussed and compared with those of related aromatic acylation and alkylation reactions occurring in the dilute gas state. 30 references, 2 tables.« less
NASA Astrophysics Data System (ADS)
Yang, Song-tao; Zhou, Mi; Jiang, Tao; Xue, Xiang-xin
2018-02-01
Reduction of chromium-bearing vanadium-titanium sinter (CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at different temperatures was evaluated using a shrinking unreacted core model. The microstructure, mineral phase, and variation of the sinter during reduction were observed by X-ray diffraction, scanning electron microscopy, and metallographic microscopy. Results indicate that porosity of CVTS increased with temperature. Meanwhile, the reduction degree of the sinter improved with the reduction rate. Reduction of the sinter was controlled by a chemical reaction at the initial stage and inner diffusion at the final stage. Activation energies measured 29.22-99.69 kJ/mol. Phase transformations in CVTS reduction are as follows: Fe2O3→Fe3O4→FeO→Fe; Fe2TiO5→Fe2TiO4→FeTiO3; FeO·V2O3→V2O3; FeO·Cr2O3→Cr2O3.
Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara
2013-05-01
The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.
The Heterogeneous Oxidation of Organic Droplets -Temperature and Physical Phase Effects
NASA Astrophysics Data System (ADS)
Hung, H.; Tang, C.; Lin, L.
2008-12-01
The heterogeneous reactions of oleic acid droplets with ozone are studied at different temperatures to imitating the atmospheric condition. The reactions are monitored concomitantly by using attenuated total reflectance Fourier Transform infrared spectroscopy (ATR-FT-IR) for the organic species and UV-VIS spectrometry for the ozone concentration, in order to investigate reaction rate discrepancies reported in literature as well as the oxidation mechanism, temperature and physical phase effects. The less and semi- volatile products are identified and resolved by a liquid chromatography and a gas chromatography mass spectrometer, respectively. The identified products are predominantly composed by nananoic acid and azelaic acid and might be due to propagation reactions possibly initiated by a secondary reaction such as the stabilized Criegee intermediates reacting with oleic acid. For temperature effect, the oxidation rate decreases with temperature when the oleic acid droplets are in the same physical phases. As oleic acid turns into the solid phase, the oxidation mechanism is observed to be different from the liquid phase. Furthermore, the concentration of ozone was monitored to examine the kinetics of the oxidation reaction. The integrated ozone profile recorded by UV-VIS spectrometry shows that the consumed ozone represents only approximately 12% of total oleic acid for the solid cases at 4°C in contrast to 30% for the liquid cases at 25°C, and hence confirmed the existence of secondary reactions.
Reactions of gas phase H atoms with ethylene, acetylene and ethane adsorbed on Ni( 1 1 1 )
NASA Astrophysics Data System (ADS)
Bürgi, T.; Trautman, T. R.; Gostein, M.; Lahr, D. L.; Haug, K. L.; Ceyer, S. T.
2002-03-01
The products of the reaction of the most energetic form of hydrogen, gas phase H atoms, with ethylene, acetylene and ethane adsorbed on a Ni(1 1 1) surface at 60 K are probed. Adsorbed ethylidyne (CCH 3) is identified by high resolution electron energy loss spectroscopy to be the major product (30% yield) in all three cases. Adsorbed acetylene is a minor product (3% yield) and arises as a consequence of a dynamic equilibrium between CCH 3 and C 2H 2 in the presence of gas phase H atoms. The observation of the same product for the reaction of H atoms with all three hydrocarbons implies that CCH 3 is the most stable C 2 species in the presence of coadsorbed hydrogen. The rates of CCH 3 production are measured as a function of the time of exposure of H atoms to each hydrocarbon. A simple kinetic model treating each reaction as a pseudo-first order reaction in the hydrocarbon coverage is fit to these data. A mechanism for the formation of CCH 3 via a CHCH 2 intermediate common to all three reactants is proposed to describe this model. The observed instability of the CH 2CH 3 species relative to C 2H 4 plays a role in the formulation of this mechanism as does the observed stability of CHCH 2 species in the presence of coadsorbed hydrogen. The CH 2CH 3 and the CHCH 2 species are produced by the translational activation of ethane and the dissociative ionization of ethane and ethylene, respectively. In addition, the binding energy and the vibrational spectrum of ethane adsorbed on Ni(1 1 1) are determined and exceptionally high resolution vibrational spectra of adsorbed ethylene and acetylene are presented.
Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu
2008-01-01
A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.
What limits the yield of levoglucosan during fast pyrolysis of cellulose?
NASA Astrophysics Data System (ADS)
Proano-Aviles, Juan
The pyrolysis of cellulose to form levoglucosan is investigated in this study. Although the stoichiometric yield of levoglucosan from the pyrolysis of cellulose is expected to be 100%, only about 60 wt.% yields are reported in the literature. Several possible reasons for this limitation are investigated through experiments in micropyrolyzers and computational studies on the depolymerization of cellulose. Heat and mass transfer limitations in an experimental apparatus is one possible limitation on the yield of levoglucosan. Repolymerization of condensed phase reaction intermediates could prevent the formation and release of volatile levoglucosan. Thermohydrolysis of pyrolyzing cellulose to form non-volatile and thermally unstable glucose has also been proposed as a mechanism that reduces levoglucosan yields. Secondary reactions in the gas phase were also investigated to explain limitations on levoglucosan yields. Population balance models were developed to test ideas on how cellulose depolymerized to form levoglucosan at less than stoichiometric yields. These models were supported with chemical kinetic data obtained from transient pyrolysis experiments. Under carefully controlled experimental conditions, no evidence was found for heat and mass transfer effects limiting levoglucosan yields to 60 wt.% nor do secondary reactions in the condensed- or gas-phases appear to offer a satisfactory explanation. Based on modeling results, it appears levoglucosan-forming reaction rates that decrease as oligosaccharide chain length decreases is the most plausible explanation for limitations on levoglucosan yield from cellulose.
Laboratory Measurements for Deuterated Astrochemistry
NASA Astrophysics Data System (ADS)
Hillenbrand, Pierre-Michel; Bowen, Kyle Patrick; Miller, Kenneth A.; De Ruette, Nathalie; Urbain, Xavier; Savin, Daniel Wolf
2017-06-01
Deuterated molecules are powerful probes of the cold interstellar medium (ISM). Observations of D-bearing molecules are used to infer the chemistry of the ISM and to trace out physical conditions such as density, ionization fraction, and thermal history. The chemistry of the cold ISM results from a complicated interplay between gas-phase processes, reactions on dust grain surfaces, and chemistry occurring both in and on the icy mantles of dust grains. Our focus here is on an improved understanding of the relevant deuterated gas-phase chemistry. At the low temperatures and densities typical of the cold ISM, much of this chemistry is driven by binary ion-neutral reactions, which are typically barrierless and exoergic (as compared to neutral-neutral reactions which often have significant activation energies).One of the biggest challenges in generating a reliable deuterated gas-phase astrochemical network is the uncertainty of the necessary rate coefficients. The vast majority of available chemical kinetic data are for fully hydrogenated species. For those D-bearing reactions where no laboratory data are available, two approaches have been adopted for converting the fully hydrogenated data into partial- and fully-deuterated species. The first approach simply “clones” the H-bearing reactions into D-bearing reactions and assumes that the rate coefficients are the same. The second approach uses a simple mass scaling relationship based on the Langevin formalism.We have initiated a series of laboratory measurements aimed at resolving this issue. For this we use our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and charged molecules. Using co-propagating beams enables us to achieve collision energies corresponding to temperatures as low as 25 K, limited only by the divergences of the two beams. Recently we have measured the reaction C + H2+(D2+) forming CH+(CD+) + H(D). We are now studying D + H3+(D2H+) forming H2D+(D3+) + H. Here we report on these results and discuss their astrochemical implications.
Favre, Georges; Brennetot, René; Chartier, Frédéric; Tortajada, Jeanine
2009-02-01
Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in inorganic analytical chemistry for element and/or isotope ratio measurements. The presence of interferences, which is one of the main limitations of this method, has been addressed in recent years with the introduction of collision/reaction cell devices on ICP-MS apparatus. The study of ion-molecule reactions in the gas phase then became of great importance for the development of new analytical strategies. Knowing the kinetic energy and the electronic states of the ions prior to their entrance into the cell, i.e., just before they react, thereby constitutes crucial information for the interpretation of the observed reactivities. Such studies on an ICP-MS commonly used for routine analyses require the determination of the influence of different instrumental parameters on the energy of the ions and on the plasma temperature from where ions are sampled. The kinetic energy of ions prior to their entrance into the cell has been connected to the voltage applied to the hexapole according to a linear relationship determined from measurements of ion energy losses due to collisions with neutral gas molecules. The effects of the plasma forward power, sampling depth, and the addition of a torch shield to the ICP source were then examined. A decrease of the plasma potential due to the torch shielding, already mentioned in the literature, has been quantified in this study at about 3 V.
Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions.
In, Jung Bin; Grigoropoulos, Costas P; Chernov, Alexander A; Noy, Aleksandr
2011-12-27
Vertically aligned carbon nanotubes (CNTs) are an important technological system, as well as a fascinating system for studying basic principles of nanomaterials synthesis; yet despite continuing efforts for the past decade many important questions about this process remain largely unexplained. We present a series of parametric ethylene chemical vapor deposition growth studies in a "hot-wall" reactor using ultrapure process gases that reveal the fundamental kinetics of the CNT growth. Our data show that the growth rate is proportional to the concentration of the carbon feedstock and monotonically decreases with the concentration of hydrogen gas and that the most important parameter determining the rate of the CNT growth is the production rate of active carbon precursor in the gas phase reaction. The growth termination times obtained with the purified gas mixtures were strikingly insensitive to variations in both hydrogen and ethylene pressures ruling out the carbon encapsulation of the catalyst as the main process termination cause.
Interplay between Reaction and Phase Behaviour in Carbon Dioxide Hydrogenation to Methanol.
Reymond, Helena; Amado-Blanco, Victor; Lauper, Andreas; Rudolf von Rohr, Philipp
2017-03-22
Condensation promotes CO 2 hydrogenation to CH 3 OH beyond equilibrium through in situ product separation. Although primordial for catalyst and reactor design, triggering conditions as well as the impact on sub-equilibrium reaction behaviour remain unclear. Herein we used an in-house designed micro-view-cell to gain chemical and physical insights into reaction and phase behaviour under high-pressure conditions over a commercial Cu/ZnO/Al 2 O 3 catalyst. Raman microscopy and video monitoring, combined with online gas chromatography analysis, allowed the complete characterisation of the reaction bulk up to 450 bar (1 bar=0.1 MPa) and 350 °C. Dew points of typical effluent streams related to a parametric study suggest that the improving reaction performance and reverting selectivities observed from 230 °C strongly correlate with (i) a regime transition from kinetic to thermodynamic, and (ii) a phase transition from a single supercritical to a biphasic reaction mixture. Our results advance a rationale behind transitioning CH 3 OH selectivities for an improved understanding of CO 2 hydrogenation under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Masubuchi, Tsugunosuke; Eckhard, Jan F.; Lange, Kathrin; Visser, Bradley; Tschurl, Martin; Heiz, Ulrich
2018-02-01
A laser vaporization cluster source that has a room for cluster aggregation and a reactor volume, each equipped with a pulsed valve, is presented for the efficient gas-phase production of chemically modified metal clusters. The performance of the cluster source is evaluated through the production of Ta and Ta oxide cluster cations, TaxOy+ (y ≥ 0). It is demonstrated that the cluster source produces TaxOy+ over a wide mass range, the metal-to-oxygen ratio of which can easily be controlled by changing the pulse duration that influences the amount of reactant O2 introduced into the cluster source. Reaction kinetic modeling shows that the generation of the oxides takes place under thermalized conditions at less than 300 K, whereas metal cluster cores are presumably created with excess heat. These characteristics are also advantageous to yield "reaction intermediates" of interest via reactions between clusters and reactive molecules in the cluster source, which may subsequently be mass selected for their reactivity measurements.
Rosas, Felix; Maldonado, Alexis; Lezama, Jesus; Domínguez, Rosa M; Mora, José R; Cordova, Tania; Chuchani, Gabriel
2012-01-19
The gas-phase thermal elimination of 2,2-diethoxypropane was found to give ethanol, acetone, and ethylene, while 1,1-diethoxycyclohexane yielded 1-ethoxycyclohexene and ethanol. The kinetics determinations were carried out, with the reaction vessels deactivated with allyl bromide, and the presence of the free radical suppressor cyclohexene and toluene. Temperature and pressure ranges were 240.1-358.3 °C and 38-102 Torr. The elimination reactions are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are given by the following Arrhenius equations: for 2,2-diethoxypropane, log k(1) (s(-1)) = (13.04 ± 0.07) - (186.6 ± 0.8) kJ mol(-1) (2.303RT)(-1); for the intermediate 2-ethoxypropene, log k(1) (s(-1)) = (13.36 ± 0.33) - (188.8 ± 3.4) kJ mol(-1) (2.303RT)(-1); and for 1,1-diethoxycyclohexane, log k = (14.02 ± 0.11) - (176.6 ± 1.1) kJ mol(-1) (2.303RT)(-1). Theoretical calculations of these reactions using DFT methods B3LYP, MPW1PW91, and PBEPBE, with 6-31G(d,p) and 6-31++G(d,p) basis set, demonstrated that the elimination of 2,2-diethoxypropane and 1,1-diethoxycyclohexane proceeds through a concerted nonsynchronous four-membered cyclic transition state type of mechanism. The rate-determining factor in these reactions is the elongation of the C-O bond. The intermediate product of 2,2-diethoxypropane elimination, that is, 2-ethoxypropene, further decomposes through a concerted cyclic six-membered cyclic transition state mechanism.
Investigation of the interfacial reactions between steel and aluminum coatings for hybrid casting
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.
2018-06-01
Coating of AA7075 was applied by means of cold gas spraying on steel substrates of 22MnB5 and DC04 as an interlayer for high pressure die casting of aluminum/steel hybrid components. The morphology and growth kinetics of intermetallic compounds formed at the interface between coating and steel has been investigated. Furthermore, the effect of alloying elements on the formation of the intermetallic phases was analyzed. The coated samples were heat treated by means of induction heating at the temperature T = 550 °C with different dwell times in the range of 10 s < t < 5 min. The reaction layer growth was examined by means of scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). Additionally, the intermetallic compounds were characterized by means of nanoindentation. Intermetallic compounds of AlFe phases occurred as the major constituent in the reaction zone for different combinations of coating and substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less
Rajabi, Khadijeh
2015-01-01
A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.
NO—CO—O2 Reaction on a Metal Catalytic Surface using Eley—Rideal Mechanism
NASA Astrophysics Data System (ADS)
Waqar, Ahmad
2008-10-01
Interactions among the reacting species NO, CO and O2 on metal catalytic surfaces are studied by means of Monte Carlo simulation using the Eley-Rideal (ER) mechanism. The study of this three-component system is important for understanding of the reaction kinetics by varying the relative ratios of the reactants. It is found that contrary to the conventional Langmuir-Hinshelwood (LH) thermal mechanism in which two irreversible phase transitions are obtained between active states and poisoned states, a single phase transition is observed when the ER mechanism is combined with the LH mechanism. The phase diagrams of the surface coverage and the steady state production of CO2, N2 and N2 O are evaluated as a function of the partial pressures of the reactants in the gas phase. The continuous production of CO2 starts as soon as the CO pressure is switched on and the second order phase transition at the first critical point is eliminated, which is in agreement with the experimental findings.
Lei, Li; Ni, Jinren
2014-04-15
A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
The interstellar chemistry of H2C3O isomers
Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel
2016-01-01
We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects. PMID:27013768
Pattern formation for NO+N H3 on Pt(100): Two-dimensional numerical results
NASA Astrophysics Data System (ADS)
Uecker, Hannes
2005-01-01
The Lombardo-Fink-Imbihl model of the NO+NH3 reaction on a Pt(100) surface consists of seven coupled ordinary differential equations (ODE) and shows stable relaxation oscillations with sharp transitions in the relevant temperature range. Here we study numerically the effect of coupling of these oscillators by surface diffusion in two dimensions. We find different types of patterns, in particular phase clusters and standing waves. In models of related surface reactions such clustered solutions are known to exist only under a global coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of two variables which are kinetically slaved in the ODE. We also compare our simulations with experimental results and discuss some shortcomings of the model.
High-temperature experimental analogs of primitive meteoritic metal-sulfide-oxide assemblages
NASA Astrophysics Data System (ADS)
Schrader, Devin L.; Lauretta, Dante S.
2010-03-01
We studied the oxidation-sulfidation behavior of an Fe-based alloy containing 4.75 wt.% Ni, 0.99 wt.% Co, 0.89 wt.% Cr, and 0.66 wt.% P in H 2-H 2O-CO-CO 2-H 2S gas mixtures at 1000 °C. The samples were cooled at rates of ˜3000 °C/h, comparable to estimates of the conditions after a chondrule-formation event in the early Solar System. Gas compositions were monitored in real time by a quadrupole mass spectrometer residual gas analyzer. Linear rate constants associated with gas-phase adsorption were determined. Reaction products were analyzed by optical microscopy, wavelength-dispersive-spectroscopy X-ray elemental mapping, and electron probe microanalysis. Based on analysis of the Fe-Ni-S ternary phase diagram and the reaction products, the primary corrosion product is a liquid of composition 66.6 wt.% Fe, 3.5 wt.% Ni, 29.9 wt.% S, and minor amounts of P, Cr, and Co. Chromite (FeCr 2O 4) inclusions formed by oxidation and are present in the metal foil and at the outer boundary between the sulfide and experimental atmosphere. During cooling the liquid initially crystallizes into taenite (average composition ˜15 wt.% Ni), monosulfide solid solution [mss, (Fe,Ni,Co,Cr) 1-xS], and Fe-phosphates. Upon further cooling, kamacite exsolves from this metal, enriching the taenite in Ni. The remnant metal core is enriched in P and Co and depleted in Cr at the reaction interface, relative to the starting composition. The unreacted metal core composition remains unchanged, suggesting the reactions did not reach equilibrium. We present a detailed model of reaction mechanisms based on the observed kinetics and sample morphologies, and discuss meteoritic analogs in the CR chondrite MacAlpine Hills 87320.
Interface Reactions and Synthetic Reaction of Composite Systems
Park, Joon Sik; Kim, Jeong Min
2010-01-01
Interface reactions in composite systems often determine their overall properties, since product phases usually formed at interfaces during composite fabrication processing make up a large portion of the composites. Since most composite materials represent a ternary or higher order materials system, many studies have focused on analyses of diffusion phenomena and kinetics in multicomponent systems. However, the understanding of the kinetic behavior increases the complexity, since the kinetics of each component during interdiffusion reactions need to be defined for interpreting composite behaviors. From this standpoint, it is important to clarify the interface reactions for producing compatible interfaces with desired product phases. A thermodynamic evaluation such as a chemical potential of involving components can provide an understanding of the diffusion reactions, which govern diffusion pathways and product phase formation. A strategic approach for designing compatible interfaces is discussed in terms of chemical potential diagrams and interface morphology, with some material examples.
Kinetics study of carbon dioxide absorption reaction into the promoted methyldiethanolamine solution
NASA Astrophysics Data System (ADS)
Sitorus, Yasmikha Tiurlan Susanti; Taurina, Hanna Sucita; Altway, Ali; Rahmawati, Yeni; Nurkhamidah, Siti
2017-05-01
The absorption of carbon dioxide (CO2) is important in the industrial world. In industries, especially petrochemical, oil, and natural gas sectors, separation process of CO2 gas which is a corrosive gas (acid gas) is required. So, the separation process of CO2 gas stream is important, one of the methods used to remove CO2 from the gas stream is reactive absorption process using the promoted methyldiethanolamine (MDEA) solution. Therefore, this study is aimed to obtain the reaction kinetics data of CO2 absorption in MDEA solution using arginine as a promoter. Arginine was chosen because of its amino acid molecule which is reactive, so it can accelerate the reaction rate of MDEA. Moreover, this study also made a comparison between the reactivity of MDEA solution using arginine and MDEA solution using other promoters (glycine and piperazine) for CO2 absorption. The method used is absorption using laboratory scale of Wetted Wall Column (WWC) equipment at 1 atm. This study provides the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that CO2 absorption rate at 323.15 K without any additon of arginine is 2.33 × 10-7 kmol/sec. By addition of 0.5 and 1 wt% of arginine, the absorption rate becomes 4 × 10-7 kmol/sec (2 times larger) and 6 × 10-7 kmol/sec (3 times larger). These results show that the addition of arginine as a promoter can increase the absorption rate of CO2 in MDEA solution and cover the weaknesses of MDEA solution. Based on the experimental result, the reaction kinetics constant for arginine is 1.91 × 1025 exp (-12296/T) (m3/kmol.s). Although, arginine reaction rate constant is lower than glycine and piperazine.
Covian, Raul; Chess, David; Balaban, Robert S.
2012-01-01
Native gel electrophoresis allows the separation of very small amounts of protein complexes while retaining aspects of their activity. In-gel enzymatic assays are usually performed by using reaction-dependent deposition of chromophores or light scattering precipitates quantified at fixed time points after gel removal and fixation, limiting the ability to analyze enzyme reaction kinetics. Herein, we describe a custom reaction chamber with reaction media recirculation and filtering and an imaging system that permits the continuous monitoring of in-gel enzymatic activity even in the presence of turbidity. Images were continuously collected using time-lapse high resolution digital imaging, and processing routines were developed to obtain kinetic traces of the in-gel activities and analyze reaction time courses. This system also permitted the evaluation of enzymatic activity topology within the protein bands of the gel. This approach was used to analyze the reaction kinetics of two mitochondrial complexes in native gels. Complex IV kinetics showed a short initial linear phase where catalytic rates could be calculated, whereas Complex V activity revealed a significant lag phase followed by two linear phases. The utility of monitoring the entire kinetic behavior of these reactions in native gels, as well as the general application of this approach, is discussed. PMID:22975200
Covian, Raul; Chess, David; Balaban, Robert S
2012-12-01
Native gel electrophoresis allows the separation of very small amounts of protein complexes while retaining aspects of their activity. In-gel enzymatic assays are usually performed by using reaction-dependent deposition of chromophores or light-scattering precipitates quantified at fixed time points after gel removal and fixation, limiting the ability to analyze the enzyme reaction kinetics. Herein, we describe a custom reaction chamber with reaction medium recirculation and filtering and an imaging system that permits the continuous monitoring of in-gel enzymatic activity even in the presence of turbidity. Images were continuously collected using time-lapse high-resolution digital imaging, and processing routines were developed to obtain kinetic traces of the in-gel activities and analyze reaction time courses. This system also permitted the evaluation of enzymatic activity topology within the protein bands of the gel. This approach was used to analyze the reaction kinetics of two mitochondrial complexes in native gels. Complex IV kinetics showed a short initial linear phase in which catalytic rates could be calculated, whereas Complex V activity revealed a significant lag phase followed by two linear phases. The utility of monitoring the entire kinetic behavior of these reactions in native gels, as well as the general application of this approach, is discussed. Published by Elsevier Inc.
Chai, Xin-Sheng; Zhong, Jin-Feng; Hu, Hui-Chao
2012-05-18
This paper describes a novel multiple-headspace extraction/gas chromatographic (MHE-GC) technique for monitoring monomer conversion during a polymerization reaction in a water-based emulsion environment. The polymerization reaction of methyl methacrylate (MMA) in an aqueous emulsion is used as an example. The reaction was performed in a closed headspace sample vial (as a mini-reactor), with pentane as a tracer. In situ monitoring of the vapor concentration of the tracer, employing a multiple headspace extraction (sampling) scheme, coupled to a GC, makes it possible to quantitatively follow the conversion of MMA during the early stages of polymerization. Data on the integrated amount of the tracer vapor released from the monomer droplet phase during the polymerization is described by a mathematic equation from which the monomer conversion can be calculated. The present method is simple, automated and economical, and provides an efficient tool in the investigation of the reaction kinetics and effects of the reaction conditions on the early stage of polymerization. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Raekelboom, E.; Cuevas, F.; Knosp, B.; Percheron-Guégan, A.
The effect of cobalt and manganese content on the dehydrogenation properties of air-exposed MmB 5+ x-type (Mm = mischmetal; B = Ni, Al, Co and Mn) alloys was investigated both in solid gas and electrochemical reactions. The cobalt and manganese content were varied separately while keeping constant the plateau pressure of the hydrides. The increase of the cobalt content leads to a decrease of the hydrogen capacity whereas the manganese content has no much effect. In solid gas reactions, the kinetics were found to be limited by the hydrogen diffusion through the surface oxidation layer. As for the electrochemistry, the kinetics are limited by a corrosion layer formed in alkaline medium. The desorption rates for both processes increase as the cobalt or manganese content decreases. This is thought to be due to an enhancement of the hydrogen diffusivity through the oxidation layer. As a result, a low cobalt or manganese content in MmB 5+ x alloys is found to be beneficial for the hydrogen desorption kinetics in both processes.
The Role of Grain Surface Reactions in the Chemistry of Star Forming Regions
NASA Technical Reports Server (NTRS)
Kress, M. E.; Tielens, A. G. G. M.; Roberge, W. G.
1998-01-01
The importance of reactions at the surfaces of dust grains has long been recognized to be one of the two main chemical processes that form molecules in cold, dark interstellar clouds where simple, saturated (fully-hydrogenated) molecules such as H2 water, methanol, H2CO, H2S, ammonia and CH4 are present in quantities far too high to be consistent with their extremely low gas phase formation rates. In cold dark regions of interstellar space, dust grains provide a substrate onto which gas-phase species can accrete and react. Grains provide a "third body" or a sink for the energy released in the exothermic reactions that form chemical bonds. In essence, the surfaces of dust grains open up alternative reaction pathways to form observed molecules whose abundances cannot be explained with gas-phase chemistry alone. This concept is taken one step further in this work: instead of merely acting as a substrate onto which radicals and molecules may physically adsorb, some grains may actively participate in the reaction itself, forming chemical bonds with the accreting species. Until recently, surface chemical reactions had not been thought to be important in warm circumstellar media because adspecies rapidly desorb from grains at very low temperatures; thus, the residence times of molecules and radicals on the surface of grains at all but the lowest temperatures are far too short to allow these reactions to occur. However, if the adspecies could adsorb more strongly, via a true chemical bond with surfaces of some dust grains, then grain surface reactions will play an important role in warm circumstellar regions as well. In this work, the surface-catalyzed reaction CO + 3 H2 yields CH4 + H2O is studied in the context that it may be very effective at converting the inorganic molecule CO into the simplest organic compound, methane. H2 and CO are the most abundant molecules in space, and the reaction converting them to methane, while kinetically inhibited in the gas phase under most astrophysical conditions, is catalyzed by iron, an abundant constituent of interstellar dust. At temperatures between 600 and 1000 K, which occur in the outflows from red giants and near luminous young stars, this reaction readily proceeds in the presence of an iron catalyst. Iron is one of the more abundant elements composing interstellar dust. Its abundance relative to hydrogen is almost that of silicon, and both of these heavy elements are primarily locked up in dust at all but the hottest regions of interstellar space.
Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Wang, Wenxing
2015-06-01
Polychlorinated biphenyls (PCBs) primarily exist in the gas phase in air and may undergo atmospheric oxidation degradations, particularly the oxidation reaction initiated by OH radicals. In this work, the mechanism of the OH radical-initiated atmospheric oxidation of the most toxic PCB congener 3,3',4,4',5-pentachlorobiphenyl (PCB126) was investigated by using quantum chemistry methods. The rate constants of the crucial elementary reactions were estimated by the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The oxidation products of the reaction of PCB126 with OH radicals include 3,3',4,4',5-pentachlorobiphenyl-ols, chlorophenols, 2,3,4,7,8-pentachlorodibenzofuran, 2,3,4,6,7-pentachlorodibenzofuran, dialdehydes, 3,3',4,4',5-pentachloro-5'-nitro-biphenyl, and 4,5-dichloro-2-nitrophenol. Particularly, the formation of polychlorinated dibenzofurans (PCDFs) from the atmospheric oxidation of PCBs is revealed for the first time. The overall rate constant of the OH addition reaction is 2.52×10(-13)cm(3)molecule(-1)s(-1) at 298K and 1atm. The atmospheric lifetime of PCB126 determined by OH radicals is about 47.08days which indicates that PCB126 can be transported long distances from local to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Monascal, Yeljair; Gallardo, Eliana; Cartaya, Loriett; Maldonado, Alexis; Bentarcurt, Yenner; Chuchani, Gabriel
2018-01-01
Keto-enol tautomeric equilibrium and the mechanism of thermal conversion of 2- and 4-hydroxyacetophenone in gas phase have been studied by means of electronic structure calculations using density functional theory (DFT). A topological analysis of electron density evidence that the structure of keto and enol forms of 2-hydroxyacetophenone are stabilised by a relatively strong intramolecular hydrogen bond. 2- and 4-hydroxyacetophenone undergo deacetylation reactions yielding phenol and ketene. Two possible mechanisms are considered for these eliminations: the process takes place from the keto form (mechanism A), or occurs from the enolic form of the substrate (mechanism B). Quantum chemical calculations support the mechanism B, being found a good agreement with the experimental activation parameters. These results suggest that the rate-limiting step is the reaction of the enol through a concerted, non-synchronous, semi-polar, four-membered cyclic transition state (TS). The most advanced reaction coordinate in the TS is the rupture of O1...H1 bond, with an evolution in the order of 79.7%-80.9%. Theoretical results also suggest a three-step mechanism for the phenyl acetate formation from 2-hydroxyacetophenone.
Van Doren, Jane M; Miller, Thomas M; Williams, Skip; Viggiano, A A
2003-11-28
Attachment of thermal electrons to O3 was studied in 133 Pa He between 300-550 K; the process is extremely inefficient. The rate coefficient increases sharply with temperature from 0.9 to 5 x 10(-11) cm(3) s(-1) (+/-30%) and comparison to kinetic energy measurements suggests internal energy can drive the reaction. These determinations account for competing processes of diffusion, recombination, and electron detachment reactions, and imply that no significant zero-energy resonance cross section exists, contradicting recent electron-beam results that call for substantial revision of ionospheric models.
Surface studies relevant to silicon carbide chemical vapor deposition
NASA Technical Reports Server (NTRS)
Stinespring, C. D.; Wormhoudt, J. C.
1989-01-01
Reactions of C2H4, C3H8, and CH4 on the Si(111) surface and C2H4 on the Si(100) surface were investigated for surface temperatures in the range of 1062-1495 K. Results led to the identification of the reaction products, a characterization of the solid-state transport process, a determination of the nucleation mechanism and growth kinetics, and an assessment of orientation effects. Based on these results and on the modeling studies of Stinespring and Wormhoudt (1988) on the associated gas phase chemistry, a physical model for the two-step beta-SiC CVD process is proposed.
Microfluidic study of fast gas-liquid reactions.
Li, Wei; Liu, Kun; Simms, Ryan; Greener, Jesse; Jagadeesan, Dinesh; Pinto, Sascha; Günther, Axel; Kumacheva, Eugenia
2012-02-15
We present a new concept for studies of the kinetics of fast gas-liquid reactions. The strategy relies on the microfluidic generation of highly monodisperse gas bubbles in the liquid reaction medium and subsequent analysis of time-dependent changes in bubble dimensions. Using reactions of CO(2) with secondary amines as an exemplary system, we demonstrate that the method enables rapid determination of reaction rate constant and conversion, and comparison of various binding agents. The proposed approach addresses two challenges in studies of gas-liquid reactions: a mass-transfer limitation and a poorly defined gas-liquid interface. The proposed strategy offers new possibilities in studies of the fundamental aspects of rapid multiphase reactions, and can be combined with throughput optimization of reaction conditions.
NASA Astrophysics Data System (ADS)
Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.
2015-09-01
We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.
Analysis of Halogen-Mercury Reactions in Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paula Buitrago; Geoffrey Silcox; Constance Senior
2010-01-01
Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using amore » wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.« less
The gas fluxing of aluminum: Mathematical modeling and experimental investigations
NASA Astrophysics Data System (ADS)
Fjeld, Autumn Marie
Chlorine fluxing is an essential purification step in aluminum refining in which impurities such as Ca, Na, Li, and Mg are removed by bubbling a mixture of chlorine and argon gas through molten aluminum. The gas is injected into the fluxing vessel through a rotating shaft and impeller which simultaneously agitates the melt, while breaking up and dispersing gas bubbles through the liquid phase. The efficiency of impurity removal and control of toxic chlorine and chloride emissions are dependent upon the extent of gas dispersion or mixing, residence time of the bubbles, and surface area of the bubbles. Clearly the gas injection and distribution within the liquid metal cannot be directly observed and such operations are often poorly controlled and not well understood. Problems arise when the injection gas, i.e. chlorine, is not completely consumed by reaction with impurities and the excess is reported as emissions of chlorides such as toxic HCl. The intention is to improve the technology to eliminate this waste (saving on the energy entailed in the chlorine production and reducing pollution) by better dispersion of the injected gas throughout the metal. Previous experimental investigations using a capacitance probe, capable of immersion in liquid aluminum for several hours, have been carried out to detect bubbles in an industrial fluxing unit at the Alcoa Technical Center. Bubble frequency data have shown the bubbles to be fairly well dispersed in the areas of the fluxing unit, decreasing in observed bubble frequency with increasing distance from the impeller (source of gas injection). To gain further insight and add to our experimental findings, two computational models have been developed to simulate the complex two-phase fluid dynamics of a rotary gas injection system. The results of these two modeling approaches are presented and analyzed and compared to experimental bubble measurements gathered using the capacitance probe. Bubble size distributions and residence times from the discrete phase model were incorporated in an external demagging reaction model to predict chlorine utilization efficiency. This simplified model included several assumptions regarding the kinetics and reaction path, however the model showed reasonable agreement to prior experimental magnesium removal data and provides valuable information related to the interplay of reaction progress in a fluxing unit and the fluid dynamics, in terms of bubble size, trajectory and resulting bubble residence time.
Theoretical study on the mechanism of the gas-phase elimination kinetics of alkyl chloroformates
NASA Astrophysics Data System (ADS)
Alcázar, Jackson J.; Marquez, Edgar; Mora, José R.; Cordova-Sintjago, Tania; Chuchani, Gabriel
2016-03-01
The theoretical calculations on the mechanism of the homogeneous and unimolecular gas-phase elimination kinetics of alkyl chloroformates- ethyl chloroformate (ECF), isopropyl chloroformate (ICF), and sec-butyl chloroformate (SCF) - have been carried out by using CBS-QB3 level of theory and density functional theory (DFT) functionals CAM-B3LYP, M06, MPW1PW91, and PBE1PBE with the basis sets 6-311++G(d,p) and 6-311++G(2d,2p). The chlorofomate compounds with alkyl ester Cβ-H bond undergo thermal decomposition producing the corresponding olefin, HCl and CO2. These homogeneous eliminations are proposed to undergo two different types of mechanisms: a concerted process, or via the formation of an unstable intermediate chloroformic acid (ClCOOH), which rapidly decomposes to HCl and CO2 gas. Since both elimination mechanisms may occur through a six-membered cyclic transition state structure, it is difficult to elucidate experimentally which is the most reasonable reaction mechanism. Theoretical calculations show that the stepwise mechanism with the formation of the unstable intermediate chloroformic acid from ECF, ICF, and SCF is favoured over one-step elimination. Reasonable agreements were found between theoretical and experimental values at the CAM-B3LYP/6-311++G(d,p) level.
Studies of Methane Counterflow Flames at Low Pressures
NASA Astrophysics Data System (ADS)
Burrell, Robert Roe
Methane is the smallest hydrocarbon molecule, the fuel most widely studied in fundamental flame structure studies, and a major component of natural gas. Despite many decades of research into the fundamental chemical kinetics involved in methane oxidation, ongoing advancements in research suggest that more progress can be made. Though practical combustors of industrial and commercial significance operate at high pressures and turbulent flow conditions, fundamental understanding of combustion chemistry in flames is more readily obtained for low pressure and laminar flow conditions. Measurements were performed from 1 to 0.1 atmospheres for premixed methane/air and non-premixed methane-nitrogen/oxygen flames in a counterflow. Comparative modeling with quasi-one-dimensional strained flame codes revealed bias-induced errors in measured velocities up to 8% at 0.1 atmospheres due to tracer particle phase velocity slip in the low density gas reacting flow. To address this, a numerically-assisted correction scheme consisting of direct simulation of the particle phase dynamics in counterflow was implemented. Addition of reactions describing the prompt dissociation of formyl radicals to an otherwise unmodified USC Mech II kinetic model was found to enhance computed flame reactivity and substantially improve the predictive capability of computed results for measurements at the lowest pressures studied. Yet, the same modifications lead to overprediction of flame data at 1 atmosphere where results from the unmodified USC Mech II kinetic mechanism agreed well with ambient pressure flame data. The apparent failure of a single kinetic model to capture pressure dependence in methane flames motivates continued skepticism regarding the current understanding of pressure dependence in kinetic models, even for the simplest fuels.
Catalysis by Dust Grains in the Solar Nebula
NASA Technical Reports Server (NTRS)
Kress, Monika E.; Tielens, Alexander G. G. M.
1996-01-01
In order to determine whether grain-catalyzed reactions played an important role in the chemistry of the solar nebula, we have applied our time-dependent model of methane formation via Fischer-Tropsch catalysis to pressures from 10(exp -5) to 1 bar and temperatures from 450 to 650 K. Under these physical conditions, the reaction 3H2 + CO yields CH4 + H2O is readily catalyzed by an iron or nickel surface, whereas the same reaction is kinetically inhibited in the gas phase. Our model results indicate that under certain nebular conditions, conversion of CO to methane could be extremely efficient in the presence of iron-nickel dust grains over timescales very short compared to the lifetime of the solar nebula.
Chemical and isotopic fractionations by evaporation and their cosmochemical implications
NASA Astrophysics Data System (ADS)
Ozawa, Kazuhito; Nagahara, Hiroko
2001-07-01
A kinetic model for evaporation of a multi-component condensed phase with a fixed rate constant of the reaction is developed. A binary system with two isotopes for one of the components undergoing simple thermal histories (e.g., isothermal heating) is investigated in order to evaluate the extent of isotopic and chemical fractionations during evaporation. Diffusion in the condensed phase and the effect of back reaction from ambient gas are taken into consideration. Chemical and isotopic fractionation factors and the Péclet number for evaporation are the three main parameters that control the fractionation. Dust enrichment factor (η), the ratio of the initial dust quantity to that required for attainment of gas-dust equilibrium, is critical when back reactions become significant. Dust does not reach equilibrium with gas at η < 1. Notable chemical and isotopic fractionations usually take place under these conditions. There are two circumstances in which isotopic fractionation of a very volatile element does not accompany chemical fractionation during isothermal heating. One is free evaporation when diffusion in the condensed phase is very slow (η = 0), and the other is evaporation in the presence of ambient gas (η > 0). In the former case, a quasi-steady state in the diffusion boundary layer is maintained for isotopic fractionation but not for chemical fractionation. In the latter case, the back reaction brings the strong isotopic fractionation generated in the earlier stage of evaporation back to a negligibly small value in the later stage before complete evaporation. The model results are applied to cosmochemical fractionation of volatile elements during evaporation from a condensed phase that can be regarded as a binary solution phase. The wide range of potassium depletion without isotopic fractionation in various types of chondrules (Alexander et al., 2000) is explained by instantaneous heating followed by cooling in a closed system with various degrees of dust enrichment (η = 0.001-10) and cooling rates of less than ˜5°C/min. The extent of decoupling between isotopic and chemical fractionations of various elements in chondrules and matrix minerals may constrain the time scale and the conditions of heating and cooling processes in the early solar nebula.
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1972-01-01
A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.
Recent Advances in Modeling Hugoniots with Cheetah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaesemann, K R; Fried, L E
2005-07-26
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
Recent Advances in Modeling Hugoniots with Cheetah
NASA Astrophysics Data System (ADS)
Glaesemann, K. R.; Fried, L. E.
2006-07-01
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
Theoretical study of gas hydrate decomposition kinetics--model development.
Windmeier, Christoph; Oellrich, Lothar R
2013-10-10
In order to provide an estimate of the order of magnitude of intrinsic gas hydrate dissolution and dissociation kinetics, the "Consecutive Desorption and Melting Model" (CDM) is developed by applying only theoretical considerations. The process of gas hydrate decomposition is assumed to comprise two consecutive and repetitive quasi chemical reaction steps. These are desorption of the guest molecule followed by local solid body melting. The individual kinetic steps are modeled according to the "Statistical Rate Theory of Interfacial Transport" and the Wilson-Frenkel approach. All missing required model parameters are directly linked to geometric considerations and a thermodynamic gas hydrate equilibrium model.
The effect of model fidelity on prediction of char burnout for single-particle coal combustion
McConnell, Josh; Sutherland, James C.
2016-07-09
In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase.more » The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.« less
The effect of model fidelity on prediction of char burnout for single-particle coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Josh; Sutherland, James C.
In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase.more » The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.« less
Surfactants from the gas phase may promote cloud droplet formation.
Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye
2013-02-19
Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.
SurfKin: an ab initio kinetic code for modeling surface reactions.
Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K
2014-10-05
In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. Copyright © 2014 Wiley Periodicals, Inc.
High-resolution discrete absorption spectrum of α-methallyl free radical in the vapor phase
NASA Astrophysics Data System (ADS)
Bayrakçeken, Fuat; Telatar, Ziya; Arı, Fikret; Tunçyürek, Lale; Karaaslan, İpek; Yaman, Ali
2006-09-01
The α-methallyl free radical is formed in the flash photolysis of 3-methylbut-1-ene, and cis-pent-2-ene in the vapor phase, and then subsequent reactions have been investigated by kinetic spectroscopy and gas-liquid chromatography. The photolysis flash was of short duration and it was possible to follow the kinetics of the radicals' decay, which occurred predominantly by bimolecular recombination. The measured rate constant for the α-methallyl recombination was (3.5 ± 0.3) × 10 10 mol -1 l s -1 at 295 ± 2 K. The absolute extinction coefficients of the α-methallyl radical are calculated from the optical densities of the absorption bands. Detailed analysis of related absorption bands and lifetime measurements in the original α-methallyl high-resolution discrete absorption spectrum image were also carried out by image processing techniques.
In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.
Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao
2016-11-01
Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Xue; Zhang, Chenxi; Sun, Xiaomin; Kang, Lingyan; Zhao, Yan
2015-01-01
As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs) and polychlorinated biphenyls (PCBs) are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD). Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of kadd/ktotal and kabs/ktotal at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin. PMID:25867482
36th International Symposium on Combustion (ISOC2016)
2016-12-01
GREENHOUSE GASES / IC ENGINE COMBUSTION I GAS TURBINE COMBUSTION I NOVEL COMBUSTION CONCEPTS, TECHNOLOGIES AND SYSTEMS 15. SUBJECT TERMS Reaction...pollutants and greenhouse gases; IC engine combustion; Gas turbine combustion; Novel combustion concepts, technologies and systems 16. SECURITY...PLENARY LECTURE TRANSFER (15 min) am Turbulent Flames IC Engines Laminar Flames Reaction Kinetics Gas Turbines Soot Solid Fuels/Pollutants
NASA Astrophysics Data System (ADS)
Bather, Wayne Anthony
The metalorganic chemical vapor deposition (MOCVD) growth of compound semiconductors has become important in producing many high performance electronic and optoelectronic devices from the wide bandgaps III-V nitrides, for example, aluminum nitride (AlN). A systematic theoretical and experimental investigation of the chemistry and mass transport process in a MOCVD system can yield predictive models of the deposition process. The chemistries and fluid dynamics of the MOCVD growth of AlN in a vertical reactor is analyzed and characterized in order to parameterize and model the deposition process. A Fourier Transform Infrared (FTIR) spectroscopic study of the predeposition reactions between trimethylaluminum (TMAl) and ammonia (NHsb3) is carried out in a static gas cell to examine the primary homogeneous gas phase reactions, pyrolysis of the reactants, and adduct formation, possibly accompanied by elimination reactions. A series of reactions, based on laboratory studies and literature review, is then proposed to model the deposition process. All pertinent kinetic, thermochemical, and transport properties were obtained. Utilizing a mass transport model, we performed computational fluid dynamics calculations using the FLUENT software package. We determined temperature, velocity, and concentration profiles, along with deposition rates inside the experimental vertical CVD reactor in the Howard University Material Science Research Center of Excellence. Experimental deposition rate data were found to be in good agreement with those predicted from the simulations, thus validating the proposed model. The control of the homogeneous gas phase reaction leading to the formation and subsequent decomposition of the adduct is critical to the formation of device-grade AlN films. Many basic processes occurring during MOCVD of AlN are still not completely understood, and none of the detailed surface reaction mechanisms are known.
NASA Astrophysics Data System (ADS)
Akatay, Mehmed Cem
Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.
A Gas-Kinetic Method for Hyperbolic-Elliptic Equations and Its Application in Two-Phase Fluid Flow
NASA Technical Reports Server (NTRS)
Xu, Kun
1999-01-01
A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the mixed type system, the co-existence and the phase transition between liquid and gas are described by the van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region, interface between the liquid and gas can be kept sharp through the condensation and evaporation process to remove the "averaged" numerical fluid away from the elliptic region, and the interface thickness depends on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for both phase transition and multifluid interface problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.
2005-10-01
Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately uponmore » mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.« less
Destaillats, Hugo; Lunden, Melissa M; Singer, Brett C; Coleman, Beverly K; Hodgson, Alfred T; Weschler, Charles J; Nazaroff, William W
2006-07-15
Ozone-driven chemistry is a source of indoor secondary pollutants of potential health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields for most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid, and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of secondary particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10(5) molecules cm(-3) were determined by an indirect method. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate chamber study, we exposed the dry residue of two products to ozone and observed the formation of gas-phase and particle-phase secondary oxidation products.
Development of a Detailed Surface Chemistry Framework in DSMC
NASA Technical Reports Server (NTRS)
Swaminathan-Gopalan, K.; Borner, A.; Stephani, K. A.
2017-01-01
Many of the current direct simulation Monte Carlo (DSMC) codes still employ only simple surface catalysis models. These include only basic mechanisms such as dissociation, recombination, and exchange reactions, without any provision for adsorption and finite rate kinetics. Incorporating finite rate chemistry at the surface is increasingly becoming a necessity for various applications such as high speed re-entry flows over thermal protection systems (TPS), micro-electro-mechanical systems (MEMS), surface catalysis, etc. In the recent years, relatively few works have examined finite-rate surface reaction modeling using the DSMC method.In this work, a generalized finite-rate surface chemistry framework incorporating a comprehensive list of reaction mechanisms is developed and implemented into the DSMC solver SPARTA. The various mechanisms include adsorption, desorption, Langmuir-Hinshelwood (LH), Eley-Rideal (ER), Collision Induced (CI), condensation, sublimation, etc. The approach is to stochastically model the various competing reactions occurring on a set of active sites. Both gas-surface (e.g., ER, CI) and pure-surface (e.g., LH, desorption) reaction mechanisms are incorporated. The reaction mechanisms could also be catalytic or surface altering based on the participation of the bulk-phase species (e.g., bulk carbon atoms). Marschall and MacLean developed a general formulation in which multiple phases and surface sites are used and we adopt a similar convention in the current work. Microscopic parameters of reaction probabilities (for gas-surface reactions) and frequencies (for pure-surface reactions) that are require for DSMC are computed from the surface properties and macroscopic parameters such as rate constants, sticking coefficients, etc. The energy and angular distributions of the products are decided based on the reaction type and input parameters. Thus, the user has the capability to model various surface reactions via user-specified reaction rate constants, surface properties and parameters.
Aumiller, William M; Davis, Bradley W; Hashemian, Negar; Maranas, Costas; Armaou, Antonios; Keating, Christine D
2014-03-06
The intracellular environment in which biological reactions occur is crowded with macromolecules and subdivided into microenvironments that differ in both physical properties and chemical composition. The work described here combines experimental and computational model systems to help understand the consequences of this heterogeneous reaction media on the outcome of coupled enzyme reactions. Our experimental model system for solution heterogeneity is a biphasic polyethylene glycol (PEG)/sodium citrate aqueous mixture that provides coexisting PEG-rich and citrate-rich phases. Reaction kinetics for the coupled enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase (HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS). Enzyme kinetics differed between the two phases, particularly for the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however, the Amplex Red substrate necessary to complete the sequential reaction partitioned strongly to the PEG-rich phase. Reactions in ATPS were quantitatively described by a mathematical model that incorporated measured partitioning and kinetic parameters. The model was then extended to new reaction conditions, i.e., higher enzyme concentration. Both experimental and computational results suggest mass transfer across the interface is vital to maintain the observed rate of product formation, which may be a means of metabolic regulation in vivo. Although outcomes for a specific system will depend on the particulars of the enzyme reactions and the microenvironments, this work demonstrates how coupled enzymatic reactions in complex, heterogeneous media can be understood in terms of a mathematical model.
NASA Astrophysics Data System (ADS)
Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.
2014-11-01
We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.
Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH
NASA Astrophysics Data System (ADS)
Zuend, A.; Seinfeld, J.
2011-12-01
Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal mixtures substantially overestimates the SOA mass, especially at high relative humidity.
NASA Astrophysics Data System (ADS)
Loumagne, F.; Langlais, F.; Naslain, R.
1995-10-01
The kinetics of SiC-based ceramics deposition from CH 3SiCl 3{( MTS) }/{H2} gas precursor has been investigated over a range of reduced pressure and low temperature, where kinetics are controlled by chemical reactions. Overall kinetic laws have been determined from the measurement of the apparent activation energy and the influence of MTS, H 2, CH 4 and HCl. The kinetics of SiC deposition highly depends on both the dilution ratio α = {P H2}/{P MTS} and the total pressure. For 3 ≤ α ≤ 10 and T = 825°C, the reaction order with respect to MTS equals 2. At T = 925°C, it becomes nil in the low pressure range and 1 for P ≥ 10 kPa, whereas at 825 and 925°C, PH 2 has no influence on the growth rate. The apparent reaction orders are explained on the basis of a Langmuir-Hinshelwood model. The limiting step is evidenced as being HCl elimination by both SiCl and CH bonds breaking.
Global distribution of secondary organic aerosol particle phase state
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.
2016-12-01
Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.
NASA Astrophysics Data System (ADS)
Zhao, Z.; Diemant, T.; Häring, T.; Rauscher, H.; Behm, R. J.
2005-12-01
We describe the design and performance of a high-pressure reaction cell for simultaneous kinetic and in situ infrared reflection (IR) spectroscopic measurements on model catalysts at elevated pressures, between 10-3 and 103mbars, which can be operated both as batch reactor and as flow reactor with defined gas flow. The cell is attached to an ultrahigh-vacuum (UHV) system, which is used for sample preparation and also contains facilities for sample characterization. Specific for this design is the combination of a small cell volume, which allows kinetic measurements with high sensitivity under batch or continuous flow conditions, the complete isolation of the cell from the UHV part during UHV measurements, continuous temperature control during both UHV and high-pressure operation, and rapid transfer between UHV and high-pressure stage. Gas dosing is performed by a designed gas-handling system, which allows operation as flow reactor with calibrated gas flows at adjustable pressures. To study the kinetics of reactions on the model catalysts, a quadrupole mass spectrometer is connected to the high-pressure cell. IR measurements are possible in situ by polarization-modulation infrared reflection-absorption spectroscopy, which also allows measurements at elevated pressures. The performance of the setup is demonstrated by test measurements on the kinetics for CO oxidation and the CO adsorption on a Au /TiO2/Ru(0001) model catalyst film at 1-50 mbar total pressure.
Jalan, Amrit; Alecu, Ionut M; Meana-Pañeda, Rubén; Aguilera-Iparraguirre, Jorge; Yang, Ke R; Merchant, Shamel S; Truhlar, Donald G; Green, William H
2013-07-31
We present new reaction pathways relevant to low-temperature oxidation in gaseous and condensed phases. The new pathways originate from γ-ketohydroperoxides (KHP), which are well-known products in low-temperature oxidation and are assumed to react only via homolytic O-O dissociation in existing kinetic models. Our ab initio calculations identify new exothermic reactions of KHP forming a cyclic peroxide isomer, which decomposes via novel concerted reactions into carbonyl and carboxylic acid products. Geometries and frequencies of all stationary points are obtained using the M06-2X/MG3S DFT model chemistry, and energies are refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. Thermal rate coefficients are computed using variational transition-state theory (VTST) calculations with multidimensional tunneling contributions based on small-curvature tunneling (SCT). These are combined with multistructural partition functions (Q(MS-T)) to obtain direct dynamics multipath (MP-VTST/SCT) gas-phase rate coefficients. For comparison with liquid-phase measurements, solvent effects are included using continuum dielectric solvation models. The predicted rate coefficients are found to be in excellent agreement with experiment when due consideration is made for acid-catalyzed isomerization. This work provides theoretical confirmation of the 30-year-old hypothesis of Korcek and co-workers that KHPs are precursors to carboxylic acid formation, resolving an open problem in the kinetics of liquid-phase autoxidation. The significance of the new pathways in atmospheric chemistry, low-temperature combustion, and oxidation of biological lipids are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalan, Amrit; Alecu, Ionut M.; Meana-Pañeda, Rubén
2013-07-31
We present new reaction pathways relevant to low-temperature oxidation in gaseous and condensed phases. The new pathways originate from γ-ketohydroperoxides (KHP), which are well-known products in low-temperature oxidation and are assumed to react only via homolytic O-O dissociation in existing kinetic models. Our ab initio calculations identify new exothermic reactions of KHP forming a cyclic peroxide isomer, which decomposes via novel concerted reactions into carbonyl and carboxylic acid products. Geometries and frequencies of all stationary points are obtained using the M06-2X/MG3S DFT model chemistry, and energies are refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. Thermal rate coefficients are computed using variational transition-statemore » theory (VTST) calculations with multidimensional tunneling contributions based on small-curvature tunneling (SCT). These are combined with multistructural partition functions (QMS-T) to obtain direct dynamics multipath (MP-VTST/ SCT) gas-phase rate coefficients. For comparison with liquid-phase measurements, solvent effects are included using continuum dielectric solvation models. The predicted rate coefficients are found to be in excellent agreement with experiment when due consideration is made for acid-catalyzed isomerization. This work provides theoretical confirmation of the 30-year-old hypothesis of Korcek and co-workers that KHPs are precursors to carboxylic acid formation, resolving an open problem in the kinetics of liquid-phase autoxidation. The significance of the new pathways in atmospheric chemistry, low-temperature combustion, and oxidation of biological lipids are discussed.« less
Bain, Ryan M; Ayrton, Stephen T; Cooks, R Graham
2017-07-01
Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract .
Kopelman, R
1988-09-23
Classical reaction kinetics has been found to be unsatisfactory when the reactants are spatially constrained on the microscopic level by either walls, phase boundaries, or force fields. Recently discovered theories of heterogeneous reaction kinetics have dramatic consequences, such as fractal orders for elementary reactions, self-ordering and self-unmixing of reactants, and rate coefficients with temporal "memories." The new theories were needed to explain the results of experiments and supercomputer simulations of reactions that were confined to low dimensions or fractal dimensions or both. Among the practical examples of "fractal-like kinetics" are chemical reactions in pores of membranes, excitation trapping in molecular aggregates, exciton fusion in composite materials, and charge recombination in colloids and clouds.
FTIR gas-phase kinetic study on the reactions of some acrylate esters with OH radicals and Cl atoms.
Moreno, A; Gallego-Iniesta, M P; Taccone, R; Martín, M P; Cabañas, B; Salgado, M S
2014-10-01
Acrylate esters are α,β-unsaturated esters that contain vinyl groups directly attached to the carbonyl carbon. These compounds are widely used in the production of plastics and resins. Atmospheric degradation processes of these compounds are currently not well understood. The kinetics of the gas phase reactions of OH radicals with methyl 3-methylacrylate and methyl 3,3-dimethylacrylate were determined using the relative rate technique in a 50 L Pyrex photoreactor using in situ FTIR spectroscopy at room temperature (298 ± 2 K) and atmospheric pressure (708 ± 8 Torr) with air as the bath gas. Rate coefficients obtained were (in units cm(3) molecule(-1) s(-1)): (3.27 ± 0.33) × 10(-11) and (4.43 ± 0.42) × 10(-11), for CH3CH═CHC(O)OCH3 and (CH3)2CH═CHC(O)OCH3, respectively. The same technique was used to study the gas phase reactions of hexyl acrylate and ethyl hexyl acrylate with OH radicals and Cl atoms. In the experiments with Cl, N2 and air were used as the bath gases. The following rate coefficients were obtained (in cm(3) molecule(-1) s(-1)): k3 (CH2═CHC(O)O(CH2)5CH3 + Cl) = (3.31 ± 0.31) × 10(-10), k4(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3 + Cl) = (3.46 ± 0.31) × 10(-10), k5(CH2═CHC(O)O(CH2)5CH3 + OH) = (2.28 ± 0.23) × 10(-11), and k6(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3 + OH) = (2.74 ± 0.26) × 10(-11). The reactivity increased with the number of methyl substituents on the double bond and with the chain length of the alkyl group in -C(O)OR. Estimations of the atmospheric lifetimes clearly indicate that the dominant atmospheric loss process for these compounds is their daytime reaction with the hydroxyl radical. In coastal areas and in some polluted environments, Cl atom-initiated degradation of these compounds can be significant, if not dominant. Maximum Incremental Reactivity (MIR) index and global warming potential (GWP) were also calculated, and it was concluded that these compounds have significant MIR values, but they do not influence global warming.
Catalytic processing of lactic acid over Pt/Nb(2)O(5).
Serrano-Ruiz, Juan Carlos; Dumesic, James A
2009-01-01
Dilute aqueous solutions of lactic acid (30 %wt.) can be catalytically processed at 573 K and 57 bar over a low-metal-content Pt(0.1 %)/Nb(2)O(5) catalyst in a spontaneously separating organic phase rich in valuable products such as C(4)-C(7) ketones. An increase in the lactic acid concentration to 60 wt % allows conversion of approximately 50 % of the carbon feed in this organic layer, while maintaining good stability of the catalyst. Experiments at low conversion showed that lactic acid reacts first over Pt(0.1 %)/Nb(2)O(5) to produce acetaldehyde and propanoic acid (along with CO and CO(2) in the gas phase). These compounds (less oxygenated than lactic acid but still reactive) are the key intermediates in the overall process, and they react differently depending on the nature of the catalyst support. In particular, reaction kinetics studies with propanoic acid as feed showed that Pt(0.1 %)/Nb(2)O(5) favored the formation of pentanones by ketonization reactions, whereas a monofunctional Pt(0.1 %)/carbon catalyst produced ethane and CO(x) by decomposition reactions. In the same manner, acetaldehyde was preferentially hydrogenated to ethanol over Pt(0.1 %)/carbon, whereas the presence of niobia allowed this intermediate to react (by successive aldol condensations) to form C(4)-C(7) condensation products stored in the organic phase. Finally, reaction pathways are proposed to explain the catalytic processing of lactic acid over bifunctional Pt(0.1 %)/Nb(2)O(5). In this scheme, metal sites catalyze hydrogenation reactions and niobia promotes C--C coupling processes (ketonization and aldol condensation), in contrast to C--C cleavage reactions which take place preferentially over Pt(0.1 %)/carbon and lead to loss of carbon in the gas effluent as CO, CO(2), and methane.
Becerra, Rosa; Cannady, J Pat; Dormer, Guy; Walsh, Robin
2009-07-14
Time-resolved kinetic studies of the reactions of silylene, SiH(2), and dideutero-silylene, SiD(2), generated by laser flash photolysis of phenylsilane and phenylsilane-d(3), respectively, have been carried out to obtain rate coefficients for their bimolecular reactions with 2-butyne, CH(3)C[triple bond, length as m-dash]CCH(3). The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas at five temperatures in the range 294-612 K. The second-order rate coefficients, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equations where the error limits are single standard deviations: log(k(H)(Infinity)/cm(3) molecule(-1) s(-1) = (-9.67 +/- 0.04) + (1.71 +/- 0.33) kJ mol(1)/RTIn10log(k(D)(Infinity)/cm(3) molecule(-1) s(-1) = (-9.65 +/- 0.01) + (1.92 +/- 0.13) kJ mol(-1)/RTIn10. Additionally, pressure-dependent rate coefficients for the reaction of SiH(2) with 2-butyne in the presence of He (1-100 Torr) were obtained at 301, 429 and 613 K. Quantum chemical (ab initio) calculations of the SiC(4)H(8) reaction system at the G3 level support the formation of 2,3-dimethylsilirene [cyclo-SiH(2)C(CH(3))[double bond, length as m-dash]C(CH(3))-] as the sole end product. However, reversible formation of 2,3-dimethylvinylsilylene [CH(3)CH[double bond, length as m-dash]C(CH(3))SiH] is also an important process. The calculations also indicate the probable involvement of several other intermediates, and possible products. RRKM calculations are in reasonable agreement with the pressure dependences at an enthalpy value for 2,3-dimethylsilirene fairly close to that suggested by the ab initio calculations. The experimental isotope effects deviate significantly from those predicted by RRKM theory. The differences can be explained by an isotopic scrambling mechanism, involving H-D exchange between the hydrogens of the methyl groups and the D-atoms in the ring in 2,3-dimethylsilirene-1,1-d(2). A detailed mechanism involving several intermediate species, which is consistent with the G3 energy surface, is proposed to account for this.
NASA Astrophysics Data System (ADS)
Chim, Man Mei; Cheng, Chiu Tung; Davies, James F.; Berkemeier, Thomas; Shiraiwa, Manabu; Zuend, Andreas; Nin Chan, Man
2017-12-01
Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4) droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART) coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5) hydroxyl functionalization product (C5H8O5) and a C4 fragmentation product (C4H6O3). These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon-carbon bond scission) of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model) coupled with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from 0.362 to 0.424; however, the diameter of the droplets decreases by 6.1 %. This can be attributed to the formation of volatile fragmentation products that partition to the gas phase, leading to a net loss of organic species and associated particle-phase water, and thus a smaller droplet size. Overall, fragmentation and volatilization processes play a larger role than the functionalization process in determining the evolution of aerosol water content and droplet size at high-oxidation stages.
Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A
2017-08-10
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.; ...
2017-07-14
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
Palandri, James L.; Kharaka, Yousif K.
2004-01-01
Geochemical reaction path modeling is useful for rapidly assessing the extent of water-aqueous-gas interactions both in natural systems and in industrial processes. Modeling of some systems, such as those at low temperature with relatively high hydrologic flow rates, or those perturbed by the subsurface injection of industrial waste such as CO2 or H2S, must account for the relatively slow kinetics of mineral-gas-water interactions. We have therefore compiled parameters conforming to a general Arrhenius-type rate equation, for over 70 minerals, including phases from all the major classes of silicates, most carbonates, and many other non-silicates. The compiled dissolution rate constants range from -0.21 log moles m-2 s-1 for halite, to -17.44 log moles m-2 s-1 for kyanite, for conditions far from equilibrium, at 25 ?C, and pH near neutral. These data have been added to a computer code that simulates an infinitely well-stirred batch reactor, allowing computation of mass transfer as a function of time. Actual equilibration rates are expected to be much slower than those predicted by the selected computer code, primarily because actual geochemical processes commonly involve flow through porous or fractured media, wherein the development of concentration gradients in the aqueous phase near mineral surfaces, which results in decreased absolute chemical affinity and slower reaction rates. Further differences between observed and computed reaction rates may occur because of variables beyond the scope of most geochemical simulators, such as variation in grain size, aquifer heterogeneity, preferred fluid flow paths, primary and secondary mineral coatings, and secondary minerals that may lead to decreased porosity and clogged pore throats.
NASA Technical Reports Server (NTRS)
Chen, Yih-Kang
1992-01-01
Effect of flow field properties on the heating distribution over a 140 deg blunt cone was determined for a Martian atmosphere using Euler, Navier-Stokes (NS), viscous shock layer (VSL), and reacting boundary layer (BLIMPK) equations. The effect of gas kinetics on the flow field and the surface heating distribution were investigated. Gas models with nine species and nine reactions were implemented into the codes. Effects of surface catalysis on the heating distribution were studied using a surface kinetics model having five reactions.
NASA Astrophysics Data System (ADS)
Arning, Esther T.; Häußler, Steffen; van Berk, Wolfgang; Schulz, Hans-Martin
2016-07-01
The modelling of early diagenetic processes in marine sediments is of interest in marine science, and in the oil and gas industry, here, especially with respect to methane occurrence and gas hydrate formation as resources. Early diagenesis in marine sediments evolves from a complex web of intertwining (bio)geochemical reactions. It comprises microbially catalysed reactions and inorganic mineral-water-gas interactions. A model that will describe and consider all of these reactions has to be complex. However, it should be user-friendly, as well as to be applicable for a broad community and not only for experts in the field of marine chemistry. The presented modelling platform PeaCH4 v.2.0 combines both aspects, and is Microsoft Excel©-based. The modelling tool is PHREEQC (version 2), a computer programme for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. The conceptual PEaCH4 model is based on the conversion of sediment-bound degradable organic matter. PEaCH4 v.2.0 was developed to quantify and predict early diagenetic processes in marine sediments with the focus on biogenic methane formation and its phase behaviour, and allows carbon mass balancing. In regard to the irreversible degradation of organic matter, it comprises a "reaction model" and a "kinetic model" to predict methane formation. Both approaches differ in their calculations and outputs as the "kinetic model" considers the modelling time to integrate temperature dependent biogenic methane formation in its calculations, whereas the "reaction model" simply relies on default organic matter degradation. With regard to the inorganic mineral-water-gas interactions, which are triggered by irreversible degradation of organic matter, PEaCH4 v.2.0 is based on chemical equilibrium thermodynamics, appropriate mass-action laws, and their temperature dependent equilibrium constants. The programme is exemplarily presented with the example of upwelling sediments off Namibia, ODP Leg 175, Site 1082. The application demonstrates that the modelling platform PEaCH4 v.2.0 provides a user-friendly, but complex scientific tool that delivers retraceable information about early diagenetic processes and products in marine sediments.
Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries
Prentice, Boone M.
2013-01-01
Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field. PMID:23257901
Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.
Prentice, Boone M; McLuckey, Scott A
2013-02-01
Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.
Recent advances in modeling Hugoniots with Cheetah
NASA Astrophysics Data System (ADS)
Glaesemann, Kurt
2005-07-01
The detonation of an energetic material is the result of a complex interaction between kinetic chemical reactions and thermodynamic chemical equilibrium. Unfortunately, little is known concerning the detailed chemical kinetics of reacting energetic materials. Cheetah uses rate laws to treat species with the slowest chemical reactions, while assuming other chemical species are in equilibrium. Cheetah supports a wide range of elements and condensed detonation products and can also be applied to gas phase reactions. Improvements have been made to Cheetah's equilibrium solver, that allow it to find a wider range of thermodynamic states. Many of the difficulties experienced by users in earlier versions of Cheetah have been fixed. New capabilities have also been added. The ultimate result is a code that can be applied to a wide range of shock problems involving both energetic and non-energetic materials. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Zhao, Bingwei; Wang, Xin; Yang, Xiaoyi
2015-12-01
Co-pyrolysis characteristics of Isochrysis (high lipid) and Chlorella (high protein) were investigated qualitatively and quantitatively based on DTG curves, biocrude yield and composition by individual pyrolysis and co-pyrolysis. DTG curves in co-pyrolysis have been compared accurately with those in individual pyrolysis. An interaction has been detected at 475-500°C in co-pyrolysis based on biocrude yields, and co-pyrolysis reaction mechanism appear three-dimensional diffusion in comparison with random nucleation followed by growth in individual pyrolysis based on kinetic analysis. There is no obvious difference in the maximum biocrude yields for individual pyrolysis and co-pyrolysis, but carboxylic acids (IC21) decreased and N-heterocyclic compounds (IC12) increased in co-pyrolysis. Simulation results of biocrude yield by Components Biofuel Model and Kinetics Biofuel Model indicate that the processes of co-pyrolysis comply with those of individual pyrolysis in solid phase by and large. Variation of percentage content in co-pyrolysis and individual pyrolysis biocrude indicated interaction in gas phase. Copyright © 2015. Published by Elsevier Ltd.
Updated Chemical Kinetics and Sensitivity Analysis Code
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan
2005-01-01
An updated version of the General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code has become available. A prior version of LSENS was described in "Program Helps to Determine Chemical-Reaction Mechanisms" (LEW-15758), NASA Tech Briefs, Vol. 19, No. 5 (May 1995), page 66. To recapitulate: LSENS solves complex, homogeneous, gas-phase, chemical-kinetics problems (e.g., combustion of fuels) that are represented by sets of many coupled, nonlinear, first-order ordinary differential equations. LSENS has been designed for flexibility, convenience, and computational efficiency. The present version of LSENS incorporates mathematical models for (1) a static system; (2) steady, one-dimensional inviscid flow; (3) reaction behind an incident shock wave, including boundary layer correction; (4) a perfectly stirred reactor; and (5) a perfectly stirred reactor followed by a plug-flow reactor. In addition, LSENS can compute equilibrium properties for the following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static and one-dimensional-flow problems, including those behind an incident shock wave and following a perfectly stirred reactor calculation, LSENS can compute sensitivity coefficients of dependent variables and their derivatives, with respect to the initial values of dependent variables and/or the rate-coefficient parameters of the chemical reactions.
Honma, Kenji; Miyashita, Kazuki; Matsumoto, Yoshiteru
2014-06-07
Oxidation reaction of a gas-phase aluminum atom by a molecular oxygen was studied by a crossed-beam condition at 12.4 kJ/mol of collision energy. A (1+1) resonance-enhanced multiphoton ionization (REMPI) via the D(2)Σ(+)-X(2)Σ(+) transition of AlO was applied to ionize the product. The REMPI spectrum was analyzed to determine rotational state distributions for v = 0-2 of AlO. For several vib-rotational states of AlO, state selected angular and kinetic energy distributions were determined by a time-sliced ion imaging technique for the first time. Kinetic energy distributions were well represented by that taken into account initial energy spreads of collision energy and the population of the spin-orbit levels of the counter product O((3)P(J)) determined previously. All angular distributions showed forward and backward peaks, and the forward peaks were more pronounced than the backward one for the states of low internal energy. The backward peak intensity became comparable to the forward one for the states of high internal energy. These results and the rotational state distributions suggested that the reaction proceeds via an intermediate which has a lifetime comparable to or shorter than its rotational period.
Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Zahniser, Mark S.; Nelson, David D.; Worsnop, Douglas R.; Kolb, Charles E.
1996-01-01
The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HOx and NOx species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences.
Gas-Phase Synthesis and Characterization of CH4-Loaded Hydroquinone Clathrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.; Lee, Y; Takeya, S
2010-01-01
A CH{sub 4}-loaded hydroquinone (HQ) clathrate was synthesized via a gas-phase reaction using the {alpha}-form of crystalline HQ and CH{sub 4} gas at 12 MPa and room temperature. Solid-state {sup 13}C cross-polarization/magic angle spinning (CP/MAS) NMR and Raman spectroscopic measurements confirm the incorporation of CH{sub 4} molecules into the cages of the HQ clathrate framework. The chemical analysis indicates that about 69% of the cages are filled by CH{sub 4} molecules, that is, 0.69 CH{sub 4} per three HQ molecules. Rietveld refinement using synchrotron X-ray powder diffraction (XRD) data shows that the CH{sub 4}-loaded HQ clathrate adopts the {beta}-form ofmore » HQ clathrate in a hexagonal space group R3 with lattice parameters of a = 16.6191 {angstrom} and c = 5.5038 {angstrom}. Time-resolved synchrotron XRD and quadrupole mass spectroscopic measurements show that the CH{sub 4}-loaded HQ clathrate is stable up to 368 K and gradually transforms to the {alpha}-form by releasing the confined CH{sub 4} gases between 368-378 K. Using solid-state {sup 13}C CP/MAS NMR, the reaction kinetics between the {alpha}-form HQ and CH{sub 4} gas is qualitatively described in terms of the particle size of the crystalline HQ.« less
Engeldinger, Jana; Richter, Manfred; Bentrup, Ursula
2012-02-21
The simultaneous combination of steady state isotopic transient kinetic analysis (SSITKA) with diffuse reflectance Fourier transform spectroscopy (DRIFTS) and mass spectrometric (MS) analysis was applied to study the oxidative carbonylation of methanol (MeOH) to dimethyl carbonate (DMC) on a CuY zeolite catalyst prepared by incipient-wetness impregnation of commercial zeolite NH(4)-Y. The interaction of the catalyst with different reactants and reactant mixtures (O(2), CO, CO/O(2), MeOH/O(2), MeOH/CO, and MeOH/CO/O(2)) was studied in detail using (16)O(2)/(18)O(2) as well as (12)CO/(13)CO containing gas mixtures. DMC is produced via a monodentate monomethyl carbonate (MMC) species as intermediate which is formed by the concerted action of adsorbed methoxide and CO with gas phase MeOH. Adsorbed bidentate MMC species were found to be inactive. Lattice oxygen supplied by CuO(x) species is involved in the formation of MMC. Gas phase oxygen is needed to re-oxidize the catalyst but favours also the oxidation of CO to CO(2) and unselective oxidation reactions of MeOH to methyl formate, dimethoxymethane, and CO(2). The appropriate choice of reaction temperature and of the oxygen content in the reactant gas mixture was found to be indispensable for reaching high DMC selectivities.
NASA Astrophysics Data System (ADS)
Kroll, J. H.; Wilson, K. R.; Kessler, S. H.; Browne, E. C.; Nah, T.; Smith, J.; Worsnop, D. R.
2014-12-01
The atmospheric oxidation of condensed-phase organic species can have a major influence on the composition, properties, and impacts of organic aerosol (OA); however the rates and products of such "aging" reactions are poorly constrained. Here we describe a series of laboratory experiments aimed at better understanding one class of aging reactions, the heterogeneous oxidation of OA by gas-phase oxidants. Central to these experiments is the availability of vacuum ultraviolet (VUV) light at the Chemical Dynamics Beamline of the Advanced Light Source at LBNL, which enables the implementation of VUV photoionization aerosol mass spectrometry. This technique allows for the real-time, speciated measurement of OA composition, yielding molecular information that is highly complementary to ensemble data from electron-impact ionization. OA composition is measured with both ionization schemes as a function of oxidant exposure within a flow reactor, providing detailed information on the kinetics and products of heterogeneous oxidation over multiple generations of oxidation. Specific topics investigated include the branching between functionalization and fragmentation of OA components, the formation of secondary organic aerosol from photolytically-generated radical species, and the heterogeneous aging of soot-associated organic species.
ALCHEMIC: Advanced time-dependent chemical kinetics
NASA Astrophysics Data System (ADS)
Semenov, Dmitry A.
2017-08-01
ALCHEMIC solves chemical kinetics problems, including gas-grain interactions, surface reactions, deuterium fractionization, and transport phenomena and can model the time-dependent chemical evolution of molecular clouds, hot cores, corinos, and protoplanetary disks.
Multi-fluid CFD analysis in Process Engineering
NASA Astrophysics Data System (ADS)
Hjertager, B. H.
2017-12-01
An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.
Mechanistic and kinetic insights into the thermally induced rearrangement of alpha-pinene.
Stolle, Achim; Ondruschka, Bernd; Findeisen, Matthias
2008-11-07
The thermal rearrangement of alpha-pinene (1) is interesting from mechanistic as well as kinetic point of view. Carrier gas pyrolyses with 1 and its acyclic isomers ocimene (2) and alloocimene (3) were performed to investigate the thermal network of these hydrocarbons. Kinetic analysis of the major reaction steps allows for a deeper insight in the reaction mechanism. Thus it was possible to explain the racemization of 1, the formation of racemic limonene (4), and the absence of the primary pyrolysis product 2 in the reaction mixture resulting from thermal rearrangement of 1. Results supported the conclusion that the reactions starting with 1 involve biradical transition states.
Turbulent Combustion in SDF Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Bell, J B; Beckner, V E
2009-11-12
A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes intomore » account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.« less
Utilization of UV and IR Supercontinua in Gas-Phase Subpicosecond Kinetic Spectroscopy
NASA Astrophysics Data System (ADS)
Glownia, J. H.; Misewich, J.; Sorokin, P. P.
Through the work of photochemists extending over many decades, there now exists a wealth of information on the various reactions that photoexcited gas phase molecules undergo. Most of this information relates to the product molecules that are formed, either as the direct result of a primary photochemical act, such as photodissociation, or through subsequent secondary reactions, involving collisions with other molecules in the gas. Recently, there has been an extensive effort directed at determining the exact energy distributions of the primary products formed in photodissociation. With the use of nanosecond tunable-laser techniques, such as laser-induced fluorescence (LIF) and coherent anti-Stokes Raman spectroscopy (CARS), scientists have successfully determined the nascent electronic, vibrational, and rotational energy distributions of various diatomic fragments such as CN, OH, NO, and O2 that are directly formed in the photodissociation of many kinds of molecules. The ready availability of high-quality, tunable, nanosecond lasers has made determination of the above-mentioned collisionless energy distributions a relatively straightforward process. The determination of product translational energies has long effectively been handled by angularly resolved time-of-flight (TOF) spectroscopy, or by sub-Doppler resolution spectroscopy, including a recently improved version of the latter, velocity-aligned Doppler spectroscopy (Xu et al., 1986).
Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
Bazant, Martin Z
2013-05-21
Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations. In condensed matter, strong interactions alter chemical activities and create variations that can dramatically affect the reaction rate. The extreme case is that of a reaction coupled to a phase transformation, whose kinetics must depend not only on the order parameter but also on its gradients at phase boundaries. Reaction-driven phase transformations are common in electrochemistry, when charge transfer is accompanied by ion intercalation or deposition in a solid phase. Examples abound in Li-ion, metal-air, and lead-acid batteries, as well as metal electrodeposition-dissolution. Despite complex thermodynamics, however, the standard kinetic model is the Butler-Volmer equation, based on a dilute solution approximation. The Marcus theory of charge transfer likewise considers isolated reactants and neglects elastic stress, configurational entropy, and other nonidealities in condensed phases. The limitations of existing theories recently became apparent for the Li-ion battery material LixFePO4 (LFP). It has a strong tendency to separate into Li-rich and Li-poor solid phases, which scientists believe limits its performance. Chemists first modeled phase separation in LFP as an isotropic "shrinking core" within each particle, but experiments later revealed striped phase boundaries on the active crystal facet. This raised the question: What is the reaction rate at a surface undergoing a phase transformation? Meanwhile, dramatic rate enhancement was attained with LFP nanoparticles, and classical battery models could not predict the roles of phase separation and surface modification. In this Account, I present a general theory of chemical kinetics, developed over the past 7 years, which is capable of answering these questions. The reaction rate is a nonlinear function of the thermodynamic driving force, the free energy of reaction, expressed in terms of variational chemical potentials. The theory unifies and extends the Cahn-Hilliard and Allen-Cahn equations through a master equation for nonequilibrium chemical thermodynamics. For electrochemistry, I have also generalized both Marcus and Butler-Volmer kinetics for concentrated solutions and ionic solids. This new theory provides a quantitative description of LFP phase behavior. Concentration gradients and elastic coherency strain enhance the intercalation rate. At low currents, the charge-transfer rate is focused on exposed phase boundaries, which propagate as "intercalation waves", nucleated by surface wetting. Unexpectedly, homogeneous reactions are favored above a critical current and below a critical size, which helps to explain the rate capability of LFP nanoparticles. Contrary to other mechanisms, elevated temperatures and currents may enhance battery performance and lifetime by suppressing phase separation. The theory has also been extended to porous electrodes and could be used for battery engineering with multiphase active materials. More broadly, the theory describes nonequilibrium chemical systems at mesoscopic length and time scales, beyond the reach of molecular simulations and bulk continuum models. The reaction rate is consistently defined for inhomogeneous, nonequilibrium states, for example, with phase separation, large electric fields, or mechanical stresses. This research is also potentially applicable to fluid extraction from nanoporous solids, pattern formation in electrophoretic deposition, and electrochemical dynamics in biological cells.
NASA Astrophysics Data System (ADS)
Jenkin, Michael Edwin
Over the past 30 years, man has become increasingly aware that the presence of relatively small quantities of pollutants in the atmosphere as a result of his activities, can have a profound impact on both its chemistry, and its meteorology. Photochemistry in the atmosphere is not restricted to the behavior of pollutants; indeed, certain photochemical phenomena necessarily occur naturally in a 'pollution free' atmosphere. It is the interaction of the photochemistry of trace pollutants with the naturally established chemistry, either inhibiting or exaggerating natural processes, which has given rise to the environment threatening consequences. The chemistry that leads to the phenomena mentioned above is complex, involving many hundreds of chemical reactions of reactive atomic and radical species. Over the years, a great deal of chemical kinetic data for elementary atmospheric reactions has accumulated, and the fundamental gas phase chemistry is well established. Computer models provide a useful means of assembling these data, and describing the likely behavior and interconversion of various atmospheric pollutants, thereby enabling policy decision. For these models to be truly predictive, however, they must be based, first on reliable field measurements of primary trace pollutants and, secondly, on accurate kinetic and mechanistic data for key reactions of atmospheric importance. The work presented in this dissertation is concerned with the kinetics and mechanisms of reactions of the hydroperoxy radial (HO2), and various organic peroxy radicals (RO2), which are formed as intermediates in the atmospheric oxidation of volatile organic compounds. In the sections that follow, our current understanding of the chemistry in general of the lower atmosphere (0-50 km) will be discussed in some detail, but with particular reference to the role played by HO2 and RO2 radicals.
Characterization of the Kinetics of NF3-Fluorination of NpO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Andrew M.; Scheele, Randall D.; McNamara, Bruce K.
2015-12-23
The exploitation of selected actinide and fission product fluoride volatilities has long been considered as a potentially attractive compact method for recycling used nuclear fuels to avoid generating the large volumes of radioactive waste arising from aqueous reprocessing [1-7]. The most developed process uses the aggressive and hazardous fluorinating agents hydrogen fluoride (HF) and/or molecular fluorine (F2) at high temperatures to volatilize the greatest fraction of the used nuclear fuel into a single gas stream. The volatilized fluorides are subsequently separated using a series of fractionation and condensation columns to recover the valuable fuel constituents and fission products. In pursuitmore » of a safer and less complicated approach, we investigated an alternative fluoride volatility-based process using the less hazardous fluorinating agent nitrogen trifluoride (NF3) and leveraging its less aggressive nature to selectively evolve fission product and actinide fluorides from the solid phase based on their reaction temperatures into a single recycle stream [8-15]. In this approach, successive isothermal treatments using NF3 will first evolve the more thermally susceptible used nuclear fuel constituents leaving the other constituents in the residual solids until subsequent isothermal temperature treatments cause these others to volatilize. During investigation of this process, individual neat used fuel components were treated with isothermal NF3 in an attempt to characterize the kinetics of each fluorination reaction to provide input into the design of a new volatile fluoride separations approach. In these directed investigations, complex behavior was observed between NF3 and certain solid reactants such as the actinide oxides of uranium, plutonium, and neptunium. Given the similar thermal reaction susceptibilities of neptunium oxide (NpO2) and uranium dioxide (UO2) and the importance of Np and U, we initially focused our efforts on determining the reaction kinetic parameters for NpO2. Characterizing the NF3 fluorination of NpO2 using established models for gas-solid reactions [16] proved unsuccessful so we developed a series of successive fundamental reaction mechanisms to characterize the observed successive fluorination reactions leading to production of the volatile neptunium hexafluoride (NpF6).« less
NASA Astrophysics Data System (ADS)
Coletti, Cecilia; Corinti, Davide; Paciotti, Roberto; Re, Nazzareno; Crestoni, Maria Elisa; Fornarini, Simonetta
2017-11-01
The investigation of the molecular structure and dynamics of ions in gas phase is an item of increasing interest, due the role such species play in many areas of chemistry and physics, not to mention that they often represent elusive intermediates in more complex reaction mechanisms. Infrared Multiple Photon Dissociation spectroscopy is today one of the most advanced technique to this purpose, because of its high sensitivity to even small structure changes. The interpretation of IRMPD spectra strongly relies on high level quantum mechanical computations, so that a close interplay is needed for a detailed understanding of structure and kinetics properties which can be gathered from the many applications of this powerful technique. Recent advances in experiment and theory in this field are here illustrated, with emphasis on recent progresses for the elucidation of the mechanism of action of cisplatin, one of the most widely used anticancer drugs.
NASA Astrophysics Data System (ADS)
Lou, Wentao; Zhu, Miaoyong
2014-10-01
A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.
Manikandan, Paranjothy; Zhang, Jiaxu; Hase, William L
2012-03-29
Extensive classical chemical dynamics simulations of gas-phase X(-) + CH(3)Y → XCH(3) + Y(-) S(N)2 nucleophilic substitution reactions are reviewed and discussed and compared with experimental measurements and predictions of theoretical models. The primary emphasis is on reactions for which X and Y are halogen atoms. Both reactions with the traditional potential energy surface (PES), which include pre- and postreaction potential energy minima and a central barrier, and reactions with nontraditional PESs are considered. These S(N)2 reactions exhibit important nonstatistical atomic-level dynamics. The X(-) + CH(3)Y → X(-)---CH(3)Y association rate constant is less than the capture model as a result of inefficient energy transfer from X(-)+ CH(3)Y relative translation to CH(3)Y rotation and vibration. There is weak coupling between the low-frequency intermolecular modes of the X(-)---CH(3)Y complex and higher frequency CH(3)Y intramolecular modes, resulting in non-RRKM kinetics for X(-)---CH(3)Y unimolecular decomposition. Recrossings of the [X--CH(3)--Y](-) central barrier is important. As a result of the above dynamics, the relative translational energy and temperature dependencies of the S(N)2 rate constants are not accurately given by statistical theory. The nonstatistical dynamics results in nonstatistical partitioning of the available energy to XCH(3) +Y(-) reaction products. Besides the indirect, complex forming atomic-level mechanism for the S(N)2 reaction, direct mechanisms promoted by X(-) + CH(3)Y relative translational or CH(3)Y vibrational excitation are possible, e.g., the roundabout mechanism.
Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J
2013-02-28
A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.
NASA Astrophysics Data System (ADS)
El-Geassy, Abdel-Hady A.
2017-09-01
Wüstite (W1 and W2) micropellets (150-50 μm) were prepared from the reduction of pure Fe2O3 and 2.1% SiO2-doped Fe2O3 in 40%CO/CO2 gas mixture at 1000°C which were then isothermally reduced in H2, CO and H2/CO gas mixtures at 900-1100°C. The reduction reactions was followed by Thermogravimetric Analysis (TG) technique. The effect of gas composition, gas pressure and temperature on the rate of reduction was investigated. The different phases formed during the reduction were chemically and physically characterized. In SiO2-doped wüstite, fayalite (Fe2SiO3) was identified. At the initial reduction stages, the highest rate was obtained in H2 and the lowest was in CO gas. In H2/CO gas mixtures, the measured rate did not follow a simple additive equation. The addition of 5% H2 to CO led to a measurable increase in the rate of reduction compared with that in pure CO. Incubation periods were observed at the early reduction stages of W1 in CO at lower gas pressure (<0.25 atm). In SiO2-doped wüstite, reaction rate minimum was detected in H2 and H2-rich gas mixtures at 925-950°C. The influence of addition of H2 to CO or CO to H2 on the reduction reactions, nucleation and grain growth of iron was intensively studied. Unlike in pure wüstite, the presence of fayalite enhances the reduction reactions with CO and CO-rich gas mixtures. The chemical reaction equations of pure wüstite with CO are given showing the formation of carbonyl-like compound [Fem(CO2)n]*. The apparent activation energy values, at the initial stages, ranged from 53.75 to 133.97 kJ/mole indicating different reaction mechanism although the reduction was designed to proceed by the interfacial chemical reaction.
Espinosa-Garcia, Joaquin; Rangel, Cipriano; Suleimanov, Yury V
2017-07-26
We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane. This surface is fitted using high-level ab initio information as input. Using the PES-2017 surface, a kinetics study was performed via two theoretical approaches: variational transition-state theory with multidimensional tunnelling (VTST-MT) and ring polymer molecular dynamics (RPMD). The results are compared with the experimental data. In the whole temperature range analysed, 300-1500 K, both theories agree within a factor of <2, reproducing the experimental behaviour taking into account the experimental uncertainties. At high temperatures, where the recrossing effects dominate and the RPMD theory is exact, both theories differ by a factor of about 20%; while at low temperatures this difference is larger, 45%. Note that in this temperature regime, the tunnelling effect is negligible. The CN + CH 4 /CD 4 kinetic isotope effects are important, reproducing the scarce experimental evidence. The good agreement with the ab initio information used in the fitting process (self-consistency test) and with the kinetic behaviour in a wide temperature range gives confidence and strength to the new surface.
Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas
2017-07-19
Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.
NASA Astrophysics Data System (ADS)
Korologos, Christos A.; Philippopoulos, Constantine J.; Poulopoulos, Stavros G.
2011-12-01
In the present work, the gas-solid heterogeneous photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) over UV-irradiated titanium dioxide was studied in an annular reactor operated in the CSTR (continuous stirred-tank reactor) mode. GC-FID and GC-MS were used for analysing reactor inlet and outlet streams. Initial BTEX concentrations were in the low parts per million (ppmv) range, whereas the water concentration was in the range of 0-35,230 ppmv and the residence time varied from 50 to 210 s. The effect of water addition on the photocatalytic process showed strong dependence on the type of the BTEX and the water vapour concentration. The increase in residence time resulted in a considerable increase in the conversion achieved for all compounds and experimental conditions. There was a clear interaction between residence time and water presence regarding the effect on conversions achieved. It was established that conversions over 95% could be achieved by adjusting appropriately the experimental conditions and especially the water concentration in the reactor. In all cases, no by-products were detected above the detection limit and carbon dioxide was the only compound detected. Finally, various Langmuir-Hinshelwood kinetic models have been tested in the analysis of the experimental data obtained. The kinetic data obtained confirmed that water had an active participation in the photocatalytic reactions of benzene, toluene, ethylbenzene and m-xylene since the model involving reaction of BTEX and water adsorbed on different active sites yielded the most successful fitting to the experimental results for the first three compounds, whereas the kinetic model based on the assumption that reaction between VOC and water dissociatively adsorbed on the photocatalyst takes place was the most appropriate in the case of m-xylene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.J.; Smoot, L.D.; Brewster, B.S.
1987-12-01
A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along withmore » a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.« less
NASA Astrophysics Data System (ADS)
Sztáray, Bálint; Voronova, Krisztina; Torma, Krisztián G.; Covert, Kyle J.; Bodi, Andras; Hemberger, Patrick; Gerber, Thomas; Osborn, David L.
2017-07-01
Photoelectron photoion coincidence (PEPICO) spectroscopy could become a powerful tool for the time-resolved study of multi-channel gas phase chemical reactions. Toward this goal, we have designed and tested electron and ion optics that form the core of a new PEPICO spectrometer, utilizing simultaneous velocity map imaging for both cations and electrons, while also achieving good cation mass resolution through space focusing. These optics are combined with a side-sampled, slow-flow chemical reactor for photolytic initiation of gas-phase chemical reactions. Together with a recent advance that dramatically increases the dynamic range in PEPICO spectroscopy [D. L. Osborn et al., J. Chem. Phys. 145, 164202 (2016)], the design described here demonstrates a complete prototype spectrometer and reactor interface to carry out time-resolved experiments. Combining dual velocity map imaging with cation space focusing yields tightly focused photoion images for translationally cold neutrals, while offering good mass resolution for thermal samples as well. The flexible optics design incorporates linear electric fields in the ionization region, surrounded by dual curved electric fields for velocity map imaging of ions and electrons. Furthermore, the design allows for a long extraction stage, which makes this the first PEPICO experiment to combine ion imaging with the unimolecular dissociation rate constant measurements of cations to detect and account for kinetic shifts. Four examples are shown to illustrate some capabilities of this new design. We recorded the threshold photoelectron spectrum of the propargyl and the iodomethyl radicals. While the former agrees well with a literature threshold photoelectron spectrum, we have succeeded in resolving the previously unobserved vibrational structure in the latter. We have also measured the bimolecular rate constant of the CH2I + O2 reaction and observed its product, the smallest Criegee intermediate, CH2OO. Finally, the second dissociative photoionization step of iodocyclohexane ions, the loss of ethylene from the cyclohexyl cation, is slow at threshold, as illustrated by the asymmetric threshold photoionization time-of-flight distributions.
Organic-Solvent-Free Phase-Transfer Oxidation of Alcohols Using Hydrogen Peroxide
NASA Astrophysics Data System (ADS)
Hulce, Martin; Marks, David W.
2001-01-01
Organic-solvent-free oxidations of alcohols using aqueous hydrogen peroxide in the presence of sodium tungstate and phase-transfer catalysts provide a general, safe, simple, and cost-effective means to prepare ketones. Six representative alcohols, 1-phenylethanol, 1-phenylpropanol, benzhydrol, 4-methylbenzhydrol, cis,trans-4-tert-butylcyclohexanol, and benzyl alcohol are oxidized to the corresponding aldehyde or ketone over 1-3 hours in 81-99% yields. Purities are very high, with only small to trace amounts of starting alcohol remaining. Experiments can be readily designed for one or two 3-hour laboratory periods, integrating the various techniques of extraction, drying, filtration, column chromatography, gas chromatography, NMR and IR spectroscopy, and reaction kinetics.
Nasiri, Rasoul
2016-01-01
The role of boundary conditions at the interface for both Boltzmann equation and the set of Navier-Stokes equations have been suggested to be important for studying of multiphase flows such as evaporation/condensation process which doesn’t always obey the equilibrium conditions. Here we present aspects of transition-state theory (TST) alongside with kinetic gas theory (KGT) relevant to the study of quasi-equilibrium interfacial phenomena and the equilibrium gas phase processes, respectively. A two-state mathematical model for long-chain hydrocarbons which have multi-structural specifications is introduced to clarify how kinetics and thermodynamics affect evaporation/condensation process at the surface of fuel droplet, liquid and gas phases and then show how experimental observations for a number of n-alkane may be reproduced using a hybrid framework TST and KGT with physically reasonable parameters controlling the interface, gas and liquid phases. The importance of internal activation dynamics at the surface of n-alkane droplets is established during the evaporation/condensation process. PMID:27215897
Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin
2013-12-01
Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pulsed laser photolysis kinetics study of the O(3P) + ClO reaction
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Wine, P. H.; Ravishankara, A. R.
1988-01-01
A pulsed laser photolysis technique was used to investigate the kinetics of the important stratospheric reaction O + ClO yields Cl + O2 in buffer gas over the temperature and pressure ranges of 231-367 K and 25-500 torr. The results indicate a lack of pressure dependence at 298 K over the 25-500 torr range.
Pasquier, Louis-César; Mercier, Guy; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra
2014-05-06
Mineral carbonation is known as one of the safest ways to sequester CO2. Nevertheless, the slow kinetics and low carbonation rates constitute a major barrier for any possible industrial application. To date, no studies have focused on reacting serpentinite with a relatively low partial pressure of CO2 (pCO2) close to flue gas conditions. In this work, finely ground and heat-treated serpentinite [Mg3Si2O5(OH)4] extracted from mining residues was reacted with a 18.2 vol % CO2 gas stream at moderate global pressures to investigate the effect on CO2 solubility and Mg leaching. Serpentinite dissolution rates were also measured to define the rate-limiting step. Successive batches of gas were contacted with the same serpentinite to identify surface-limiting factors using scanning electron microscopy (SEM) analysis. Investigation of the serpentinite carbonation reaction mechanisms under conditions close to a direct flue gas treatment showed that increased dissolution rates could be achieved relative to prior work, with an average Mg dissolution rate of 3.55 × 10(-11) mol cm(-2) s(-1). This study provides another perspective of the feasibility of applying a mineral carbonation process to reduce industrial greenhouse gas (GHG) emissions from large emission sources.
The Reaction Mechanism and Kinetics for the Reaction of OH Radicals with Atmospheric Metolachlor
NASA Astrophysics Data System (ADS)
Chen, Chao; Zhou, Qin; Zheng, Jian; Jin, Xinhui; Ma, Wanyong; Zhou, Jianhua
2018-07-01
Metolachlor [2-chloro- N-(2-ethyl-6-methylphenyl)- N-(2-methoxy-1-methylethyl)acetamide], has been used as a chloroacetanilide herbicide to control annual grass weeds and broadleaf weeds in corn, cotton, peanuts, soybeans and beans. In this paper, aRS-metolachlor has been used as a model to investigate the reaction of OH radicals with atmospheric metolachlor. The reaction mechanism was obtained at the MPWB1K/6-311 + g(3 df,2 p)//MPWB1K/6-31 + g( d, p) level of theory and the rate constants were deduced over the temperature range of 180-370 K using canonical variational transition state (CVT) theory with the small curvature tunneling (SCT) method. The atmospheric lifetime of aRS-metolachlor determined by OH radicals is about 3.97 h, which indicates that it can be degradaded in the gas phase easily and doesn't have the potential for long-range transport.
Mechanistic and kinetic investigation on OH-initiated oxidation of tetrabromobisphenol A.
He, Maoxia; Li, Xin; Zhang, Shiqing; Sun, Jianfei; Cao, Haijie; Wang, Wenxing
2016-06-01
Detailed mechanism of the OH-initiated transformation of tetrabromobisphenol A (TBBPA) has been investigated by quantum chemical methods in this paper. Abstraction reactions of hydrogen atoms from the OH groups and CH3 groups of TBBPA are the dominant pathways of the initial reactions. The produced phenolic-type radical and alkyl-type radical may transfer to 4,4'-(ethene-1,1-diyl)bis(2,6-dibromophenol), 4-acetyl-2,6-dibromophenol and 2,6-dibromobenzoquinone at high temperature. In water, major products are 2,6-dibromo-p-hydroquinone, 4-isopropylene-2,6-dibromophenol and 4-(2-hydroxyisopropyl)-2,6-dibromophenol resulting from the addition reactions. Total rate constants of the initial reaction are 1.02 × 10(-12) cm(3) molecule(-1) s(-1) in gas phase and 1.93 × 10(-12) cm(3) molecule(-1) s(-1) in water at 298 K. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aumont, B.; Camredon, M.; Isaacman-VanWertz, G. A.; Karam, C.; Valorso, R.; Madronich, S.; Kroll, J. H.
2016-12-01
Gas phase oxidation of VOC is a gradual process leading to the formation of multifunctional organic compounds, i.e., typically species with higher oxidation state, high water solubility and low volatility. These species contribute to the formation of secondary organic aerosols (SOA) viamultiphase processes involving a myriad of organic species that evolve through thousands of reactions and gas/particle mass exchanges. Explicit chemical mechanisms reflect the understanding of these multigenerational oxidation steps. These mechanisms rely directly on elementary reactions to describe the chemical evolution and track the identity of organic carbon through various phases down to ultimate oxidation products. The development, assessment and improvement of such explicit schemes is a key issue, as major uncertainties remain on the chemical pathways involved during atmospheric oxidation of organic matter. An array of mass spectrometric techniques (CIMS, PTRMS, AMS) was recently used to track the composition of organic species during α-pinene oxidation in the MIT environmental chamber, providing an experimental database to evaluate and improve explicit mechanisms. In this study, the GECKO-A tool (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to generate fully explicit oxidation schemes for α-pinene multiphase oxidation simulating the MIT experiment. The ability of the GECKO-A chemical scheme to explain the organic molecular composition in the gas and the condensed phases is explored. First results of this model/observation comparison at the molecular level will be presented.
NASA Astrophysics Data System (ADS)
Yi, Yayi; Cao, Zhaoyu; Zhou, Xuehua; Xue, Likun; Wang, Wenxing
2018-05-01
Atmospheric particles are largely represented by secondary organic aerosols (SOAs) produced by either aqueous- or gas-phase reactions. Recently, the contribution of the former to SOA formation has been shown to substantially increase and even reach that of the latter, which necessitates in-depth mechanistic investigations. For a deeper understanding of aqueous-phase SOA generation, we herein studied the production of these aerosols in the dark from glycolaldehyde (GAld) and ammonium sulfate (AS)/amines (methylamine (MAm) and glycine (Gly)). UV-vis spectroscopy showed that reaction mixtures featured two main absorption bands (at 209-230 and 280-330 nm) that were attributed to the π-π* transitions of Schiff bases and the n-π* transitions of oligomers produced in the above reactions, respectively. Further studies revealed that irrespective of reactant concentration and pH, all the investigated reactions were well fitted by first-order kinetics and were accelerated by increasing AS/MAm concentrations and solution pH under acidic conditions. The reaction rate constants (determined from changes of absorption at 300 nm) followed the order of Gly (kI = 2.39 × 10-6 s-1) > MAm (kI = 1.19 × 10-6 s-1) > AS (kI = 8.33 × 10-7 s-1) at identical low AS/amine concentrations and were in the order of MAm (kI = 2.5 × 10-6 s-1) > AS (kI = 1.39 × 10-6 s-1) at high AS/MAm concentrations. The main reaction pathways corresponded to the aldol self-condensation of GAld and the nucleophilic attack of AS/amines on GAld followed by dehydration, which afforded imines as the major products. The stronger light absorption of (GAld + Gly) mixtures than that of (glyoxal/methylglyoxal + Gly) mixtures was ascribed to the increased amount of imine- and carbonyl group-containing products produced in the former case.
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Ying, S.-J.
1990-01-01
Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.
Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu
2010-05-01
The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.
Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.
Murshed, M Mangir; Kuhs, Werner F
2009-04-16
In situ formations of CH(4)-C(2)H(6) mixed gas hydrates were made using high flux neutron diffraction at 270 K and 5 MPa. For this purpose, a feed gas composition of CH(4) and C(2)H(6) (95 mol% CH(4)) was employed. The rates of transformation of spherical grains of deuterated ice Ih into hydrates were measured by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. Phase fractions of the crystalline constituents were obtained from Rietveld refinements. A concomitant formation of structure type I (sI) and structure type II (sII) hydrates were observed soon after the gas pressure was applied. The initial fast formation of sII hydrate reached its maximum volume and started declining very slowly. The formation of sI hydrate followed a sigmoid growth kinetics that slowed down due to diffusion limitation. This observation has been interpreted in terms of a kinetically favored nucleation of the sII hydrate along with a slow transformation into sI. Both powder diffraction and Raman spectroscopic results suggest that a C(2)H(6)-rich sII hydrate was formed at the early part of the clathration, which slowly decreased to approximately 3% after a reaction of 158 days as confirmed by synchrotron XRD. The final persistence of a small portion of sII hydrate points to a miscibility gap between CH(4)-rich sI and C(2)H(6)-rich sII hydrates.
Zhang, Xue; Zhang, Chenxi; Sun, Xiaomin; Kang, Lingyan; Zhao, Yan
2015-04-10
As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs) and polychlorinated biphenyls (PCBs) are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD). Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of k add/k total and k abs/k total at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin.
Ferric iron in sediments as a novel CO2 mineral trap: CO 2-SO2 reaction with hematite
Palandri, J.L.; Rosenbauer, R.J.; Kharaka, Y.K.
2005-01-01
Thermodynamic simulations of reactions among SO2-bearing CO 2-dominated gas, water and mineral phases predict that Fe III in sediments should be converted almost entirely to dissolved FeII and siderite (FeCO3), and that SO2 should simultaneously be oxidized to dissolved sulfate. The reactions are however, subject to kinetic constraints which may result in deviation from equilibrium and the precipitation of other metastable mineral phases. To test the prediction, a laboratory experiment was carried out in a well stirred hydrothermal reactor at 150??C and 300 bar with hematite, 1.0 m NaCl, 0.5 m NaOH, SO2 in quantity sufficient to reduce much of the iron, and excess CO2. The experiment produced stable siderite and metastable pyrite and elemental S. Changes in total dissolved Fe are consistent with nucleation of pyrite at ???17 h, and nucleation of siderite at ???600 h. Dissolution features present on elemental S at the conclusion of the experiment suggest nucleation early in the experiment. The experiment did not reach equilibrium after ???1400 h, as indicated by coexistence of hematite with metastable pyrite and elemental sulfur. However, the results confirm that FeIII can be used to trap CO2 in siderite if partly oxidized S, as SO2, is present to reduce the Fe with CO2 in the gas phase. ?? 2005 Elsevier Ltd. All rights reserved.
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1976-01-01
Techniques for the gas phase absorption of laser radiation for ultimate conversion to gas kinetic energy are discussed. Particular emphasis is placed on absorption by the vibration rotation bands of diatomic molecules at high pressures. This high pressure absorption appears to offer efficient conversion of laser energy to gas translational energy. Bleaching and chemical effects are minimized and the variation of the total absorption coefficient with temperature is minimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D.
Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamicmore » computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chen; Wang, Han; Li, Gen
CO 2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO 2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO 2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO 2 gas to carbonates in MgCl 2–NH 3–NH 4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limitingmore » step of CO 2 absorption when proceeding chiefly through interactions between CO 2(aq) and NH 3(aq). We further quantified the reaction kinetic constant of the CO 2–NH 3 reaction. Our results indicate that higher initial concentration of NH 4Cl ( ≥2mol∙L -1) leads to the precipitation of roguinite [(NH 4) 2Mg(CO 3) 2∙4H 2O], while nesquehonite appears to be the dominant Mg-carbonate without NH 4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO 2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO 2 sequestration.« less
Zhu, Chen; Wang, Han; Li, Gen; ...
2017-09-19
CO 2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO 2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO 2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO 2 gas to carbonates in MgCl 2–NH 3–NH 4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limitingmore » step of CO 2 absorption when proceeding chiefly through interactions between CO 2(aq) and NH 3(aq). We further quantified the reaction kinetic constant of the CO 2–NH 3 reaction. Our results indicate that higher initial concentration of NH 4Cl ( ≥2mol∙L -1) leads to the precipitation of roguinite [(NH 4) 2Mg(CO 3) 2∙4H 2O], while nesquehonite appears to be the dominant Mg-carbonate without NH 4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO 2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO 2 sequestration.« less
Schmitz, Guy
2011-04-21
This work presents a new experimental kinetic study at 39° and 50° of the iodine oxidation by hydrogen peroxide. The results allow us to obtain the temperature effect on the rate constants previously proposed at 25° for our model of the Bray-Liebhafsky oscillating reaction (G. Schmitz, Phys. Chem. Chem. Phys. 2010, 12, 6605.). The values calculated with the model are in good agreement with many experimental results obtained under very different experimental conditions. Numerical simulations of the oscillations observed formerly by different authors are presented, including the evolutions of the iodine, hydrogen peroxide, iodide ions and oxygen concentrations. Special attention is paid to the perturbing effects of oxygen and of the iodine loss to the gas phase.
Singh, Kawarpal; Danieli, Ernesto; Blümich, Bernhard
2017-12-01
Monitoring of chemical reactions in real-time is in demand for process control. Different methods such as gas chromatography (GC), mass spectroscopy, infrared spectroscopy, and nuclear magnetic resonance (NMR) are used for that purpose. The current state-of-the-art compact NMR systems provide a useful method to employ with various reaction conditions for studying chemical reactions inside the fume hood at the chemical workplace. In the present study, an acetalization reaction was investigated with compact NMR spectroscopy in real-time. Acetalization is used for multistep synthesis of the variety of organic compounds to protect particular chemical groups. A compact 1 T NMR spectrometer with a permanent magnet was employed to monitor the acid catalyzed acetalization of the p-nitrobenzaldehyde with ethylene glycol. The concentrations of both reactant and product were followed by peak integrals in single-scan 1 H NMR spectra as a function of time. The reaction conditions were varied in terms of temperature, agitation speed, catalyst loading, and feed concentrations in order to determine the activation energy with the help of a pseudo-homogeneous kinetic model. For low molar ratios of aldehyde and glycol, the equilibrium conversions were lower than for the stoichiometric ratio. Increasing catalyst concentration leads to faster conversion. The data obtained with low-field NMR spectroscopy were compared with data from GC and NMR spectroscopy at 9.4 T acquired in batch mode by extracting samples at regular time intervals. The reaction kinetics followed by either method agreed well. The activation energies for forward and backward reactions were determined by real-time monitoring with compact NMR at 1 T were 48 ± 5 and 60 ± 4 kJ/mol, respectively. The activation energies obtained with gas chromatography for forward and backward reactions were 48 ± 4 and 51 ± 4 kJ/mol. The equilibrium constant decreases with increasing temperature as expected for an exothermic reaction. The impact of dense sampling with online NMR and sparse sampling with GC was observed on the kinetic outcome using the same kinetic model. Graphical abstract Acetalization reaction kinetics were monitored with real-time desktop NMR spectroscopy at 1 T. Each data point was obtained at regular intervals with a single shot in 15 s. The kinetics was compared with sparsely sampled data obtained with GC and NMR at 9.4 T.
The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria.
Clark, Billy R; Pantoya, Michelle L
2010-10-21
The threat of biological weapons is a major concern in the present day and has led to studying methods to neutralize spore forming bacteria. A new technique involves the use of a thermite reaction that exhibits biocidal properties to limit bacterial growth. The objective was to examine the influence on bacteria growth upon spore exposure to thermite reactions with and without biocidal properties. Three thermites are considered: two that have biocidal properties (aluminium (Al) combined with iodine pentoxide (I(2)O(5)) and Al combined with silver oxide (Ag(2)O)); and, one that produces a highly exothermic reaction but has no biocidal properties (Al combined with iron oxide (Fe(2)O(3))). Results show that Al + I(2)O(5) is extremely effective at neutralizing spores after only one hour of exposure. The temperature generated by the reaction was not determined to be an influential factor affecting spore growth kinetics. Further analysis of the thermite reactions revealed that the Al + I(2)O(5) reaction produces iodine gas that effectively interacts with the spores and neutralizes bacteria growth, while the Al + Ag(2)O reaction temperature does not vaporize silver. In the condensed phase silver does not interact with the spores enough to neutralize bacteria growth. This study gives evidence that a thermite can be used as a stable transportation and delivery system for biocidal gas.
Finite Element Analysis Modeling of Chemical Vapor Deposition of Silicon Carbide
2014-06-19
thesis primarily focuses on mass transport by gas -phase flow and diffusion , chemical reaction in gas phase and on solid surfaces, and thin film...chemical vapor deposition (CVD). This thesis primarily focuses on mass transport by gas -phase flow and diffusion , chemical reaction in gas phase and...9 Fluid Flow…………………………………………..…………………..…………….9 Thermodynamics………………………………………..………………….….…….11 Chemical Reaction and Diffusion
Oxo-exchange of gas-phase uranyl, neptunyl, and plutonyl with water and methanol.
Lucena, Ana F; Odoh, Samuel O; Zhao, Jing; Marçalo, Joaquim; Schreckenbach, Georg; Gibson, John K
2014-02-17
A challenge in actinide chemistry is activation of the strong bonds in the actinyl ions, AnO2(+) and AnO2(2+), where An = U, Np, or Pu. Actinyl activation in oxo-exchange with water in solution is well established, but the exchange mechanisms are unknown. Gas-phase actinyl oxo-exchange is a means to probe these processes in detail for simple systems, which are amenable to computational modeling. Gas-phase exchange reactions of UO2(+), NpO2(+), PuO2(+), and UO2(2+) with water and methanol were studied by experiment and density functional theory (DFT); reported for the first time are experimental results for UO2(2+) and for methanol exchange, as well as exchange rate constants. Key findings are faster exchange of UO2(2+) versus UO2(+) and faster exchange with methanol versus water; faster exchange of UO2(+) versus PuO2(+) was quantified. Computed potential energy profiles (PEPs) are in accord with the observed kinetics, validating the utility of DFT to model these exchange processes. The seemingly enigmatic result of faster exchange for uranyl, which has the strongest oxo-bonds, may reflect reduced covalency in uranyl as compared with plutonyl.
2014-02-25
benchmarks for the reaction surface. ■ INTRODUCTION There is significant interest in procuring and employing natural gas as a viable alternative to...petroleum for both energy and chemical feed stocks.1,2 One of the primary impediments to natural gas utilization is that methane (∼90% of natural gas ...is significant, which typically limits its use to areas where large natural gas deposits are in very close proximity, neglecting the many smaller
Revealing the Adsorption Mechanisms of Nitroxides on Ultrapure, Metallicity-Sorted Carbon Nanotubes
2014-01-01
Carbon nanotubes are a natural choice as gas sensor components given their high surface to volume ratio, electronic properties, and capability to mediate chemical reactions. However, a realistic assessment of the interaction of the tube wall and the adsorption processes during gas phase reactions has always been elusive. Making use of ultraclean single-walled carbon nanotubes, we have followed the adsorption kinetics of NO2 and found a physisorption mechanism. Additionally, the adsorption reaction directly depends on the metallic character of the samples. Franck–Condon satellites, hitherto undetected in nanotube–NOx systems, were resolved in the N 1s X-ray absorption signal, revealing a weak chemisorption, which is intrinsically related to NO dimer molecules. This has allowed us to identify that an additional signal observed in the higher binding energy region of the core level C 1s photoemission signal is due to the C=O species of ketene groups formed as reaction byproducts . This has been supported by density functional theory calculations. These results pave the way toward the optimization of nanotube-based sensors with tailored sensitivity and selectivity to different species at room temperature. PMID:24404865
Kinetic phase evolution of spinel cobalt oxide during lithiation
Li, Jing; He, Kai; Meng, Qingping; ...
2016-09-15
Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less
Kinetic phase evolution of spinel cobalt oxide during lithiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; He, Kai; Meng, Qingping
Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less
Reactive Heterogeneous Chemistry on Organic Aerosols: Two Case Studies
NASA Astrophysics Data System (ADS)
Abbatt, J.; Braban, C.; Broekhuizen, K.; Thornberry, T.; Thornton, J.
2003-12-01
Two sets of laboratory studies will be discussed to illustrate the impact that heterogeneous chemistry involving tropospheric organic aerosols may have on both the gas-phase composition of the atmosphere and the chemical nature of the particles themselves. In the first case, the reactive uptake coefficient for the hydrolysis of dinitrogen pentoxide (N2O5) on organic aerosols has been measured in an entrained aerosol flow tube coupled to a Chemical-Ionization Mass Spectrometer (CIMS). The general observation is that the reaction on aqueous malonic acid aerosols behaves in an analogous manner to that on aqueous inorganic salts, i.e. the uptake coefficient shows a linear dependence on the particle water content up to 50% relative humidity (RH), at which point the effect saturates. In addition, there is evidence for the kinetics being dependent on both the size of the particles and the levels of dissolved nitrate. By contrast, the N2O5 hydrolysis kinetics on solid azelaic acid particles are too slow to be atmospherically significant, even at 85% RH. In the second case, the kinetics and product yields from the oxidation of liquid oleic acid by ozone have been studied in considerable detail, with emphasis on the quantification of gas-phase products (nonanal) by CIMS and water-soluble species by HPLC/Electrospray-Ionization Mass Spectrometry (azelaic acid, nonanoic acid). The atmospheric importance of these results will be discussed, in particular with respect to the role of organic aerosol oxidation as a source of cloud condensation nuclei.
NASA Astrophysics Data System (ADS)
Basant, Nikita; Gupta, Shikha
2018-03-01
The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.
Kinetics of a gas adsorption compressor
NASA Technical Reports Server (NTRS)
Chan, C. K.; Tward, E.; Elleman, D. D.
1984-01-01
Chan (1981) has suggested that a process based on gas adsorption could be used as a means to drive a Joule-Thomson (J-T) device. The resulting system has several advantages. It is heat powered, it has no sealing, there are no mechanical moving parts, and no active control is required. In the present investigation, a two-phase model is used to analyze the transients of a gas adsorption compressor. The modeling of the adsorption process is based on a consideration of complete thermal and mechanical equilibrium between the gaseous phase and the adsorbed gas phase. The experimental arrangement for two sets of kinetic tests is discussed, and data regarding the experimental results are presented in graphs. For a theoretical study, a two-phase model was developed to predict the transient behavior of the compressor. A computer code was written to solve the governing equations with the aid of a standard forward marching predictor-corrector method.
Moving bed reactor setup to study complex gas-solid reactions.
Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih
2007-08-01
A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.
Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Kai; Yao, Zhenpeng; Hwang, Sooyeon
Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van dermore » Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Lastly, our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.« less
Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes
He, Kai; Yao, Zhenpeng; Hwang, Sooyeon; ...
2017-08-11
Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van dermore » Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Lastly, our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.« less
Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F
2010-01-14
The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1975-01-01
Techniques for the gas phase absorption of laser radiation for conversion to gas kinetic energy are discussed. Absorption by inverse Bremsstrahlung, in which laser energy is converted at a gas kinetic rate in a spectrally continuous process, is briefly described, and absorption by molecular vibrational rotation bands is discussed at length. High pressure absorption is proposed as a means of minimizing gas bleaching and dissociation, the major disadvantages of the molecular absorption process. A band model is presented for predicting the molecular absorption spectra in the high pressure absorption region and is applied to the CO molecule. Use of a rare gas seeded with Fe(CO)5 for converting vibrational modes to translation modes is described.
Park, Min-Jin; Jang, Su-Chan; Choi, Jong-Ho
2012-11-28
The gas-phase reaction dynamics of ground-state atomic oxygen [O((3)P) from the photo-dissociation of NO(2)] with vinyl radicals [C(2)H(3) from the supersonic flash pyrolysis of vinyl iodide, C(2)H(3)I] has been investigated using a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. Unlike the previous gas-phase bulk kinetic experiments by Baulch et al. [J. Phys. Chem. Ref. Data 34, 757 (2005)], a new exothermic channel of O((3)P) + C(2)H(3) → C(2)H(2) + OH (X (2)Π: υ" = 0) has been identified for the first time, and the population analysis shows bimodal nascent rotational distributions of OH products with low- and high-N" components with a ratio of 2.4:1. No spin-orbit propensities were observed, and the averaged ratios of Π(A('))∕Π(A") were determined to be 1.66 ± 0.27. On the basis of computations at the CBS-QB3 theory level and comparison with prior theory, the microscopic mechanisms responsible for the nascent populations can be understood in terms of two competing dynamical pathways: a direct abstraction process in the low-N" regime as the major pathway and an addition-complex forming process in the high-N" regime as the minor pathway. Particularly, during the bond cleavage process of the weakly bound van der Waals complex C(2)H(2)-OH, the characteristic pathway from the low dihedral-angle geometry was consistent with the observed preferential population of the Π(A') component in the nascent OH products. A molecular-level discussion of the reactivity, mechanism, and dynamical features of the title reaction are presented together with a comparison to gas-phase oxidation reactions of a series of prototypical hydrocarbon radicals.
Formation of complex organic molecules in cold objects: the role of gas-phase reactions
NASA Astrophysics Data System (ADS)
Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney
2015-04-01
While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( ≳ 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.
Ferre-Aracil, J; Valcárcel, Y; Negreira, N; de Alda, M López; Barceló, D; Cardona, S C; Navarro-Laboulais, J
2016-06-15
The kinetics of the ozone consumption for the pretreatment of hospital wastewater has been analysed in order to determine the reaction rate coefficients between the ozone and the readily oxidisabled organic matter and cytostatic compounds. The wastewater from a medium size hospital was treated with ozone and peroxone methodologies, varying the ozone concentration, the reaction time and the hydrogen peroxide doses. The analysis shows that there are four cytostatic compounds, i.e. irinotecan, ifosfamide, cyclophosphamide and capecitabine, detected in the wastewaters and they are completely removed with reasonably short times after the ozone treatment. Considering the reactor geometry, the gas hydrodynamics, the mass transfer of ozone from gas to liquid and the reaction of all oxidisable compounds of the wastewater it is possible to determine the chemical ozone demand, COzD, of the sample as 256mgO3L(-1) and the kinetic rate coefficient with the dissolved organic matter as 8.4M(-1)s(-1). The kinetic rate coefficient between the ozone and the cyclophosphamide is in the order of 34.7M(-1)s(-1) and higher for the other cytostatics. The direct economic cost of the treatment was evaluated considering this reaction kinetics and it is below 0.3€/m(3) under given circumstances. Copyright © 2016 Elsevier B.V. All rights reserved.
A new, double-inversion mechanism of the F- + CH3Cl SN2 reaction in aqueous solution.
Liu, Peng; Wang, Dunyou; Xu, Yulong
2016-11-23
Atomic-level, bimolecular nucleophilic substitution reaction mechanisms have been studied mostly in the gas phase, but the gas-phase results cannot be expected to reliably describe condensed-phase chemistry. As a novel, double-inversion mechanism has just been found for the F - + CH 3 Cl S N 2 reaction in the gas phase [Nat. Commun., 2015, 6, 5972], here, using multi-level quantum mechanics methods combined with the molecular mechanics method, we discovered a new, double-inversion mechanism for this reaction in aqueous solution. However, the structures of the stationary points along the reaction path show significant differences from those in the gas phase due to the strong influence of solvent and solute interactions, especially due to the hydrogen bonds formed between the solute and the solvent. More importantly, the relationship between the two double-inversion transition states is not clear in the gas phase, but, here we revealed a novel intermediate complex serving as a "connecting link" between the two transition states of the abstraction-induced inversion and the Walden-inversion mechanisms. A detailed reaction path was constructed to show the atomic-level evolution of this novel double reaction mechanism in aqueous solution. The potentials of mean force were calculated and the obtained Walden-inversion barrier height agrees well with the available experimental value.
AMR Code Simulations of Turbulent Combustion in Confined and Unconfined SDF Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Bell, J B; Beckner, V
2009-05-29
A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takesmore » into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a vented two-room structure and in an unconfined height-of-burst explosion. Computed pressure histories are in reasonable (but not perfect) agreement with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.« less
C-terminal peptide extension via gas-phase ion/ion reactions
Peng, Zhou; McLuckey, Scott A.
2015-01-01
The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400
Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2
NASA Astrophysics Data System (ADS)
Yu, Zechen; Jang, Myoseon; Park, Jiyeon
2017-08-01
The photocatalytic ability of airborne mineral dust particles is known to heterogeneously promote SO2 oxidation, but prediction of this phenomenon is not fully taken into account by current models. In this study, the Atmospheric Mineral Aerosol Reaction (AMAR) model was developed to capture the influence of air-suspended mineral dust particles on sulfate formation in various environments. In the model, SO2 oxidation proceeds in three phases including the gas phase, the inorganic-salted aqueous phase (non-dust phase), and the dust phase. Dust chemistry is described as the absorption-desorption kinetics of SO2 and NOx (partitioning between the gas phase and the multilayer coated dust). The reaction of absorbed SO2 on dust particles occurs via two major paths: autoxidation of SO2 in open air and photocatalytic mechanisms under UV light. The kinetic mechanism of autoxidation was first leveraged using controlled indoor chamber data in the presence of Arizona Test Dust (ATD) particles without UV light, and then extended to photochemistry. With UV light, SO2 photooxidation was promoted by surface oxidants (OH radicals) that are generated via the photocatalysis of semiconducting metal oxides (electron-hole theory) of ATD particles. This photocatalytic rate constant was derived from the integration of the combinational product of the dust absorbance spectrum and wave-dependent actinic flux for the full range of wavelengths of the light source. The predicted concentrations of sulfate and nitrate using the AMAR model agreed well with outdoor chamber data that were produced under natural sunlight. For seven consecutive hours of photooxidation of SO2 in an outdoor chamber, dust chemistry at the low NOx level was attributed to 55 % of total sulfate (56 ppb SO2, 290 µg m-3 ATD, and NOx less than 5 ppb). At high NOx ( > 50 ppb of NOx with low hydrocarbons), sulfate formation was also greatly promoted by dust chemistry, but it was suppressed by the competition between NO2 and SO2, which both consume the dust-surface oxidants (OH radicals or ozone).
NASA Astrophysics Data System (ADS)
Bedjanian, Yuri; Morin, Julien; Romanias, Manolis N.
2018-05-01
The kinetics of the reactions 2-methyl-1-butyl (2M1BNT), neopentyl (NPTNT) and 1-hexyl nitrates (1HXNT) with OH radicals has been studied using a low pressure flow tube reactor combined with a quadrupole mass spectrometer. The rate constants of the title reactions were determined under pseudo-first order conditions from kinetics of OH consumption in excess of nitrates. The overall rate coefficients, k2M1BNT = 1.54 × 10-14 (T/298)4.85 exp (1463/T) (T = 278-538 K), kNPTNT = 1.39 × 10-14 (T/298)4.89 exp (1189/T) (T = 278-500 K) and k1HXNT = 2.23 × 10-13 (T/298)2.83 exp (853/T) cm3molecule-1s-1 (T = 306-538 K) (with conservative 15% uncertainty), were determined at a total pressure of 1 Torr of helium. The yield of trimethylacetaldehyde ((CH3)3CCHO), resulting from the abstraction by OH of an α-hydrogen atom in neopentyl nitrate, followed by α-substituted alkyl radical decomposition, was determined as 0.31 ± 0.06 at T = 298 K. The calculated tropospheric lifetimes of 2M1BNT, NPTNT and 1HXNT indicate that reaction of these nitrates with OH represents an important sink of these compounds in the atmosphere. Based on the available kinetic data, we have updated the structure-activity relationship (SAR) for reactions of alkyl nitrates with OH at T = 298 K. Good agreement (within 20%) is obtained between experimentally measured rate constants (total and that for H-atom abstraction from α carbon) and those calculated from SAR using new substituents factors for almost all the experimental data available.
NASA Astrophysics Data System (ADS)
Duan, Sheng-chao; Li, Chuang; Guo, Han-jie; Guo, Jing; Han, Shao-wei; Yang, Wen-sheng
2018-04-01
The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO-SiO2-MgO-FeO-MnO-Al2O3-TiO2-CaF2 was investigated at 1553, 1623, and 1673 K in this study. The rate-controlling step (RCS) for the demanganization reaction with regard to the hot metal pretreatment conditions was studied via kinetics analysis based on the fundamental equation of heterogeneous reaction kinetics. From the temperature dependence of the mass transfer coefficient of a transition-metal oxide (MnO), the apparent activation energy of the demanganization reaction was estimated to be 189.46 kJ·mol-1 in the current study, which indicated that the mass transfer of MnO in the molten slag controlled the overall rate of the demanganization reaction. The calculated apparent activation energy was slightly lower than the values reported in the literature for mass transfer in a slag phase. This difference was attributed to an increase in the "specific reaction interface" (SRI) value, either as a result of turbulence at the reaction interface or a decrease of the absolute amount of slag phase during sampling, and to the addition of calcium fluoride to the slag.
NASA Astrophysics Data System (ADS)
Romanenko, Yu. E.; Merkin, A. A.; Komarov, A. A.; Lefedova, O. V.
2014-08-01
The kinetics of the hydrogenation of intermediates in the reduction of nitrobenzene in aqueous 2-propanol with acetic acid and sodium hydroxide additions on nickel catalysts was studied. A kinetic description of liquid-phase hydrogenation of azobenzene and phenylhydroxylamine was suggested. A kinetic model was developed. The dependences that characterize the variation of the amounts of the starting compound, reaction product, and absorbed hydrogen during the reaction were calculated. The calculated values were shown to be in satisfactory agreement with the experimental values under different reaction conditions.
Fukutome, Asuka; Kawamoto, Haruo; Saka, Shiro
2015-07-08
The gas-phase pyrolysis of levoglucosan (LG), the major intermediate species during cellulose gasification, was studied experimentally over the temperature range of 400-900 °C. Gaseous LG did not produce any dehydration products, which include coke, furans, and aromatic substances, although these are characteristic products of the pyrolysis of molten LG. Alternatively, at >500 °C, gaseous LG produced only fragmentation products, such as noncondensable gases and condensable C1 -C3 fragments, as intermediates during noncondensable gas formation. Therefore, it was determined that secondary reactions of gaseous LG can result in the clean (tar- and coke-free) gasification of cellulose. Cooling of the remaining LG in the gas phase caused coke formation by the transition of the LG to the molten state. The molecular mechanisms that govern the gas- and molten-phase reactions of LG are discussed in terms of the acid catalyst effect of intermolecular hydrogen bonding to promote the molten-phase dehydration reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CREKID: A computer code for transient, gas-phase combustion of kinetics
NASA Technical Reports Server (NTRS)
Pratt, D. T.; Radhakrishnan, K.
1984-01-01
A new algorithm was developed for fast, automatic integration of chemical kinetic rate equations describing homogeneous, gas-phase combustion at constant pressure. Particular attention is paid to the distinguishing physical and computational characteristics of the induction, heat-release and equilibration regimes. The two-part predictor-corrector algorithm, based on an exponentially-fitted trapezoidal rule, includes filtering of ill-posed initial conditions, automatic selection of Newton-Jacobi or Newton iteration for convergence to achieve maximum computational efficiency while observing a prescribed error tolerance. The new algorithm was found to compare favorably with LSODE on two representative test problems drawn from combustion kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chim, Man Mei; Cheng, Chiu Tung; Davies, James F.
Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C 5Hmore » 8O 4) droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART) coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C 5) hydroxyl functionalization product (C 5H 8O 5) and a C 4 fragmentation product (C 4H 6O 3). These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon–carbon bond scission) of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model) coupled with the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from 0.362 to 0.424; however, the diameter of the droplets decreases by 6.1 %. This can be attributed to the formation of volatile fragmentation products that partition to the gas phase, leading to a net loss of organic species and associated particle-phase water, and thus a smaller droplet size. Overall, fragmentation and volatilization processes play a larger role than the functionalization process in determining the evolution of aerosol water content and droplet size at high-oxidation stages.« less
Chim, Man Mei; Cheng, Chiu Tung; Davies, James F.; ...
2017-12-05
Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C 5Hmore » 8O 4) droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART) coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C 5) hydroxyl functionalization product (C 5H 8O 5) and a C 4 fragmentation product (C 4H 6O 3). These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon–carbon bond scission) of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model) coupled with the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from 0.362 to 0.424; however, the diameter of the droplets decreases by 6.1 %. This can be attributed to the formation of volatile fragmentation products that partition to the gas phase, leading to a net loss of organic species and associated particle-phase water, and thus a smaller droplet size. Overall, fragmentation and volatilization processes play a larger role than the functionalization process in determining the evolution of aerosol water content and droplet size at high-oxidation stages.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.
2013-12-03
For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less
Lignin transformations and reactivity upon ozonation in aqueous media
NASA Astrophysics Data System (ADS)
Khudoshin, A. G.; Mitrofanova, A. N.; Lunin, V. V.
2012-03-01
The reaction of ozone with lignin in aqueous acidic solutions is investigated. The Danckwerst model is used to describe the kinetics of gas/liquid processes occurring in a bubble reactor. The efficient ozonation rate of a soluble lignin analog, sodium lignosulfate, is determined. The main lines of the reaction between ozone and lignin are revealed on the basis of kinetic analysis results and IR and UV spectroscopy data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
Experiments showed that recrystallization dramatically speeds up the gas bubble swelling kinetics in metallic UMo fuels. In this work a recrystallization model is developed to study the effect of microstructures and radiation conditions on recrystallization kinetics. The model integrates the rate theory of intra-granular gas bubble and interstitial loop evolution and a phase field model of recrystallization zone evolution. A fast passage method is employed to describe one dimensional diffusion of interstitials which have diffusivity several order magnitude larger than that of the fission gas Xe. With the model, the effect of grain sizes on recrystallization kinetics is simulated.
NASA Technical Reports Server (NTRS)
Williams, F. A.
1978-01-01
Questions of the importance and feasibility of performing experiments on droplet burning at zero gravity in Spacelab were studied. Information on the physics and chemistry of droplet combustion, with attention directed specifically to the chemical kinetics, heat and mass transfer, and fluid mechanics of the phenomena involved, are presented. The work was divided into three phases, the justification, the feasibility, and the conceptual development of a preliminary design. Results from the experiments performed revealed a few new facts concerning droplet burning, notably burning rates in excess of theoretical prediction and a phenomenon of flash extinction, both likely traceable to accumulation of carbon produced by gas-phase pyrolysis in the fuel-rich zone enclosed by the reaction surface. These experiments also showed that they were primarily due to timing difficulties.
Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)).
Nozière, Barbara; Dziedzic, Pawel; Córdova, Armando
2009-01-08
Glyoxal, a common atmospheric gas, has been reported to be depleted in some regions of the atmosphere. The corresponding sink could be accounted for by reactions in or at the surface of atmospheric particles, but these reactions were not identified. Recently, we showed that inorganic ammonium ions, NH(4)(+), are efficient catalysts for reactions of carbonyl compounds, including glyoxal, in the liquid phase. To determine whether ammonium-catalyzed reactions can contribute to depletion of glyoxal in the atmosphere, the reactivity of this compound in aqueous solutions containing ammonium salts (ammonium sulfate, chloride, fluoride, and phosphate) at 298 K has been studied. The products identified by LC-HRMS and UV absorption revealed a mechanism involving two distinct pathways: a Bronsted acid pathway and an iminium pathway. The kinetics of the iminium pathway was studied by monitoring formation of a specific product. This pathway was second order in glyoxal in most of the solutions studied and should therefore be second order in most ammonium-containing aerosols in the atmosphere. The corresponding rate constant, k(II) (M(-1) s(-1)), increased strongly with ammonium ion activity, a(NH(4)(+)), and pH: k(II) (M(-1) s(-1)) = (2 +/- 1) x 10(-10) exp((1.5 +/- 0.8)aNH(4)(+)) exp((2.5 +/- 0.2)pH). This iminium pathway is a lower limit for the ammonium-catalyzed consumption of glyoxal, but the contribution of the acid pathway is expected to be small in tropospheric aerosols. With these results the reactive uptake of glyoxal on ammonium-containing aerosols was estimated and shown to be a possible explanation for depletion of this compound in Mexico City.
Analysis of reaction schemes using maximum rates of constituent steps
Motagamwala, Ali Hussain; Dumesic, James A.
2016-01-01
We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366
Analysis of reaction schemes using maximum rates of constituent steps
Motagamwala, Ali Hussain; Dumesic, James A.
2016-05-09
In this paper, we show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, r max,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of r max,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of r max,i can be used to predict themore » rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. Finally, this approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.« less
Adsorption kinetics of SO2 on powder activated carbon
NASA Astrophysics Data System (ADS)
Li, Bing; Zhang, Qilong; Ma, Chunyuan
2018-02-01
The flue gas SO2 adsorption removal by powder activated carbon is investigated based on a fixed bed reactor. The effect of SO2 inlet concentration on SO2 adsorption is investigated and the adsorption kinetics is analyzed. The results indicated that the initial SO2 adsorption rate and the amount of SO2 adsorbed have increased with increased in SO2 inlet concentration. Gas diffusion, surface adsorption and catalytic oxidation reaction are involved in SO2 adsorption on powder activated carbon, which play a different role in different stage. The Bangham kinetics model can be used to predict the kinetics of SO2 adsorption on powder activated carbon.
NASA Astrophysics Data System (ADS)
Smith, J.; Anastasio, C.
2014-12-01
The formation and evolution of secondary organic aerosol (SOA) in atmospheric condensed phases (i.e., aqueous SOA) can proceed rapidly, but relatively little is known of the important aqueous SOA precursors or their reaction pathways. In our work we are studying the aqueous SOA formed from reactions of phenols (phenol, guaiacol, and syringol), benzene-diols (catechol, resorcinol, and hydroquinone), and phenolic carbonyls (e.g., vanillin and syringaldehyde). These species are potentially important aqueous SOA precursors because they are released in large quantities from biomass burning, have high Henry's Law constants (KH = 103 -109 M-1 atm-1) and are rapidly oxidized. To evaluate the importance of aqueous reactions of phenols as a source of SOA, we first quantified the kinetics and SOA mass yields for 11 phenols reacting via direct photodegradation, hydroxyl radical (•OH), and with an excited organic triplet state (3C*). In the second step, which is the focus of this work, we use these laboratory results in a simple model of fog chemistry using conditions during a previously reported heavy biomass burning event in Bakersfield, CA. Our calculations indicate that under aqueous aerosol conditions (i.e., a liquid water content of 100 μg m-3) the rate of aqueous SOA production (RSOA(aq)) from phenols is similar to the rate in the gas phase. In contrast, under fog/cloud conditions the aqueous RSOA from phenols is 10 times higher than the rate in the gas phase. In both of these cases aqueous RSOA is dominated by the oxidation of phenols by 3C*, followed by direct photodegradation of phenolic carbonyls, and then •OH oxidation. Our results suggest that aqueous oxidation of phenols is a significant source of SOA during fog events and also during times when deliquesced aerosols are present.
Influence of Gas Atmosphere Dew Point on the Galvannealing of CMnSi TRIP Steel
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.
2013-11-01
The Fe-Zn reaction occurring during the galvannealing of a Si-bearing transformation-induced plasticity (TRIP) steel was investigated by field-emission electron probe microanalysis and field-emission transmission electron microscopy. The galvannealing was simulated after hot dipping in a Zn bath containing 0.13 mass pct Al at 733 K (460 °C). The galvannealing temperature was in the range of 813 K to 843 K (540 °C to 570 °C). The kinetics and mechanism of the galvannealing reaction were strongly influenced by the gas atmosphere dew point (DP). After the galvannealing of a panel annealed in a N2+10 pct H2 gas atmosphere with low DPs [213 K and 243 K (-60 °C and -30 °C)], the coating layer consisted of δ (FeZn10) and η (Zn) phase crystals. The Mn-Si compound oxides formed during intercritical annealing were present mostly at the steel/coating interface after the galvannealing. Galvannealing of a panel annealed in higher DP [263 K and 273 K, and 278 K (-10 °C, 0 °C, and +5 °C)] gas atmospheres resulted in a coating layer consisting of δ and Г (Fe3Zn10) phase crystals, and a thin layer of Г 1 (Fe11Zn40) phase crystals at the steel/coating interface. The Mn-Si oxides were distributed homogeneously throughout the galvannealed (GA) coating layer. When the surface oxide layer thickness on panels annealed in a high DP gas atmosphere was reduced, the Fe content at the GA coating surface increased. Annealing in a higher DP gas atmosphere improved the coating quality of the GA panels because a thinner layer of oxides was formed. A high DP atmosphere can therefore significantly contribute to the suppression of Zn-alloy coating defects on CMnSi TRIP steel processed in hot dip galvanizing lines.
Detonability of hydrocarbon fuels in air
NASA Technical Reports Server (NTRS)
Beeson, H. D.; Mcclenagan, R. D.; Bishop, C. V.; Benz, F. J.; Pitz, W. J.; Westbrook, C. K.; Lee, J. H. S.
1991-01-01
Studies were conducted of the detonation of gas-phase mixtures of n-hexane and JP-4, with oxidizers as varied as air and pure oxygen, measuring detonation velocities and cell sizes as a function of stoichiometry and diluent concentration. The induction length of a one-dimensional Zeldovich-von Neumann-Doering detonation was calculated on the basis of a theoretical model that employed the reaction kinetics of the hydrocarbon fuels used. Critical energy and critical tube diameter are compared for a relative measure of the heavy hydrocarbon fuels studied; detonation sensitivity appears to increase slightly with increasing carbon number.
GAS-PHASE OXIDATION PRODUCTS OF BIPHENYL AND POLYCHLORINATED BIPHENYLS (R825377)
Our laboratory recently measured the gas-phase reaction rate constants of
polychlorinated biphenyls (PCBs) with the hydroxyl radical (OH) and concluded
that OH reactions are the primary removal pathway of PCBs from the atmosphere.
With the reaction system previousl...
Krupcík, J; Mydlová, J; Májek, P; Simon, P; Armstrong, D W
2008-04-04
In this paper, methods are described that are used for studying first-order reaction kinetics by gas chromatography. Basic theory is summarized and illustrated using the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers as a representative example. For the determination of the kinetic and thermodynamic activation data of interconversion the following methods are reviewed: (i) classical kinetic methods where samples of batch-wise kinetic studies are analyzed by enantioselective gas chromatography, (ii) stopped-flow methods performed on one chiral column, (iii) stopped-flow methods performed on an achiral column or empty capillary coupled in series with two chiral columns, (iv) on-flow method performed on an achiral column coupled in series with two chiral columns, and (v) reaction gas chromatography, known as a dynamic gas chromatography, where the interconversion is performed on chiral column during the separation process. The determination of kinetic and thermodynamic activation data by methods (i) through (iv) is straightforward as the experimental data needed for the evaluation (particularly the concentration of reaction constituents) are accessible from the chromatograms. The evaluation of experiments from reaction chromatography method (v) is complex as the concentration bands of reaction constituents are overlapped. The following procedures have been developed to determination peak areas of reaction constituents in such complex chromatograms: (i) methods based on computer-assisted simulations of chromatograms where the kinetic activation parameters for the interconversion of enantiomers are obtained by iterative comparison of experimental and simulated chromatograms, (ii) stochastic methods based on the simulation of Gaussian distribution functions and using a time-dependent probability density function, (iii) approximation function and unified equation, (iv) computer-assisted peak deconvolution methods. Evaluation of the experimental data permits the calculation of apparent rate constants for both the interconversion of the first eluted (k (A-->B)(app)) as well as the second eluted (k(B-->A)(app)) enantiomer. The mean value for all the rate constants (from all the reviewed methods) was found for 1-chloro-2,2-dimethylaziridine A-->B enantiomer interconversion at 100 degrees C: k (A-->B)(app)=21.2 x 10(-4)s(-1) with a standard deviation sigma=10.7 x 10(-4). Evaluating data for reaction chromatography at 100 degrees C {k (app)=k(A-->B)(app)=k(B-->A)(app)=13.9 x 10(-4)s(-1), sigma=3.0 x 10(-4)s(-1)} shows that differences between k(A-->B)(app) and k(B-->A)(app) are the same within experimental error. It was shown both theoretically and experimentally that the Arrhenius activation energy (E(a)) calculated from Arrhenius plots (lnk(app) versus 1/T) is proportional to the enthalpy of activation {E(a)=DeltaH+RT}. Statistical treatment of Gibbs activation energy values gave: DeltaG (app)=110.5kJmol(-1), sigma=2.4kJmol(-1), DeltaG (A-->B)(app)=110.5kJmol(-1), sigma=2.2kJmol(-1), DeltaG (B-->A)(app)=110.3kJmol(-1), sigma=2.8kJmol(-1). This shows that the apparent Gibbs energy barriers for the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers are equal DeltaG (app)=DeltaG(A-->B)(app)=DeltaG(B-->A)(app) and within the given precision of measurement independent of the experimental method used.
NASA Astrophysics Data System (ADS)
Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.
2017-12-01
Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution/volatilization in order to identify when the assumption of instantaneous equilibrium is reasonable. These efforts will aid us in our application of such models to larger, field-scale tests and improve our ability to predict gas breakthrough times.
Kinetics on cocondensation between phenol and urea through formaldehyde I
Yasunori Yoshida; Bunchiro Tomita; Chung-Yun Hse
1995-01-01
The kinetics of the reactions of methylolphenols and urea were investigated using 2- and 4-hydroxybenzyl alcohols. The high-performance liquid chromatography (HPLC) using a reverse-phase column gave a clear separation between methylolphenols and hydroxybenzylureas. The molar ratios of hydroxybenzylureas to the corresponding methylolphenols in reaction mixtures were...
NASA Astrophysics Data System (ADS)
Colmenar, I.; Martin, P.; Cabañas, B.; Salgado, S.; Martinez, E.
2018-03-01
An analysis of reaction products for the reaction of E,E-2,4-hexadienal with chlorine atoms (Cl) and OH and NO3 radicals has been carried out at the first time with the aim of obtaining a better understanding of the tropospheric reactivity of α,β-unsaturated carbonyl compounds. Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectrometry with a Time of Flight detector (GC-TOFMS) were used to carry out the qualitative and/or quantitative analyses. Reaction products in gas and particulate phase were observed from the reactions of E,E-2,4- hexadienal with all oxidants. E/Z-Butenedial and maleic anhydride were the main products identified in gas phase. E-butenedial calculated molar yield ranging from 4 to 10%. A significant amount of multifunctional compounds (chloro and hydroxy carbonyls) was identified. These compounds could be formed in particulate phase explaining the ∼90% of unaccounted carbon in gas phase. The reaction with Cl atoms in the presence of NOx with a long reaction time gave Peroxy Acetyl Nitrate (PAN) as an additional product, which is known for being an important specie in the generation of the photochemical smog. Nitrated compounds were the major organic products from the reaction with the NO3 radical. Based on the identified products, the reaction mechanisms have been proposed. In these mechanisms a double bond addition of the atmospheric oxidant at C4/C5 of E,E-2,4-hexadienal is the first step for tropospheric degradation.
An Unusual Salt Effect in an Interfacial Nucleophilic Substitution Reaction.
Li, Shuheng; Mrksich, Milan
2018-06-12
This paper reports a kinetic characterization of the interfacial reaction of N-methylpyrrolidine with a self-assembled monolayer presenting an iodoalkyl group. SAMDI (self-assembled monolayers for matrix-assisted laser desorption/ionization) mass spectrometry was used to determine the extent of reaction for monolayers that were treated with a range of concentrations of the nucleophile for a range of times. These data revealed a second-order rate constant for the reaction that was approximately 100-fold greater than that for the analogous solution-phase reaction. However, addition of sodium iodide to the reaction mixture resulted in a 7-fold decrease in the reaction rate. Addition of bromide and chloride salts also gave slower rate constants for the reaction, but only at 100- and 1000-fold higher concentrations than was observed with iodide, respectively. The corresponding solution-phase reactions, by contrast, had rate constants that were unaffected by the concentration of halide salts. This work provides a well-characterized example illustrating the extent to which the kinetics and properties of an interfacial reaction can depart substantially from their better-understood solution-phase counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Burkes, Douglas; Lavender, Curt A.
2016-11-01
A three dimensional microstructure dependent swelling model is developed for studying the fission gas swelling kinetics in irradiated nuclear fuels. The model is extended from the Booth model [1] in order to investigate the effect of heterogeneous microstructures on gas bubble swelling kinetics. As an application of the model, the effect of grain morphology, fission gas diffusivity, and spatial dependent fission rate on swelling kinetics are simulated in UMo fuels. It is found that the decrease of grain size, the increase of grain aspect ratio for the grain having the same volume, and the increase of fission gas diffusivity (fissionmore » rate) cause the increase of swelling kinetics. Other heterogeneities such as second phases and spatial dependent thermodynamic properties including diffusivity of fission gas, sink and source strength of defects could be naturally integrated into the model to enhance the model capability.« less
Chapter 5: Modulation Excitation Spectroscopy with Phase-Sensitive Detection for Surface Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulda, Sarah; Richards, Ryan M.
Advancements in in situ spectroscopic techniques have led to significant progress being made in elucidating heterogeneous reaction mechanisms. The potential of these progressive methods is often limited only by the complexity of the system and noise in the data. Short-lived intermediates can be challenging, if not impossible, to identify with conventional spectra analysis means. Often equally difficult is separating signals that arise from active and inactive species. Modulation excitation spectroscopy combined with phase-sensitive detection analysis is a powerful tool for removing noise from the data while simultaneously revealing the underlying kinetics of the reaction. A stimulus is applied at amore » constant frequency to the reaction system, for example, a reactant cycled with an inert phase. Through mathematical manipulation of the data, any signal contributing to the overall spectra but not oscillating with the same frequency as the stimulus will be dampened or removed. With phase-sensitive detection, signals oscillating with the stimulus frequency but with various lag times are amplified providing valuable kinetic information. In this chapter, some examples are provided from the literature that have successfully used modulation excitation spectroscopy with phase-sensitive detection to uncover previously unobserved reaction intermediates and kinetics. Examples from a broad range of spectroscopic methods are included to provide perspective to the reader.« less
Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides
NASA Technical Reports Server (NTRS)
Collins, J.; Rosner, D. E.; Castillo, J.
1992-01-01
A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.
Gas-deposit-alloy corrosion interactions in simulated combustion environments
NASA Astrophysics Data System (ADS)
Luer, Kevin Raymond
High temperature corrosion in aggressive coal combustion environments involves simultaneous corrosion reactions between combustion gases, ash deposits, and alloys. This research investigated the behavior of a ferritic steel (SA387-Gr11) and three weld claddings (309L SS, Alloy 72, and Alloy 622) in five combustion environments beneath solid deposits at 500°C for up to 1000 hours. The synthetic gases consisted of N2-CO-CO-H2-H2O-H 2S-SO2 mixtures that simulated a range of fuel-rich or fuel-lean combustion environments with a constant sulfur content. The synthetic deposits contained FeS2, FeS, Fe3O4 and/or carbon. Reaction kinetics was studied in individual gas-metal, gas deposit, and deposit-alloy systems. A test method was developed to investigate simultaneous gas-deposit-metal corrosion reactions. The results showed reaction kinetics varied widely, depending on the gas-alloy system and followed linear, parabolic, and logarithmic rate laws. Under reducing conditions, the alloys exhibited a range of corrosion mechanisms including carburization-sulfidation, sulfidation, and sulfidation-oxidation. Most alloys were not resistant to the highly reducing gases but offered moderate resistance to mixed oxidation-sulfidation by demonstrating parabolic or logarithmic behavior. Under oxidizing conditions, all of the alloys were resistant. Under oxidizing-sulfating conditions, alloys with high Fe or Cr contents sulfated whereas an alloy containing Mo and W was resistant. In the gas-deposit-metal tests, FeS2-bearing deposits were extremely corrosive to low alloy steel under both reducing and oxidizing conditions but they had little influence on the weld claddings. Accelerated corrosion was attributed to rapid decomposition or oxidation of FeS2 particles that generated sulfur-rich gases above the alloy surface. In contrast, FeS-type deposits had no influence under reducing conditions but they were aggressive to low alloy steel under oxidizing conditions. The extent of damage correlated with the initial sulfur content in the deposit. Fe3O4 in the deposit was beneficial because it acted as a sulfur getter or oxygen source. Carbon had a mixed effect. The reaction behavior was modeled using computational thermochemistry based on Gibbs free energy minimization. A calculation method was introduced to predict equilibrium corrosion microstructures and trace reaction paths in complex gas-deposit-metal environments. Kinetic factors were identified where equilibrium reaction products were not experimentally observed.
NASA Astrophysics Data System (ADS)
Gilbert, Joshua D.; Prentice, Boone M.; McLuckey, Scott A.
2015-05-01
The use of ion/ion reactions to effect gas-phase alkylation is demonstrated. Commonly used fixed-charge "onium" cations are well-suited for ion/ion reactions with multiply deprotonated analytes because of their tendency to form long-lived electrostatic complexes. Activation of these complexes results in an SN2 reaction that yields an alkylated anion with the loss of a neutral remnant of the reagent. This alkylation process forms the basis of a general method for alkylation of deprotonated analytes generated via electrospray, and is demonstrated on a variety of anionic sites. SN2 reactions of this nature are demonstrated empirically and characterized using density functional theory (DFT). This method for modification in the gas phase is extended to the transfer of larger and more complex R groups that can be used in later gas-phase synthesis steps. For example, N-cyclohexyl- N'-(2-morpholinoethyl)carbodiimide (CMC) is used to transfer a carbodiimide functionality to a peptide anion containing a carboxylic acid. Subsequent activation yields a selective reaction between the transferred carbodiimide group and a carboxylic acid, suggesting the carbodiimide functionality is retained through the transfer process. Many different R groups are transferable using this method, allowing for new possibilities for charge manipulation and derivatization in the gas phase.
Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water
NASA Astrophysics Data System (ADS)
Locke, Bruce R.; Shih, Kai-Yuan
2011-06-01
This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.
NASA Astrophysics Data System (ADS)
Bamford, Holly A.; Baker, Joel E.
Gas and particle phase concentrations of 26 nitro-PAHs were quantified in ambient air collected in downtown Baltimore, MD, an urban region, and in Fort Meade, MD, a suburban area 20 km south-southeast of Baltimore, during January and July 2001. Total (gas+particle) concentrations for individual nitro-PAH compounds varied by as much as five times from sample to sample within each month. 2-Nitrofluoranthene and 9-nitroanthracene were the most abundant of the nitro-PAHs quantitatively analyzed in the air at both sites, accounting for approximately half of the total nitro-PAH concentrations during January and July. Concentrations at Baltimore were on average two to three times higher than those measured at the Fort Meade site. Concentrations for most nitro-PAHs were higher in January than in July, suggesting a reduction in photodecay of nitro-PAHs during January promoted the accumulation of nitro-PAHs. Concentrations of nitro-PAHs produced from gas-phase reactions were significantly correlated with concentrations of oxides of nitrogen (NO x) measured simultaneously at the Fort Meade site. 3-Nitrophenanthrene and 4-nitrophenanthrene were negatively correlated with NO x and were the only nitro-PAHs correlated with O 3, suggesting a different formation mechanism for these compounds compared to the other nitro-PAHs found in this study. The relative contribution of gas-phase reactions and primary emission sources of nitro-PAHs were evaluated using source specific concentration ratios of 2-nitrofluoranthene and 1-nitropyrene (2-NF/1-NP). The mean ratios of 2-NF/1-NP at both sites were statistically higher in July than January, indicating gas-phase reactions were an important source of 2-nitrofluoranthene in the summer. However, in January, gas-phase reactions were reduced, the NO 3-initiated reaction in particular, and primary emissions may significantly contribute to ambient nitro-PAH levels. The two dominant gas-phase production pathways of nitro-PAHs from the OH and NO 3-initiated reactions were investigated using concentration ratios of 2-nitrofluoranthene and 2-nitropyrene (2-NF/2-NP). At both sites, 2-NF/2-NP ratios indicated that the daytime OH-initiated reaction was the dominant gas-phase formation pathway. The estimated contributions of nitro-PAHs produced through gas-phase reactions via the OH pathway during July were >45% and during January were >83% at both Fort Meade and Baltimore.
NASA Astrophysics Data System (ADS)
Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed
2013-09-01
In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.
NASA Technical Reports Server (NTRS)
Jaffe, Richard L.; Pattengill, Merle D.; Schwenke, David W.
1989-01-01
Strategies for constructing global potential energy surfaces from a limited number of accurate ab initio electronic energy calculations are discussed. Generally, these data are concentrated in small regions of configuration space (e.g., in the vicinity of saddle points and energy minima) and difficulties arise in generating a potential function that is globally well-behaved. Efficient computer codes for carrying out classical trajectory calculations on vector and parallel processors are also described. Illustrations are given from recent work on the following chemical systems: Ca + HF yields CaF + H, H + H + H2 yields H2 + H2, N + O2 yields NO + O and O + N2 yields NO + N. The dynamics and kinetics of metathesis, dissociation, recombination, energy transfer and complex formation processes will be discussed.
Gas-phase kinetics modifies the CCN activity of a biogenic SOA.
Vizenor, A E; Asa-Awuku, A A
2018-02-28
Our current knowledge of cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. Here, we examine the CCN activation of 3 SOA systems (2 biogenic single precursor and 1 mixed precursor SOA system) in relation to gas-phase decay. Specifically, the relationship between time, gas-phase precursor decay and CCN activity of 100 nm SOA is studied. The studied SOA systems exhibit a time-dependent growth of CCN activity at an instrument supersaturation of ∼0.2%. As such, we define a critical activation time, t 50 , above which a 100 nm SOA particle will activate. The critical activation time for isoprene, longifolene and a mixture of the two precursor SOA is 2.01 hours, 2.53 hours and 3.17 hours, respectively. The activation times are then predicted with gas-phase kinetic data inferred from measurements of precursor decay. The gas-phase prediction of t 50 agrees well with CCN measured t 50 (within 0.05 hours of the actual critical times) and suggests that the gas-to-particle phase partitioning may be more significant for SOA CCN prediction than previously thought.
Gómez Ruiz, Braulio; Roux, Stéphanie; Courtois, Francis; Bonazzi, Catherine
2018-04-01
The degradation kinetics of vitamin C (ascorbic and dehydroascorbic acids, AA and DHA) were determined under controlled conditions of temperature (50-90 °C) and oxygen concentrations in the gas phase (10-30% mol/mol) using a specific reactor. The degradation of vitamin C in malate buffer (20 mM, pH 3.8), mimetic of an apple puree, was assessed by sampling at regular intervals and spectrophotometric quantification of AA and DHA levels at 243 nm. The results showed that AA degradation increased with temperature and oxygen concentration, while DHA exhibited the behaviour of an intermediate species, appearing then disappearing. A kinetic model was successfully developed to simulate the experimental data by two first order consecutive reactions. The first one represented AA degradation as a function of temperature and concentration in dissolved oxygen, and the second reflected DHA degradation as a function of temperature only, both adequately following Arrhenius' law. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Nyasulu, Frazier; Barlag, Rebecca
2010-01-01
The reaction kinetics of the iodide-catalyzed decomposition of [subscript 2]O[subscript 2] using the integrated-rate method is described. The method is based on the measurement of the total gas pressure using a datalogger and pressure sensor. This is a modification of a previously reported experiment based on the initial-rate approach. (Contains 2…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Imre, Dan G.; Wilson, Jacqueline
2017-01-01
When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to ‘pure’ SOA particles, these particles exhibit slower evaporation kinetics,more » have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.« less
Liu, Lan; Michelsen, Klaus; Kitova, Elena N; Schnier, Paul D; Brown, Alex; Klassen, John S
2012-04-04
Deuterium kinetic isotope effects (KIEs) are reported for the first time for the dissociation of a protein-ligand complex in the gas phase. Temperature-dependent rate constants were measured for the loss of neutral ligand from the deprotonated ions of the 1:1 complex of bovine β-lactoglobulin (Lg) and palmitic acid (PA), (Lg + PA)(n-) → Lg(n-) + PA, at the 6- and 7- charge states. At 25 °C, partial or complete deuteration of the acyl chain of PA results in a measurable inverse KIE for both charge states. The magnitude of the KIEs is temperature dependent, and Arrhenius analysis of the rate constants reveals that deuteration of PA results in a decrease in activation energy. In contrast, there is no measurable deuterium KIE for the dissociation of the (Lg + PA) complex in aqueous solution at pH 8. Deuterium KIEs were calculated using conventional transition-state theory with an assumption of a late dissociative transition state (TS), in which the ligand is free of the binding pocket. The vibrational frequencies of deuterated and non-deuterated PA in the gas phase and in various solvents (n-hexane, 1-chlorohexane, acetone, and water) were established computationally. The KIEs calculated from the corresponding differences in zero-point energies account qualitatively for the observation of an inverse KIE but do not account for the magnitude of the KIEs nor their temperature dependence. It is proposed that the dissociation of the (Lg + PA) complex in aqueous solution also proceeds through a late TS in which the acyl chain is extensively hydrated such that there is no significant differential change in the vibrational frequencies along the reaction coordinate and, consequently, no significant KIE.
The products of the gas-phase reactions of the OH radical with n-butyl methyl ether and 2-isopropoxyethanol in the presence of NO have been investigated at 298 ? 2 K and 740 Torr total pressure of air by gas chromatography and in situ atmospheric pressure ionization...
The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...
Observational Constraints on Modeling Growth and Evaporation Kinetics of Isoprene SOA
NASA Astrophysics Data System (ADS)
Zaveri, R. A.; Shilling, J. E.; Zelenyuk, A.; Liu, J.; Wilson, J. M.; Laskin, A.; Wang, B.; Fast, J. D.; Easter, R. C.; Wang, J.; Kuang, C.; Thornton, J. A.; Setyan, A.; Zhang, Q.; Onasch, T. B.; Worsnop, D. R.
2014-12-01
Isoprene is thought to be a major contributor to the global secondary organic aerosol (SOA) budget, and therefore has the potential to exert a significant influence on earth's climate via aerosol direct and indirect radiative effects. Both aerosol optical and cloud condensation nuclei properties are quite sensitive to aerosol number size distribution, as opposed to the total aerosol mass concentration. Recent studies suggest that SOA particles can be highly viscous, which can affect the kinetics of SOA partitioning and size distribution evolution when the condensing organic vapors are semi-volatile. In this study, we examine the growth kinetics of SOA formed from isoprene photooxidation in the presence of pre-existing Aitken and accumulation mode aerosols in: (a) the ambient atmosphere during the CARES field campaign, and (b) the environmental chamber at PNNL. Each growth episode is analyzed and interpreted with the updated MOSAIC aerosol box model, which performs kinetic gas-particle partitioning of SOA and takes into account diffusion and chemical reaction within the particle phase. The model is initialized with the observed aerosol size distribution and composition at the beginning of the experiment, and the total amount of SOA formed in the model at any given time is constrained by the observed total amount of SOA formed. The variable model parameters include the number of condensing organic species, their gas-phase formation rates, their effective volatilities, and their bulk diffusivities in the Aitken and accumulation modes. The objective of the constrained modeling exercise is then to determine which model configuration is able to best reproduce the observed size distribution evolution, thus providing valuable insights into the possible mechanism of SOA formation. We also examine the evaporation kinetics of size-selected particles formed in the environmental chamber to provide additional constraints on the effective volatility and bulk diffusivity of the organic species. Our results suggest that SOA formed from isoprene photooxidation is semi-volatile, and the resulting size distribution evolution is highly sensitive to the phase state (bulk diffusivity) of the pre-existing aerosol. Implications of these findings on further SOA model development and evaluation strategy will be discussed.
Balucani, Nadia; Casavecchia, Piergiorgio
2006-12-01
We have investigated gas-phase reactions of N((2)D) with the most abundant hydrocarbons in the atmosphere of Titan by the crossed molecular beam technique. In all cases, molecular products containing a novel CN bond are formed, thus suggesting possible routes of formation of gas-phase nitriles in the atmosphere of Titan and primordial Earth. The same approach has been recently extended to the study of radical-radical reactions, such as the reaction of atomic oxygen with the CH(3) and C(3)H(5) radicals. Products other than those already considered in the modeling of planetary atmospheres and interstellar medium have been identified.
Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang
2006-12-15
Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.
Adsorption Isotherms and Surface Reaction Kinetics
ERIC Educational Resources Information Center
Lobo, L. S.; Bernardo, C. A.
1974-01-01
Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)
Graphical Interface for the Study of Gas-Phase Reaction Kinetics: Cyclopentene Vapor Pyrolysis
NASA Astrophysics Data System (ADS)
Marcotte, Ronald E.; Wilson, Lenore D.
2001-06-01
The undergraduate laboratory experiment on the pyrolysis of gaseous cyclopentene has been modernized to improve safety, speed, and precision and to better reflect the current practice of physical chemistry. It now utilizes virtual instrument techniques to create a graphical computer interface for the collection and display of experimental data. An electronic pressure gauge has replaced the mercury manometer formerly needed in proximity to the 500 °C pyrolysis oven. Students have much better real-time information available to them and no longer require multiple lab periods to get rate constants and acceptable Arrhenius parameters. The time saved on manual data collection is used to give the students a tour of the computer interfacing hardware and software and a hands-on introduction to gas-phase reagent preparation using a research-grade high-vacuum system. This includes loading the sample, degassing it by the freeze-pump-thaw technique, handling liquid nitrogen and working through the logic necessary for each reconfiguration of the diffusion pump section and the submanifolds.
González-Navarrete, Patricio; Andrés, Juan; Calatayud, Monica
2018-02-01
A detailed density functional theory study is presented to clarify the mechanistic aspects of the methanol (CH 3 OH) dehydrogenation process to yield hydrogen (H 2 ) and formaldehyde (CH 2 O). A gas-phase vanadium oxide cluster is used as a model system to represent reduced V(III) oxides supported on TiO 2 catalyst. The theoretical results provide a complete scenario, involving several reaction pathways in which different methanol adsorption sites are considered, with presence of hydride and methoxide intermediates. Methanol dissociative adsorption process is both kinetically and thermodynamically feasible on V-O-Ti and V═O sites, and it might lead to form hydride species with interesting catalytic reactivity. The formation of H 2 and CH 2 O on reduced vanadium sites, V(III), is found to be more favorable than for oxidized vanadium species, V(V), taking place along energy barriers of 29.9 and 41.0 kcal/mol, respectively.
A Rate-Theory-Phase-Field Model of Irradiation-Induced Recrystallization in UMo Nuclear Fuels
NASA Astrophysics Data System (ADS)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
2017-12-01
In this work, we developed a recrystallization model to study the effect of microstructures and radiation conditions on recrystallization kinetics in UMo fuels. The model integrates the rate theory of intragranular gas bubble and interstitial loop evolutions and a phase-field model of recrystallization zone evolution. A first passage method is employed to describe one-dimensional diffusion of interstitials with a diffusivity value several orders of magnitude larger than that of fission gas xenons. With the model, the effect of grain sizes on recrystallization kinetics is simulated. The results show that (1) recrystallization in large grains starts earlier than that in small grains, (2) the recrystallization kinetics (recrystallization volume fraction) decrease as the grain size increases, (3) the predicted recrystallization kinetics are consistent with the experimental results, and (4) the recrystallization kinetics can be described by the modified Avrami equation, but the parameters of the Avrami equation strongly depend on the grain size.
PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC
Parkhurst, David L.; Wissmeier, Laurin
2015-01-01
PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.
Wolfrum, J
2001-01-01
In recent years a large number of linear and nonlinear laser-based diagnostic techniques for nonintrusive measurements of species concentrations, temperatures, and gas velocities in a wide pressure and temperature range with high temporal and spatial resolution have been developed and have become extremely valuable tools to study many aspects of combustion. Beside the nonintrusive diagnostics of technical combustion devices the kinetics and microscopic dynamics of elementary chemical combustion reactions can be investigated in great detail by laser spectroscopy. These investigations show, that a small number of relatively simple elementary steps like H + O2-->OH + O, H2O2-->2OH, O + N2-->NO + N, NH2 + NO-->H2O + N2, OH + N2H control a large variety of combustion phenomena and pollutant formation processes. Laminar flames are ideal objects to develop the application of laser spectroscopic methods for practical combustion systems and to test and improve the gas-phase reaction mechanism in combustion models. Nonintrusive laser point and field measurements are of basic importance in the validation and further development of turbulent combustion models. Nonlinear laser spectroscopic techniques using infrared-visible sum-frequency generation can now bridge the pressure and materials gap to provide kinetic data for catalytic combustion. Finally, the potential of laser techniques for active combustion control in municipal waste incinerators is illustrated.
Neutron spectra from beam-target reactions in dense Z-pinches
NASA Astrophysics Data System (ADS)
Appelbe, B.; Chittenden, J.
2015-10-01
The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.
Chemical reactivity of SiC fibre-reinforced SiC with beryllium and lithium ceramic breeder materials
NASA Astrophysics Data System (ADS)
Kleykamp, H.
2000-12-01
SiC fibre-reinforced SiC fabrics (f-SiC/SiC) are considered for structural materials of advanced fusion blanket concepts. Priority tasks are compatibility studies of SiC with Li breeder ceramics and the Be neutron multiplier. Isothermal and anisothermal powder reactions by DTA up to 1220°C were examined between Li 4SiO 4, Li 2ZrO 3 and Li 2TiO 3, respectively, and SiC and SiC/SiO 2 mixtures, respectively. The SiC/SiO 2 mixture simulated the chemical state of Nicalon fibres. Solid state reactions between SiC and Be pellets were studied by capsule experiments. The reaction products Be 2C and Si were observed between the initial phases after annealing at 800°C and 900°C. A parabolic time law with a chemical diffusion coefficient D˜=2.6×10 -15 m 2/s of Be in the products was deduced at 900°C. Additional oxygen released from SiO 2 as a component of the simulated fibres oxidised the reaction products via the gas phase by formation of a Be 2SiO 4 layer. All reactions are kinetically hindered below 700°C.
Kinetic Models for Adiabatic Reversible Expansion of a Monatomic Ideal Gas.
ERIC Educational Resources Information Center
Chang, On-Kok
1983-01-01
A fixed amount of an ideal gas is confined in an adiabatic cylinder and piston device. The relation between temperature and volume in initial/final phases can be derived from the first law of thermodynamics. However, the relation can also be derived based on kinetic models. Several of these models are discussed. (JN)
NASA Astrophysics Data System (ADS)
Jenkin, Michael Edwin
1991-05-01
Available from UMI in association with The British Library. Over the past 30 years, man has become increasingly aware that the presence of relatively small quantities of pollutants in the atmosphere as a result of his activities, can have a profound impact on both its chemistry, and its meteorology. Photochemistry in the atmosphere is not restricted to the behaviour of pollutants; indeed, certain photochemical phenomena necessarily occur naturally in a "pollution free" atmosphere. It is the interaction of the photochemistry of trace pollutants with the naturally established chemistry, either inhibiting or exaggerating natural processes, which has given rise to the environment-threatening consequences. The chemistry that leads to the phenomena mentioned above is complex, involving many hundreds of chemical reactions of reactive atomic and radical species. Over the years, a great deal of chemical kinetic data for elementary atmospheric reactions has accumulated^{(5,6)} , and the fundamental gas phase chemistry is well established. Computer models provide a useful means of assembling these data, and describing the likely behaviour and interconversion of various atmospheric pollutants, thereby enabling policy decision. For these models to be truly predictive, however, they must be based, first on reliable field measurements of primary trace pollutants and, secondly, on accurate kinetic and mechanistic data for key reactions of atmospheric importance. The work presented in this dissertation is concerned with the kinetics and mechanisms of reactions of the hydroperoxy radical (HO_2), and various organic peroxy radicals (RO_2) which are formed as intermediates in the atmospheric oxidation of volatile organic compounds. In the sections that follow, our current understanding of the chemistry in general of the lower atmosphere (0-50 km) will be discussed in some detail, but with particular reference to the role played by HO_2 and RO_2 radicals. (Abstract shortened by UMI.).
Lu, Wenchao; Sun, Yan; Zhou, Wenjing; Liu, Jianbo
2018-01-11
We report a kinetic and mechanistic study on the title reactions, in which 1 O 2 was generated by the reaction of H 2 O 2 with Cl 2 and bubbled into an aqueous solution of guanine and 9-methylguanine (9MG) at different pH values. Oxidation kinetics and product branching ratios were measured using online electrospray ionization mass spectrometry coupled with absorption and emission spectrophotometry, and product structures were determined by collision-induced dissociation (CID) tandem mass spectrometry. Experiments revealed strong pH dependence of the reactions. The oxidation of guanine is noticeable only in basic solution, while the oxidation of 9MG is weak in acidic solution, increases in neutral solution, and becomes intensive in basic solution. 5-Guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) were detected as the major oxidation products of guanine and 9MG, and Sp became dominant in basic solution. A reaction intermediate was captured in mass spectra, and assigned to gem-diol on the basis of CID measurements. This intermediate served as the precursor for the formation of Gh. After taking into account solution compositions at each pH, first-order oxidation rate constants were extracted for individual species: that is, 3.2-3.6 × 10 7 M -1 s -1 for deprotonated guanine, and 1.2 × 10 6 and 4.6-4.9 × 10 7 M -1 s -1 for neutral and deprotonated 9MG, respectively. Guided by approximately spin-projected density-functional-theory-calculated reaction potential energy surfaces, the kinetics for the initial 1 O 2 addition to guanine and 9MG was evaluated using transition state theory (TST). The comparison between TST modeling and experiment confirms that 1 O 2 addition is rate-limiting for oxidation, which forms endoperoxide and peroxide intermediates as determined in previous measurements of the same systems in the gas phase.
A kinetic study of the interaction between atomic oxygen and aerosols
NASA Technical Reports Server (NTRS)
Akers, F. I.; Wightman, J. P.
1976-01-01
This study was concerned with the effects of NH4Cl and (NH4)2SO4 aerosols on the kinetics of disappearance of atomic oxygen. Atomic oxygen was generated by a 2.45-GHz microwave discharge and the kinetics of disappearance measured in a fast flow system using NO2 titration. Values of the recombination coefficient for heterogeneous wall recombination were determined for clean, H2SO4-coated, and (NH4)2SO4-coated Pyrex to be 0.000050, 0.000020, and 0.000019, respectively. A rapid exothermic chemical reaction was found to occur between atomic oxygen and an NH4Cl wall coating; the products were NH3, NO, H2O, and HCl. The NH4Cl aerosol was generated by gas phase reaction of NH3 with HCl. The aerosol particles were approximately spherical and nearly monodisperse with a mean diameter of 1.6 plus or minus 0.2 micron. The rate constant for the disappearance of atomic oxygen in the presence of NH4Cl aerosol was measured. No significant decrease was observed in the rate of disappearance of atomic oxygen in the presence of an (NH4)2SO4 aerosol at a concentration of 285 mg per cu m.
Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes
NASA Technical Reports Server (NTRS)
Menon, Suresh
1998-01-01
Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies (that employed parabolic or temporal approximations) and the measured data. Finally to address the major uncertainty in the near-field plume modeling related to the plume processing of sulfur compounds and advanced model was developed to evaluate its impact on the chemical processes in the near wake. A comprehensive aerosol model is developed and it is coupled with chemical kinetics and the axisymmetric turbulent jet flow models. The integrated model is used to simulate microphysical processes in the near-field jet plume, including sulfuric acid and water binary homogeneous nucleation, coagulation, non-equilibrium heteromolecular condensation, and sulfur-induced soot activation. The formation and evolution of aerosols are computed and analyzed. The computed results show that a large number of ultra-fine (0.3--0.6 nm in radius) volatile HSO4 - HO embryos are generated in the near-field plume. These embryos further grow in size by self coagulation and condensation. Soot particles can be activated by both heterogeneous nucleation and scavenging of H2SO4-H2O aerosols. These activated soot particles can serve as water condensation nuclei for contrail formation. Conditions under which ice contrails can form behind aircrafts are studied. The sensitivities of the threshold temperature for contrail formation with respect to aircraft propulsion efficiency, relative humidity, and ambient pressure are evaluated. The computed aerosol properties for different extent of fuel sulfur conversion to S(VI) (SO3 and H2SO4) in engine are examined and the results are found to be sensitive to this conversion fraction.
Kinetic study of the carbothermic synthesis of uranium monocarbide microspheres
NASA Astrophysics Data System (ADS)
Mukerjee, S. K.; Dehadraya, J. V.; Vaidya, V. N.; Sood, D. D.
1990-06-01
Uranium monocarbide microspheres were synthesized by carbothermic reduction of porous uranium oxide microspheres with uniformly dispersed carbon black. Kinetics of the reduction was studied under vacuum and flowing inert gas from 1250 to 1550° C. The carbon monoxide gas concentration in the effluent stream during reduction was used to determine the rate of carbide formation. Under vacuum, reduction was found to be controlled by reaction at the reactant-product interface whereas under flowing gas conditions, the diffusion of carbon monoxide gas through the carbide layer was the rate controlling process. The activation energy was 335.1 ± 8.6 and 363.7 ± 7.6 kJ/mol for reduction under vacuum and flowing gas, respectively.
Aquilanti, Vincenzo; Coutinho, Nayara Dantas
2017-01-01
This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d < 0, to those where d > 0, corresponding to the Pareto–Tsallis statistical weights: these generalize the Boltzmann–Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super-Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of temperature. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320904
Aquilanti, Vincenzo; Coutinho, Nayara Dantas; Carvalho-Silva, Valter Henrique
2017-04-28
This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d < 0, to those where d > 0, corresponding to the Pareto-Tsallis statistical weights: these generalize the Boltzmann-Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super -Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub -Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti -Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of temperature.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).
Rate and pathways for the reaction of OH with the biogenic p-cymene, an alkylated aromatic
NASA Astrophysics Data System (ADS)
Strekowski, R.; Rayez, M.-T.; Rayez, J.-C.; Zetzsch, C.
2009-04-01
Aromatics are known to contribute strongly to tropospheric formation of ozone, and p-cymene (4-isopropyltoluene) is one of only a few biogenic, volatile aromatic hydrocarbons. In spite of its symmetry, this molecule (CH3 - °-CH(CH3)2) has a multitude of potential pathways of its reaction with OH radicals. Addition of OH is well-known to be the predominating primary step in the tropospheric transformation of aromatic hydrocarbons. The addition is expected to occur preferably at a non-occupied position, where four positions are available: two equivalent ones ortho to the methyl group and two equivalent ones ortho to the isopropyl group. Furthermore, various C-H bonds (4 aromatic and 10 aliphatic) are available for abstraction, leading to benzyl-type radicals in two cases. The present study combines theoretical calculations with kinetic experiments in the gas phase. The theoretical calculations are based on electronic quantum chemistry DFT method for the investigation of the possible pathways in the potential energy surface of the reaction. The experiments are carried out by the flash photolysis/resonance fluorescence technique. OH radicals are produced by pulsed vacuum-UV photolysis of H2O (> 115 nm) in the presence of p-cymene in a slow flow of He as carrier gas. Their pseudo-first-order decays are monitored by resonance fluorescence, storing the photon counts by multichannel scaling in a PC and accumulating 50 decays each; see Koch et al. (2007) for details of the technique and evaluation of data. The temperature was varied between room temperature (295 K) and 345K, the He pressure was 250 mbar, and the level of p-cymene was increased stepwise, up to 3 x 1013 molecules/cm3. The decays of OH were observed to be exponential at room temperature, becoming clearly biexponential at higher temperatures, thus indicating reversible addition of OH according to the equilibration OH + p-cymene â p-cymene-OH (1, -1) These reactions might be accompanied by various abstraction channels, summarized as OH + p-cymene â alkylbenzyl + H2O (2) A value of 1.4 x 10-11 cm3 s-1 at 295 K is obtained for the sum k1 + k2, in good agreement with a value of 1.51 x 10-11 cm3 s-1determined by Corchnoy and Atkinson (1990) in a smog chamber at 295 K. The sum k1 + k2 decreases slightly with increasing temperature, falling below 10-11 cm3 s-1 at 345 K. The Arrhenius plot reveals a curved behaviour with a negative activation energy, approximately 1 x 10-12 exp (60 K/T) cm3 s-1. The biexponential behaviour corresponds to an apparent equilibrium constant of k1/k-1 = 8 x 10-25 exp [(-8500 ± 400) K/T] cm3 s-1. On the other hand, the bond energy of OH in the adduct can hardly be obtained from this biexponential behaviour alone since the abstraction of H atoms from the alkyl groups of p-cymene can be estimated to contribute markedly. Extrapolating the respective abstraction channels of toluene and the xylenes to two methyl substituents would yield k2= 1.6 x 10-18 T2exp (-38 K/T) cm3 s-1 (Atkinson, 1989). This amounts to 1.2x10-12 cm3 s-1 at 295 K (about 9% of the observed reactivity) and 1.7x10-12 cm3 s-1 at 345K (>17% of the observed reactivity) and does not even take the possibly largerreactivity of the isopropyl group (as compared to CH3) into account. The abstraction channel has been found to predominate in the analogous reaction of atomic Cl with p-cymene (Finlayson-Pitts et al, 1999), and further experiments by other methods are required to clarify the reaction channels for OH radicals. References Atkinson, R. (1989) Kinetics and Mechanisms of the Gas-Phase Reactions of the Hydroxyl Radical with Organic Compounds. J. Phys. Chem. Ref. Data, Monograph 1, Am. Chem. Soc./Am. Inst. Phys./NIST, p. 229. Corchnoy, S.B., Atkinson, R. (1990) Kinetics of the gas-phase reactions of OH and NO3 radicals with 2-Carene, 1,8-CineoIe, p-Cymene, and Terpinolene. Environ. Sci. Technol. 24, 1497-1502. Finlayson-Pitts, B. J., Keoshian, C.J., Buehler, B., Ezell, A.A. (1999) Kinetics of reaction of chlorine atoms with some biogenic organics. Int . J. Chem. Kinet. 31, 491-499. Koch, R., Knispel, R. Elend, M., Siese, M., Zetzsch, C. (2007) Consecutive reactions of aromatic-OH adducts with NO, NO2 and O2: benzene, naphthalene, toluene, m- and p-xylene, hexamethylbenzene, phenol, m-cresol and aniline. Atmos. Chem. Phys. 7, 2057-2071.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devine, K.D.; Hennigan, G.L.; Hutchinson, S.A.
1999-01-01
The theoretical background for the finite element computer program, MPSalsa Version 1.5, is presented in detail. MPSalsa is designed to solve laminar or turbulent low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow (with auxiliary turbulence equations), heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solve coupled multiple Poisson or advection-diffusion-reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurringmore » in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMK3N, respectively. The code employs unstructured meshes, using the EXODUS II finite element database suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec. solver library.« less
NASA Technical Reports Server (NTRS)
Wine, P. H.; Hynes, A. J.; Nicovich, J. M.
1997-01-01
Results are presented and discussed for a number of gas phase free radical reactions where H/D isotope effects provide valuable mechanistic insights. The cases considered are (1) the reactions of OH, NO3, and Cl with atmospheric reduced sulfur compounds, (2) the reactions of OH and OD with CH3CN and CD3CN, and (3) the reactions of alkyl radicals with HBr and DBr.
Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C
2014-12-02
Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.
Trubyanov, Maxim M; Mochalov, Georgy M; Suvorov, Sergey S; Puzanov, Egor S; Petukhov, Anton N; Vorotyntsev, Ilya V; Vorotyntsev, Vladimir M
2018-07-27
The current study focuses on the processes involved during the flow conversion of water into acetylene in a calcium carbide reaction cell for the trace moisture analysis of ammonia by reaction gas chromatography. The factors negatively affecting the reproducibility and the accuracy of the measurements are suggested and discussed. The intramolecular reaction of the HOCaCCH intermediate was found to be a side reaction producing background acetylene during the contact of wet ammonia gas with calcium carbide. The presence of the HOCaCCH intermediate among the reaction products is confirmed by an FTIR spectral study of calcium carbide powder exposed to wet gas. The side reaction kinetics is evaluated experimentally and its influence on the results of the gas chromatographic measurements is discussed in relation to the determination of the optimal operating parameters for ammonia analysis. The reaction gas chromatography method for the trace moisture measurements in an ammonia matrix was experimentally compared to an FTIR long-path length gas cell technique to evaluate the accuracy limitations and the resource intensity. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cardelino, Carlos
1999-01-01
A computational chemical vapor deposition (CVD) model is presented, that couples chemical reaction mechanisms with fluid dynamic simulations for vapor deposition experiments. The chemical properties of the systems under investigation are evaluated using quantum, molecular and statistical mechanics models. The fluid dynamic computations are performed using the CFD-ACE program, which can simulate multispecies transport, heat and mass transfer, gas phase chemistry, chemistry of adsorbed species, pulsed reactant flow and variable gravity conditions. Two experimental setups are being studied, in order to fabricate films of: (a) indium nitride (InN) from the gas or surface phase reaction of trimethylindium and ammonia; and (b) 4-(1,1)dicyanovinyl-dimethylaminoaniline (DCVA) by vapor deposition. Modeling of these setups requires knowledge of three groups of properties: thermodynamic properties (heat capacity), transport properties (diffusion, viscosity, and thermal conductivity), and kinetic properties (rate constants for all possible elementary chemical reactions). These properties are evaluated using computational methods whenever experimental data is not available for the species or for the elementary reactions. The chemical vapor deposition model is applied to InN and DCVA. Several possible InN mechanisms are proposed and analyzed. The CVD model simulations of InN show that the deposition rate of InN is more efficient when pulsing chemistry is used under conditions of high pressure and microgravity. An analysis of the chemical properties of DCVA show that DCVA dimers may form under certain conditions of physical vapor transport. CVD simulations of the DCVA system suggest that deposition of the DCVA dimer may play a small role in the film and crystal growth processes.
Rapid gas hydrate formation process
Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.
2013-01-15
The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.
Tian, Sicong; Jiang, Jianguo
2012-12-18
Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.
Heterogeneous processes: Laboratory, field, and modeling studies
NASA Technical Reports Server (NTRS)
Poole, Lamont R.; Kurylo, Michael J.; Jones, Rod L.; Wahner, Andreas; Calvert, Jack G.; Leu, M.-T.; Fried, A.; Molina, Mario J.; Hampson, Robert F.; Pitts, M. C.
1991-01-01
The efficiencies of chemical families such as ClO(x) and NO(x) for altering the total abundance and distribution of stratospheric ozone are controlled by a partitioning between reactive (active) and nonreactive (reservoir) compounds within each family. Gas phase thermodynamics, photochemistry, and kinetics would dictate, for example, that only about 1 percent of the chlorine resident in the lower stratosphere would be in the form of active Cl or ClO, the remainder existing in the reservoir compounds HCl and ClONO2. The consistency of this picture was recently challenged by the recognition that important chemical transformations take place on polar regions: the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASA). Following the discovery of the Antarctic ozone hole, Solomon et al. suggested that the heterogeneous chemical reaction: ClONO2(g)+HCl(s) yields Cl2(g)+HNO3(s) could play a key role in converting chlorine from inactive forms into a species (Cl2) that would rapidly dissociate in sunlight to liberate atomic chlorine and initiate ozone depletion. The symbols (s) and (g) denote solid phase, or adsorbed onto a solid surface, and gas phase, respectively, and represent the approach by which such a reaction is modeled rather than the microscopic details of the reaction. The reaction was expected to be most important at altitudes where PSC's were most prevalent (10 to 25 km), thereby extending the altitude range over which chlorine compounds can efficiently destroy ozone from the 35 to 45 km region (where concentrations of active chlorine are usually highest) to lower altitudes where the ozone concentration is at its peak. This chapter will briefly review the current state of knowledge of heterogeneous processes in the stratosphere, emphasizing those results obtained since the World Meteorological Organization (WMO) conference. Sections are included on laboratory investigations of heterogeneous reactions, the characteristics and climatology of PSC's, stratospheric sulfate aerosols, and evidence of heterogeneous chemical processing.
Non-equilibrium reaction rates in chemical kinetic equations
NASA Astrophysics Data System (ADS)
Gorbachev, Yuriy
2018-05-01
Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.
NASA Astrophysics Data System (ADS)
Jordan, Jennifer Lynn
The objectives of this study were to (a) investigate the effect of shock activation of precursor powders for solid-state reaction synthesis of Ti-based ternary ceramics and (b) to determine the high pressure phase stability and Hugoniot properties of Ti3SiC2. Dynamically densified compacts of Ti, SiC, and graphite precursor powders and Ti and AlN precursor powders were used to study the shock-activated formation of Ti 3SiC2 and Ti2AlN ternary compounds, respectively, which are considered to be novel ceramics having high stiffness but low hardness. Gas gun and explosive loading techniques were used to obtain a range of loading conditions resulting in densification and activation. Measurements of fraction reacted as a function of time and temperature and activation energies obtained from DTA experiments were used to determine the degree of activation caused by shock compression and its subsequent effect on the reaction mechanisms and kinetics. In both systems, shock activation led to an accelerated rate of reaction at temperatures less than 1600°C and, above that temperature, it promoted the formation of almost 100% of the ternary compound. A kinetics-based mathematical model based on mass and thermal transport was developed to predict the effect of shock activation and reaction synthesis conditions that ensure formation of the ternary compounds. Model predictions revealed a transition temperature above which the reaction is taken over by the "run-away" combustion-type mode. The high pressure phase stability of pre-alloyed Ti 3SiC2 compound was investigated by performing Hugoniot shock and particle velocity measurements using the facilities at the National Institute for Materials Science (Tsukuba, Japan). Experiments performed at pressures of 95--120 GPa showed that the compressibility of Ti3SiC 2 at these pressures deviates from the previously reported compressibility of the material under static high pressure loading. The deviation in compressibility behavior is indicative of the transformation of the Ti3 SiC2 ceramic to a high pressure, high density phase.
1990-09-07
as traditional, themes in Gas Phase Kinetics. Highlighted topics include: A) Atmospheric Chemistry; B) Theory of Reactive, Inelastic, and...KINETICS AND SPECTROSCOPY OF EXCITED SPECIES OBTAINED VIA DETONATION OF LEAD AZIDE 0-20 C.Nyeland (Copenhagen, Denmark) COLLISION THEORY OF "FALL-OF...J.P.Burrows, and G.K.Moortgat (Mainz, W.Germany) POSSIBLE ABIOTIC SOURCES OF N2 0 B - THEORY OF REACTIVE, INELASTIC, AND PHODISSOCIATIVE PROCESSES B-i
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatsumi, Hironori; Liu, Fudong; Han, Hui-Ling
Platinum nanoparticles size range from 1 to 8 nm deposited on mesoporous silica MCF-17 catalyzed alcohol oxidations were studied in the gas and liquid phases. Among methanol, ethanol, 2- propanol and 2-butanol reactions, the turnover frequency increased with Pt nanoparticle size for all the alcohols utilized. The activation energies for the oxidations were almost same among all alcohol species, but higher in the gas phase than those in the liquid phase. Water coadsorption poisoned the reaction in the gas phase, while it increased the reaction turnover rates in the liquid phase. Sum frequency generation (SFG) vibrational spectroscopy studies and DFTmore » calculations revealed that the alcohol molecules pack horizontally on the metal surface in low concentrations and stand up in high concentrations, which affect the dissociation of β-hydrogen of the alcohols as the critical step in alcohol oxidations.« less
Tatsumi, Hironori; Liu, Fudong; Han, Hui-Ling; ...
2017-03-21
Platinum nanoparticles size range from 1 to 8 nm deposited on mesoporous silica MCF-17 catalyzed alcohol oxidations were studied in the gas and liquid phases. Among methanol, ethanol, 2- propanol and 2-butanol reactions, the turnover frequency increased with Pt nanoparticle size for all the alcohols utilized. The activation energies for the oxidations were almost same among all alcohol species, but higher in the gas phase than those in the liquid phase. Water coadsorption poisoned the reaction in the gas phase, while it increased the reaction turnover rates in the liquid phase. Sum frequency generation (SFG) vibrational spectroscopy studies and DFTmore » calculations revealed that the alcohol molecules pack horizontally on the metal surface in low concentrations and stand up in high concentrations, which affect the dissociation of β-hydrogen of the alcohols as the critical step in alcohol oxidations.« less
Capturing Transient Endoperoxide in the Singlet Oxygen Oxidation of Guanine.
Lu, Wenchao; Liu, Jianbo
2016-02-24
The chemistry of singlet O2 toward the guanine base of DNA is highly relevant to DNA lesion, mutation, cell death, and pathological conditions. This oxidative damage is initiated by the formation of a transient endoperoxide through the Diels-Alder cycloaddition of singlet O2 to the guanine imidazole ring. However, no endoperoxide formation was directly detected in native guanine or guanosine, even at -100 °C. Herein, gas-phase ion-molecule scattering mass spectrometry was utilized to capture unstable endoperoxides in the collisions of hydrated guanine ions (protonated or deprotonated) with singlet O2 at ambient temperature. Corroborated by results from potential energy surface exploration, kinetic modeling, and dynamics simulations, various aspects of endoperoxide formation and transformation (including its dependence on guanine ionization and hydration states, as well as on collision energy) were determined. This work has pieced together reaction mechanisms, kinetics, and dynamics data concerning the early stage of singlet O2 induced guanine oxidation, which is missing from conventional condensed-phase studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bromine oxidation in volcanic plumes
NASA Astrophysics Data System (ADS)
Bobrowski, N.; Vogel, L.; Kern, C.; Giuffrida, G. B.; Delgado-Granados, H.; Platt, U.
2009-04-01
Volcanoes are very strong sources of hydrogen, carbon, sulphur and halogen compounds, as well as of particles. Some gases only behave as passive tracers; others interact and affect the formation, growth or chemical characteristics of aerosol particles in a complex system. Recent measurements of halogen radicals in volcanic plumes showed that volcanic plumes are chemically very active. Kinetic considerations (Oppenheimer et al., 2006) and detailed calculations with an atmospheric chemistry model (Bobrowski et al., 2007) explain the halogen chemistry mainly with photochemical reactions involving both, the gas and particle phase. They reproduce the measured gas-phase concentrations quite well. However, temporal evolution of BrO in the early plume is not well described in the models. The understanding of chemical kinetics of BrO formation is still not complete. Recent measurement results (Vogel et al., 2008) do not fit with initial model calculation. The new data lead to the suggestion that the BrO formation could be much faster during the first few minutes after emission than initially suggested. Old and recent data sets will be confronted, compared and possible causes of their differences discussed. The measurements considered were taken at Mt. Etna (Italy), Villarica (Chile), and Popocatépetl (Mexico) volcanoes. Additionally, at Mt Etna the emission consists of up to four individual plumes from four summit craters. The differences between the individual plumes have been investigated during the last years and will be presented.
Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A
2014-11-01
The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate.
Kinetics of the Br2-CH3CHO Photochemical Chain Reaction
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Shackelford, C. J.; Wine, P. H.
1997-01-01
Time-resolved resonance fluorescence spectroscopy was employed in conjunction with laser flash photolysis of Br2 to study the kinetics of the two elementary steps in the photochemical chain reaction nBr2 + nCH3CHO + hv yields nCH3CBrO + nHBr. In the temperature range 255-400 K, the rate coefficient for the reaction Br((sup 2)P(sub 3/2)) + CH3CHO yields CH3CO + HBr is given by the Arrhenius expression k(sub 6)(T) = (1.51 +/- 0.20) x 10(exp -11) exp(-(364 +/- 41)/T)cu cm/(molecule.s). At 298 K, the reaction CH3CO + Br2 yields CH3CBrO + Br proceeds at a near gas kinetic rate, k(sub 7)(298 K) = (1.08 +/- 0.38) x 10(exp -10)cu cm/(molecule.s).
PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glassgold, A. E.; Najita, J. R.
2015-09-10
Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimesmore » as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.« less
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1977-01-01
Techniques for the gas-phase absorption of laser energy with ultimate conversion to heat or directed kinetic energy are reviewed. It is shown that the efficiency of resonance absorption by the vibration/rotation bands of the working gas can be enhanced by operating at sufficiently high pressures so that the linewidths of the absorbing transition exceed the line spacing. Within this limit, the gas can absorb continuously over the full spectral region of the band, and bleaching can be minimized since the manifold of molecular vibrational levels can simultaneously absorb the laser radiation.
Gerbaux, Pascal; Lamote, Luc; Van Haverbeke, Yves; Flammang, Robert; Brown, Jeffrey M
2012-01-01
The AutoSpec 6F mass spectrometer is a large, floor standing instrument comprising a pair of commercial EBE geometry (AutoSpec) mass spectrometers coupled in series to provide an hybrid EBE-EBE configuration, (E and B being respectively electrostatic and magnetic sectors.) It was designed in close collaboration between Professor R. Flammang and VG Analytical in Manchester, UK. It was equipped with five collision cells and allowed the recording of high energy CID (collision induced dissociation), MIKES (mass analyzed ion kinetic energy spectrometry) and NRMS (neutralization re-ionization mass spectrometry) data as well as consecutive MSn analyses. The field-free regions between sectors allowed the study of unimolecular decomposition products from long-lived metastable ions. The mass spectrometer became even more versatile when an RF-only quadrupole collision cell was installed between the second and the third electric sector. This allowed the study of associative ion/molecule reactions in the low kinetic energy regime. Bimolecular chemical reactions were performed inside the quadrupole cell when a neutral reagent was introduced and the reaction products were analyzed by high energy CID in the downstream sectors. This paper tells the history and summarizes the capabilities of this versatile instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.
A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less
Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; ...
2017-06-08
A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less
The Kinetics of Nitrogen Atom Recombination
ERIC Educational Resources Information Center
Brown, G. Ronald; Winkler, C. A.
1977-01-01
Describes a study of the kinetics of the recombination of nitrogen atoms in which concentration-time relations are determined directly by utilizing visual observations of emissions to make gas phase titrations of N atoms with NO. (MLH)
Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under ...
In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and ethanol. The TBAB is composed of pelleted diatomaceous earth filter media inoculated with filamentous fungi species, which served as the principle biodegrading microorganism. The removal efficiencies of 5 ppmv of chloroform mixed with different ratios of ethanol as cometabolite (25, 50, 100, 150, and 200 ppmv) ranged between 69.9 and 80.9%. The removal efficiency, reaction rate kinetics, and the elimination capacity increased proportionately with an increase in the cometabolite concentration. The carbon recovery from the TBAB amounted to 69.6% of the total carbon input. It is postulated that the remaining carbon contributed to excess biomass yield within the system. Biomass control strategies such as starvation and stagnation were employed at different phases of the experiment. The chloroform removal kinetics provided a maximum reaction rate constant of 0.0018 s−1. The highest ratio of chemical oxygen demand (COD)removal/nitrogenutilization was observed at 14.5. This study provides significant evidence that the biodegradation of a highly chlorinated methane can be favored by cometabolism in a fungi-based TBAB. Chloroform is volatile hazardous chemical emitted from publicly owned treatment
Taking Ockham's razor to enzyme dynamics and catalysis.
Glowacki, David R; Harvey, Jeremy N; Mulholland, Adrian J
2012-01-29
The role of protein dynamics in enzyme catalysis is a matter of intense current debate. Enzyme-catalysed reactions that involve significant quantum tunnelling can give rise to experimental kinetic isotope effects with complex temperature dependences, and it has been suggested that standard statistical rate theories, such as transition-state theory, are inadequate for their explanation. Here we introduce aspects of transition-state theory relevant to the study of enzyme reactivity, taking cues from chemical kinetics and dynamics studies of small molecules in the gas phase and in solution--where breakdowns of statistical theories have received significant attention and their origins are relatively better understood. We discuss recent theoretical approaches to understanding enzyme activity and then show how experimental observations for a number of enzymes may be reproduced using a transition-state-theory framework with physically reasonable parameters. Essential to this simple model is the inclusion of multiple conformations with different reactivity.
Kinetic phase transitions and reactive windows in reactions of monomers on two-dimensional lattices
NASA Astrophysics Data System (ADS)
Cortés, Joaquín; Puschmann, Heinrich; Valencia, Eliana
1997-01-01
Some conceptual considerations are made and Monte Carlo simulation studies are carried out to analyze a series of catalytic reactions of two and three monomers on a square lattice of sites. Two aspects are considered: The increase in the system's degrees of freedom, leading to the formation of reactive sites that allow a change in the character of one of the kinetic phase transitions from the first order to a second order transition, and the classification and reactivity of the new system class.
Regional Impacts of extending inorganic and organic cloud chemistry with AQCHEM-KMT
Starting with CMAQ version 5.1, AQCHEM-KMT has been offered as a readily expandable option for cloud chemistry via application of the Kinetic PreProcessor (KPP). AQCHEM-KMT treats kinetic mass transfer between the gas and aqueous phases, ionization, chemical kinetics, droplet sc...
International Symposium on Gas Kinetics (9th) Held in Bordeaux, France on 20-25 July 1986. Abstracts
1986-07-25
J. Chem. Kinet., 14, 933 (1982). Present address: British Gas, London Research Station, Puliham, London, E’ngland. 1 -54 Synthesis and Pyrolysis of...while the cis/trans ratio of 1 - chloropropane is much higher than unity. We were interested In the alternative radical chain process which is strongly...H2 (V = 1 ) reaction and its isotopic analogs. VB. Rozenshtein, Y.M. Gershenzon,A.V. Ivanov, S.D. Ilin, S.I. Kucheryavii and S.Y. Umanskii 10.20
Saponification reaction system: a detailed mass transfer coefficient determination.
Pečar, Darja; Goršek, Andreja
2015-01-01
The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.
On a new ironmaking process to produce hydrogen and reduce energy consumption
NASA Astrophysics Data System (ADS)
Corbari, Rodrigo
The primary purpose of the present work is to compute the volume and composition of the products of a theoretical charring unit for high volatile coals. In particular, the compositions of volatile gas and char and the hydrogen yield of the process. The volume of oxygen necessary to supply the energy for the process was also calculated. The model consists of materials and energy balance equations and local thermodynamic equilibrium. The model was combined with experimental results relating the effect of temperature on the extent of devolatilization and chemistry evolution of coal. Results of the model indicated that temperature plays a major role defining the quantities and composition of charring products. The H2 concentration of the volatile gas increased from about 16vol% at 700°C to 47vol% at 900°C, leveling off at approximately 52vol% at 1100°C. The hydrogen yield of the process increased from 7 to 60 percent at 700°C and 1100°C respectively. For a typical high volatile coal considered, the volume of gas generated varied from about 210 to 780 liters/kg-coal(STP) according to temperature and fraction of solids combusted. The char becomes enriched in carbon and depleted in hydrogen as temperature is increased. As much as 97 percent of the hydrogen in coal is removed at 1100°C. In the second part of this study, the kinetics of reduction of iron oxide fines with simulated smelter gas was experimentally studied by thermogravimetry. An equimolar CO/CO2 mixture was selected to simulate the off-gas of a smelter operating with char at 50 percent post combustion. Reduction temperatures ranged from 590°C to 1000°C. Under these conditions, reduction was limited to wustite. Results indicated that the reduction kinetics and dominating reaction mechanism varied with temperature, extent of reduction and type of iron oxide employed. Reduction from hematite to wustite proceeded in two consecutive reaction steps with magnetite as an intermediate oxide. The first reduction step, hematite to magnetite, was fast and controlled by external gas mass transfer independently of type of iron oxide and temperature employed in this work. The second reduction step, magnetite to wustite, was the overall reaction controlling step. The reduction mechanism varied with temperature and type of iron oxide. For moderately porous oxide fines (VALE and Taconite ores), the magnetite to wustite reduction followed a uniform internal reaction regime, where the chemical reaction at the gas-solid surface is the slowest step. For highly porous oxide (PAH), the magnetite to wustite reduction step was controlled by external gas mass transfer above 700°C. Below that, a mixed regime involving external gas mass transfer and limited mixed control, which comprises pore diffusion and chemical reaction, took place. The rate equations for this mixed control reaction mechanism were developed and the limited mixed control rate constant (klm) was computed. For denser oxides under uniform internal reaction, the product of the rate constant and pore surface area (k·S) was calculated. The final part of this research focused on the study of the mechanisms contributing for the distribution of sulfur in the smelter process. A methodology was developed for this purpose, which computes the sulfur concentration and distribution between the metal, slag and gas phases of the smelter for selected case scenarios. The model assumed the smelter as an ideal continuous stirred reactor under steady state conditions. Sulfur in the gas phase resulted from slag desulfurization by reaction with gas and the direct transfer of sulfur from coal or char. In general, it was found that a large fraction of sulfur leaves the smelter with the gas when coal or char is the only sulfur input to the process. However, the predominant mechanism for transfer of sulfur into the gas depended on process operating conditions. The effect of recycling sulfur back into the smelter was also evaluated. This is important when sulfur leaving with the smelter gas is captured by pre-reduced iron oxide or by dust particles and re-introduced in the process. In general, the more sulfur is recycled into the smelter, the higher the metal and slag sulfur concentration. However, the increasing sulfur content of metal and slag when sulfur is recycled may be partially counter-balanced by the use of char in place of coal. (Abstract shortened by UMI.)
Thermodynamic and Kinetic Properties of Metal Hydrides from First-Principles Calculations
NASA Astrophysics Data System (ADS)
Michel, Kyle Jay
In an effort to minimize the worldwide dependence on fossil fuels, much research has focused on the development of hydrogen fuel cell vehicles. Among the many challenges currently facing the transition to such an alternative energy economy is the storage of hydrogen in an economical and practical way. One class of materials that has presented itself as a possible candidate is solid metal hydrides. These materials chemically bind hydrogen and on heating, release the gas which can then be used to generate power as needed for the vehicle. In order to meet guidelines that have been set for such a storage system, hydrogen must be released rapidly in a narrow temperature range of -40 to 80°C with all reactions being reversible. This sets both thermodynamic and kinetic requirements for the design of candidate metal hydrides. First-principles calculations are well-suited for the task of exploring reactions involving metal hydrides. Here, density-functional theory is used to calculate properties of these materials at the quantum mechanical level of accuracy. In particular, three systems have been investigated: 1. Li-Mg-N-H. Reactions between all known compounds in this system are systematically investigated in order to predict thermodynamically allowed reactions that release hydrogen. The properties of these reactions are compared to the requirements set for hydrogen storage systems. Additionally, ground-state structures are predicted for Li2Mg(NH)2 and Li 4Mg(NH)3. 2. Na-Al-H. The kinetics of mass transport during the (de)hydrogenation of the well-known metal hydride NaAlH4 are investigated. A model is developed to study the flux of native defects through phases involved in these reactions. Since it is also known that titanium is an effective catalyst for both dehydrogenation and rehydrogenation, the effect of Ti substitution in bulk lattices on the kinetics of mass transport is investigated. Results are compared to experiments in order to determine if mass transport represents the rate-limiting process during de- or rehydrogenation and what the effect of Ti may be. 3. Si-H. Properties of the recently synthesized compound SiH4(H 2)2 are investigated. Under high pressures, hydrogen binding to SiH4 exhibits characteristics of both physical and chemical bonds. A ground-state structure is predicted for this phase and the vibrational and bonding properties are investigated in order to determine the origin of the unusual binding between H2 and SiH4.
Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.
Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to themore » predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.« less
Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model
NASA Astrophysics Data System (ADS)
Ruaud, Maxime; Wakelam, Valentine; Hersant, Franck
2016-07-01
We present an extended version of the two-phase gas-grain code NAUTILUS to the three-phase modelling of gas and grain chemistry of cold cores. In this model, both the mantle and the surface are considered as chemically active. We also take into account the competition among reaction, diffusion and evaporation. The model predictions are confronted to ice observations in the envelope of low-mass and massive young stellar objects as well as towards background stars. Modelled gas-phase abundances are compared to species observed towards TMC-1 (CP) and L134N dark clouds. We find that our model successfully reproduces the observed ice species. It is found that the reaction-diffusion competition strongly enhances reactions with barriers and more specifically reactions with H2, which is abundant on grains. This finding highlights the importance having a good approach to determine the abundance of H2 on grains. Consequently, it is found that the major N-bearing species on grains go from NH3 to N2 and HCN when the reaction-diffusion competition is taken into account. In the gas phase and before a few 105 yr, we find that the three-phase model does not have a strong impact on the observed species compared to the two-phase model. After this time, the computed abundances dramatically decrease due to the strong accretion on dust, which is not counterbalanced by the desorption less efficient than in the two-phase model. This strongly constrains the chemical age of cold cores to be of the order of few 105 yr.
Chemical kinetics and modeling of planetary atmospheres
NASA Technical Reports Server (NTRS)
Yung, Yuk L.
1990-01-01
A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.
Combustion of liquid-fuel droplets in supercritical conditions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Yang, Vigor; Hsaio, C. C.
1992-01-01
A comprehensive analysis of liquid-fuel droplet combustion in both subcritical and supercritical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates variable thermophysical properties, finite-rate chemical kinetics, and a full treatment of liquid-vapor phase equilibrium at the drop surface. The governing equations and associated interfacial boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures in the range of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the critical pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure.
Combustion of liquid fuel droplets in supercritical conditions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Yang, Vigor
1991-01-01
A comprehensive analysis of liquid-fuel droplet combustion in both sub- and super-critical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influences on the fluid transport, gas/liquid interface thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibits a significant variation near the critical burning pressure, mainly as a result of reduced mass-diffusion rate and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.
Barrier Coatings for Refractory Metals and Superalloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
SM Sabol; BT Randall; JD Edington
2006-02-23
In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements.more » Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.« less
State-to-state modeling of non-equilibrium air nozzle flows
NASA Astrophysics Data System (ADS)
Nagnibeda, E.; Papina, K.; Kunova, O.
2018-05-01
One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.
Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Villalta, Peter W.; Zahniser, Mark S.; Nelson, David D.; Kolb, Charles E.
1997-01-01
The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HO(x) and NO(x) species in the temperature range 200 K to 240 K relevant to the lower stratosphere. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences. The second year's effort has focussed the design and construction of the proposed high pressure flow reactor on three separate areas: (1) the construction of the high pressure flow reactor; (2) characterization of the turbulent flow profile; and (3) demonstration of the instrument by measuring HO2 + NO2 and HO2 + NO reaction rate coefficients.
Isayev, Olexandr; Gorb, Leonid; Qasim, Mo; Leszczynski, Jerzy
2008-09-04
CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane or HNIW) is a high-energy nitramine explosive. To improve atomistic understanding of the thermal decomposition of CL-20 gas and solid phases, we performed a series of ab initio molecular dynamics simulations. We found that during unimolecular decomposition, unlike other nitramines (e.g., RDX, HMX), CL-20 has only one distinct initial reaction channelhomolysis of the N-NO2 bond. We did not observe any HONO elimination reaction during unimolecular decomposition, whereas the ring-breaking reaction was followed by NO 2 fission. Therefore, in spite of limited sampling, that provides a mostly qualitative picture, we proposed here a scheme of unimolecular decomposition of CL-20. The averaged product population over all trajectories was estimated at four HCN, two to four NO2, two to four NO, one CO, and one OH molecule per one CL-20 molecule. Our simulations provide a detailed description of the chemical processes in the initial stages of thermal decomposition of condensed CL-20, allowing elucidation of key features of such processes as composition of primary reaction products, reaction timing, and Arrhenius behavior of the system. The primary reactions leading to NO2, NO, N 2O, and N2 occur at very early stages. We also estimated potential activation barriers for the formation of NO2, which essentially determines overall decomposition kinetics and effective rate constants for NO2 and N2. The calculated solid-phase decomposition pathways correlate with available condensed-phase experimental data.
NASA Astrophysics Data System (ADS)
Thomsen, Ditte L.; Nichols, Charles M.; Reece, Jennifer N.; Hammerum, Steen; Bierbaum, Veronica M.
2014-02-01
The enhanced reactivity of α-nucleophiles, which contain an electron lone pair adjacent to the reactive site, has been demonstrated in solution and in the gas phase and, recently, for the gas-phase SN2 reactions of the microsolvated HOO-(H2O) ion with methyl chloride. In the present work, we continue to explore the significance of microsolvation on the α-effect as we compare the gas-phase reactivity of the microsolvated α-nucleophile HOO-(H2O) with that of microsolvated normal alkoxy nucleophiles, RO-(H2O), in reactions with methyl formate, where three competing reactions are possible. The results reveal enhanced reactivity of HOO-(H2O) towards methyl formate, and clearly demonstrate the presence of an overall α-effect for the reactions of the microsolvated α-nucleophile. The association of the nucleophiles with a single water molecule significantly lowers the degree of proton abstraction and increases the SN2 and BAC2 reactivity compared with the unsolvated analogs. HOO-(H2O) reacts with methyl formate exclusively via the BAC2 channel. While microsolvation lowers the overall reaction efficiency, it enhances the BAC2 reaction efficiency for all anions compared with the unsolvated analogs. This may be explained by participation of the solvent water molecule in the BAC2 reaction in a way that continuously stabilizes the negative charge throughout the reaction.
Park, Hyun-Woo; Park, Dong-Wha
2017-04-01
Removal kinetics for NO and SO 2 by NaClO 2 solution mist were investigated in a wet electrostatic precipitator. By varying the molar concentrations of NO, SO 2 , and NaClO 2 , the removal rates of NO and SO 2 confirmed to range from 34.8 to 72.9 mmol/m 3 s and 36.6 to 84.7 mmol/m 3 s, respectively, at a fixed gas residence time of 0.25 s. The rate coefficients of NO and SO 2 were calculated to be 0.679 (mmol/m 3 ) -0.33 s -1 and 1.401 (mmol/m 3 ) -0.1 s -1 based on the rates of the individual removal of NO and SO 2 . Simultaneous removal of NO and SO 2 investigated after the evaluation of removal rates for their individual treatment was performed. At a short gas residence time, SO 2 gas removed more quickly by a mist of NaClO 2 solution than NO gas in simultaneous removal experiments. This is because SO 2 gas, which has a relatively high solubility in solution, was absorbed more rapidly at the gas-liquid interface than NO gas. NO and SO 2 gases were absorbed as nitrite [Formula: see text] and sulfite [Formula: see text] ions, respectively, by the NaClO 2 solution mist at the gas-liquid interface. Then, [Formula: see text] and [Formula: see text] were oxidized to nitrate [Formula: see text] and sulfate [Formula: see text], respectively, by reactions with [Formula: see text], ClO 2 , HClO, and ClO in the liquid phase.
Kinetic limitations of the Mg(2)Si system for reversible hydrogen storage.
Kelly, Stephen T; Van Atta, Sky L; Vajo, John J; Olson, Gregory L; Clemens, B M
2009-05-20
Despite the promising thermodynamics and storage capacities of many destabilized metal hydride hydrogen storage material systems, they are often kinetically limited from achieving practical and reversible behavior. Such is the case with the Mg2Si system. We investigated the kinetic mechanisms responsible for limiting the reversibility of the MgH2+Si system using thin films as a controlled research platform. We observed that the reaction MgH2 + 1/2Mg2Si + H2 is limited by the mass transport of Mg and Si into separate phases. Hydrogen readily diffuses through the Mg2Si material and nucleating MgH2 phase growth does not result in reaction completion. By depositing and characterizing multilayer films of Mg2Si and Mg with varying Mg2Si layer thicknesses, we conclude that the hydrogenation reaction consumes no more than 1 nm of Mg2Si, making this system impractical for reversible hydrogen storage.
An atlas of thermal data for biomass and other fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaur, S.; Reed, T.B.
1995-06-01
Biomass is recognized as a major source of renewable energy. In order to convert biomass energy to more useful forms, it is necessary to have accurate scientific data on the thermal properties of biomass. This Atlas has been written to supply a uniform source of that information. In the last few decades Thermal analysis (TA) tools such as thermogravimetry, differential thermal analysis, thermo mechanical analysis, etc. have become more important. The data obtained from these techniques can provide useful information in terms of reaction mechanism, kinetic parameters, thermal stability, phase transformation, heat of reaction, etc. for gas-solid and gas-liquid systems.more » Unfortunately, there are no ASTM standards set for the collection of these types of data using TA techniques and therefore, different investigators use different conditions which suit their requirements for measuring this thermal data. As a result, the information obtained from different laboratories is not comparable. This Atlas provides the ability to compare new laboratory results with a wide variety of related data available in the literature and helps ensure consistency in using these data.« less
Study the oxidation kinetics of uranium using XRD and Rietveld method
NASA Astrophysics Data System (ADS)
Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing
2010-03-01
The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.
NASA Astrophysics Data System (ADS)
Park, Min-Jin; Jang, Su-Chan; Choi, Jong-Ho
2012-11-01
The gas-phase reaction dynamics of ground-state atomic oxygen [O(3P) from the photo-dissociation of NO2] with vinyl radicals [C2H3 from the supersonic flash pyrolysis of vinyl iodide, C2H3I] has been investigated using a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. Unlike the previous gas-phase bulk kinetic experiments by Baulch et al. [J. Phys. Chem. Ref. Data 34, 757 (2005)], 10.1063/1.1748524, a new exothermic channel of O(3P) + C2H3 → C2H2 + OH (X 2Π: υ″ = 0) has been identified for the first time, and the population analysis shows bimodal nascent rotational distributions of OH products with low- and high-N″ components with a ratio of 2.4:1. No spin-orbit propensities were observed, and the averaged ratios of Π(A')/Π(A″) were determined to be 1.66 ± 0.27. On the basis of computations at the CBS-QB3 theory level and comparison with prior theory, the microscopic mechanisms responsible for the nascent populations can be understood in terms of two competing dynamical pathways: a direct abstraction process in the low-N″ regime as the major pathway and an addition-complex forming process in the high-N″ regime as the minor pathway. Particularly, during the bond cleavage process of the weakly bound van der Waals complex C2H2—OH, the characteristic pathway from the low dihedral-angle geometry was consistent with the observed preferential population of the Π(A') component in the nascent OH products. A molecular-level discussion of the reactivity, mechanism, and dynamical features of the title reaction are presented together with a comparison to gas-phase oxidation reactions of a series of prototypical hydrocarbon radicals.
Analysis of Low-Pressure Gas-Phase Pyrolytic Reactions by Mass Spectrometric Techniques,
1989-01-01
temperatures and pressures known only as a polymeric substance, is similarly obtained in high purity by heating the polymer to its melting point (105-110’ C...filaments for Curie- point pyrolysis’ J.Anal.Appl.Pyrolysis. 5 (1983) 1-7 (with Helge Egsgaard) 4) ’Heterogeneous catalysis in gas phase reactions studied...by Curie- point pyrolysis. Gas phase pyrolysis of methyl dithio- acetat’ J.Anal.Appl.Pyrolysis. 5 (1983) 257-259 (with Helge Egsgaard) 5) ’Continuous
Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor
NASA Astrophysics Data System (ADS)
Abedi-Varaki, Mehdi
2017-08-01
Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.
ZnO nanorods as catalyts for biodiesel production from olive oil
NASA Astrophysics Data System (ADS)
Molina, Carmen Maria Miralda
The motivation to determine a viable alternative to petroleum based energy has risen in recent years due to increased greenhouse gas emissions, environmental pollution, and the fear of exhausting oil and natural gas reserves. Biodiesel derived from the transesterification of vegetable oils or animal fats has emerged as a viable alternative to petroleum diesel. However, for this to become an option available to the average consumer it is vital to find an effective catalyst. Metal oxides have emerged as potential heterogeneous catalysts. ZnO in particular is attractive because it is abundant. The use of nanostructures has been shown to improve the catalytic performance of ZnO. ZnO nanorods were synthesized using a solution approach. The crystalline structure, morphology, and surface area were confirmed using XRD, SEM, and BET surface area respectively. The characterized nanorods were used as catalysts for the production of biodiesel. The nanorods achieved conversions of 94.8% at 150°C for reaction times of eight hours. They also demonstrated better catalytic performance, attributed to their increased degree of crystallinity, than conventional ZnO. A kinetic study at 150°C to determine the reaction rate parameters was also conducted. Due to the presence of three distinct phases in the reaction, initially the reaction rate is dominated by mass transfer limitations. However, these are eventually overcome and the reaction proceeds with a pseudo-first order with respect to the oil and a reaction rate constant of 0.5136 h-1.
Soto, A; Ballesteros, B; Jiménez, E; Antiñolo, M; Martínez, E; Albaladejo, J
2018-06-01
The relative-rate technique has been used to determine the rate coefficient for the reaction of C x F 2x+1 CHCH 2 (x = 1, 2, 3, 4 and 6) with ozone at (298 ± 2) K and (720 ± 5) Torr of air by FTIR (Fourier Transform Infrared Spectroscopy) and by GC-MS/SPME (Gas Chromatography-Mass Spectroscopy with Solid Phase Micro Extraction) in two different atmospheric simulation chambers. The following rate coefficients, in units of 10 -19 cm 3 molecule -1 s -1 , were obtained: (3.01 ± 0.10) for CF 3 CHCH 2 , (2.11 ± 0.35) for C 2 F 5 CHCH 2 , (2.34 ± 0.42) for C 3 F 7 CHCH 2 , (2.05 ± 0.31) for C 4 F 9 CHCH 2 and (2.07 ± 0.39) for C 6 F 13 CHCH 2 , where uncertainties represent ±2σ statistical error. The atmospheric lifetime of C x F 2x+1 CHCH 2 due to reaction with ozone was estimated from the reported rate coefficients. Additionally, the gaseous products formed in these reactions were investigated in the presence of synthetic air simulating a clean atmosphere. Perfluoroaldehydes, C x F 2x+1 C(O)H (PFALs), formaldehyde, formic acid and CF 2 O were identified as reaction products in the investigated reactions. The identified products made possible to propose a reaction mechanism that justifies the observed products. The atmospheric implications of these results are discussed in terms of the potential contribution of the atmospheric degradation of these species to PFAL and PFCA burden. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maleki, Hossein; Karanji, Ahmad K.; Majuta, Sandra; Maurer, Megan M.; Valentine, Stephen J.
2018-02-01
Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate ( in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract.
Smith, Jeremy D; Kinney, Haley; Anastasio, Cort
2015-04-21
Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.
Dynamics of polymerization induced phase separation in reactive polymer blends
NASA Astrophysics Data System (ADS)
Lee, Jaehyung
Mechanisms and dynamics of phase decomposition following polymerization induced phase separation (PIPS) of reactive polymer blends have been investigated experimentally and theoretically. The phenomenon of PIPS is a non-equilibrium and non-linear dynamic process. The mechanism of PIPS has been thought to be a nucleation and growth (NG) type originally, however, newer results indicate spinodal decomposition (SD). In PIPS, the coexistence curve generally passes through the reaction temperature at off-critical compositions, thus phase separation has to be initiated first in the metastable region where nucleation occurs. When the system farther drifts from the metastable to unstable region, the NG structure transforms to the SD bicontinuous morphology. The crossover behavior of PIPS may be called nucleation initiated spinodal decomposition (NISD). The formation of newer domains between the existing ones is responsible for the early stage of PIPS. Since PIPS is non- equilibrium kinetic process, it would not be surprising to discern either or both structures. The phase separation dynamics of DGEBA/CTBN mixtures having various kinds of curing agents from low reactivity to high reactivity and various amount of curing agents were examined at various reaction temperatures. The phase separation behavior was monitored by a quantity of scattered light intensity experimentally and by a quantity of collective structure factor numerically. Prior to the study of phase separation dynamics, a preliminary investigation on the isothermal cure behavior of the mixtures were executed in order to determine reaction kinetics parameters. The cure behavior followed the overall second order reaction kinetics. Next, based on the knowledge obtained from the phase separation dynamics study of DGEBA/CTBN mixtures, the phase separation dynamics of various composition of DGEBA/R45EPI mixtures having MDA as a curing agent were investigated. The phase separation behavior was quite dependent upon the composition variation. R45EPI itself can react with itself or with DGEBA without curing, therefore three-component system was considered in this mixture. For the numerical studies of this three- component mixture, a system that is composed of a reactive component-1 that is miscible with its growing molecules and another reactive component-2 that is not miscible with its growing molecules was considered with crosslinking reaction kinetics of the each component.
NASA Technical Reports Server (NTRS)
Miller, R. S.; Bellan, J.
1997-01-01
An Investigation of the statistical description of binary mixing and/or reaction between a carrier gas and an evaporated vapor species in two-phase gas-liquid turbulent flows is perfomed through both theroetical analysis and comparisons with results from direct numerical simulations (DNS) of a two-phase mixing layer.
NASA Astrophysics Data System (ADS)
Zolot, Alexander M.
This thesis recounts a series of experiments that interrogate the dynamics of elementary chemical reactions using quantum state resolved measurements of gas-phase products. The gas-phase reactions F + HCl → HF + Cl and F + H2O → HF + OH are studied using crossed supersonic jets under single collision conditions. Infrared (IR) laser absorption probes HF product with near shot-noise limited sensitivity and high resolution, capable of resolving rovibrational states and Doppler lineshapes. Both reactions yield inverted vibrational populations. For the HCl reaction, strongly bimodal rotational distributions are observed, suggesting microscopic branching of the reaction mechanism. Alternatively, such structure may result from a quantum-resonance mediated reaction similar to those found in the well-characterized F + HD system. For the H2O reaction, a small, but significant, branching into v = 2 is particularly remarkable because this manifold is accessible only via the additional center of mass collision energy in the crossed jets. Rotationally hyperthermal HF is also observed. Ab initio calculations of the transition state geometry suggest mechanisms for both rotational and vibrational excitation. Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic jet of F atoms with liquid squalane (C30H62), a low vapor pressure hydrocarbon compatible with the high vacuum environment. IR spectroscopy provides absolute HF( v,J) product densities and Doppler resolved velocity component distributions perpendicular to the surface normal. Compared to analogous gas-phase F + hydrocarbon reactions, the liquid surface is a more effective "heat sink," yet vibrationally excited populations reveal incomplete thermal accommodation with the surface. Non-Boltzmann J-state populations and hot Doppler lineshapes that broaden with HF excitation indicate two competing scattering mechanisms: (i) a direct reactive scattering channel, whereby newly formed molecules leave the surface without equilibrating, and (ii) a partially accommodated fraction that shares vibrational, rotational, and translational energy with the liquid surface before returning to the gas phase. Finally, a velocity map ion imaging apparatus has been implemented to investigate reaction dynamics in crossed molecular beams. Resonantly enhanced multiphoton ionization (REMPI) results in rotational, vibrational, and electronic state selectivity. Velocity map imaging measurements provide differential cross sections and information about the internal energy distribution of the undetected collision partner.
Comparative kinetic and energetic modelling of phyllosemiquinone oxidation in Photosystem I.
Santabarbara, Stefano; Zucchelli, Giuseppe
2016-04-14
The oxidation kinetics of phyllo(semi)quinone (PhQ), which acts as an electron transfer (ET) intermediate in the Photosystem I reaction centre, are described by a minimum of two exponential phases, characterised by lifetimes in the 10-30 ns and 150-300 ns ranges. The fastest phase is considered to be dominated by the oxidation of the PhQ molecule coordinated by the PsaB reaction centre subunit (PhQB), and the slowest phase is dominated by the oxidation of the PsaA coordinated PhQ (PhQA). Testing different energetic schemes within a unified theory-based kinetic modelling approach provides reliable limit-values for some of the physical-chemical parameters controlling these ET reactions: (i) the value of ΔG(0) associated with PhQA oxidation is smaller than ∼+30 meV; (ii) the value of the total reorganisation energy (λt) likely exceeds 0.7 eV; (iii) different mean nuclear modes are coupled to PhQB and PhQA oxidation, the former being larger, and both being ≥100 cm(-1).
NASA Astrophysics Data System (ADS)
Hayman, G. D.; Jenkin, M. E.; Murrells, T. P.; Johnson, C. E.
HCFC-123 has been proposed as a replacement for some of the fully halogenated chlorofluorocarbons and other chlorinated hydrocarbons, which are being phased out under the Montreal Protocol. This paper reports laboratory studies which were undertaken to determine kinetic and mechanistic parameters of reactions involved in the atmospheric degradation of HCFC-123 and the use of these parameters in a 2D global model of the troposphere to evaluate the yields of products formed in the degradation. The experimental studies have made use of the laser flash photolysis technique with time-resolved ultra-violet absorption spectroscopy for the kinetic measurements and broad-band ultra-violet absorption spectroscopy for product characterization. Rate coefficients have been determined for the self-reaction of CF 3CCl 2O 2 as (3.6±0.5)×10 -12 cm 3 mol -1 s -1 and for its reactions with HO 2 and NO as (1.9±0.7)×10 -12 cm 3 mol -1 s -1 and (1.5-2.0)×10 -11 cm 3 mol -1 s -1, respectively, at room temperature. Kinetic data have also been obtained for the reaction of CF 3CCl 2O 2 with C 2H 5O 2 and two channels have been identified; CF 3CCl 2+O 2+C 2H 5O 2→CF 3CCl 2O+C 2H 5O+ C 2H 5O+O 2, k=(9 +9-5)×10 13 cm 3 mol -1 s -1 and CF 3CCl 2O 2+C 2H 5O 2→CF 3CCl 2OH+CH 3CHO+O 2, k=(3.6±0.5)× 10 -12 cm 3 mol -1 s -1. Studies undertaken using the Cl-initiated oxidation of HCFC-123 suggest that trifluoroacetyl chloride, CF 3COCl, is the major product of the gas-phase degradation. The kinetic and mechanistic data have been used to formulate a chemical module of the degradation of HCFC-123 in the trophosphere. The module has been incorporated into a 2D model of the global troposphere so that the potential atmospheric impact of using HCFC-123 can be assessed.
Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase
NASA Astrophysics Data System (ADS)
Mouchel-Vallon, C.; Bräuer, P.; Camredon, M.; Valorso, R.; Madronich, S.; Herrmann, H.; Aumont, B.
2012-09-01
The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (<2%) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.
Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase
NASA Astrophysics Data System (ADS)
Mouchel-Vallon, C.; Bräuer, P.; Camredon, M.; Valorso, R.; Madronich, S.; Herrmann, H.; Aumont, B.
2013-01-01
The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.
Páramo, Alejandra; Canosa, André; Le Picard, Sébastien D; Sims, Ian R
2008-10-02
The kinetics of reactions of C2(a(3)Pi(u)) and C2(X(1)Sigma(g)(+)) with various hydrocarbons (CH4, C2H2, C2H4, C2H6, and C3H8) have been studied in a uniform supersonic flow expansion over the temperature range 24-300 K. Rate coefficients have been obtained by using the pulsed laser photolysis-laser induced fluorescence technique, where both radicals were produced at the same time but detected separately. The reactivity of the triplet state was found to be significantly lower than that of the singlet ground state for all reactants over the whole temperature range of the study. Whereas C2(X(1)Sigma(g)(+)) reacts with a rate coefficient close to the gas kinetic limit with all hydrocarbons studied apart from CH4, C2(a(3)Pi(u)) appears to be more sensitive to the molecular and electronic structure of the reactant partners. The latter reacts at least one order of magnitude faster with unsaturated hydrocarbons than with alkanes, and the rate coefficients increase very significantly with the size of the alkane. Results are briefly discussed in terms of their potential astrophysical impact.
Mixing and reactions in multiphase flow through porous media
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.
2016-12-01
The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)
1991-01-01
A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.
Radiation reaction in fusion plasmas.
Hazeltine, R D; Mahajan, S M
2004-10-01
The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.
Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas
NASA Astrophysics Data System (ADS)
Barni, Ruggero; Riccardi, Claudia
2018-04-01
We present some experimental results of an investigation aimed to hydrogen production with atmospheric pressure plasmas, based on the use of dielectric barrier discharges, fed with a high-voltage alternating signal at frequency 30-50 kHz, in mixtures of methane or water vapor diluted in argon. The plasma gas-phase of the discharge was investigated by means of optical and electrical diagnostics. The emission spectra of the discharges was measured with a wide band spectrometer and a photosensor module, based on a photomultiplier tube. A Rogowski coil allowed to measure the electric current flowing into the circuit and a high voltage probe was employed for evaluating the voltage at the electrodes. The analysis of the signals of voltage and current shows the presence of microdischarges between the electrodes in two alternating phases during the period of oscillation of the applied voltage. The hydrogen concentration in the gaseous mixture was measured too. Besides this experimental campaign, we present also results from a numerical modeling of chemical kinetics in the gas-phase of Ar/H2O and Ar/CH4 plasmas. The simulations were conducted under conditions of single discharge to study the evolution of the system and of fixed frequency repeated discharging. In particular in Ar/H2O mixtures we could study the evolution from early atomic dissociation in the discharge, to longer time scales, when chemical reactions take place producing an increase of the density of species such as OH, H2O2 and subsequently of H and H2. The results of numerical simulations provide some insights into the evolution happening in the plasma gas-phase during the hydrogen reforming process.
Cheung, K C; Venkitachalam, T H
2006-01-01
A systematic kinetic study of phosphorus (P) sorption by various materials in the soil infiltration system of septic tanks was undertaken by following the time course of P sorption by sorbents in contact with various P solutions over periods up to 360 days. Uptake of P seemed to consist of two distinct stages. Initial uptake was very rapid and this phase was completed in 4 days or less. A slower removal stage followed for some materials over many months. Phosphorus sorption during the fast reaction stage appeared to be associated with the soluble Ca content of the materials. The fast reaction of calcareous materials accounted for the bulk (>70%) of the total P removed. Merribrook loamy sand exhibited the highest proportion of P sorption during the slow phase. It should be noted, however, that for solution P concentrations in the range found in typical effluents (approximately 20 mg L(-1)) the fast reaction phase seemed to be responsible for virtually all P removed. None of the six kinetic formulae examined possessed the sophistication and detail needed to portray accurately the time course of P sorption for all the sorbents investigated. The Elovich equation and the kinetic modification of the Freundlich isotherm expression appeared to provide a reasonable fit of the experimental data.
NASA Astrophysics Data System (ADS)
Shiroudi, Abolfazl; Zahedi, Ehsan; Oliaey, Ahmad Reza; Deleuze, Michael S.
2017-03-01
The thermal decomposition kinetics of 2-chloroethylsilane and derivatives in the gas phase has been studied computationally using density functional theory, along with various exchange-correlation functionals (UM06-2x and ωB97XD) and the aug-cc-pVTZ basis set. The calculated energy profile has been supplemented with calculations of kinetic rate constants under atmospheric pressure and in the fall-off regime, using transition state theory (TST) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Activation energies and rate constants obtained using the UM06-2x/aug-cc-pVTZ approach are in good agreement with the experimental data. The decomposition of 2-chloroethyltriethylsilane species into the related products [C2H4 + Et3SiCl] is characterized by 6 successive structural stability domains associated to the sequence of catastrophes C8H19SiCl: 6-C†FCC†[FF]-0: C6H15SiCl + C2H4. Breaking of Si-C bonds and formation of Si-Cl bonds occur in the vicinity of the transition state.
Effects of hydrocarbon contamination on ozone generation with dielectric barrier discharges
NASA Astrophysics Data System (ADS)
Lopez, Jose L.; Vezzu, Guido; Freilich, Alfred; Paolini, Bernhard
2013-08-01
The increasing usage of the feed gases of lower grade liquid oxygen (LOX) containing higher levels of trace hydrocarbon impurities in dielectric barrier discharge (DBD) for ozone generation requires a better understanding of the kinetics of the by-product formation resulting from reactions involving these hydrocarbon impurities. As a case study of hydrocarbon impurities, the kinetics of CH4 conversion in DBDs and the subsequent HNO3 formation were investigated by means of gas-phase plasma diagnostics, supported by detailed process modeling, and extensive in-situ and ex-situ by-product analysis. The by-products formation in the plasma with the presence of CH4, were found to differ significantly in oxygen-fed generators as compared to generators fed with oxygen/nitrogen mixtures. The amount of HNO3 formed depends on the concentration of NOx formed in the plasma and the amount of CH4 that is converted, but not on the O3 concentration. In the present work we have investigated CH4 concentrations of up to 1.95 wt% of the feed gas. The rate of deterioration of the overall ozone generator performance was found to be affected by the concentration of nitrogen in the oxygen/nitrogen mixture.
NASA Astrophysics Data System (ADS)
Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen
2015-04-01
This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive, nevertheless, the present GKUAs for kinetic model Boltzmann equations in conjunction with current available high-performance parallel computer power can provide a vital engineering tool for analyzing rarefied gas flows covering the whole range of flow regimes in aerospace engineering applications.
Jildeh, Zaid B; Oberländer, Jan; Kirchner, Patrick; Wagner, Patrick H; Schöning, Michael J
2018-04-21
In this article, we present an overview on the thermocatalytic reaction of hydrogen peroxide (H 2 O 2 ) gas on a manganese (IV) oxide (MnO 2 ) catalytic structure. The principle of operation and manufacturing techniques are introduced for a calorimetric H 2 O 2 gas sensor based on porous MnO 2 . Results from surface analyses by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) of the catalytic material provide indication of the H 2 O 2 dissociation reaction schemes. The correlation between theory and the experiments is documented in numerical models of the catalytic reaction. The aim of the numerical models is to provide further information on the reaction kinetics and performance enhancement of the porous MnO 2 catalyst.
Local reaction kinetics by imaging☆
Suchorski, Yuri; Rupprechter, Günther
2016-01-01
In the present contribution we present an overview of our recent studies using the “kinetics by imaging” approach for CO oxidation on heterogeneous model systems. The method is based on the correlation of the PEEM image intensity with catalytic activity: scaled down to the μm-sized surface regions, such correlation allows simultaneous local kinetic measurements on differently oriented individual domains of a polycrystalline metal-foil, including the construction of local kinetic phase diagrams. This allows spatially- and component-resolved kinetic studies and, e.g., a direct comparison of inherent catalytic properties of Pt(hkl)- and Pd(hkl)-domains or supported μm-sized Pd-powder agglomerates, studies of the local catalytic ignition and the role of defects and grain boundaries in the local reaction kinetics. PMID:26865736
Papadimitriou, Vassileios C; Karafas, Emmanuel S; Gierczak, Tomasz; Burkholder, James B
2015-07-16
The gas-phase CH3CO + O2 reaction is known to proceed via a chemical activation mechanism leading to the formation of OH and CH3C(O)OO radicals via bimolecular and termolecular reactive channels, respectively. In this work, rate coefficients, k, for the CH3CO + O2 reaction were measured over a range of temperature (241-373 K) and pressure (0.009-600 Torr) with He and N2 as the bath gas and used to characterize the bi- and ter-molecular reaction channels. Three independent experimental methods (pulsed laser photolysis-laser-induced fluorescence (PLP-LIF), pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS), and a very low-pressure reactor (VLPR)) were used to characterize k(T,M). PLP-LIF was the primary method used to measure k(T,M) in the high-pressure regime under pseudo-first-order conditions. CH3CO was produced by PLP, and LIF was used to monitor the OH radical bimolecular channel reaction product. CRDS, a complementary high-pressure method, measured k(295 K,M) over the pressure range 25-600 Torr (He) by monitoring the temporal CH3CO radical absorption following its production via PLP in the presence of excess O2. The VLPR technique was used in a relative rate mode to measure k(296 K,M) in the low-pressure regime (9-32 mTorr) with CH3CO + Cl2 used as the reference reaction. A kinetic mechanism analysis of the combined kinetic data set yielded a zero pressure limit rate coefficient, kint(T), of (6.4 ± 4) × 10(-14) exp((820 ± 150)/T) cm(3) molecule(-1) s(-1) (with kint(296 K) measured to be (9.94 ± 1.3) × 10(-13) cm(3) molecule(-1) s(-1)), k0(T) = (7.39 ± 0.3) × 10(-30) (T/300)(-2.2±0.3) cm(6) molecule(-2) s(-1), and k∞(T) = (4.88 ± 0.05) × 10(-12) (T/300)(-0.85±0.07) cm(3) molecule(-1) s(-1) with Fc = 0.8 and M = N2. A He/N2 collision efficiency ratio of 0.60 ± 0.05 was determined. The phenomenological kinetic results were used to define the pressure and temperature dependence of the OH radical yield in the CH3CO + O2 reaction. The present results are compared with results from previous studies and the discrepancies are discussed.
ERIC Educational Resources Information Center
Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.
2005-01-01
An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.