Science.gov

Sample records for gas-phase release characteristics

  1. Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase.

    PubMed

    Borysik, Antoni J; Hewitt, Dominic J; Robinson, Carol V

    2013-04-24

    Recent studies have suggested that detergents can protect the structure of membrane proteins during their transition from solution to the gas-phase. Here we provide mechanistic insights into this process by interrogating the structures of membrane protein-detergent assemblies in the gas-phase using ion mobility mass spectrometry. We show a clear correlation between the population of native-like protein conformations and the degree of detergent attachment to the protein in the gas-phase. Interrogation of these protein-detergent assemblies, by tandem mass spectrometry, enables us to define the mechanism by which detergents preserve native-like protein conformations in a solvent free environment. We show that the release of detergent is more central to the survival of these conformations than the physical presence of detergent bound to the protein. We propose that detergent release competes with structural collapse for the internal energy of the ion and permits the observation of transient native-like membrane protein conformations that are otherwise lost to structural rearrangement in the gas-phase.

  2. Organic molecules in ices and their release into the gas phase

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith; Oberg, Karin I.; Garrod, Robin; van Dishoeck, Ewine; Rajappan, Mahesh; Bertin, Mathieu; Romanzin, Claire; Michaut, Xavier; Fillion, Jean-Hugues

    2015-08-01

    Organic molecules in the early stages of star formation are mainly produced in icy mantles surrounding interstellar dust grains. Identifying these complex organics and quantifying their abundance during the evolution of young stellar objects is of importance to understand the emergence of life. Simple molecules in ices, up to methanol in size, have been identified in the interstellar medium through their mid-IR vibrations, but band confusion prevents detections of more complex and less abundant organic molecules in interstellar ices. The presence of complex organics on grains can instead be indirectly inferred from observations of their rotational lines in the gas phase following ice sublimation.Thermal sublimation of protostellar ices occurs when icy grains flow toward a central protostar, resulting in the formation of a hot-core or a hot-corinos. The high degree of chemical complexity observed in these dense and warm regions can be the results of i) direct synthesis on the grains followed by desorption, but also to ii) the desorption of precursors from the ice followed by gas-phase chemistry. I will show how spatially resolved millimetric observations of hot cores and cooler protostellar environments, coupled to ice observations can help us pinpoint the ice or gas-phase origin of these organic species.Organic molecules have also recently been observed in cold environments where thermal desorption can be neglected. The presence of these cold molecules in the gas phase is most likely due to non-thermal desorption processes induced by, for e.g., photon-, electron-, cosmic-ray-irradiation, shock, exothermic reactions... I will present laboratory and observational efforts that push our current understanding of these non-thermal desorption processes and how they could be use to quantify the amount of organics in ices.

  3. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    NASA Astrophysics Data System (ADS)

    Qazi, H. I. A.; Nie, Qiu-Yue; Li, He-Ping; Zhang, Xiao-Fei; Bao, Cheng-Yu

    2015-12-01

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A-X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  4. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    SciTech Connect

    Qazi, H. I. A.; Li, He-Ping Zhang, Xiao-Fei; Bao, Cheng-Yu; Nie, Qiu-Yue

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  5. Seasonal characteristics of gas-phase air pollutants: implications for public health in northeastern New Jersey

    NASA Astrophysics Data System (ADS)

    Roberts-Semple, D. A.; Gao, Y.

    2011-12-01

    To characterize the impact of urban air pollution and local weather conditions on human health, the ambient air concentrations of nitrogen oxide (NOx) and ground-level ozone (O3) were measured at the Meadowlands in Lyndhurst, NJ (41N, 74W) from June 1, 2007 to May 31, 2008. Meteorological data, mainly temperature, wind speed, relative humidity and barometric pressure, were supplemented with data from Weather Underground. Public health data were obtained from the New Jersey Department of Health and Senior Services (NJDHSS). The relationship between gas-phase pollutants and hospital admissions were examined through path analytic models by using multiple regressions and bivariate correlations. The meteorological conditions and air pollutants that may be associated with human respiratory health effects are analyzed. Preliminary results demonstrate that the ambient levels of NOx and O3 are influenced by certain meteorological conditions in the Meadowlands, and that there is a strong relationship between hospital admission and personal exposure to NO2 over the short-term. There is no direct relationship between O3 and hospital admission (r=-0.092), whereas hospital admission and NOx correlate (r=0.317) but more significantly with NO2 (r=.359) at a significance level of 0.01. Hospital admission rates are indirectly affected by humidity (r=-0.077). The seasonal dependence of pollutants is caused mainly by low wind speed and differences in chemical processing, making them interdependent. The monthly average O3 ranged from 11.1ppb to 36.2ppb with the highest values in summer; NOx ranged from 17.0ppb to 29.0ppb with no marked seasonal variations and were lower on weekends than on week days. There were dissimilar diurnal patterns and an inverse relationship between the hourly average of NOx and O3 concentrations, suggesting that O3 formation was not limited by the availability of NOx but is likely influenced by a VOC-sensitive chemical regime. This study provides a basis for

  6. Aerosol and gas-phase characteristics in relation to meteorology: Case studies in populated arid settings

    NASA Astrophysics Data System (ADS)

    Crosbie, Ewan Colin

    Atmospheric aerosols and trace gases are a highly relevant component of the climate system affecting atmospheric radiative transfer and the hydrologic cycle. In arid and semi-arid regions, where cloud cover is often low and precipitation is generally scarce and sporadic, the driving processes accounting for the production, loss and transport of atmospheric constituents are often distinctly different from other climates. In arid regions, the same circulation dynamics that suppress cloud formation can be responsible for creating strong subsidence inversions, which cap atmospheric mixing and trap pollutants close to the surface, often placing populated arid regions high on global rankings of air pollution concerns. In addition, low soil moisture can encourage wind-blown dust emissions, which can be a significant fraction of the total aerosol loading in both coarse and fine modes on a mass basis. Three distinct focus regions are investigated over varying time scales, using a diverse set of techniques, and with wide-ranging primary goals. 1) the Tehran metropolitan area in Iran over a ten-year period from 2000-2009, 2) Tucson, Arizona over 2012-2014 with three intensive monitoring periods during summer 2014 and winter 2015 and 3) the San Joaquin Valley in California during the NASA DISCOVER-AQ campaign during Jan-Feb 2013. However, in all cases, local and regional scale meteorology play a significant role in controlling the spatiotemporal variability in trace gas and aerosol concentrations. Particular emphasis is placed on understanding transport pathways due to the local wind patterns and the importance of key meteorological parameters such as temperature, humidity and solar radiation on controlling production and loss mechanisms. While low in magnitude, the precipitation pattern is still an important sink mechanism that modulates gas phase and particle abundances in all three regions, either through scavenging or by promoting vertical mixing. The reported measurements

  7. Release of gas-phase halogens by photolytic generation of OH in frozen halide-nitrate solutions: an active halogen formation mechanism?

    PubMed

    Abbatt, J; Oldridge, N; Symington, A; Chukalovskiy, V; McWhinney, R D; Sjostedt, S; Cox, R A

    2010-06-17

    To better define the mechanisms by which condensed-phase halides may be oxidized to form gas-phase halogens under polar conditions, experiments have been conducted whereby frozen solutions containing chloride (1 M), bromide (1.6 x 10(-3) to 5 x 10(-2) M), iodide (<1 x 10(-5) M), and nitrate (0.01 to 1 M) have been illuminated by ultraviolet light in a continually flushed cell. Gas-phase products are quantified using chemical ionization mass spectrometry, and experiments were conducted at both 248 and 263 K. Br(2) was the dominant product, along with smaller yields of IBr and trace BrCl and I(2). The Br(2) yields were largely independent of the Br(-)/Cl(-) ratio of the frozen solution, down to seawater composition. However, the yields of halogens were strongly dependent on the levels of NO(3)(-) and acidity in solution, consistent with a mechanism whereby NO(3)(-) photolysis yields OH that oxidizes the condensed-phase halides. In support, we observed the formation of gas-phase NO(2), formed simultaneously with OH. Gas-phase HONO was also observed, suggesting that halide oxidation by HONO in the condensed phase may also occur to some degree. By measuring the production rate of condensed-phase OH, using benzoic acid as a radical trap, we determine that the molar yield of Br(2) formation relative to OH generation is 0.6, consistent with each OH being involved in halide oxidation. These studies suggest that gas-phase halogen formation should occur simultaneously with NO(x) release from frozen sea ice and snow surfaces that contain sufficient halides and deposited nitrate.

  8. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    DOE PAGESBeta

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively.more » We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.« less

  9. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    SciTech Connect

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively. We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.

  10. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  11. Investigation of the characteristics of biofilms grown in gas-phase biofilters with and without ozone injection by CLSM technique.

    PubMed

    Saingam, Prakit; Xi, Jinying; Xu, Yang; Hu, Hong-Ying

    2016-02-01

    Recently, ozone injection technique was developed as a novel biomass control method to reduce bed clogging in biofilters treating volatile organic compounds (VOCs). However, the effects of ozone on the characteristics of biofilms are still unknown. In this study, two identical lab-scale biofilters treating gaseous toluene were operated in parallel except that one was continuously injected with 200 mg/m(3) ozone. Four glass slides were placed inside each biofilter on day 57 and then were taken out sequentially after 1, 2, 4, and 6 weeks of cultivation. The biofilms grown on the glass slides were stained by the ViaGram™ Red + Bacterial Gram Stain and Viability Kit and observed through the confocal laser scanning microscopy (CLSM). According to the CLSM images of 1, 2, and 4 weeks, the ozonated biofilm was significantly thinner than the control biofilm, which demonstrated that ozone could effectively control the biomass in the biofilter. For the biofilter without ozone injection, the ratios of viable cells (0.51~0.89) and the ratios of Gram-positive bacteria (0.22~0.57) both decreased within 4 weeks of cultivation. The CLSM image analysis results also demonstrated that a continuous injection of 200 mg/m(3) ozone was able to significantly enhance the ratio of viable cells to 0.77~0.97 and allow the dominance of Gram-positive bacteria in the biofilms with the ratio 0.46~0.88 instead of Gram-negative bacteria. For the 6-week samples, the biofilm thickness of the control system was reduced significantly which indicated the detachment of accumulated biofilms might occur in the samples without ozone.

  12. Gas-phase chemical dynamics

    SciTech Connect

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M.

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  13. Gas phase chemistry in comets

    NASA Technical Reports Server (NTRS)

    Oppenheimer, M.

    1976-01-01

    The significance of gas phase reactions in determining the nuclear structure of comets is discussed. The sublimation of parent molecules such as H2O, CH4, CO2, and NH3 from the surface of the nucleus and their subsequent photodissociation and ionization in forming observed cometary molecular species are elaborated.

  14. CREKID: A computer code for transient, gas-phase combustion of kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.; Radhakrishnan, K.

    1984-01-01

    A new algorithm was developed for fast, automatic integration of chemical kinetic rate equations describing homogeneous, gas-phase combustion at constant pressure. Particular attention is paid to the distinguishing physical and computational characteristics of the induction, heat-release and equilibration regimes. The two-part predictor-corrector algorithm, based on an exponentially-fitted trapezoidal rule, includes filtering of ill-posed initial conditions, automatic selection of Newton-Jacobi or Newton iteration for convergence to achieve maximum computational efficiency while observing a prescribed error tolerance. The new algorithm was found to compare favorably with LSODE on two representative test problems drawn from combustion kinetics.

  15. Estimation of gas phase mixing in packed beds

    SciTech Connect

    Frigerio, S.; Thunman, H.; Leckner, B.; Hermansson, S.

    2008-04-15

    An improved model is presented for estimation of the mixing of gaseous species in a packed bed for fuel conversion. In particular, this work clarifies the main characteristics of mixing of volatiles and oxidizers in a burning bed of high-volatile solid fuel. Expressions are introduced to represent the active role of degradation of the solid particles in the mixing within the gas phase. During drying and devolatilization the solids modify the behavior of the gas flow: the volatiles released from the surface of the particles increase the turbulence in the system, and hence the rates of the homogeneous reactions under mixing-limited conditions. Numerical experiments are carried out to test the validity of this conclusion regarding mixing in different geometries. The flow of volatiles leaving the fuel particles is shown to contribute significantly to mixing, especially at low air flows through a bed. However, the fraction of the particle surface where volatiles are released and its orientation in the bed should be better determined in order to increase the accuracy of the estimates of turbulent mixing. (author)

  16. Rate processes in gas phase

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.

    1983-01-01

    Reaction-rate theory and experiment are given a critical review from the engineers' point of view. Rates of heavy-particle, collision-induced reaction in gas phase are formulated in terms of the cross sections and activation energies for reaction. The effect of cross section function shape and of excited state contributions to reaction both cause the slope of Arrhenius plots to differ from the true activation energy, except at low temperature. The master equations for chemically reacting gases are introduced, and dissociation and ionization reactions are shown to proceed primarily from excited states about kT from the dissociation or ionization limit. Collision-induced vibration, vibration-rotation, and pure rotation transitions are treated, including three-dimensional effects and conservation of energy, which have usually been ignored. The quantum theory of transitions at potential surface crossing is derived, and results are found to be in fair agreement with experiment in spite of some questionable approximations involved.

  17. [Nutrient release characteristics and use efficiency of slow- and controlled release fertilizers].

    PubMed

    Duan, Lu-Lu; Zhang, Min; Liu, Gang; Shang, Zhao-Cong; Yang, Yi

    2009-05-01

    Water extraction method and soil incubation method were used to study the nutrient release characteristics of four slow- and controlled release fertilizers (CRF1, CRF2, SCU, and IBDU), and pot experiment was conducted to assess the effects of the release characteristics on the nutrient requirements of canola (Brassica napus L.). The nutrient release curves of test fertilizers in water were S pattern for CRF1 and CRF2, burst pattern for SCU, and reverse L pattern for IBDU. The nutrient release characteristics of the four fertilizers in water and in soil all fitted binomial equations, suggesting that there existed some similarities in the nutrient release in the two media. The nutrient uptake and biomass of canola plants treated with CRF1 and CRF2 were significantly higher than those treated with SCU and IBDU, and CRF2 had the greatest effect. The nutrient release curves of CRF1 and CRF2 accorded more closely with the nutrient requirements of canola.

  18. Oscillatory burning of solid propellants including gas phase time lag.

    NASA Technical Reports Server (NTRS)

    T'Ien, J. S.

    1972-01-01

    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  19. Hydrated metal ions in the gas phase.

    PubMed

    Beyer, Martin K

    2007-01-01

    Studying metal ion solvation, especially hydration, in the gas phase has developed into a field that is dominated by a tight interaction between experiment and theory. Since the studied species carry charge, mass spectrometry is an indispensable tool in all experiments. Whereas gas-phase coordination chemistry and reactions of bare metal ions are reasonably well understood, systems containing a larger number of solvent molecules are still difficult to understand. This review focuses on the rich chemistry of hydrated metal ions in the gas phase, covering coordination chemistry, charge separation in multiply charged systems, as well as intracluster and ion-molecule reactions. Key ideas of metal ion solvation in the gas phase are illustrated with rare-gas solvated metal ions.

  20. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems. PMID:12009194

  1. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems.

  2. Formulation development of oral controlled release tablets of hydralazine: optimization of drug release and bioadhesive characteristics.

    PubMed

    Singh, Bhupinder; Pahuja, Sonia; Kapil, Rishi; Ahuja, Naveen

    2009-03-01

    The current study involves development of oral bioadhesive hydrophilic matrices of hydralazine hydrochloride, and optimization of their in vitro drug release profile and ex vivo bioadhesion against porcine gastric mucosa. A 32 central composite design was employed to systematically optimize the drug delivery formulations containing two polymers, viz., carbomer and hydroxypropyl methyl cellulose. Response surface plots were drawn and optimum formulations were selected by brute force searches. Validation of the formulation optimization study indicated a very high degree of prognostic ability. The study successfully undertook the development of an optimized once-a-day formulation of hydralazine with excellent bioadhesive and controlled release characteristics.

  3. Continuous-Flow Gas-Phase Bioreactors

    NASA Technical Reports Server (NTRS)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  4. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  5. Gas-Phase Infrared; JCAMP Format

    National Institute of Standards and Technology Data Gateway

    SRD 35 NIST/EPA Gas-Phase Infrared; JCAMP Format (PC database for purchase)   This data collection contains 5,228 infrared spectra in the JCAMP-DX (Joint Committee for Atomic and Molecular Physical Data "Data Exchange") format.

  6. Release of Compact Nucleoids with Characteristic Shapes from Escherichia coli

    PubMed Central

    Zimmerman, Steven B.; Murphy, Lizabeth D.

    2001-01-01

    The genomic DNA of bacteria is contained in one or a few compact bodies known as nucleoids. We describe a simple procedure that retains the general shape and compaction of nucleoids from Escherichia coli upon cell lysis and nucleoid release from the cell envelope. The procedure is a modification of that used for the preparation of spermidine nucleoids (nucleoids released in the presence of spermidine) (T. Kornberg, A. Lockwood, and A. Worcel, Proc. Natl. Acad. Sci. USA 71:3189–3193, 1974). Polylysine is added to prevent the normal decompaction of nucleoids which occurs upon cell lysis. Nucleoids retained their characteristic shapes in lysates of exponential-phase cells or in lysates of cells treated with chloramphenicol or nalidixate to alter nucleoid morphology. The notably unstable nucleoids of rifampin-treated cells were obtained in compact, stable form in such lysates. Nucleoids released in the presence of polylysine were easily processed and provided well-defined DNA fluorescence and phase-contrast images. Uniform populations of nucleoids retaining characteristic shapes could be isolated after formaldehyde fixation and heating with sodium dodecyl sulfate. PMID:11489856

  7. Experimental Thermochemistry of Gas Phase Cytosine Tautomers

    NASA Astrophysics Data System (ADS)

    Morrison, A. M.; Douberly, G. E.

    2011-06-01

    Enthalpies of interconversion are measured for the three lowest energy tautomers of isolated cytosine. The equilibrium distribution of tautomers near 600 K is frozen upon the capture of the gas phase species by low temperature helium nanodroplets. The temperature dependence of the gas phase cytosine tautomer populations is determined with infrared laser spectroscopy of the helium solvated species. The interconverison enthalpies obtained from the van't Hoff relation are 1.14 ± 0.21 and 1.63 ± 0.12 for the C31 rightleftharpoons C32 and C31 rightleftharpoons C1 equilibria, respectively. C31 and C32 are rotamers of an enol tautomer, and C1 is a keto tautomer. The interconversion enthalpies are compared to recent CCSD(T) thermochemistry calculations of cytosine tautomers.

  8. Gas phase chemistry of chlorine nitrate

    SciTech Connect

    Okumura, M.; Moore, T.A.; Crellin, K.C.

    1995-12-31

    Chlorine nitrate (ClONO{sub 2}) is a reservoir of both ClO{sub x} and NO{sub x} radicals in Earth`s stratosphere, and its decomposition is important in determining the abundance of stratospheric ozone. We present experimental and theoretical studies that explore the mechanisms and dynamics of processes leading to ClONO{sub 2} destruction in the stratosphere. Molecular beam photodissociation experiments have been performed to determine the decomposition pathways of ClONO{sub 2} upon excitation at 308 nm and to explore the possibility of a long-lived excited state. We have also investigated the reaction of chlorine nitrate with chloride ions Cl{sup -} in the gas phase. The gas phase ionic reaction may elucidate ionic mechanisms of heterogeneous reactions occurring on the surfaces of Polar Stratospheric Cloud particles and also raise doubts about proposed schemes to mitigate ozone depletion by electrifying the stratosphere.

  9. How to select gas-phase filters

    SciTech Connect

    Groeger, G.; Winters, P.

    1997-10-01

    Removing airborne molecular contamination (AMC) from indoor industrial air is a challenging problem. Under OSHA, companies must mitigate harmful effects from corrosive, acid and alkaline gases to protect employee health. Equally important, corrosive gases tremendously impact and compromise operation of sensitive plant instrumentation and process control devices. Gases such as SO{sub 2}, H{sub 2}S, VOCs, etc., are present in many manufacturing facilities. These contaminants can be controlled to tolerable levels with gas-phase filtration techniques. Because each manufacturing facility has its own unique problem, a one-size-fits-all-solution is not possible. The presented examples and laboratory data evaluate several gas-phase control technologies under varying contaminant concentrations and air stream velocities. Using this information, engineers can find the best solution for their AMC problem.

  10. Gas-phase Dissociation of homo-DNA Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Stucki, Silvan R.; Désiron, Camille; Nyakas, Adrien; Marti, Simon; Leumann, Christian J.; Schürch, Stefan

    2013-12-01

    Synthetic modified oligonucleotides are of interest for diagnostic and therapeutic applications, as their biological stability, pairing selectivity, and binding strength can be considerably increased by the incorporation of unnatural structural elements. Homo-DNA is an oligonucleotide homologue based on dideoxy-hexopyranosyl sugar moieties, which follows the Watson-Crick A-T and G-C base pairing system, but does not hybridize with complementary natural DNA and RNA. Homo-DNA has found application as a bioorthogonal element in templated chemistry applications. The gas-phase dissociation of homo-DNA has been investigated by ESI-MS/MS and MALDI-MS/MS, and mechanistic aspects of its gas-phase dissociation are discussed. Experiments revealed a charge state dependent preference for the loss of nucleobases, which are released either as neutrals or as anions. In contrast to DNA, nucleobase loss from homo-DNA was found to be decoupled from backbone cleavage, thus resulting in stable products. This renders an additional stage of ion activation necessary in order to generate sequence-defining fragment ions. Upon MS3 of the primary base-loss ion, homo-DNA was found to exhibit unspecific backbone dissociation resulting in a balanced distribution of all fragment ion series.

  11. Gas phase thermochemistry of organogermanium compounds

    SciTech Connect

    Engel, J.P.

    1993-12-07

    A variety of silyl- and alkyl-germylene precursors have been synthesized and subsequently pyrolyzed in the gas phase. Arrhenius parameters were obtained employing a pulsed-stirred flow reactor for these unimolecular decompositions. These precursors are divided into two major categories by mechanism of germylene extrusion: {alpha}-elimination precursors and germylacetylenes. The extrusion of germylenes from germylacetylene precursors is of primary interest. A mechanism is proposed employing a germacyclopropene intermediate. Evidence supporting this mechanism is presented. In the process of exploring germylacetylenes as germylene precursors, an apparent dyatropic rearrangement between germanium and silicon was observed. This rearrangement was subsequently explored.

  12. Receptors useful for gas phase chemical sensing

    SciTech Connect

    Jaworski, Justyn W; Lee, Seung-Wuk; Majumdar, Arunava; Raorane, Digvijay A

    2015-02-17

    The invention provides for a receptor, capable of binding to a target molecule, linked to a hygroscopic polymer or hydrogel; and the use of this receptor in a device for detecting the target molecule in a gaseous and/or liquid phase. The invention also provides for a method for detecting the presence of a target molecule in the gas phase using the device. In particular, the receptor can be a peptide capable of binding a 2,4,6-trinitrotoluene (TNT) or 2,4,-dinitrotoluene (DNT).

  13. Gas Phase Model of Surface Reactions for N{2} Afterglows

    NASA Astrophysics Data System (ADS)

    Marković, V. Lj.; Petrović, Z. Lj.; Pejović, M. M.

    1996-07-01

    The adequacy of the homogeneous gas phase model as a representation of the surface losses of diffusing active particles in gas phase is studied. As an example the recent data obtained for the surface recombination coefficients are reanalyzed. The data were obtained by the application of the breakdown delay times which consists of the measurements of the breakdown delay times t_d as a function of the afterglow period tau. It was found that for the conditions of our experiment, the diffusion should not be neglected as the final results are significantly different when obtained by approximate gas phase representation and by exact numerical solution to the diffusion equation. While application of the gas phase effective coefficients to represent surface losses gives an error in the value of the recombination coefficient, it reproduces correctly other characteristics such as order of the process which can be obtained from simple fits to the experimental data. Dans cet article, nous étudions la validité du modèle approximatif représentant les pertes superficielles des particules actives qui diffusent de la phase gazeuse comme pertes dans la phase homogène du gaz. Les données actuelles du coefficient de recombination en surface sont utilisées par cette vérification . Les données experimentales sont obtenues en utilisant la technique qui consiste en la mesure du temps de retard du début de la décharge en fonction de la période de relaxation. Nous avons trouvé que, pour nos conditions expérimentales, la diffusion ne peut être négligée. Aussi, les résultats finals sont considérablement différents quand ils sont obtenus en utilisant le modèle approximatif par comparaison aves les résultats obtenus par la solution numérique exacte de l'équation de la diffusion. L'application des coefficients effectifs dans la phase gaseuse pour la présentation des pertes superficielles donne, pour les coefficients de la recombinaison, des valeurs qui diffèrent en

  14. Gas-phase thermochemistry of chloropyridines

    NASA Astrophysics Data System (ADS)

    Gomes, José R. B.; Amaral, Luísa M. P. F.; Ribeiro da Silva, Manuel A. V.

    2005-04-01

    The gas-phase standard molar enthalpy of formation of the 2,3,5-trichloropyridine compound was derived from the enthalpies of combustion of the crystalline solid measured by rotating-bomb calorimetry and its enthalpy of sublimation obtained by Calvet microcalorimetry at T = 298.15 K. The standard enthalpies of formation for this compound and for the other chlorosubstituted pyridines were determined by DFT calculations. The experimental enthalpy of formation of 2,3,5-trichloropyridine is (65.8 ± 2.3) kJ mol -1, in excellent agreement with the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d) value. The affinity of pyridine to some metal cations was also calculated at the same DFT level of theory and compared with experimental data.

  15. Gas phase acidity of substituted benzenes

    NASA Astrophysics Data System (ADS)

    Bouchoux, Guy

    2011-04-01

    Deprotonation thermochemistry of benzene derivatives C 6H 5X (X = H, F, Cl, OH, NH 2, CN, CHO, NO 2, CH 3, C 2H 5, CHCH 2, CCH) has been examined at the G3B3 level of theory. For X = F, Cl, CN, CHO and NO 2, the most favorable deprotonation site is the ortho position of the phenyl ring. This regio-specificity is directly related to the field/inductive effect of the substituent. G3B3 gas phase acidities, Δ acidH° and Δ acidG°, compare within less than 4 kJ mol -1 with experimental data. A noticeable exception is nitrobenzene for which tabulated acidity appear to be underestimated by ca. 120 kJ mol -1.

  16. Gas phase grown silicon germanium nanocrystals

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Tichelaar, F. D.; Kaiser, M.; Verheijen, M. A.; Schropp, R. E. I.; Rath, J. K.

    2016-09-01

    We report on the gas phase synthesis of highly crystalline and homogeneously alloyed Si1-xGex nanocrystals in continuous and pulsed plasmas. Agglomerated nanocrystals have been produced with remarkable control over their composition by altering the precursor GeH4 gas flow in a continuous plasma. We specially highlight that in the pulsed plasma mode, we obtain quantum-sized free standing alloy nanocrystals with a mean size of 7.3 nm. The presence of Si1-xGex alloy particles is confirmed with multiple techniques, i.e. Raman spectroscopy, XRD (Xray diffraction) and HRTEM (high resolution transmission electron microscopy) studies, with each of these methods consistently yielding the same composition. The nanocrystals synthesized here have potential applications in band-gap engineering for multijunction solar cells.

  17. Characteristics of renin release from isolated superfused glomeruli in vitro.

    PubMed Central

    Blendstrup, K; Leyssac, P P; Poulsen, K; Skinner, S L

    1975-01-01

    1. A method is described for studying renin release from superfused rat glomeruli following their rapid isolation by a magnetic iron-oxide technique. 2. Microscopically selected glomeruli were free of tubular components. Some possessed vascular pole protrusions of up to 20 mum, unrelated to renin content. 3. Renin content of 102 batches, each of 400 glomeruli, was 1.34 plus or minus 0.08 times 10-4 Goldblatt hog units per 100 glomeruli (plus or minus S.E. of mean). Different osmolarities (305, 355 and 400 m-osmole/1.), sodium concentrations (110 and 135 mM) and buffer compositions of the preparation solution did not alter this value. Renin content per glomerulus in intact kidney was 100-fold higher. 4. At 30 degrees C the contained juxtaglomerular cells released renin at consistent but decreasing rates over 4-6 hr. Initial release rate in 110 mM sodium, 305 m-osmole/1. solutions were 0.86 plus or minus 0.068 times 10-6 units per 100 glomeruli per 30 min (plus or minus S.E. of mean, n = 42) or 0.546 plus or minus 0.046 percent of content per 30 min. In 135 mM sodium, 305 m-osmole/1. solutions, release was 2.4-fold higher (P less than 0.001) and remained elevated for at least 3 hr. When related to renin content per glomerulus resting release rate in vitro was higher by at most one order of magnitude than calculated in vivo values. 5. Release was augmented by gentle physical agitation of the glomeruli. 6. Release rate was inversely ralated to temperature. On reducing temperature from 30 degrees C, release increased 2.6-fold at 20 degrees C and 6.7-fold at 10 degrees C (P less than 0.001, n = 11). The response was reversible. 7. 3 mM sodium cyanide plus 3 mM sodium iodoacetate caused a variable release of renin associated with depletion of content within 4 hr. The response was progressive and reached a peak after 60 min. 8. Sensitivity of renin release to temperature and metabolic blockade indicates that energy is required for retention of renin by the cell. This

  18. Transferring pharmaceuticals into the gas phase

    NASA Astrophysics Data System (ADS)

    Christen, Wolfgang; Krause, Tim; Rademann, Klaus

    2008-11-01

    The dissolution of molecules of biological interest in supercritical carbon dioxide is investigated using pulsed molecular beam mass spectrometry. Due to the mild processing temperatures of most supercritical fluids, their adiabatic expansion into vacuum permits to transfer even thermally very sensitive substances into the gas phase, which is particularly attractive for pharmaceutical and biomedical applications. In addition, supercritical CO2constitutes a chemically inert solvent that is compatible with hydrocarbon-free ultrahigh vacuum conditions. Here, we report on the dissolution and pulsed supersonic jet expansion of caffeine (C8H10N4O2), the provitamin menadione (C11H8O2), and the amino acid derivative l-phenylalanine tert-butyl ester hydrochloride (C6H5CH2CH(NH2)COOC(CH3)3[dot operator]HCl), into vacuum. An on-axis residual gas analyzer is used to monitor the relative amounts of solute and solvent in the molecular beam as a function of solvent densityE The excellent selectivity and sensitivity provided by mass spectrometry permits to probe even trace amounts of solutes. The strong density variation of CO2 close to the critical point results in a pronounced pressure dependence of the relative ion currents of solute and solvent molecules, reflecting a substantial change in solubility.

  19. Manual gas-phase isothiocyanate degradation.

    PubMed

    Brandt, W F; Frank, G

    1988-02-01

    We describe a manual gas-phase isothiocyanate degradation procedure for the primary structure determination of proteins and peptides. The proteins and peptides are applied to a polybrene-coated glass fiber filter wedged into a small glass column. The phenylisothiocyanate is directly pipetted onto the filter disk. The coupling and cleavage reactions are performed in small desiccators containing trimethylamine and trifluoroacetic acid vapors, respectively. The wash and extraction steps are performed by allowing the suitable solvents to percolate through the filter disk. The extracted anilinothiazolinone is then converted to the phenylthiohydantoin and identified by any one of a number of described methods. Our results show that this method is very sensitive and that the reactions proceed faster than those of the published automated procedure. No expensive equipment is required and the manual degradation can be performed by a laboratory assistant. A large number of samples can be simultaneously subjected to the degradation under identical conditions, making this an ideal method for physicochemical investigations into the isothiocyanate degradation. We also use this method to screen HPLC fractions after enzymatic protein fragmentation. Manually sequenced glass filters can be transferred to the automated instrument for more extended degradations.

  20. Ab initio kinetics of gas phase decomposition reactions.

    PubMed

    Sharia, Onise; Kuklja, Maija M

    2010-12-01

    The thermal and kinetic aspects of gas phase decomposition reactions can be extremely complex due to a large number of parameters, a variety of possible intermediates, and an overlap in thermal decomposition traces. The experimental determination of the activation energies is particularly difficult when several possible reaction pathways coexist in the thermal decomposition. Ab initio calculations intended to provide an interpretation of the experiment are often of little help if they produce only the activation barriers and ignore the kinetics of the decomposition process. To overcome this ambiguity, a theoretical study of a complete picture of gas phase thermo-decomposition, including reaction energies, activation barriers, and reaction rates, is illustrated with the example of the β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule by means of quantum-chemical calculations. We study three types of major decomposition reactions characteristic of nitramines: the HONO elimination, the NONO rearrangement, and the N-NO(2) homolysis. The reaction rates were determined using the conventional transition state theory for the HONO and NONO decompositions and the variational transition state theory for the N-NO(2) homolysis. Our calculations show that the HMX decomposition process is more complex than it was previously believed to be and is defined by a combination of reactions at any given temperature. At all temperatures, the direct N-NO(2) homolysis prevails with the activation barrier at 38.1 kcal/mol. The nitro-nitrite isomerization and the HONO elimination, with the activation barriers at 46.3 and 39.4 kcal/mol, respectively, are slow reactions at all temperatures. The obtained conclusions provide a consistent interpretation for the reported experimental data. PMID:21077597

  1. Release characteristics of selected carbon nanotube polymer composites

    EPA Science Inventory

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  2. Infrared spectra of gas-phase polycyclic aromatic hydrocarbon molecules

    SciTech Connect

    Zhang, Keqing; Guo, B.; Bernath, P.F.

    1995-12-31

    Recording the spectra of gas-phase polycyclic aromatic hydrocarbon molecules is of great astronomical interest. Infrared spectra of gas-phase naphthalene, pyrene, and chrysene were obtained in absorption and emission. The band positions and relative intensities were measured and compared with theoretical calculations. These data will be compared to the astronomical observations of the unidentified infrared emission bands.

  3. Pressure Dependence of Gas-Phase Reaction Rates

    ERIC Educational Resources Information Center

    De Persis, Stephanie; Dollet, Alain; Teyssandier, Francis

    2004-01-01

    It is presented that only simple concepts, mainly taken from activated-complex or transition-state theory, are required to explain and analytically describe the influence of pressure on gas-phase reaction kinetics. The simplest kind of elementary gas-phase reaction is a unimolecular decomposition reaction.

  4. Hydrocarbon radical thermochemistry: Gas-phase ion chemistry techniques

    SciTech Connect

    Ervin, Kent M.

    2014-03-21

    Final Scientific/Technical Report for the project "Hydrocarbon Radical Thermochemistry: Gas-Phase Ion Chemistry Techniques." The objective of this project is to exploit gas-phase ion chemistry techniques for determination of thermochemical values for neutral hydrocarbon radicals of importance in combustion kinetics.

  5. The 'sticky business' of cleaning gas-phase membrane proteins: a detergent oriented perspective.

    PubMed

    Borysik, Antoni J; Robinson, Carol V

    2012-11-14

    In recent years the properties of gas-phase detergent clusters have come under close scrutiny due in part to their participation in the analysis of intact membrane protein complexes by mass spectrometry. The detergent molecules that cover the protein complex are removed in the gas-phase by thermally agitating the ions by collision-induced dissociation. This process however, is not readily controlled and can frequently result in the disruption of protein structure. Improved methods of releasing proteins from detergent clusters are clearly required. To facilitate this the structural properties of detergent clusters along with the mechanistic details of their dissociation need to be understood. Pivotal to understanding the properties of gas-phase detergent clusters is the technique of ion mobility mass spectrometry. This technique can be used to assign polydisperse detergent clusters and provide information about their geometries and packing densities. In this article we consider the shapes of detergent clusters and show that these clusters possess geometries that are inconsistent with those in solution. We analyse the distributions of clusters in detail using tandem mass spectrometry and suggest that the mean charge of clusters formed from certain detergents is governed by electrostatic repulsion. We discuss the dissociation of detergent clusters and propose that detergent evaporation it a key process in the protection of protein complexes during high energy collisions in the gas-phase.

  6. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction.

    PubMed

    Zhu, Hongying; Huang, Guangming

    2015-03-31

    In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages.

  7. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    PubMed

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  8. Fizzy Extraction of Volatile and Semivolatile Compounds into the Gas Phase.

    PubMed

    Chang, Cheng-Hao; Urban, Pawel L

    2016-09-01

    Extraction of volatile and semivolatile compounds from liquid matrixes with high yields, and transferring the extracts to detectors in real time, is challenging. Common extraction procedures involve heating the samples to release the analytes to the gas phase and, in some cases, trapping the gas-phase analytes into sorbents or containers. Here, we propose a new method for fast extraction of volatile and semivolatile compounds from liquid matrixes. This method involves dissolution of a carrier gas in the liquid sample by applying a moderate overpressure (∼150 kPa) and stirring the sample. An abrupt decompression of the extraction chamber leads to effervescence. In this step, many bubbles are instantly formed in the sample matrix. The dissolved carrier gas as well as dissolved volatiles are liberated into the headspace of the extraction chamber within a short period of time (few seconds). The gaseous effluent of the extraction chamber is immediately transferred to the online detector; in this case, an atmospheric pressure chemical ionization interface of a triple quadrupole mass spectrometer. The fast release of the gas-phase extract gives rise to a high signal recorded by the detector; several times higher than the signal recorded during direct infusion of headspace vapors without fizzy extraction. This feature provides the means to detect and quantify analytes present in solutions in a short period of time. Here we show that fizzy extraction is suitable for analysis of volatile/semivolatile compounds present in various samples, including those containing complex matrixes. PMID:27504910

  9. Characteristics of pollutant gas releases from swine, dairy, beef, and layer manure, and municipal wastewater.

    PubMed

    Dai, Xiao-Rong; Saha, Chayan Kumer; Ni, Ji-Qin; Heber, Albert J; Blanes-Vidal, Victoria; Dunn, James L

    2015-06-01

    Knowledge about characteristics of gas releases from various types of organic wastes can assist in developing gas pollution reduction technologies and establishing environmental regulations. Five different organic wastes, i.e., four types of animal manure (swine, beef, dairy, and layer hen) and municipal wastewater, were studied for their characteristics of ammonia (NH3), carbon dioxide (CO2), hydrogen sulfide (H2S), and sulfur dioxide (SO2) releases for 38 or 43 days in reactors under laboratory conditions. Weekly waste additions and continuous reactor headspace ventilation were supplied to simulate waste storage conditions. Results demonstrated that among the five waste types, layer hen manure and municipal wastewater had the highest and lowest NH3 release potentials, respectively. Layer manure had the highest and dairy manure had the lowest CO2 release potentials. Dairy manure and layer manure had the highest and lowest H2S release potentials, respectively. Beef manure and layer manure had the highest and lowest SO2 releases, respectively. The physicochemical characteristics of the different types of wastes, especially the total nitrogen, total ammoniacal nitrogen, dry matter, and pH, had strong influence on the releases of the four gases. Even for the same type of waste, the variation in physicochemical characteristics affected the gas releases remarkably. PMID:25794466

  10. Macro- and micro-nutrient release characteristics of three polymer-coated fertilizers: Theory and measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of several published studies we have an incomplete understanding of the ion release mechanisms and characteristics of primary polymer-coated fertilizer (PCF) technologies. Here we extend current conceptual models describing release mechanisms and describe the critical effects of substrate m...

  11. Textiles with gallic acid microspheres: in vitro release characteristics.

    PubMed

    Martí, Meritxell; Martínez, Vanessa; Carreras, Núria; Alonso, Cristina; Lis, Manuel José; Parra, José Luis; Coderch, Luisa

    2014-01-01

    Abstract The aim of this study was to demonstrate the skin penetration of an antioxidant, gallic acid (GA), encapsulated in poly-ε-caprolactone (PCL) microspheres and applied onto textile fabrics, by a specific in vitro percutaneous absorption methodology. Two techniques (particle size distribution and FTIR) were used to characterise the microspheres obtained. The amount of GA-loaded microspheres present in the biofunctional textiles was established before their use as a textile drug delivery system. More absorption and desorption of microspheres with GA for the polyamide fabric were found in comparison with cotton fabric. The percutaneous absorption results indicated that the skin penetration of GA released from PCL-microspheres that were applied directly to the skin was higher than when GA was embedded within biofunctional textiles, in conclusion, an interesting reservoir effect may be promoted when biofunctional textiles were used.

  12. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  13. Gas-phase saturation and evaporative cooling effects during wet compression of a fuel aerosol under RCM conditions

    SciTech Connect

    Goldsborough, S.S.; Johnson, M.V.; Zhu, G.S.; Aggarwal, S.K.

    2011-01-15

    Wet compression of a fuel aerosol has been proposed as a means of creating gas-phase mixtures of involatile diesel-representative fuels and oxidizer + diluent gases for rapid compression machine (RCM) experiments. The use of high concentration aerosols (e.g., {proportional_to}0.1 mL{sub fuel}/L{sub gas}, {proportional_to}1 x 10{sup 9} droplets/L{sub gas} for stoichiometric fuel loading at ambient conditions) can result in droplet-droplet interactions which lead to significant gas-phase fuel saturation and evaporative cooling during the volumetric compression process. In addition, localized stratification (i.e., on the droplet scale) of the fuel vapor and of temperature can lead to non-homogeneous reaction and heat release processes - features which could prevent adequate segregation of the underlying chemical kinetic rates from rates of physical transport. These characteristics are dependent on many factors including physical parameters such as overall fuel loading and initial droplet size relative to the compression rate, as well as fuel and diluent properties such as the boiling curve, vaporization enthalpy, heat capacity, and mass and thermal diffusivities. This study investigates the physical issues, especially fuel saturation and evaporative cooling effects, using a spherically-symmetric, single-droplet wet compression model. n-Dodecane is used as the fuel with the gas containing 21% O{sub 2} and 79% N{sub 2}. An overall compression time and compression ratio of 15.3 ms and 13.4 are used, respectively. It is found that smaller droplets (d{sub 0}{proportional_to} 2-3 {mu}m) are more affected by 'far-field' saturation and cooling effects, while larger droplets (d{sub 0}{proportional_to} 14 {mu}m) result in greater localized stratification of the gas-phase due to the larger diffusion distances for heat and mass transport. Vaporization of larger droplets is more affected by the volumetric compression process since evaporation requires more time to be completed

  14. Effect of carboxymethylation on rheological and drug release characteristics of locust bean gum matrix tablets.

    PubMed

    Chakravorty, Amrita; Barman, Gouranga; Mukherjee, Sudipta; Sa, Biswanath

    2016-06-25

    This study was undertaken to investigate correlation between the carboxymethylation-induced rheological changes and drug release characteristics of locust bean gum (LBG) matrix tablets. LBG was derivatized to carboxymethyl LBG (CMLBG) and characterized by (13)C NMR, FTIR and elemental analyses. Rheological studies revealed that LBG, in contact with water, produced a strong elastic gel which swelled less due to lower penetration of water resulting in slower drug release. On the other hand, CMLBG formed a viscous polymer solution through which higher influx of water resulted in rapid swelling of the matrix and faster drug release. Although the release from a particular matrix was dependent on drugs' solubilities, CMLBG matrix tablet produced faster release of all the drugs than LBG matrix tablets. In conclusion, rheological study appeared to be an useful tool to predict release of drugs from polysaccharide matrix tablets.

  15. Effect of carboxymethylation on rheological and drug release characteristics of locust bean gum matrix tablets.

    PubMed

    Chakravorty, Amrita; Barman, Gouranga; Mukherjee, Sudipta; Sa, Biswanath

    2016-06-25

    This study was undertaken to investigate correlation between the carboxymethylation-induced rheological changes and drug release characteristics of locust bean gum (LBG) matrix tablets. LBG was derivatized to carboxymethyl LBG (CMLBG) and characterized by (13)C NMR, FTIR and elemental analyses. Rheological studies revealed that LBG, in contact with water, produced a strong elastic gel which swelled less due to lower penetration of water resulting in slower drug release. On the other hand, CMLBG formed a viscous polymer solution through which higher influx of water resulted in rapid swelling of the matrix and faster drug release. Although the release from a particular matrix was dependent on drugs' solubilities, CMLBG matrix tablet produced faster release of all the drugs than LBG matrix tablets. In conclusion, rheological study appeared to be an useful tool to predict release of drugs from polysaccharide matrix tablets. PMID:27083792

  16. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  17. Elusive Sulfurous Acid: Gas-Phase Basicity and IR Signature of the Protonated Species.

    PubMed

    Sinha, Rajeev K; Scuderi, Debora; Maitre, Philippe; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta

    2015-05-01

    The ion corresponding to protonated sulfurous acid, H3SO3(+), has been successfully delivered into the gas phase by electrospray ionization of the solution of a suitable precursor and an in-source fragmentation process. The neutral acid is a highly elusive molecule. However, its gas-phase basicity has been ascertained by means of a kinetic study of proton-transfer reactivity. The structure of the H3SO3(+) sampled ion has been probed by IRMPD spectroscopy in two complementary IR frequency ranges in conjunction with density functional theory calculations and found to conform to a trihydroxosulfonium ion. The characteristic IR signatures may aid in deciphering the presence of this species in extraterrestrial atmospheres. PMID:26263321

  18. Elusive Sulfurous Acid: Gas-Phase Basicity and IR Signature of the Protonated Species.

    PubMed

    Sinha, Rajeev K; Scuderi, Debora; Maitre, Philippe; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta

    2015-05-01

    The ion corresponding to protonated sulfurous acid, H3SO3(+), has been successfully delivered into the gas phase by electrospray ionization of the solution of a suitable precursor and an in-source fragmentation process. The neutral acid is a highly elusive molecule. However, its gas-phase basicity has been ascertained by means of a kinetic study of proton-transfer reactivity. The structure of the H3SO3(+) sampled ion has been probed by IRMPD spectroscopy in two complementary IR frequency ranges in conjunction with density functional theory calculations and found to conform to a trihydroxosulfonium ion. The characteristic IR signatures may aid in deciphering the presence of this species in extraterrestrial atmospheres.

  19. Negative ion gas-phase chemistry of arenes.

    PubMed

    Danikiewicz, Witold; Zimnicka, Magdalena

    2016-01-01

    Reactions of aromatic and heteroaromatic compounds involving anions are of great importance in organic synthesis. Some of these reactions have been studied in the gas phase and are occasionally mentioned in reviews devoted to gas-phase negative ion chemistry, but no reviews exist that collect all existing information about these reactions. This work is intended to fill this gap. In the first part of this review, methods for generating arene anions in the gas phase and studying their physicochemical properties and fragmentation reactions are presented. The main topics in this part are as follows: processes in which gas-phase arene anions are formed, measurements and calculations of the proton affinities of arene anions, proton exchange reactions, and fragmentation processes of substituted arene anions, especially phenide ions. The second part is devoted to gas-phase reactions of arene anions. The most important of these are reactions with electrophiles such as carbonyl compounds and α,β-unsaturated carbonyl and related compounds (Michael acceptors). Other reactions including oxidation of arene anions and halogenophilic reactions are also presented. In the last part of the review, reactions of electrophilic arenes with nucleophiles are discussed. The best known of these is the aromatic nucleophilic substitution (SN Ar) reaction; however, other processes that lead to the substitution of a hydrogen atom in the aromatic ring are also very important. Aromatic substrates in these reactions are usually but not always nitroarenes bearing other substituents in the ring. The first step in these reactions is the formation of an anionic σ-adduct, which, depending on the substituents in the aromatic ring and the structure of the attacking nucleophile, is either an intermediate or a transition state in the reaction path. In the present review, we attempted to collect the results of both experimental and computational studies of the aforementioned reactions conducted since the

  20. [Accumulation and release characteristics of heavy metals in Crassostrea rivalaris under mixed exposure].

    PubMed

    Chen, Hai-gang; Jia, Xiao-ping; Lin, Qin; Ma, Sheng-wei; Cai, Wen-gui; Wang, Zeng-huan

    2008-04-01

    With a mixed solution of lead (Pb), zinc (Zn), copper (Cu), nickel (Ni), cadmium (Cd), chromium (Cr), mercury (Hg) and arsenic (As), this paper studied the accumulation and release characteristics of test heavy metals in Crassostrea rivalaris. The results showed that C. rivalaris had a strong ability to accumulate Pb, Cu, Ni, Cd, Cr and Hg, being able to indicate the concentration levels of these heavy metals in solution, but a weak ability to accumulate Zn and As. In the following 35 days release stage, no significant change was observed in the contents of test heavy metals in C. rivalaris, suggesting that C. rivalaris had weak ability to release heavy metals. Two-compartment kinetic model could well fit the accumulation of heavy metals in C. rivalaris, but failed in simulating their release characteristics.

  1. Impact of release characteristics of sinomenine hydrochloride dosage forms on its pharmacokinetics in beagle dogs

    PubMed Central

    Sun, Jin; Shi, Jie-Ming; Zhang, Tian-Hong; Gao, Kun; Mao, Jing-Jing; Li, Bing; Sun, Ying-Hua; He, Zhong-Gui

    2005-01-01

    AIM: To investigate the effect of release behavior of sustained-release dosage forms of sinomenine hydrochloride (SM•HCl) on its pharmacokinetics in beagle dogs. METHODS: The in vitro release behavior of two SM•HCl dosage forms, including commercial 12-h sustained-release tablets and 24-h sustained-release pellets prepared in our laboratory, was examined. The two dosage forms were orally administrated to beagle dogs, and then the in vivo SM•HCl pharmacokinetics was investigated and compared. RESULTS: The optimal SM•HCl sustained-release formulation was achieved by mixing slow- and rapid-release pellets (9:1, w/w). The SM•HCl release profiles of the sustained-release pellets were scarcely influenced by the pH of the dissolution medium. Release from the 12-h sustained-release tablets was markedly quicker than that from the 24-h sustained-release pellets, the cumulative release up to 12-h was 99.9% vs 68.7%. From a pharmacokinetic standpoint, the 24-h SM•HCl sustained-release pellets had longer tmax and lower Cmax compared to the 12-h sustained-release tablets, the tmax being 2.67×0.52 h vs 9.83×0.98 h and the Cmax being 1 334.45±368.76 ng/mL vs 893.12±292.55 ng/mL, respectively. However, the AUC0-tn of two SM•HCl dosage forms was comparable and both preparations were statistically bioequivalent. Furthermore, the two preparations had good correlations between SM•HCl percentage absorption in vivo and the cumulative percentage release in vitro. CONCLUSION: The in vitro release properties of the dosage forms strongly affect their pharmacokinetic behavior in vivo. Therefore, managing the in vitro release behavior of dosage forms is a promising strategy for obtaining the optimal in vivo pharmacokinetic characteristics and safe therapeutic drug concentration-time curves. PMID:16052686

  2. Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge.

    PubMed

    Xue, Tao; Huang, Xia

    2007-01-01

    The releasing characteristics of phosphorus, nitrogen compounds, organics, and some metal cations during thermal treatment of excess sludge were investigated. It was found that during heating not only phosphorus, but also nitrogen compounds, organics, and some metal cations could be released in abundance. The maximum orthophosphate (ortho-P) release of about 90 mg/L in concentration was observed at 50 degrees C in 1 h. Except for volatile fatty acids (VFAs), comparatively little total nitrogen (TN), total organic carbon (TOC), and metal cations were released at the same time. Such results might favor further process of phosphorus recovery. VFAs were considerably released only at 50 degrees C. Acetic, butyric, and propionic acid were the most abundant components in turn and their releasing profiles exhibited good linear relationship with time (R2 = 0.9977, 0.9624, and 0.8908, respectively). The concentrations of Mg2+ and K+ increased with time and temperature during thermal treatment, but Ca2+ decreased. The release of Mg2+ and K+ agreed well with TP release (R2 = 0.9892 and 0.9476, respectively). Temperature in the experimental range had very little impact on the linear relationships, especially of Mg2+. Moreover, the parameter of mixed liquor suspended solids (MLSS) was found to be an important factor for thermal sludge treatment as the released ortho-P and total phosphorus (TP) at 50 degrees C increased more than one-fold when MLSS was increased from 4000 to 8000 mg/L.

  3. Estimate of radionuclide release characteristics into containment under severe accident conditions. Final report

    SciTech Connect

    Nourbakhsh, H.P.

    1993-11-01

    A detailed review of the available light water reactor source term information is presented as a technical basis for development of updated source terms into the containment under severe accident conditions. Simplified estimates of radionuclide release and transport characteristics are specified for each unique combination of the reactor coolant and containment system combinations. A quantitative uncertainty analysis in the release to the containment using NUREG-1150 methodology is also presented.

  4. Gas-Phase Reactivity of Carboxylic Acid Functional Groups with Carbodiimides

    PubMed Central

    Prentice, Boone M.; Gilbert, Joshua D.; Stutzman, John R.; Forrest, William P.; McLuckey, Scott A.

    2012-01-01

    Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N′-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT). Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities. PMID:23208744

  5. Movable fiber probe for gas-phase laser-induced breakdown spectroscopy.

    PubMed

    Dumitrescu, Cosmin E; Puzinauskas, Paulius V; Olcmen, Semih

    2008-11-01

    A movable probe that fiber couples both the beam delivery and the signal collection functions of gas-phase laser-induced breakdown spectroscopy (LIBS) measurements was evaluated. The adjustable probe was used to investigate the effect of delivery fiber curvature on plasma characteristics and the associated effect on LIBS spectra and to further identify issues remaining to facilitate fully fiber-coupled gas-phase LIBS measurements. LIBS data were collected from lean methane-air mixtures of various equivalence ratios and spectroscopically analyzed to establish the ability to determine relative fuel-air ratio. Measurements with straight delivery fiber were compared to those with the fiber curved at specific radii. Decreasing fiber radius of curvature decreased fiber transmission efficiency and reduced the spark formation probability by almost a factor of 2. For constant fiber input energy, this decreased transmission increased the percentage of failed spark formations and influenced the LIBS elemental ratio calculations. However, minimal difference was found between LIBS measurements with straight or curved fiber as long as the output energy and a constant laser beam spot diameter were maintained on the exit beam focusing lens. A significant reduction in data scatter and improved linearity were achieved by using the Balmer series H(alpha) and H(beta) hydrogen emission line ratio as a data selection criterion. Observed linear variation of H/N elemental ratio with equivalence ratio confirmed the possibility of a flexible, light-contained, fully fiber-coupled probe for remote gas-phase LIBS analysis.

  6. Movable fiber probe for gas-phase laser-induced breakdown spectroscopy

    SciTech Connect

    Dumitrescu, Cosmin E.; Puzinauskas, Paulius V.; Olcmen, Semih

    2008-11-01

    A movable probe that fiber couples both the beam delivery and the signal collection functions of gas-phase laser-induced breakdown spectroscopy (LIBS) measurements was evaluated. The adjustable probe was used to investigate the effect of delivery fiber curvature on plasma characteristics and the associated effect on LIBS spectra and to further identify issues remaining to facilitate fully fiber-coupled gas-phase LIBS measurements. LIBS data were collected from lean methane-air mixtures of various equivalence ratios and spectroscopically analyzed to establish the ability to determine relative fuel-air ratio. Measurements with straight delivery fiber were compared to those with the fiber curved at specific radii. Decreasing fiber radius of curvature decreased fiber transmission efficiency and reduced the spark formation probability by almost a factor of 2. For constant fiber input energy, this decreased transmission increased the percentage of failed spark formations and influenced the LIBS elemental ratio calculations. However, minimal difference was found between LIBS measurements with straight or curved fiber as long as the output energy and a constant laser beam spot diameter were maintained on the exit beam focusing lens. A significant reduction in data scatter and improved linearity were achieved by using the Balmer series H{alpha} and H{beta} hydrogen emission line ratio as a data selection criterion. Observed linear variation of H/N elemental ratio with equivalence ratio confirmed the possibility of a flexible, light-contained, fully fiber-coupled probe for remote gas-phase LIBS analysis.

  7. Gas-phase NMR studies of alcohols. Intrinsic acidities

    NASA Astrophysics Data System (ADS)

    Chauvel, J. Paul; True, Nancy S.

    1985-05-01

    Gas-phase (≈100 Torr) 1H NMR spectra of eighteen simple aliphatic and unsaturated alcohols, four fluorinated alcohols, and two thiols were obtained at 148.6°C where hydrogen bonding has little effect on chemical shifts. For the methanol, ethanol, n-propanol, i-propanol, t-butanol, i- butanol, neopentanol, 2,2,2-trifluoroethanol and benzyl alcohol, the observed hydroxylic proton chemical shifts correlate with previously obtained relative gas-phase acidities from thermochemical analysis which employed equilibrium constants of proton transfer reactions measured via mass spectroscopic and ion cyclotron resonance techniques. The correlational dependence is 10.3(0.5) kcal/mol ppm with a correlation coefficient of 0.99. These results demonstrate that the trend of increasing acidity with increasing size of the alkyl substituent is also reflected in the neutral forms of the alcohols, indicating that the polarizability of the ionic forms is not the only determining factor in relative gas-phase acidities of alcohols. Although factors affecting the hydroxylic proton chemical shifts of the larger substituted and unsaturated alcohols are more complex, their observed 1H NMR spectra also reflect this trend. For methanol and ethanol observed gas-phase 1H chemical shifts are also compared with recent theoritical calculations. 3JHH coupling constants across CO bonds are ≈ 5.5 Hz, significantly smaller than typical 3JHH coupling across sp 3 hybrid C C bonds.

  8. NMR study of stable radicals in the gas phase

    NASA Astrophysics Data System (ADS)

    Obynochny, A. A.; Maryasov, A. G.; Shakirov, M. M.; Grigoriev, I. A.

    1993-05-01

    The temperature dependence of the NMR spectrum of methyl-substituted nitroxyl radical of the imidazoline series has been studied. The NMR signal induced by radicals in the gas phase has been observed. A shift of the lines of the NMR spectrum in the gas phase according to the Curie law is observed which allows one to determine the value of the hfi constant of the protons of different racial groups. The hfi constant for methyl-substituted radical within experimental accuracy coincides with those measured by other methods in the liquid phase. In the absorbed phase of the samples under study, a substantial contribution is made by the volumetric susceptibility of the liquid film. The diamagnetic contribution to the magnetic susceptibility of the radical in the liquid state has been measured (in the film of 2 × 10 -6). When the thickness of the adsorbed film is small, the molecular exchange between the liquid and gas phases becomes noticeable, causing a corresponding additional shift of the lines. The gas-kinetic cross section for the radical (120 Å 2) has been estimated from the temperature dependence of the line width in the gas phase.

  9. INVESTIGATION OF GAS-PHASE OZONE AS A POTENTIAL BIOCIDE

    EPA Science Inventory

    The paper presents data on the effect of ozone on both vegetative and spore-forming fungi as well as on spore-forming bacteria. (NOTE: Despite the wide use of ozone generators in indoor air cleaning, there is little research data on ozone's biocidal activity in the gas phase.) Dr...

  10. Statistical and Microscopic Approach to Gas Phase Chemical Kinetics.

    ERIC Educational Resources Information Center

    Perez, J. M.; Quereda, R.

    1983-01-01

    Describes advanced undergraduate laboratory exercise examining the dependence of the rate constants and the instantaneous concentrations with the nature and energy content in a gas-phase complex reaction. Computer program (with instructions and computation flow charts) used with the exercise is available from the author. (Author/JN)

  11. Ion-Molecule Reactions in Gas Phase Radiation Chemistry.

    ERIC Educational Resources Information Center

    Willis, Clive

    1981-01-01

    Discusses some aspects of the radiation chemistry of gases, focusing on the ion-molecule and charge neutralization reactions which set study of the gas phase apart. Uses three examples that illustrate radiolysis, describing the radiolysis of (1) oxygen, (2) carbon dioxide, and (3) acetylene. (CS)

  12. Is it biologically relevant to measure the structures of small peptides in the gas-phase?

    NASA Astrophysics Data System (ADS)

    Barran, Perdita E.; Polfer, Nick C.; Campopiano, Dominic J.; Clarke, David J.; Langridge-Smith, Patrick R. R.; Langley, Ross J.; Govan, John R. W.; Maxwell, Alison; Dorin, Julia R.; Millar, Robert P.; Bowers, Michael T.

    2005-02-01

    Recent developments in sample introduction of biologically relevant molecules have heralded a new era for gas-phase methods of structural determination. One of the biggest challenges is to relate gas-phase structures, often measured in the absence of water and counter ions, with in vivo biologically active structures. An advantage of gas-phase based techniques is that a given peptide can be analysed in a variety of different forms, for example, as a function of charge state, or with additional water molecules. Molecular modelling can provide insight into experimental findings and help elucidate the differences between structural forms. Combining experiment and theory provides a thorough interrogation of candidate conformations. Here two important naturally occurring peptide systems have been examined in detail and results are assessed in terms of their biological significance. The first of these is gonadotropin-releasing hormone (GnRH), a decapeptide which is the central regulator of the reproductive system in vertebrates. We have examined several naturally occurring variants of this peptide using Ion Mobility Mass Spectrometry and Electron Capture Dissociation (ECD) in conjunction with Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR-MS). Candidate conformations are modelled using the AMBER force field. Single amino acid changes, for example Gly6 --> Ala6, or Ala6 --> D-Ala6, have observable effects on the gas phase structure of GnRH. It has been shown that evolutionary primary sequence variations are key to the biological activity of GnRH, and it is thought that this is due to different binding affinities at target receptors. This work provides strong evidence that this activity is structurally based. The second system examined is the relationship between the quaternary structure and activity of two novel [beta]-defensins. FT-ICR mass spectrometry has been employed to characterize di-sulphide bridging and dissociation based experiments utilised to

  13. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics.

    PubMed

    Goyanes, Alvaro; Wang, Jie; Buanz, Asma; Martínez-Pacheco, Ramón; Telford, Richard; Gaisford, Simon; Basit, Abdul W

    2015-11-01

    Three dimensional printing (3D printing) was used to fabricate novel oral drug delivery devices with specialized design configurations. Each device was loaded with multiple actives, with the intent of applying this process to the production of personalized medicines tailored at the point of dispensing or use. A filament extruder was used to obtain drug-loaded--paracetamol (acetaminophen) or caffeine--filaments of poly(vinyl alcohol) with characteristics suitable for use in fused-deposition modeling 3D printing. A multinozzle 3D printer enabled fabrication of capsule-shaped solid devices containing the drug with different internal structures. The design configurations included a multilayer device, with each layer containing drug, whose identity was different to the drug in the adjacent layers, and a two-compartment device comprising a caplet embedded within a larger caplet (DuoCaplet), with each compartment containing a different drug. Raman spectroscopy was used to collect 2-dimensional hyper spectral arrays across the entire surface of the devices. Processing of the arrays using direct classical least-squares component matching to produce false color representations of distribution of the drugs was used. This clearly showed a definitive separation between the drug layers of paracetamol and caffeine. Drug release tests in biorelevant bicarbonate media showed unique drug release profiles dependent on the macrostructure of the devices. In the case of the multilayer devices, release of both paracetamol and caffeine was simultaneous and independent of drug solubility. With the DuoCaplet design, it was possible to engineer either rapid drug release or delayed release by selecting the site of incorporation of the drug in the device; the lag-time for release from the internal compartment was dependent on the characteristics of the external layer. The study confirms the potential of 3D printing to fabricate multiple-drug containing devices with specialized design

  14. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics.

    PubMed

    Goyanes, Alvaro; Wang, Jie; Buanz, Asma; Martínez-Pacheco, Ramón; Telford, Richard; Gaisford, Simon; Basit, Abdul W

    2015-11-01

    Three dimensional printing (3D printing) was used to fabricate novel oral drug delivery devices with specialized design configurations. Each device was loaded with multiple actives, with the intent of applying this process to the production of personalized medicines tailored at the point of dispensing or use. A filament extruder was used to obtain drug-loaded--paracetamol (acetaminophen) or caffeine--filaments of poly(vinyl alcohol) with characteristics suitable for use in fused-deposition modeling 3D printing. A multinozzle 3D printer enabled fabrication of capsule-shaped solid devices containing the drug with different internal structures. The design configurations included a multilayer device, with each layer containing drug, whose identity was different to the drug in the adjacent layers, and a two-compartment device comprising a caplet embedded within a larger caplet (DuoCaplet), with each compartment containing a different drug. Raman spectroscopy was used to collect 2-dimensional hyper spectral arrays across the entire surface of the devices. Processing of the arrays using direct classical least-squares component matching to produce false color representations of distribution of the drugs was used. This clearly showed a definitive separation between the drug layers of paracetamol and caffeine. Drug release tests in biorelevant bicarbonate media showed unique drug release profiles dependent on the macrostructure of the devices. In the case of the multilayer devices, release of both paracetamol and caffeine was simultaneous and independent of drug solubility. With the DuoCaplet design, it was possible to engineer either rapid drug release or delayed release by selecting the site of incorporation of the drug in the device; the lag-time for release from the internal compartment was dependent on the characteristics of the external layer. The study confirms the potential of 3D printing to fabricate multiple-drug containing devices with specialized design

  15. Measuring Uptake Coefficients and Henry's Law Constants of Gas-Phase Species with Models for Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.

  16. Tramadol loading, release and iontophoretic characteristics of ion-exchange fiber.

    PubMed

    Gao, Yanan; Yuan, Jing; Liu, Hongzhuo; Yang, Yang; Hou, Yanlong; Li, Sanming

    2014-04-25

    The objective of this study was to investigate the drug loading, release and iontophoretic characteristics of strong acidic ion-exchange fiber, using tramadol hydrochloride as a model drug. The complex of charged model drug and ion-exchange fiber was studied as a new approach to achieve controlled drug delivery. Structural characterization of the fiber was elucidated through different approaches including differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscope (SEM) and infrared spectroscopy (IR). And the mechanism of drug binding into ion-exchange fibers was validated to be ion-exchange. The drug loading into and release from ion-exchange fiber were affected by the concentration, volume and valence of the counter-ions in the external solution. Iontophoresis could significantly increase the delivery rate and amount of transdermal drug, and the iontophoretic dose could be easily controlled by adjusting the current intensity and the amount of release medium. The tramadol could be steadily released both from the drug-loaded fiber and drug solution when applied the iontophoretic method, which was in disagreement with the previous publications. As a drug reservoir, ion-exchange fiber has good regularity of drug loading, release and iontophoretic characteristics.

  17. Going clean: structure and dynamics of peptides in the gas phase and paths to solvation

    NASA Astrophysics Data System (ADS)

    Baldauf, Carsten; Rossi, Mariana

    2015-12-01

    The gas phase is an artificial environment for biomolecules that has gained much attention both experimentally and theoretically due to its unique characteristic of providing a clean room environment for the comparison between theory and experiment. In this review we give an overview mainly on first-principles simulations of isolated peptides and the initial steps of their interactions with ions and solvent molecules: a bottom up approach to the complexity of biological environments. We focus on the accuracy of different methods to explore the conformational space, the connections between theory and experiment regarding collision cross section evaluations and (anharmonic) vibrational spectra, and the challenges faced in this field.

  18. Release characteristics of flavor from spray-dried powder in boiling water and during rice cooking.

    PubMed

    Shiga, Hirokazu; Yoshii, Hidefumi; Taguchi, Rumiko; Nishiyama, Taiji; Furuta, Takeshi; Linko, Pekka

    2003-02-01

    The release characteristics of flavor in boiling water and the flavor retention in the rice after cooking were investigated by using spray dried powder in encapsulated in or emulsified with d-limonene or ethyl n-hexanoate in cyclodextrin and maltodextrin, or in gum arabic and maltodextrin. The behavior of flavor release into the boiling water was well simulated by Avrami's equation. The retention of d-limonene and ethyl n-hexanoate in cooked rice was correlated in each case with the flavor amount of spray-dried powder added.

  19. The distribution characteristics of pollutants released at different cross-sectional positions of a river.

    PubMed

    Huang, Heqing; Chen, Guang; Zhang, Qian-Feng

    2010-05-01

    The distribution characteristics of heavier or lighter pollutants released at different cross-sectional positions of a wide river is investigated with a well-tested three-dimensional numerical model of gravity flows based on Reynolds-Averaged Navier-Stokes equations and turbulence k-epsilon model. By focusing on investigating the influences of flow and buoyancy on pollutants, it is found that while carrying by the river flow downstream: i) a heavier pollutant released from the cross-sectional side position, forms transverse oscillation between two banks with decreased amplitude, i.e. forms kind of helical flow pattern along the straight part of channel bed; ii) a heavier pollutant released from the cross-sectional middle position, forms collapse oscillation in the middle of the straight channel part with reduced amplitude; iii) in the downstream sinuous channel, heavier pollutant is of higher concentration on the outer side of channel bends; iv) a light pollutant released from the cross-sectional side position, slips partly to the other side of the river, resulting in higher concentrations on two sides of the channel top; v) a light pollutant released from the cross-sectional middle position, splits into two parts symmetrically along two sides of the channel top; vi) in the downstream sinuous channel, light pollutant presents higher concentration on the inner side of channel bends. These findings may assist in cost-effective scientific countermeasures to be taken for accidental or planned pollutant releases into a river.

  20. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.

    2015-01-01

    N-hydroxysuccinimide (NHS) esters have been used for gas-phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ɛ-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas phase, where they are shown to be reactive, and the solution phase, where they are not regarded as reactive with NHS esters.

  1. Para-Hydrogen-Enhanced Gas-Phase Magnetic Resonance Imaging

    SciTech Connect

    Bouchard, Louis-S.; Kovtunov, Kirill V.; Burt, Scott R.; Anwar,M. Sabieh; Koptyug, Igor V.; Sagdeev, Renad Z.; Pines, Alexander

    2007-02-23

    Herein, we demonstrate magnetic resonance imaging (MRI) inthe gas phase using para-hydrogen (p-H2)-induced polarization. A reactantmixture of H2 enriched in the paraspin state and propylene gas is flowedthrough a reactor cell containing a heterogenized catalyst, Wilkinson'scatalyst immobilized on modified silica gel. The hydrogenation product,propane gas, is transferred to the NMR magnet and is spin-polarized as aresult of the ALTADENA (adiabatic longitudinal transport and dissociationengenders net alignment) effect. A polarization enhancement factor of 300relative to thermally polarized gas was observed in 1D1H NMR spectra.Enhancement was also evident in the magnetic resonance images. This isthe first demonstration of imaging a hyperpolarized gaseous productformed in a hydrogenation reaction catalyzed by a supported catalyst.This result may lead to several important applications, includingflow-through porous materials, gas-phase reaction kinetics and adsorptionstudies, and MRI in low fields, all using catalyst-free polarizedfluids.

  2. The physical chemistry of Criegee intermediates in the gas phase

    SciTech Connect

    Osborn, David L.; Taatjes, Craig A.

    2015-07-24

    Here, carbonyl oxides, also known as Criegee intermediates, are key intermediates in both gas phase ozonolysis of unsaturated hydrocarbons in the troposphere and solution phase organic synthesis via ozonolysis. Although the study of Criegee intermediates in both arenas has a long history, direct studies in the gas phase have only recently become possible through new methods of generating stabilised Criegee intermediates in sufficient quantities. This advance has catalysed a large number of new experimental and theoretical investigations of Criegee intermediate chemistry. In this article we review the physical chemistry of Criegee intermediates, focusing on their molecular structure, spectroscopy, unimolecular and bimolecular reactions. These recent results have overturned conclusions from some previous studies, while confirming others, and have clarified areas of investigation that will be critical targets for future studies. In addition to expanding our fundamental understanding of Criegee intermediates, the rapidly expanding knowledge base will support increasingly predictive models of their impacts on society.

  3. Ionization of vitamin C in gas phase: Theoretical study.

    PubMed

    Abyar, Fatemeh; Farrokhpour, Hossein

    2016-07-01

    In this work, the gas phase ionization energies and photoelectron spectra of four important conformers of vitamin C were calculated. Symmetry adapted cluster/configuration interaction methodology employing the single and double excitation operators (SAC-CI SD-R) along with D95++(d,p) basis set were used for the calculations. Thermochemistry calculations were also performed on all possible conformers of vitamin C to find the relative stability of conformers in the gas phase. The calculated ionization bands of each conformer were assigned by calculating the contribution of natural bonding orbital (NBO) in the calculated canonical molecular orbitals involved in the ionization. SAC-CI calculations showed that the first ionization band of vitamin C is related to the π electrons of CC bond of the ring of molecule although, there is the lone electron pairs of oxygen atoms and π electrons of CO bond in the molecule. PMID:27092998

  4. Gas-Phase Studies of Formamidopyrimidine Glycosylase (Fpg) Substrates.

    PubMed

    Kiruba, G S M; Xu, Jiahui; Zelikson, Victoria; Lee, Jeehiun K

    2016-03-01

    Gas-phase thermochemical properties (tautomerism, acidity, and proton affinity) have been measured and calculated for a series of nucleobase derivatives that have not heretofore been examined under vacuum. The studied species are substrates for the enzyme formamidopyrimidine glycosylase (Fpg), which cleaves damaged nucleobases from DNA. The gas-phase results are compared and contrasted to solution-phase data, to afford insight into the Fpg mechanism. Calculations are also used to probe the energetics of various possible mechanisms and to predict isotope effects that could potentially allow for discrimination between different mechanisms. Specifically, (18) O substitution at the ribose O4' is predicted to result in a normal kinetic isotope effect (KIE) for a ring-opening "endocyclic" mechanism and an inverse KIE for a direct base excision "exocyclic" pathway.

  5. The physical chemistry of Criegee intermediates in the gas phase

    DOE PAGESBeta

    Osborn, David L.; Taatjes, Craig A.

    2015-07-24

    Here, carbonyl oxides, also known as Criegee intermediates, are key intermediates in both gas phase ozonolysis of unsaturated hydrocarbons in the troposphere and solution phase organic synthesis via ozonolysis. Although the study of Criegee intermediates in both arenas has a long history, direct studies in the gas phase have only recently become possible through new methods of generating stabilised Criegee intermediates in sufficient quantities. This advance has catalysed a large number of new experimental and theoretical investigations of Criegee intermediate chemistry. In this article we review the physical chemistry of Criegee intermediates, focusing on their molecular structure, spectroscopy, unimolecular andmore » bimolecular reactions. These recent results have overturned conclusions from some previous studies, while confirming others, and have clarified areas of investigation that will be critical targets for future studies. In addition to expanding our fundamental understanding of Criegee intermediates, the rapidly expanding knowledge base will support increasingly predictive models of their impacts on society.« less

  6. Gas-Phase Studies of Formamidopyrimidine Glycosylase (Fpg) Substrates.

    PubMed

    Kiruba, G S M; Xu, Jiahui; Zelikson, Victoria; Lee, Jeehiun K

    2016-03-01

    Gas-phase thermochemical properties (tautomerism, acidity, and proton affinity) have been measured and calculated for a series of nucleobase derivatives that have not heretofore been examined under vacuum. The studied species are substrates for the enzyme formamidopyrimidine glycosylase (Fpg), which cleaves damaged nucleobases from DNA. The gas-phase results are compared and contrasted to solution-phase data, to afford insight into the Fpg mechanism. Calculations are also used to probe the energetics of various possible mechanisms and to predict isotope effects that could potentially allow for discrimination between different mechanisms. Specifically, (18) O substitution at the ribose O4' is predicted to result in a normal kinetic isotope effect (KIE) for a ring-opening "endocyclic" mechanism and an inverse KIE for a direct base excision "exocyclic" pathway. PMID:26894440

  7. Spectroscopic studies of cold, gas-phase biomolecular ions

    NASA Astrophysics Data System (ADS)

    Rizzo, Thomas R.; Stearns, Jaime A.; Boyarkin, Oleg V.

    While the marriage of mass spectrometry and laser spectroscopy is not new, developments over the last few years in this relationship have opened up new horizons for the spectroscopic study of biological molecules. The combination of electrospray ionisation for producing large biological molecules in the gas phase together with cooled ion traps and multiple-resonance laser schemes are allowing spectroscopic investigation of individual conformations of peptides with more than a dozen amino acids. Highly resolved infrared spectra of single conformations of such species provide important benchmarks for testing the accuracy of theoretical calculations. This review presents a number of techniques employed in our laboratory and in others for measuring the spectroscopy of cold, gas-phase protonated peptides. We show examples that demonstrate the power of these techniques and evaluate their extension to still larger biological molecules.

  8. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters

    PubMed Central

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.

    2015-01-01

    N-hydroxysuccinimide (NHS) esters have been used for gas phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ε-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas-phase, where they are shown to be reactive, and the solution-phase, where they are not regarded as reactive with NHS esters. PMID:25338221

  9. Gas phase fractionation method using porous ceramic membrane

    DOEpatents

    Peterson, Reid A.; Hill, Jr., Charles G.; Anderson, Marc A.

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  10. The Nucleoside Uridine Isolated in the Gas Phase**

    PubMed Central

    Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2016-01-01

    Herein we present the first experimental observation of the isolated nucleoside uridine, placed in the gas phase by laser ablation and characterized by Fourier transform microwave techniques. Free from the bulk effects of their native environments, anti/C2’-endo-g+ conformation has been revealed as the most stable form of uridine. Intramolecular hydrogen bonds involving uracil and ribose moieties have been found to play an important role in the stabilization of the nucleoside. PMID:25683559

  11. The nucleoside uridine isolated in the gas phase.

    PubMed

    Peña, Isabel; Cabezas, Carlos; Alonso, José L

    2015-03-01

    Herein we present the first experimental observation of the isolated nucleoside uridine, placed in the gas phase by laser ablation and characterized by Fourier transform (FT) microwave techniques. Free from the bulk effects of their native environments, anti/C2'-endo-g+ conformation has been revealed as the most stable form of uridine. Intramolecular hydrogen bonds involving uracil and ribose moieties have been found to play an important role in the stabilization of the nucleoside.

  12. Gas phase chemical detection with an integrated chemical analysis system

    SciTech Connect

    CASALNUOVO,STEPHEN A.; FRYE-MASON,GREGORY CHARLES; KOTTENSTETTE,RICHARD; HELLER,EDWIN J.; MATZKE,CAROLYN M.; LEWIS,PATRICK R.; MANGINELL,RONALD P.; BACA,ALBERT G.; HIETALA,VINCENT M.

    2000-04-12

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample preconcentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described.

  13. Modeling Gas-Phase Chemistry in Cometary Atmospheres

    NASA Astrophysics Data System (ADS)

    Boice, D. C.

    Gas-phase chemistry is central to understand the physics and chemistry of comets. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, leading to the plethora of molecules and atoms seen in cometary atmospheres. The relevant physico-chemical processes are identified within a modeling framework to understand observations and in situ measurements of comets (e.g., Halley, Borrelly, Hyakutake, Hale-Bopp, Tempel 1, Wild 2) and to provide valuable insights into the intrinsic properties of their nuclei. Details of these processes are presented, from the collision-dominated inner coma to the solar wind interaction region. This extensive modeling effort to investigate these important cometary processes is highly relevant to ground-based observations of comets and past, on going, and future spacecraft missions to these primitive objects.Gas-phase chemistry is central to understand the physics and chemistry of comets. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, leading to the plethora of molecules and atoms seen in cometary atmospheres. The relevant physico-chemical processes are identified within a modeling framework to understand observations and in situ measurements of comets (e.g., Halley, Borrelly, Hyakutake, Hale-Bopp, Tempel 1, Wild 2) and to provide valuable insights into the intrinsic properties of their nuclei. Details of these processes are presented, from the collision-dominated inner coma to the solar wind interaction region. This extensive modeling effort to investigate these important cometary processes is highly relevant to ground-based observations of comets and past, on going, and future spacecraft missions to these primitive objects.

  14. Gas-phase diffusivity and tortuosity of structured soils.

    PubMed

    Kristensen, Andreas H; Thorbjørn, Anne; Jensen, Maria P; Pedersen, Mette; Moldrup, Per

    2010-06-25

    Modeling gas-phase diffusion of volatile contaminants in the unsaturated zone relies on soil-gas diffusivity models often developed for repacked and structureless soil columns. These suffer from the flaw of not reflecting preferential diffusion through voids and fractures in the soil, thus possibly causing an underestimation of vapor migration towards building foundations and vapor intrusion to indoor environments. We measured the ratio of the gas diffusion coefficient in soil and in free air (D(p)/D(0)) for 42 variously structured, intact, and unsaturated soil cores taken from 6 Danish sites. Whilst the results from structureless fine sand were adequately described using previously proposed models, results that were obtained from glacial clay till and limestone exhibited a dual-porosity behavior. Instead, these data were successfully described using a dual-porosity model for gas-phase diffusivity, considering a presence of drained fractures surrounded by a lower diffusivity matrix. Based on individual model fits, the tortuosity of fractures in till and limestone was found to be highest in samples with a total porosity <40%, suggesting soil compaction to affect the geometry of the fractures. In summary, this study highlights a potential order of magnitude underestimation associated in the use of classical models for prediction of subsurface gas-phase diffusion coefficients in heterogeneous and fractured soils.

  15. Effect of solvents on physical properties and release characteristics of monolithic hydroxypropylmethylcellulose matrix granules and tablets.

    PubMed

    Cao, Qing-Ri; Choi, Yun-Woong; Cui, Jing-Hao; Lee, Beom-Jin

    2005-04-01

    Effect of solvents on physical characteristics and release characteristics of monolithic acetaminophen (APAP) hydroxypropylmethylcellulose (HPMC) matrix granules and tablets were examined. Various types and amounts of solvents were employed for granulation and cOAting. APAP and other excipients were mixed and were then wet-granulated in a high-speed mixer. The dried granules were then directly compressed and film-coated with low viscosity grade HPMC. As the amount of water increased, the size of granules also increased, showing more spherical and regular shape. However, manufacturing problems such as capping and lamination in tableting occurred when water was used alone as a granulating solvent. The physical properties of HPMC matrix granules were not affected by the batch size. The initial release rate as well as the amount of APAP dissolved had a tendency to decrease as the water level increased. Addition of nonaqueous solvent like ethanol to water resulted in good physical properties of granules. When compared to water/ethanol as a coating solvent, the release rate of film-coated HPMC matrix tablets was more sensitive to the conditions of coating and drying in methylene chloride/ethanol. Most of all, monolithic HPMC matrix tablet when granulated in ethanol/water showed dual release with about 50% drug release immediately within few minutes followed by extended release. It was evident that the type and amount of solvents (mainly water and ethanol) were very important for wet granulation and film-coating of monolithic HPMC matrix tablet, because the plastic deforming and fragmenting properties of material were changed by the different strengths of the different solvents. PMID:15918526

  16. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    PubMed

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-01

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  17. Gas-phase NMR technique for studying the thermolysis of materials: thermal decomposition of ammonium perfluorooctanoate.

    PubMed

    Krusic, Paul J; Roe, D Christopher

    2004-07-01

    The kinetics of the thermal decomposition of ammonium perfluorooctanoate (APFO) has been studied by high-temperature gas-phase nuclear magnetic resonance spectroscopy over the temperature range 196-234 degrees C. We find that APFO cleanly decomposes by first-order kinetics to give the hydrofluorocarbon 1-H-perfluoroheptane and is completely decomposed (>99%) in a matter of minutes at the upper limit of this temperature range. Based on the temperature dependence of the measured rate constants, we find that the enthalpy and entropy of activation are DeltaH++ = 150 +/- 11 kJ mol(-1) and DeltaS++ = 3 +/- 23 J mol(-)(1) deg(-1). These activation parameters may be used to calculate the rate of APFO decomposition at the elevated temperatures (350-400 degrees C) at which fluoropolymers are processed; for example, at 350 degrees C the half-life for APFO is estimated to be less than 0.2 s. Our studies provide the fundamental parameters involved in the decomposition of the ammonium salt of perfluorooctanoic acid and indicate the utility of gas-phase NMR for thermolysis studies of a variety of materials that release compounds that are volatile at the temperature of decomposition and that contain an NMR-active nucleus.

  18. Measurements of gas phase reactive nitrogen during two wildfires in Colorado

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Chen, X.; Hecobian, A.; Kreidenweis, S. M.; Collett, J. L.; Schichtel, B. A.

    2012-12-01

    Biomass burning represents an important source of particles and trace gases to the global atmosphere. In addition to carbon species, nitrogen compounds are abundant in biomass burning emissions, with NOx, N2O, and N2 released primarily during flaming combustion, and NH3, amines and nitriles associated with smoldering combustion. Although nitrogen emissions from fires have been documented from laboratory and satellite measurements, and during prescribed burns, few direct measurements have been made during major wildfires. In this presentation, we summarize measurements of gas-phase nitrogen species observed during two wildfires in northern Colorado in 2012: the Hewlett Gulch Fire and High Park Fire. The Hewlett Gulch Fire was directly northwest of Fort Collins, CO and covered 3,100 hectares, while the High Park fire was significantly larger (35,300 hectares), encompassing the Hewlett Gulch Fire and coming within 3-4 km of our laboratory at Colorado State University. Emissions from both fires reached our laboratory, where measurements were made of NOx, NOy, NH3, and additional, unspeciated gas-phase nitrogen compounds. Smoke impacts at our facility ranged from background conditions to periods with very heavy smoke, depending on the local meteorology. We observed dramatic increases in measured concentrations during periods influenced by the fires.

  19. Gas-phase chemistry of ruthenium and rhodium carbonyl complexes.

    PubMed

    Cao, Shiwei; Wang, Yang; Qin, Zhi; Fan, Fangli; Haba, Hiromitsu; Komori, Yukiko; Wu, Xiaolei; Tan, Cunmin; Zhang, Xin

    2016-01-01

    Short-lived ruthenium and rhodium isotopes were produced from a (252)Cf spontaneous fission (SF) source. Their volatile carbonyl complexes were formed in gas-phase reactions in situ with the carbon-monoxide containing gas. A gas-jet system was employed to transport the volatile carbonyls from the recoil chamber to the chemical separation apparatus. The gas-phase chemical behaviors of these carbonyl complexes were studied using an online low temperature isothermal chromatography (IC) technique. Long IC columns made up of FEP Teflon were used to obtain the chemical information of the high-volatile Ru and Rh carbonyls. By excluding the influence of precursor effects, short-lived isotopes of (109-110)Ru and (111-112)Rh were used to represent the chemical behaviours of Ru and Rh carbonyls. Relative chemical yields of about 75% and 20% were measured for Ru(CO)5 and Rh(CO)4, respectively, relative to the yields of KCl aerosols transported in Ar gas. The adsorption enthalpies of ruthenium and rhodium carbonyl complexes on a Teflon surface were determined to be around ΔHads = -33(+1)(-2) kJ mol(-1) and -36(+2)(-1) kJ mol(-1), respectively, by fitting the breakthrough curves of the corresponding carbonyl complexes with a Monte Carlo simulation program. Different from Mo and Tc carbonyls, a small amount of oxygen gas was found to be not effective for the chemical yields of ruthenium and rhodium carbonyl complexes. The general chemical behaviors of short-lived carbonyl complexes of group VI-IX elements were discussed, which can be used in the future study on the gas-phase chemistry of superheavy elements - Bh, Hs, and Mt carbonyls. PMID:26573993

  20. Fluorescence Spectroscopy of Gas-phase Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Thomas, J. D.; Witt, A. N.

    2006-01-01

    The purpose of this investigation was to produce fluorescence spectra of polycyclic aromatic hydrocarbon (PAH) molecules in the gas-phase for comparison with blue luminescence (BL) emission observed in astrophysical sources Vijh et al. (2004, 2005a,b). The BL occurs roughly from 350 to 450 nm, with a sharp peak near 380 nm. PAHs with three to four rings, e.g. anthracene and pyrene, were found to produce luminescence in the appropriate spectral region, based on existing studies. Relatively few studies of the gas-phase fluorescence of PAHs exist; those that do exist have dealt primarily with the same samples commonly available for purchase such as pyrene and anthracene. In an attempt to understand the chemistry of the nebular environment we also obtained several nitrogen substituted PAHs from our colleagues at NASA Ames. In order to simulate the astrophysical environment we also took spectra by heating the PAHs in a flame. The flame environment counteracts the formation of eximers and permits the spectroscopy of free-flying neutral molecules. Experiments with coal tar demonstrate that fluorescence spectroscopy reveals primarily the presence of the smallest molecules, which are most abundant and which possess the highest fluorescence efficiencies. One gas-phase PAH that seems to fit the BL spectrum most closely is phenanthridine. In view of the results from the spectroscopy of coal tar, a compound containing a mixture of PAHs ranging from small to very large PAH molecules, we can not preclude the presence of larger PAHs in interstellar sources exhibiting BL.

  1. Gas-phase chemiluminescent reactions of ozone with monoterpenes

    NASA Astrophysics Data System (ADS)

    Arora, P. K.; Chatha, J. P. S.; Vohra, K. G.

    1983-08-01

    Chemiluminescent reactions of ozone with monoterpenes such as linallol, geraniol, d-limonene and α-pinene have been studied in the gas phase at low pressures. Methylglyoxal phosphorescence has been observed in the first two reactions. Emissions from HCHO( 1A 2) and glyoxal ( 3A u) are observed in the reaction of ozone with d-limonene and formation of excited glyoxal is found to be first order in ozone. The reaction of ozone with β-pinene gives rise to emission from a α-dicarbonyl compound and this is found to be first order in ozone. The mechanisms for the formation of excited species are proposed.

  2. Neurotransmitters in the Gas Phase: La-Mb Studies

    NASA Astrophysics Data System (ADS)

    Cabezas, C.; Mata, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    LA-MB-FTMW spectroscopy combines laser ablation with Fourier transform microwave spectroscopy in supersonic jets overcoming the problems of thermal decomposition associated with conventional heating methods. We present here the results on LA-MB-FTMW studies of some neurotransmitters. Six conformers of dopamine, four of adrenaline, five of noradrenaline and three conformers of serotonin have been characterized in the gas phase. The rotational and nuclear quadrupole coupling constants extracted from the analysis of the rotational spectrum are directly compared with those predicted by ab initio methods to achieve the conclusive identification of different conformers and the experimental characterization of the intramolecular forces at play which control conformational preferences.

  3. Gas Phase Chemical Detection with an Integrated Chemical Analysis System

    SciTech Connect

    Baca, Albert G.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Susan L.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carloyn M.; Reno, John L.; Sasaki, Darryl Y.; Schubert, W. Kent

    1999-07-08

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample concentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described. The design and performance of novel micromachined acoustic wave devices, with the potential for improved chemical sensitivity, are also described.

  4. Multiscale Aspects of Modeling Gas-Phase Nanoparticle Synthesis

    PubMed Central

    Buesser, B.; Gröhn, A.J.

    2013-01-01

    Aerosol reactors are utilized to manufacture nanoparticles in industrially relevant quantities. The development, understanding and scale-up of aerosol reactors can be facilitated with models and computer simulations. This review aims to provide an overview of recent developments of models and simulations and discuss their interconnection in a multiscale approach. A short introduction of the various aerosol reactor types and gas-phase particle dynamics is presented as a background for the later discussion of the models and simulations. Models are presented with decreasing time and length scales in sections on continuum, mesoscale, molecular dynamics and quantum mechanics models. PMID:23729992

  5. Release characteristics of single-wall carbon nanotubes during manufacturing and handling

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Kotake, M.; Hashimoto, N.; Gotoh, K.; Kishimoto, A.

    2013-04-01

    We investigated the release characteristics of single-wall carbon nanotubes (CNTs) synthesized by a pilot-scale plant. In addition to on-site aerosol measurements at the pilot-scale plant where the CNTs were synthesized, harvested, and packed, we conducted dustiness tests by vortex shaking and by transferring CNTs from one bowl to another. In the results of the on-site aerosol measurements, slight increases in the concentration were observed by aerosol monitoring instruments in the enclosure where CNTs were harvested and packed. In filter samples collected in this enclosure, micron-sized CNT clusters were observed by electron microscopy analysis. For samples collected outside the enclosure or during other processes, no CNTs were observed. The concentrations of elemental carbon at all locations were lower than the proposed occupational exposure limits of CNTs. The results of the dustiness tests revealed that submicron-sized particles were dominant in the number concentration measured by aerosol monitoring instruments, whereas micron-sized CNT clusters were mainly observed by electron microscopy analysis. The results of dustiness tests indicate that these CNTs have a low release characteristic. The lower drop impact of CNT clusters due to their lower bulk density resulted in lower CNT release from falling CNTs.

  6. Modifying release characteristics from 3D printed drug-eluting products.

    PubMed

    Boetker, Johan; Water, Jorrit Jeroen; Aho, Johanna; Arnfast, Lærke; Bohr, Adam; Rantanen, Jukka

    2016-07-30

    This work describes an approach to modify the release of active compound from a 3D printed model drug product geometry intended for flexible dosing and precision medication. The production of novel polylactic acid and hydroxypropyl methylcellulose based feed materials containing nitrofurantoin for 3D printing purposes is demonstrated. Nitrofurantoin, Metolose® and polylactic acid were successfully co-extruded with up to 40% Metolose® content, and subsequently 3D printed into model disk geometries (ø10mm, h=2mm). Thermal analysis with differential scanning calorimetry and solid phase identification with Raman spectroscopy showed that nitrofurantoin remained in its original solid form during both hot-melt extrusion and subsequent 3D printing. Rheological measurements of the different compositions showed that the flow properties were sensitive to the amount of undissolved particles present in the formulation. Release of nitrofurantoin from the disks was dependent on Metolose® loading, with higher accumulated release observed for higher Metolose® loads. This work shows the potential of custom-made, drug loaded feed materials for 3D printing of precision drug products with tailored drug release characteristics.

  7. Modifying release characteristics from 3D printed drug-eluting products.

    PubMed

    Boetker, Johan; Water, Jorrit Jeroen; Aho, Johanna; Arnfast, Lærke; Bohr, Adam; Rantanen, Jukka

    2016-07-30

    This work describes an approach to modify the release of active compound from a 3D printed model drug product geometry intended for flexible dosing and precision medication. The production of novel polylactic acid and hydroxypropyl methylcellulose based feed materials containing nitrofurantoin for 3D printing purposes is demonstrated. Nitrofurantoin, Metolose® and polylactic acid were successfully co-extruded with up to 40% Metolose® content, and subsequently 3D printed into model disk geometries (ø10mm, h=2mm). Thermal analysis with differential scanning calorimetry and solid phase identification with Raman spectroscopy showed that nitrofurantoin remained in its original solid form during both hot-melt extrusion and subsequent 3D printing. Rheological measurements of the different compositions showed that the flow properties were sensitive to the amount of undissolved particles present in the formulation. Release of nitrofurantoin from the disks was dependent on Metolose® loading, with higher accumulated release observed for higher Metolose® loads. This work shows the potential of custom-made, drug loaded feed materials for 3D printing of precision drug products with tailored drug release characteristics. PMID:26987609

  8. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    PubMed

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.

  9. Characteristics and kinetics simulation of controlled-release KMnO4 for phenol remediation.

    PubMed

    Xiong, Houfeng; Huo, Mingxin; Zhou, Dandan; Dong, Shuangshi; Zou, Donglei

    2016-01-01

    Controlled-release KMnO4 (CRP) technology has been recently developed as an improved, highly efficient technique in wastewater treatment. In this study, batch-style experiments were conducted to evaluate this technology. The release characteristics of CRP in distilled water and the reaction between CRP and phenol were studied and fitted using MATLAB software. Results indicated that in distilled water, temperature (T) and pH value had a larger effect than dissolved oxygen (DO) concentration on the release characteristics of KMnO4, and this relationship can be accurately described by the following kinetic equation: logQ = log[1.141T(0.152)(pH)(-1.0536)(DO)(0.4674)] + [0.0048T(0.3756)(pH)(1.8854)(DO)(-0.0509)]logt. KMnO4 released from CRP can effectively degrade phenol-contaminated water with different concentrations. A simulated equation (r = -dCA/dt = -15.1705 CA(0.6840)CP(-0.1406)) characterizing phenol degradation was developed using MATLAB software. Comparison between the theoretical phenol removal rates deduced by the above two equations and the initial phenol concentration as well as the CRP dosage with the experimental data indicates that the differences between them were less than 20%. The results indicate phenol can be effectively removed by CRP and smaller dosage of KMnO4 was required compared with literature values. The models can provide guidance for CRP application in real polluted sites, which can lower the cost for site remediation. PMID:27508369

  10. Characteristics and kinetics simulation of controlled-release KMnO4 for phenol remediation.

    PubMed

    Xiong, Houfeng; Huo, Mingxin; Zhou, Dandan; Dong, Shuangshi; Zou, Donglei

    2016-01-01

    Controlled-release KMnO4 (CRP) technology has been recently developed as an improved, highly efficient technique in wastewater treatment. In this study, batch-style experiments were conducted to evaluate this technology. The release characteristics of CRP in distilled water and the reaction between CRP and phenol were studied and fitted using MATLAB software. Results indicated that in distilled water, temperature (T) and pH value had a larger effect than dissolved oxygen (DO) concentration on the release characteristics of KMnO4, and this relationship can be accurately described by the following kinetic equation: logQ = log[1.141T(0.152)(pH)(-1.0536)(DO)(0.4674)] + [0.0048T(0.3756)(pH)(1.8854)(DO)(-0.0509)]logt. KMnO4 released from CRP can effectively degrade phenol-contaminated water with different concentrations. A simulated equation (r = -dCA/dt = -15.1705 CA(0.6840)CP(-0.1406)) characterizing phenol degradation was developed using MATLAB software. Comparison between the theoretical phenol removal rates deduced by the above two equations and the initial phenol concentration as well as the CRP dosage with the experimental data indicates that the differences between them were less than 20%. The results indicate phenol can be effectively removed by CRP and smaller dosage of KMnO4 was required compared with literature values. The models can provide guidance for CRP application in real polluted sites, which can lower the cost for site remediation.

  11. Protein release from electrospun nonwovens: improving the release characteristics through rational combination of polyester blend matrices with polidocanol.

    PubMed

    Puhl, Sebastian; Ilko, David; Li, Linhao; Holzgrabe, Ulrike; Meinel, Lorenz; Germershaus, Oliver

    2014-12-30

    Nonwoven scaffolds consisting of poly-ε-caprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA) and polidocanol (PD), and loaded with lysozyme crystals were prepared by electrospinning. The composition of the matrix was varied and the effect of PD content in binary mixtures, and of PD and PLGA content in ternary mixtures regarding processability, fiber morphology, water sorption, swelling and drug release was investigated. Binary PCL/PD blend nonwovens showed a PD-dependent increase in swelling of up to 30% and of lysozyme burst release of up to 45% associated with changes of the fiber morphology. Furthermore, addition of free PD to the release medium resulted in a significant increase of lysozyme burst release from pure PCL nonwovens from approximately 2-35%. Using ternary PCL/PD/PLGA blends, matrix degradation could be significantly improved over PCL/PD blends, resulting in a biphasic release of lysozyme with constant release over 9 weeks, followed by constant release with a reduced rate over additional 4 weeks. Based on these results, protein release from PCL scaffolds is improved by blending with PD due to improved lysozyme desorption from the polymer surface and PD-dependent matrix swelling.

  12. DSMC Convergence for Microscale Gas-Phase Heat Conduction

    NASA Astrophysics Data System (ADS)

    Rader, D. J.; Gallis, M. A.; Torczynski, J. R.

    2004-11-01

    The convergence of Bird's Direct Simulation Monte Carlo (DSMC) method is investigated for gas-phase heat conduction at typical microscale conditions. A hard-sphere gas is confined between two fully accommodating walls of unequal temperature. Simulations are performed for small system and local Knudsen numbers, so continuum flow exists outside the Knudsen layers. The ratio of the DSMC thermal conductivity to the Chapman-Enskog value in the central region is determined for over 200 combinations of time step, cell size, and number of computational molecules per cell. In the limit of vanishing error, this ratio approaches 1.000 to within the correlation uncertainty. In the limit of infinite computational molecules per cell, the difference from unity depends quadratically on time step and cell size as these quantities become small. The coefficients of these quadratic terms are in good agreement with Green-Kubo values found by Hadjiconstantinou, Garcia, and co-workers. These results demonstrate that DSMC can accurately simulate microscale gas-phase heat conduction. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Gas-phase molecular structure and energetics of anionic silicates

    NASA Astrophysics Data System (ADS)

    Gomes, José R. B.; Cordeiro, M. Natália D. S.; Jorge, Miguel

    2008-09-01

    The gas-phase stabilities of linear, branched and cyclic silicates made of up to five silicon atoms were studied with density functional theory (DFT). The starting geometries for the DFT calculations at the B3LYP/6-311+G(2d,2p) level of theory were obtained from classical molecular dynamics simulations. We have observed that geometric parameters and charges are mainly affected by the degree of deprotonation. Charges on Si atoms are also influenced by their degree of substitution. The enthalpy of deprotonation of the neutral species was found to decrease with the size of the molecule, while the average deprotonation enthalpy of highly charged compounds increased with molecular size. Furthermore, the formation of rings in highly charged silicates is enthalpically preferred to chain growth. These observations result from two competing effects: the easier distribution of negative charge in silicates with low charge density and the strong intramolecular repulsions present in silicates with high charge density. As a consequence, highly charged silicates in the gas phase tend to be as small and as highly condensed as possible, which is in line with experimental observations from solution NMR.

  14. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  15. Gas phase oxidation downstream of a catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Anderson, D. N.

    1979-01-01

    Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.

  16. Star formation and gas phase history of the cosmic web

    NASA Astrophysics Data System (ADS)

    Snedden, Ali; Coughlin, Jared; Phillips, Lara Arielle; Mathews, Grant; Suh, In-Saeng

    2016-01-01

    We present a new method of tracking and characterizing the environment in which galaxies and their associated circumgalactic medium evolve. We have developed a structure finding algorithm that uses the rate of change of the density gradient to self-consistently parse and follow the evolution of groups/clusters, filaments and voids in large-scale structure simulations. We use this to trace the complete evolution of the baryons in the gas phase and the star formation history within each structure in our simulated volume. We vary the structure measure threshold to probe the complex inner structure of star-forming regions in poor clusters, filaments and voids. We find that the majority of star formation occurs in cold, condensed gas in filaments at intermediate redshifts (z ˜ 3). We also show that much of the star formation above a redshift z = 3 occurs in low-contrast regions of filaments, but as the density contrast increases at lower redshift, star formation switches to the high-contrast regions, or inner parts, of filaments. Since filaments bridge the void and cluster regions, it suggests that the majority of star formation occurs in galaxies in intermediate density regions prior to the accretion on to groups/clusters. We find that both filaments and poor clusters are multiphase environments distinguishing themselves by different distributions of gas phases.

  17. Determination of gas phase and surface reactions in plasma polymerization

    NASA Astrophysics Data System (ADS)

    Hegemann, Dirk

    2009-10-01

    Using macroscopic kinetics, the reactions within the gas phase are governed by the reaction parameter power input per gas flow W/F, which corresponds to a specific energy, while reactions by energetic particle bombardment at the growing film surface are rather related to power input W alone. Assuming activation reactions, the mass deposition rate per gas flow can be described by an Arrhenius-like approach: [ RmF=G( -EaW / W F . - F ) ] Mixtures of hydrocarbons (C2H4) and reactive gases (CO2, N2+H2) were examined within low pressure RF plasmas. Thus, functional a-C:H:O or a-C:H:N plasma coatings result. At increasing energy input it is found that the deposited mass shows a deviation from the above equation, commonly related to energetic particle interactions. However, using the same range of W/F with varying power input W, it was found that the observed drop in deposition rate scales solely with energy input W/F for a-C:H:O, i.e. depending on plasma chemistry. a-C:H:N films, on the other hand, show both chemical and physical influences on the film growth. Hence, gas phase reactions such as a change of film-forming species play a major role in plasma polymerization.

  18. Preconceptual design of the gas-phase decontamination demonstration cart

    SciTech Connect

    Munday, E.B.

    1993-12-01

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF{sub 6}, which is generated from the reaction of ClF{sub 3} with the uranium deposits, by use of NaF traps.

  19. Thermochemical aspects of proton transfer in the gas phase.

    PubMed

    Gal, J F; Maria, P C; Raczyńska, E D

    2001-07-01

    The beginning of the twentieth century saw the development of new theories of acidity and basicity, which are currently well accepted. The thermochemistry of proton transfer in the absence of solvent attracted much interest during this period, because of the fundamental importance of the process. Nevertheless, before the 1950s, few data were available, either from lattice energy evaluations or from calculations using the emerging molecular orbital theory. Advances in mass spectrometry during the last 40 years allowed studies of numerous systems with better accuracy. Thousands of accurate gas-phase acidities or basicities are now available, for simple atomic and molecular systems and for large biomolecules. The intrinsic effect of structure on the Brønsted basic or acidic properties of molecules and the influence of solvents have been unravelled. In this tutorial, the basics of the thermodynamic principles involved are given, and the mass spectrometric techniques are briefly reviewed. Advances in the design and measurements of gas-phase superacids and superbases are described. Recent studies concerning biomolecules are also evoked.

  20. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    NASA Astrophysics Data System (ADS)

    Dunmore, R. E.; Hopkins, J. R.; Lidster, R. T.; Lee, J. D.; Evans, M. J.; Rickard, A. R.; Lewis, A. C.; Hamilton, J. F.

    2015-09-01

    Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London), which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20-30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  1. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    NASA Astrophysics Data System (ADS)

    Dunmore, R. E.; Hopkins, J. R.; Lidster, R. T.; Lee, J. D.; Evans, M. J.; Rickard, A. R.; Lewis, A. C.; Hamilton, J. F.

    2015-03-01

    Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London), which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20-30% of the total hydrocarbon mixing ratio but comprise more than 50% of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that, 60% of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50% of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for but, very significant under-reporting of diesel related hydrocarbons; an underestimation of a factor ~ 4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  2. A simple and rapid method for standard preparation of gas phase extract of cigarette smoke.

    PubMed

    Higashi, Tsunehito; Mai, Yosuke; Noya, Yoichi; Horinouchi, Takahiro; Terada, Koji; Hoshi, Akimasa; Nepal, Prabha; Harada, Takuya; Horiguchi, Mika; Hatate, Chizuru; Kuge, Yuji; Miwa, Soichi

    2014-01-01

    Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE). CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS). An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤ 15 mg/ml) showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥ 20 mg/ml), the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml.

  3. Preparation, Characterization and in vivo Evaluation of Simple Monolithic Ethylcellulose-coated Pellets Containing Topiramate with Biphasic Release Characteristics.

    PubMed

    Gong, Wei; Wang, Yuli; Shao, Shuai; Xie, Si; Shan, Li; Yang, Meiyan; Gao, Chunsheng; Zhong, Wu

    2016-01-01

    In our previous study, polyvinylpyrrolidone (PVP) was used both as a binder and a pore-former to prepare ethylcellulose (EC)-coated pellets to deliver topiramate (TPM) for a controlled release profile. The objective of this work was to further optimize the formulation and evaluate the in vivo profiles of TPM sustained-release pellets. Similar to the previous formulation with no binder, the in vitro drug release of TPM sustained-release pellets with 50% PVP binder in drug layer was sensitive to pore-former PVP level ranged from 27.0% to 29.0%. The higher the level of PVP was, the quicker release rate in vitro was. Moreover, when the proportion of poreformer PVP decreased, the Cmax decreased, and the tmax and mean residence time of TPM coated pellets were both prolonged. The in vitro release profile of optimal formulation showed biphasic release characteristics similar to reference formulation Trokendi XR(®), i.e., involving immediate release of TPM in initial release stage followed by a sustained release up to 24 h. Moreover, the impact of the pH of release medium on the drug release rate of TPM sustained-release pellets was not significant. The release mechanism of TPM from the sustained-release pellets might be the interaction of diffusion (coating-film) and corrosion (drug layer). The in vivo pharmacokinetics results showed the TPM sustained-release pellets had the similar in vivo pattern compared with Trokendi XR(®). These studies provide valuable basis for further development of TPM sustained-release pellets.

  4. Preparation, Characterization and in vivo Evaluation of Simple Monolithic Ethylcellulose-coated Pellets Containing Topiramate with Biphasic Release Characteristics.

    PubMed

    Gong, Wei; Wang, Yuli; Shao, Shuai; Xie, Si; Shan, Li; Yang, Meiyan; Gao, Chunsheng; Zhong, Wu

    2016-01-01

    In our previous study, polyvinylpyrrolidone (PVP) was used both as a binder and a pore-former to prepare ethylcellulose (EC)-coated pellets to deliver topiramate (TPM) for a controlled release profile. The objective of this work was to further optimize the formulation and evaluate the in vivo profiles of TPM sustained-release pellets. Similar to the previous formulation with no binder, the in vitro drug release of TPM sustained-release pellets with 50% PVP binder in drug layer was sensitive to pore-former PVP level ranged from 27.0% to 29.0%. The higher the level of PVP was, the quicker release rate in vitro was. Moreover, when the proportion of poreformer PVP decreased, the Cmax decreased, and the tmax and mean residence time of TPM coated pellets were both prolonged. The in vitro release profile of optimal formulation showed biphasic release characteristics similar to reference formulation Trokendi XR(®), i.e., involving immediate release of TPM in initial release stage followed by a sustained release up to 24 h. Moreover, the impact of the pH of release medium on the drug release rate of TPM sustained-release pellets was not significant. The release mechanism of TPM from the sustained-release pellets might be the interaction of diffusion (coating-film) and corrosion (drug layer). The in vivo pharmacokinetics results showed the TPM sustained-release pellets had the similar in vivo pattern compared with Trokendi XR(®). These studies provide valuable basis for further development of TPM sustained-release pellets. PMID:26563941

  5. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  6. Gas-phase synthesis of magnetic metal/polymer nanocomposites.

    PubMed

    Starsich, Fabian H L; Hirt, Ann M; Stark, Wendelin J; Grass, Robert N

    2014-12-19

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields. PMID:25422410

  7. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    SciTech Connect

    Nathan Robert Classen

    2002-12-31

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular {beta} C-H insertion mechanism.

  8. Conformational Study of Taurine in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Cortijo, Vanessa; Sanz, M. Eugenia; López, Juan C.; Alonso, José L.

    2009-08-01

    The conformational preferences of the amino sulfonic acid taurine (NH2-CH2-CH2-SO3H) have been investigated in the gas phase by laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) in the 6-14 GHz frequency range. One conformer has been observed, and its rotational, centrifugal distortion, and hyperfine quadrupole coupling constants have been determined from the analysis of its rotational spectrum. Comparison of the experimental constants with those calculated theoretically identifies the detected conformer unambiguously. The observed conformer of taurine is stabilized by an intramolecular hydrogen bond O-H···N between the hydrogen of the sulfonic acid group and the nitrogen atom of the amino group.

  9. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  10. Silicon Nanowire-Based Devices for Gas-Phase Sensing

    PubMed Central

    Cao, Anping; Sudhölter, Ernst J.R.; de Smet, Louis C.P.M.

    2014-01-01

    Since their introduction in 2001, SiNW-based sensor devices have attracted considerable interest as a general platform for ultra-sensitive, electrical detection of biological and chemical species. Most studies focus on detecting, sensing and monitoring analytes in aqueous solution, but the number of studies on sensing gases and vapors using SiNW-based devices is increasing. This review gives an overview of selected research papers related to the application of electrical SiNW-based devices in the gas phase that have been reported over the past 10 years. Special attention is given to surface modification strategies and the sensing principles involved. In addition, future steps and technological challenges in this field are addressed. PMID:24368699

  11. Infrared photodissociation spectroscopy of protonated neurotransmitters in the gas phase

    NASA Astrophysics Data System (ADS)

    MacLeod, N. A.; Simons, J. P.

    2007-03-01

    Protonated neurotransmitters have been produced in the gas phase via a novel photochemical scheme: complexes of the species of interest, 1-phenylethylamine, 2-amino-1-phenylethanol and the diastereo-isomers, ephedrine and pseudoephedrine, with a suitable proton donor, phenol (or indole), are produced in a supersonic expansion and ionized by resonant two photon ionization of the donor. Efficient proton transfer generates the protonated neurotransmitters, complexed to a phenoxy radical. Absorption of infrared radiation, and subsequent evaporation of the phenoxy tag, coupled with time of flight mass spectrometry, provides vibrational spectra of the protonated (and also hydrated) complexes for comparison with the results of quantum chemical computation. Comparison with the conformational structures of the neutral neurotransmitters (established previously) reveals the effect of protonation on their structure. The photochemical proton transfer strategy allows spectra to be recorded from individual laser shots and their quality compares favourably with that obtained using electro-spray or matrix assisted laser desorption ion sources.

  12. Optical properties of anthocyanins in the gas phase

    NASA Astrophysics Data System (ADS)

    Ge, Xiaochuan; Calzolari, Arrigo; Baroni, Stefano

    2015-01-01

    The gas-phase optical properties of the six most common anthocyanins are studied using time-dependent density-functional theory. Different anthocyanins are classified into three groups, according to the number of low-frequency peaks displayed in the UV-vis spectrum. This behavior is analyzed in terms of one-electron transitions and interaction effects, the latter being rationalized using a suitable double-pole model. Moving from PBE to hybrid exchange-correlation functionals results in a hypsochromic shift of the optical gap. While the colors thus predicted do not quite match those observed in solution, thus highlighting the importance of solvation effects, adoption of hybrid functionals remarkably determines a greater chromatic uniformity of different molecules, in qualitative agreement with experimental evidence in acidic solutions.

  13. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Qi, Nan; LeVan, M. Douglas; Finn, Cory K.; Finn, John E.; Luna, Bernadette (Technical Monitor)

    2000-01-01

    A regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an. adsorbent column into a closed oxidation loop is under development through cooperative R&D between Vanderbilt University and NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. Recent work has focused on fabrication and operation of a RAPS breadboard at NASA Ames, and on measurement of adsorption isotherm data for several important organic compounds at Vanderbilt. These activities support the use and validation of RAPS modeling software also under development at Vanderbilt, which will in turn be used to construct a prototype system later in the project.

  14. Ion yields for some salts in MALDI: mechanism for the gas-phase ion formation from preformed ions.

    PubMed

    Moon, Jeong Hee; Shin, Young Sik; Bae, Yong Jin; Kim, Myung Soo

    2012-01-01

    Preformed ion emission is the main assumption in one of the prevailing theories for peptide and protein ion formation in matrix-assisted laser desorption ionization (MALDI). Since salts are in preformed ion forms in the matrix-analyte mixture, they are ideal systems to study the characteristics of preformed ion emission. In this work, a reliable method to measure the ion yield (IY) in MALDI was developed and used for a solid salt benzyltriphenylphosphonium chloride and two room-temperature ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate. IY for the matrix (α-cyano-4-hydroxycinnamic acid, CHCA) was also measured. Taking 1 pmol salts in 25 nmol CHCA as examples, IYs for three salts were similar, (4-8) × 10(-4), and those for CHCA were (0.8-1.2) × 10(-7). Even though IYs for the salts and CHCA remained virtually constant at low analyte concentration, they decreased as the salt concentrations increased. Two models, Model 1 and Model 2, were proposed to explain low IYs for the salts and the concentration dependences. Both models are based on the fact that the ion-pair formation equilibrium is highly shifted toward the neutral ion pair. In Model 1, the gas-phase analyte cations were proposed to originate from the same cations in the solid that were dielectrically screened from counter anions by matrix neutrals. In Model 2, preformed ions were assumed to be released from the solid sample in the form of neutral ion pairs and the anions in the ion pairs were assumed to be eliminated via reactions with matrix-derived cations.

  15. Surfactants from the gas phase may promote cloud droplet formation.

    PubMed

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.

  16. Surfactants from the gas phase may promote cloud droplet formation.

    PubMed

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere. PMID:23382211

  17. Gas-Phase Dissociation Pathways of Multiply Charged Peptide Clusters

    PubMed Central

    Jurchen, John C.; Garcia, David E.; Williams, Evan R.

    2005-01-01

    Numerous studies of cluster formation and dissociation have been conducted to determine properties of matter in the transition from the condensed phase to the gas phase using materials as diverse as atomic nuclei, noble gasses, metal clusters, and amino acids. Here, electrospray ionization is used to extend the study of cluster dissociation to peptides including leucine enkephalin with 7–19 monomer units and 2–5 protons, and somatostatin with 5 monomer units and 4 protons under conditions where its intramolecular disulfide bond is either oxidized or reduced. Evaporation of neutral monomers and charge separation by cluster fission are the competing dissociation pathways of both peptides. The dominant fission product for all leucine enkephalin clusters studied is a proton-bound dimer, presumably due to the high gas-phase stability of this species. The branching ratio of the fission and evaporation processes for leucine enkephalin clusters appears to be determined by the value of z2/n for the cluster where z is the charge and n the number of monomer units in the cluster. Clusters with low and high values of z2/n dissociate primarily by evaporation and cluster fission respectively, with a sharp transition between dissociation primarily by evaporation and primarily by fission measured at a z2/n value of ~0.5. The dependence of the dissociation pathway of a cluster on z2/n is similar to the dissociation of atomic nuclei and multiply charged metal clusters indicating that leucine enkephalin peptide clusters exist in a state that is more disordered, and possibly fluid, rather than highly structured in the dissociative transition state. The branching ratio, but not the dissociation pathway of [somatostatin5 + 4H]4+ is altered by the reduction of its internal disulfide bond indicating that monomer conformational flexibility plays a role in peptide cluster dissociation. PMID:14652186

  18. GAS-PHASE FLAME SYNTHESIS AND PROPERTIES OF MAGNETIC IRON OXIDE NANOPARTICLES WITH REDUCED OXIDATION STATE

    PubMed Central

    Kumfer, Benjamin M; Shinoda, Kozo; Jeyadevan, Balachandran; Kennedy, Ian M

    2010-01-01

    Iron oxide nanoparticles of reduced oxidation state, mainly in the form of magnetite, have been synthesized utilizing a new continuous, gas-phase, nonpremixed flame method using hydrocarbon fuels. This method takes advantage of the characteristics of the inverse flame, which is produced by injection of oxidizer into a surrounding flow of fuel. Unlike traditional flame methods, this configuration allows for the iron particle formation to be maintained in a more reducing environment. The effects of flame temperature, oxygen-enrichment and fuel dilution (i.e. the stoichiometric mixture fraction), and fuel composition on particle size, Fe oxidation state, and magnetic properties are evaluated and discussed. The crystallite size, Fe(II) fraction, and saturation magnetization were all found to increase with flame temperature. Flames of methane and ethylene were used, and the use of ethylene resulted in particles containing metallic Fe(0), in addition to magnetite, while no Fe(0) was present in samples synthesized using methane. PMID:20228941

  19. High resolution ion mobility measurements for gas phase proteins: correlation between solution phase and gas phase conformations

    NASA Astrophysics Data System (ADS)

    Hudgins, Robert R.; Woenckhaus, Jürgen; Jarrold, Martin F.

    1997-11-01

    Our high resolution ion mobility apparatus has been modified by attaching an electrospray source to perform measurements for biological molecules. While the greater resolving power permits the resolution of more conformations for BPTI and cytochrome c, the resolved features are generally much broader than expected for a single rigid conformation. A major advantage of the new experimental configuration is the much gentler introduction of ions into the drift tube, so that the observed gas phase conformations appear to more closely reflect those present in solution. For example, it is possible to distinguish between the native state of cytochrome c and the methanol-denatured form on the basis of the ion mobility measurements; the mass spectra alone are not sensitive enough to detect this change. Thus this approach may provide a quick and sensitive tool for probing the solution phase conformations of biological molecules.

  20. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    NASA Astrophysics Data System (ADS)

    Poppendieck, D. G.; Hubbard, H. F.; Weschler, C. J.; Corsi, R. L.

    Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m -2, with most of the carbonyls being of lower molecular weight (C 1-C 4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m -2, with a greater fraction of the BOBPs being heavier carbonyls (C 5-C 9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor

  1. Permanganate gel (PG) for groundwater remediation: compatibility, gelation, and release characteristics.

    PubMed

    Lee, Eung Seok; Olson, Pamela R; Gupta, Neha; Solpuker, Utku; Schwartz, Franklin W; Kim, Yongje

    2014-02-01

    Permanganate (MnO4(-)) is a strong oxidant that is widely used for treating chlorinated ethylenes in groundwater. This study aims to develop hyper-saline MnO4(-) solution (MnO4(-) gel; PG) that can be injected into aquifers via wells, slowly gelates over time, and slowly release MnO4(-) to flowing water. In this study, compatibility and miscibility of gels, such as chitosan, aluminosilicate, silicate, and colloidal silica gels, with MnO4(-) were tested. Of these gels, chitosan was reactive with MnO4(-). Aluminosilicates were compatible but not readily miscible with MnO4(-). Silicates and colloidal silica were both compatible and miscible with MnO4(-), and gelated with addition of KMnO4 granules. Colloidal silica has low initial viscosity (<15cP), exhibited delayed gelation characteristics with the lag times ranging from 0 to 200min. Release of MnO4(-) from the colloidal silica-based PG gel occurred in a delayed fashion, with maximum duration of 24h. These results suggested that colloidal silica can be used to create PG or delayed-gelling forms containing other oxidants which can be used for groundwater remediation.

  2. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics

    PubMed Central

    Ahmed, Osama AA; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid–liquid phase separation method, according to the Box–Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance. PMID:25670883

  3. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.

    PubMed

    Donaldson, D J; Valsaraj, Kalliat T

    2010-02-01

    The air-water interface in atmospheric water films of aerosols and hydrometeors (fog, mist, ice, rain, and snow) presents an important surface for the adsorption and reaction of many organic trace gases and gaseous reactive oxidants (hydroxyl radical (OH(.)), ozone (O(3)), singlet oxygen (O(2)((1)Delta(g))), nitrate radicals (NO(3)(.)), and peroxy radicals (RO(2)(.)). Knowledge of the air-water interface partition constant of hydrophobic organic species is necessary for elucidating the significance of the interface in atmospheric fate and transport. Various methods of assessing both experimental and theoretical values of the thermodynamic partition constant and adsorption isotherm are described in this review. Further, the reactivity of trace gases with gas-phase oxidants (ozone and singlet oxygen) at the interface is summarized. Oxidation products are likely to be more water-soluble and precursors for secondary organic aerosols in hydrometeors. Estimation of characteristic times shows that heterogeneous photooxidation in water films can compete effectively with homogeneous gas-phase reactions for molecules in the atmosphere. This provides further support to the existing thesis that reactions of organic compounds at the air-water interface should be considered in gas-phase tropospheric chemistry.

  4. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro

    PubMed Central

    2014-01-01

    Background Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Methods Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants’ surfaces were observed with electron microscope. Results The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a “nest-shaped” way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day’s release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Conclusions Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was

  5. Sociolegal characteristics and parole infractions among Israeli released prisoners during electronic monitoring.

    PubMed

    Shoham, Efrat; Yehosha-Stern, Shirley; Efodi, Rotem

    2013-07-01

    The objective of this study is to examine the part played by sociolegal characteristics such as ethnic background, family status, or criminal past in the rate of infractions among ex-prisoners in Electronic Monitoring (EM) Programs. In addition, it focuses on the nature of the formal decisions made by community supervision agents regarding such infractions and their correlation with the sociolegal characteristics of the participants. The research population included all prisoners on license (i.e., prisoners who have been granted conditional early release) who took part in the EM project from mid-2007 until mid-2009 (24 months), altogether 155 participants. The data show no significant correlation between the number of infractions and the participant's sociolegal background. In spite of the fact that the EM coordinators have extensive discretionary power, which is likely to lead to discrimination attributable to variables such as ethnicity, this research shows that the most efficacious variable for explaining formal responses is an objective one-the number of infractions.

  6. Lactational changes in oxytocin release, intramammary pressure and milking characteristics in dairy cows.

    PubMed

    Mayer, H; Bruckmaier, R; Schams, D

    1991-05-01

    Two experiments were conducted to investigate possible changes of milking-related oxytocin release (Expt 1) and of intramammary pressure and milking characteristics (Expt 2) throughout entire lactations in German Braunvieh dairy cows. Mean oxytocin concentrations after stimulation at onset of milking increased from 18.3 +/- 15.9 to 30.7 +/- 24.1 pg/ml in Expt 1 and decreased from 23.9 +/- 17.6 to 15.4 +/- 9.1 pg/ml in Expt 2, respectively, but remained above the level necessary to elicit complete milk ejection in both trials. Premilking baseline intramammary pressure had its maximum in early lactation until about month 4 and then decreased to approximately 50% of its initial level. Ejection pressure followed a similar pattern, but dropped only to approximately 75% of its maximum. This was due to the constant elevation of pressure increase, reaching its highest level in late lactation. Time from commencement of stimulation until maximum pressure exceeded 1 min in almost all instances even in early lactation and increased throughout lactation. Despite the normal decrease of milk yield average milk flow fell only slightly while maximum flow rate remained almost constant. Pressure increase, milk yield and milk flow were not different after 1 min and after extended stimulation. Thus there were no indications of a decreasing sensitivity of the milk ejection reflex during lactation, and milking characteristics were positively affected by intense teat stimulation. Suggestions for practical dairying are made.

  7. Full field gas phase velocity measurements in microgravity

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Yanis, William

    1995-01-01

    Measurement of full-field velocities via Particle Imaging Velocimetry (PIV) is common in research efforts involving fluid motion. While such measurements have been successfully performed in the liquid phase in a microgravity environment, gas-phase measurements have been beset by difficulties with seeding and laser strength. A synthesis of techniques developed at NASA LeRC exhibits promise in overcoming these difficulties. Typical implementation of PIV involves forming the light from a pulsed laser into a sheet that is some fraction of a millimeter thick and 50 or more millimeters wide. When a particle enters this sheet during a pulse, light scattered from the particle is recorded by a detector, which may be a film plane or a CCD array. Assuming that the particle remains within the boundaries of the sheet for the second pulse and can be distinguished from neighboring particles, comparison of the two images produces an average velocity vector for the time between the pulses. If the concentration of particles in the sampling volume is sufficiently large but the particles remain discrete, a full field map may be generated.

  8. Surface plasmon sensing of gas phase contaminants using optical fiber.

    SciTech Connect

    Thornberg, Steven Michael; White, Michael I.; Rumpf, Arthur Norman; Pfeifer, Kent Bryant

    2009-10-01

    Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H{sub 2}, H{sub 2}S, and moisture using a single-ended optical fiber mode. Data demonstrate that results can be obtained and sensitivity is adequate in a dosimetric mode that allows periodic monitoring of system atmospheres. Modeling studies were performed to direct the design of the sensor probe for optimized dimensions and to allow simultaneous monitoring of several constituents with a single sensor fiber. Testing of the system demonstrates the ability to detect 70mTorr partial pressures of H{sub 2} using this technique and <280 {micro}Torr partial pressures of H{sub 2}S. In addition, a multiple sensor fiber has been demonstrated that allows a single fiber to measure H{sub 2}, H{sub 2}S, and H{sub 2}O without changing the fiber or the analytical system.

  9. Gas-phase chemistry of alkylcarbonate anions and radicals

    NASA Astrophysics Data System (ADS)

    Soldi-Lose, Héloïse; Schröder, Detlef; Schwarz, Helmut

    2008-02-01

    Alkylcarbonate anions and radicals ROCOO-/ (R = H, CH3, C2H5, i-C3H7, and t-C4H9) are investigated in the gas phase by means of mass spectrometry and ab initio calculations. Structural parameters and energies are obtained at the MP2/6-311++G(3df,3pd)//MP2/6-311++G(d,p) level of theoryE Standard enthalpies of formation for the anions and radicals are determined via atomization energies and isodesmic reactions using the CBS-Q method. Further, alkylcarbonate anions are probed by metastable ion and collisional activation experiments, and the chemistry of the neutral radicals is investigated by charge-reversal and neutralization-reionization mass spectrometry. Although decarboxylation dominates the unimolecular reactivity of the species for both charge states, some other interesting features are observed, particularly for the anions, such as the formation of the CO3- radical anion or the presence of ionic fragments formed via hydrogen atom transfer.

  10. Gas phase plasma impact on phenolic compounds in pomegranate juice.

    PubMed

    Herceg, Zoran; Kovačević, Danijela Bursać; Kljusurić, Jasenka Gajdoš; Jambrak, Anet Režek; Zorić, Zoran; Dragović-Uzelac, Verica

    2016-01-01

    The aim of the study was to evaluate the effect of gas phase plasma on phenolic compounds in pomegranate juice. The potential of near infrared reflectance spectroscopy combined with partial least squares for monitoring the stability of phenolic compounds during plasma treatment was explored, too. Experiments are designed to investigate the effect of plasma operating conditions (treatment time 3, 5, 7 min; sample volume 3, 4, 5 cm(3); gas flow 0.75, 1, 1.25 dm(3) min(-1)) on phenolic compounds and compared to pasteurized and untreated pomegranate juice. Pasteurization and plasma treatment resulted in total phenolic content increasing by 29.55% and 33.03%, respectively. Principal component analysis and sensitivity analysis outputted the optimal treatment design with plasma that could match the pasteurized sample concerning the phenolic stability (5 min/4 cm(3)/0.75 dm(3) min(-1)). Obtained results demonstrate the potential of near infrared reflectance spectroscopy that can be successfully used to evaluate the quality of pomegranate juice upon plasma treatment considering the phenolic compounds.

  11. Gas-phase study of Fe sup + -benzyne with alkanes

    SciTech Connect

    Yongqing Huang; Freiser, B.S. )

    1989-03-29

    The unimolecular chemistry of Fe{sup +}-benzyne and its reactivity with small alkanes in the gas phase are studied by Fourier transform mass spectrometry (FTMS). Collision-induced dissociation of Fe{sup +}-benzyne yields benzyne loss exclusively. In contrast, photodissociation of Fe{sup +}-benzyne yields not only cleavage of benzyne from Fe{sup +}, but competitive loss of C{sub 2}H{sub 2} and C{sub 4}H{sub 2} as well. The Fe{sup +}-benzyne is formed from chlorobenzene by loss of HCl. This dehydrochlorination of chlorobenzene also occurs in secondary reactions up to six times forming products of the type Fe{sup +}-polyphenylene. Fe{sup +}-benzyne reacts with alkanes larger than methane to form a wide variety of product ions by mechanisms including hydrogenation and methanation of the benzyne ligand. All of the product ions can be explained by mechanisms based on Fe{sup +} insertion into either C-C or C-H bonds as the reaction-initiating step, followed by either alkyl or H migration from Fe{sup +} onto the benzyne ligand or, alternatively, by the migratory insertion of benzyne into a metal-carbon or metal-hydrogen bond. Photodissociation and ion-molecule reaction studies yield a value for the metal-ligand bond energy of D{degree} (Fe{sup +}-benzyne) = 76 {plus minus} 10 kcal/mol.

  12. Gas-phase electronic spectrum of the indole radical cation

    NASA Astrophysics Data System (ADS)

    Chalyavi, N.; Catani, K. J.; Sanelli, J. A.; Dryza, V.; Bieske, E. J.

    2015-08-01

    The visible and near-UV electronic spectrum of the indole radical cation is measured in the gas phase by photodissociation of indole+-Ar and indole+-He complexes in a tandem mass spectrometer. A series of resolved vibronic transitions extending from 610 to 460 nm are assigned to the D2 ← D0 band system, while weak transitions between 390 and 360 nm are assigned to the D3 ← D0 system, and a stronger, broad, unresolved absorption between 350 and 300 nm is attributed to the D4 ← D0 system. Time-dependent density functional theory calculations are used to assign vibronic structure of the D2 ← D0 band system, and show that the main active vibrational modes correspond to in-plane ring deformations. The strongest D2 ← D0 vibronic transitions of indole+-He do not correspond with any catalogued diffuse interstellar bands, even considering band displacements of up to 50 cm-1possibly caused by the attached He atom.

  13. Project ARGO: Gas phase formation in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Waligora, James M.; Norfleet, William T.; Kumar, K. Vasantha

    1993-01-01

    The ARGO study investigated the reduced incidence of joint pain decompression sickness (DCS) encountered in microgravity as compared with an expected incidence of joint pain DCS experienced by test subjects in Earth-based laboratories (unit gravity) with similar protocols. Individuals who are decompressed from saturated conditions usually acquire joint pain DCS in the lower extremities. Our hypothesis is that the incidence of joint pain DCS can be limited by a significant reduction in the tissue gas micronuclei formed by stress-assisted nucleation. Reductions in dynamic and kinetic stresses in vivo are linked to hypokinetic and adynamic conditions of individuals in zero g. We employed the Doppler ultrasound bubble detection technique in simulated microgravity studies to determine quantitatively the degree of gas phase formation in the upper and lower extremities of test subjects during decompression. We found no evidence of right-to-left shunting through pulmonary vasculature. The volume of gas bubble following decompression was examined and compared with the number following saline contrast injection. From this, we predict a reduced incidence of DCS on orbit, although the incidence of predicted mild DCS still remains larger than that encountered on orbit.

  14. Microwave spectrum and gas phase structure of maleimide

    NASA Astrophysics Data System (ADS)

    Pejlovas, Aaron M.; Oncer, Onur; Kang, Lu; Kukolich, Stephen G.

    2016-01-01

    The rotational spectrum of maleimide was measured in the 5-12 GHz range using a Flygare-Balle type, pulsed-beam Fourier transform microwave spectrometer. Rotational transitions were measured for the parent, all unique singly substituted 13C isotopologues, and an sbnd ND, deuterium substituted isotopologue. The parent (or normal isotopologue) rotational constants, centrifugal distortion constants, and quadrupole coupling constants are A = 6815.3251(12) MHz, B = 2361.85011(64) MHz, C = 1754.32750(64) MHz, DJ = 0.232(24) kHz, DJK = 0.546(54) kHz, 1.5χaa = 2.4227(53) MHz, and 0.25(χbb-χcc) = 1.3679(15) MHz. A best fit gas phase structure was determined using the experimental rotational constants of the isotopologues and some parameters from calculations. The inertial defect is Δ = -0.054 amu Å2, indicating a planar structure for maleimide, with no large amplitude motions observed on the sbnd NH hydrogen atom. Calculations using B3LYP/aug-cc-pVTZ provided rotational constants which are much closer (within 1-2%) to the experimental values compared to the MP2/aug-cc-pVTZ calculated values.

  15. An empirical model for gas phase acidity and basicity estimation.

    PubMed

    You, H; Kim, G E; Na, C H; Lee, S; Lee, C J; Cho, K-H; Akiyama, Y; Ishida, T; No, K T

    2014-01-01

    Gas phase acidity and basicity estimation models have been developed for acidic and basic functional groups of amino acid side-chains and also for a number of small organic molecules. The acidic functional groups include aliphatic and aromatic alcohol, and aliphatic and aromatic carboxylic acid, and the basic functional groups include aliphatic, aromatic and hetero-aromatic amines, and also pyridino-, pyrazolo- and imidazolo-groupings. The models are described in terms of a linear combination of descriptors that highly influence reactivity at the reaction centres of the functional groups. In order to describe the chemical environments of the deprotonating and protonating sites, atomic descriptors such as the effective atomic electronegativity and effective atomic polarizability of the atoms in the reaction field and the electrostatic potentials at the reaction sites have been introduced. The coefficient of determination (r(2)) of each model is above 0.8, apart from the imidazole model. The models are readily applicable, ranging from simple organic molecules to proteins.

  16. Experimental Determination of Gas Phase Thermodynamic Properties of Bimolecular Complexes

    NASA Astrophysics Data System (ADS)

    Hansen, Anne S.; Maroun, Zeina; Mackeprang, Kasper; Kjaergaard, Henrik G.

    2016-06-01

    Accurate determination of the atmospheric abundance of hydrogen bound bimolecular complexes is necessary, as hydrogen bonds are partly responsible for the formation and growth of aerosol particles. The abundance of a complex is related to the Gibbs free energy of complex formation (Δ G), which is often obtained from quantum chemical calculations that rely on calculated values of the enthalpy (Δ H) and entropy (Δ S) of complex formation. However, calculations of Δ H and in particular Δ S are associated with large uncertainties, and accurate experimental values are therefore crucial for theoretical benchmarking studies. Infrared measurements of gas phase hydrogen bound complexes were performed in the 300 to 373 K range, and lead to a purely experimental determination of Δ H using the van't Hoff equation. Equilibrium constants were determined by combining an experimental and calculated OH-stretching intensity, from which values of Δ G and hence Δ S could be determined. Thus we can determine Δ G, Δ H and Δ S for a bimolecular complex. We find that in the 300 to 373 K temperature range the determined Δ H and Δ S values are independent of temperature.

  17. Relating gas phase to solution conformations: Lessons from disordered proteins

    PubMed Central

    Beveridge, Rebecca; Phillips, Ashley S.; Denbigh, Laetitia; Saleem, Hassan M.; MacPhee, Cait E.

    2015-01-01

    In recent years both mass spectrometry (MS) and ion mobility mass spectrometry (IM‐MS) have been developed as techniques with which to study proteins that lack a fixed tertiary structure but may contain regions that form secondary structure elements transiently, namely intrinsically disordered proteins (IDPs). IM‐MS is a suitable method for the study of IDPs which provides an insight to conformations that are present in solution, potentially enabling the analysis of lowly populated structural forms. Here, we describe the IM‐MS data of two IDPs; α‐Synuclein (α‐Syn) which is implicated in Parkinson's disease, and Apolipoprotein C‐II (ApoC‐II) which is involved in cardiovascular diseases. We report an apparent discrepancy in the way that ApoC‐II behaves in the gas phase. While most IDPs, including α‐Syn, present in many charge states and a wide range of rotationally averaged collision cross sections (CCSs), ApoC‐II presents in just four charge states and a very narrow range of CCSs, independent of solution conditions. Here, we compare MS and IM‐MS data of both proteins, and rationalise the differences between the proteins in terms of different ionisation processes which they may adhere to. PMID:25920945

  18. Relating gas phase to solution conformations: Lessons from disordered proteins.

    PubMed

    Beveridge, Rebecca; Phillips, Ashley S; Denbigh, Laetitia; Saleem, Hassan M; MacPhee, Cait E; Barran, Perdita E

    2015-08-01

    In recent years both mass spectrometry (MS) and ion mobility mass spectrometry (IM-MS) have been developed as techniques with which to study proteins that lack a fixed tertiary structure but may contain regions that form secondary structure elements transiently, namely intrinsically disordered proteins (IDPs). IM-MS is a suitable method for the study of IDPs which provides an insight to conformations that are present in solution, potentially enabling the analysis of lowly populated structural forms. Here, we describe the IM-MS data of two IDPs; α-Synuclein (α-Syn) which is implicated in Parkinson's disease, and Apolipoprotein C-II (ApoC-II) which is involved in cardiovascular diseases. We report an apparent discrepancy in the way that ApoC-II behaves in the gas phase. While most IDPs, including α-Syn, present in many charge states and a wide range of rotationally averaged collision cross sections (CCSs), ApoC-II presents in just four charge states and a very narrow range of CCSs, independent of solution conditions. Here, we compare MS and IM-MS data of both proteins, and rationalise the differences between the proteins in terms of different ionisation processes which they may adhere to. PMID:25920945

  19. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    EPA Science Inventory

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen

    Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  20. Molecular characteristics of continuously released DOM during one year of root and leaf litter decomposition

    NASA Astrophysics Data System (ADS)

    Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy

    2013-04-01

    Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and

  1. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    NASA Astrophysics Data System (ADS)

    Dawley, M. Michele; Tanzer, Katrin; Carmichael, Ian; Denifl, Stephan; Ptasińska, Sylwia

    2015-06-01

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C5H4N4O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp - H) anion (C5H3N4O-) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp - NH)-, C4H3N4-/C4HN3O-, C4H2N3-, C3NO-/HC(HCN)CN-, OCN-, CN-, and O-. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  2. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  3. Uridine Nucleoside Thiation: Gas-Phase Structures and Energetics

    NASA Astrophysics Data System (ADS)

    Hamlow, Lucas; Lee, Justin; Rodgers, M. T.; Berden, Giel; Oomens, Jos

    2016-06-01

    The naturally occurring thiated uridine nucleosides, 4-thiouridine (s4Urd) and 2-thiouridine (s2Urd), play important roles in the function and analysis of a variety of RNAs. 2-Thiouridine and its C5 modified analogues are commonly found in tRNAs and are believed to play an important role in codon recognition possibly due to their different structure, which has been shown by NMR to be predominantly C3'-endo. 2-Thiouridine may also play an important role in facilitating nonenzymatic RNA replication and transcription. 4-Thiouridine is a commonly used photoactivatable crosslinker that is often used to study RNA-RNA and RNA-protein cross-linking behavior. Differences in the base pairing between uracil and 4-thiouracil with adenine and guanine are an important factor in their role as a cross linker. The photoactivity of s4Urd may also aid in preventing near-UV lethality in cells. An understanding of their intrinsic structure in the gas-phase may help further elucidate the roles these modified nucleosides play in the regulation of RNAs. In this work, infrared multiple photon dissociation (IRMPD) action spectra of the protonated forms of s2Urd and s4Urd were collected in the IR fingerprint region. Structural information is determined by comparison with theoretical linear IR spectra generated from density functional theory calculations using molecular modeling to generate low-energy candidate structures. Present results are compared with analogous results for the protonated forms of uridine and 2'-deoxyuridine as well as solution phase NMR data and crystal structures.

  4. Gas-phase chemistry of technetium carbonyl complexes.

    PubMed

    Wang, Yang; Qin, Zhi; Fan, Fang-Li; Haba, Hiromitsu; Komori, Yukiko; Cao, Shi-Wei; Wu, Xiao-Lei; Tan, Cun-Min

    2015-05-28

    Gas-phase chemical behaviors of short-lived technetium carbonyl complexes were studied using a low temperature isothermal chromatograph (IC) coupled with a (252)Cf spontaneous fission (SF) source. Fission products recoiled from the (252)Cf SF source were thermalized in a mixed gas containing CO, and then technetium carbonyl complexes were formed from reactions between CO gas and various technetium isotopes. A gas-jet system was employed to transport the volatile carbonyl complexes from a recoil chamber to the IC. Short IC columns made of Fluorinated Ethylene Propylene (FEP) Teflon and quartz were used to obtain chemical information about the technetium carbonyl complexes. The results for the (104)Tc-(106)Tc carbonyl complexes were found to be strongly influenced by the precursors, and showed the chemical behaviors of (104)Mo-(106)Mo carbonyl complexes, respectively. However, (107)Tc and (108)Tc could represent the chemical information of the element technetium due to their high independent yields and the very short half-lives of their precursors (107)Mo and (108)Mo. An adsorption enthalpy of about ΔHads = -43 kJ mol(-1) was determined for the Tc carbonyl complexes on both the Teflon and quartz surfaces by fitting the breakthrough curves of the (107)Tc and (108)Tc carbonyl complexes with a Monte Carlo simulation program. Chemical yields of around 25% were measured for the Tc carbonyl complexes relative to the transport yields obtained with the gas-jet transport of KCl aerosol particles with Ar carrier gas. Furthermore, the influence of a small amount of O2 gas on the yields of the Mo and Tc carbonyl complexes was studied.

  5. Uptake of Organic Gas Phase Species by 1-Methylnaphthalene

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Xia, J.; Davidovits, P.; Jayne, J. T.; Kolb, C. E.; Worsnop, D. R.

    2002-12-01

    Using a droplet train apparatus, the mass accommodation coefficients (α) on 1-methylnapthalene of gas phase m-xylene, ethylbenzene, butylbenzene, α-pinene, γ-terpinene, and 2-methyl-2-hexanol were measured as a function of temperature (265 K to 296 K). 1-methylnapthalene was selected as a surrogate for hydrophobic and aromatic hydrocarbons found in tropospheric aerosols. The mass accommodation coefficients (α) of all the molecules obtained from these measurements exhibit negative temperature dependence. The upper and lower values of α at 265 K and 296 K respectively are: for m-xylene 0.44 and 0.26; for ethylbenzene 0.37 and 0.22; for butylbenzene 0.47 and 0.31; for α-pinene 0.47 and 0.096; for γ-terpinene 0.39 and 0.12; for 2-methyl-2-hexanol 0.44 and 0.26. The uptake measurements also yielded values for the product HDl1/2 for most of the molecules studied (H = Henry's law constant, Dl = liquid phase diffusion coefficient). Using calculated values of Dl the Henry's law constant is obtained, and expressed in the form ln H (M/atm) = -A + B/T. The A and B values for the molecules studied are listed in Table 1. Table 1: A and B values for the Henry's law constant H expressed as ln H (M/atm) = -A + B/T \\ m-xylene: A=7.20, B=4060\\ethylbenzene: A=5.81, B=3660\\butylbenzene: A=16.95, B=7330α-pinene: A=15.69, B=6360\\2-methyl-2-hexanol: A=9.95, B=4760

  6. IV-VI semiconductor lasers for gas phase biomarker detection

    NASA Astrophysics Data System (ADS)

    McCann, Patrick; Namjou, Khosrow; Roller, Chad; McMillen, Gina; Kamat, Pratyuma

    2007-09-01

    A promising absorption spectroscopy application for mid-IR lasers is exhaled breath analysis where sensitive, selective, and speedy measurement of small gas phase biomarker molecules can be used to diagnose disease and monitor therapies. Many molecules such as nitric oxide, ethane, formaldehyde, acetaldehyde, acetone, carbonyl sulfide, and carbon disulfide have been connected to diseases or conditions such as asthma, oxidative stress, breast cancer, lung cancer, diabetes, organ transplant rejection, and schizophrenia. Measuring these and other, yet to be discovered, biomarker molecules in exhaled breath with mid-IR lasers offers great potential for improving health care since such tests are non-invasive, real-time, and do not require expensive consumables or chemical reagents. Motivated by these potential benefits, mid-IR laser spectrometers equipped with presently available cryogenically-cooled IV-VI lasers mounted in compact Stirling coolers have been developed for clinical research applications. This paper will begin with a description of the development of mid-IR laser instruments and their use in the largest known exhaled breath clinical study ever performed. It will then shift to a description of recent work on the development of new IV-VI semiconductor quantum well materials and laser fabrication methods that offer the promise of low power consumption (i.e. efficient) continuous wave emission at room temperature. Taken together, the demonstration of compelling clinical applications with large market opportunities and the clear identification of a viable pathway to develop low cost mid-IR laser instrumentation can create a renewed focus for future research and development efforts within the mid-IR materials and devices area.

  7. Infrared spectroscopy of ionized corannulene in the gas phase

    NASA Astrophysics Data System (ADS)

    Galué, Héctor Alvaro; Rice, Corey A.; Steill, Jeffrey D.; Oomens, Jos

    2011-02-01

    The gas-phase infrared spectra of radical cationic and protonated corannulene were recorded by infrared multiple-photon dissociation (IRMPD) spectroscopy using the IR free electron laser for infrared experiments. Electrospray ionization was used to generate protonated corannulene and an IRMPD spectrum was recorded in a Fourier-transform ion cyclotron resonance mass spectrometer monitoring H-loss as a function of IR frequency. The radical cation was produced by 193-nm UV photoionization of the vapor of corannulene in a 3D quadrupole trap and IR irradiation produces H, H2, and C2Hx losses. Summing the spectral response of the three fragmentation channels yields the IRMPD spectrum of the radical cation. The spectra were analyzed with the aid of quantum-chemical calculations carried out at various levels of theory. The good agreement of theoretical and experimental spectra for protonated corannulene indicates that protonation occurs on one of the peripheral C-atoms, forming an sp3 hybridized carbon. The spectrum of the radical cation was examined taking into account distortions of the C5v geometry induced by the Jahn-Teller effect as a consequence of the degenerate 2E1 ground electronic state. As indicated by the calculations, the five equivalent Cs minima are separated by marginal barriers, giving rise to a dynamically distorted system. Although in general the character of the various computed vibrational bands appears to be in order, only a qualitative match to the experimental spectrum is found. Along with a general redshift of the calculated frequencies, the IR intensities of modes in the 1000-1250 cm-1 region show the largest discrepancy with the harmonic predictions. In addition to CH "in-plane" bending vibrations, these modes also exhibit substantial deformation of the pentagonal inner ring, which may relate directly to the vibronic interaction in the radical cation.

  8. Gas-phase chemistry of technetium carbonyl complexes.

    PubMed

    Wang, Yang; Qin, Zhi; Fan, Fang-Li; Haba, Hiromitsu; Komori, Yukiko; Cao, Shi-Wei; Wu, Xiao-Lei; Tan, Cun-Min

    2015-05-28

    Gas-phase chemical behaviors of short-lived technetium carbonyl complexes were studied using a low temperature isothermal chromatograph (IC) coupled with a (252)Cf spontaneous fission (SF) source. Fission products recoiled from the (252)Cf SF source were thermalized in a mixed gas containing CO, and then technetium carbonyl complexes were formed from reactions between CO gas and various technetium isotopes. A gas-jet system was employed to transport the volatile carbonyl complexes from a recoil chamber to the IC. Short IC columns made of Fluorinated Ethylene Propylene (FEP) Teflon and quartz were used to obtain chemical information about the technetium carbonyl complexes. The results for the (104)Tc-(106)Tc carbonyl complexes were found to be strongly influenced by the precursors, and showed the chemical behaviors of (104)Mo-(106)Mo carbonyl complexes, respectively. However, (107)Tc and (108)Tc could represent the chemical information of the element technetium due to their high independent yields and the very short half-lives of their precursors (107)Mo and (108)Mo. An adsorption enthalpy of about ΔHads = -43 kJ mol(-1) was determined for the Tc carbonyl complexes on both the Teflon and quartz surfaces by fitting the breakthrough curves of the (107)Tc and (108)Tc carbonyl complexes with a Monte Carlo simulation program. Chemical yields of around 25% were measured for the Tc carbonyl complexes relative to the transport yields obtained with the gas-jet transport of KCl aerosol particles with Ar carrier gas. Furthermore, the influence of a small amount of O2 gas on the yields of the Mo and Tc carbonyl complexes was studied. PMID:25920667

  9. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    SciTech Connect

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan E-mail: Sylwia.Ptasinska.1@nd.edu; Carmichael, Ian; Ptasińska, Sylwia E-mail: Sylwia.Ptasinska.1@nd.edu

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  10. Measurement of Gas-phase Acids in Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  11. CHAOS III: Gas-phase Abundances in NGC 5457

    NASA Astrophysics Data System (ADS)

    Croxall, Kevin V.; Pogge, Richard W.; Berg, Danielle A.; Skillman, Evan D.; Moustakas, John

    2016-10-01

    We present Large Binocular Telescope observations of 109 H ii regions in NGC 5457 (M101) obtained with the Multi-Object Double Spectrograph. We have robust measurements of one or more temperature-sensitive auroral emission lines for 74 H ii regions, permitting the measurement of “direct” gas-phase abundances. Comparing the temperatures derived from the different ionic species, we find: (1) strong correlations of T[N ii] with T[S iii] and T[O iii], consistent with little or no intrinsic scatter; (2) a correlation of T[S iii] with T[O iii], but with significant intrinsic dispersion; (3) overall agreement between T[N ii], T[S ii], and T[O ii], as expected, but with significant outliers; (4) the correlations of T[N ii] with T[S iii] and T[O iii] match the predictions of photoionization modeling while the correlation of T[S iii] with T[O iii] is offset from the prediction of photoionization modeling. Based on these observations, which include significantly more observations of lower excitation H ii regions, missing in many analyses, we inspect the commonly used ionization correction factors (ICFs) for unobserved ionic species and propose new empirical ICFs for S and Ar. We have discovered an unexpected population of H ii regions with a significant offset to low values in Ne/O, which defies explanation. We derive radial gradients in O/H and N/O which agree with previous studies. Our large observational database allows us to examine the dispersion in abundances, and we find intrinsic dispersions of 0.074 ± 0.009 in O/H and 0.095 ± 0.009 in N/O (at a given radius). We stress that this measurement of the intrinsic dispersion comes exclusively from direct abundance measurements of H ii regions in NGC 5457.

  12. Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.

    2001-01-01

    Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.

  13. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen.

    PubMed

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N2-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5nm to 10nm increased the ibuprofen loading from 0.74 to 0.85mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8-20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline.

  14. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen.

    PubMed

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N2-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5nm to 10nm increased the ibuprofen loading from 0.74 to 0.85mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8-20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. PMID:26652347

  15. Characteristics of nitrogen release from synthetic zeolite Na-P1 occluding NH4NO3.

    PubMed

    Park, Man; Kim, Jong Su; Choi, Choong Lyeal; Kim, Jang-Eok; Heo, Nam Ho; Komarneni, Sridhar; Choi, Jyung

    2005-08-18

    Zeolites can accommodate a considerable amount of occluded salt such as NH4NO3, which can serve as a good source of slow-release plant nutrient. This study evaluates the kinetics of ion release from NH4NO3-occluded Na-P1 (N-NaP) using a simulated soil solution and deionized water as leaching solutions. The patterns of ion releases were examined as a function of leaching time under both static and continuous-flow conditions for more than one month. Releases of both NH4+ and NO3- from N-NaP were found to be slow and steady under both the above conditions. The soil solution affected the release of NH4+ and NO3- differently, while deionized water released nearly the same equivalents of these ions. This clearly indicates that ion release from salt-occluded zeolite involves two different reactions, cation exchange and dissolution. The kinetics of ion release from occluded NH4NO3 under static condition was best described by the standard Elovich model while the power function model best expressed these under continuous-flow condition. The initial ion release patterns under both conditions exhibited considerable deviation from the simulated models, probably as a result of the presence of hydrated occluded NH4NO3. Flow condition and the presence of electrolytes in leaching solution affected the release kinetics significantly. Release of occluded NH4NO3 was delayed by the presence of the NH4NO3 coated on zeolite crystals. These results indicate that the ion release property of occluded salt could be predicted and controlled. This study clearly shows that NH4NO3-occluded zeolites could be developed as slow release fertilizers. PMID:15963593

  16. Characteristics of nitrogen release from synthetic zeolite Na-P1 occluding NH4NO3.

    PubMed

    Park, Man; Kim, Jong Su; Choi, Choong Lyeal; Kim, Jang-Eok; Heo, Nam Ho; Komarneni, Sridhar; Choi, Jyung

    2005-08-18

    Zeolites can accommodate a considerable amount of occluded salt such as NH4NO3, which can serve as a good source of slow-release plant nutrient. This study evaluates the kinetics of ion release from NH4NO3-occluded Na-P1 (N-NaP) using a simulated soil solution and deionized water as leaching solutions. The patterns of ion releases were examined as a function of leaching time under both static and continuous-flow conditions for more than one month. Releases of both NH4+ and NO3- from N-NaP were found to be slow and steady under both the above conditions. The soil solution affected the release of NH4+ and NO3- differently, while deionized water released nearly the same equivalents of these ions. This clearly indicates that ion release from salt-occluded zeolite involves two different reactions, cation exchange and dissolution. The kinetics of ion release from occluded NH4NO3 under static condition was best described by the standard Elovich model while the power function model best expressed these under continuous-flow condition. The initial ion release patterns under both conditions exhibited considerable deviation from the simulated models, probably as a result of the presence of hydrated occluded NH4NO3. Flow condition and the presence of electrolytes in leaching solution affected the release kinetics significantly. Release of occluded NH4NO3 was delayed by the presence of the NH4NO3 coated on zeolite crystals. These results indicate that the ion release property of occluded salt could be predicted and controlled. This study clearly shows that NH4NO3-occluded zeolites could be developed as slow release fertilizers.

  17. Gas phase synthesis of organophosphorus compounds and the atmosphere of the giant planets

    NASA Astrophysics Data System (ADS)

    Bossard, A. R.; Kamga, R.; Raulin, F.

    1986-08-01

    Spark discharge and UV irradiation experiments were performed to investigate the interactions of CH4 and PH3 and the chemical evolution of PH3-H2O-NH3-CH4 mixtures in the upper atmospheres of the giant planets. The spark discharges were performed with various combinations of CH4-PH3, CH-PH3-H2, C2H6-PH3, and CH3PH2-CH4. PH3 alone and CH4-PH3 were exposed to 147 nm UV light. Sparks released into the hydrocarbon-phosphine mixtures induced the formation of alkylphosphines. The main products were H2, C2H6 and CH3PH2 when the initial mole fraction of PH3 was low. If the fraction of PH3 was high, the main products were He, CH3PH2 and P2H4. A gas phase chemical reaction model was defined for the formation reaction of methylphosphine. UV irradiation of CH4-PH3 usually produced a solid deposit and the constituents H2 and P2H4. The stability of the various reaction products in the Saturn and Jupiter atmospheres is discussed.

  18. Measurements of gas phase acids in diesel exhaust: a relevant source of HNCO?

    PubMed

    Wentzell, Jeremy J B; Liggio, John; Li, Shao-Meng; Vlasenko, A; Staebler, Ralf; Lu, Gang; Poitras, Marie-Josée; Chan, Tak; Brook, Jeffrey R

    2013-07-16

    Gas-phase acids in light duty diesel (LDD) vehicle exhaust were measured using chemical ionization mass spectrometry (CIMS). Fuel based emission factors (EF) and NOx ratios for these species were determined under differing steady state engine operating conditions. The derived HONO and HNO3 EFs agree well with literature values, with HONO being the single most important acidic emission. Of particular importance is the quantification of the EF for the toxic species, isocyanic acid (HNCO). The emission factors for HNCO ranged from 0.69 to 3.96 mg kgfuel(-1), and were significantly higher than previous biomass burning emission estimates. Further ambient urban measurements of HNCO demonstrated a clear relationship with the known traffic markers of benzene and toluene, demonstrating for the first time that urban commuter traffic is a source of HNCO. Estimates based upon the HNCO-benzene relationship indicate that upward of 23 tonnes of HNCO are released annually from commuter traffic in the Greater Toronto Area, far exceeding the amount possible from LDD alone. Nationally, 250 to 770 tonnes of HNCO may be emitted annually from on-road vehicles, likely representing the dominant source of exposure in urban areas, and with emissions comparable to that of biomass burning. PMID:23781923

  19. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    SciTech Connect

    Ali, A.N.; Son, S.F.; Asay, B.W.; Sander, R.K.

    2005-03-15

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6 mm{+-}0.4 mm exists below which ignition by CO{sub 2} laser is not possible at the tested irradiances of 29 W/cm{sup 2} and 38 W/cm{sup 2} for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  20. Gas phase chemistry of bis(pentamethylcyclopentadienyl)samarium

    SciTech Connect

    Marcalo, J.; Matos, A.P. de; Evans, W.

    1996-01-09

    The gas phase chemistry of bis(pentamethylcyclopentadienyl)samarium, (C{sub 5}Me{sub 5}){sub 2}Sm, was studied by Fourier transform ion cyclotron resonance mass spectrometry (FTICR/MS). Positive electron impact (EI) spectra showed the formation of (C{sub 5}Me{sub 5}){sub 2} Sm{sup +}, (C{sub 5}Me{sub 5})Sm{sup +}, and Sm{sup +}. All three ions reacted with (C{sub 5}Me{sub 5}){sub 2}Sm by charge transfer, as verified by double-resonance techniques, and (C{sub 5}Me{sub 5})Sm{sup +} also formed the (C{sub 5}Me{sub 5}){sub 3}Sm{sub 2}{sup +} ion in a condensation reaction with neutral (C{sub 5}Me{sub 5}){sub 2}Sm. The laser desorption/ionization (LDI) spectra showed, in addition to (C{sub 5}Me{sub 5}){sub 2}Sm{sup +}, (C{sub 5}Me{sub 5})Sm{sup +}, and Sm{sup +}, the formation of (C{sub 5}Me{sub 4}H)Sm{sup +} and (C{sub 5}Me{sub 4}CH{sub 2})Sm{sup +}. The latter species most probably involves a tetramethylfulvenide ligand. Access to all of the ionic species cited here could also be obtained by reacting laser-desorbed Sm{sup +} ions with pentamethylcyclopentadiene, C{sub 5}Me{sub 5}H. (C{sub 5}Me{sub 4}CH{sub 2})Sm{sup +}, (C{sub 5}Me{sub 4}H)Sm{sup +}, and (C{sub 5}Me{sub 5})Sm{sup +} were formed as primary products, and the metallocene ion (C{sub 5}Me{sub 5}){sub 2}Sm{sup +} resulted from the rapid addition of C{sub 5}Me{sub 5}H to (C{sub 5}Me{sub 4}CH{sub 2})Sm{sup +}. 34 refs., 4 figs.

  1. Gas-phase lithium cation affinity of glycine.

    PubMed

    Bourcier, Sophie; Chiaa, Ru Xuan; Mimbong, Rosa Ngo Biboum; Bouchoux, Guy

    2015-01-01

    The gas-phase lithium cation binding thermochemistry of glycine has been determined theoretically by quantum chemical calculations at the G4 level and experimentally by the extended kinetic method using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The lithium cation affinity of glycine, ∆(Li)H°(298)(GLY), i.e. the∆(Li)H°(298) of the reaction GlyLi(+)→ Gly + Li(+)) given by the G4 method is equal to 241.4 kJ.mol(-1) if only the most stable conformer of glycine is considered or to 242.3 kJ.mol(-1) if the 298K equilibrium mixture of neutral conformers is included in the calculation. The ∆(Li)H°(298)(GLY) deduced from the extended kinetic method is obviously dependent on the choice of the Li(+) affinity scale, thus∆(Li)H°(298)(GLY) is equal to 228.7±0.9(2.0) kJ.mol(- 1) if anchored to the recently re-evaluated lithium cation affinity scale but shifted to 235.4±1.0 kJ.mol(-1) if G4 computed lithium cation affinities of the reference molecules is used. This difference of 6.3 kJ.mol(-1) may originate from a compression of the experimental lithium affinity scale in the high ∆(Li)H°(298) region. The entropy change associated with the reaction GlyLi(+)→Gly + Li(+) reveals a gain of approximately 15 J.mol(-) 1.K(-1) with respect to monodentate Li(+) acceptors. The origin of this excess entropy is attributed to the bidentate interaction between the Li(+) cation and both the carbonyl oxygen and the nitrogen atoms of glycine. The computed G4 Gibbs free energy,∆(Li)G°(298)(GLY) is equal to 205.3 kJ.mol(-1), a similar result, 201.0±3.4 kJ.mol(-1), is obtained from the experiment if the∆(Li)G°(298) of the reference molecules is anchored on the G4 results. PMID:26307695

  2. Gas-phase lithium cation affinity of glycine.

    PubMed

    Bourcier, Sophie; Chiaa, Ru Xuan; Mimbong, Rosa Ngo Biboum; Bouchoux, Guy

    2015-01-01

    The gas-phase lithium cation binding thermochemistry of glycine has been determined theoretically by quantum chemical calculations at the G4 level and experimentally by the extended kinetic method using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The lithium cation affinity of glycine, ∆(Li)H°(298)(GLY), i.e. the∆(Li)H°(298) of the reaction GlyLi(+)→ Gly + Li(+)) given by the G4 method is equal to 241.4 kJ.mol(-1) if only the most stable conformer of glycine is considered or to 242.3 kJ.mol(-1) if the 298K equilibrium mixture of neutral conformers is included in the calculation. The ∆(Li)H°(298)(GLY) deduced from the extended kinetic method is obviously dependent on the choice of the Li(+) affinity scale, thus∆(Li)H°(298)(GLY) is equal to 228.7±0.9(2.0) kJ.mol(- 1) if anchored to the recently re-evaluated lithium cation affinity scale but shifted to 235.4±1.0 kJ.mol(-1) if G4 computed lithium cation affinities of the reference molecules is used. This difference of 6.3 kJ.mol(-1) may originate from a compression of the experimental lithium affinity scale in the high ∆(Li)H°(298) region. The entropy change associated with the reaction GlyLi(+)→Gly + Li(+) reveals a gain of approximately 15 J.mol(-) 1.K(-1) with respect to monodentate Li(+) acceptors. The origin of this excess entropy is attributed to the bidentate interaction between the Li(+) cation and both the carbonyl oxygen and the nitrogen atoms of glycine. The computed G4 Gibbs free energy,∆(Li)G°(298)(GLY) is equal to 205.3 kJ.mol(-1), a similar result, 201.0±3.4 kJ.mol(-1), is obtained from the experiment if the∆(Li)G°(298) of the reference molecules is anchored on the G4 results.

  3. Detection methods for atoms and radicals in the gas phase

    NASA Astrophysics Data System (ADS)

    Hack, W.

    This report lists atoms and free radicals in the gas phase which are of interest for environmental and flame chemistry and have been detected directly. The detection methods which have been used are discussed with respect to their range of application, specificity and sensitivity. In table 1, detection methods for the five atoms of group IV (C, Si, Ge, Sn, Pb) and about 60 radicals containing at least one atom of group IV are summarized (CH, Cd, Cf, CC1, CBr, Cn, Cs, CSe, CH2, CD2, Chf, Cdf, CHC1, CHBr, CF2, CC12, CBr2, CFC1, CFBr, CH3, CD3, CF3, CH2F, CH2C1, CH2Br, CHF2, CHC12, CHBr2, Hco, Fco, CH30, CD30, CH2OH, CH3S, Nco, CH4N, CH302, CF302; C2, C2N, C2H, C20, C2HO, C2H3, C2F3, C2H5, C2HsO, C2H4OH, CH3CO, CD3CO, C2H3O, C2H502, CH3COO2, C2H4N, C2H6N, C3; Si, SiF, SiF2, SiO, SiC, Si2; Ge, GeC, GeO, GeF, GeF2, GeCl2, Sn, SnF, SnO, SnF2, Pb, PbF, PbF2, PbO, PbS). In table 2 detection methods for about 25 other atoms and 60 radicals are listed: (H, D, O, O2, Oh, Od, HO2, DO2, F, Ci, Br, I, Fo, Cio, BrO, Io, FO2, C1O2, Li, Na, K, Rb, Cs, N, N3, Nh, Nd, Nf, Nci, NBr, NH2, ND2, Nhd, Nhf, NF2, NC12, N2H3, No, NO2, NO3, Hno, Dno, P, Ph, Pd, Pf, Pci, PH2, PD2, PF2, Po, As, AsO, AsS, Sb, Bi, S, S2, Sh, Sd, Sf, SF2, So, Hso, Dso, Sn, Se, Te, Se2, SeH, SeD, SeF, SeO, SeS, SeN, TeH, TeO, Bh, BH2, Bo, Bn, B02, Cd, Hg, UF5). The tables also cite some recent kinetic applications of the various methods.

  4. Thermal degradation events as health hazards: Particle vs gas phase effects, mechanistic studies with particles

    NASA Astrophysics Data System (ADS)

    Oberdörster, G.; Ferin, J.; Finkelstein, J.; Soderholm, S.

    Exposure to thermal degradation products arising from fire or smoke could be a major concern for manned space missions. Severe acute lung damage has been reported in people after accidental exposure to fumes from plastic materials, and animal studies revealed the extremely high toxicity of freshly generated fumes whereas a decrease in toxicity of aged fumes has been found. This and the fact that toxicity of the freshly generated fumes can be prevented with filters raises the question whether the toxicity may be due to the particulate rather than the gas phase components of the thermodegradation products. Indeed, results from recent studies implicate ultrafine particles (particle diameter in the nm range) as potential severe pulmonary toxicants. We have conducted a number of in vivo (inhalation and instillation studies in rats) and in vitro studies to test the hypothesis that ultrafine particles possess an increased potential to injure the lung compared to larger-sized particles. We used as surrogate particles ultrafine TiO 2 particles (12 and 20 nm diameter). Results in exposed rats showed that the ultrafine TiO 2 particles not only induce a greater acute inflammatory reaction in the lung than larger-sized TiO 2 particles, but can also lead to persistent chronic effects, as indicated by an adverse effect on alveolar macrophage mediated clearance function of particles. Release of mediators from alveolar macrophages during phagocytosis of the ultrafine particles and an increased access of the ultrafine particles to the pulmonary interstitium are likely factors contributing to their pulmonary toxicity. In vitro studies with lung cells (alveolar macrophages) showed, in addition, that ultrafine TiO 2 particles have a greater potential to induce cytokines than larger-sized particles. We conclude from our present studies that ultrafine particles have a significant potential to injure the lung and that their occurrence in thermal degradation events can play a major role in

  5. Thermal degradation events as health hazards: particle vs gas phase effects, mechanistic studies with particles.

    PubMed

    Oberdörster, G; Ferin, J; Finkelstein, J; Soderholm, S

    1992-01-01

    Exposure to thermal degradation products arising from fire or smoke could be a major concern for manned space missions. Severe acute lung damage has been reported in people after accidental exposure to fumes from plastic materials, and animal studies revealed the extremely high toxicity of freshly generated fumes whereas a decrease in toxicity of aged fumes has been found. This and the fact that toxicity of the freshly generated fumes can be prevented with filters raises the question whether the toxicity may be due to the particulate rather than the gas phase components of the thermodegradation products. Indeed, results from recent studies implicate ultrafine particles (particle diameter in the nm range) as potential severe pulmonary toxicants. We have conducted a number of in vivo (inhalation and instillation studies in rats) and in vitro studies to test the hypothesis that ultrafine particles possess an increased potential to injure the lung compared to larger-sized particles. We used as surrogate particles ultrafine TiO2 particles (12 and 20 nm diameter). Results in exposed rats showed that the ultrafine TiO2 particles not only induce a greater acute inflammatory reaction in the lung than larger-sized TiO2 particles, but can also lead to persistent chronic effects, as indicated by an adverse effect on alveolar macrophage mediated clearance function of particles. Release of mediators from alveolar macrophages during phagocytosis of the ultrafine particles and an increased access of the ultrafine particles to the pulmonary interstitium are likely factors contributing to their pulmonary toxicity. In vitro studies with lung cells (alveolar macrophages) showed, in addition, that ultrafine TiO2 particles have a greater potential to induce cytokines than larger-sized particles. We conclude from our present studies that ultrafine particles have a significant potential to injure the lung and that their occurrence in thermal degradation events can play a major role in the

  6. The gas-phase thermal chemistry of tetralin and related model systems

    SciTech Connect

    Malandra, J.

    1993-05-01

    The thesis is divided into 5 papers: gas-phase thermal decomposition of tetralin; flash vacuum pyrolysis of 3-benzocycloheptenone and 1,3, 4,5-tetrahydro-2-benzothiepin-2,2-dioxide (model systems for gas-phase pyrolysis of tetralin); high-temperature gas-phase reactions of o-allylbenzyl radicals generated by flash vacuum pyrolysis of is(o-allylbenzyl) oxalate; flash vacuum pyrolysis of 1,4-diphenylbutane; and flash vacuum pyrolysis of o-allyltoluene, o-(3-butenyl)toluene and o-(pentenyl)toluene were also used.

  7. Mm/submm Study of Gas-Phase Photoproducts from Methanol Interstellar Ice Analogues

    NASA Astrophysics Data System (ADS)

    Mesko, AJ; Smith, Houston Hartwell; Milam, Stefanie N.; Widicus Weaver, Susanna L.

    2016-06-01

    Icy grain reactions have gained quite the popularity in the astrochemistry community to explain the formation of complex organic molecules. Through temperature programmed desorption and photolysis experiments we use rotational spectroscopy to measure the gas-phase products of icy grain reactions. Previous results include testing detection limits of the system by temperature programmed desorption of methanol and water ices, photochemistry of gas-phase methanol, and detection of photodesorbed water from a pure water ice surface. Current work that will be discussed focuses on the detection of gas-phase CO and other photoproducts from an ice surface.

  8. Sampling and determination of gas-phase hydrogen peroxide following removal of ozone by gas-phase reaction with nitric oxide

    SciTech Connect

    Tanner, R.L.; Markovits, G.Y.; Ferreri, E.M.; Kelly, T.J.

    1986-01-01

    A method for determination of hydrogen peroxide in the ambient atmosphere is described, using impinger or diffusion scrubber collection of hydrogen peroxide with aqueous-phase analysis by an enzyme-catalyzed fluorescence technique. Interference from ozone at ambient levels is removed by gas-phase titration with excess nitric oxide. The impinger and diffusion scrubber collection techniques are shown to give equivalent results for atmospheric gas-phase hydrogen peroxide with limits of detection of 0.1 ppbv for approximately 60-min and 10-min sampling times, respectively.

  9. Intriguing Differences in the Gas-Phase Dissociation Behavior of Protonated and Deprotonated Gonyautoxin Epimers

    NASA Astrophysics Data System (ADS)

    Dörr, Felipe A.; Kovačevi, Borislav; Maksi, Zvonimir B.; Pinto, Ernani; Volmer, Dietrich A.

    2011-11-01

    The aim of this study was to investigate the unusual gas-phase dissociation behavior of two epimer pairs of protonated gonyautoxins (GTX) following electrospray ionization in comparison to their deprotonated counterparts. The chemical structures of the investigated GTX1-4 variants vary in their substitution pattern at N-1 and the stereochemical orientation of the hydroxysulfate group at C-11 (11α for GTX1/2 versus 11β for GTX3/4). The direct comparison of mass spectra in positive and negative ion modes illustrated two distinct features: first, an intriguing difference between protonated 11α and 11β species, where 11α conformations exhibited almost complete dissociation of [M + H]+ ions via facile SO3 elimination, while 11β species remained mostly intact as [M + H]+; and second, the lack of such differences for the deprotonated counterparts. In this study, we propose an acid-catalyzed elimination mechanism from density functional theory calculations, initiated by a proton transfer of a guanidinium proton to the hydroxysulfate group with simultaneous SO3 release, which is only possible for the 11α conformation based on intramolecular distances. The same mechanism explains the lack of a comparable SO3 loss in the negative ion mode. CID experiments supported this proposed mechanism for GTX1 and GTX2. Computational modeling of product ions seen in the CID spectra of GTX3 and GTX4 established that the lowest energy dissociation pathway for the 11β epimers is elimination of water with the possibility for further SO3 release from the intermediate product. Experimental data for structurally analogous decarbamoyl gonyautoxins confirmed the evidence for the GTX compounds as well as the proposed elimination mechanisms.

  10. Characteristics of GABA release induced by free radicals in mouse hippocampal slices.

    PubMed

    Saransaari, Pirjo; Oja, Simo S

    2008-03-01

    The release of the inhibitory neurotransmitter GABA is generally enhanced under potentially cell-damaging conditions. The properties and regulation of preloaded [3H]GABA release from mouse hippocampal slices were now studied in free radical-containing medium in a superfusion system. Free radical production was induced by 0.01% of H2O2 in the medium. H2O2 markedly potentiated GABA release, which was further enhanced about 1.5-fold by K+ stimulation (50 mM). In Ca2+-free media this stimulation was not altered, indicating that the release was mostly Ca2+-independent. Moreover, omission of Na+ increased the release, suggesting that it is mediated by Na+-dependent transporters operating outwards, a conception confirmed by the enhancement with GABA homoexchange. Inhibition of the release with the ion channel inhibitors diisothiocyanostilbene-2,2'-disulphonate and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonate indicates that Cl(-) channels also participate in the process. This release was not modified by the adenosine receptor (A1 and A2a) agonists and ionotropic glutamate receptor agonists kainate, N-methy-D: -aspartate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, whereas the agonists of metabotropic glutamate receptors of group I [(S)-3,5-dihydroxyphenylglycine] and of group II [(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] enhanced it by receptor-mediated mechanisms, the effects being abolished by their respective antagonists. The group III agonist L+-2-amino-4-phosphonobutyrate reduced the evoked GABA release, but this was not affected by the antagonist. Furthermore, the release was reduced by activation of protein kinase C by 4 beta-phorbol 12-myristate 13-acetate and by inhibition of tyrosine kinase by genistein and of phoshoplipase by quinacrine. On the other hand, increasing cGMP levels with the phosphodiesterase inhibitor zaprinast, selective for PDE5, 6 and 9, and NO production with the NO-generating compounds hydroxylamine, sodium nitroprusside

  11. Characteristics of histamine release from rat mast cells in relation to the valency of the stimulating ligand.

    PubMed Central

    Healicon, R M; Foreman, J C

    1986-01-01

    The relationship between the valency of a ligand and the subsequent characteristics of histamine release was investigated in rat peritoneal mast cells. The cells were passively sensitized to the DNP hapten and a series of DNP-human serum albumin conjugates of known valency were used to induce histamine release. The rate of release of histamine induced by these conjugates was independent of the DNP/HSA ratio when the ratio was between 71.3 and 7.2. Marked slowing of the release occurred as the ratio was reduced below 7.2. The rate of desensitization of the cells slowed as a continuous function as the DNP/HSA ratio was reduced. 45Calcium uptake measurements showed that the changes in histamine release were paralleled by changes in the membrane permeability to calcium. The rate of release of histamine from mast cells and the rate of desensitization of the cells are discussed in terms of the size of IgE receptor complexes on the cell membrane. PMID:2420710

  12. Identification of gas-phase dimethyl sulfate and monomethyl hydrogen sulfate in the Los Angeles atmosphere

    SciTech Connect

    Eatough, D.J.; White, V.F.; Hansen, L.D.; Eatough, N.L.; Cheney, J.L.

    1986-09-01

    Gas-phase dimethyl sulfate and monomethyl hydrogen sulfate have been identified in the atmosphere in Los Angeles. Gas-phase concentrations of these two alkyl sulfates were determined by using analytical methods based on the collection of the compounds before collection of particles using diffusion denuders and after collection of particles using resin beds or sorption filters, and specific analysis of the collected alkyl sulfates by ion chromatography. The data show the dimethyl sulfate is present in both particles and the gas phase. The concentration of total gas-phase methyl sulfates was found to vary from 34 to 178 nmol/m/sup 3/ during the smog episode studied. These species constituted a significant fraction of the total sulfur budget in the Los Angeles basin during the sampling period.

  13. Identification of gas-phase dimethyl sulfate and monomethyl hydrogen sulfate in the Los Angeles atmosphere

    SciTech Connect

    Eatough, D.J.; White, V.F.; Hansen, L.D.; Eatough, N.L.; Cheney, J.L.

    1986-01-01

    Analytical techniques were developed for the collection and determination of gas-phase dimethyl sulfate and monomethyl sulfuric acid based on collection of the alkyl sulfate compounds with both denuder tubes and resin sorption beds and analysis of the collected material by ion chromatography. Gas-phase dimethyl sulfate and monomethyl sulfuric acid were identified in Los Angeles using these techniques. The data indicate that dimethyl sulfate is present in both particles and in the gas phase. The concentration of gas-phase methyl sulfates was found to be several micrograms/cu m. These species thus account for a significant fraction of the total sulfur budget in the Los Angeles Basin during the sample period.

  14. Gas-phase water-mediated equilibrium between methylglyoxal and its geminal diol.

    PubMed

    Axson, Jessica L; Takahashi, Kaito; De Haan, David O; Vaida, Veronica

    2010-04-13

    In aqueous solution, aldehydes, and to a lesser extent ketones, hydrate to form geminal diols. We investigate the hydration of methylglyoxal (MG) in the gas phase, a process not previously considered to occur in water-restricted environments. In this study, we spectroscopically identified methylglyoxal diol (MGD) and obtained the gas-phase partial pressures of MG and MGD. These results, in conjunction with the relative humidity, were used to obtain the equilibrium constant, K(P), for the water-mediated hydration of MG in the gas phase. The Gibbs free energy for this process, DeltaG(o), obtained as a result, suggests a larger than expected gas-phase diol concentration. This may have significant implications for understanding the role of organics in atmospheric chemistry.

  15. Electronic Effects of 11β Substituted 17β-Estradiol Derivatives and Instrumental Effects on the Relative Gas Phase Acidity

    NASA Astrophysics Data System (ADS)

    Bourgoin-Voillard, Sandrine; Fournier, Françoise; Afonso, Carlos; Zins, Emilie-Laure; Jacquot, Yves; Pèpe, Claude; Leclercq, Guy; Tabet, Jean-Claude

    2012-12-01

    Numerous studies have highlighted the role of the proton donor characteristics of the phenol group of 17β-estradiol (E2) in its association with the estrogen receptor alpha (ERα). Since the substitutions at position C(11) have been reported to modulate this association, we hypothesized that such substitutions may modify the phenol acidity. Hence, phenol gas-phase acidity of nine C(11)-substituted E2-derivatives were evaluated using the extended Cooks' kinetic method, which is a method widely used to determine thermochemical properties by mass spectrometry. To enhance accuracy in data collection we recorded data from several instruments, including quadrupole ion trap, triple quadrupole, and hybrid QqTOF. Indeed, we report for the first time the use of the QqTOF instrument to provide a novel means to improve data accuracy by giving access to an intermediate effective temperature range. All experimental gas-phase acidity values were supported by theoretical calculations. Our results confirmed the ability of distant substituents at C(11) to modulate the phenol acidity through electrostatic interactions, electron withdrawing inductive effects, and mesomeric effects. However, no relationship was found between the phenol gas-phase acidity of investigated steroids and their binding affinity for ERα assessed in solution. Thus, our results highlight that the intrinsic properties of the hormone do not influence sufficiently the stabilization of the hormone/ERα complex. It is more likely that such stabilization would be more related to factors depending on the environment within the binding pocket such as hydrophobic, steric as well as direct intermolecular electrostatic effects between ERα residues and the substituted steroidal estrogens.

  16. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall,G.E.; Sears, T.J.

    2009-04-03

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopy, augmented by theoretical and computational methods, is used to investigate the structure and collision dynamics of chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry. Applications and methods development are equally important experimental components of this work.

  17. Chemical Nuclear Polarization of Biradicals Created by Photolysis of Cyclic Aliphatic Ketones in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Obynochnyia, A. A.; Purtovb, P. A.; Salikhova, K. M.

    2008-02-01

    Chemical nuclear polarization (CNP) of short-lived biradicals created in the photolysis of cyclic ketones in the gas phase with a buffer gas of CDCl3 molecules was studied theoretically and experimentally. The magnetoresonance and kinetic parameters were proposed for the biradicals. The experimental fact that the CNP of cycloundecanone in the gas phase and liquid was the strongest was confirmed by calculations. The computational results agree well with the experiment for both gas and liquid phases.

  18. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  19. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  20. Ultrafast electronic relaxation of excited state vitamin B 12 in the gas phase

    NASA Astrophysics Data System (ADS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoıˆt

    2008-06-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  1. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  2. Gonadotropin-releasing Hormone Agonist Overuse: Urologists’ Response to Reimbursement and Characteristics Associated with Persistent Overuse

    PubMed Central

    Ellis, Shellie D.; Nielsen, Matthew E.; Carpenter, William R.; Jackson, George L.; Wheeler, Stephanie B.; Liu, Huan; Weinberger, Morris

    2015-01-01

    BACKGROUND Medicare reimbursement cuts have been associated with declining Gonadotropin-releasing Hormone (GnRH) agonist overuse in localized prostate cancer. Medical school affiliation and foreign training have been associated with persistent overuse. However, physician-level prescribing changes and the practice type of persistent overusers have not been examined. We sought to describe physician-level changes in GnRH agonist overuse and test the association of time in practice and solo practice type with GnRH agonist overuse. METHODS We matched American Medical Association physician data for 2,138 urologists to SEER–Medicare data for 12,943 men diagnosed with early stage and lower grade adenocarcinoma of the prostate between 2000 and 2007. We conducted a population-based, retrospective study using multi-level modeling to control for patient and provider characteristics. RESULTS Three distinct patterns of GnRH agonist overuse were observed. Urologists’ time in practice was not associated with GnRH agonist overuse (OR 0.89; 95% CI 0.75–1.05).However, solo practice type (OR 1.65; 95% CI 1.34–2.02), medical school affiliation (OR 0.65; 95% CI 0.55–0.77), and patient race were. Compared to non-Hispanic whites, non-Hispanic blacks (OR 1.76; 95% CI 1.37–2.27), Hispanics (OR 1.41; 95% CI 1.12–1.79) and men of “other” race (OR 1.44; 95% CI 1.04–1.99) had greater odds of receiving unnecessary GnRH agonists. CONCLUSIONS GnRH agonist overuse remains high among some urologists who may be professionally isolated and difficult to reach. These urologists treat more vulnerable populations, which may contribute to health disparities in prostate cancer treatment quality. Nonetheless, these findings provide guidance to develop interventions to address overuse in prostate cancer. PMID:25849354

  3. Interaction of Gas Phase Oxalic Acid with Ammonia and its Atmospheric Implications

    SciTech Connect

    Peng, Xiu-Qiu; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Huang, Wei

    2015-04-14

    Oxalic acid is believed to play an important role in the formation and growth of atmospheric organic aerosols. However, as a common organic acid, the understanding of the larger clusters formed by gas phase oxalic acid with multiple ammonia molecules is incomplete. In this work, the structural characteristics and thermodynamics of oxalic acid clusters with up to six ammonia molecules have been investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that oxalic acid forms relatively stable clusters with ammonia molecules, and that ionization events play a key role. The analyses of the thermodynamics and atmospheric relevance indicate that the heterodimer (H2C2O4)(NH3) shows an obvious relative concentration in the atmosphere, and thus likely participates in new particle formation. However, with increasing number of ammonia molecules, the concentration of clusters decreases gradually. Additionally, clusters of oxalic acid with ammonia molecules are predicted to form favorably in low temperature conditions and show high Rayleigh scattering intensities.

  4. Hydrogen-bonded glycine-HCN complexes in gas phase: structure, energetics, electric properties and cooperativity

    NASA Astrophysics Data System (ADS)

    Machado da Silva, Arnaldo; Chakrabarty, Sumana; Chaudhuri, Puspitapallab

    2015-03-01

    Twelve hydrogen-bonded complexes of glycine and hydrogen cyanide have been studied using high-level quantum-chemical calculations in gas phase. In particular, six 1:1 glycine-HCN dimers and six 1:2 glycine-HCN trimers have been considered. Besides the characteristics of the hydrogen bonds and their effect on molecular structure and energetics, several molecular electric properties have been calculated utilising two different models: MP2/6-31++G(d,p) and DFT-B3LYP/6-31++G(d,p). Although the structural parameters calculated by the two models are similar, equilibrium electronic energies of the clusters show model dependence. The lowest energy dimer is same in both the models which is ca. 3.0 kcal/mol more stable than the highest energy dimer. However, the lowest energy trimer is different in two methods. The energetic difference of stability between the highest and lowest trimer is 4.2 kcal/mol (4.4 kcal/mol) at an MP2 (B3LYP) level of calculation. The bond angles of glycine, in particular, are quite sensitive to the hydrogen-bond formation. Four out of six trimers are found to be strongly cooperative in both the models. Significant changes of dipole moments and polarisabilities of isolated glycine and hydrogen cyanide are observed due to the formation of hydrogen bonding. The Rayleigh scattering intensities of all clusters are much larger than those of their constituent monomers.

  5. Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.

  6. Effect of calcium ions on the gelling and drug release characteristics of xanthan matrix tablets.

    PubMed

    Baumgartner, Sasa; Pavli, Matej; Kristl, Julijana

    2008-06-01

    Xanthan is a well-known biopolymer. It is an anionic polysaccharide, whose primary structure depends on the bacterial strain and fermentation conditions. Xanthan was extensively studied in combination with galactomannans, and over 90 patents cover the technology of this preparation. Our aim was to investigate the relation between the physical properties of a xanthan matrix in the absence or presence of calcium ions and its influence on the release of pentoxifylline. The release of pentoxifylline from xanthan tablets in purified water was shown to be very slow and governed by the process of polymer relaxation. The presence of calcium ions significantly increased the drug release, changing the release mechanism into a more diffusion controlled one. Xanthan matrices showed substantially faster and more extensive swelling in water than in the presence of Ca2+ ions. Surprisingly, negative correlation between drug release and degree of swelling was obtained for xanthan: the higher the swelling, the slower the drug release. Higher ionic strength led to lower erosion of xanthan tablets, and the gel layers formed were more rigid and of firmer texture, as shown by rheological experiments and textural profiling. The results indicate that the presence of Ca2+ ions in the solution or in matrices does not cause crosslinking of xanthan polymers, but causes charge screening of ionized groups on the trisaccharide side chains of xanthan, leading to lower inter-molecular repulsion and changing water arrangement. The understanding of the parameters influencing drug release leads to the conclusion that xanthan is suitable for controlled release formulations, especially with the incorporation of certain small counterions. PMID:18248802

  7. Incorporation of calcium salts into xanthan gum matrices: hydration, erosion and drug release characteristics.

    PubMed

    Groves, Emma; Chaw, Cheng Shu

    2015-01-01

    Xanthan gum (XG), a hydrophilic biopolymer with modified release properties, was used to produce directly compressed matrix tablets containing a model drug, sodium p-aminosalicylate. Three formulations were prepared, each containing a different calcium dihydrate salt: calcium chloride, calcium sulfate or dibasic calcium phosphate. The aim of the investigation was to relate the calcium ion content and solubility of the calcium salt to the in vitro drug release profile of the xanthan matrices. Tablet hydration, erosion and drug release were determined in distilled water using the British Pharmacopoeia (BP) paddle method. The data showed that the overall drug release was the greatest with addition of calcium sulfate, followed by calcium chloride and dibasic calcium phosphate. The chloride salt formulation displayed the greatest percentage erosion due to rapid mass loss during the initial phase, followed by those with sulfate or phosphate salts. As xanthan gel viscosity increased and drug release was also found to be lower, it can be concluded that drug release is influenced by the solubility of the salt present in the formulation, since these parameters determine the viscosity and structure of the gel layer. PMID:25371230

  8. Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules.

    PubMed

    Liu, Chien-Hung; Wu, Jane-Yii; Chang, Jo-Shu

    2008-04-01

    An indigenous Cellulosimicrobium cellulans GS6 isolate able to solubilize insoluble phosphate complexes in soil is a potential bacterial fertilizer. Enclosure of the phosphate-solubilizing bacterium (PSB) in biodegradable capsules may protect the PSB cells inoculated into soil and, in the meantime, enable the control of cell release that confers long-term fertilizing effects. In this study, calcium alginate (CA) was used as the core matrix to encapsulate cells of C. cellulans GS6. The cell-liberating properties of the CA-based capsules were modified by blending with a variety of supplemental materials (SM), including chitin, cellulose, olive oil, and gelatin. The experimental results showed that the maximum cell-release percentage (MCR%) of the capsules decreased in the order of CA-cellulose>CA-olive oil>CA-chitin>CA-gelatin>CA. Furthermore, a mass transport model was developed to accurately describe the kinetics of cell release results for each capsule. The diffusion coefficient (D(e)) of each capsule was also determined from the model simulation. We found that the estimated D(e) values are positively correlated to the release rate with rare exceptions. Lastly, as our results underscored the crucial roles that the type of capsules plays in the rate and amount of cell release, controlled release of the bacterial fertilizer (C. cellulans GS6 cells) may be achieved via the design of capsule materials.

  9. Coordinated coupling control of tethered space robot using releasing characteristics of space tether

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng; Zhang, Fan; Xu, Xiudong; Meng, Zhongjie; Liu, Zhengxiong; Hu, Yongxin

    2016-04-01

    Tethered space robot (TSR) is a new concept of space robot, which is released from the platform satellite, and retrieved via connected tether after space debris capture. In this paper, we propose a new coordinate control scheme for optimal trajectory and attitude tracking, and use releasing motor torque to instead the tension force, since it is difficult to track in practical. Firstly, the 6-DOF dynamics model of TSR is derived, in which the dynamics of tether releasing system is taken into account. Then, we propose and design the coordinated coupled controller, which is composed of a 6-DOF sliding mode controller and a PD controller tether's releasing. Thrust is treated as control input of the 6-DOF sliding mode controller to control the in-plane and out-of-plane angle of the tether and attitude angles of the TSR. The torque of releasing motor is used as input of PD controller, which controls the length rate of space tether. After the verification of the control scheme, finally, the simulation experiment is presented in order to validate the effectiveness of this control method. The results show that TSR can track the optimal approaching trajectory accurately. Simultaneously, the attitude angles can be changed to the desired attitude angles in control period, and the terminal accuracy is ±0.3°.

  10. Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate.

    PubMed

    Fukutome, Asuka; Kawamoto, Haruo; Saka, Shiro

    2015-07-01

    The gas-phase pyrolysis of levoglucosan (LG), the major intermediate species during cellulose gasification, was studied experimentally over the temperature range of 400-900 °C. Gaseous LG did not produce any dehydration products, which include coke, furans, and aromatic substances, although these are characteristic products of the pyrolysis of molten LG. Alternatively, at >500 °C, gaseous LG produced only fragmentation products, such as noncondensable gases and condensable C1 -C3 fragments, as intermediates during noncondensable gas formation. Therefore, it was determined that secondary reactions of gaseous LG can result in the clean (tar- and coke-free) gasification of cellulose. Cooling of the remaining LG in the gas phase caused coke formation by the transition of the LG to the molten state. The molecular mechanisms that govern the gas- and molten-phase reactions of LG are discussed in terms of the acid catalyst effect of intermolecular hydrogen bonding to promote the molten-phase dehydration reactions. PMID:26099988

  11. Nuclear liquid-gas phase transition at large N{sub c} in the van der Waals approximation

    SciTech Connect

    Torrieri, Giorgio; Mishustin, Igor

    2010-11-15

    We examine the nuclear liquid-gas phase transition at a large number of colors (N{sub c}) within the framework of the van der Waals (VdW) We argue that the VdW equation is appropriate for describing internucleon forces, and discuss how each parameter scales with N{sub c}. We demonstrate that N{sub c}=3 (our world) is not large with respect to the other dimensionless scale relevant to baryonic matter, the number of neighbors in a dense system N{sub N}. Consequently, we show that the liquid-gas phase transition looks dramatically different at N{sub c{yields}{infinity}} with respect to our world: The critical-point temperature becomes of the order of {Lambda}{sub QCD} rather than below it. The critical-point density becomes of the order of the baryonic density, rather than an order of magnitude below it. These are precisely the characteristics usually associated with the ''quarkyonic phase.'' We therefore conjecture that quarkyonic matter is simply the large-N{sub c} limit of the nuclear liquid, and the interplay between N{sub c} and N{sub N} is the reason that the nuclear liquid in our world is so different from quarkyonic matter. We conclude by suggesting ways in which our conjecture can be tested in future lattice measurements.

  12. Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate.

    PubMed

    Fukutome, Asuka; Kawamoto, Haruo; Saka, Shiro

    2015-07-01

    The gas-phase pyrolysis of levoglucosan (LG), the major intermediate species during cellulose gasification, was studied experimentally over the temperature range of 400-900 °C. Gaseous LG did not produce any dehydration products, which include coke, furans, and aromatic substances, although these are characteristic products of the pyrolysis of molten LG. Alternatively, at >500 °C, gaseous LG produced only fragmentation products, such as noncondensable gases and condensable C1 -C3 fragments, as intermediates during noncondensable gas formation. Therefore, it was determined that secondary reactions of gaseous LG can result in the clean (tar- and coke-free) gasification of cellulose. Cooling of the remaining LG in the gas phase caused coke formation by the transition of the LG to the molten state. The molecular mechanisms that govern the gas- and molten-phase reactions of LG are discussed in terms of the acid catalyst effect of intermolecular hydrogen bonding to promote the molten-phase dehydration reactions.

  13. Absolute configuration assignment of a chiral molecule in the gas phase using foil-induced Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Herwig, Philipp; Zawatzky, Kerstin; Schwalm, Dirk; Grieser, Manfred; Heber, Oded; Jordon-Thaden, Brandon; Krantz, Claude; Novotný, Oldřich; Repnow, Roland; Schurig, Volker; Vager, Zeev; Wolf, Andreas; Trapp, Oliver; Kreckel, Holger

    2014-11-01

    Chiral molecules exist in two configurations that are nonsuperposable mirror images of one another. The underlying molecular structure is referred to as the absolute configuration. In chiral environments, the handedness of molecules influences their chemical characteristics dramatically, and therefore the determination of absolute configurations is of fundamental interest in organic chemistry and biology. Commonly applied techniques to assign absolute configuration are anomalous single-crystal x-ray diffraction and vibrational circular dichroism. However, these techniques become increasingly more challenging when applied to molecules that are made out of light atoms exclusively. Furthermore, there is no established method to determine the absolute handedness of gas-phase molecules that are not optically active. In this work, we apply the foil-induced Coulomb explosion imaging technique to determine directly the absolute configuration of the chiral molecule trans-2,3-dideuterooxirane (C2OD2H2) in the gas phase. The experiment leads to the definitive assignment of the (R ,R ) configuration to an enantio-selected dideuterooxirane sample with a statistical confidence of 5 σ . As the handedness of trans-2,3-dideuterooxirane is unambiguously linked by chemical synthesis to the stereochemical key reference glyceraldehyde, our results provide an independent verification of the absolute configuration of the stereochemical reference standard.

  14. Inhibition of anaphylactic histamine release by Forssman antiserum. I. Characteristics of the reaction and inhibitor.

    PubMed Central

    Duravetz, J; Baumal, R; Broder, I

    1976-01-01

    Forssman antiserum produced in rabbits immunized with sheep erythrocyte stromata was found to contain an IgG antibody which inhibited both passive anaphylactic sensitization of guinea-pig lung and also histamine-releasing activity of soluble immune complexes. This Forssman antibody did not itself cause histamine release or depletion of lung histamine stores. The IgM haemolysin component of the Forssman antiserum was not associated with inhibitory activity. The inhibition by the IgG Forssman antibody differed from that of normal rabbit gammaglobulin both in its irreversible character and in being absorbed by sheep erythrocytes. The inhibitory antibody had no effect on the histamine-releasing activity of compound 48/80, anaphylatoxin or reversed anaphylaxis. It was concluded that IgG Forssman antibody probably blocks the tissue receptor(s) for anaphylactic antibody in guinea-pig lung. PMID:55380

  15. Preparation and Analysis of Type II Xerogel Films with Antifouling/Foul Release Characteristics

    NASA Astrophysics Data System (ADS)

    Sokolova, Anastasiya

    In order to combat biofouling, xerogel coatings comprised of aminopropyl, fluorocarbon, and hydrocarbon silanes were prepared and tested for their antifouling/foul release properties against Ulva, Navicula, barnacles, and tubeworms. Many of the coatings showed settlement and removal of Ulva to be as good as or better than the poly(dimethylsiloxane) (PDMSE) standard. Barnacle removal assays showed excellent results for some coatings while others did not fair so well. The best foul release coatings for barnacles were comprised of aminopropyl/hydrocarbon- and fluorocarbon/hydrocarbon-modified silanes. For the majority of coatings tested, water wettability and surface energy did not play a role in the antifouling/ foul release properties of the coatings.

  16. Generation of gas-phase zirconium fluoroanions by electrospray of an ionic liquid

    SciTech Connect

    Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

    2014-06-01

    RATIONALE: When measuring extremely wide isotope ratios (= 1 x 109) accelerator mass spectrometry (AMS) is the instrument of choice, however it requires an anion for injection into the tandem accelerator. Since many elements do not have positive electronegativities they do not form stable negative atomic ions, and hence are not compatible for isotope ratio measurement using AMS. Thus new approaches for forming anions are sought; fluoroanions are particularly attractive because fluorine is monoisotopic, and thus will not have overlapping isobars with the isotope of interest. METHODS: An approach is described for making zirconium fluoroanions using the fluorinating ionic liquid (IL) 1-ethyl-3-methylimidazolium fluorohydrogenate, which was used to generate abundant [ZrF5-] using electrospray ionization. The IL was dissolved in acetonitrile, combined with a dilute solution of either Zr4+ or ZrO2+, and then electrosprayed. Mass analysis and collision induced dissociation were conducted using a time-of-flight mass spectrometer. Cluster structures were predicted using density functional theory calculations. RESULTS: The fluorohydrogenate IL solutions generated abundant [ZrF5-] starting from solutions of both Zr4+ and ZrO2+. The mass spectra also contained IL-bearing cluster ions, whose compositions indicated the presence of [ZrF6]2- in solution, a conclusion supported by the structural calculations. Rinsing out the zirconium-IL solution with acetonitrile decreased the IL clusters, but enhanced [ZrF5]-, which was sorbed by the polymeric electrospray supply capillary, and then released upon rinsing. This reduced the ion background in the mass spectrum. CONCLUSIONS: The fluorohydrogenate-IL solutions are a facile way to form zirconium fluoroanions in the gas phase using electrospray. The approach has potential as a source of fluoroanions for injection into an AMS, which would enable high-sensitivity measurement of minor zirconium isotopes, and benefits from the absence of

  17. UV photodissociation spectroscopy of cryogenically cooled gas phase host-guest complex ions of crown ethers.

    PubMed

    Inokuchi, Yoshiya; Haino, Takeharu; Sekiya, Ryo; Morishima, Fumiya; Dedonder, Claude; Féraud, Géraldine; Jouvet, Christophe; Ebata, Takayuki

    2015-10-21

    The geometric and electronic structures of cold host-guest complex ions of crown ethers (CEs) in the gas phase have been investigated by ultraviolet (UV) fragmentation spectroscopy. As host CEs, we chose 15-crown-5 (15C5), 18-crown-6 (18C6), 24-crown-8 (24C8), and dibenzo-24-crown-8 (DB24C8), and as guests protonated-aniline (aniline·H(+)) and protonated-dibenzylamine (dBAM·H(+)) were chosen. The ions generated by an electrospray ionization (ESI) source were cooled in a quadrupole ion-trap (QIT) using a cryogenic cooler, and UV spectra were obtained by UV photodissociation (UVPD) spectroscopy. UV spectroscopy was complemented by quantum chemical calculations of the most probable complex structures. The UV spectrum of aniline·H(+)·CEs is very sensitive to the symmetry of CEs; aniline·H(+)·18C6 shows a sharp electronic spectrum similar to aniline·H(+), while aniline·H(+)·15C5 shows a very broad structure with poor Franck-Condon factors. In addition, a remarkable cage effect in the fragmentation process after UV excitation was observed in both complex ions. In aniline·H(+)·CE complexes, the cage effect completely removed the dissociation channels of the aniline·H(+) moiety. A large difference in the fragmentation yield between dBAM·H(+)·18C6 and dBAM·H(+)·24C8 was observed due to a large barrier for releasing dBAM·H(+) from the axis of rotaxane in the latter complex.

  18. Effect of Polyethylene Glycol and Sodium Lauryl Sulphate on the Compaction Characteristics of Eudragit and Drug Release from its Matrix

    NASA Astrophysics Data System (ADS)

    Emeje, M. O.; Isimi, C. Y.; Kunle, O. O.; Ofoefule, S. I.

    A study on the compaction characteristics of Eudragit l-100 both in the presence and in the absence of two commonly used additives, polyethylene glycol 6000 (PEG 6000) and Sodium Lauryl Sulphate (SLS) was done. Eudragit granules, with and without the additives and drug were prepared separately by the wet granulation method and compacts were made at varying compression pressures. Compaction characteristics using Kawakita and Heckel analysis revealed a concentration dependent effect of the additives on the compressibility of Eudragit granules, with 2.5% PEG 6000 producing the largest effect and 5.0% PEG 6000, the least. Irrespective of the concentration of PEG 6000, the yield value increased, while SLS either had no effect or decreased the yield value of Eudragit granules. The highest yield value of 21.69 kN was produced by formulations containing 2.5% PEG 6000. While in some cases, the effect of the additive was slight, in others, it was drastic. The extent and nature of the effect depended on both the type and concentration of the additive used. SLS was found to increase the deformation of Eudragit more than PEG 6000. In vitro dissolution in simulated intestinal fluid as indicated by time for 70% drug release (t70%) shows that both additives modulated drug release, with 2.5 % SLS and 5% PEG 6000 enhancing drug release, while 5% SLS resulted in retarded but erratic drug release. The results of this study show that additives such as PEG 6000 and SLS affect the compaction characteristics of Eudragit l-100 and these were also found to affect the retardant behavior of Eudragit.

  19. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores.

    PubMed

    Hu, Xingyun; Guo, Xuejun; He, Mengchang; Li, Sisi

    2016-06-01

    The pH-dependent leaching of antimony (Sb) and arsenic (As) from three typical Sb-bearing ores (Banxi, Muli and Tongkeng Antimony Mine) in China was assessed using a pH-static leaching experiment. The pH changes of the leached solutions and pH-dependent leaching of Sb and As occurred in different ways. For the Banxi and Muli Sb ores, alkaline conditions were more favorable for the release of Sb compared to neutral and acidic conditions, but the reverse was true for the pH-dependent release of As. For the Tongkeng Sb ore, unlike the previous two Sb-bearing ores, acidic conditions were more favorable for Sb release than neutral and alkaline conditions. The ores with lower Sb and As contents released higher percentages of their Sb and As after 16day leaching, suggesting that they are the largest potential sources of pollution. This work may provide key information on the geochemistry of Sb and As in the weathering zone. PMID:27266313

  20. Characteristics of inositol trisphosphate mediated Ca/sup 2 +/ release from permeabilized hepatocytes

    SciTech Connect

    Joseph, S.K.; Williamson, J.R.

    1986-05-01

    Ca/sup 2 +/ release triggered by inositol trisphosphate (IP/sub 3/) has been measured in saponin-permeabilized hepatocytes with /sup 45/Ca/sup 2 +/ or Quin 2. The initial rate of Ca/sup 2 +/ release was not markedly affected by the incubation temperature (175 +/- 40 pmol/s/mg at 30/sup 0/C versus 133 +/- 24 pmol/s/mg at 4/sup 0/C). This result is consistent with the membrane translocation of Ca/sup 2 +/ occurring through an ion-channel rather than an ion-carrier. The amount of Ca/sup 2 +/ released by IP/sub 3/ was not affected by pH (6.5-8.0) or by compounds that inhibit voltage-gated Ca/sup 2 +/ channels. La/sup 3 +/ (100 ..mu..M) markedly inhibits the effect of 1 ..mu..M IP/sub 3/. The possibility that La/sup 3 +/ chelates IP/sub 3/ cannot be excluded since the effect of La/sup 3 +/ can be overcome by increasing the IP/sub 3/ concentration. IP/sub 3/-mediated Ca/sup 2 +/ release displays a requirement for a permeant cation in the incubation medium. Optimal release is observed with K/sup +/ gluconate. Other monovalent cations, with the exception of Li/sup +/, can substitute for K/sup +/. Permeant anions, at concentrations above 40 mM, inhibit Ca/sup 2 +/ release produced by IP/sub 3/. Cl/sup -/, Br/sup -/, I/sup -/, and SO/sub 4//sup 2 -/ were equally effective. Ca/sup 2 +/ release was not inhibited by DIDS or Furosemide. /sup 85/Sr/sup 2 +/ and /sup 54/Mn/sup 2 +/ fluxes were also stimulated by IP/sub 3/. These results suggest that IP/sub 3/ acts to gate a divalent cation channel. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membrane.

  1. Characteristics of inositol trisphosphate-mediated Ca/sup 2 +/ release from permeabilized hepatocytes

    SciTech Connect

    Joseph, S.K.; Williamson, J.R.

    1986-11-05

    Ca/sup 2 +/ release triggered by inositol trisphosphate (Ins(1,4,5)P/sub 3/) has been measured in saponin-permeabilized hepatocytes with /sup 45/Ca/sup 2 +/ or Quin 2. The initial rate of Ca/sup 2 +/ release was not greatly affected by the incubation temperature. The amount of Ca/sup 2 +/ released by Ins(1,4,5)P/sub 3/ was not affected by pH (6.5-8.0). La/sup 3 +/ (100 ..mu..M) markedly inhibited the effect of 1 ..mu..M Ins(1,4,5)P/sub 3/. The possibility that La/sup 3 +/ chelates Ins(1,4,5)P/sub 3/ cannot be excluded since the effect of La/sup 3 +/ could be overcome by increasing the Ins(1,4,5)P/sub 3/ concentration. Ins(1,4,5)P/sub 3/-mediated Ca/sup 2 +/ release showed a requirement for permeant cations in the incubation medium. Optimal release was observed with potassium gluconate. Other monovalent cations, with the exception of Li/sup +/, can substitute for K/sup +/. Permeant anions, at concentrations above 40 mM, inhibited Ca/sup 2 +/ release produced by Ins(1,4,5)P/sub 3/. Cl/sup -/, Br/sup -/, I/sup -/, and SO/sup 2 -//sub 4/ were equally effective as inhibitors. Ins(1,4,5)P/sub 3/ also caused the release of /sup 54/Mn/sup 2 +/ and /sup 85/Sr/sup 2 +/ accumulated by the permeabilized hepatocytes. The results are consistent with Ins(1,4,5)P/sub 3/ promoting the membrane translocation of divalent cations through an ion channel rather than an ion carrier. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membranes. The transport systems responsible for these compensatory ion movements may represent a potential site for the regulation of the hormone-mediated Ca/sup 2 +/ signal.

  2. DISCOVERY OF THE METHOXY RADICAL, CH{sub 3}O, TOWARD B1: DUST GRAIN AND GAS-PHASE CHEMISTRY IN COLD DARK CLOUDS

    SciTech Connect

    Cernicharo, J.; Jimenez-Escobar, A.; Munoz Caro, G. M.; Marcelino, N.; Roueff, E.; Gerin, M.

    2012-11-10

    We report on the discovery of the methoxy radical (CH{sub 3}O) toward the cold and dense core B1-b based on the observation, with the IRAM 30 m radio telescope, of several lines at 3 and 2 mm wavelengths. Besides this new molecular species we also report on the detection of many lines arising from methyl mercaptan (CH{sub 3}SH), formic acid (HCOOH), propynal (HCCCHO), acetaldehyde (CH{sub 3}CHO), dimethyl ether (CH{sub 3}OCH{sub 3}), methyl formate (CH{sub 3}OCOH), and the formyl radical (HCO). The column density of all these species is {approx_equal}10{sup 12} cm{sup -2}, corresponding to abundances of {approx_equal}10{sup -11}. The similarity in abundances for all these species strongly suggest that they are formed on the surface of dust grains and ejected to the gas phase through non-thermal desorption processes, most likely cosmic rays or secondary photons. Nevertheless, laboratory experiments indicate that the CH{sub 3}O isomer released to the gas phase is CH{sub 2}OH rather than the methoxy one. Possible gas-phase formation routes to CH{sub 3}O from OH and methanol are discussed.

  3. Steady deflagration of HMX with simple kinetics: A gas phase chain reaction model

    SciTech Connect

    Ward, M.J.; Brewster, M.Q.; Son, S.F.

    1998-08-01

    A new approach is presented for modeling steady combustion of energetic solids, in particular HMX. A simplified, global, gas phase chain reaction kinetic mechanism is employed. Specifically, a zero-order, high activation energy thermal decomposition initiation reaction in the condensed phase followed by a second-order, low activation energy chain reaction in the gas phase is assumed. A closed-form solution is obtained, which is based on the activation energy asymptotics analysis of Lengelle in the condensed phase and the assumption of zero activation energy in the gas phase. Comparisons between the model and a variety of experimental observations over a wide range of pressures and initial temperatures are presented and demonstrate the validity of the approach. The model provides excellent agreement with burning rate data (including sensitivity to pressure and initial temperature) and temperature profile data (in particular the gas phase). This suggests that in the realm of simplified, approximate kinetics modeling of energetic solids, the low gas phase activation energy limit is a more appropriate model than the classical high activation energy limit or heuristic flame sheet models. The model also indicates that the condensed phase reaction zone plays an important role in determining the deflagration rate of HMX, underscoring the need for better understanding of the chemistry in this zone.

  4. Are gas-phase models of interstellar chemistry tenable? The case of methanol.

    PubMed

    Garrod, Robin; Park, In Hee; Caselli, Paola; Herbst, Eric

    2006-01-01

    We consider the case of methanol production in cold dark clouds, also known as quiescent cores, for which recent work shows that a purely gas-phase synthesis is unlikely to produce a sufficient amount to explain the observational fractional abundance of approximately 10(-9). Moreover, recent experiments appear to confirm a previous hypothesis that methanol can be formed on cold grain surfaces by the hydrogenation of CO via successive reactions with hydrogen atoms. In this paper we consider two ways of including the surface formation of methanol into chemical models of cold dark clouds. First, we use a gas-phase model and artificially include the surface formation of methanol in the same manner that the formation of molecular hydrogen is included. Secondly, we utilize a gas-grain code with a new mechanism for desorption following exothermic chemical reactions on grain surfaces. The latter method can reproduce the observed fractional abundance of gas-phase methanol and many other gas-phase species in the well-studied cold dark cloud TMC1-CP but the best fit to the observational data occurs at times significantly later than at ages estimated from gas-phase models.

  5. Effect of additives on gas-phase catalysis with immobilised Thermoanaerobacter species alcohol dehydrogenase (ADH T).

    PubMed

    Trivedi, A H; Spiess, A C; Daussmann, T; Büchs, J

    2006-07-01

    This paper presents a strategy for preparing an efficient immobilised alcohol dehydrogenase preparation for a gas-phase reaction. The effects of additives such as buffers and sucrose on the immobilisation efficiency (residual activity and protein loading) and on the gas-phase reaction efficiency (initial reaction rate and half-life) of Thermoanaerobacter sp. alcohol dehydrogenase were studied. The reduction of acetophenone to 1-phenylethanol under in situ cofactor regeneration using isopropanol as co-substrate was used as a model reaction at fixed reaction conditions (temperature and thermodynamic activities). A strongly enhanced thermostability of the enzyme in the gas-phase reaction was achieved when the enzyme was immobilised with 50 mM phosphate buffer (pH 7) containing sucrose five times the protein amount (on weight/weight basis). This resulted in a remarkable productivity of 200 g L(-1) day(-1) even at non-optimised reaction conditions. The interaction of additives with the enzyme and water affects the immobilisation and gas-phase efficiencies of the enzyme. However, it was not possible to predict the effect of additives on the gas-phase reaction efficiency even after knowing their effect on the immobilisation efficiency.

  6. Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury.

    PubMed

    Lee, Tai Gyu; Hyun, Jung Eun

    2006-01-01

    Structural effect of the in situ generated TiO(2) sorbent particle was examined for its ability to capture elemental mercury under UV irradiation in a simulated combustion flue gas. Titania particles were prepared by thermal gas-phase oxidation of Titanium (IV) isopropoxide (TTIP) using a high temperature electric furnace reactor. The structural characteristics of the in situ generated TiO(2) at various synthesis temperatures were investigated; size distribution and the geometric mean diameter were measured using a scanning mobility particle sizer, while fractal dimension and radius of gyration were evaluated from the transmission electron microscopy images. Results from the Hg(0) capture experiment show that with increasing titania synthesis temperature, the overall aggregate size increases and the morphology becomes more open-structured to gas-phase Hg(0) and UV light, resulting in the improved mercury removal capability. PMID:15949836

  7. Influence of excipients on characteristics and release profiles of poly(ε-caprolactone) microspheres containing immunoglobulin G.

    PubMed

    Erdemli, Özge; Keskin, Dilek; Tezcaner, Ayşen

    2015-03-01

    Protein instability during microencapsulation has been one of the major drawbacks of protein delivery systems. In this study, the effects of various excipients (poly vinyl alcohol, glucose, starch, heparin) on the stability of encapsulated human immunoglobulin G (IgG) in poly(ε-caprolactone) (PCL) microspheres and on microsphere characteristics were investigated before and after γ-sterilization. Microspheres formulated without any excipients and with glucose had a mean particle size around 3-4μm whereas the mean particle sizes of other microspheres were around 5-6μm. Use of PVA significantly increased the IgG-loading and encapsulation efficiency of microspheres. After γ-irradiation, IgG stability was mostly maintained in the microspheres with excipients compared to microspheres without any excipients. According to the μBCA results, microspheres without any excipient showed a high initial burst release as well as a fast release profile among all groups. Presence of PVA decreased the loss in the activity of IgG released before (completely retained after 6h and 15.69% loss after 7days) and after γ-irradiation (26.04% loss and 52.39% loss after 6h and 7days, respectively). The stabilization effect of PVA on the retention of the activity of released IgG was found more efficient compared to other groups formulated with carbohydrates. PMID:25579939

  8. Influence of excipients on characteristics and release profiles of poly(ε-caprolactone) microspheres containing immunoglobulin G.

    PubMed

    Erdemli, Özge; Keskin, Dilek; Tezcaner, Ayşen

    2015-03-01

    Protein instability during microencapsulation has been one of the major drawbacks of protein delivery systems. In this study, the effects of various excipients (poly vinyl alcohol, glucose, starch, heparin) on the stability of encapsulated human immunoglobulin G (IgG) in poly(ε-caprolactone) (PCL) microspheres and on microsphere characteristics were investigated before and after γ-sterilization. Microspheres formulated without any excipients and with glucose had a mean particle size around 3-4μm whereas the mean particle sizes of other microspheres were around 5-6μm. Use of PVA significantly increased the IgG-loading and encapsulation efficiency of microspheres. After γ-irradiation, IgG stability was mostly maintained in the microspheres with excipients compared to microspheres without any excipients. According to the μBCA results, microspheres without any excipient showed a high initial burst release as well as a fast release profile among all groups. Presence of PVA decreased the loss in the activity of IgG released before (completely retained after 6h and 15.69% loss after 7days) and after γ-irradiation (26.04% loss and 52.39% loss after 6h and 7days, respectively). The stabilization effect of PVA on the retention of the activity of released IgG was found more efficient compared to other groups formulated with carbohydrates.

  9. Release characteristics of reattached barnacles to non-toxic silicone coatings.

    PubMed

    Kim, Jongsoo; Nyren-Erickson, Erin; Stafslien, Shane; Daniels, Justin; Bahr, James; Chisholm, Bret J

    2008-01-01

    Release mechanisms of barnacles (Amphibalanus amphitrite or Balanus amphitrite) reattached to platinum-cured silicone coatings were studied as a function of coating thickness (210-770 microm), elastic modulus (0.08-1.3 MPa), and shear rate (2-22 microm s(-1)). It was found that the shear stress of the reattached, live barnacles necessary to remove from the silicone coatings was controlled by the combined term (E/t)(0.5) of the elastic modulus (E) and thickness (t). As the ratio of the elastic modulus to coating thickness decreased, the barnacles were more readily removed from the silicone coatings, showing a similar release behavior to pseudobarnacles (epoxy glue). The barnacle mean shear stress ranged from 0.017 to 0.055 MPa whereas the pseudobarnacle mean shear stress ranged from 0.022 to 0.095 MPa.

  10. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    PubMed

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: < 250, 295/386 nm; C4: 275/334 nm) with the emission wavelength < 400 nm increased significantly during the metabolic process of B. virginica. However, the Fmax of the other two components with the emission wavelength > 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength < 400 nm to the sum of Fmax of the other components with the emission wavelength > 400 nm. PMID:22870644

  11. Organic contaminant release from melting snow. 2. Influence of snow pack and melt characteristics.

    PubMed

    Meyer, Torsten; Lei, Ying Duan; Muradi, Ibrahim; Wania, Frank

    2009-02-01

    Large reservoirs of organic contaminants in seasonal snowpack can be released in short pulses during spring snowmelt, potentially impacting the receiving ecosystems. Laboratory experiments using artificial snow spiked with organic target substances were conducted to investigate the behavior of six organic contaminants with widely variable distribution properties in melting snow. Whereas the influence of a chemical's equilibrium phase partitioning on the elution behavior is explored in a companion paper, we discuss here the impact of snow properties and melt features, including the snowpack depth, the temperature at the interface between soil and snow, the meltwater content the internal ice surface area, and the existence of distinct snow layers. Water-soluble organic substances are released in high concentrations at the beginning of a melt period when a deep and aged snowpack undergoes intense melting. Warm ground can cause notable melting at the snow bottom leading to a delayed and dampened concentration peak. Hydraulic barriers in layered snow packs cause preferential meltwater flow which also mitigates the early contaminant flush. Hydrophobic organic pollutants that are associated with particles accumulate near the snow surface and are released at the end of melting. Dirt cones at the surface of a dense snowpack enhance this enrichment. The findings of this laboratory study will aid in the understanding of the behavior of organic pollutants during the melting of more complex, natural snow covers.

  12. Quantitative measurements of vaporization, burst ionization, and emission characteristics of shaped charge barium releases

    NASA Technical Reports Server (NTRS)

    Hoch, Edward L.; Hallinan, Thomas J.; Stenbaek-Nielsen, Hans C.

    1994-01-01

    Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionopshere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5 x 10(exp 10) atoms/sq cm. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated b Stenbaek-Nielsen (1989).

  13. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Daniel J; He, Jibao; Spinu, Leonard; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2016-02-01

    Magnetically responsive oil-in-water emulsions are effectively stabilized by a halloysite nanotube supported superparamagnetic iron oxide nanoparticle system. The attachment of the magnetically functionalized halloysite nanotubes at the oil-water interface imparts magnetic responsiveness to the emulsion and provides a steric barrier to droplet coalescence leading to emulsions that are stabilized for extended periods. Interfacial structure characterization by cryogenic scanning electron microscopy reveals that the nanotubes attach at the oil-water interface in a side on-orientation. The tubular structure of the nanotubes is exploited for the encapsulation and release of surfactant species that are typical of oil spill dispersants such as dioctyl sulfosuccinate sodium salt and polyoxyethylene (20) sorbitan monooleate. The magnetically responsive halloysite nanotubes anchor to the oil-water interface stabilizing the interface and releasing the surfactants resulting in reduction in the oil-water interfacial tension. The synergistic adsorption of the nanotubes and the released surfactants at the oil-water interface results in oil emulsification into very small droplets (less than 20μm). The synergy of the unique nanotubular morphology and interfacial activity of halloysite with the magnetic properties of iron oxide nanoparticles has potential applications in oil spill dispersion, magnetic mobilization and detection using magnetic fields. PMID:26555959

  14. Thermal release characteristics of spallogenic He, Ne, and Ar from the Carbo iron meteorite.

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Huneke, J. C.; Funk, H.; Signer, P.

    1972-01-01

    Analysis of the thermal release patterns of He, Ne, and Ar from samples of the Carbo iron meteorite, showing that virtually no fractionation of He 3, He 4, Ne 21, and Ar 38 occurs. Thus conclusions about iron meteorites based on measured noble gas ratios will be unaffected by gas loss, and measurement of these ratios cannot yield information about possible loss. Further, noble gas loss cannot explain the abnormal elemental and isotopic patterns observed in some iron meteorites, notably hexahedrites. The release of He and Ne was continuously observed throughout the stepwise heating sequence, and ratios of diffusion coefficients at two consecutive temperatures have been determined from measurements of the relative degassing rates at these temperatures at the time of temperature increase. Effective activation energies of 100 plus or minus 20 kcal/mol for both He 3 and Ne 21 are calculated from the diffusion coefficient ratios at temperatures above 1050 C. A sharp maximum at 750 C in both the effective activation energy and the gas release is correlated with the alpha, gamma-phase transition.

  15. Quantitative measurements of vaporization, burst ionization, and emission characteristics of shaped charge barium releases

    SciTech Connect

    Hoch, E.L.; Hallinan, T.J.; Stenbaek-Nielsen, H.C.

    1994-07-01

    Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionosphere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5x10{sup 10} atoms/cm{sup 2}. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated by Stenbaek-Nielsen (1989). 22 refs., 4 figs., 6 tabs.

  16. Organic contaminant release from melting snow. 2. Influence of snow pack and melt characteristics.

    PubMed

    Meyer, Torsten; Lei, Ying Duan; Muradi, Ibrahim; Wania, Frank

    2009-02-01

    Large reservoirs of organic contaminants in seasonal snowpack can be released in short pulses during spring snowmelt, potentially impacting the receiving ecosystems. Laboratory experiments using artificial snow spiked with organic target substances were conducted to investigate the behavior of six organic contaminants with widely variable distribution properties in melting snow. Whereas the influence of a chemical's equilibrium phase partitioning on the elution behavior is explored in a companion paper, we discuss here the impact of snow properties and melt features, including the snowpack depth, the temperature at the interface between soil and snow, the meltwater content the internal ice surface area, and the existence of distinct snow layers. Water-soluble organic substances are released in high concentrations at the beginning of a melt period when a deep and aged snowpack undergoes intense melting. Warm ground can cause notable melting at the snow bottom leading to a delayed and dampened concentration peak. Hydraulic barriers in layered snow packs cause preferential meltwater flow which also mitigates the early contaminant flush. Hydrophobic organic pollutants that are associated with particles accumulate near the snow surface and are released at the end of melting. Dirt cones at the surface of a dense snowpack enhance this enrichment. The findings of this laboratory study will aid in the understanding of the behavior of organic pollutants during the melting of more complex, natural snow covers. PMID:19244999

  17. Photooxygenation and gas-phase reactivity of multiply threaded pseudorotaxanes.

    PubMed

    Nowosinski, Karol; Warnke, Stephan; Pagel, Kevin; Komáromy, Dávid; Jiang, Wei; Schalley, Christoph A

    2016-04-01

    The solution-phase photooxygenation of multiply threaded crown/ammonium pseudorotaxanes containing anthracene spacers is monitored by electrospray ionization Fourier-transform ion-cyclotron-resonance (ESI-FTICR) mass spectrometry. The oxygenated pseudorotaxanes are mass-selected and fragmented by infrared multiphoton dissociation (IRMPD) and/or collision-induced dissociation (CID) experiments and and their behavior compared to that of the non-oxygenated precursors. [4+2]Cycloreversion reactions lead to the loss of O2, when no other reaction channel with competitive energy demand is available. Thus, the release of molecular oxygen can serve as a reference reaction for the energy demand of other fragmentation reactions such as the dissociation of the crown/ammonium binding motifs. The photooxygenation induces curvature into the initially planar anthracene and thus significantly changes the geometry of the divalent, anthracene-spacered wheel. This is reflected in ion-mobility data. Coulomb repulsion in multiply charged pseudorotaxanes assists the oxygen loss as the re-planarization of the anthracene increases the distance between the two charges. PMID:27041657

  18. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region

    NASA Astrophysics Data System (ADS)

    Weiss, Niels; Blok, Daan; Elberling, Bo; Hugelius, Gustaf; Jørgensen, Christian Juncher; Siewert, Matthias Benjamin; Kuhry, Peter

    2016-07-01

    This study relates soil organic matter (SOM) characteristics to initial soil incubation carbon release from upper permafrost samples in Yedoma region soils of northeastern Siberia, Russia. Carbon (C) and nitrogen (N) content, carbon to nitrogen ratios (C:N), δ13C and δ15N values show clear trends that correspond with SOM age and degree of decomposition. Incubation results indicate that older and more decomposed soil material shows higher C respiration rates per unit incubated C than younger and less decomposed samples with higher C content. This is important as undecomposed material is often assumed to be more reactive upon thawing. Large stocks of SOM and their potential decomposability, in combination with complex landscape dynamics that include one or more events of Holocene thaw in most of the landscape, are of consequence for potential greenhouse gas release from permafrost soils in the Yedoma region.

  19. Device for two-dimensional gas-phase separation and characterization of ion mixtures

    DOEpatents

    Tang, Keqi; Shvartsburg, Alexandre A.; Smith, Richard D.

    2006-12-12

    The present invention relates to a device for separation and characterization of gas-phase ions. The device incorporates an ion source, a field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer, an ion mobility spectrometry (IMS) drift tube, and an ion detector. In one aspect of the invention, FAIMS operating voltages are electrically floated on top of the IMS drift voltage. In the other aspect, the FAIMS/IMS interface is implemented employing an electrodynamic ion funnel, including in particular an hourglass ion funnel. The present invention improves the efficiency (peak capacity) and sensitivity of gas-phase separations; the online FAIMS/IMS coupling creates a fundamentally novel two-dimensional gas-phase separation technology with high peak capacity, specificity, and exceptional throughput.

  20. Amphipols Outperform Dodecylmaltoside Micelles in Stabilizing Membrane Protein Structure in the Gas Phase

    PubMed Central

    2014-01-01

    Noncovalent mass spectrometry (MS) is emerging as an invaluable technique to probe the structure, interactions, and dynamics of membrane proteins (MPs). However, maintaining native-like MP conformations in the gas phase using detergent solubilized proteins is often challenging and may limit structural analysis. Amphipols, such as the well characterized A8-35, are alternative reagents able to maintain the solubility of MPs in detergent-free solution. In this work, the ability of A8-35 to retain the structural integrity of MPs for interrogation by electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is compared systematically with the commonly used detergent dodecylmaltoside. MPs from the two major structural classes were selected for analysis, including two β-barrel outer MPs, PagP and OmpT (20.2 and 33.5 kDa, respectively), and two α-helical proteins, Mhp1 and GalP (54.6 and 51.7 kDa, respectively). Evaluation of the rotationally averaged collision cross sections of the observed ions revealed that the native structures of detergent solubilized MPs were not always retained in the gas phase, with both collapsed and unfolded species being detected. In contrast, ESI-IMS-MS analysis of the amphipol solubilized MPs studied resulted in charge state distributions consistent with less gas phase induced unfolding, and the presence of lowly charged ions which exhibit collision cross sections comparable with those calculated from high resolution structural data. The data demonstrate that A8-35 can be more effective than dodecylmaltoside at maintaining native MP structure and interactions in the gas phase, permitting noncovalent ESI-IMS-MS analysis of MPs from the two major structural classes, while gas phase dissociation from dodecylmaltoside micelles leads to significant gas phase unfolding, especially for the α-helical MPs studied. PMID:25495802

  1. Comparison of Ca2+ release and uptake characteristics of the sarcoplasmic reticulum in isolated horse and rabbit cardiomyocytes.

    PubMed

    Loughrey, C M; Smith, G L; MacEachern, K E

    2004-09-01

    Both the cardiac action potential duration (APD) (0.6-1 s) and resting heart rate (30-40 beats/min) in the horse are significantly different from humans and smaller mammals, including the rabbit. This would be anticipated to have consequences for excitation-contraction (EC) coupling and require adaptation of the individual processes involved. The sarcoplasmic reticulum (SR) is one of the main components involved in EC coupling. This study examines and compares the activity of this organelle in the horse with that of the rabbit. In particular, the study focuses on SR Ca2+ release via the Ca2+ release channel/ryanodine receptor (RyR2) and Ca2+ uptake via the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump. Isolated cardiomyocytes from both horse and rabbit hearts were permeabilized, bathed in a mock intracellular solution, and exposed to a specified [Ca2+]. Rabbit cardiomyocytes exposed to 260 nM [Ca2+] produced spontaneous Ca2+ release and propagated Ca2+ waves. Horse cells failed to produce Ca2+ waves; instead, only local release in the form of Ca2+ sparks was evident. However, at 550 nM [Ca2+], Ca2+ waves were produced in both species. Ca2+ waves were four times less frequent yet approximately 1.5 times greater in amplitude in the horse compared with the rabbit. Ca2+ wave velocity was comparable between the species. The reason for this disparity in Ca2+ wave characteristics is unknown. Separate measurements of oxalate-supported Ca2+ uptake into the SR suggest that both horse and rabbit cardiomyocytes have comparable levels SERCA activity. The possible reasons for the observed differences in SR Ca2+ release between the horse and rabbit are discussed.

  2. Bone regenerating effect of surface-functionalized titanium implants with sustained-release characteristics of strontium in ovariectomized rats

    PubMed Central

    Offermanns, Vincent; Andersen, Ole Zoffmann; Riede, Gregor; Andersen, Inge Hald; Almtoft, Klaus Pagh; Sørensen, Søren; Sillassen, Michael; Jeppesen, Christian Sloth; Rasse, Michael; Foss, Morten; Kloss, Frank

    2016-01-01

    Since strontium (Sr) is known for its anabolic and anticatabolic effect on bone, research has been focused on its potential impact on osseointegration. The objective of this study was to investigate the performance of nanotopographic implants with a Sr-functionalized titanium (Ti) coating (Ti–Sr–O) with respect to osseointegration in osteoporotic bone. The trial was designed to examine the effect of sustained-release characteristics of Sr in poor-quality bone. Three Ti–Sr–O groups, which differed from each other in coating thickness, Sr contents, and Sr release, were examined. These were prepared by a magnetron sputtering process and compared to uncoated grade 4 Ti. Composition, morphology, and mechanical stability of the coatings were analyzed, and Sr release data were gained from in vitro washout experiments. In vivo investigation was carried out in an osteoporotic rat model and analyzed histologically, 6 weeks and 12 weeks after implantation. Median values of bone-to-implant contact and new bone formation after 6 weeks were found to be 84.7% and 54.9% (best performing Sr group) as compared to 65.2% and 23.8% (grade 4 Ti reference), respectively. The 12-week observation period revealed 84.3% and 56.5% (best performing Sr group) and 81.3% and 39.4% (grade 4 Ti reference), respectively, for the same measurements. The increase in new bone formation was found to correlate with the amount of Sr released in vitro. The results indicate that sputtered nanostructured Ti–Sr–O coatings showed sustained release of Sr and accelerate osseointegration even in poor-quality bone, and thus, may have impact on practical applications for medical implants. PMID:27313456

  3. Bone regenerating effect of surface-functionalized titanium implants with sustained-release characteristics of strontium in ovariectomized rats.

    PubMed

    Offermanns, Vincent; Andersen, Ole Zoffmann; Riede, Gregor; Andersen, Inge Hald; Almtoft, Klaus Pagh; Sørensen, Søren; Sillassen, Michael; Jeppesen, Christian Sloth; Rasse, Michael; Foss, Morten; Kloss, Frank

    2016-01-01

    Since strontium (Sr) is known for its anabolic and anticatabolic effect on bone, research has been focused on its potential impact on osseointegration. The objective of this study was to investigate the performance of nanotopographic implants with a Sr-functionalized titanium (Ti) coating (Ti-Sr-O) with respect to osseointegration in osteoporotic bone. The trial was designed to examine the effect of sustained-release characteristics of Sr in poor-quality bone. Three Ti-Sr-O groups, which differed from each other in coating thickness, Sr contents, and Sr release, were examined. These were prepared by a magnetron sputtering process and compared to uncoated grade 4 Ti. Composition, morphology, and mechanical stability of the coatings were analyzed, and Sr release data were gained from in vitro washout experiments. In vivo investigation was carried out in an osteoporotic rat model and analyzed histologically, 6 weeks and 12 weeks after implantation. Median values of bone-to-implant contact and new bone formation after 6 weeks were found to be 84.7% and 54.9% (best performing Sr group) as compared to 65.2% and 23.8% (grade 4 Ti reference), respectively. The 12-week observation period revealed 84.3% and 56.5% (best performing Sr group) and 81.3% and 39.4% (grade 4 Ti reference), respectively, for the same measurements. The increase in new bone formation was found to correlate with the amount of Sr released in vitro. The results indicate that sputtered nanostructured Ti-Sr-O coatings showed sustained release of Sr and accelerate osseointegration even in poor-quality bone, and thus, may have impact on practical applications for medical implants. PMID:27313456

  4. Characteristics and applications of UV/controlled-release H2O2 for urban runoff treatment

    NASA Astrophysics Data System (ADS)

    Sun, S.; Lee, E.; Schwartz, F. W.; Kim, Y.

    2010-12-01

    Nonpoint source (NPS) pollution for urban runoff has been considered as one of the leading causes of receiving water degradation. Among the NPS pollutants, petroleum hydrocarbons, such as BTEX; polynuclear aromatic hydrocarbons (PAHs) and gasoline additives (such as MTBE) are gaining more attention due to their resistance to biodegradation, high detention frequency and toxicity. Opportunities exist for the development of in situ scheme to remediate organic pollutants in urban runoff. The Ultraviolet (UV)/H2O2 process uses direct photolysis of H2O2 under UV irradiation, producing hydroxyl radicals. They attack organic compounds relatively non-selectively with rate constants ranging from 106 to 1010 M-1s-1, oxidizing them by addition to double bonds or hydrogen atom abstraction. This study aims to develop a controlled-release system (CRS) that can deliver H2O2 at a rate which is predetermined by the design of the system and nearly independent of environmental conditions. A series of correlation analyses and literature review suggested that UV/CRS-H2O2 system can provide an efficient scheme for treating organic pollutants in urban runoff in situ. CRS-H2O2 forms were manufactured by dispersing fine sodium percarbonate (Na2CO3`1.5H2O2) granules, which can rapidly release H2O2 when dissolved in water, in liquid wax matrix. Release rates of these CRS forms were measured using column experiments and computer modeling. These column and numerical simulation data indicated the CRP could deliver H2O2 in a controlled concentration, which is efficient to treat organic pollution in urban runoff for several years. This type of new approach may be suitable for in situ remediation of urban storm runoff in which low to medium-concentration contaminants exist

  5. Study of Hind Limb Tissue Gas Phase Formation in Response to Suspended Adynamia and Hypokinesia

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.

    1996-01-01

    The purpose of this study was to investigate the hypothesis that reduced joint/muscle activity (hypo kinesia) as well as reduced or null loading of limbs (adynamia) in gravity would result in reduced decompression-induced gas phase and symptoms of decompression sickness (DCS). Finding a correlation between the two phenomena would correspond to the proposed reduction in tissue gas phase formation in astronauts undergoing decompression during extravehicular activity (EVA) in microgravity. The observation may further explain the reported low incidence of DCS in space.

  6. Spray characterization and gas phase interaction downstream of a simplified atomizer

    NASA Astrophysics Data System (ADS)

    Hebrard, P.; Trichet, P.; Millan, P.

    1992-07-01

    A detailed study of the flowfield produced by a simplified airblast atomizer was performed. This atomizer consists of an annular liquid sheet introduced into coflowing nonswirling and swirling air flow fields. Droplet size and velocity were measured in the resultant spray using a two components Phase/Doppler Particle Analyzer. A complete set of measurements was obtained at axial locations from 8 mm to 150 mm downstream from the nozzle. Laser velocimetry was also employed to measure the gas phase properties. The effect of swirl on droplet transport process is examined for this type of airblast atomizer and the results demonstrate the strong influence the spray has on the gas phase.

  7. Direct gas-phase epoxidation of propylene to propylene oxide through radical reactions: A theoretical study

    NASA Astrophysics Data System (ADS)

    Kizilkaya, Ali Can; Fellah, Mehmet Ferdi; Onal, Isik

    2010-03-01

    The gas-phase radical chain reactions which utilize O 2 as the oxidant to produce propylene oxide (PO) are investigated through theoretical calculations. The transition states and energy profiles were obtained for each path. The rate constants were also calculated. The energetics for the competing pathways indicate that PO can be formed selectively due to its relatively low activation barrier (9.3 kcal/mol) which is in a good agreement with the experimental value (11 kcal/mol) of gas-phase propylene epoxidation. The formation of the acrolein and combustion products have relatively high activation barriers and are not favored. These results also support the recent experimental findings.

  8. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.

    PubMed Central

    Atkinson, R; Arey, J

    1994-01-01

    The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products. PMID:7821285

  9. Gas Phase Spectra and Structural Determination of Glucose 6 Phosphate Using Cryogenic Ion Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kregel, Steven J.; Voss, Jonathan; Marsh, Brett; Garand, Etienne

    2014-06-01

    Glucose-6-Phosphate (G6P) is one member of a class of simple phosphorylated sugars that are relevant in biological processes. We have acquired a gas phase infrared spectrum of G6P- using cryogenic ion vibrational spectroscopy (CIVS) in a home-built spectrometer. The experimental spectrum was compared with calculated vibrational spectra from a systematic conformer search. For both of the α and β anomers, results show that only the lowest energy conformers are present in the gas phase. If spectral signatures for similar sugars could be cataloged, it would allow for conformer-specific determination of mixture composition, for example, for glycolyzation processes.

  10. Control of gas phase nanoparticle shape and its effect on MRI relaxivity

    NASA Astrophysics Data System (ADS)

    Aktaş, Sıtkı; Thornton, Stuart C.; Binns, Chris; Lari, Leonardo; Pratt, Andrew; Kröger, Roland; Horsfield, Mark A.

    2015-03-01

    We have used a sputtering gas aggregation source to produce Fe@FeO nanoparticles with different shapes, by annealing them at different temperatures in the gas phase. Without annealing, the most common shape found for the nanoparticles is cubic but annealing the nanoparticles at 1129 °C transforms the cubes into cuboctahedra. Measurements of the MRI relaxivity show that the cubic nanoparticles have a higher performance by a factor of two, which is attributed to a higher saturation magnetization for this shape. This indicates that the shape-control enabled by gas-phase synthesis is important for obtaining optimal performance in applications.

  11. Time-dependent gas phase kinetics in a hydrogen diluted silane plasma

    SciTech Connect

    Nunomura, S.; Kondo, M.; Yoshida, I.

    2009-02-16

    The gas phase kinetics in a high-pressure hydrogen diluted silane plasma has been studied at time scales of 10{sup -2}-6x10{sup 2} s. The time-resolved gas phase composition shows the following kinetics at different time scales: silane decomposition and polysilane generation in < or approx. 2x10{sup -1} s, nanoparticle formation and plasma density reduction in 10{sup -1}-10{sup 0} s, polysilane accumulation in 10{sup 0}-10{sup 2} s, and silane depletion and electrode heating in > or approx. 10{sup 1} s. Disilane radicals are implied to be the dominant film precursors in addition to silyl radicals.

  12. A pressure cell for nonresonant inelastic x-ray scattering studies of gas phases

    SciTech Connect

    Minzer, M.; Bradley, J. A.; Musgrave, R.; Seidler, G. T.; Skilton, A.

    2008-08-15

    We report the design and performance of a gas-phase sample cell for measurements of momentum transfer (q) dependent nonresonant inelastic x-ray scattering (NRIXS). NRIXS measurements from He gas at 2 MPa (20 bars) readily demonstrate dipole-allowed and dipole-forbidden final states for two-electron excitations. Direct comparison of gas-phase NRIXS measurements with the corresponding nonresonant electron energy loss spectroscopy results (EELS) will be a valuable method for characterizing systematic errors in either technique for studies that require absolute normalization of the double differential cross section.

  13. An Unexpected Gas-Phase Binding Motif for Metal Dication Complexation with Peptides: Irmpd Spectroscopic Structure Determination

    NASA Astrophysics Data System (ADS)

    Dunbar, Robert C.; Steill, Jeffrey; Polfer, Nicolas; Berden, Giel; Oomens, Jos

    2011-06-01

    The favorable orientation of the amide linkage and the aromatic side chain of N-terminal Phe or Trp leads to several favorable motifs for metal ion binding to dipeptides, having distinct characteristics in the IR spectrum. Infrared multiple photon photodissociation spectroscopy using the FELIX free electron laser has enabled clear resolution of these isomeric forms. The spectral patterns of complexes of small dications (Mg2+, Ni2+ and Co2+) reveal an unexpected new isomeric form, in which the metal ion displaces the amide hydrogen, forming a metal-nitrogen bond with covalent character which is unprecedented in such gas-phase complexes. Spectra of the ions were acquired by irradiating the cell of the Fourier-transform ion cyclotron resonance mass spectrometer with infrared light from the FELIX laser at wavelengths in the approximate range 500 to 1900 Cm-1.

  14. Gas phase fragmentation of protonated betaine and its clusters.

    PubMed

    Wyer, Jean Ann; Feketeová, Linda; Brøndsted Nielsen, Steen; O'Hair, Richard A J

    2009-10-21

    Betaine [(CH(3))(3)N(+)CH(2)COO(-)] is a methylated version of glycine and is a zwitterion in its neutral form. In this work, we have subjected protonated betaine, (+)(CH(3))(3)NCH(2)COOH, to a range of fragmentation experiments which involve vibrational excitation, electronic excitation and electron capture. Low-energy (eV) collisions in combination with deuterium labelling reveal that the lowest energy dissociation pathway is the formation of N(CH(3))(3)(+) and CH(2)COOH. The dominant channel after 50 keV collisions with molecular oxygen is the same as that after low-energy collisions; however, more fragmentation is seen which is most likely due to electronic excitation of the ions in the collision processes. Subsequent dissociation of the radical N(CH(3))(3)(+) was observed in agreement with the electron ionisation spectrum of N(CH(3))(3). Electron-induced dissociation by 22 eV electrons produced similar fragments to those formed after high-energy collision-induced dissociation. With caesium atoms as the target gas, protonated betaine captured electrons to give neutrals. These were reionised to cations a microsecond later in collisions with O(2). The dominant dissociation channel of the betaine radical, [(CH(3))(3)NCH(2)COOH] , involves formation of N(CH(3))(3) and CH(2)COOH, as revealed from the presence of N(CH(3))(3)(+) radical cations. This channel is associated with a kinetic energy release of 0.1-0.2 eV. The CH(2)COOH radical is unstable to dissociation into CH(3) and CO(2) but in charge reversal experiments (two Cs collisions), CH(2)[double bond, length as m-dash]C(OH)O(-) anions were formed due to the short time between the collisions (nanoseconds). Density functional theory calculations support the spectral interpretations. Collision-induced dissociation of protonated betaine clusters resulted dominantly in loss of neutral betaines. PMID:20449019

  15. Polymerization in the gas phase, in clusters, and on nanoparticle surfaces.

    PubMed

    El-Shall, M Samy

    2008-07-01

    Gas phase and cluster experiments provide unique opportunities to quantitatively study the effects of initiators, solvents, chain transfer agents, and inhibitors on the mechanisms of polymerization. Furthermore, a number of important phenomena, unique structures, and novel properties may exist during gas-phase and cluster polymerization. In this regime, the structure of the growing polymer may change dramatically and the rate coefficient may vary significantly upon the addition of a single molecule of the monomer. These changes would be reflected in the properties of the oligomers deposited from the gas phase. At low pressures, cationic and radical cationic polymerizations may proceed in the gas phase through elimination reactions. In the same systems at high pressure, however, the ionic intermediates may be stabilized, and addition without elimination may occur. In isolated van der Waals clusters of monomer molecules, sequential polymerization with several condensation steps can occur on a time scale of a few microseconds following the ionization of the gas-phase cluster. The cluster reactions, which bridge gas-phase and condensed-phase chemistry, allow examination of the effects of controlled states of aggregation. This Account describes several examples of gas-phase and cluster polymerization studies where the most significant results can be summarized as follows: (1) The carbocation polymerization of isobutene shows slower rates with increasing polymerization steps resulting from entropy barriers, which could explain the need for low temperatures for the efficient propagation of high molecular weight polymers. (2) Radical cation polymerization of propene can be initiated by partial charge transfer from an ionized aromatic molecule such as benzene coupled with covalent condensation of the associated propene molecules. This novel mechanism leads exclusively to the formation of propene oligomer ions and avoids other competitive products. (3) Structural information

  16. Polymerization in the gas phase, in clusters, and on nanoparticle surfaces.

    PubMed

    El-Shall, M Samy

    2008-07-01

    Gas phase and cluster experiments provide unique opportunities to quantitatively study the effects of initiators, solvents, chain transfer agents, and inhibitors on the mechanisms of polymerization. Furthermore, a number of important phenomena, unique structures, and novel properties may exist during gas-phase and cluster polymerization. In this regime, the structure of the growing polymer may change dramatically and the rate coefficient may vary significantly upon the addition of a single molecule of the monomer. These changes would be reflected in the properties of the oligomers deposited from the gas phase. At low pressures, cationic and radical cationic polymerizations may proceed in the gas phase through elimination reactions. In the same systems at high pressure, however, the ionic intermediates may be stabilized, and addition without elimination may occur. In isolated van der Waals clusters of monomer molecules, sequential polymerization with several condensation steps can occur on a time scale of a few microseconds following the ionization of the gas-phase cluster. The cluster reactions, which bridge gas-phase and condensed-phase chemistry, allow examination of the effects of controlled states of aggregation. This Account describes several examples of gas-phase and cluster polymerization studies where the most significant results can be summarized as follows: (1) The carbocation polymerization of isobutene shows slower rates with increasing polymerization steps resulting from entropy barriers, which could explain the need for low temperatures for the efficient propagation of high molecular weight polymers. (2) Radical cation polymerization of propene can be initiated by partial charge transfer from an ionized aromatic molecule such as benzene coupled with covalent condensation of the associated propene molecules. This novel mechanism leads exclusively to the formation of propene oligomer ions and avoids other competitive products. (3) Structural information

  17. Numerical Computation of Flame Spread over a Thin Solid in Forced Concurrent Flow with Gas-phase Radiation

    NASA Technical Reports Server (NTRS)

    Jiang, Ching-Biau; T'ien, James S.

    1994-01-01

    Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.

  18. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum

    PubMed Central

    Nakayasu, Ernesto S.; Sobreira, Tiago J. P.; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D.

    2016-01-01

    ABSTRACT Histoplasma capsulatum produces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment of H. capsulatum cells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bind H. capsulatum heat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCE Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However

  19. [Effects of controlled-release fertilizer on chrysanthemum leaf chlorophyll fluorescence characteristics and ornamental quality].

    PubMed

    Song, Xu-xu; Zheng, Cheng-shu; Sun, Xia; Ma, Hai-yan

    2011-07-01

    Taking cut flower chrysanthemum 'Baima' as test material, a pot experiment was conducted to study the effects of controlled-release fertilizer on the leaf chlorophyll fluorescence parameters, chlorophyll and nutrient contents, and ornamental quality of chrysanthemum. Under no fertilization, the maximal photochemical efficiency of PS II in dark (F(v)/F(m)), potential photochemical efficiency of PS II (F(v)/F(0)), and quantum yield of PS II electron transport (phi(PS II)) decreased significantly, compared with those under fertilization. With the application of conventional compound fertilizers CCFA (N:P:K=20:8:10) and CCFB (N:P:K= 14:14:14), the F(v)/F(m), F(v)/F(0) and phi(PS II) had a slight increase in early period (30-60 d) but a remarkable decrease in mid and later periods (75 - 120 d), compared with those under the application of controlled-release fertilizers CRFA (N:P:K = 20:8:10) and CRFB (N:P:K= 14:14:14). Under the application of CRFA, the F(v)/F(m), phi(PS II), and photochemical quenching (q(P)) had somewhat increase, as compared with the application of CRFB. The non-photochemical quenching (NPQ) under the application of CRFA and CRFB decreased significantly, compared with that under the application of CCFA and CCFB and the control. The chlorophyll content had a similar change trend with F(v)/F(m), F(v)/F(0), and phi(PS II). The leaf N, P, and K contents, flower stalk length and stalk diameter, flower diameter, and flower fresh and dry mass at harvest stage all increased under the application of CRFA and CRFB, compared with those under the application of CCFA and CCFB and the control, and the flower fresh and dry mass was significantly higher under the application of CRFA than of CRFB. This study showed that controlled-release fertilizer could improve the ornamental quality of chrysanthemum via improving the leaf chlorophyll content, photochemical transduction rate, and nutrient uptake, and CRFA had better effects than CRFB. PMID:22007449

  20. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum.

    PubMed

    Matos Baltazar, Ludmila; Nakayasu, Ernesto S; Sobreira, Tiago J P; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D

    2016-01-01

    Histoplasma capsulatum produces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment of H. capsulatum cells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bind H. capsulatum heat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCE Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However, there has

  1. [Effects of controlled-release fertilizer on chrysanthemum leaf chlorophyll fluorescence characteristics and ornamental quality].

    PubMed

    Song, Xu-xu; Zheng, Cheng-shu; Sun, Xia; Ma, Hai-yan

    2011-07-01

    Taking cut flower chrysanthemum 'Baima' as test material, a pot experiment was conducted to study the effects of controlled-release fertilizer on the leaf chlorophyll fluorescence parameters, chlorophyll and nutrient contents, and ornamental quality of chrysanthemum. Under no fertilization, the maximal photochemical efficiency of PS II in dark (F(v)/F(m)), potential photochemical efficiency of PS II (F(v)/F(0)), and quantum yield of PS II electron transport (phi(PS II)) decreased significantly, compared with those under fertilization. With the application of conventional compound fertilizers CCFA (N:P:K=20:8:10) and CCFB (N:P:K= 14:14:14), the F(v)/F(m), F(v)/F(0) and phi(PS II) had a slight increase in early period (30-60 d) but a remarkable decrease in mid and later periods (75 - 120 d), compared with those under the application of controlled-release fertilizers CRFA (N:P:K = 20:8:10) and CRFB (N:P:K= 14:14:14). Under the application of CRFA, the F(v)/F(m), phi(PS II), and photochemical quenching (q(P)) had somewhat increase, as compared with the application of CRFB. The non-photochemical quenching (NPQ) under the application of CRFA and CRFB decreased significantly, compared with that under the application of CCFA and CCFB and the control. The chlorophyll content had a similar change trend with F(v)/F(m), F(v)/F(0), and phi(PS II). The leaf N, P, and K contents, flower stalk length and stalk diameter, flower diameter, and flower fresh and dry mass at harvest stage all increased under the application of CRFA and CRFB, compared with those under the application of CCFA and CCFB and the control, and the flower fresh and dry mass was significantly higher under the application of CRFA than of CRFB. This study showed that controlled-release fertilizer could improve the ornamental quality of chrysanthemum via improving the leaf chlorophyll content, photochemical transduction rate, and nutrient uptake, and CRFA had better effects than CRFB.

  2. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  3. Role of phosphate and kinetic characteristics of complete iron release from native pig spleen ferritin-Fe.

    PubMed

    Huang, H Q; Lin, Q M; Kong, B; Zeng, R Y; Qiao, Y H; Chen, C H; Zhang, F Z; Xu, L S

    1999-05-01

    The kinetics for complete iron release showing biphasic behavior from pig spleen ferritin-Fe (PSFF) was measured by spectrophotometry. The native core within the PSFF shell consisted of 1682 hydroxide Fe3+ and 13 phosphate molecules. Inhibition kinetics for complete iron release was measure by differential spectrophotometry in the presence of phosphate; the process was clearly divided into two phases involving a first-order reaction at an increasing rate of 46.5 Fe3+/PSFF/min on the surface of the iron core and a zero-order reaction at a decreasing rate of 6.67 Fe3+/PSFF/min inside the core. The kinetic equation [C(PSFF-Fe3+)max - C(PSFF-Fe3+)t](1/2) = Tmax - Tt gives the transition time between the two rates and represents the complex kinetic characteristics. The rate was directly accelerated twofold by a mixed reducer of dithionite and ascorbic acid. These results suggest that the channel of the PSFF shell may carry out multiple functions for iron metabolism and storage and that the phosphate strongly affects the rate of iron release.

  4. Characteristics and applications of controlled-release KMnO4 for groundwater remediation.

    PubMed

    Lee, Eung Seok; Schwartz, Franklin W

    2007-02-01

    In situ chemical oxidation (ISCO) using potassium permanganate (KMnO4) has been widely used as a practical approach for remediation of groundwater contaminated by chlorinated solvents like trichloroethylene. The most common applications are active flushing schemes, which target the destruction of some contaminant source by injecting concentrated permanganate (MnO4(-)) solution into the subsurface over a short period of time. Despite many promising results, KMnO4 flushing is often frustrated by inefficiency associated with pore plugging by MnO2 and bypassing. Opportunities exist for the development of new ISCO systems based on KMnO4. The new scheme described in this paper uses controlled-release KMnO4 (CRP) as an active component in the well-based reactive barrier system. This scheme operates to control spreading of a dissolved contaminant plume. Prototype CRP was manufactured by dispersing fine KMnO4 granules in liquid crystal polymer resin matrix. Scanning electron microscope data verified the formation of micro-scale (ID=20-200 microm) secondary capillary permeability through which MnO4(-) is released by a reaction-diffusion process. Column and numerical simulation data indicated that the CRP could deliver MnO4(-) in a controlled manner for several years without replenishment. A proof-of-concept flow-tank experiment and model simulations suggested that the CRP scheme could potentially be developed as a practical approach for in situ remediation of contaminated aquifers. This scheme may be suitable for remediation of sites where accessibility is limited or some low-concentration contaminant plume is extensive. Development of delivery systems that can facilitate lateral spreading and mixing of MnO4(-) with the contaminant plume is warranted. PMID:17140635

  5. Morphology, release characteristics, and antimicrobial effect of nisin-loaded electrospun gelatin fiber mat.

    PubMed

    Dheraprasart, Chanuttaporn; Rengpipat, Sirirat; Supaphol, Pitt; Tattiyakul, Jirarat

    2009-11-01

    Gelatin electrospun (e-spun) fiber mats containing nisin were produced by electrostatic spinning of gelatin-nisin in 70% (vol/vol) acetic acid aqueous solutions. Varying nisin loading concentration (0 to 3% [wt/wt]) did not affect the fiber average diameter, whereas increasing gelatin concentration from 20 to 24% (wt/vol) caused an increase in the average diameter. All nisin-loaded gelatin e-spun fiber mats demonstrated inhibition against Lactobacillus plantarum TISTR 850. However, all fiber mats were fragile and easily dissolved in water. Cross-linking by saturated glutaraldehyde vapor at 37 degrees C for 5 min was done to strengthen the mat. Tensile strength, Young's modulus, and elongation of the cross-linked gelatin-nisin e-spun fiber mats varied in the range of 2.6 to 20.3 MPa, 163 to 966 MPa, and 1.7 to 5.9% , respectively. Cross-linking did not affect the mat's inhibition activity against L. plantarum TISTR 850. Nisin retention in cross-linked antimicrobial gelatin e-spun fiber mats was in the range of 1.0 to 1.22% . Increasing temperature caused an increase in nisin release, but increasing water activity did not cause a significant difference in nisin release over 50 h. After storage at 25 degrees C for 5 months, the antimicrobial gelatin e-spun fiber mat still showed inhibition against L. plantarum TISTR 850. The mats also inhibited the growth of Staphylococcus aureus and Listeria monocytogenes but not Salmonella Typhimurium. PMID:19903391

  6. Characteristics and applications of controlled-release KMnO4 for groundwater remediation.

    PubMed

    Lee, Eung Seok; Schwartz, Franklin W

    2007-02-01

    In situ chemical oxidation (ISCO) using potassium permanganate (KMnO4) has been widely used as a practical approach for remediation of groundwater contaminated by chlorinated solvents like trichloroethylene. The most common applications are active flushing schemes, which target the destruction of some contaminant source by injecting concentrated permanganate (MnO4(-)) solution into the subsurface over a short period of time. Despite many promising results, KMnO4 flushing is often frustrated by inefficiency associated with pore plugging by MnO2 and bypassing. Opportunities exist for the development of new ISCO systems based on KMnO4. The new scheme described in this paper uses controlled-release KMnO4 (CRP) as an active component in the well-based reactive barrier system. This scheme operates to control spreading of a dissolved contaminant plume. Prototype CRP was manufactured by dispersing fine KMnO4 granules in liquid crystal polymer resin matrix. Scanning electron microscope data verified the formation of micro-scale (ID=20-200 microm) secondary capillary permeability through which MnO4(-) is released by a reaction-diffusion process. Column and numerical simulation data indicated that the CRP could deliver MnO4(-) in a controlled manner for several years without replenishment. A proof-of-concept flow-tank experiment and model simulations suggested that the CRP scheme could potentially be developed as a practical approach for in situ remediation of contaminated aquifers. This scheme may be suitable for remediation of sites where accessibility is limited or some low-concentration contaminant plume is extensive. Development of delivery systems that can facilitate lateral spreading and mixing of MnO4(-) with the contaminant plume is warranted.

  7. Determination of solid state characteristics of spray-congealed Ibuprofen solid lipid microparticles and their impact on sustaining drug release.

    PubMed

    Wong, Priscilla Chui Hong; Heng, Paul Wan Sia; Chan, Lai Wah

    2015-05-01

    This study was used to find solid state characteristics of ibuprofen loaded spray-congealed solid lipid microparticles (SLMs) by employing simple lipids as matrices, with or without polymeric additives, and the impact of solid drug-matrix miscibility on sustaining drug release. Solid miscibility of ibuprofen with two lipids, cetyl alcohol (CA) and stearic acid (SA), were investigated using differential scanning calorimetry (DSC). SLMs containing 20% w/w ibuprofen with or without polymeric additives, PVP/VA and EC, were produced by spray congealing, and the resultant microparticles were subjected to visual examination by scanning electron microscopy (SEM), thermal analysis using DSC, and hot-stage microscopy. Intermolecular interactions between lipids and drug as well as additives were investigated by Fourier-transformed infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). X-ray diffractometry (XRD) was utilized to study polymorphic changes of drug and matrix over the course of a year. Ibuprofen was found to depress the melting points of CA and SA in a colligative manner, reaching maximum solubility at 10% w/w and 30% w/w for CA and SA, respectively. Drug encapsulation efficiencies and yields of spray-congealed SLMs containing 20% w/w ibuprofen were consistently high for both lipid matrices. CA and SA were found to adopt their stable γ- and β-polymorphs, respectively, immediately after spray congealing. The spray congealing process resulted in ibuprofen adopting an amorphous or poorly crystalline state, with no further changes over the course of a year. SEM, DSC, and hot stage microscope studies on the SLMs confirmed the formation of a solid dispersion between ibuprofen and CA and a solid solution between ibuprofen and SA. SA was found to sustain the release of ibuprofen significantly better than CA. PVP/VA and EC showed some interactions with CA, which led to an expansion of unit cell dimensions of CA upon spray congealing, whereas they

  8. DNAPL Mobility in Heterogeneous Porous Media: Sensitivity of Migration Times to Source Characteristics and Release Location Parameters

    NASA Astrophysics Data System (ADS)

    Pang, T.; Gerhard, J. I.; Kueper, B. H.

    2004-12-01

    This study examined the factors the influence the time required for a release of dense nonaqueous phase liquid (DNAPL) to cease migrating through heterogeneous porous media below the watertable. Using numerical simulation, the temporal and spatial sensitivity of DNAPL migration was evaluated for four DNAPL source characteristics - nonwetting fluid type (i.e., density and viscosity), interfacial tension (IFT), source strength, and volume released - and for three release location parameters - mean permeability, porosity, and hydraulic gradient. The study was conducted using the multiphase code DNAPL3D whose constitutive relationships were developed, and validated, for DNAPL migration in both space and time. All numerical simulations employed a single correlated random permeability field and identical boundary and source conditions to the base case, except for systematic variation of the parameter under investigation. It was found that all of the parameters examined had a significant spatial effect on the final DNAPL migration pattern, either on the overall volume of subsurface invaded (e.g., direct correlation to volume released) or on the amount of lateral spreading (e.g., direct correlation to IFT). However, only two of the parameters were found to have a significant effect on the time required to achieve the final, stable distribution of DNAPL pools and residual. Migration rates were very sensitive to DNAPL type, with predicted cessation times ranging from 30 days for the high mobility fluid tetrachloroethylene (PCE) to over 1000 years for the low mobility fluid coal tar. These simulations reveal that while density primarily influences the spatial extent of penetration and viscosity primarily influences penetration rate, the two effects are not independent due to interactions with site-specific heterogeneity. In addition, the mean permeability of the heterogeneous domain was found to be significant, with increases in mean k corresponding to decreases in both

  9. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  10. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED THROUGH FRACTURED MEDIA

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured clay system that is the confin...

  11. OH REACTION KINETICS OF GAS-PHASE A- AND G-HEXACHLOROCYCLOHEXANE AND HEXACHLOROBENZENE. (R825377)

    EPA Science Inventory

    Rate constants for the gas-phase reactions of the hydroxyl
    radical (OH) with - and -hexachlorocyclohexane (-
    and Chemical studies of elements with Z ⩾ 104 in gas phase

    NASA Astrophysics Data System (ADS)

    Türler, Andreas; Eichler, Robert; Yakushev, Alexander

    2015-12-01

    Chemical investigations of superheavy elements in the gas-phase, i.e. elements with Z ≥ 104, allow assessing the influence of relativistic effects on their chemical properties. Furthermore, for some superheavy elements and their compounds quite unique gas-phase chemical properties were predicted. The experimental verification of these properties yields supporting evidence for a firm assignment of the atomic number. Prominent examples are the high volatility observed for HsO4 or the very weak interaction of Cn with gold surfaces. The unique properties of HsO4 were exploited to discover the doubly-magic even-even nucleus 270Hs and the new isotope 271Hs. The combination of kinematic pre-separation and gas-phase chemistry allowed gaining access to a new class of relatively fragile compounds, the carbonyl complexes of elements Sg through Mt. A not yet resolved issue concerns the interaction of Fl with gold surfaces. While competing experiments agree on the fact that Fl is a volatile element, there are discrepancies concerning its adsorption on gold surfaces with respect to its daughter Cn. The elucidation of these and other questions amounts to the fascination that gas-phase chemical investigations exert on current research at the extreme limits of chemistry today.

  12. Gas-phase synthesis and reactivity of Cu(+)-benzyne complexes.

    PubMed

    Chai, Yunfeng; Shen, Shanshan; Weng, Guofeng; Pan, Yuanjiang

    2014-10-11

    Cu(+)-benzyne complexes bearing bidentate nitrogen ligands were synthesized in the gas phase for the first time using electrospray ionization mass spectrometry. The addition reactivity of copper-stabilized benzyne with amines was studied in the ion trap analyzer. The structures of products were identified by comparing their MS(n) data with authentic compounds obtained from another generation route.

  13. Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions

    ERIC Educational Resources Information Center

    Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio

    2010-01-01

    This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…

  14. GAS-PHASE OXIDATION PRODUCTS OF BIPHENYL AND POLYCHLORINATED BIPHENYLS (R825377)

    EPA Science Inventory

    Our laboratory recently measured the gas-phase reaction rate constants of
    polychlorinated biphenyls (PCBs) with the hydroxyl radical (OH) and concluded
    that OH reactions are the primary removal pathway of PCBs from the atmosphere.
    With the reaction system previousl...

  15. SELECTIVE OXIDATION OF ALCOHOLS IN GAS PHASE USING LIGHT-ACTIVATED TITANIUM DIOXIDE

    EPA Science Inventory

    Selective oxidations of various primary and secondary alcohols were studied in a gas phase photochemical reactor using immobilized TiO2 catalyst. An annular photoreactor was used at 463K with an average contact time of 32sec. The system was found to be specifically suited for the...

  16. SPECIATION OF GAS-PHASE AND FINE PARTICLE EMISSIONS FROM BURNING OF FOLIAR FUELS

    EPA Science Inventory

    Particle size distributions (10-1000 nm aerodynamic diameter), physical and chemical properties of fine particle matter (PM2.5) with aerodynamic diameter <2.5 micrometers, and gas-phase emissions from controlled open burning of assorted taxa were measured. Chemical speciation of ...

  17. Generation of naphthoquinone radical anions by electrospray ionization: solution, gas-phase, and computational chemistry studies.

    PubMed

    Vessecchi, Ricardo; Naal, Zeki; Lopes, José N C; Galembeck, Sérgio E; Lopes, Norberto P

    2011-06-01

    Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(•-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(•-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses. PMID:21561138

  18. Field ionization kinetic and electron impact studies of gas phase transition states - The cyclic bromonium ion

    NASA Technical Reports Server (NTRS)

    Green, M. M.; Giguere, R. J.; Falick, A. M.; Aberth, W.; Burlingame, A. L.

    1978-01-01

    Cis- and trans-isomers of 4-t-butylcyclohexyl bromide were studied to determine the mechanism of cyclic bromonium ion formation. The field ionization kinetic and electron impact data indicate that the formation of the cyclic structure occurs simultaneously with loss of the neutral fragment. The data also show that little or no gas-phase cis-trans isomerization occurs.

  19. Development of a gas phase source for perfluoroalkyl acids to examine atmospheric sampling methods.

    PubMed

    MacInnis, John J; VandenBoer, Trevor C; Young, Cora J

    2016-06-21

    An inability to produce environmentally relevant gaseous mixing ratios of perfluoroalkyl acids (PFAAs), ubiquitous global contaminants, limits the analytical reliability of atmospheric chemists to make accurate gas and particulate measurements that are demonstrably free of interferences due to sampling artefacts. A gas phase source for PFAAs based on the acid displacement mechanism using perfluoropropionate (PFPrA), perfluorobutanoate (PFBA), perfluorohexanoate (PFHxA), and perfluorooctanoate (PFOA) has been constructed. The displacement efficiency of gas phase perfluorocarboxylic acids (PFCAs) is inversely related to chain length. Decreasing displacement efficiencies for PFPrA, PFBA, PFHxA, and PFOA were 90% ± 20%, 40% ± 10%, 40% ± 10%, 9% ± 4%, respectively. Generating detectable amounts of gas phase perfluorosulfonic acids (PFSAs) was not possible. It is likely that lower vapour pressure and much higher acidity play a role in this lack of emission. PFCA emission rates were not elevated by increasing relative humidity (25%-75%), nor flow rate of carrier gas from 33-111 sccm. Overall, reproducible gaseous production of PFCAs was within the error of the production of hydrochloric acid (HCl) as a displacing acid (±20%) and was accomplished using a dry nitrogen flow of 33 ± 2 sccm. A reproducible mass emission rate of 0.97 ± 0.10 ng min(-1) (n = 8) was observed for PFBA. This is equivalent to an atmospheric mixing ratio of 12 ppmv, which is easily diluted to environmentally relevant mixing ratios of PFBA. Conversely, generating gas phase perfluorononanoic acid (PFNA) by sublimating the solid acid under the same conditions produced a mass emission rate of 2800 ng min(-1), which is equivalent to a mixing ratio of 18 ppthv and over a million times higher than suspected atmospheric levels. Thus, for analytical certification of atmospheric sampling methods, generating gas phase standards for PFCAs is best accomplished using acid displacement under dry conditions

  1. Dynamical Characteristics of Rydberg Electrons Released by a Weak Electric Field.

    PubMed

    Diesen, Elias; Saalmann, Ulf; Richter, Martin; Kunitski, Maksim; Dörner, Reinhard; Rost, Jan M

    2016-04-01

    The dynamics of ultraslow electrons in the combined potential of an ionic core and a static electric field is discussed. With state-of-the-art detection it is possible to create such electrons through strong intense-field photoabsorption and to detect them via high-resolution time-of-flight spectroscopy despite their very low kinetic energy. The characteristic feature of their momentum spectrum, which emerges at the same position for different laser orientations, is derived and could be revealed experimentally with an energy resolution of the order of 1 meV. PMID:27104706

  2. Dynamical characteristics of Rydberg electrons released by a weak electric field

    DOE PAGESBeta

    Diesen, Elias; Saalmann, Ulf; Richter, Martin; Kunitski, Maksim; Dorner, Reinhard; Rost, Jan M.

    2016-04-08

    This paper discuss the dynamics of ultraslow electrons in the combined potential of an ionic core and a static electric field. With state-of-the-art detection it is possible to create such electrons through strong intense-field photoabsorption and to detect them via high-resolution time-of-flight spectroscopy despite their very low kinetic energy. The characteristic feature of their momentum spectrum, which emerges at the same position for different laser orientations, is derived and could be revealed experimentally with an energy resolution of the order of 1 meV.

  3. Dynamical Characteristics of Rydberg Electrons Released by a Weak Electric Field

    NASA Astrophysics Data System (ADS)

    Diesen, Elias; Saalmann, Ulf; Richter, Martin; Kunitski, Maksim; Dörner, Reinhard; Rost, Jan M.

    2016-04-01

    The dynamics of ultraslow electrons in the combined potential of an ionic core and a static electric field is discussed. With state-of-the-art detection it is possible to create such electrons through strong intense-field photoabsorption and to detect them via high-resolution time-of-flight spectroscopy despite their very low kinetic energy. The characteristic feature of their momentum spectrum, which emerges at the same position for different laser orientations, is derived and could be revealed experimentally with an energy resolution of the order of 1 meV.

  4. Intermolecular interactions of trifluorohalomethanes with Lewis bases in the gas phase: An ab initio study

    SciTech Connect

    Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D.

    2014-10-07

    We perform an ab initio computational study of molecular complexes with the general formula CF{sub 3}X—B that involve one trifluorohalomethane CF{sub 3}X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH{sub 3} and PH{sub 3}), two n-pairs (H{sub 2}O and H{sub 2}S), two n-pairs with an unsaturated bond (H{sub 2}CO and H{sub 2}CS), and a single π-pair (C{sub 2}H{sub 4}) and two π-pairs (C{sub 2}H{sub 2}). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C–X bond lengths shorten, while the C–X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.

  5. Gas-phase metalloprotein complexes interrogated by ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Faull, Peter A.; Korkeila, Karoliina E.; Kalapothakis, Jason M.; Gray, Andrew; McCullough, Bryan J.; Barran, Perdita E.

    2009-06-01

    Gas-phase biomolecular structure may be explored through a number of analytical techniques. Ion mobility-mass spectrometry (IM-MS) continues to prove itself as a sensitive and reliable bioanalytical tool for gas-phase structure determination due to intense study and development over the past 15 years. A vast amount of research interest, especially in protein and peptide conformational studies has generated a wealth of structural information for biological systems from small peptides to megadalton-sized biomolecules. In this work, linear low field IM-MS has been used to study gas-phase conformations and determine rotationally averaged collision cross-sections of three metalloproteins--cytochrome c, haemoglobin and calmodulin. Measurements have been performed on the MoQToF, a modified QToF 1 instrument (Micromass UK Ltd., Manchester, UK) modified in house. Gas-phase conformations and cross-sections of multimeric cytochrome c ions of the form [xM + nH+]n+ for x = 1-3 (monomer to trimer) have been successfully characterised and measured. We believe these to be the first reported collision cross-sections of higher order multimeric cytochrome c. Haemoglobin is investigated to obtain structural information on the associative mechanism of tetramer formation. Haemoglobin molecules, comprising apo- and holo-monomer chains, dimer and tetramer are transferred to the gas phase under a range of solution conditions. Structural information on the proposed critical intermediate, semi-haemoglobin, is reported. Cross-sections of the calcium binding protein calmodulin have been obtained under a range of calcium-bound conditions. Metalloprotein collision cross-sections from ion mobility measurements are compared with computationally derived values from published NMR and X-ray crystallography structural data. Finally we consider the change in the density of the experimentally measured rotationally averaged collision cross-section for compact geometries of the electrosprayed proteins.

  6. Conformations and spectroscopic properties of laccaic acid A in the gas phase and in implicit water.

    PubMed

    Dokmaisrijan, Supaporn; Payaka, Apirak; Tantishaiyakul, Vimon; Chairat, Montra; Nimmanpipug, Piyarat; Lee, Vannajan Sanghiran

    2013-03-15

    Conformations and spectroscopic properties of laccaic acid A (lacA) were studied by means of the experimental and theoretical approaches. The minimum energy conformers of lacA in the gas phase and in implicit water obtained from the B3LYP/6-311G(d,p) calculations displayed the same orientation of the COOH and OH groups on the anthraquinone-based component. The intramolecular hydrogen bonds (H-bonds) formed between the COOH, C=O and OH groups are very strong. In contrast, the orientations of the Ph(OH)CH(2)CH(2)NHCOCH(3) substituent moiety on the anthraquinone-based component in the gas phase and in implicit water are completely different. The substituent prefers to bind with the anthraquinone-based component in the gas phase while it moves away from the anthraquinone-based component in implicit water. The calculated IR spectra of the two lowest-lying energy conformers of lacA in the gas phase fit to the experimental FTIR spectrum. The full assignments of the vibrational modes with the correlated vibrational wavenumbers of those conformers were proposed here, for the first time. The intramolecular H-bond formations in lacA can cause the shift of the vibrational wavenumber for the COOH, C=O, OH and NH groups as compared to the normal vibrations of these groups. The NMR spectra showed that the stabilities of the two lowest-lying energy conformers of lacA in the gas phase are comparable and this is consistent with their computational energies. The UV-Vis spectra of the lowest-lying energy conformers of lacA in implicit water were compared with the experimental UV-Vis spectrum. The calculations suggested that the electronic transition in the visible region involves with the singlet π→π(*) excitation which the electron density transfers to a COOH group on the anthraquinone ring.

  7. Effect of HPMC - E15 LV premium polymer on release profile and compression characteristics of chitosan/ pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile.

    PubMed

    Newton, A M J; Lakshmanan, Prabakaran

    2014-04-01

    The study was designed to investigate the in vitro dissolution profile and compression characteristics of colon targeted matrix tablets prepared with HPMC E15 LV in combination with pectin and Chitosan. The matrix tablets were subjected to two dissolution models in various simulated fluids such as pH 1.2, 6, 6.8, 7.2, 5.5. The fluctuations in colonic pH conditions during IBD (inflammatory bowel disease) and the nature of less fluid content in the colon may limit the expected drug release in the polysaccharide-based matrices when used alone. The Hydrophilic hydroxyl propyl methylcellulose ether premium polymer (HPMC E15 LV) of low viscosity grade was used in the formulation design, which made an excellent modification in physical and compression characteristics of the granules. The release studies indicated that the prepared matrices could control the drug release until the dosage form reaches the colon and the addition HPMC E15 LV showed the desirable changes in the dissolution profile by its hydrophilic nature since the colon is known for its less fluid content. The hydrophilic HPMC E15 LV allowed the colonic fluids to enter into the matrix and confirmed the drug release at the target site from a poorly water soluble polymer such as Chitosan and also from water soluble Pectin. The dramatic changes occurred in the drug release profile and physicochemical characteristics of the Pectin, Chitosan matrix tablets when a premium polymer HPMC E15 LV added in the formulation design in the optimized concentration. Various drug release mechanisms used for the examination of drug release characteristics. Drug release followed the combined mechanism of diffusion, erosion, swelling and polymer entanglement. In recent decade, IBD attracts many patents in novel treatment methods by using novel drug delivery systems.

  8. The measurement of the drag characteristics of tin-free self-polishing co-polymers and fouling release coatings using a rotor apparatus.

    PubMed

    Candries, M; Atlar, M; Mesbahi, E; Pazouki, K

    2003-04-01

    An experimental study was carried out to compare the drag characteristics of a tin-free self-polishing co-polymer (SPC) and a foul release coating. Rotor measurements were carried out using different cylinders coated with both paint types. The experiments showed that the frictional resistance for the foul release test cylinders was lower than for the tin-free SPC cylinders. The drag characteristics were related to the roughness parameters of the tested surfaces measured with an optical measurement system. The measurements indicated that the texture of the foul release surface was significantly different from SPC systems. The findings show that the drag of a foul release coating will only correlate with a characteristic roughness measure that takes both the amplitude and the texture of the surface into account, and that is calculated at bandwidth parameters which depend on the degree of roughness.

  9. The role of gas phase reactions in the deflagration-to-detonation transition of high energy propellants

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.; Derr, R. L.

    1980-01-01

    The inadequacies of the two commonly used assumptions are shown, along with the need for considering gas phase reactions. Kinetic parameters that describe the gas phase reactions for several ingredients are provided, and the first steps in convective combustion leading to deflagration to detonation transition are described.

  10. Development of a technical approach for assessing environmental release and migration characteristics of Hanford Grout

    SciTech Connect

    Serne, R. J.; Treat, R. L.; Lokken, R. O.

    1985-09-01

    A Transportable Grout Facility is being constructed at the Hanford Site to immobilize low-level liquid radioactive waste in grout. This report addresses the grout and sediment testing methodology that is being developed at PNL to support assessments of the long-term performance of the disposed grout. Sediment is the soil that surrounds and underlies the disposed grout. A goal of these efforts is to certify tests for application at Hanford. An assessment of the long-term risks posed by grout requires data on the ability of grout to resist leaching of wastes contained within the grout. Additionally, data are needed on the ability of the sediments to retard the mobility of any wastes released from grout. The effects of aging on the ability of grout to retain waste must also be understood. Aging of grout can reduce or enhance the ability of the grout to contain waste. Credible predictive modeling of the fate of hazardous constituents in disposed grout for periods of up to 10,000 years would best be performed using comprehensive, coupled hydrologic and chemical reaction codes based on knowledge of the mechanisms that control waste release and mobility. It is not clear yet how soon such codes will be available or which types of waste disposal options they will apply to. In the interim we must be content with simpler and separate models that address individual reactions such as leaching and adsorption. One of these models, the Semi-Infinite Solid Diffusion Leach Model, is a popular release model used to describe the leaching of grouts and other cemented waste forms. Because others have found success in describing laboratory leach experiments with cemented waste forms using this leach model and because it appears likely to err on the conservative side for the Hanford application, we currently endorse the use of this model and its supporting experimental methodology for approximations of grout waste release rates. At the present time it is believed that the leachate from

  11. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  12. Electrospun gelatin fiber mats containing a herbal—Centella asiatica—extract and release characteristic of asiaticoside

    NASA Astrophysics Data System (ADS)

    Sikareepaisan, Panprung; Suksamrarn, Apichart; Supaphol, Pitt

    2008-01-01

    Ultra-fine gelatin (type A, porcine skin, ~180 Bloom) fiber mats containing a methanolic crude extract of Centella asiatica (L.) Urban, a medicinal plant widely known for its traditional medical applications including its wound healing ability, were fabricated, for the first time, from the neat gelatin solution (22% w/v in 70 vol% acetic acid) containing the crude extract (mCA) in various amounts (i.e. 5-30 wt% based on the weight of gelatin powder) by electrospinning. Incorporation of mCA in the neat gelatin solution did not affect both the morphology and the size of the mCA-loaded gelatin fibers, as both of the neat and the mCA-loaded gelatin fibers were smooth and the average diameters of these fibers ranged between 226 and 232 nm. The cross-linked mCA-loaded e-spun gelatin fiber mat from the neat gelatin solution containing 30 wt% of mCA was further investigated for the release characteristic of asiaticoside, identified as the most active compound associated with the healing of wounds, in two different types of releasing medium, i.e. acetate buffer and the buffer containing 10 vol% of methanol, based on the thin-layer chromatography (TLC)-densitometry technique. Based on the unit weight of the actual amount of asiaticoside present in the specimens, the total amount of asiaticoside released from the fiber mat specimens was lower than that from the film counterparts while, based on the unit weight of the specimens, an opposite trend was observed.

  13. Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption

    NASA Technical Reports Server (NTRS)

    Bergin, E. A.; Langer, W. D.; Goldsmith, P. F.

    1995-01-01

    We present time-dependent models of the chemical evolution of molecular clouds which include depletion of atoms and molecules onto grain surfaces and desorption, as well as gas-phase interactions. We have included three mechanisms to remove species from the grain mantles: thermal evaporation, cosmic-ray-induced heating, and photodesorption. A wide range of parameter space has been explored to examine the abundance of species present both on the grain mantles and in the gas phase as a function of both position in the cloud (visual extinction) and of evolutionary state (time). The dominant mechanism that removes molecules from the grain mantles is cosmic-ray desorption. At times greater than the depletion timescale, the abundances of some simple species agree with abundances observed in the cold dark cloud TMC-1. Even though cosmic-ray desorption preserves the gas-phase chemistry at late times, molecules do show significant depletions from the gas phase. Examination of the dependence of depletion as a function of density shows that when the density increases from 10(exp 3)/cc to 10(exp 5)/cc several species including HCO(+), HCN, and CN show gas-phase abundance reductions of over an order of magnitude. The CO: H2O ratio in the grain mantles for our standard model is on the order of 10:1, in reasonable agreement with observations of nonpolar CO ice features in rho Ophiuchus and Serpens. We have also examined the interdependence of CO depletion with the space density of molecular hydrogen and binding energy to the grain surface. We find that the observed depletion of CO in Taurus in inconsistent with CO bonding in an H2O rich mantle, in agreement with observations. We suggest that if interstellar grains consist of an outer layer of CO ice, then the binding energies for many species to the grain mantle may be lower than commonly used, and a significant portion of molecular material may be maintained in the gas phase.

  14. The Characteristics, Behavior and Fate of a Stream of Liquid CO2 Released Into the Ocean

    NASA Astrophysics Data System (ADS)

    Brewer, P. G.; Dunk, R. M.; Peltzer, E. T.

    2005-12-01

    With the recent discovery of three sites venting a stream of volcanically derived liquid CO2 from the seafloor, questions arise as to the chemical characteristics, physical behavior, and ultimate fate and impact of the vented flow of this fluid. We now have a great deal of information, and compelling images, of liquid CO2 behavior in the deep-sea, derived from small-scale experiments carried out to investigate possibilities of ocean sequestration of fossil fuel CO2. The critical point of CO2 occurs at 31.3°C and 738.9 dbar. Thus volcanically derived CO2 will begin its transit to the seafloor as a supercritical fluid and will acquire chemical signatures consistent with this as it progresses through the pore space. As it approaches the cooler sediments and the seafloor, it condenses to the highly immiscible liquid phase. CO2 is a very low viscosity, highly compressible, non-polar fluid, with a remarkable ability to dissolve other non-polar species. Thus the magmatic gases, He and H2, will tend to be strongly enriched in the CO2 phase. Equilibrium calculations may be carried out on this process with considerable accuracy, but the extent to which the plume reaches equilibrium with the surrounding pore fluids during transit is unknown. On venting to the seafloor, hydrodynamic instabilities quickly result in CO2 droplet formation with droplet diameters on a cm scale. At depths above ~2700m, liquid CO2 is less dense than seawater. Furthermore, liquid CO2 readily forms a Structure I hydrate, the phase boundary is well known, and in Pacific Ocean waters typically occurs at ~400m depth. Thus at all three vent sites discovered to date, (JADE hydrothermal site, Okinawa Trough 1335 to 1550m; Champagne vent site NW Eifuku, 1650m; Vailulu'u seamount, 940m) a rising plume of CO2 droplets is formed within the hydrate stability zone, and a thin hydrate skin forms on the ascending droplets. As the hydrate coated droplets rise through the water column, they dissolve at a rate of ~3

  15. (129) Xe and (131) Xe nuclear magnetic dipole moments from gas phase NMR spectra.

    PubMed

    Makulski, Włodzimierz

    2015-04-01

    (3) He, (129) Xe and (131) Xe NMR measurements of resonance frequencies in the magnetic field B0=11.7586 T in different gas phase mixtures have been reported. Precise radiofrequency values were extrapolated to the zero gas pressure limit. These results combined with new quantum chemical values of helium and xenon nuclear magnetic shielding constants were used to determine new accurate nuclear magnetic moments of (129) Xe and (131) Xe in terms of that of the (3) He nucleus. They are as follows: μ((129) Xe) = -0.7779607(158)μN and μ((131) Xe) = +0.6918451(70)μN . By this means, the new 'helium method' for estimations of nuclear dipole moments was successfully tested. Gas phase NMR spectra demonstrate the weak intermolecular interactions observed on the (3) He and (129) Xe and (131) Xe shielding in the gaseous mixtures with Xe, CO2 and SF6 .

  16. Polar Effects Control the Gas-phase Reactivity of Charged para-Benzyne Analogs

    PubMed Central

    Wittrig, Ashley M.; Archibold, Enada F.; Sheng, Huaming; Nash, John J.; Kenttämaa, Hilkka I.

    2014-01-01

    The gas-phase reactivity of charged para-benzynes is entirely unexplored as they and/or their precursors tend to undergo ring-opening upon their generation. We report here a gas-phase reactivity study of two such benzynes, the 2,5-didehydropyridinium and 5,8-didehydroisoquinolinium cations, generated in a modified dual-linear quadrupole ion trap (DLQIT) mass spectrometer. Both biradicals were found to form diagnostic products with organic molecules, indicating the presence of two radical sites. As opposed to earlier predictions that the singlet-triplet (S-T) splitting controls the radical reactivity of such species, the 2,5-didehydropyridinium cation reacts much faster in spite of its larger S-T splitting. Calculated vertical electron affinities of the radical sites of the para-benzynes, a parameter related to the polarity of the transition states of their reactions, appears to be the most important reactivity controlling factor. PMID:25838787

  17. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide.

    PubMed

    Liu, Hongmin; Lian, Zhiwei; Ye, Xiaojiang; Shangguan, Wenfeng

    2005-07-01

    Degradation of formaldehyde with different initial concentration over titanium dioxide was carried out in a photocatalytic reactor. Photocatalytic rates were well described by the simplified Langmuir-Hinshelwood model. The kinetic analysis shows that the apparent first-order reaction coefficient is lower and half-life of photocatalysis is longer for low concentration than for high concentration formaldehyde. A network formation model of the photocatalytic products was established. Experimental results and analysis demonstrate that carbon dioxide concentration and carbon monoxide concentration in gas phase vary exponentially with the illumination time and may be even higher than gas-phase formaldehyde concentration if there is much pre-adsorbed formaldehyde in adsorption equilibrium on catalysts before illumination. Carbon monoxide is found to be one of the by-products during formaldehyde photooxidation.

  18. Determination of gas-phase dimethyl sulfate and monomethyl hydrogen sulfate

    SciTech Connect

    Hansen, L.D.; White, V.F.; Eatough, D.J.

    1986-01-01

    Analytical techniques were developed for the collection and determination of gas-phase dimethyl sulfate and monomethyl sulfuric acid in the flue lines and plumes of power plants and in the ambient atmosphere. The techniques involve the collection of the gas phase species in denuders which are selective for monomethyl sulfuric acid or which collect both dimethyl sulfate and monomethyl sulfuric acid, and determination of the deposition pattern of the collected alkyl sulfates in the denuder. In addition, both dimethyl sulfate and monomethyl sulfuric acid are collected in filter pack, sorbent-bed combinations which allow for the separate determination of both dimethyl sulfate and monomethyl sulfuric acid or for their joint collection and determination. Monomethyl sulfuric acid is determined by ion chromatography. Dimethyl sulfate is determined either by ion chromatography or by gas chromatography, depending on the collection device used.

  19. Counting basic sites in oligopeptides via gas-phase ion chemistry

    SciTech Connect

    Stephenson, J.L. Jr.; McLuckey, S.A.

    1997-02-01

    Cations derived from oligopeptides ranging from laminin fragment (5 residues) to {beta}-lactoglobulin (162 residues) have been subjected to gas-phase ion/molecule reactions with hydroiodic acid. The sum of the ion charge state and the maximum number of molecules of hydroiodic acid that attach to the ion is equal to the total number of lysines, arginines, histidines, and N-termini consisting of a primary amine for ions derived from all 21 oligopeptides studied. These results suggest that ion/molecule reactions can provide useful information regarding oligopeptide basic site number, which might be used as a criterion for searching protein data bases instead of, or in conjunction with, use of proteolytic digestion or gas-phase ion dissociation procedures. 31 refs., 3 figs., 1 tab.

  20. Properties of clusters in the gas phase. V - Complexes of neutral molecules onto negative ions

    NASA Technical Reports Server (NTRS)

    Keesee, R. G.; Lee, N.; Castleman, A. W., Jr.

    1980-01-01

    Ion-molecules association reactions of the form A(-)(B)n-1 + B = A(-)(B)n were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl(-), I(-), and NO2(-) with n ranging from one to three or four, and onto SO2(-) and SO3(-) with n equal to one; and (2) carbon dioxide onto Cl(-), I(-), NO2(-), CO3(-), and SO3(-) with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions.

  1. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase.

    PubMed

    Piekarski, Dariusz Grzegorz; Delaunay, Rudy; Maclot, Sylvain; Adoui, Lamri; Martín, Fernando; Alcamí, Manuel; Huber, Bernd A; Rousseau, Patrick; Domaracka, Alicja; Díaz-Tendero, Sergio

    2015-07-14

    We present a combined experimental and theoretical study of the fragmentation of doubly positively charged β-alanine molecules in the gas phase. The dissociation of the produced dicationic molecules, induced by low-energy ion collisions, is analysed by coincidence mass spectrometric techniques; the coupling with ab initio molecular dynamics simulations allows rationalisation of the experimental observations. The present strategy gives deeper insights into the chemical mechanisms of multiply charged amino acids in the gas phase. In the case of the β-alanine dication, in addition to the expected Coulomb explosion and hydrogen migration processes, we have found evidence of hydroxyl-group migration, which leads to unusual fragmentation products, such as hydroxymethyl cation, and is necessary to explain some of the observed dominant channels.

  2. Development of a gas-phase stereochemical protocol. Intrinsic diastereoselectivity in hydride reductions of cyclohexanones

    SciTech Connect

    Yeunghaw Ho; Squires, R.R. )

    1992-12-30

    A common feature of classical, intuitive models and modern molecular orbital-based theories for diastereoselectivity in ketone reduction reactions is an emphasis on the structural and electronic properties of the substrate, despite the fact that the stereochemical outcome of these reactions often displays marked sensitivity to the solvent and the type of counter-ion employed with ionic and polar reducing agents. One way to separate intrinsic and extrinsic effects on the stereochemistry of ketone reduction reactions is to examine them in the gas phase, where solvent and counterion effects are absent. The authors describe here an experimental method for distinguishing the diastereomeric products of gas-phase hydride reduction reactions, and its application in determining the intrinsic diastereoselectivity involved in reductions of alkyl-substituted cyclohexanones. 1 tab.

  3. Determination of gas phase adsorption isotherms--a simple constant volume method.

    PubMed

    Kim, Daekeun; Cai, Zhangli; Sorial, George A

    2006-08-01

    Single and ternary solute gas phase adsorption isotherms were conducted in this study to evaluate the effectiveness of a simple constant volume method, which was utilized by using Tedlar gas sampling bags as a constant volume batch reactor. For this purpose, gas phase adsorption of toluene, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) on two types of activated carbons, BPL-bituminous base and OVC--coconut base, were investigated. For the single solute adsorption, the experimental adsorption data were found to be well correlated with Freundlich and Myers adsorption equations. The pore size distribution of adsorbents was found to affect their adsorption capacities; its effect was dependant on the solute concentration. The ternary adsorption experimental isotherms were accurately predicted by using the well-known model, i.e., ideal adsorbed solution theory (IAST).

  4. Gas-Phase Femtosecond Particle Spectroscopy: A Bottom-Up Approach to Nucleotide Dynamics

    NASA Astrophysics Data System (ADS)

    Stavros, Vasilios G.; Verlet, Jan R. R.

    2016-05-01

    We summarize how gas-phase ultrafast charged-particle spectroscopy has been used to provide an understanding of the photophysics of DNA building blocks. We focus on adenine and discuss how, following UV excitation, specific interactions determine the fates of its excited states. The dynamics can be probed using a systematic bottom-up approach that provides control over these interactions and that allows ever-larger complexes to be studied. Starting from a chromophore in adenine, the excited state decay mechanisms of adenine and chemically substituted or clustered adenine are considered and then extended to adenosine mono-, di-, and trinucleotides. We show that the gas-phase approach can offer exquisite insight into the dynamics observed in aqueous solution, but we also highlight stark differences. An outlook is provided that discusses some of the most promising developments in this bottom-up approach.

  5. Gas-Phase Femtosecond Particle Spectroscopy: A Bottom-Up Approach to Nucleotide Dynamics.

    PubMed

    Stavros, Vasilios G; Verlet, Jan R R

    2016-05-27

    We summarize how gas-phase ultrafast charged-particle spectroscopy has been used to provide an understanding of the photophysics of DNA building blocks. We focus on adenine and discuss how, following UV excitation, specific interactions determine the fates of its excited states. The dynamics can be probed using a systematic bottom-up approach that provides control over these interactions and that allows ever-larger complexes to be studied. Starting from a chromophore in adenine, the excited state decay mechanisms of adenine and chemically substituted or clustered adenine are considered and then extended to adenosine mono-, di-, and trinucleotides. We show that the gas-phase approach can offer exquisite insight into the dynamics observed in aqueous solution, but we also highlight stark differences. An outlook is provided that discusses some of the most promising developments in this bottom-up approach.

  6. Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules.

    PubMed

    Boll, Rebecca; Rouzée, Arnaud; Adolph, Marcus; Anielski, Denis; Aquila, Andrew; Bari, Sadia; Bomme, Cédric; Bostedt, Christoph; Bozek, John D; Chapman, Henry N; Christensen, Lauge; Coffee, Ryan; Coppola, Niccola; De, Sankar; Decleva, Piero; Epp, Sascha W; Erk, Benjamin; Filsinger, Frank; Foucar, Lutz; Gorkhover, Tais; Gumprecht, Lars; Hömke, André; Holmegaard, Lotte; Johnsson, Per; Kienitz, Jens S; Kierspel, Thomas; Krasniqi, Faton; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Moshammer, Robert; Müller, Nele L M; Rudek, Benedikt; Savelyev, Evgeny; Schlichting, Ilme; Schmidt, Carlo; Scholz, Frank; Schorb, Sebastian; Schulz, Joachim; Seltmann, Jörn; Stener, Mauro; Stern, Stephan; Techert, Simone; Thøgersen, Jan; Trippel, Sebastian; Viefhaus, Jens; Vrakking, Marc; Stapelfeldt, Henrik; Küpper, Jochen; Ullrich, Joachim; Rudenko, Artem; Rolles, Daniel

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C(8)H(5)F) and dissociating, laser-aligned 1,4-dibromobenzene (C(6)H(4)Br(2)) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.

  7. Gas-Phase Synthesis of 1-Silacyclopenta-2,4-diene.

    PubMed

    Yang, Tao; Dangi, Beni B; Thomas, Aaron M; Sun, Bing-Jian; Chou, Tzu-Jung; Chang, Agnes H H; Kaiser, Ralf I

    2016-07-01

    Silole (1-silacyclopenta-2,4-diene) was synthesized for the first time by the bimolecular reaction of the simplest silicon-bearing radical, silylidyne (SiH), with 1,3-butadiene (C4 H6 ) in the gas phase under single-collision conditions. The absence of consecutive collisions of the primary reaction product prevents successive reactions of the silole by Diels-Alder dimerization, thus enabling the clean gas-phase synthesis of this hitherto elusive cyclic species from acyclic precursors in a single-collision event. Our method opens up a versatile and unconventional path to access a previously rather obscure class of organosilicon molecules (substituted siloles), which have been difficult to access through classical synthetic methods.

  8. Modeling the effects of gas phase CO2 intrusion on the biogeochemistry of variably saturated soils

    NASA Astrophysics Data System (ADS)

    Altevogt, Andrew S.; Jaffe, Peter R.

    2005-09-01

    The transport of gas phase carbon dioxide through unsaturated soils has the potential to significantly alter the soil biogeochemistry. Leakage of CO2 from deep reservoirs, either naturally occurring or anthropogenically emplaced, may displace oxygen in the soil gas and hence radically alter the redox conditions of a soil. Furthermore, the formation of carbonic acid in the aqueous phase will alter the pH of the soil system. A two-dimensional numerical model has been developed to explore the effects of gaseous CO2 leakage on the biogeochemistry of a variably saturated porous media. The model describes the sequential degradation of organic carbon by microorganisms using a series of terminal electron acceptors. Gas phase CO2 intrusion results in changes in redox conditions and pH of the soil water, both of which lead to alteration of the biogeochemistry of the soil. Alteration of the biogeochemical profile of a representative field site is explored with the numerical model.

  9. Fundamental studies of gas phase ionic reactions by ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Giles, K.; Knighton, W. B.; Sahlstrom, K. E.; Grimsrud, E. P.

    1995-01-01

    Ion mobility spectrometry (IMS) provides a promising approach to the study of gas phase ionic reactions in buffer gases at unusually high pressures. This point is illustrated here by studies of the Sn2 nucleophilic displacement reaction, Cl(-) + CH3Br yields Br + CH3Br, using IMS at atmospheric pressure. The equilibrium clustering reaction, Cl(-)(CHCI3)(n - 1) + CHCI3 yields Cl(-)(CHCI3)(n), where n = 1 and 2, and the effect of clustering on the Sn2 reaction with CH3Br have also been characterized by this IMS-based kinetic method. Present problems and anticipated improvements in the application of ion mobility spectrometry to studies of other gas phase ionic processes are discussed.

  10. GAS PHASE MOLECULAR DYNAMICS: HIGH-RESOLUTION SPECTROSCOPIC PROBES OF CHEMICAL DYNAMICS.

    SciTech Connect

    HALL, G.E.

    2006-05-30

    This research is carried out as part of the Gas Phase Molecular Dynamics group program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopic tools are developed and applied to problems in chemical dynamics. Recent topics have included the state-resolved studies of collision-induced electronic energy transfer, dynamics of barrierless unimolecular reactions, and the kinetics and spectroscopy of transient species.

  11. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  12. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    DOEpatents

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    2015-09-29

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase is dispersed.

  13. Comparison of ozone determinations by ultraviolet photometry and gas-phase titration

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Patapoff, M.

    1976-01-01

    A comparison of ozone determinations based on ultraviolet absorption photometry and gas-phase titration (GPT) shows good agreement between the two methods. Together with other results, these findings indicate that three candidate reference methods for ozone, UV photometry, IR photometry, and GPT are in substantial agreement. However, the GPT method is not recommended for routine use by air pollution agencies for calibration of ozone monitors because of susceptibility to experimental error.

  14. Method and apparatus for selective capture of gas phase analytes using metal .beta.-diketonate polymers

    DOEpatents

    Harvey, Scott D [Kennewick, WA

    2011-06-21

    A process and sensor device are disclosed that employ metal .beta.-diketonate polymers to selectively capture gas-phase explosives and weaponized chemical agents in a sampling area or volume. The metal .beta.-diketonate polymers can be applied to surfaces in various analytical formats for detection of: improvised explosive devices, unexploded ordinance, munitions hidden in cargo holds, explosives, and chemical weapons in public areas.

  15. Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere

    NASA Astrophysics Data System (ADS)

    Li, Xin; Rohrer, Franz; Hofzumahaus, Andreas; Brauers, Theo; Häseler, Rolf; Bohn, Birger; Broch, Sebastian; Fuchs, Hendrik; Gomm, Sebastian; Holland, Frank; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank N.; Lohse, Insa; Tillmann, Ralf; Wegener, Robert; Wolfe, Glenn M.; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Nitrous acid (HONO) is an important trace gas in the atmosphere due to its contribution to the cycles of nitrogen oxides (NOX) and hydrogen oxides (HOX). In the past decades, ground-based observations of HONO around the world showed much higher daytime concentrations than can be explained by the known gas-phase chemistry (i.e., HONO + hν → OH + NO, HONO + OH → NO2 + H2O, OH + NO + M → HONO + M). Different light-dependent reactions on ground surfaces have been proposed as additional daytime HONO sources. However, due to lack of measurements, little is known about the concentrations of HONO and its sources in the planetary boundary layer (PBL) at higher altitudes above the earth's surface. The airship Zeppelin NT is an ideal platform to investigate the chemistry and dynamics of the PBL. During the PEGASOS field campaigns in 2012 and 2013, HONO and its gas-phase sources and sinks were measured simultaneously on-board the airship Zeppelin NT, for the lowest 1 km of the PBL. In the upper part of the altitude range during morning hours, when the airmass is still isolated from processes at the earth's surface by the remaining nocturnal boundary layer, we find unexpectedly large concentrations of HONO which can neither be explained by heterogeneous reactions on aerosol and ground surfaces, nor by known gas-phase reactions. Our observations show evidence for an unknown gas-phase light-dependent HONO production which dominates the overall HONO formation in the lower troposphere. This new HONO source requires NOX and possibly OH or HO2 radicals. As a result, the general impact of HONO on the OH formation is likely overestimated.

  16. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    SciTech Connect

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    2015-03-17

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase id dispersed.

  17. Binding Energies of Protonated Betaine Complexes: A Probe of Zwitterion Structure in the Gas Phase

    PubMed Central

    Price, William D.; Jockusch, Rebecca A.

    2005-01-01

    The dissociation kinetics of proton-bound dimers of betaine with molecules of comparable gas-phase basicity were investigated using blackbody infrared radiative dissociation (BIRD). Threshold dissociation energies were obtained from these data using master equation modeling. For bases that have comparable or higher gas-phase basicity, the binding energy of the protonated base·betaine complex is ~1.4 eV. For molecules that are ~2 kcal/mol or more less basic, the dissociation energy of the complexes is ~1.2 eV. The higher binding energy of the former is attributed to an ion–zwitterion structure which has a much larger ion–dipole interaction. The lower binding energy for molecules that are ~2 kcal/mol or more less basic indicates that an ion–molecule structure is more favored. Semiempirical calculations at both the AM1 and PM3 levels indicate the most stable ion–molecule structure is one in which the base interacts with the charged quaternary ammonium end of betaine. These results indicate that the measurement of binding energies of neutral molecules to biological ions could provide a useful probe for the presence of zwitterions and salt bridges in the gas phase. From the BIRD data, the gas-phase basicity of betaine obtained from the kinetic method is found to be 239.2 ± 1.0 kcal/mol. This value is in excellent agreement with the value of 239.3 kcal/mol (298 K) from ab initio calculations at the MP2/6-31+g** level. The measured value is slightly higher than those reported previously. This difference is attributed to entropy effects. The lower ion internal energy and longer time frame of BIRD experiments should provide values closer to those at standard temperature. PMID:16543945

  18. HIGH RESOLUTION SPECTROSCOPY IN THE GAS PHASE: Even Large Molecules Have Well-Defined Shapes

    NASA Astrophysics Data System (ADS)

    Pratt, David W.

    1998-10-01

    A review of recent high-resolution microwave, infrared, and optical spectroscopy experiments demonstrates that remarkable progress has been made in the past 20 years in determining the equilibrium geometries of large polyatomic molecules and their clusters in the gas phase, and how these geometries change when the photon is absorbed. A special focus is on the dynamical information that can be obtained from such studies, particularly of electronically excited states.

  19. {HIGH Resolution Electronic Spectroscopy of 2,6-DIAMINOPYRIDINE in the Gas PHASE}

    NASA Astrophysics Data System (ADS)

    Clements, Casey L.; Fleisher, Adam J.; Young, Justin W.; Thomas, Jessica A.; Pratt, David W.

    2009-06-01

    Ab initio calculations suggest that 2,6-diaminopyridine (26DAP) has several interesting low-frequency vibrations arising from motion of its amino groups. For this reason, 26DAP has been studied in the gas phase using both low resolution and high resolution electronic spectroscopy techniques. Presented here are the results of this study, which provide information about the structural and dynamical properties of 26DAP in both the ground and excited electronic states. The results will be discussed. footnote

  20. Development of a highly controlled gas-phase nanoparticle generator for inhalation exposure studies.

    PubMed

    Miettinen, M; Riikonen, J; Tapper, U; Backman, U; Joutsensaari, J; Auvinen, A; Lehto, V P; Jokiniemi, J

    2009-06-01

    We have developed a gas-phase nanoparticle generator that produces stable and well-defined size distributions for TiO(2). The online analyses of the gas-phase compounds and total number concentration of the generated particles as well as the off-line analysis of the filter samples confirmed the stability of the production. The major advantage of this reactor is that the test substance is directly in the aerosol phase, and thus no preprocessing is needed. This eliminates the physicochemical changes between bulk and administrated material during storing or processing. This system is easy to adjust to different experimental setups and precursors. As a result, well-characterized nanomaterials for inhalation exposure studies can be produced. At mass concentration of 30 mg/Nm(3), the count mean diameter was 126 nm (geometric SD 1.6), mass mean diameter was 161 nm (2.0), mass median aerodynamic diameter was 125 nm, and the concentrations of harmful gas-phase by-products remained low. The produced powder consisted of crystals of anatase (77 vol%) and brookite (23 vol%), and its specific surface area was 69 m(2)/g.

  1. Compelling Evidence for Lucky Survivor and Gas Phase Protonation: The Unified MALDI Analyte Protonation Mechanism

    NASA Astrophysics Data System (ADS)

    Jaskolla, Thorsten W.; Karas, Michael

    2011-06-01

    This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.

  2. Theoretical insight into the conversion of xylose to furfural in the gas phase and water.

    PubMed

    Wang, Meng; Liu, Chao; Li, Qibin; Xu, Xiaoxiao

    2015-11-01

    Furfural (FF) is a valuable ring-containing organic compound in the decomposition of xylose and can be produced massively in hydrothermal condition. In this study, density functional theory (DFT) methods are employed to investigate the formation mechanism of FF from xylose and the solvent effects on FF formation. Kinetic and thermodynamic analyses indicate that xylulose could be the intermediate that leads to the formation of FF in the gas phase and water. The formation of xylulose is initiated by a six-membered transition state with energy barriers of 163.6 and 150.8 kJ mol(-1) in the gas phase and water, respectively. It is found that the strong stabilization of the reactants and transition states and the overall energy barriers of formation pathways of FF are reduced in water. The formation of FF is more thermodynamically favored in water compared with that in the gas phase. In addition, the inclusion of an explicit water molecule transforms four-membered transition states of ring-opening reaction, hydrogenation-cyclization, and dehydrations into less distorted six-membered transition states, which leads to the significant reduction of reaction barriers of FF formation.

  3. Gas-phase reaction of ( E)-β-farnesene with ozone: Rate coefficient and carbonyl products

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Bejan, Iustinian; Sodeau, John R.; Wenger, John C.

    The gas-phase ozonolysis of ( E)-β-farnesene was investigated in a 3.91 m 3 atmospheric simulation chamber at 296 ± 2 K and relative humidity of around 0.1%. The relative rate method was used to determine the reaction rate coefficient of (4.01 ± 0.17) × 10 -16 cm 3 molecule -1 s -1, where the indicated errors are two least-squares standard deviations and do not include uncertainties in the rate coefficients for the reference compounds (γ-terpinene, cis-cyclooctene and 1,5-cyclooctadiene). Gas phase carbonyl products were collected using a denuder sampling technique and analyzed with GC/MS following derivatization with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA). The reaction products detected were acetone, 4-oxopentanal, methylglyoxal, 4-methylenehex-5-enal, 6-methylhept-5-en-2-one, and ( E)-4-methyl-8-methylenedeca-4,9-dienal. A detailed mechanism for the gas-phase ozonolysis of ( E)-β-farnesene is proposed, which accounts for all of the products observed in this study. The results of this work indicate that the atmospheric reaction of ( E)-β-farnesene with ozone has a lifetime of around 1 h and is another possible source of the ubiquitous carbonyls, acetone, 4-oxopentanal and 6-methylhept-5-en-2-one in the atmosphere.

  4. Gas-phase ion isomer analysis reveals the mechanism of peptide sequence scrambling.

    PubMed

    Jia, Chenxi; Wu, Zhe; Lietz, Christopher B; Liang, Zhidan; Cui, Qiang; Li, Lingjun

    2014-03-18

    Peptide sequence scrambling during mass spectrometry-based gas-phase fragmentation analysis causes misidentification of peptides and proteins. Thus, there is a need to develop an efficient approach to probing the gas-phase fragment ion isomers related to sequence scrambling and the underlying fragmentation mechanism, which will facilitate the development of bioinformatics algorithm for proteomics research. Herein, we report on the first use of electron transfer dissociation (ETD)-produced diagnostic fragment ions to probe the components of gas-phase peptide fragment ion isomers. In combination with ion mobility spectrometry (IMS) and formaldehyde labeling, this novel strategy enables qualitative and quantitative analysis of b-type fragment ion isomers. ETD fragmentation produced diagnostic fragment ions indicative of the precursor ion isomer components, and subsequent IMS analysis of b ion isomers provided their quantitative and structural information. The isomer components of three representative b ions (b9, b10, and b33 from three different peptides) were accurately profiled by this method. IMS analysis of the b9 ion isomers exhibited dynamic conversion among these structures. Furthermore, molecular dynamics simulation predicted theoretical drift time values, which were in good agreement with experimentally measured values. Our results strongly support the mechanism of peptide sequence scrambling via b ion cyclization, and provide the first experimental evidence to support that the conversion from molecular precursor ion to cyclic b ion (M → (c)b) pathway is less energetically (or kinetically) favored.

  5. The Decomposition of Hydrazine in the Gas Phase and over an Iridium Catalyst

    SciTech Connect

    Schmidt, Michael W.; Gordon, Mark S.

    2013-09-30

    Hydrazine is an important rocket fuel, used as both a monopropellant and a bipropellant. This paper presents theoretical results to complement the extensive experimental studies of the gas phase and Ir catalyzed decompositions involved in the monopropellant applications of hydrazine. Gas phase electronic structure theory calculations that include electron correlation predict that numerous molecular and free radical reactions occur within the same energy range as the basic free radical pathways: NN bond breaking around 65 kcal/mol and NH bond breaking around 81 kcal/mol. The data suggest that a revision to existing kinetics modeling is desirable, based on the energetics and the new elementary steps reported herein. A supported Ir-6 octahedron model for the Shell 405 Iridium catalyst used in thrusters was developed. Self-Consistent Field and electron correlation calculations (with core potentials and associated basis sets) find a rich chemistry for hydrazine on this catalyst model. The model catalyst provides dramatically lower NN and NH bond cleavage energies and an even smaller barrier to breaking the NH bond by NH2 abstractions. Thus, the low temperature decomposition over the catalyst is interpreted in terms of consecutive NH2 abstractions to produce ammonia and nitrogen. The higher temperature channel, which has hydrogen and nitrogen products, may be due to a mixture of two mechanisms. These two mechanisms are successive NH cleavages with surface H + H recombinations, and the same type of assisted H-2 eliminations found to occur in the gas phase part of this study.

  6. Solution Versus Gas-Phase Modification of Peptide Cations with NHS-Ester Reagents

    NASA Astrophysics Data System (ADS)

    Mentinova, Marija; Barefoot, Nathan Z.; McLuckey, Scott A.

    2012-02-01

    A comparison between solution and gas phase modification of primary amine sites in model peptide cations with N-hydroxysuccinimide (NHS) ester reagents is presented. In all peptides, the site of modification in solution was directed to the N-terminus by conducting reactions at pH = 5, whereas for the same peptides, a lysine residue was preferentially modified in the gas phase. The difference in pKa values of the N-terminus and ɛ-amino group of the lysine allows for a degree of control over sites of protonation of the peptides in aqueous solution. With removal of the dielectric and multiple charging of the peptide ions in the gas phase, the accommodation of excess charge can affect the preferred sites of reaction. Interaction of the lone pair of the primary nitrogen with a proton reduces its nucleophilicity and, as a result, its reactivity towards NHS-esters. While no evidence for reaction of the N-terminus with sulfo-NHS-acetate was noted in the model peptide cations, a charge inversion experiment using bis[sulfosuccinimidyl] suberate, a cross-linking reagent with two sulfo-NHS-ester functionalities, showed modification of the N-terminus. Hence, an unprotonated N-terminus can serve as a nucleophile to displace NHS, which suggests that its lack of reactivity with the peptide cations is likely due to the participation of the N-terminus in solvating excess charge.

  7. Gas-Phase Photoluminescence Characterization of Stoichiometrically Pure Nonanuclear Lanthanoid Hydroxo Complexes Comprising Europium or Gadolinium.

    PubMed

    Greisch, Jean-François; Chmela, Jiří; Harding, Michael E; Klopper, Wim; Kappes, Manfred M; Schooss, Detlef

    2016-04-01

    Gas-phase photoluminescence measurements involving mass-spectrometric techniques enable determination of the properties of selected molecular systems with knowledge of their exact composition and unaffected by matrix effects such as solvent interactions or crystal packing. The resulting reduced complexity facilitates a comparison with theory. Herein, we provide a detailed report of the intrinsic luminescence properties of nonanuclear europium(III) and gadolinium(III) 9-hydroxyphenalen-1-one (HPLN) hydroxo complexes. Luminescence spectra of [Eu9(PLN)16(OH)10](+) ions reveal an europium-centered emission dominated by a 4-fold split Eu(III) hypersensitive transition, while photoluminescence lifetime measurements for both complexes support an efficient europium sensitization via a PLN-centered triplet-state manifold. The combination of gas-phase measurements with density functional theory computations and ligand-field theory is used to discuss the antiprismatic core structure of the complexes and to shed light on the energy-transfer mechanism. This methodology is also employed to fit a new set of parameters, which improves the accuracy of ligand-field computations of Eu(III) electronic transitions for gas-phase species. PMID:26974169

  8. A GAS-PHASE FORMATION ROUTE TO INTERSTELLAR TRANS-METHYL FORMATE

    SciTech Connect

    Cole, Callie A.; Wehres, Nadine; Yang Zhibo; Thomsen, Ditte L.; Bierbaum, Veronica M.; Snow, Theodore P. E-mail: Nadine.Wehres@colorado.edu E-mail: Veronica.Bierbaum@colorado.edu E-mail: dlt@chem.ku.dk

    2012-07-20

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowing afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 {+-} 0.39) Multiplication-Sign 10{sup -10} cm{sup 3} s{sup -1} ({+-} 1{sigma}) and an average branching fraction of 0.05 {+-} 0.04 for protonated trans-methyl formate and 0.95 {+-} 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.

  9. Gas-phase exposure history derived from material-phase concentration profiles

    NASA Astrophysics Data System (ADS)

    Morrison, G. C.; Little, J. C.; Xu, Y.; Rao, M.; Enke, D.

    Non-reactive gas-phase pollutants such as benzene diffuse into indoor furnishings and leave behind a unique material-phase concentration profile that serves as a record of the past gas-phase indoor concentrations. The inverse problem to be solved is the diffusion equation in a slab such as vinyl flooring. Using knowledge of the present material-phase concentration profile in the slab, we seek to determine the historical material-phase concentration at the surface exposed to indoor air, and hence the historical gas-phase concentration, which can be used directly to determine exposure. The problem as posed has a unique solution that may be solved using a variety of approaches. We use a trained artificial neural network (ANN) to derive solutions for hypothetical exposure scenarios. The ANN results show that it is possible to estimate the intensity and timing of past exposures from the material-phase concentration profile in a building material. The overall method is limited by (1) the resolution of techniques for measuring spatial material-phase concentration profiles, (2) how far back in time we seek to determine exposure and (3) the representational power of the ANN solution. For example, we estimate that this technique can estimate exposure to phenol up to 0.5 y in the past from analyses of vinyl flooring.

  10. CFD simulation of pulsed MOCVD to reduce gas-phase parasitic reaction

    NASA Astrophysics Data System (ADS)

    Zhou, Ning; Lowry, Samuel A.; Krishnan, Anantha

    1999-07-01

    A Computational Fluid Dynamics (CFD) code is used to determine the potential benefit of pulsed Metal-Organic Chemical Vapor Deposition (MOCVD). When AlN is grown using MOCVD over a range of pressures (30 to 270 Torr) and substrate temperatures (400°C to 900°C), gas-phase mixing of the precursor (TMA1) and ammonia hydride (NH3)leads to adduct formation. This adduct formation may produce some undesired particulate by-products and deplete the precursors at elevated pressure and temperature. In order to reduce this gas-phase parasitic reaction, the pulsed inlet condition as proposed by Bachmann et al. is utilized to effectively separate the precursor form ammonia in gas- phase. It is predicted that for high reactor pressure (270 Torr), the growth efficiency of AlN can be enhanced by a factor of 3 through the pulsed MOCVD technique while simultaneously reducing the particle formation. The improvement by pulsed MOCVD is also demonstrated for a proposed 3D (North Carolina State University) research reactor.

  11. Gas-phase structures and thermochemistry of neutral histidine and its conjugated acid and base.

    PubMed

    Riffet, Vanessa; Bouchoux, Guy

    2013-04-28

    Extensive exploration of the conformational space of neutral, protonated and deprotonated histidine has been conducted at the G4MP2 level. Theoretical protonation and deprotonation thermochemistry as well as heats of formation of gaseous histidine and its ionized forms have been calculated at the G4 level considering either the most stable conformers or an equilibrium population of conformers at 298 K. These theoretical results were compared to evaluated experimental determinations. Recommended proton affinity and protonation entropy deduced from these comparisons are PA(His) = 980 kJ mol(-1) and ΔpS(His) ∼ 0 J mol(-1) K(-1), thus leading to a gas-phase basicity value of GB(His) = 947.5 kJ mol(-1). Similarly, gas phase acidity parameters are ΔacidH(o)(His) = 1373 kJ mol(-1), ΔacidS(His) ∼ 10 J mol(-1) K(-1) and ΔacidG(o)(His) = 1343 kJ mol(-1). Computed G4 heats of formation values are equal to -290, 265 and -451 kJ mol(-1) for gaseous neutral histidine and its protonated and deprotonated forms, respectively. The present computational data correct, and complete, previous thermochemical parameter estimates proposed for gas-phase histidine and its acido-basic properties.

  12. A Gas-phase Formation Route to Interstellar Trans-methyl Formate

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Wehres, Nadine; Yang, Zhibo; Thomsen, Ditte L.; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-07-01

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowing afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 ± 0.39) × 10-10 cm3 s-1 (± 1σ) and an average branching fraction of 0.05 ± 0.04 for protonated trans-methyl formate and 0.95 ± 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.

  13. Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles - control of the intraparticle phase distribution

    NASA Astrophysics Data System (ADS)

    Stötzel, C.; Kurland, H.-D.; Grabow, J.; Müller, F. A.

    2015-04-01

    Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis.Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs

  14. The cytotoxic effect of volatile organic compounds of the gas phase of cigarette smoke on lung epithelial cells.

    PubMed

    Pouli, Aristea E; Hatzinikolaou, Dimitris G; Piperi, Christina; Stavridou, Anastasia; Psallidopoulos, Miltiades C; Stavrides, John C

    2003-02-01

    Health effects of cigarette smoke (CS) in humans are well known from both clinical and epidemiological studies. However, the mechanism behind CS toxicity and carcinogenicity remains mainly unknown. Recent studies have pointed to the major importance of the gas phase of CS in generating its cytotoxic effects. In the current study, an exposure system capable of introducing the gas phase of mainstream cigarette smoke deprived of its volatile organic constituents (VOCs) was used to study the role of the nonorganic components of the gas phase on the cytotoxicity of smoke to monolayer cultures of mouse lung epithelial cells. Cell viability was measured by Wst-1 and the lactate dehydrogenase (LDH) assays. In cells treated with increasing doses of mainstream cigarette smoke gas phase (one to nine puffs), a dose-dependent increase in cytotoxicity was observed (one puff, 95% viability; nine puffs, 40% viability). Cell viability of cultures exposed to gas phase with only the nonorganic components was found to be equivalent to control, unexposed cultures, indicating that removal of VOCs resulted in almost eliminating the cytotoxic ability of the gas phase of CS. Furthermore, the removal of VOCs seems to reduce the effects of protein tyrosine nitration mediated through the gas phase constituents. The results obtained suggest the important and decisive role of VOCs in inducing cytotoxic effects.

  15. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.

    PubMed

    Servage, Kelly A; Silveira, Joshua A; Fort, Kyle L; Russell, David H

    2016-07-19

    Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the

  16. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    SciTech Connect

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  17. Gas phase emissions from cooking processes and their secondary aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    -ToF-MS) were used to quantify OA and VOC emissions, respectively. SOA production potential of the different emissions was quantified by introducing them into the PSI mobile smog chamber and a potential aerosol chamber (PAM) where they were photochemically aged. The measurements of primary emissions suggest that the COA factor identified in ambient atmospheric aerosols is mostly related to fat release from frying with vegetable oils or grilling fatty-meats. In contrast, vegetable cooking (boiling and frying) was associated with significant VOC emissions. The VOC emissions from frying consist mainly of aldehydes which are formed through breaking of fatty acids. Gas phase composition, emission factors and SAPP from all these processes will be presented. This work was supported by the Swiss National Science Foundation as well as the Swiss Federal Office for the Environment. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n.° 290605 (COFUND: PSI-FELLOW). J. Allan et al, Atmos. Chem. Phys. 10, 647-668 (2010) X.-F. Huang et al, Atmos. Chem. Phys. 10, 8933-8945 (2010) Y.-L. Sun et al, Atmos. Chem. Phys. 11, 1581-1602 (2011)

  18. The Role of Methoxy Group in the Nazarov Cyclization of 1,5- bis-(2-Methoxyphenyl)-1,4-Pentadien-3-one in the Gas Phase and Condensed Phase

    NASA Astrophysics Data System (ADS)

    Cyriac, June; Paulose, Justin; George, Mathai; Ramesh, Marupaka; Srinivas, Ragampeta; Giblin, Daryl; Gross, Michael L.

    2014-03-01

    ESI-protonated 1,5- bis-(2-methoxyphenyl)-1,4-pentadien-3-one (1) undergoes a gas-phase Nazarov cyclization and dissociates via expulsions of ketene and anisole. The dissociations of the [M + D]+ ions are accompanied by limited HD scrambling that supports the proposed cyclization. Solution cyclization of 1 was effected to yield the cyclic ketone, 2,3- bis-(2-methoxyphenyl)-cyclopent-2-ene-1-one, (2) on a time scale that is significantly shorter than the time for cyclization of dibenzalacetone. The dissociation characteristics of the ESI-generated [M + H]+ ion of the synthetic cyclic ketone closely resemble those of 1, suggesting that gas-phase and solution cyclization products are the same. Additional mechanistic studies by density functional theory (DFT) methods of the gas-phase reaction reveals that the initial cyclization is followed by two sequential 1,2-aryl migrations that account for the observed structure of the cyclic product in the gas phase and solution. Furthermore, the DFT calculations show that the methoxy group serves as a catalyst for the proton migrations necessary for both cyclization and fragmentation after aryl migration. An isomer formed by moving the 2-methoxy to the 4-position requires relatively higher collision energy for the elimination of anisole, as is consistent with DFT calculations. Replacement of the 2-methoxy group with an OH shows that the cyclization followed by aryl migration and elimination of phenol occurs from the [M + H]+ ion at low energy similar to that for 1.

  19. Nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) of liposomes: applicability of the technique for nano vesicle batch control

    PubMed Central

    Weiss, Victor U.; Urey, Carlos; Gondikas, Andreas; Golesne, Monika; Friedbacher, Gernot; von der Kammer, Frank; Hofmann, Thilo; Andersson, Roland; Marko-Varga, György; Marchetti-Deschmann, Martina

    2016-01-01

    Liposomes are biodegradable nanoparticle vesicles consisting of a lipid bilayer encapsulating an aqueous core. Entrapped cargo material is shielded from the extra-vesicular medium and sustained release of encapsulated material can be achieved. However, application of liposomes as nano-carriers demands their characterization concerning size and size distribution, particle-number concentration, occurrence of vesicle building blocks in solution and determination of the resulting vesicle encapsulation capacity. These questions can be targeted via gas-phase electrophoretic mobility molecular analysis (GEMMA) based on a nano electrospray (nES) charge-reduction source. This instrument separates single-charged nanoparticles in the gas-phase according to size in a high-laminar sheath-flow by means of an orthogonal, tunable electric field. nES GEMMA analysis enables to confirm liposome integrity after passage through the instrument (in combination with atomic force microscopy) as well as to exclude vesicle aggregation. Additionally, nanoparticle diameters at peak apexes and size distribution data are obtained. Differences of hydrodynamic and dry particle diameter values, as well as the effect of number- and mass-based concentration data analysis on obtained liposome diameters are shown. Furthermore, the repeatability of liposome preparation is studied, especially upon incorporation of PEGylated lipids in the bilayer. Finally, the instruments applicability to monitor mechanical stress applied to vesicles is demonstrated. PMID:27549027

  20. Inflammatory markers and clinical characteristics for predicting persistent positivity of interferon gamma release assay in dialysis population

    PubMed Central

    Shu, Chin-Chung; Hsu, Chia-Lin; Lee, Chih-Yuan; Wu, Vin-Cent; Yang, Feng-Jung; Wang, Jann-Yuan; Yu, Chong-Jen; Lee, Li-Na

    2016-01-01

    The interferon-gamma release assay (IGRA) is useful for diagnosing latent tuberculosis infection (LTBI), however the rate of negative conversion is high, especially in dialysis patients. Few studies have focused on predicting persistently positive patients who are at high risk of tuberculosis reactivation. We screened dialysis patients, and used QuantiFERON-TB Gold In-tube (QFT-GIT) to identify LTBI. Of the 157 participants who had initially positive QFT-GIT, 82 had persistently positivity and 75 had negative conversion. The persistently positive group were younger, more were current smokers, and had higher plasma level of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) and QFT-GIT responses than the negative conversion group. Multivariate logistic regression for persistent positivity revealed that high plasma sTREM-1 and QFT-GIT response, young age and TB contact history were independent factors. Currently smoking had borderline significance. The area under the receiver operating characteristic curve using the multi-factor model was 0.878, higher than 0.821 by QFT-GIT response of 0.95 IU/ml. In conclusion, dialysis patients with persistent LTBI status may be associated with a young age, high plasma sTREM-1, strong QFT-GIT response, currently smoking, and TB contact history. If resources are limited, these five predictors can be used to prioritize QFT-GIT-positive dialysis patients for LTBI treatment. PMID:27703202

  1. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon

    2016-04-01

    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  2. Gas-Phase Thermal Tautomerization of Imidazole-Acetic Acid: Theoretical and Computational Investigations.

    PubMed

    Aziz, Saadullah G; Osman, Osman I; Elroby, Shaaban A; Hilal, Rifaat H

    2015-11-04

    The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I) and imidazole-5-acetic (II) acids was monitored using the traditional hybrid functional (B3LYP) and the long-range corrected functionals (CAM-B3LYP and ωB97XD) with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750-0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8→σ*O14-H15). This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS), TS1 and TS2, having energy barriers of 47.67-49.92 and 49.55-52.69 kcal/mol, respectively, and an sp³-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed.

  3. Enhanced Lipidome Coverage in Shotgun Analyses by using Gas-Phase Fractionation

    NASA Astrophysics Data System (ADS)

    Nazari, Milad; Muddiman, David C.

    2016-11-01

    A high resolving power shotgun lipidomics strategy using gas-phase fractionation and data-dependent acquisition (DDA) was applied toward comprehensive characterization of lipids in a hen ovarian tissue in an untargeted fashion. Using this approach, a total of 822 unique lipids across a diverse range of lipid categories and classes were identified based on their MS/MS fragmentation patterns. Classes of glycerophospholipids and glycerolipids, such as glycerophosphocholines (PC), glycerophosphoethanolamines (PE), and triglycerides (TG), are often the most abundant peaks observed in shotgun lipidomics analyses. These ions suppress the signal from low abundance ions and hinder the chances of characterizing low abundant lipids when DDA is used. These issues were circumvented by utilizing gas-phase fractionation, where DDA was performed on narrow m/z ranges instead of a broad m/z range. Employing gas-phase fractionation resulted in an increase in sensitivity by more than an order of magnitude in both positive- and negative-ion modes. Furthermore, the enhanced sensitivity increased the number of lipids identified by a factor of ≈4, and facilitated identification of low abundant lipids from classes such as cardiolipins that are often difficult to observe in untargeted shotgun analyses and require sample-specific preparation steps prior to analysis. This method serves as a resource for comprehensive profiling of lipids from many different categories and classes in an untargeted manner, as well as for targeted and quantitative analyses of individual lipids. Furthermore, this comprehensive analysis of the lipidome can serve as a species- and tissue-specific database for confident identification of other MS-based datasets, such as mass spectrometry imaging.

  4. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  5. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  6. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    NASA Technical Reports Server (NTRS)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  7. Gas-phase simulated moving bed: Propane/propylene separation on 13X zeolite.

    PubMed

    Martins, Vanessa F D; Ribeiro, Ana M; Plaza, Marta G; Santos, João C; Loureiro, José M; Ferreira, Alexandre F P; Rodrigues, Alírio E

    2015-12-01

    In the last years several studies were carried out in order to separate gas mixtures by SMB technology; however, this technology has never been implemented on an industrial scale. In the present work, a gas phase SMB bench unit was built and tested for the separation of propane and propylene mixtures, using 13X zeolite extrudates as adsorbent and isobutane as desorbent. Three experiments were performed to separate propane/propylene by gas phase SMB in the bench scale unit with a 4-2-2 configuration, i.e., open loop circuit by suppressing section IV (desorbent regeneration followed by a recycle). Consequently, all the experiments were conducted using an external supply of pure isobutane as desorbent. Parameters such as switching time, extract and raffinate stream flow rates were changed to improve the efficiency of the process. Experimental results have shown that it is feasible to separate propylene from propane by gas phase SMB at a bench scale and that this process is a potential candidate to replace the conventional technologies for the propane/propylene separation. The performance parameters obtained are very promising for future development of this technology, since propylene was obtained in the extract stream with a purity of 99.93%, a recovery of 99.51%, and a productivity of [Formula: see text] . Propane was obtained in the raffinate stream with a purity of 98.10%, a recovery of 99.73% and a productivity of [Formula: see text] . The success of the above mentioned bench scale tests is a big step for the future implementation of this technology in a larger scale.

  8. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A. Spangler, L.R.

    1995-12-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. The EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is unnecessary. A test program was conducted to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative.

  9. The gas phase origin of complex organic molecules precursors in prestellar cores

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2016-05-01

    Complex organic molecules (COMs) have long been observed in the warm regions surrounding nascent protostars. The recent discovery of oxygen-bearing COMs like methyl formate or dimethyl ether in prestellar cores (Bacmann et al. [2]), where gas and dust temperatures rarely exceed 10-15 K, has challenged the previously accepted models according to which COM formation relied on the diffusion of heavy radicals on warm (˜30 K) grains. Following these detections, new questions have arisen: do non-thermal processes play a role in increasing radical mobility or should new gas-phase routes be explored? The radicals involved in the formation of the aforementioned COMs, HCO and CH3O represent intermediate species in the grain-surface synthesis of methanol which proceeds via successive hydrogenations of CO molecules in the ice. We present here observations of methanol and its grain-surface precursors HCO, H2CO, CH3O in a sample of prestellar cores and derive their relative abundances. We find that the relative abundances HCO:H2CO:CH3O:CH3OH are constant across the core sample, close to 10:100:1:100. Our results also show that the amounts of HCO and CH3O are consistent with a gas-phase synthesis of these species from H2CO and CH3OH via radical-neutral or ion-molecule reactions followed by dissociative recombinations. Thus, while grain chemistry is necessary to explain the abundances of the parent volatile CH3OH, and possibly H2CO, the reactive species HCO and CH3O might be daughter molecules directly produced in the gas-phase.

  10. Enhanced Lipidome Coverage in Shotgun Analyses by using Gas-Phase Fractionation

    NASA Astrophysics Data System (ADS)

    Nazari, Milad; Muddiman, David C.

    2016-08-01

    A high resolving power shotgun lipidomics strategy using gas-phase fractionation and data-dependent acquisition (DDA) was applied toward comprehensive characterization of lipids in a hen ovarian tissue in an untargeted fashion. Using this approach, a total of 822 unique lipids across a diverse range of lipid categories and classes were identified based on their MS/MS fragmentation patterns. Classes of glycerophospholipids and glycerolipids, such as glycerophosphocholines (PC), glycerophosphoethanolamines (PE), and triglycerides (TG), are often the most abundant peaks observed in shotgun lipidomics analyses. These ions suppress the signal from low abundance ions and hinder the chances of characterizing low abundant lipids when DDA is used. These issues were circumvented by utilizing gas-phase fractionation, where DDA was performed on narrow m/z ranges instead of a broad m/z range. Employing gas-phase fractionation resulted in an increase in sensitivity by more than an order of magnitude in both positive- and negative-ion modes. Furthermore, the enhanced sensitivity increased the number of lipids identified by a factor of ≈4, and facilitated identification of low abundant lipids from classes such as cardiolipins that are often difficult to observe in untargeted shotgun analyses and require sample-specific preparation steps prior to analysis. This method serves as a resource for comprehensive profiling of lipids from many different categories and classes in an untargeted manner, as well as for targeted and quantitative analyses of individual lipids. Furthermore, this comprehensive analysis of the lipidome can serve as a species- and tissue-specific database for confident identification of other MS-based datasets, such as mass spectrometry imaging.

  11. Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes

    NASA Astrophysics Data System (ADS)

    Lee, Anita; Goldstein, Allen H.; Keywood, Melita D.; Gao, Song; Varutbangkul, Varuntida; Bahreini, Roya; Ng, Nga L.; Flagan, Richard C.; Seinfeld, John H.

    2006-04-01

    The ozonolyses of six monoterpenes (α-pinene, β-pinene, 3-carene, terpinolene, α-terpinene, and myrcene), two sesquiterpenes (α-humulene and β-caryophyllene), and two oxygenated terpenes (methyl chavicol and linalool) were conducted individually in Teflon chambers to examine the gas-phase oxidation product and secondary organic aerosol (SOA) yields from these reactions. Particle size distribution and number concentration were monitored and allowed for the calculation of the SOA yield from each experiment, which ranged from 1 to 54%. A proton transfer reaction mass spectrometer (PTR-MS) was used to monitor the evolution of gas-phase products, identified by their mass to charge ratio (m/z). Several gas-phase oxidation products, formaldehyde, acetaldehyde, formic acid, acetone, acetic acid, and nopinone, were identified and calibrated. Aerosol yields, and the yields of these identified and calibrated oxidation products, as well as many higher m/z oxidation products observed with the PTR-MS, varied significantly between the different parent terpene compounds. The sum of measured oxidation products in the gas and particle phase ranged from 33 to 77% of the carbon in the reacted terpenes, suggesting there are still unmeasured products from these reactions. The observations of the higher molecular weight oxidation product ions provide evidence of previously unreported compounds and their temporal evolution in the smog chamber from multistep oxidation processes. Many of the observed ions, including m/z 111 and 113, have also been observed in ambient air above a Ponderosa pine forest canopy, and our results confirm they are consistent with products from terpene + O3 reactions. Many of these products are stable on the timescale of our experiments and can therefore be monitored in field campaigns as evidence for ozone oxidative chemistry.

  12. Photoisomerization action spectroscopy of the carbocyanine dye DTC+ in the gas phase.

    PubMed

    Adamson, Brian D; Coughlan, Neville J A; da Silva, Gabriel; Bieske, Evan J

    2013-12-19

    Molecular photoisomerization plays a crucial role in diverse biological and technological contexts. Here, we combine ion mobility spectrometry and laser spectroscopy to characterize the photoisomerization of molecular cations in the gas phase. The target molecular ions, polymethine dye cations 3,3'-diethylthiacarbocyanine (DTC(+)), are propelled through helium buffer gas by an electric field and are photoisomerized by light from a tunable laser. Photoexcitation over the 450-570 nm range converts trans-DTC(+) to cis-DTC(+), noticeably modifying the ions' arrival time distribution. The photoisomerization action spectrum, which has a maximum at 535 nm, resembles the absorption spectrum of DTC(+) in solution but is shifted 25 nm to shorter wavelength. Comparisons between measured and calculated mobilities suggest that the photoisomer involves a twist about the second C-C bond in the methine chain (8,9-cis isomer) rather than a twist about the first methine C-C bond (2,8-cis isomer). It is postulated that the excited gas-phase ions internally convert from the S1 Franck-Condon region to the S0 manifold and explore the conformational landscape as they cool through He buffer gas collisions. Master equation simulations of the relaxation process in the S0 manifold suggest that the 8,9-cis isomer is preferred over the 2,8-cis isomer because it lies lower in energy and because it is separated from the trans isomer by a substantially higher barrier. The study demonstrates that the photoisomerization of molecular ions can be probed selectively in the gas phase, providing insights into photoisomerization mechanisms and information on the solvent-free absorption spectrum.

  13. Gas-phase advanced oxidation for effective, efficient in situ control of pollution.

    PubMed

    Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka

    2014-01-01

    In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.

  14. The effect of molecular dynamics sampling on the calculated observable gas-phase structures.

    PubMed

    Tikhonov, Denis S; Otlyotov, Arseniy A; Rybkin, Vladimir V

    2016-07-21

    In this study, we compare the performance of various ab initio molecular dynamics (MD) sampling methods for the calculation of the observable vibrationally-averaged gas-phase structures of benzene, naphthalene and anthracene molecules. Nose-Hoover (NH), canonical and quantum generalized-Langevin-equation (GLE) thermostats as well as the a posteriori quantum correction to the classical trajectories have been tested and compared to the accurate path-integral molecular dynamics (PIMD), static anharmonic vibrational calculations as well as to the experimental gas electron diffraction data. Classical sampling methods neglecting quantum effects (NH and canonical GLE thermostats) dramatically underestimate vibrational amplitudes for the bonded atom pairs, both C-H and C-C, the resulting radial distribution functions exhibit nonphysically narrow peaks. This deficiency is almost completely removed by taking the quantum effects on the nuclei into account. The quantum GLE thermostat and a posteriori correction to the canonical GLE and NH thermostatted trajectories capture most vibrational quantum effects and closely reproduce computationally expensive PIMD and experimental radial distribution functions. These methods are both computationally feasible and accurate and are therefore recommended for calculations of the observable gas-phase structures. A good performance of the quantum GLE thermostat for the gas-phase calculations is encouraging since its parameters have been originally fitted for the condensed-phase calculations. Very accurate molecular structures can be predicted by combining the equilibrium geometry obtained at a high level of electronic structure theory with vibrational amplitudes and corrections calculated using MD driven by a lower level of electronic structure theory.

  15. The effect of molecular dynamics sampling on the calculated observable gas-phase structures.

    PubMed

    Tikhonov, Denis S; Otlyotov, Arseniy A; Rybkin, Vladimir V

    2016-07-21

    In this study, we compare the performance of various ab initio molecular dynamics (MD) sampling methods for the calculation of the observable vibrationally-averaged gas-phase structures of benzene, naphthalene and anthracene molecules. Nose-Hoover (NH), canonical and quantum generalized-Langevin-equation (GLE) thermostats as well as the a posteriori quantum correction to the classical trajectories have been tested and compared to the accurate path-integral molecular dynamics (PIMD), static anharmonic vibrational calculations as well as to the experimental gas electron diffraction data. Classical sampling methods neglecting quantum effects (NH and canonical GLE thermostats) dramatically underestimate vibrational amplitudes for the bonded atom pairs, both C-H and C-C, the resulting radial distribution functions exhibit nonphysically narrow peaks. This deficiency is almost completely removed by taking the quantum effects on the nuclei into account. The quantum GLE thermostat and a posteriori correction to the canonical GLE and NH thermostatted trajectories capture most vibrational quantum effects and closely reproduce computationally expensive PIMD and experimental radial distribution functions. These methods are both computationally feasible and accurate and are therefore recommended for calculations of the observable gas-phase structures. A good performance of the quantum GLE thermostat for the gas-phase calculations is encouraging since its parameters have been originally fitted for the condensed-phase calculations. Very accurate molecular structures can be predicted by combining the equilibrium geometry obtained at a high level of electronic structure theory with vibrational amplitudes and corrections calculated using MD driven by a lower level of electronic structure theory. PMID:27331660

  16. Gas-Phase Thermal Tautomerization of Imidazole-Acetic Acid: Theoretical and Computational Investigations

    PubMed Central

    Aziz, Saadullah G.; Osman, Osman I.; Elroby, Shaaban A.; Hilal, Rifaat H.

    2015-01-01

    The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I) and imidazole-5-acetic (II) acids was monitored using the traditional hybrid functional (B3LYP) and the long-range corrected functionals (CAM-B3LYP and ωB97XD) with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital–Lowest Unoccupied Molecular Orbital (HOMO–LUMO) energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750–0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8→σ*O14–H15). This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS), TS1 and TS2, having energy barriers of 47.67–49.92 and 49.55–52.69 kcal/mol, respectively, and an sp3-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed. PMID:26556336

  17. [Seasonal release characteristics of Ca, Mg and Mn of foliar litter of six tree species in subtropical evergreen broadleaved forest].

    PubMed

    Ma, Zhi-liang; Gao, Shun; Yang, Wan-qin; Wu, Fu-zhong

    2015-10-01

    Seasonal release dynamics of Ca, Mg and Mn during decomposition of foliar litter of Pinus massoniana, Cryptomeria fortunei, Cunninghamia lanceolata, Cinnamomum camphora, Toona ciliate, and Quercus acutissima were investigated in subtropical evergreen broad-leaved forest employing the method of litterbag. After one-year decomposition, the release rates of Ca, Mg and Mn in foliar litter of the studied tree species ranged from -13.8% to 92.3%, from 4.0% to 64.8%, and from 41.6% to 81.1%, respectively. Ca dynamics in foliar litter of P. massoniana, C. camphora exhibited the pattern of accumulating early and releasing later, while that of the other four tree species showed direct release. Similarly, the dynamics of Mg released from foliar litter of C. camphora showed the pattern of accumulating early and then releasing, while that of the other five tree species exhibited continuous release. Meanwhile, the dynamics of Mn released from foliar litter of C. fortunei and T. ciliate exhibited early accumulation, and subsequent release, while that of the other four tree species showed continuous release. The releases of Ca, Mg and Mn in foliar litter were greatly influenced by seasonal rainfall, and varied with tree species. Furthermore, the rates and amounts of Ca, Mg and Mn released from foliar litter were higher in rainy season than in dry season. In conclusion, the initial nutrient concentrations and precipitation were two key factors influencing the release dynamics of Ca, Mg and Mn during decomposition of foliar litter in the subtropical evergreen broad-leaved forest. PMID:26995897

  18. Optimizing Photovoltaic Response by Tuning Light-Harvesting Nanocrystal Shape Synthesized Using a Quick Liquid-Gas Phase Reaction.

    PubMed

    Mazumdar, Sayantan; Tamilselvan, Muthusamy; Bhattacharyya, Aninda J

    2015-12-30

    The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid-gas phase synthesis method performed at different temperatures involving very short reaction times. High-resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

  19. Imaging of molecular mixing in a gas-phase turbulent jet by collisional energy-transfer fluorescence

    SciTech Connect

    Winter, M.; Hermanson, J.C.; Dobbs, G.M. )

    1992-01-01

    This work explores the viability of collisional energy-transfer fluorescence imaging as a technique to resolve molecular mixing in gas-phase flows. This approach relies on a fluorescent seed species becoming mixed with a different seed species capable of absorbing laser light and being promoted to an electronically excited state. In these experiments, biacetyl fluorescence is excited via energy transfer from excited-state toluene molecules, thus providing a direct indication of the degree of molecular mixing. Calibration experiments were performed in which illumination of a test volume containing molecularly mixed biacetyl/toluene vapor induces emission not observed for biacetyl vapor or toluene vapor only, verifying the energy-transfer mechanism. Planar imaging using energy-transfer fluorescence was applied to exmine the molecular mixing characteristics of a turbulent, coflowing nitrogen jet which contained biacetyl in the central jet and toluene in the coflow. Comparison is made with the results of planar LIF imaging of the dilution of a passive scalar. 17 refs.

  20. Analyte induced water adsorbability in gas phase biosensors: the influence of ethinylestradiol on the water binding protein capacity.

    PubMed

    Snopok, Borys; Kruglenko, Ivanna

    2015-05-01

    An ultra-sensitive gas phase biosensor/tracer/bio-sniffer is an emerging technology platform designed to provide real-time information on air-borne analytes, or those in liquids, through classical headspace analysis. The desired bio-sniffer measures gaseous 17α- ethinylestradiol (ETED) as frequency changes on a quartz crystal microbalance (QCM), which is a result of the interactions of liquid sample components in the headspace (ETED and water) with a biorecognition layer. The latter was constructed by immobilization of polyclonal antiserum against a phenolic A-ring of estrogenic receptors through protein A. The QCM response exhibited stretched exponential kinetics of negative frequency shifts with reversible and "irreversible" components of mass uptake onto the sensor surface in static headspace conditions when exposed to water solutions of ETED over the sensor working range, from 10(-10) to 10(-17) g L(-1). It was shown that the variations in the QCM response characteristics are due to the change of the water-binding capacity of the sensing layer induced by protein transformations initiated by the binding of ETED molecules. This result is well correlated with the natural physiological function of estrogens in controlling the homeostasis of body fluids in living beings. PMID:25763411

  1. Gas-Phase Protein Inner-Shell Spectroscopy by Coupling an Ion Trap with a Soft X-ray Beamline.

    PubMed

    Milosavljević, Aleksandar R; Canon, Francis; Nicolas, Christophe; Miron, Catalin; Nahon, Laurent; Giuliani, Alexandre

    2012-05-01

    C, N, and O near-edge ion yield spectroscopy of 8+ selected electrosprayed cations of cytochrome c protein (12 kDa) has been performed by coupling a linear quadrupole ion trap with a soft X-ray beamline. The photoactivation tandem mass spectra were recorded as a function of the photon energy. Photoionization of the precursor, accompanied by CO2 loss, is the dominant relaxation process, showing high photoion stability following direct or resonant photoionization. The partial ion yields extracted from recorded mass spectra show significantly different behaviors for single and double ionization channels, which can be qualitatively explained by different Auger decay mechanisms. However, the single ionization spectra reveal characteristic structures when compared to existing near-edge X-ray absorption fine structure (NEXAFS) spectra from thin films of peptides and proteins. Therefore, the present experiment opens up new avenues for near-edge X-ray spectroscopy of macromolecules in the gas phase, overcoming the radiation damage issue or the environmental effects as due to the surface, intermolecular interactions, and solvent.

  2. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    2006-01-01

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  3. Gas phase NMR spectra of N,N-dimethylnitrosamine. Environmental effects on kinetic parameters

    NASA Astrophysics Data System (ADS)

    Chauvel, J. Paul; Leung, Doris Y.; True, Nancy S.

    1984-04-01

    Gas phase 1H NMR spectra of N,N-dimethylnitrosamine are consistent with first order chemical exchange rate constants which are ca. 25 times faster than those observed in neat liquids at corresponding temperatures. The associated kinetic parameters: Eact(∞), 20.5(1.1) kcal mol -1, Δ H‡, 19.7(1.0) kcal mol -1 and Δ G‡, 21.1(0.4) kcal mol -1 are approximately 2.5 kcal mol -1 lower than the most recently reported values for the neat liquid. The observed phase dependence is consistent with a process proceeding via a freely rotating transition state.

  4. Gas-phase purification enables accurate, large-scale, multiplexed proteome quantification with isobaric tagging

    PubMed Central

    Wenger, Craig D; Lee, M Violet; Hebert, Alexander S; McAlister, Graeme C; Phanstiel, Douglas H; Westphall, Michael S; Coon, Joshua J

    2011-01-01

    We describe a mass spectrometry method, QuantMode, which improves the accuracy of isobaric tag–based quantification by alleviating the pervasive problem of precursor interference—co-isolation of impurities—through gas-phase purification. QuantMode analysis of a yeast sample ‘contaminated’ with interfering human peptides showed substantially improved quantitative accuracy compared to a standard scan, with a small loss of spectral identifications. This technique will allow large-scale, multiplexed quantitative proteomics analyses using isobaric tagging. PMID:21963608

  5. Fluorometric method for the determination of gas-phase hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Kok, Gregory L.; Lazrus, Allan L.

    1986-12-01

    The fluorometric gas-phase hydrogen peroxide procedure is based on the technique used by Lazrus et. al. for the determination of H2O2 in the liquid phase. The analytical method utilizes the reaction of H2O2 with horseradish peroxidase and p-hydroxphenylacetic acid (POPHA) to form the fluorescent dimer of POPHA. The analytical reaction responds stoichiometrically to both H2O2 and some organic hydroperoxides. To discriminate H2O2 from organic hydroperoxides, catalase is used to preferentially destroy H2O2. Using a dual-channel flow system the H2O2 concentration is determined by difference.

  6. Fluorometric method for the determination of gas-phase hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Kok, Gregory L.; Lazrus, Allan L.

    1986-01-01

    The fluorometric gas-phase hydrogen peroxide procedure is based on the technique used by Lazrus et. al. for the determination of H2O2 in the liquid phase. The analytical method utilizes the reaction of H2O2 with horseradish peroxidase and p-hydroxphenylacetic acid (POPHA) to form the fluorescent dimer of POPHA. The analytical reaction responds stoichiometrically to both H2O2 and some organic hydroperoxides. To discriminate H2O2 from organic hydroperoxides, catalase is used to preferentially destroy H2O2. Using a dual-channel flow system the H2O2 concentration is determined by difference.

  7. An index of the literature for bimolecular gas phase cation-molecule reaction kinetics

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.

    2003-01-01

    This is an index to the literature for gas phase bimolecular positive ionmolecule reactions. Over 2300 references are cited. Reaction rate coefficients and product distributions of the reactions are abstracted out of the original citations where available. This index is intended to cover the literature from 1936 to 2003. This is a continuation of several surveys: the original (Huntress Astrophys. J. Suppl. Ser., 33, 495 (1977)), an expansion (Anicich and Huntress, Astrophys. J. Suppl. Ser. 62, 553 (1986)), a supplement (Anicich, Astrophys. J. Suppl. Ser. 84, 215 (1993)), and an evaluation (Anicich, V. G. J. Phys. Chem. Ref. Data 22,1469 (1993b). The Table of reactions is listed by reactant ion.

  8. Formation of metallacyclic C[sub 60] derivatives via gas-phase ion-molecule reactions

    SciTech Connect

    Kan, S.Z.; Byun, Y.G.; Freiser, B.S. )

    1995-01-25

    In this paper we report the gas-phase reactions of C[sub 60] with Fe(benzyne)[sup +] in which metallacyclic C[sub 80] derivatives are formed. All experiments were performed on an Extrel FTMS-2000 dual cell Fourier transform ion cyclotron resonance mass spectrometer equipped with a 3 T superconducting magnet. The ion-trapping potential was set at 2 V. A Bayard-Alpert ion gauge was used to monitor pressure. Fe[sup +] was generated by laser desorption of the pure iron metal target using a Quanta-Ray Nd:YAG laser operated at its fundamental output (1064 nm). 43 refs., 1 fig.

  9. Ab initio treatment of gas phase GeO2+ doubly charged ion

    NASA Astrophysics Data System (ADS)

    Mogren Al Mogren, M.; Ben Abdallah, D.; Hochlaf, M.

    2015-01-01

    Using multi reference configuration interaction methodology in connection with a large basis set, we show that GeO2+ is a metastable species either in the ground or in the electronically excited states. This confirms the observation of this dication in gas phase by mass spectrometry. In addition, we derived a set of accurate spectroscopic terms for GeO2+ bound states. At the MRCI/aug-cc-pV5Z level of theory, the adiabatic double ionization energy of GeO is computed to be ∼28.93 eV.

  10. Forming NCO(-) in Dense Molecular Clouds: Possible Gas-Phase Chemical Paths From Quantum Calculations.

    PubMed

    Yurtsever, E; Gianturco, F A; Wester, R

    2016-07-14

    The existence of NCO(-) anions in the interstellar medium (ISM) has been suggested and searched for over the years but without any formal definitive sighting of that molecule. We discuss in this work the possible formation of either NCO(-) directly or of NCO neutral as a precursor to NCO(-) formation by electron attachment. We follow simple, gas-phase chemical reactions for which the general features are obtained from accurate quantum calculations. The results are shedding some additional light on the likely presence of this anion in the ISM environment, drawing further information from the specific features of the considered reactions on the additional chemical options that exist for its formation.

  11. Gas Phase Chromatography of some Group 4, 5, and 6 Halides

    SciTech Connect

    Sylwester, Eric Robert

    1998-10-01

    Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr{sub 4}, HfBr{sub 4}, RfBr{sub 4}, NbBr{sub 5}, TaOBr{sub 3}, HaCl{sub 5}, WBr{sub 6}, FrBr, and BiBr{sub 3}. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography. Adsorption Enthalpy ({Delta}H{sub a}) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and {Delta}H{sub a} was observed: RfBr{sub 4} > ZrBr{sub 4} > HfBr{sub 4}. The {Delta}H{sub a} values determined for the group 4, 5, and 6 halides are in general agreement with other experimental data and theoretical predictions. Preliminary experiments were performed on Me-bromides. A new measurement of the half-life of {sup 261}Rf was performed. {sup 261}Rf was produced via the {sup 248}Cm({sup 18}O, 5n) reaction and observed with a half-life of 74{sub -6}{sup +7} seconds, in excellent agreement with the previous measurement of 78{sub -6}{sup +11} seconds. We recommend a new half-life of 75{+-}7 seconds for {sup 261}Rf based on these two measurements. Preliminary studies in transforming HEVI from an isothermal (constant temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature

  12. Gas phase infrared spectra from quasi-classical Kubo time correlation functions

    NASA Astrophysics Data System (ADS)

    Beutier, J.; Vuilleumier, R.; Bonella, S.; Ciccotti, G.

    2015-09-01

    We generalise the recently developed phase integration method (PIM) to obtain a computable approximation of the Kubo expression for quantum time correlation functions. Our scheme combines exact sampling of the quantum thermal density with classical dynamics to provide a quasi-classical approximation for the correlation function. The method will be specialised to the evaluation of the momentum autocorrelation function, with the goal to compute infrared spectra of simple molecules in the gas phase. Application to two simple but interesting benchmark systems shows that the approach is accurate and stable over a broad range of temperatures.

  13. Mechanisms of the water-gas-shift reaction by iron pentacarbonyl in the gas phase.

    PubMed

    Rozanska, Xavier; Vuilleumier, Rodolphe

    2008-10-01

    We analyzed the mechanisms of the water-gas-shift reaction catalyzed by Fe(CO) 5/OH (-) in the gas phase using DFT methods. The systematic analysis of the accessible reaction mechanisms and the consideration of the Gibbs free energies allows for different reaction routes than previously suggested. In the dominant catalytic cycle, the hydride [FeH(CO) 4]- is the important intermediate. Associative reaction mechanisms are not favorable under moderate and low pressures. At high pressure, a side reaction takes over and prevents the conversion of H 2O and CO to H 2 and CO 2 and leads to the formation of HCOOH.

  14. Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission)

    SciTech Connect

    Karnaukhov, V. A.; Oeschler, H.; Budzanowski, A.; Avdeyev, S. P.; Botvina, A. S.; Cherepanov, E. A.; Karcz, W.; Kirakosyan, V. V.; Rukoyatkin, P. A.; Skwirczynska, I.; Norbeck, E.

    2008-12-15

    Critical temperature T{sub c} for the nuclear liquid-gas phase transition is estimated from both the multifragmentation and fission data. In the first case, the critical temperature is obtained by analysis of the intermediate-mass-fragment yields in p(8.1 GeV) + Au collisions within the statistical model of multifragmentation. In the second case, the experimental fission probability for excited {sup 188}Os is compared with the calculated one with T{sub c} as a free parameter. It is concluded for both cases that the critical temperature is higher than 15 MeV.

  15. Forming NCO– in Dense Molecular Clouds: Possible Gas-Phase Chemical Paths From Quantum Calculations

    PubMed Central

    2015-01-01

    The existence of NCO– anions in the interstellar medium (ISM) has been suggested and searched for over the years but without any formal definitive sighting of that molecule. We discuss in this work the possible formation of either NCO– directly or of NCO neutral as a precursor to NCO– formation by electron attachment. We follow simple, gas-phase chemical reactions for which the general features are obtained from accurate quantum calculations. The results are shedding some additional light on the likely presence of this anion in the ISM environment, drawing further information from the specific features of the considered reactions on the additional chemical options that exist for its formation. PMID:26696323

  16. Gas-phase synthesis of morpholine from diethylene glycol and ammonia

    SciTech Connect

    Kronich, I.G.; Dobrovol'skii, S.V.; Nikolaev, Y.T.; Shikunov, B.I.; Dyumaev, K.M.

    1982-11-01

    The theory and practice of catalysis in the process of amination of compounds which contain two or more hydroxyl groups has generated much interest. Specifically, there is particular interest in the reaction of diethylene glycol and ammonia; the amination process in this case is accompanied by cyclization with formation of morpholine - a very important product which is needed in growing amounts in the production of rubber vulcanization accelerators, optical bleaches and a number of other products. The possibility of producing morpholine from diethylene glycol and ammonia in gas phase in the presence of hydrogenating-dehydrogenating catalysts was demonstrated earlier. This report presents the results of further research in this area.

  17. Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics

    SciTech Connect

    Yu H. G.; Muckerman, J.T.

    2012-05-29

    The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.

  18. Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics

    SciTech Connect

    Yu, H.G.; Muckerman, J.T.

    2010-06-01

    The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.

  19. Gas-phase photocatalytic oxidation: Cost comparison with other air pollution control technologies

    SciTech Connect

    Turchi, C S; Wolfrum, E J; Miller, R A

    1994-11-01

    Gas-phase photocatalytic oxidation (PCO) appears to be particularly well suited for waste streams with low pollutant concentrations (1000 ppm or less) and low to moderate flow rates (< 20,000 cubic feet per minute, cfm). The PCO technology is modular in nature and thus is well suited to treat dispersed or low flow rate streams. This same attribute minimizes the advantages of scale for PCO and makes the technology comparatively less attractive for high volume waste streams. Key advantages for PCO lie in its low operating cost and ability to completely destroy pollutants at ambient temperature and pressure.

  20. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase.

    PubMed

    Viglino, Emilie; Shaffer, Christopher J; Tureček, František

    2016-06-20

    We report the first application of UV/Vis photodissociation action spectroscopy for the structure elucidation of tyrosine peptide cation radicals produced by oxidative intramolecular electron transfer in gas-phase metal complexes. Oxidation of Tyr-Ala-Ala-Ala-Arg (YAAAR) produces Tyr-O radicals by combined electron and proton transfer involving the phenol and carboxyl groups. Oxidation of Ala-Ala-Ala-Tyr-Arg (AAAYR) produces a mixture of cation radicals involving electron abstraction from the Tyr phenol ring and N-terminal amino group in combination with hydrogen-atom transfer from the Cα positions of the peptide backbone. PMID:27159034

  1. STUDYING THE IMPACT OF FORMULATION AND PROCESSING PARAMETERS ON THE RELEASE CHARACTERISTICS FROM HYDROXYPROPYL METHYLCELLULOSE MATRIX TABLETS OF DICLOFENAC.

    PubMed

    Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel

    2016-01-01

    Hydrophilic matrices, especially HPMC based, are widely used to provide sustained delivery where drug release occurs mainly by diffusion. A 3(2) full factorial design was used to develop and evaluate HPMC matrix tablet for sustained delivery of diclofenac. The influences of polymer concentration/viscosity, diluent type/ratio, drug load/solubility, compression force and pH change on drug release were investigated. Ten tablet formulations were prepared using wet granulation. HPMC K15M (10-30% w/w) was used as the polymer forming matrix. The release kinetics, compatibility studies, lot reproducibility and effect on storage were discussed. Increasing polymer concentration and compression force showed antagonistic effect on release rate. Mannitol tends to increase release rate more than lactose. Reversing diluent ratio between lactose and MCC did not affect drug release. Changing pH resulted in burst release whereas drug solubility is pH independent. F1 showed similar release to Voltaren SR and followed Higuchi model. Drug and polymer were compatible to each other. The formulation is stable at long and intermediate conditions with a significant increase in release rate at accelerated conditions due to water uptake and polymer swelling. The developed formulation was successful for a sustained delivery of diclofenac.

  2. STUDYING THE IMPACT OF FORMULATION AND PROCESSING PARAMETERS ON THE RELEASE CHARACTERISTICS FROM HYDROXYPROPYL METHYLCELLULOSE MATRIX TABLETS OF DICLOFENAC.

    PubMed

    Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel

    2016-01-01

    Hydrophilic matrices, especially HPMC based, are widely used to provide sustained delivery where drug release occurs mainly by diffusion. A 3(2) full factorial design was used to develop and evaluate HPMC matrix tablet for sustained delivery of diclofenac. The influences of polymer concentration/viscosity, diluent type/ratio, drug load/solubility, compression force and pH change on drug release were investigated. Ten tablet formulations were prepared using wet granulation. HPMC K15M (10-30% w/w) was used as the polymer forming matrix. The release kinetics, compatibility studies, lot reproducibility and effect on storage were discussed. Increasing polymer concentration and compression force showed antagonistic effect on release rate. Mannitol tends to increase release rate more than lactose. Reversing diluent ratio between lactose and MCC did not affect drug release. Changing pH resulted in burst release whereas drug solubility is pH independent. F1 showed similar release to Voltaren SR and followed Higuchi model. Drug and polymer were compatible to each other. The formulation is stable at long and intermediate conditions with a significant increase in release rate at accelerated conditions due to water uptake and polymer swelling. The developed formulation was successful for a sustained delivery of diclofenac. PMID:27180437

  3. Spectroscopic Investigation of H Atom Transfer in a Gas-phase Dissociation Reaction: McLafferty Rearrangement of Model Gas-phase Peptide Ions

    SciTech Connect

    Michael J. Van Stipdonk; Dale R. Kersetter; Christopher M. Leavitt; Gary S. Groenewold; Jeffrey Steill; Jos Oomens

    2008-07-01

    Wavelength-selective infrared multiple-photon photodissociation (WS-IRMPD) was used to study isotopically-labeled ions generated by McLafferty rearrangement of nicotinyl-glycine-tert-butyl ester and betaine-glycine-tert-butyl ester. The tert-butyl esters were incubated in a mixture of D2O and CH3OD to induce solution-phase hydrogen-deuterium exchange and then converted to gas-phase ions using electrospray ionization. McLafferty rearrangement was used to generate the free-acid forms of the respective model peptides through transfer of an H atom and elimination of butene. The specific aim was to use vibrational spectra generated by WS-IRMPD technique to determine whether the H atom remains at the acid group, or migrates to one or more of the other exchangeable sites. Comparison of the IRMPD results in the region from 1200-1900 cm-1 to theoretical spectra for different isotopically-labeled isomers clearly shows that the H atom is situated at the C-terminal acid group and migration to amide positions is negligible on the time scale of the experiment. The results of this study suggest that use of the McLafferty rearrangement for peptide esters could be an effective approach for generation of H-atom isotope tracers, in-situ, for subsequent investigation of intra-molecular proton migration during peptide fragmentation studies.

  4. Feedlot performance, carcass characteristics, hormones, and metabolites in steers actively immunized against growth hormone-releasing factor.

    PubMed

    Harvey, R W; Armstrong, J D; Heimer, E P; Campbell, R M

    1993-11-01

    Large-framed Simmental and Charolais steers were actively immunized against growth hormone-releasing factor (GRF) to evaluate the effect on growth, carcass characteristics (especially intramuscular fat deposition), and concentrations of somatotropin (ST) and IGF-I. Primary immunizations of 1.5 mg of GRF-(1-29)-Gly-Gly-Cys-NH2 conjugated to 1.5 mg of human serum albumin (GRFi, n = 12) or 1.5 mg of human serum albumin (HSAi, n = 12) were given at approximately 10 mo of age. Booster immunizations of .5 mg of the appropriate antigen were given at d 49 and 125. Weights of steers administered GRFi were less (P < .05) than those given HSAi at 126 d (34.6 kg) or at 262 d (48.2 kg) after treatment. Carcass weights were 28.2 kg less (P < .01) for GRFi than for HSAi steers. Dry matter intake was not affected by immunization treatment, whereas feed efficiency was reduced in GRFi steers. Marbling scores were higher (P < .05) for HSAi than for GRFi steers but similar percentages (83.3) of both treatments graded Low Choice or higher. Rib sections of GRFi steers contained more fat (31.2 vs 25.0%) and less lean (63.3 vs 68.4%) than those of HSAi steers (P < .05). A breed x treatment interaction was observed for percentage of fat within the trimmed longissimus muscle (P < .05); percentage of fat was similar for Charolais and Simmental steers when immunized against HSAi but was higher for Simmental than for Charolais when immunized against GRFi.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Infrared spectroscopy of hydrogen-bonded CHCl3-SO2 in the gas phase

    NASA Astrophysics Data System (ADS)

    Chung, Susan; Hippler, Michael

    2006-06-01

    A molecular association between chloroform and sulfur dioxide in the gas phase at room temperature was studied by Fourier transform infrared spectroscopy. Since the intensity of the CH-stretching fundamental vibration of monomer chloroform is very weak but much stronger upon complexation, a simple subtraction procedure isolated the CH-stretching vibration spectrum of the complex. The presence of a 1:1 complex was confirmed by two dilution series, where the monomer concentrations were varied. The molecular association manifested itself as a shift of the peak absorbance of the CH-stretching vibration of CHCl3-SO2 by +7cm-1 and of the CD-stretching vibration of CDCl3-SO2 by +5cm-1 to higher wave numbers compared to monomer chloroform, accompanied by a considerable broadening of the band contour. In agreement with previous ab initio calculations, this indicates a "blueshifting" or more appropriately, a "C-H contracting" hydrogen bond between chloroform and sulfur dioxide. An estimate of the complex concentration was made based on ab initio calculations for the integrated band strength and the measured spectrum. With this estimate, the equilibrium constant Kp (295K )=0.014 (po=105Pa) for the dimerization was calculated, providing one of the very few cases where the formation of a hydrogen-bonded gas phase complex at room temperature could be quantitatively studied by infrared spectroscopy.

  6. Can an ab initio three-body virial equation describe the mercury gas phase?

    PubMed

    Wiebke, J; Wormit, M; Hellmann, R; Pahl, E; Schwerdtfeger, P

    2014-03-27

    We report a sixth-order ab initio virial equation of state (EOS) for mercury. The virial coefficients were determined in the temperature range from 500 to 7750 K using a three-body approximation to the N-body interaction potential. The underlying two-body and three-body potentials were fitted to highly accurate Coupled-Cluster interaction energies of Hg2 (Pahl, E.; Figgen, D.; Thierfelder, C.; Peterson, K. A.; Calvo, F.; Schwerdtfeger, P. J. Chem. Phys. 2010, 132, 114301-1) and equilateral-triangular configurations of Hg3. We find the virial coefficients of order four and higher to be negative and to have large absolute values over the entire temperature range considered. The validity of our three-body, sixth-order EOS seems to be limited to small densities of about 1.5 g cm(-3) and somewhat higher densities at higher temperatures. Termwise analysis and comparison to experimental gas-phase data suggest a small convergence radius of the virial EOS itself as well as a failure of the three-body interaction model (i.e., poor convergence of the many-body expansion for mercury). We conjecture that the nth-order term of the virial EOS is to be evaluated from the full n-body interaction potential for a quantitative picture. Consequently, an ab initio three-body virial equation cannot describe the mercury gas phase. PMID:24547987

  7. Shape resonances, overtones, and electron energy loss spectroscopy of gas phase and physisorbed diatomic molecules

    NASA Astrophysics Data System (ADS)

    Gadzuk, J. W.

    1983-10-01

    Electron energy loss spectra of O2 and N2 physisorbed on metallic substrates showing a series of high overtone losses have recently been reported. In the case of N2, the intense overtone excitation is credited to the formation of a well-known temporary negative ion state with a resonance lifetime ˜10-15 s for gas phase N2-. The principal distinction between the gaseous and physisorbed molecule EELS spectrum is a significant depletion of the overtone intensity which has been attributed to a surface-induced decrease in the resonance lifetime. In the present work, a time dependent quantum mechanical model applicable to vibrational excitation in resonance scattering is outlined which quantitatively accounts for the observed spectra and, in particular, the surface modifications to the gas phase results. The essential feature of the model is one in which the intramolecular dynamics of the intermediate state is characterized by nuclear propagation over a harmonic potential curve spatially displaced from the ground state curve for a time duration equal to the resonance lifetime. The resulting calculated overtone spectra agree well with the experimentally observed ones. The results suggest that the physisorbed N-2 lifetime is about 40% of that of the free molecule.

  8. Gas-phase basicities of polyfunctional molecules. Part 4: Carbonyl groups as basic sites.

    PubMed

    Bouchoux, Guy

    2015-01-01

    This article constitutes the fourth part of a general review of the gas-phase protonation thermochemistry of polyfunctional molecules (Part 1: Theory and methods, Mass Spectrom Rev 2007, 26:775-835, Part 2: Saturated basic sites, Mass Spectrom Rev 2012, 31:353-390, Part 3: Amino acids, Mass Spectrom Rev 2012, 31:391-435). This fourth part is devoted to carbonyl containing polyfunctional molecules. After a short reminder of the methods of determination of gas-phase basicity and the underlying physicochemical concepts, specific examples are examined under two major chapters. In the first one, aliphatic and unsaturated (conjugated and cyclic) ketones, diketones, ketoalcohols, and ketoethers are considered. A second chapter describes the protonation energetic of gaseous acids and derivatives including diacids, diesters, diamides, anhydrides, imides, ureas, carbamates, amino acid derivatives, and peptides. Experimental data were re-evaluated according to the presently adopted basicity scale. Structural and energetic information given by G3 and G4 quantum chemistry computations on typical systems are presented.

  9. Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity

    PubMed Central

    Harper-Leatherman, Amanda S.; Pacer, Elizabeth R.; Kosciuszek, Nina D.

    2016-01-01

    Applications such as sensors, batteries, and fuel cells have been improved through the use of highly porous aerogels when functional compounds are encapsulated within the aerogels. However, few reports on encapsulating proteins within sol–gels that are processed to form aerogels exist. A procedure for encapsulating cytochrome c (cyt. c) in silica (SiO2) sol-gels that are supercritically processed to form bioaerogels with gas-phase activity for nitric oxide (NO) is presented. Cyt. c is added to a mixed silica sol under controlled protein concentration and buffer strength conditions. The sol mixture is then gelled and the liquid filling the gel pores is replaced through a series of solvent exchanges with liquid carbon dioxide. The carbon dioxide is brought to its critical point and vented off to form dry aerogels with cyt. c encapsulated inside. These bioaerogels are characterized with UV-visible spectroscopy and circular dichroism spectroscopy and can be used to detect the presence of gas-phase nitric oxide. The success of this procedure depends on regulating the cyt. c concentration and the buffer concentration and does not require other components such as metal nanoparticles. It may be possible to encapsulate other proteins using a similar approach making this procedure important for potential future bioanalytical device development. PMID:26967257

  10. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions.

    PubMed

    Peng, Zhou; Pilo, Alice L; Luongo, Carl A; McLuckey, Scott A

    2015-10-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  11. Potential health hazards from thermal degradation events - Particulate vs. gas phase effects

    NASA Technical Reports Server (NTRS)

    Oberdorster, Gunter; Ferin, Juraj; Finkelstein, Jacob; Baggs, Raymond; Stavert, D. M.; Lehnert, Bruce E.

    1992-01-01

    The effect of instillation of ultrafine TiO2 particles (10-nm anatase-TiO2 and 12-nm rutile-TiO2 (administered in doses from 60 to 1000 microg/rat and 500 microg/rat, respectively) on the respiratory tract of exposed rats was compared to the effects of larger (250 nm anatase-TiO2 and 220-nm rutile-TiO2 particles (given in doses 500 or 1000 microg/rat and 500 microg/rat, respectively). These effects were also compared to the effects of inhalation of 20-nm and 250-nm anatase-TiO2 particles and inhalation with surrogate gas phase components (HF and HCl). It was found that ultrafine TiO2 particles induced greater inflammatory reaction in the lung, had greater adverse effect on alveolar macrophage-mediated clearance function, and had a greater potential to induce mediators which can adversely affect other lung cells than did larger-sized particles. Inhalation of surrogate gas phase components caused injury only to the upper respiratory tract, in contrast to the ultrafine particles, which affected the deep lung.

  12. Oxidation of methionine residues in polypeptide ions via gas-phase ion/ion chemistry.

    PubMed

    Pilo, Alice L; McLuckey, Scott A

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O](+)), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O](+) product is observed at a much greater abundance than the proton transfer product (viz., [M + H](+)). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to 'label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  13. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure.

    PubMed

    Yatsyna, Vasyl; Bakker, Daniël J; Salén, Peter; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali

    2016-09-01

    We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800  cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range.

  14. Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Kovalenko, Ekaterina; Vilaseca, Marta; Díaz-Lobo, Mireia; Masliy, A. N.; Vicent, Cristian; Fedin, Vladimir P.

    2016-02-01

    The complexation of the macrocyclic cavitand cucurbit[7]uril (Q7) with a series of amino acids (AA) with different side chains (Asp, Asn, Gln, Ser, Ala, Val, and Ile) is investigated by ESI-MS techniques. The 1:1 [Q7 + AA + 2H]2+ adducts are observed as the base peak when equimolar Q7:AA solutions are electrosprayed, whereas the 1:2 [Q7 + 2AA + 2H]2+ dications are dominant when an excess of the amino acid is used. A combination of ion mobility mass spectrometry (IM-MS) and DFT calculations of the 1:1 [Q7 + AA + 2H]2+ (AA = Tyr, Val, and Ser) adducts is also reported and proven to be unsuccessful at discriminating between exclusion or inclusion-type conformations in the gas phase. Collision induced dissociation (CID) revealed that the preferred dissociation pathways of the 1:1 [Q7 + AA + 2H]2+ dications are strongly influenced by the identity of the amino acid side chain, whereas ion molecule reactions towards N-butylmethylamine displayed a common reactivity pattern comprising AA displacement. Special emphasis is given on the differences between the gas-phase behavior of the supramolecular adducts with amino acids (AA = Asp, Asn, Gln, Ser, Ala, Val, and Ile) and those featuring basic (Lys and Arg) and aromatic (Tyr and Phe) side chains.

  15. Inclusion Complexes of Ionic Liquids and Cyclodextrins: Are They Formed in the Gas Phase?

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana M.; Schröder, Bernd; Barata, Tânia; Freire, Mara G.; Coutinho, João A. P.

    2014-05-01

    The interaction of imidazolium-based ionic liquids with α- and β-cyclodextrins was investigated by electrospray ionization mass spectrometry with variable collision induced dissociation energy and quantum chemical gas-phase calculations. The center-of-mass energy at which 50 % of a precursor ion decomposes (Ecm,1/2) was determined for the isolated [cyclodextrin + cation]+ or [cyclodextrin + anion]- adduct ions of imidazolium-based ionic liquids with different alkyl chain lengths combined with a large set of anions, such as chloride, bromide, bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, methanesulfonate, dicyanamide, and hydrogensulfate. Moreover, both symmetric and asymmetric imidazolium cationic cores were evaluated. The relative interaction energies in the adduct ions were interpreted in terms of the influence of cation/anion structures and their inherent properties, such as hydrophobicity and hydrogen bond accepting ability, in the complexation process with the cyclodextrins. The trends observed in the mass spectral data together with quantum-chemical calculations suggest that in the gas phase, cations and anions will preferentially interact with the lower or upper rim of the cyclodextrin, respectively, as opposed to what has been reported in condensed phase where the formation of an inclusion complex between ionic liquid and cyclodextrin is assumed.

  16. Amphipathic Polymers Enable the Study of Functional Membrane Proteins in the Gas Phase

    PubMed Central

    2012-01-01

    Membrane proteins are notoriously challenging to analyze using mass spectrometry (MS) because of their insolubility in aqueous solution. Current MS methods for studying intact membrane proteins involve solubilization in detergent. However, detergents can destabilize proteins, leading to protein unfolding and aggregation, or resulting in inactive entities. Amphipathic polymers, termed amphipols, can be used as a substitute for detergents and have been shown to enhance the stability of membrane proteins. Here, we show the utility of amphipols for investigating the structural and functional properties of membrane proteins using electrospray ionization mass spectrometry (ESI-MS). The functional properties of two bacterial outer-membrane β-barrel proteins, OmpT and PagP, in complex with the amphipol A8-35 are demonstrated, and their structural integrities are confirmed in the gas phase using ESI-MS coupled with ion mobility spectrometry (IMS). The data illustrate the power of ESI-IMS-MS in separating distinct populations of amphipathic polymers from the amphipol–membrane complex while maintaining a conformationally “nativelike” membrane protein structure in the gas phase. Together, the data indicate the potential importance and utility of amphipols for the analysis of membrane proteins using MS. PMID:23072351

  17. Detection of the Elusive Triazane Molecule (N3 H5 ) in the Gas Phase.

    PubMed

    Förstel, Marko; Maksyutenko, Pavlo; Jones, Brant M; Sun, Bing-Jian; Chen, Shih-Hua; Chang, Agnes H-H; Kaiser, Ralf I

    2015-10-26

    We report the detection of triazane (N3 H5 ) in the gas phase. Triazane is a higher order nitrogen hydride of ammonia (NH3 ) and hydrazine (N2 H4 ) of fundamental importance for the understanding of the stability of single-bonded chains of nitrogen atoms and a potential key intermediate in hydrogen-nitrogen chemistry. The experimental results along with electronic-structure calculations reveal that triazane presents a stable molecule with a nitrogen-nitrogen bond length that is a few picometers shorter than that of hydrazine and has a lifetime exceeding 6±2 μs at a sublimation temperature of 170 K. Triazane was synthesized through irradiation of ammonia ice with energetic electrons and was detected in the gas phase upon sublimation of the ice through soft vacuum ultraviolet (VUV) photoionization coupled with a reflectron-time-of-flight mass spectrometer. Isotopic substitution experiments exploiting [D3 ]-ammonia ice confirmed the identification through the detection of its fully deuterated counterpart [D5 ]-triazane (N3 D5 ).

  18. Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity.

    PubMed

    Harper-Leatherman, Amanda S; Pacer, Elizabeth R; Kosciuszek, Nina D

    2016-01-01

    Applications such as sensors, batteries, and fuel cells have been improved through the use of highly porous aerogels when functional compounds are encapsulated within the aerogels. However, few reports on encapsulating proteins within sol-gels that are processed to form aerogels exist. A procedure for encapsulating cytochrome c (cyt. c) in silica (SiO2) sol-gels that are supercritically processed to form bioaerogels with gas-phase activity for nitric oxide (NO) is presented. Cyt. c is added to a mixed silica sol under controlled protein concentration and buffer strength conditions. The sol mixture is then gelled and the liquid filling the gel pores is replaced through a series of solvent exchanges with liquid carbon dioxide. The carbon dioxide is brought to its critical point and vented off to form dry aerogels with cyt. c encapsulated inside. These bioaerogels are characterized with UV-visible spectroscopy and circular dichroism spectroscopy and can be used to detect the presence of gas-phase nitric oxide. The success of this procedure depends on regulating the cyt. c concentration and the buffer concentration and does not require other components such as metal nanoparticles. It may be possible to encapsulate other proteins using a similar approach making this procedure important for potential future bioanalytical device development. PMID:26967257

  19. Gas-phase structure and reactivity of the keto tautomer of the deoxyguanosine radical cation.

    PubMed

    Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maître, Philippe; Radom, Leo; O'Hair, Richard A J

    2015-10-21

    Guanine radical cations are formed upon oxidation of DNA. Deoxyguanosine (dG) is used as a model, and the gas-phase infrared (IR) spectroscopic signature and gas-phase unimolecular and bimolecular chemistry of its radical cation, dG˙(+), A, which is formed via direct electrospray ionisation (ESI/MS) of a methanolic solution of Cu(NO3)2 and dG, are examined. Quantum chemistry calculations have been carried out on 28 isomers and comparisons between their calculated IR spectra and the experimentally-measured spectra suggest that A exists as the ground-state keto tautomer. Collision-induced dissociation (CID) of A proceeds via cleavage of the glycosidic bond, while its ion–molecule reactions with amine bases occur via a number of pathways including hydrogen-atom abstraction, proton transfer and adduct formation. A hidden channel, involving isomerisation of the radical cation via adduct formation, is revealed through the use of two stages of CID, with the final stage of CID showing the loss of CH2O as a major fragmentation pathway from the reformed radical cation, dG˙(+). Quantum chemistry calculations on the unimolecular and bimolecular reactivity are also consistent with A being present as a ground-state keto tautomer. PMID:25942055

  20. Reagent Cluster Anions for Multiple Gas-Phase Covalent Modifications of Peptide and Protein Cations

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; Stutzman, John R.; McLuckey, Scott A.

    2013-07-01

    Multiple gas phase ion/ion covalent modifications of peptide and protein ions are demonstrated using cluster-type reagent anions of N-hydroxysulfosuccinimide acetate (sulfo-NHS acetate) and 2-formyl-benzenesulfonic acid (FBMSA). These reagents are used to selectively modify unprotonated primary amine functionalities of peptides and proteins. Multiple reactive reagent molecules can be present in a single cluster ion, which allows for multiple covalent modifications to be achieved in a single ion/ion encounter and at the `cost' of only a single analyte charge. Multiple derivatizations are demonstrated when the number of available reactive sites on the analyte cation exceeds the number of reagent molecules in the anionic cluster (e.g., data shown here for reactions between the polypeptide [K10 + 3H]3+ and the reagent cluster [5R5Na - Na]-). This type of gas-phase ion chemistry is also applicable to whole protein ions. Here, ubiquitin was successfully modified using an FBMSA cluster anion which, upon collisional activation, produced fragment ions with various numbers of modifications. Data for the pentamer cluster are included as illustrative of the results obtained for the clusters comprised of two to six reagent molecules.

  1. LIF-imaging and gas-phase diagnostics of laser desorbed MALDI-matrix plumes

    SciTech Connect

    Puretzky, A.A.; Geohegan, D.B.

    1997-07-01

    The first gated LIF-imaging and absorption spectroscopy has been performed on laser desorbed plumes from organic crystals which are commonly used as MALDI (Matrix Assisted Laser Desorption Ionization) matrices. These plasma diagnostic techniques, including ion probe measurements were employed to investigate the desorbed products, densities, fractional ionization, and velocity distributions of the plume of ejecta which is typically employed as the main desorption product in the mass spectrometry analysis of large biomolecules. Ultraviolet pulsed 193-nm and 248-nm irradiation of 3-hydroxypicolinic acid (3-HPA) crystals were studied to understand the effect of very different gas-phase absorption cross sections measured here for this material. In both cases, LIF imaging revealed two plume components: a fast (maximum {approximately} 0.1 cm/{micro}s) low-intensity component which appear to be 3-HPA fragments, and a slower component of 3-HPA expanding at 0.05 cm/{micro}s. In the case of ArF-laser irradiation, optical absorption spectroscopy indicated a breaking of the intramolecular hydrogen bond in the gas-phase matrix material.

  2. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    NASA Astrophysics Data System (ADS)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-09-01

    The gas-phase oxidation of doubly protonated peptides containing neutral basic residues to various products, including [M + H + O]+, [M - H]+, and [M - H - NH3]+, is demonstrated here via ion/ion reactions with periodate. It was previously demonstrated that periodate anions are capable of oxidizing disulfide bonds and methionine, tryptophan, and S-alkyl cysteine residues. However, in the absence of these easily oxidized sites, we show here that systems containing neutral basic residues can undergo oxidation. Furthermore, we show that these neutral basic residues primarily undergo different types of oxidation (e.g., hydrogen abstraction) reactions than those observed previously (i.e., oxygen transfer to yield the [M + H + O]+ species) upon gas-phase ion/ion reactions with periodate anions. This chemistry is illustrated with a variety of systems, including a series of model peptides, a cell-penetrating peptide containing a large number of unprotonated basic sites, and ubiquitin, a roughly 8.6 kDa protein.

  3. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests

    SciTech Connect

    Oostrom, Martinus; Tartakovsky, Guzel D.; Wietsma, Thomas W.; Truex, Michael J.; Dane, Jacob H.

    2011-04-15

    Soil desiccation (drying), involving water evaporation induced by dry air injection and extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot-test and field sites. In this paper, tracer tests have been conducted in porous medium columns with various water saturations using sulfur hexafluoride as the conservative tracer and tricholorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt and/or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. However, for sediments with significant silt and/or organic matter fractions, tracer tests only provided satisfactory results when the water saturation was at least 0.1 - 0.2. For dryer conditions, the apparent tracer retardation increases due to air – soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air – water partitioning and water – soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided the initial water saturations are sufficiently large. However, tracer tests are not suitable for quantifying moisture content in desiccated sediments.

  4. Exclusively Gas-Phase Passivation of Native Oxide-Free Silicon(100) and Silicon(111) Surfaces.

    PubMed

    Tao, Ye; Hauert, Roland; Degen, Christian L

    2016-05-25

    Reactions in the gas phase are of primary technological importance for applications in nano- and microfabrication technology and in the semiconductor industry. We present exclusively gas-phase protocols to chemically passivate oxide-free Si(111) and Si(100) surfaces with short-chain alkynes. The resulting surfaces showed equal or better oxidation resistance than most existing liquid-phase-derived surfaces and rivaled the outstanding stability of a full-coverage Si(111)-propenyl surface.1,2 The most stable surface (Si(111)-ethenyl) grew one-fifth of a monolayer of oxide (0.04 nm) after 1 month of air exposure. We monitored the regrowth of oxides on passivated Si(111) and Si(100) surfaces by X-ray photoelectron spectroscopy (XPS) and observed a significant crystal-orientation dependence of initial rates when total oxide thickness was below approximately one monolayer (0.2 nm). This difference was correlated with the desorption kinetics of residual surface Si-F bonds formed during HF treatment. We discuss applications of the technology and suggest future directions for process optimization. PMID:27153212

  5. TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect

    Garrison, S; James Becnel, J

    2008-03-18

    Density Functional Theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF{sub 6}, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F{sub 5}, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structure and relative energies of the reacting complex and transition state. However, a significant change in the product complex structure was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF{sub 4}, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF{sub 6} with water.

  6. Oxidation of Methionine Residues in Polypeptide Ions Via Gas-Phase Ion/Ion Chemistry

    NASA Astrophysics Data System (ADS)

    Pilo, Alice L.; McLuckey, Scott A.

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O]+), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O]+ product is observed at a much greater abundance than the proton transfer product (viz., [M + H]+). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to `label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  7. Gas-Phase Lasers - a Historical Perspective in Relation to the GEC

    NASA Astrophysics Data System (ADS)

    Hays, Gerry

    1997-10-01

    Understanding of gas-phase lasers inevitably involves an expertise in many of the specialties of the GEC community - especially homogenous and heterogeneous kinetics, collision cross-sections, gas breakdown physics and fundamental swarm parameters. The GEC community decided early in the evolution of gas-phase lasers to include papers on this topic and the result was many years of contributions to the evolution of and improvement in our understanding of this important class of lasers. Many of the ground-breaking results in gas laser technology were presented at the GEC over the last 3 decades as the traditional rare-gas atomic physics and low-temperature plasma groups turned their attention to parameters of interest to the laser modelers and experimenters. This paper will trace the development of this field, especially as it pertained to the GEC. Some of the key results will be highlighted, together with some of the unpublished trivia and anecdotal incidents in order to capture the flavor of the rapid developments in the early days. The talk will include speculation as to the direction this field is taking, and some suggestions as to opportunities. This work supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy.

  8. The structure of oxotitanium phthalocyanine: a gas-phase electron diffraction and computational study.

    PubMed

    Zakharov, Alexander V; Shlykov, Sergei A; Zhabanov, Yuriy A; Girichev, Georgy V

    2009-05-14

    The gas-phase molecular structure of oxotitanium phthalocyanine (TiOPc) has been studied by a synchronous gas electron diffraction and mass spectrometric experiment, and density functional theory calculations using the B3LYP hybrid method and cc-pVTZ basis sets. The molecule has an equilibrium structure of C4v symmetry with a convex macrocycle. The titanium atom is out-of-the-plane of the four central nitrogen atoms and forms a square pyramid with them, with the following parameters: r(Ti-N)=2.090(5) A, r(NN)=2.813(9) A (the side of the pyramid base), z(Ti)-z(N)=0.614 A (the height of the pyramid). Compared to solid-state crystal structures, the Ti-O distance in gas-phase TiOPc is shortened and the Ti-N distance is elongated, which can be attributed to significant intermolecular interaction in the crystals. PMID:19421550

  9. Kinetic and Product Yields of the Gas-Phase Reactions of Isoprene Hydroperoxides with Atmospheric Oxidants

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Lozano, E. I.; Maitra, S.; Manning, D. M.; Cervantes, R.; Hasson, A. S.

    2015-12-01

    Isoprene is a volatile organic compound (VOC) that is emitted into the atmosphere by plants and trees. It has the largest emission rate of any non-methane VOC and is very reactive, and therefore has a major impact on the chemical composition of the atmosphere. Isoprene Hydroperoxides (IHP) are formed in the atmosphere from the chemical degradation of isoprene. These compounds can then potentially react in the atmosphere with atmospheric oxidants (ozone, OH, NO3) to produce secondary products. This chemistry is potentially important as it may contribute to particle growth and to mediation of ozone concentrations. In this work, the kinetics and mechanisms of the reactions of two IHPs with ozone were investigated. IHPs were synthesized and purified, and were characterized by NMR and HPLC. The gas phase chemistry of these compounds was then studied in chamber experiments using PTRMS as the primary analytical tool. The rate coefficients for reaction with ozone were measured at room temperature and 1 atmosphere using the relative rate technique, and yields of major gas phase reaction products were measured. Implications of these results will be discussed.

  10. The gas-phase iron abundance in Herbig-Haro objects

    NASA Technical Reports Server (NTRS)

    Beck-Winchatz, B.; Bohm, K. H.; Noriega-Crespo, A.

    1994-01-01

    The gas-phase abundance ratios Fe/S and Fe/O have been determined for the Herbig-Haro objects HH 1, HH 7, HH 11, HH 43A, and 'Burnham's Nebula' (HH 255). It is the purpose of this study to decide whether a sizeable fraction of the Fe in these HH objects is still bound in dust grains or whether the observed matter has gone through sufficiently fast shock waves so that the dust grains have been essentially destroyed and most of the iron has gone back into the gas phase. We have determined the abundance ratios using statistical equilibrium calculations for the ions Fe(+), S(+), and O(+). (These are the most abundant ions of the elements in question.) Abundance determinations have been made using homogeneous models of the HH objects for which electron temperatures and densities have been determined observationally from forbidden line ratios. The results show that the Fe/S ratio in the objects HH 1, HH 7, HH 11, and HH 43A agrees very well with the Population I abundance ratio. Only Burnham's Nebula (HH255) shows an Fe/S ratio which is about three times lower indicating a shock-wave history which is quite different from that of the other HH objects.

  11. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-06-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  12. Optical Absorptions of Oxygenated Carbon Chain Cations in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Hardy, F.-X.; Rice, C. A.; Chakraborty, A.; Fulara, J.; Maier, J. P.

    2016-06-01

    The gas-phase electronic spectra of linear OC4O+ and a planar C6H2O+ isomer were obtained at a rotational temperature of ≈10 K. Absorption measurements in a 6 K neon matrix were followed by gas-phase observations in a cryogenic radiofrequency ion trap. The origin bands of the 1{}2{{{\\Pi }}}u ≤ftarrow X{}2{{{\\Pi }}}g transition of OC4O+ and the 1{}2A{}2 ≤ftarrow X{}2B1 of HCCC(CO)CCH+ lie at 417.31 ± 0.01 nm and 523.49 ± 0.01 nm, respectively. These constitute the first electronic spectra of oxygenated carbon chain cations studied under conditions that are relevant to the diffuse interstellar bands (DIBs), as both have a visible transition. The recent analysis of the 579.5 nm DIB indicates that small carriers, five to seven heavy atoms, continue to be possible candidates (Huang & Oka 2015). Astronomical implications are discussed regarding this kind of oxygenated molecules.

  13. Sources and potential health risk of gas phase PAHs in Hexi Corridor, Northwest China.

    PubMed

    Mao, Xiaoxuan; Yu, Zhousuo; Ding, Zhongyuan; Huang, Tao; Ma, Jianmin; Zhang, Gan; Li, Jun; Gao, Hong

    2016-02-01

    Gas phase polycyclic aromatic hydrocarbons (PAHs) in Hexi Corridor, Northwest China were determined during heating and non-heating seasons, respectively, using passive air samplers. Polyurethane foam (PUF) disks were chosen as the sampling medium. Fifteen PAHs out of the 16 PAHs classified by the United States Environmental Protection Agency (U.S. EPA) were detected in this field sampling investigation. The atmospheric levels of sampled PAHs were higher at urban sites than that at rural sites among 14 sampling sites and increased during heating season. The highest concentration (11.34 ng m(-3)) was observed in Lanzhou during the heating season, the capital and largest industrial city of Gansu Province. PAH contamination in air was dominated by three aromatic ring congeners. Possible sources of PAHs were apportioned using PAH species ratios and the principle component analysis (PCA) combined with a multiple linear regression (MLR) method. Fossil fuel consumption was identified to be the predominant source of PAHs over Hexi Corridor, accounting for 43 % of the concentration of total (15) PAHs. Backward and forward trajectory and cluster analysis were also carried out to identify potential origins of PAHs monitored at several urban and rural sites. Lung cancer risk of local residents to gas phase PAHs via inhalation exposure throughout the province was found to be around a critical value of the lung cancer risk level at 10(-6) recommended by the U.S. EPA risk assessment guideline. PMID:26432264

  14. Nanoparticles-chemistry, new synthetic approaches, gas phase clustering and novel applications

    NASA Astrophysics Data System (ADS)

    Sreekumaran Nair, A.; Subramaniam, Chandramouli; Rosemary, M. J.; Tom, Renjis T.; Rajeev Kumar, V. R.; Jeba Singh, D. M. David; Cyriac, Jobin; Jain, Prashant; Kalesh, K. A.; Bhattacharya, Shreya; Pradeep, T.

    2005-10-01

    In this paper, an overview of the synthesis, chemistry and applications of nanosystems carried out in our laboratory is presented. The discussion is divided into four sections, namely (a) chemistry of nanoparticles, (b) development of new synthetic approaches, (c) gas phase clusters and (d) device structures and applications. In `chemistry of nanoparticles' we describe a novel reaction between nanoparticles of Ag and Au with halocarbons. The reactions lead to the formation of various carbonaceous materials and metal halides. In `development of new synthetic approaches' our one-pot methodologies for the synthesis of core-shell nanosystems of Au, Ag and Cu protected with TiO_2 and ZrO_2 as well as various polymers are discussed. Some results on the interaction of nanoparticles with biomolecules are also detailed in this section. The third section covers the formation of gas phase aggregates/clusters of thiol-protected sub-nanoparticles. Laser desorption of H_2MoO_4, H_2WO_4, MoS_2, and WS_2 giving novel clusters is discussed. The fourth section deals with the development of simple devices and technologies using nanomaterials described above.

  15. Gas-phase degradation of the herbicide ethalfluralin under atmospheric conditions.

    PubMed

    Muñoz, Amalia; Vera, Teresa; Ródenas, Milagros; Borrás, Esther; Mellouki, Abdelwahid; Treacy, Jack; Sidebottom, Howard

    2014-01-01

    The gas-phase degradation of ethalfluralin, N-ethyl-α,α,α-trifluoro-N-(2-methylallyl)-2,6-dinitro-p-toluidine, a widely used herbicide, was investigated under atmospheric conditions at the large outdoor European simulation chamber (EUPHORE) in Valencia, Spain. The photolysis of ethalfluralin was investigated under solar radiation and the mean photolysis rate coefficient was determined: J(ethalfluralin)=(1.3±0.2)×10(-3) s(-1) (JNO2=8×10(-3) s(-1)). The rate coefficients for the reactions of hydroxyl radicals and ozone with ethalfluralin in the dark were also measured under atmospheric conditions using the relative rate and the absolute rate technique, respectively. The rate coefficients values for the reactions of kOH(ethalfluralin)=(3.5±0.9)×10(-11)cm(3)molecule(-1)s(-1), and kO3(ethalfluralin)=(1.6±0.4)×10(-17) cm(3) molecule(-1) s(-1) were determined at 300±5 K and atmospheric pressure. The results show that removal of ethalfluralin from the atmosphere by reactions with OH radicals (τ ~ 4 h) or ozone (τ ~ 25 h) is slow compared to loss by photolysis. The available kinetic data suggest that the gas-phase tropospheric degradation of ethalfluralin will be controlled mainly by photolysis and provide an estimate for the tropospheric lifetime of approximately 12 min. The atmospheric implications of using ethalfluralin as a herbicide are discussed.

  16. Fluorescence probe of polypeptide conformational dynamics in gas phase and in solution

    NASA Astrophysics Data System (ADS)

    Iavarone, Anthony T.; Meinen, Jan; Schulze, Susanne; Parks, Joel H.

    2006-07-01

    Fluorescence measurements of polypeptides derivatized with the fluorescent dye BODIPY TMR have been used to probe the polypeptide conformational dynamics as a function of temperature and charge state. Measurements of (BODIPY TMR)-[Pro]n-Arg-Trp and (BODIPY TMR)-[Gly-Ser]m-Arg-Trp have been performed for charge states 1+ and 2+ of n = 4 and 10 and m = 2 and 5. The 2+ charge states of both of these polypeptides exhibit similar temperature dependences for equal chain lengths (n = 4, m = 2 and n = 10, m = 5) and suggest conformations dominated by Coulomb repulsion. In the absence of such Coulomb repulsion, the 1+ charge state conformations appear to be characterized by the flexibility of the polypeptide chain for which [Gly-Ser]m > [Pro]n. Comparisons of these gas phase polypeptide measurements with corresponding measurements in solution provide a direct measure of the effects of solvent on the conformational dynamics. The change in fluorescence as a function of temperature in the gas phase is two orders of magnitude greater than that in solution, a dramatic result we attribute to the restrictions on intramolecular dynamics imposed by diffusion-limited kinetics and the lack of shielding by solvent. Measurements were also made of unsolvated Pron peptides without the tryptophan (Trp) residue to isolate the interaction of the fluorescent dye with charges.

  17. Probing Vitamine C, Aspirin and Paracetamol in the Gas Phase: High Resolution Rotational Studies

    NASA Astrophysics Data System (ADS)

    Mata, S.; Cabezas, C.; Varela, M.; Pena, I.; Nino, A.; López, J. C.; Alonso, J. L.; Grabow, J.-U.

    2011-06-01

    A solid sample of Vitamin C (m.p. 190°C) vaporized by laser ablation has been investigated in gas phase and characterized through their rotational spectra. Two spectroscopy techniques has been used to obtain the spectra: a new design of broadband chirped pulse Fourier transform microwave spectroscopy with in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and conventional laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Up to now, two low-energy conformer have been observed and their rotational constants determined. Ab initio calculations at the MP2/6-311++G (d,p) level of theory predicted rotational constants which helped us to identify these conformers unequivocally. Among the molecules to benefit from the LA-MB-FTMW technique there are common important drugs never observed in the gas phase through rotational spectroscopy. We present here the results on acetyl salicylic acid and acetaminophen (m.p. 136°C), commonly known as aspirin and paracetamol respectively. We have observed two stable conformers of aspirin and two for paracetamol. The internal rotation barrier of the methyl group in aspirin has been determined for both conformers from the analysis of the A-E splittings due to the coupling of internal and overall rotation. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11,617-627 (2009)and references therein

  18. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure.

    PubMed

    Yatsyna, Vasyl; Bakker, Daniël J; Salén, Peter; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali

    2016-09-01

    We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800  cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range. PMID:27661721

  19. Aqueous and Gas Phase Sorption Properties of Mercury in Burned Soils

    NASA Astrophysics Data System (ADS)

    Jay, J.; Ferreira, M.; Burke, M.; Hogue, T.

    2008-12-01

    Wildfires are a common occurrence in the Mediterranean climate of Southern California. Many studies have focused on the post-fire physical impacts however; there is a lack of studies on the potential for post-fire metal transport, in particular mercury (Hg). Inorganic Hg contamination is present even in pristine areas due to atmospheric deposition, which can be microbially transformed to methylmercury (a bioaccumulative neurotoxin) in aquatic systems. In order to model the transport of mercury in burned soils, we need to understand the sorption properties of mercury in soils exposed to fire. To test the hypothesis that burned soils have different sorption properties than unburned ones, we have collected samples of unburned soils, and burned them in a controlled setting at different temperatures to simulate several fire intensities. Then, we applied traditional aqueous sorption techniques to determine the binding properties of mercury to each burned soil. Experimental data were fitted with FITEQL to derive constants for sorption reactions, which were in agreement with values observed in literature. Since Southern California does not receive much rain, most of the atmospheric mercury deposition is in form of dry deposition. Thus, we have designed and applied a novel sorption technique to determine the binding of mercury in the gas phase to the burned soils. Trends in sorption affinity and capacity with burning temperature are discussed, as well as a comparison between aqueous and gas phase sorption properties is made.

  20. A comparison of the gas phase acidities of phospholipid headgroups: experimental and computational studies.

    PubMed

    Thomas, Michael C; Mitchell, Todd W; Blanksby, Stephen J

    2005-06-01

    Proton-bound dimers consisting of two glycerophospholipids with different headgroups were prepared using negative ion electrospray ionization and dissociated in a triple quadrupole mass spectrometer. Analysis of the tandem mass spectra of the dimers using the kinetic method provides, for the first time, an order of acidity for the phospholipid classes in the gas phase of PE < PA < PG < PS < PI. Hybrid density functional calculations on model phospholipids were used to predict the absolute deprotonation enthalpies of the phospholipid classes from isodesmic proton transfer reactions with phosphoric acid. The computational data largely support the experimental acidity trend, with the exception of the relative acidity ranking of the two most acidic phospholipid species. Possible causes of the discrepancy between experiment and theory are discussed and the experimental trend is recommended. The sequence of gas phase acidities for the phospholipid headgroups is found to (1) have little correlation with the relative ionization efficiencies of the phospholipid classes observed in the negative ion electrospray process, and (2) correlate well with fragmentation trends observed upon collisional activation of phospholipid [M - H](-) anions. PMID:15907707

  1. Gas-phase reactivity of peptide thiyl (RS•), perthiyl (RSS•), and sulfinyl (RSO•) radical ions formed from atmospheric pressure ion/radical reactions.

    PubMed

    Tan, Lei; Xia, Yu

    2013-04-01

    In this study, we demonstrated the formation of gas-phase peptide perthiyl (RSS•) and thiyl (RS•) radical ions besides sulfinyl radical (RSO•) ions from atmospheric pressure (AP) ion/radical reactions of peptides containing inter-chain disulfide bonds. The identity of perthiyl radical was verified from characteristic 65 Da (•SSH) loss in collision-induced dissociation (CID). This signature loss was further used to assess the purity of peptide perthiyl radical ions formed from AP ion/radical reactions. Ion/molecule reactions combined with CID were carried out to confirm the formation of thiyl radical. Transmission mode ion/molecule reactions in collision cell (q2) were developed as a fast means to estimate the population of peptide thiyl radical ions. The reactivity of peptide thiyl, perthiyl, and sulfinyl radical ions was evaluated based on ion/molecule reactions toward organic disulfides, allyl iodide, organic thiol, and oxygen, which followed in order of thiyl (RS•) > perthiyl (RSS•) > sulfinyl (RSO•). The gas-phase reactivity of these three types of sulfur-based radicals is consistent with literature reports from solution studies.

  2. Reactive landing of gas-phase ions as a tool for the fabrication of metal oxide surfaces for in situ phosphopeptide enrichment.

    PubMed

    Blacken, Grady R; Volný, Michael; Diener, Matthew; Jackson, Karl E; Ranjitkar, Pratistha; Maly, Dustin J; Turecek, Frantisek

    2009-06-01

    Zirconium, titanium, and hafnium oxide-coated stainless steel surfaces are fabricated by reactive landing of gas-phase ions produced by electrospray ionization of group IVB metal alkoxides. The surfaces are used for in situ enrichment of phosphopeptides before analysis by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To evaluate this method we characterized ZrO(2) (zirconia) surfaces by (1) comparison with the other group IVB metal oxides of TiO(2) (titania) and HfO(2) (hafnia), (2) morphological characterization by SEM image analysis, and (3) dependence of phosphopeptide enrichment on the metal oxide layer thickness. Furthermore, we evaluated the necessity of the reactive landing process for the construction of useful metal oxide surfaces by preparing surfaces by electrospray deposition of Zr, Ti, and Hf alkoxides directly onto polished metal surfaces at atmospheric pressure. Although all three metal oxide surfaces evaluated were capable of phosphopeptide enrichment from complex peptide mixtures, zirconia performed better than hafnia or titania as a result of morphological characteristics illustrated by the SEM analysis. Metal oxide coatings that were fabricated by atmospheric pressure deposition were still capable of in situ phosphopeptide enrichment, although with inferior efficiency and surface durability. We show that zirconia surfaces prepared by reactive landing of gas-phase ions can be a useful tool for high throughput screening of novel phosphorylation sites and quantitation of phosphorylation kinetics.

  3. Examination of the coordination sphere of Al(III) in trifluoromethyl-heteroarylalkenolato complex ions by gas-phase IRMPD spectroscopy and computational modelling.

    PubMed

    Brückmann, Lisa; Tyrra, Wieland; Mathur, Sanjay; Berden, Giel; Oomens, Jos; Meijer, Anthony J H M; Schäfer, Mathias

    2012-06-01

    A series of aluminium complex ions with trifluoromethyl-heteroarylalkenolato (TMHA) ligands are studied by gas-phase infrared multiphoton-dissociation (IRMPD) spectroscopy and computational modelling. The selected series of aluminium TMHA complex ions are promising species for the initial study of intrinsic binding characteristics of Al(III) cations in the gas phase as corresponding molecular ions. They are readily available for examination by (+) and (-) electrospray ionization mass spectrometry (ESI-MS) by spraying of [Al(3+)⋅(L(-))(3)] solutions. The complex ions under investigation contain trivalent Al(3+) cations with two chelating anionic enolate ligands, [Al(3+)⋅(L(-))(2)](+), providing insights in the nature of the heteroatom-Al bonds. Additionally, the structure of a deprotonated benzimidazole ligand, L(-,) and an anionic complex ion of Al(III) with two doubly deprotonated benzimidazole ligands, [Al(3+)⋅(L(2-))(2)](-), are examined by (-)ESI-IRMPD spectroscopy. Experimental and computational results are highly consistent and allow a reliable identification of the ion structures. In all complex ions examined the planar TMHA ligands are oriented perpendicular to each other around the metal ion, leading to a tetrahedral coordination sphere in which aluminium interacts with the enolate oxygen and heteroaryl nitrogen atoms available in each of the bidentate ligands. PMID:22442004

  4. Examination of the coordination sphere of Al(III) in trifluoromethyl-heteroarylalkenolato complex ions by gas-phase IRMPD spectroscopy and computational modelling.

    PubMed

    Brückmann, Lisa; Tyrra, Wieland; Mathur, Sanjay; Berden, Giel; Oomens, Jos; Meijer, Anthony J H M; Schäfer, Mathias

    2012-06-01

    A series of aluminium complex ions with trifluoromethyl-heteroarylalkenolato (TMHA) ligands are studied by gas-phase infrared multiphoton-dissociation (IRMPD) spectroscopy and computational modelling. The selected series of aluminium TMHA complex ions are promising species for the initial study of intrinsic binding characteristics of Al(III) cations in the gas phase as corresponding molecular ions. They are readily available for examination by (+) and (-) electrospray ionization mass spectrometry (ESI-MS) by spraying of [Al(3+)⋅(L(-))(3)] solutions. The complex ions under investigation contain trivalent Al(3+) cations with two chelating anionic enolate ligands, [Al(3+)⋅(L(-))(2)](+), providing insights in the nature of the heteroatom-Al bonds. Additionally, the structure of a deprotonated benzimidazole ligand, L(-,) and an anionic complex ion of Al(III) with two doubly deprotonated benzimidazole ligands, [Al(3+)⋅(L(2-))(2)](-), are examined by (-)ESI-IRMPD spectroscopy. Experimental and computational results are highly consistent and allow a reliable identification of the ion structures. In all complex ions examined the planar TMHA ligands are oriented perpendicular to each other around the metal ion, leading to a tetrahedral coordination sphere in which aluminium interacts with the enolate oxygen and heteroaryl nitrogen atoms available in each of the bidentate ligands.

  5. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.

    PubMed

    Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank

    2016-06-20

    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation.

  6. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.

    PubMed

    Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank

    2016-06-20

    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation. PMID:27264846

  7. Real-Time Characterization of Particle and Gas Phase Diesel Emissions - Understanding the Influence of a Diesel Particulate Filter

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Sappok, A.; Carrasquillo, A. J.; Onasch, T. B.; Fortner, E.; Jayne, J.; Wong, V.; Worsnop, D. R.; Kroll, J. H.

    2010-12-01

    Diesel engine emissions constitute an important source of particulate black carbon (BC) and gas phase organics in the atmosphere. Particles composed of black carbon absorb incoming solar radiation having a net positive radiative forcing effect on the climate. Black carbon also has major air quality implications as BC particles from combustion sources are often coated with poly-aromatic hydrocarbons (PAHs), and are generally emitted in higher concentrations close to population centers. Regulations of diesel emissions target the mass of particulate matter (PM) and concentration of volatile gas phase organic compounds (VOC) produced. A third, potentially important component of diesel exhaust, is low volatility organic compounds (LVOC). Both the VOCs and LVOCs can lead to the formation of ultrafine particles (via homogeneous nucleation) and secondary organic aerosols (via oxidation). Recent development of mass spectrometric techniques to measure particulate black carbon and gas phase organics provide the opportunity to quantify and chemically characterize diesel emissions in real-time. Measurements of both the particulate and gas phase emissions from a medium-duty diesel engine will be presented. The experimental apparatus includes a diesel particulate filter (DPF) integrated in the exhaust line, which is a requirement for all 2007 and newer on-road diesel engines in the U.S. Measurements taken over the regeneration cycle of the DPF provide insight into how this after-treatment technology influences the gas phase and particle phase composition of the emissions. Gas phase measurements were made with a newly developed Total Gas-Phase Organic (TGO) instrument. Particulate species were characterized with a Soot Particle Aerosol Mass Spectrometer (SP-AMS). The combined utility of the TGO and SP-AMS instruments for emissions characterization studies will be demonstrated.

  8. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.

  9. Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds.

    PubMed

    Kariminia, Samira; Shamsipur, Ali; Shamsipur, Mojtaba

    2016-09-10

    A pH-responsive drug carrier based on chitosan coated iron oxide nanoparticles (CS-Fe3O4) for prolonged antibiotic release in a controlled manner is reported. As an antibiotic drug model, ciprofloxacin was loaded onto the nanocarrier via H-bonding interactions. The nanoparticles were characterized using scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, photon correlation spectroscopy and Fourier transform infrared spectroscopy. The particle size of CS-Fe3O4 nanoparticles were found to lie in the range of 30-80nm. The analytical characteristics of the designed system were thoroughly investigated. The in vitro drug loading at pH 4.8 and release kinetics at pH 7.4 studies revealed that the drug delivery system can take 99% of ciprofloxacin load and quantitatively release the drug over a sustained period of 5 days. The release kinetics study indicated that the system follows a zero order kinetics via a diffusion-controlled mechanism. These results indicated that CS-Fe3O4 nanoparticles have the potential for use as controlled antibiotic delivery systems through oral administration by avoiding the drug release in the highly acidic gastric fluid region of the stomach. Furthermore, the ability of low-frequency ultrasound in fast release of the encapsulated drug in less than 60min from the CS-Fe3O4 nanoparticles in a controlled manner was confirmed. PMID:27497305

  10. Strategies and methodologies to develop techniques for computer-assisted analysis of gas phase formation during altitude decompression

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Hall, W. A.

    1993-01-01

    It would be of operational significance if one possessed a device that would indicate the presence of gas phase formation in the body during hypobaric decompression. Automated analysis of Doppler gas bubble signals has been attempted for 2 decades but with generally unfavorable results, except with surgically implanted transducers. Recently, efforts have intensified with the introduction of low-cost computer programs. Current NASA work is directed towards the development of a computer-assisted method specifically targeted to EVA, and we are most interested in Spencer Grade 4. We note that Spencer Doppler Grades 1 to 3 have increased in the FFT sonogram and spectrogram in the amplitude domain, and the frequency domain is sometimes increased over that created by the normal blood flow envelope. The amplitude perturbations are of very short duration, in both systole and diastole and at random temporal positions. Grade 4 is characteristic in the amplitude domain but with modest increases in the FFT sonogram and spectral frequency power from 2K to 4K over all of the cardiac cycle. Heart valve motion appears to characteristic display signals: (1) the demodulated Doppler signal amplitude is considerably above the Doppler-shifted blow flow signal (even Grade 4); and (2) demodulated Doppler frequency shifts are considerably greater (often several kHz) than the upper edge of the blood flow envelope. Knowledge of these facts will aid in the construction of a real-time, computer-assisted discriminator to eliminate cardiac motion artifacts. There could also exist perturbations in the following: (1) modifications of the pattern of blood flow in accordance with Poiseuille's Law, (2) flow changes with a change in the Reynolds number, (3) an increase in the pulsatility index, and/or (4) diminished diastolic flow or 'runoff.' Doppler ultrasound devices have been constructed with a three-transducer array and a pulsed frequency generator.

  11. First detection of gas-phase ammonia in a planet-forming disk. NH3, N2H+, and H2O in the disk around TW Hydrae

    NASA Astrophysics Data System (ADS)

    Salinas, Vachail N.; Hogerheijde, Michiel R.; Bergin, Edwin A.; Cleeves, L. Ilsedore; Brinch, Christian; Blake, Geoffrey A.; Lis, Dariusz C.; Melnick, Gary J.; Panić, Olja; Pearson, John C.; Kristensen, Lars; Yıldız, Umut A.; van Dishoeck, Ewine F.

    2016-06-01

    literature estimates that were based on lower excitation transitions. These masses correspond to a disk-averaged abundances of 0.2-17.0 × 10-11, 0.1-9.0 × 10-10 and 7.6 × 10-11 for NH3, H2O and N2H+ respectively. Conclusions: Only in the most compact and settled adopted configuration is the inferred NH3/H2O consistent with interstellar ices and solar system bodies of ~5%-10%; all other spatial distributions require additional gas-phase NH3 production mechanisms. Volatile release in the midplane may occur through collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, for instance, through growth of small grains into pebbles or larger bodies.

  12. Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold.

    PubMed

    Baksi, Ananya; Pradeep, T

    2013-12-21

    Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd(+) in the gas phase. While a lysozyme-Au adduct forms Au18(+), Au25(+), Au38(+) and Au102(+) ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag(+), Pt(2+), Pd(2+), Cu(2+), Fe(2+), Ni(2+) and Cr(3+)) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38(+). While other metal ions like Cu(2+) help forming Au25(+) selectively, Fe(2+) catalyzes the formation of Au25(+) over all other clusters. Gas phase cluster formation occurs from protein adducts where Au is in the 1+ state while Pd is in the 2+ state. The creation of alloys in the gas phase is not affected whether a physical mixture of Au and Pd adducts or a Au and Pd co-adduct is used as the precursor. The formation of Au cores and AuPd alloy cores of the kind comparable to monolayer protected clusters implies that naked clusters themselves may be nucleated in solution. PMID:24146135

  13. Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold.

    PubMed

    Baksi, Ananya; Pradeep, T

    2013-12-21

    Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd(+) in the gas phase. While a lysozyme-Au adduct forms Au18(+), Au25(+), Au38(+) and Au102(+) ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag(+), Pt(2+), Pd(2+), Cu(2+), Fe(2+), Ni(2+) and Cr(3+)) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38(+). While other metal ions like Cu(2+) help forming Au25(+) selectively, Fe(2+) catalyzes the formation of Au25(+) over all other clusters. Gas phase cluster formation occurs from protein adducts where Au is in the 1+ state while Pd is in the 2+ state. The creation of alloys in the gas phase is not affected whether a physical mixture of Au and Pd adducts or a Au and Pd co-adduct is used as the precursor. The formation of Au cores and AuPd alloy cores of the kind comparable to monolayer protected clusters implies that naked clusters themselves may be nucleated in solution.

  14. Exploring the gas-phase spectroscopy of interstellar PAH and dust analogs: Astrophysical applications

    NASA Astrophysics Data System (ADS)

    Biennier, Ludovic; Salama, Farid; Allamandola, Lou; Gupta, Manish; O'Keefe, Anthony; Scherer, James J.

    We present and discuss the gas-phase electronic absorption spectra of selected ionized polycyclic aromatic hydrocarbons (PAHs) measured in the UV-Visible-NIR range in an astrophysically relevant environment. This type of measurements provides data on PAHs and nanometer-sized particles that can now be directly compared to astronomical spectra of the UV interstellar (IS) extinction curve and of the diffuse interstellar bands (DIBs). The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong VUV radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. This source combines a pulsed slit supersonic free jet expansion of argon seeded with PAHs (< 1%) and an ionizing pulsed electronic discharge. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (˜100 K). The spectra of PAH ions are measured using the complementary high sensitivity methods of Cavity Ring Down Spectroscopy (CRDS) and Integrated Cavity Output Spectroscopy (ICOS). We have first applied this instrument to the measurement of the electronic spectrum of the cold Naphthalene (C10H8+) and Acenaphthene cations (C12H10+) (Biennier, L., Salama, F., Allamandola, L. J. & Scherer, J. J., `Pulsed discharge nozzle cavity ringdown spectroscopy of cold PAH ions', J. Chem Phys.;in press) that have been pre-selected from Matrix Isolation Spectroscopy (MIS) studies. The absorption spectrum of the Pyrene cation (C16H10+) has also been measured. These experiments provide unique information on the spectra of free, large carbon-containing molecules and ions in the gas phase. The electronic bands measured for this selection of PAH ions are all found to be intrinsically broad (>˜20 cm-1). The laboratory data are compared with recent astronomical spectra of large DIBs. Preliminary results also show that carbon nanoparticles (˜2 nm size

  15. Enhancement of gas-phase diffusion in the presence of liquid

    NASA Astrophysics Data System (ADS)

    Webb, S.; Angert, A.

    2003-04-01

    Gas diffusion in porous media occurs in both the gas and liquid phases. In many instances, gas diffusion in the liquid phase is ignored. However, under many conditions, gas diffusion in the liquid phase may be more important than gas diffusion in the gas phase. Two different cases will be examined in this work. The first case is a continuous liquid path between the gas concentrations of interest modeled after Jury et al. (1984). The second case is the situation at low liquid saturation where liquid islands exist. For the first case, Jury's model can be rewritten as a ratio of the total gas diffusion in the gas and liquid phases to that just in the gas phase. The liquid diffusion coefficient is approximately 10-4 times the gas diffusion coefficient consistent with Jury et al. (1984). The ratio of total diffusion to gas-phase diffusion is then only a function of Henry's constant and the liquid saturation. For higher values of Henry's constant, such as for CO2 and O2, the effect of diffusion in the liquid phase is small except at high liquid saturations. For small values of Henry's constant, such as for some VOCs and explosive compounds, diffusion in the liquid phase dominates for low and moderate liquid saturation values. The second case is the enhancement of diffusion caused by liquid islands at low liquid saturation. Enhanced vapor diffusion across liquid islands has been observed and modeled by Webb and Ho (1999), where condensation and evaporation occur on opposite ends of the liquid island. Vapor diffusion enhancement of up to a factor of 10 has been observed. Similarly, gas can diffuse through the liquid island. For high values of Henry's constant, gas diffusion through liquid islands is negligible and can be ignored. For small values of Henry's constant, diffusion through liquid islands may be much greater than diffusion through gas, so the rate is enhanced. The work was sponsored by the Geneva International Center for Humanitarian Demining (GICHD) under the

  16. Far-Ir Spectroscopy of Neutral Gas Phase Peptides: Signatures from Combined Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Mahé, Jérôme; Gaigeot, Marie-Pierre; Bakker, Daniël; Jaeqx, Sander; Rijs, Anouk

    2016-06-01

    Within the past two decades, action vibrational spectroscopy has become an almost routine experimental method to probe the structures of molecules and clusters in the gas phase (neutral and ions). Such experiments are mainly performed in the 1000-4000 wn fingerprint regions. Though successful in many respects, these spectral domains can be however restrictive in the information provided, and sometimes reach limitations for unravelling structures without ambiguity. In a collaborative work with the group of Dr A.M. Rijs (FELIX laboratory, Radbout University, The Netherlands) we have launched a new strategy where the far-IR/Tera-Hertz domain (100-800 wn domain) is experimentally probed for neutral gas phase molecules. Our group in Paris apply finite temperature DFT-based molecular dynamics (DFT-MD) simulations in order to unravel the complex signatures arising in the far-IR domain, and provide an unambiguous assignment both of the structural conformation of the gas phase molecules (taking into account the experimental conditions) and an understanding of the spectral signatures/fingerprints. We will discuss our experimental and theoretical investigations on two neutral peptides in the 100-800 wn far-IR spectral domain, i.e. Z-Ala6 and PheGly dipeptide, that represent two systems which definitive conformational assignment was not possible without the far IR signatures. We will also present our very recent results on the Phe-X peptide series, where X stands for Gly, Ala, Pro, Val, Ser, Cys, combining experiments and DFT-MD simulations, providing a detailed understanding of the vibrational fingerprints in the far-IR domain. In all exemples, we will show how DFT-MD simulations is the proper theoretical tool to account for vibrational anharmonicities and mode couplings, of prime importance in the far-IR domain. References : J. Mahé, S. Jaeqx, A.M. Rijs, M.P. Gaigeot, Phys. Chem. Chem. Phys., 17 :25905 (2015) S. Jaeqx, J. Oomens, A. Cimas, M.P. Gaigeot, A.M. Rijs, Angew

  17. Ultrafast electron diffraction from laser-aligned molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Yang, Jie

    Ultrafast electron diffraction has emerged since the end of last century, and has become an increasingly important tool for revealing great details of molecular dynamics. In comparison to spectroscopic techniques, ultrafast electron diffraction directly probes time-resolved structure of target molecules, and therefore can potentially provide "molecular movies" of the reactions being studied. These molecular movies are critical for understanding and ultimately controlling the energy conversion pathways and efficiencies of photochemical processes. In this dissertation, I have focused on ultrafast electron diffraction from gas-phase molecules, and have investigated several long-standing challenges that have been preventing researchers from being able to achieve 3-D molecular movies of photochemical reactions. The first challenge is to resolve the full 3-D structure for molecules in the gas phase. The random orientation of molecules in the gas phase smears out the diffraction signal, which results in only 1-D structural information being accessible. The second challenge lies in temporal resolution. In order to resolve coherent nuclear motions on their natural time scale, a temporal resolution of ˜200 femtosecond or better is required. However, due to experimental limitations the shortest temporal resolution that had been achieved was only a few picoseconds in early 2000, by Zewail group from Caltech. The first challenge is tackled by laser-alignment. In the first half of the dissertation, I approach this method both theoretically and experimentally, and demonstrate that by using a short laser pulse to transiently align target molecules in space, 3-D molecular structure can be reconstructed ab-initio from diffraction patterns. The second half of the dissertation presents two experiments, both of which are important steps toward imaging coherent nuclear motions in real time during photochemical reactions. The first experiment simultaneously resolves molecular alignment

  18. Photoinduced intermolecular cross-linking of gas phase triacylglycerol lipid ions.

    PubMed

    Nie, Shuai; Pham, Huong T; Blanksby, Stephen J; Reid, Gavin E

    2015-01-01

    Complex mixtures of plant derived triglycerol (TG) lipids are commonly used as feedstock components for the production of industrial polymers. However, there remains a need for the development of analytical strategies to investigate the intrinsic intermolecular cross-linking reactivity of individual TG molecules within these mixtures as a function of their structures and physicochemical properties, and for the characterization of the resultant products. Here, to address this need, we describe a novel multistage tandem mass spectrometry based method for intermolecular cross-linking and subsequent structural characterization of TG lipid ions in the gas phase. Cross-linking reactions were initiated using 266 nm ultraviolet photodissociation tandem mass spectrometry (UVPD-MS/MS) of saturated or unsaturated TG dimers introduced via electrospray ionization into a linear ion trap mass spectrometer as noncovalent complexes with protonated 3,4-, 2,4- or 3,5- diiodoaniline (diIA). UVPD resulted in the initial formation of an anilinyl biradical via the sequential loss of two iodine radicals, which underwent further reaction to yield multiple cross-linked TG products along with competing noncross-linking processes. These chemistries are proposed to occur via sequential combinations of hydrogen abstraction (H-abstraction), radical addition and radical recombination. Multistage collision induced dissociation tandem mass spectrometry (CID-MS(n)) was used to obtain evidence for the structures and mechanisms of formation for these products, as a function of both the TG lipid and diIA ion structures. The efficiency of the UVPD reaction was shown to be dependent on the number of unsaturation sites present within the TG lipids. However, when unsaturation sites were present, formation of the cross-linked and noncross-linked product ions via H-abstraction and radical addition mechanisms was found to be competitive. Finally, the identity of the anilinyl biradical (e.g., 3,4- versus 2

  19. Gas-phase lithium cation basicity of histamine and its agonist 2-([beta]-aminoethyl)-pyridine

    NASA Astrophysics Data System (ADS)

    Hallmann, M.; Raczynska, E. D.; Gal, J. F.; Maria, P. C.

    2007-11-01

    The gas-phase lithium cation basicities (LCBs) were obtained for histamine (HA) and its agonist 2-([beta]-aminoethyl)-pyridine (AEP) from collision-induced dissociation of lithium adducts using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). For measurements, MeO(CH2)2OMe, Et3PO and (Me2N)3PO (HMPA) were used as the reference compounds. The experimental LCB of AEP was located between those of Et3PO and (Me2N)3PO. The experimental LCB of HA was found to be higher than those of AEP and HMPA by more than 2 kcal mol-1 clearly indicating that the LCB of HA is higher than any LCB for a neutral base yet measured (crown-ethers excepted). The experimental LCBs of the parent bases (pyridine and imidazole) are lower by more than 10 kcal mol-1. In parallel, DFT calculations {B3LYP/6-31G*//B3LYP/6-31G* and B3LYP/6-311+G**//B3LYP/6-31G*} were performed for HA, AEP and their lithium adducts. Among the 22 reasonable conformations of the HA-Li+ adduct, only one appears to be significantly more stable than the others. This is also the case for one structure among seven conformations of the AEP-Li+ adduct. These two stable structures have the [`]scorpion' conformation, in which the Li+ cation is almost equally chelated by two basic nitrogen atoms, the ring N-aza and the chain N-amino. Other HA-Li+ and AEP-Li+ conformations have noticeably higher energies than the [`]scorpion' structures. The difference between the DFT calculated LCBs of HA and AEP (about 4 kcal mol-1) is in agreement with that experimentally obtained (>2 kcal mol-1). The high experimental and theoretical values of LCB for HA and AEP militate in favor of a strong chelation of Li+ by both ligands in the gas-phase. This chelation effect was also evidenced previously for the proton gas-phase basicity.

  20. Comparing the gas-phase fragmentation reactions of protonated and radical cations of the tripeptides GXR

    NASA Astrophysics Data System (ADS)

    Wee, Sheena; O'Hair, Richard A. J.; McFadyen, W. David

    2004-05-01

    Electrospray ionization (ESI) mass spectrometry of methanolic solutions of mixtures of the copper salt (2,2':6',2''-terpyridine)copper(II) nitrate monohydrate ([Cu(II)(tpy)(NO3)2].H2O) and a tripeptide GXR (where X = 1 of the 20 naturally occurring amino acids) yielded [Cu(II)(tpy)(GXR)][radical sign]2+ ions, which were then subjected to collision induced dissociation (CID). In all but one case (GRR), these [Cu(II)(tpy)(GXR)][radical sign]2+ ions fragment to form odd electron GXR[radical sign]+ radical cations with sufficient abundance to examine their gas-phase fragmentation reactions. The GXR[radical sign]+ radical cations undergo a diverse range of fragmentation reactions which depend on the nature of the side chain of X. Many of these reactions can be rationalized as arising from the intermediacy of isomeric distonic ions in which the charge (i.e. proton) is sequestered by the highly basic arginine side chain and the radical site is located at various positions on the tripeptide including the peptide back bone and side chains. The radical sites in these distonic ions often direct the fragmentation reactions via the expulsion of small radicals (to yield even electron ions) or small neutrals (to form radical cations). Both classes of reaction can yield useful structural information, allowing for example, distinction between leucine and isoleucine residues. The gas-phase fragmentation reactions of the GXR[radical sign]+ radical cations are also compared to their even electron [GXR+H]+ and [GXR+2H]2+ counterparts. The [GXR+H]+ ions give fewer sequence ions and more small molecule losses while the [GXR+2H]2+ ions yield more sequence information, consistent with the [`]mobile proton model' described in previous studies. In general, all three classes of ions give complementary structural information, but the GXR[radical sign]+ radical cations exhibit a more diverse loss of small species (radicals and neutrals). Finally, links between these gas-phase results and key

  1. Second order rate constants for intramolecular conversions: Application to gas-phase NMR relaxation times

    NASA Astrophysics Data System (ADS)

    Bauer, S. H.; Lazaar, K. I.

    1983-09-01

    The usually quoted expression for the second order rate constant, for a unimolecular reaction at the low pressure limit, is valid only for strictly irreversible processes. Its application to isomerization reactions (which are to some extent reversible) is demonstrably in error; corrected expressions have been published. Attention is directed to intramolecular conversions over low barriers, for which the inappropriateness of the unidirectional expression becomes obvious. For such isomerizations we propose a model which incorporates only operationally observable states, so that an essential conceptual ambiguity is avoided. Use of this model is illustrated for the syn⇄anti conversions of methyl nitrite, derived from a gas phase NMR coalescence curve (Mc:Tc). The present data suggest that during isomerization the alkyl nitrites may not be completely ergodic on a time scale of 10-9 s. A regional phase-space model is proposed which has the appropriate formalism to account for this behavior.

  2. Relaxation rates of low-field gas-phase ^129Xe storage cells

    NASA Astrophysics Data System (ADS)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  3. Microbial use of gas phase organic compounds in the surface ocean

    NASA Astrophysics Data System (ADS)

    Arrieta, Jesus M.; Duarte, Carlos M.; Monserrat Sala, M.; Dachs, Jordi

    2016-04-01

    Large diffusive air-sea fluxes of gas-phase organic carbon (GOC) have been identified, indicating that the ocean may be a major sink for these compounds. However, little is known about the fate of these GOC compounds entering the surface ocean. We report efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic Ocean, the Arctic Ocean and the Mediterranean Sea. Our results indicate that between 2 to 27% of the prokaryotic carbon demand was supported by GOC. Between 1 and 94% of the GOC entering the ocean was consumed by prokaryotes depending on locations, thus sustaining a disequilibrium, which drives the transfer of GOC from the atmosphere into the ocean. The magnitude of this, previously unnoticed, microbial GOC utilization stresses the need for incorporating the oceanic uptake of gaseous organic carbon into the global carbon budget.

  4. A catalytic reactor for the trapping of free radicals from gas phase oxidation reactions

    NASA Astrophysics Data System (ADS)

    Conte, Marco; Wilson, Karen; Chechik, Victor

    2010-10-01

    A catalytic reactor for the trapping of free radicals originating from gas phase catalytic reactions is described and discussed. Radical trapping and identification were initially carried out using a known radical generator such as dicumyl peroxide. The trapping of radicals was further demonstrated by investigating genuine radical oxidation processes, e.g., benzaldehyde oxidation over manganese and cobalt salts. The efficiency of the reactor was finally proven by the partial oxidation of cyclohexane over MoO3, Cr2O3, and WO3, which allowed the identification of all the radical intermediates responsible for the formation of the products cyclohexanol and cyclohexanone. Assignment of the trapped radicals was carried out using spin trapping technique and X-band electron paramagnetic resonance spectroscopy.

  5. Electronic Structure and Gas-Phase Behaviour of the Heaviest Elements

    SciTech Connect

    Pershina, V.; Anton, J.; Jacob, T.; Borschevsky, A.

    2010-04-30

    Electronic structures and gas-phase adsorption behaviour of the heaviest elements 112, 113 and 114 and of their lighter homologs Hg, Tl and Pb is studied on the basis of ab initio Dirac-Coulomb atomic and four-component Density Functional Theory molecular and cluster calculations. The heaviest elements were shown to have low adsorption enthalpies on Teflon and should, therefore, be well transported through Teflon capillaries from the target chamber to the chemistry set up. Adsorption enthalpies of these elements on the Au(111) surface are predicted as -44.5 kJ/mol, -158.6 kJ/mol and -68.5 kJ/mol, respectively, giving the following sequence in the adsorption temperatures 113>114>112.

  6. Gas-phase study on uridine: Conformation and X-ray photofragmentation

    SciTech Connect

    Itälä, Eero Kooser, Kuno; Levola, Helena; Rachlew, Elisabeth; Ha, Dang Trinh; Kukk, Edwin

    2015-05-21

    Fragmentation of RNA nucleoside uridine, induced by carbon 1s core ionization, has been studied. The measurements by combined electron and ion spectroscopy have been performed in gas phase utilizing synchrotron radiation. As uridine is a combination of d-ribose and uracil, which have been studied earlier with the same method, this study also considers the effect of chemical environment and the relevant functional groups. Furthermore, since in core ionization the initial core hole is always highly localized, charge migration prior to fragmentation has been studied here. This study also demonstrates the destructive nature of core ionization as in most cases the C 1s ionization of uridine leads to concerted explosions producing only small fragments with masses ≤43 amu. In addition to fragmentation patterns, we found out that upon evaporation the sugar part of the uridine molecule attains hexagonal form.

  7. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  8. Some Insights into Formamide Formation through Gas-phase Reactions in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2014-01-01

    We study the viability of different gas-phase ion-molecule reactions that could produce precursors of formamide in the interstellar medium. We analyze different reactions between cations containing a nitrogen atom (NH_{3}^{+}, NH_{4}^{+}, NH3OH+, and NH2OH+) and neutral molecules having one carbonyl group (H2CO and HCOOH). First, we report a theoretical estimation of the reaction enthalpies for the proposed processes. Second, for more favorable reactions, from a thermodynamic point of view, we perform a theoretical study of the potential energy surface. In particular, the more exothermic processes correspond to the reactions of ionized and protonated hydroxylamine with formaldehyde. In addition, a neutral-neutral reaction has also been considered. The analysis of the potential energy surfaces corresponding to these reactions shows that these processes present a net activation barrier and that they cannot be considered as a source of formamide in space.

  9. Origin of the Regioselectivity in the Gas-Phase Aniline+CH3 (+) Electrophilic Aromatic Substitution.

    PubMed

    Kinzel, Daniel; Zilberg, Shmuel; González, Leticia

    2015-08-01

    Nonadiabatic ab initio molecular dynamics simulations are carried out to monitor the attack of CH3 (+) on aniline in the gas phase to form the corresponding σ complexes. The reaction is ultrafast and is governed by a single electron transfer within 30 fs, which involves two sequential conical intersections and finally produces a radical pair. Positive-charge allocation in the aromatic compound is found to govern the substitution pattern in ortho, meta, or para position. Although the major products in the first step of the electrophilic aromatic substitution are the ortho and para σ complexes, initially 26 % of the simulated trajectories also form meta complexes, which then undergo H shifts, mainly to the para position. PMID:26037166

  10. Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy.

    PubMed

    Paci, Paolo; Zvinevich, Yury; Tanimura, Shinobu; Wyslouzil, Barbara E; Zahniser, Mark; Shorter, Joanne; Nelson, David; McManus, Barry

    2004-11-22

    We used a tunable diode laser absorption spectrometer to follow the condensation of D(2)O in a supersonic Laval nozzle. We measured both the concentration of the condensible vapor and the spectroscopic temperature as a function of position and compared the results to those inferred from static pressure measurements. Upstream and in the early stages of condensation, the quantitative agreement between the different experimental techniques is good. Far downstream, the spectroscopic results predict a lower gas phase concentration, a higher condensate mass fraction, and a higher temperature than the pressure measurements. The difference between the two measurement techniques is consistent with a slight compression of the boundary layers along the nozzle walls during condensation. PMID:15549871

  11. Technical Basis for Gas-Phase Vadose Zone Remediation Technologies at Hanford: A Review - 12186

    SciTech Connect

    Truex, M.J.; Oostrom, M.; Szecsody, J.E.; Strickland, C.E.; Chronister, G.B.; Benecke, M.W.

    2012-07-01

    In situ vadose zone remediation approaches are being evaluated as potential options to mitigate the transport of inorganic and radionuclide contaminants from the vadose zone to the groundwater. Some of the candidate approaches are based on changing the contaminant or subsurface conditions in a way that slows downward migration of the contaminants through the vadose zone using amendments delivered in the gas-phase. Two promising approaches that have undergone testing at Hanford include soil desiccation to address technetium-99 contamination and ammonia-induced sequestration of uranium. For soil desiccation, a dry gas is injected to desiccate a targeted portion of the subsurface and thereby decrease contaminant movement by removing moisture and decreasing the hydraulic conductivity of the desiccated zone. Ammonia-induced sequestration of uranium relies on changing the pore water chemistry, primarily through pH changes, to induce dissolution and precipitation processes that decrease the amount of mobile uranium in the vadose zone. (authors)

  12. Gas-phase reactions of pd with acetone: A theoretical investigation using density functional theory

    NASA Astrophysics Data System (ADS)

    Dai, Guo-Liang; Wang, Chuan-Feng

    2012-12-01

    The gas-phase reaction of palladium atom with acetone is investigated using density functional theory. Geometries and energies of the reactants, intermediates, and products involved are calculated. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of an η2-CH3COCH3-metal complex, followed by C-O, C-H, and C-C activation. These reactions can lead to four different products (PdO + C3H6, PdCH2COCH3 + H, PdCH2 + CH3CHO, and PdCOCH2 + CH4). The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.

  13. Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents.

    PubMed

    Cecilia, J A; Infantes-Molina, A; Rodríguez-Castellón, E; Jiménez-López, A

    2013-09-15

    The gas phase catalytic hydrodechlorination (HDC) of chlorobenzene (CB) at atmospheric pressure was investigated over silica-supported cobalt and cobalt phosphide catalysts containing different P loading and a fixed amount of cobalt (5 wt.%). The effect of the initial P/Co molar ratio on the stoichiometry of the cobalt phosphide phase, the acidity and the hydrogen activation capability were discussed and these properties correlated with the catalytic activity. Catalytic results indicated that the cobalt phosphide phase is much more active than the monometallic cobalt one. The activity raised with the P content present in the sample due to the formation of the CoP phase instead of the Co₂P one, which favored the formation of hydrogen spillover species, increased the amount of weak acid sites and the number of exposed superficial cobalt atoms probably related to a better dispersion of the active phase. All the catalysts gave rise benzene as the main reaction product.

  14. A detailed investigation of proposed gas-phase syntheses of ammonia in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Mclean, A. D.

    1987-01-01

    The initial reactions of the Herbst and Klemperer (1973) and the Dalgarno (1974) schemes (I and II, respectively) for the gas-phase synthesis of ammonia in dense interstellar clouds were investigated. The rate of the slightly endothermic reaction between N(+) and H2 to yield NH(+) and H (scheme I) under interstellar conditions was reinvestigated under thermal and nonthermal conditions based on laboratory data. It was found that the relative importance of this reaction in synthesizing ammonia is determined by how the laboratory data at low temperature are interpreted. On the other hand, the exothermic reaction between N and H3(+) to form NH2(+) + H (scheme II) was calculated to possess significant activation energy and, therefore, to have a negligible rate coefficient under interstellar conditions. Consequently, this reaction cannot take place appreciably in interstellar clouds.

  15. Preparation and study of the Fe sub 2 sup + -benzyne ion in the gas phase

    SciTech Connect

    Huang, Yongqing; Freiser, B.S. )

    1990-03-07

    The results of a study of the preparation and reactivity of the Fe{sup +}{sub 2}-benzyne ion in the gas phase is reported herein. This study continues the investigation into the reactivity of transition-metal dinuclear ions as compared with their constituent monoatomic ionic species. The enhanced reactivity of Fe{sup +}{sub 2}-benzyne over the Fe{sub 2}{sup +} is thought to be due to two effects: (1) the ligand polarizes or in some way changes the electronic structure of the metal center to prevent oxidative addition and (2) the combination of the highly unsaturated benzyne ligand provides a very efficient pathway for further reaction steps following initial metal center oxidative insertion. 24 refs., 1 tab.

  16. Gas-phase reactions of Fe sup + with aromatic compounds. Monosubstituted benzene derivatives

    SciTech Connect

    Bjarnason, A. ); Taylor, J.W. )

    1990-05-01

    This study focuses on the reactions of Fe{sup +} with several monosubstituted benzene derivatives in the gas phase utilizing Fourier transform mass spectrometry techniques and laser desorption generation of iron ions. Generally, the phenyl group is not directly involved in the reactions, although the formation of the benzyne ligand (C{sub 6}H{sub 4}) was commonly observed. Only in one case (nitrobenzene) was the benzene C{sub 6} skeleton altered and the formation of the C{sub 5}H{sub 5} ligand observed. The initial step in the reactions of the iron ions usually involves insertion into a bond to the most electronegative atom in the substituent group. Insertions into C-C and C-H bonds were also observed, and hydrogen or methyl group shifts often preceded bond cleavage.

  17. Gas-phase kinetics of the N + C2N reaction at low temperature.

    PubMed

    Stubbing, James W; Vanuzzo, Gianmarco; Moudens, Audrey; Loison, Jean-Christophe; Hickson, Kevin M

    2015-04-01

    The rate of the gas-phase N((4)S) + C2N(X(2)Πi) reaction has been measured in a continuous supersonic flow reactor down to 54 K through the relative-rate method using the N((4)S) + OH(X(2)Π) → H((2)S) + NO(X(2)Π) reaction as a reference. The microwave discharge technique was employed to produce high concentrations of atomic nitrogen. Pulsed laser photolysis of precursor molecules Cl3C2N and H2O2 at 212 nm in situ led to C2N and OH radical formation, respectively. The rate constant is shown to be approximately independent of temperature, in contrast to previous studies of atom-radical reactions involving atomic nitrogen. While the reaction rate is faster than previously estimated, astrochemical simulations indicate that this reaction is probably only a minor source of CN radicals in dense interstellar clouds.

  18. Gas-phase reactions and energy transfer at very low temperatures.

    PubMed

    Sims, I R; Smith, I W

    1995-01-01

    Experimental studies of gas-phase chemical reactions and molecular energy transfer at very low temperatures and between electrically neutral species are reviewed. Although work of collisionally induced vibrational and rotational transfer is described, emphasis is placed on very recent results on the rates of free radical reactions obtained by applying the pulsed laser photolysis (PLP)-laser-induced fluorescence (LIF) technique in a CRESU (Cinétique de Réactions en Ecoulement Supersonique Uniforme) apparatus at temperatures as low as 13 K. These measurements demonstrate that quite a wide variety of reactions-including those between two radicals, those between radicals and unsaturated molecules, and even some of those between radicals and saturated molecules-remain rapid at very low temperatures. Theoretical efforts to explain some of these results are described, as is their impact on attempts to model the synthesis of molecules in interstellar clouds.

  19. GAS-PHASE ELECTRONIC SPECTRA OF POLYACETYLENE CATIONS: RELEVANCE OF HIGHER EXCITED STATES

    SciTech Connect

    Rice, C. A.; Rudnev, V.; Dietsche, R.; Maier, J. P.

    2010-07-15

    Transitions to higher electronic states of polyacetylene cations (HC{sub 2n}H{sup +}, n = 4, 5, 6) have been measured in the gas phase at {approx}20 K. The absorption spectra were obtained using a resonant two-color, two-photon fragmentation technique in an ion trap, allowing a direct comparison between laboratory and astrophysical data. The purpose was to investigate the relevance of such transitions to astronomical observations because the general expectation is that the bands could be too broad due to fast intramolecular processes. It is shown that the origin bands are still narrow enough (1-10 cm{sup -1}) to be considered, especially as the higher-lying transitions often possess large oscillator strengths.

  20. Theoretical investigation of the long-lived metastable AlO2+ dication in gas phase

    NASA Astrophysics Data System (ADS)

    Sghaier, Onsi; Abdallah, Hassan H.; Abdullah, Hewa Y.; Jaidane, Nejm Eddine; Al Mogren, Muneerah Mogren; Hochlaf, Majdi

    2016-09-01

    We report the results of a detailed theoretical study of the electronic ground and excited states of the gas-phase doubly charged ion AlO2+ using high-level ab initio computer calculations. Both standard and explicitly correlated methods were used to calculate their potential energy curves and spectroscopic parameters. These computations show that the ground state of AlO2+ is X2Π. The internuclear equilibrium distance of AlO2+(X2Π) is computed 1.725 Å. We also deduced the adiabatic double ionization and charge stripping energies of AlO to be about 27.45 eV and 17.80 eV, respectively.

  1. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    SciTech Connect

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  2. ORTHO-PARA SELECTION RULES IN THE GAS-PHASE CHEMISTRY OF INTERSTELLAR AMMONIA

    SciTech Connect

    Faure, A.; Hily-Blant, P.; Le Gal, R.; Rist, C.

    2013-06-10

    The ortho-para chemistry of ammonia in the cold interstellar medium is investigated using a gas-phase chemical network. Branching ratios for the primary reaction chain involved in the formation and destruction of ortho- and para-NH{sub 3} were derived using angular momentum rules based on the conservation of the nuclear spin. We show that the 'anomalous' ortho-to-para ratio of ammonia ({approx}0.7) observed in various interstellar regions is in fact consistent with nuclear spin selection rules in a para-enriched H{sub 2} gas. This ratio is found to be independent of temperature in the range 5-30 K. We also predict an ortho-to-para ratio of {approx}2.3 for NH{sub 2}. We conclude that a low ortho-to-para ratio of H{sub 2} naturally drives the ortho-to-para ratios of nitrogen hydrides below the statistical values.

  3. Radical Formation in the Gas-Phase Ozonolysis of Deprotonated Cysteine.

    PubMed

    Khairallah, George N; Maccarone, Alan T; Pham, Huong T; Benton, Timothy M; Ly, Tony; da Silva, Gabriel; Blanksby, Stephen J; O'Hair, Richard A J

    2015-10-26

    Although the deleterious effects of ozone on the human respiratory system are well-known, many of the precise chemical mechanisms that both cause damage and afford protection in the pulmonary epithelial lining fluid are poorly understood. As a key first step to elucidating the intrinsic reactivity of ozone with proteins, its reactions with deprotonated cysteine [Cys-H](-) are examined in the gas phase. Reaction proceeds at near the collision limit to give a rich set of products including 1) sequential oxygen atom abstraction reactions to yield cysteine sulfenate, sulfinate and sulfonate anions, and significantly 2) sulfenate radical anions formed by ejection of a hydroperoxy radical. The free-radical pathway occurs only when both thiol and carboxylate moieties are available, implicating electron-transfer as a key step in this reaction. This novel and facile reaction is also observed in small cys-containing peptides indicating a possible role for this chemistry in protein ozonolysis. PMID:26480331

  4. Formation of organic acids from the gas-phase ozonolysis of terpinolene.

    PubMed

    Ma, Yan; Marston, George

    2009-06-01

    Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C(7)-diacids and three isomers of C(7)-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e.g. the branching ratio between the two hydroperoxide channels of the C(7)-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C(7-)CI were also obtained from measurements of the C(7) primary carbonyl product. PMID:19458821

  5. Selective Gas-Phase Capture of Explosives on Metal Beta-diketonate Polymers

    SciTech Connect

    Harvey, Scott D.; Wenzel, Thomas J.

    2008-05-30

    A variety of metal beta-diketonate polymers were assessed for gas-phase selective retention of nitro aromatic, nitrate ester, and peroxide explosives. La(dihed) showed 13-42 times the retention for the nitro aromatics compared to a control column (identical column but lacking the 5% loading of the metal beta-diketonate polymer). Nitrate esters, the peroxide explosive TATP, and the taggant DMDNB were too strongly retained to elute from the La(dihed) column; however, these compounds could be eluted from the less retentive Cu(dihed) or Zn(dihed) columns. A Kovats index of 2124 for TNT the on the La(dihed) column compared to 1662 on the control illustrates the excellent discrimination against non-polar hydrocarbons, the principal matrix interference expected in air samples. A proof-of-principle experiment demonstrated analysis of an extrapolated 47 part-per trillion(v/v) of TNT in an air extract concentrate.

  6. Electroscopy Ionization Photoelectron Spectroscopy: Probing the Electronic Structure of Inorganic Metal Complexes in the Gas Phase

    SciTech Connect

    Waters, Tom; Wang, Xue B.; Wang, Lai S.

    2007-02-01

    The coupling of electrospray to photoelectron spectroscopy has allowed a number of negatively charged solution phase transition metal complexes to be transferred to the gas phase and studied by photoelectron spectroscopy for the first time. Experiments have been performed on a range of species, including classic square-planar and octahedral transition-metal halide complexes, metal-metal bonded species, transition metal bis(dithiolene) centers and a variety of mononuclear and polynuclear iron-sulfur clusters that are related to important bioinorganic centers. The studies have provided detailed information about the electronic structure and molecular orbital energy levels of these species, allowing for direct comparison with theoretical calculations, and providing insight into their intrinsic redox properties in the absence of solvation.

  7. Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere.

    PubMed

    Li, Xin; Rohrer, Franz; Hofzumahaus, Andreas; Brauers, Theo; Häseler, Rolf; Bohn, Birger; Broch, Sebastian; Fuchs, Hendrik; Gomm, Sebastian; Holland, Frank; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank N; Lohse, Insa; Lu, Keding; Tillmann, Ralf; Wegener, Robert; Wolfe, Glenn M; Mentel, Thomas F; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-04-18

    Gaseous nitrous acid (HONO) is an important precursor of tropospheric hydroxyl radicals (OH). OH is responsible for atmospheric self-cleansing and controls the concentrations of greenhouse gases like methane and ozone. Due to lack of measurements, vertical distributions of HONO and its sources in the troposphere remain unclear. Here, we present a set of observations of HONO and its budget made onboard a Zeppelin airship. In a sunlit layer separated from Earth's surface processes by temperature inversion, we found high HONO concentrations providing evidence for a strong gas-phase source of HONO consuming nitrogen oxides and potentially hydrogen oxide radicals. The observed properties of this production process suggest that the generally assumed impact of HONO on the abundance of OH in the troposphere is substantially overestimated. PMID:24744373

  8. A generalized expression for lag-time in the gas-phase permeation of hollow tubes

    NASA Technical Reports Server (NTRS)

    Shah, K. K.; Nelson, H. G.; Johnson, D. L.; Hamaker, F. M.

    1975-01-01

    A generalized expression for the nonsteady-state parameter, lag-time, has been obtained from Fick's second law for gas-phase transport through hollow, cylindrical membranes. This generalized expression is simplified for three limiting cases of practical interest: (1) diffusion controlled transport, (2) phase boundary reaction control at the inlet surface, and (3) phase boundary reaction control at the outlet surface. In all three cases the lag-time expressions were found to be inversely proportional only to the diffusion coefficient and functionally dependent on the membrane radii. Finally, the lag-time expressions were applied to experimentally obtained lag-time data for alpha-phase titanium and alpha-phase iron.

  9. Gas-Phase Infrared and NMR Investigation of the Conformers of Diacetone Diperoxide (DADP).

    PubMed

    Guo, Chunlei; Persons, John; Woodford, Jeffrey N; Harbison, Gerard S

    2015-10-01

    Gas-phase infrared measurements of diacetone diperoxide (DADP) indicate a chair conformation with less than 5% of the predicted twist conformer. Vibrational frequencies are very similar to those previously measured in the solid state. Solution NMR measurements using 2D exchange spectroscopy (EXSY) also set a very low maximum limit on the equilibrium population of the twist conformer, with a room-temperature free-energy difference in excess of 14.5 kJ/mol. These experimental results are in accord with high-level quantum calculations incorporating full thermochemistry and solvation effects, which indicate a free-energy difference in the range of 14.7-17.5 kJ/mol in polar solvents. PMID:26387762

  10. The gas-phase hydrogen-bonded complex between ozone and hydroperoxyl radical. A theoretical study.

    PubMed

    Mansergas, Alex; Anglada, Josep M

    2007-02-01

    We report a theoretical study on the gas-phase hydrogen-bonded complexes formed between ozone and hydroperoxyl radical, which are of interest in atmospheric chemistry. We have employed CASSCF, CASPT2, QCISD, and CCSD(T) theoretical approaches employing 6-311+G(2df,2p) and aug-cc-pVTZ basis sets, and we have found three complexes whose stabilities are computed to be 2.02, 1.19, and 1.34 kcal/mol, respectively, at 0 K. In addition, we have also found three transition states connecting these complexes that lie below the energy of the separate reactants. To help for possible experimental identification of these hydrogen-bonded complexes, we report also the computed harmonic vibrational frequencies along with the frequency shifts of the complexes, relative to the monomers, and the computed rotational constants. PMID:17266240

  11. Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere.

    PubMed

    Li, Xin; Rohrer, Franz; Hofzumahaus, Andreas; Brauers, Theo; Häseler, Rolf; Bohn, Birger; Broch, Sebastian; Fuchs, Hendrik; Gomm, Sebastian; Holland, Frank; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank N; Lohse, Insa; Lu, Keding; Tillmann, Ralf; Wegener, Robert; Wolfe, Glenn M; Mentel, Thomas F; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-04-18

    Gaseous nitrous acid (HONO) is an important precursor of tropospheric hydroxyl radicals (OH). OH is responsible for atmospheric self-cleansing and controls the concentrations of greenhouse gases like methane and ozone. Due to lack of measurements, vertical distributions of HONO and its sources in the troposphere remain unclear. Here, we present a set of observations of HONO and its budget made onboard a Zeppelin airship. In a sunlit layer separated from Earth's surface processes by temperature inversion, we found high HONO concentrations providing evidence for a strong gas-phase source of HONO consuming nitrogen oxides and potentially hydrogen oxide radicals. The observed properties of this production process suggest that the generally assumed impact of HONO on the abundance of OH in the troposphere is substantially overestimated.

  12. Catalytic reactions of gas phase zirconium oxide clusters with NO and CO revealed by post heating

    NASA Astrophysics Data System (ADS)

    Miyajima, Ken; Mafuné, Fumitaka

    2016-09-01

    Reactivity of gas phase zirconium oxide clusters (ZrnOm+) toward NO and CO gases was investigated by mass spectrometry in combination with post heating. Reaction of ZrnO2n+x+ with NO gas resulted in the depletion of extremely oxygen-deficient clusters and the formation of oxygen-rich clusters, ZrnO2n+x+ (0 ⩽ x ⩽ 3). Reaction with CO substantially lead to an increase in the amount of ZrnO2n-2+ and ZrnO2n-1+ clusters and depletion in the amount of ZrnO2n+. The catalytic cycle, achieved by regenerating ZrnO2n+ by the oxidation of ZrnO2n-2+ by NO, were discussed in comparison with the reactivity of cerium oxide clusters.

  13. Thermodynamic and kinetic stability of zwitterionic histidine: Effects of gas phase hydration

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Sik; Kim, Ju-Young; Han, Yuna; Shim, Hyun-Jin; Lee, Sungyul

    2015-09-01

    We present calculations for histidine-(H2O)n (n = 0-6) to examine the effects of micro-hydrating water molecules on the relative stability of the zwitterionic vs. canonical forms of histidine. We calculate the structures and Gibbs free energies of the conformers at wB97XD/6-311++G(d,p) level of theory. We find that six water molecules are required to produce the thermodynamically stable histidine zwitterion. By calculating the barriers of canonical ↔ zwitterionic transformation, we predict that both the most stable canonical and zwitterionic forms of histidine-(H2O)6 may be observed in low temperature gas phase environment.

  14. LSENS, a general chemical kinetics and sensitivity analysis code for gas-phase reactions: User's guide

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1993-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.

  15. Conformations of Gly(n)H+ and Ala(n)H+ peptides in the gas phase.

    PubMed Central

    Hudgins, R R; Mao, Y; Ratner, M A; Jarrold, M F

    1999-01-01

    High-resolution ion mobility measurements and molecular dynamics simulations have been used to probe the conformations of protonated polyglycine and polyalanine (Gly(n)H and Ala(n)H+, n = 3-20) in the gas phase. The measured collision integrals for both the polyglycine and the polyalanine peptides are consistent with a self-solvated globule conformation, where the peptide chain wraps around and solvates the charge located on the terminal amine. The conformations of the small peptides are governed entirely by self-solvation, whereas the larger ones have additional backbone hydrogen bonds. Helical conformations, which are stable for neutral Alan peptides, were not observed in the experiments. Molecular dynamics simulations for Ala(n)H+ peptides suggest that the charge destabilizes the helix, although several of the low energy conformations found in the simulations for the larger Ala(n)H+ peptides have small helical regions. PMID:10049339

  16. Arctic Gas Phase Water Vapor Measurements from the NASA DC-8 During SOLVE

    NASA Technical Reports Server (NTRS)

    Podolske, James; Sachse, Glen; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The NASA Langley / Ames Diode Laser Hygrometer (DLH) was flown aboard the NASA DC-8 during all three arctic deployments of the SOLVE campaign. The DLH measures gas phase H2O in the freestream air between the fuselage and the outer right engine cowling, essentially free from aircraft perturbations. It uses wavelength-modulated near-IR laser radiation at about 1.4 microns to detect the H2O absorption. Calibration is based on short path experiments in the laboratory using a NIST-traceable dewpoint hygrometer with carefully conditioned air at dewpoints between - 10 and + 10 degrees C. The theory of operation of the DLH instrument will be presented, along with a description of the calibration methodology. A simple climatology of H2O observations from SOLVE will be presented.

  17. Gas phase infrared contour simulation of isolated CH stretches in butane-d 9

    NASA Astrophysics Data System (ADS)

    Van der Veken, B. J.; Odeurs, R. O.; Brown, A.; McKean, D. C.; Morrisson, A. R.

    1986-09-01

    n-Butane-d 9 was synthesized with the hydrogen atom located in one of the methyl groupings. Both CH stretches of the trans conformer and two of the three CH stretches of the gauche conformer were assigned to transitions observed in the gas phase infrared spectrum, using the harmonic rigid rotor approximation. The simulation lends support to the more recent literature values of the trans—gauche relative populations. The assignments agree with those obtained by other authors using different techniques, and, when compared to ν isCH values in propane, lead to γ substitution effects of methyl which are very small, except perhaps on the op *g (out-of-plane gauche) bond, where steric interaction is likely.

  18. Origin of the Regioselectivity in the Gas-Phase Aniline+CH3 (+) Electrophilic Aromatic Substitution.

    PubMed

    Kinzel, Daniel; Zilberg, Shmuel; González, Leticia

    2015-08-01

    Nonadiabatic ab initio molecular dynamics simulations are carried out to monitor the attack of CH3 (+) on aniline in the gas phase to form the corresponding σ complexes. The reaction is ultrafast and is governed by a single electron transfer within 30 fs, which involves two sequential conical intersections and finally produces a radical pair. Positive-charge allocation in the aromatic compound is found to govern the substitution pattern in ortho, meta, or para position. Although the major products in the first step of the electrophilic aromatic substitution are the ortho and para σ complexes, initially 26 % of the simulated trajectories also form meta complexes, which then undergo H shifts, mainly to the para position.

  19. Normal Auger spectra of iodine in gas phase alkali iodide molecules

    NASA Astrophysics Data System (ADS)

    Hu, Zhengfa; Caló, Antonio; Kukk, Edwin; Aksela, Helena; Aksela, Seppo

    2005-06-01

    Molecular normal Auger electron spectra following the iodine 4d ionization in gas-phase alkali iodides were investigated both experimentally and theoretically. The Auger electron spectra for LiI, NaI and KI were recorded using electron impact, and for RbI by using photo-excitation. These Auger spectra were analyzed in detail and compared to the referenced normal Auger spectra of HI [L. Karlsson, S. Svensson, P. Baltzer, M. Carlsson-Göthe, M.P. Keane, A. Naves de Brito, N. Correia, B. Wannberg, J. Phys. B 22 (1989) 3001]. An energy shift toward higher kinetic energy and a narrowing in linewidth are observed in the Auger spectra series revealing the effect of the changing environment from covalently bonded HI to ionic alkali iodide compounds. The experimental results are also compared with the theoretical ab initio calculations and with the Auger spectra of I -, computed with the multiconfiguration Hartree-Fock (MCHF) method.

  20. Charge-transfer effects in the gas-phase protonation of ozone: Locating the conical intersections

    NASA Astrophysics Data System (ADS)

    Ceotto, M.; Gianturco, F. A.

    2000-04-01

    We have performed fully correlated calculations using as a basis set the cc-pV5Z expansion with geometry optimization for the O3H+ moiety and have then calculated the partial cuts of the potential energy surfaces (PESs) for the first two roots using the cc-pDZP basis set expansion. Two electronically induced conical intersections (CIs) were found in the Cs-plane subspaces and one of them was accurately located by calculating the geometric phases for different path integrals. We also discuss the adiabatic versus nonadiabatic effects and suggest a kinetic mechanism for the dynamics of the gas-phase protonation of ozone which includes the role played by the present conical intersections. We also try to provide useful suggestions for the practical search of conical intersections based on a physically guided subspace factorization.

  1. Direct method gas-phase oxygen abundances of four Lyman break analogs

    SciTech Connect

    Brown, Jonathan S.; Croxall, Kevin V.; Pogge, Richard W.

    2014-09-10

    We measure the gas-phase oxygen abundances in four Lyman break analogs using auroral emission lines to derive direct abundances. The direct method oxygen abundances of these objects are generally consistent with the empirically derived strong-line method values, confirming that these objects are low oxygen abundance outliers from the mass-metallicity (MZ) relation defined by star forming Sloan Digital Sky Survey galaxies. We find slightly anomalous excitation conditions (Wolf-Rayet features) that could potentially bias the empirical estimates toward high values if caution is not exercised in the selection of the strong-line calibration. The high rate of star formation and low oxygen abundance of these objects is consistent with the predictions of the fundamental metallicity relation, in which the infall of relatively unenriched gas simultaneously triggers an episode of star formation and dilutes the interstellar medium of the host galaxy.

  2. Multifunctional acid formation from the gas-phase ozonolysis of beta-pinene.

    PubMed

    Ma, Yan; Marston, George

    2008-10-28

    The gas-phase ozonolysis of beta-pinene was studied in static chamber experiments, using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. A range of multifunctional organic acids-including pinic acid, norpinic acid, pinalic-3-acid, pinalic-4-acid, norpinalic acid and OH-pinalic acid-were identified in the condensed phase after derivatisation. Formation yields for these products under systematically varying reaction conditions (by adding different OH radical scavengers and Criegee intermediate scavengers) were investigated and compared with those observed from alpha-pinene ozonolysis, allowing detailed information on product formation mechanisms to be elucidated. In addition, branching ratios for the initial steps of the reaction were inferred from quantitative measurements of primary carbonyl formation. Atmospheric implications of this work are discussed.

  3. Mass-independent oxygen isotopic partitioning during gas-phase SiO2 formation.

    PubMed

    Chakraborty, Subrata; Yanchulova, Petia; Thiemens, Mark H

    2013-10-25

    Meteorites contain a wide range of oxygen isotopic compositions that are interpreted as heterogeneity in solar nebula. The anomalous oxygen isotopic compositions of refractory mineral phases may reflect a chemical fractionation process in the nebula, but there are no experiments to demonstrate this isotope effect during particle formation through gas-phase reactions. We report experimental results of gas-to-particle conversion during oxidation of silicon monoxide that define a mass-independent line (slope one) in oxygen three-isotope space of (18)O/(16)O versus (17)O/(16)O. This mass-independent chemical reaction is a potentially initiating step in nebular meteorite formation, which would be capable of producing silicate reservoirs with anomalous oxygen isotopic compositions. PMID:24159043

  4. Quantifying the stabilizing effects of protein–ligand interactions in the gas phase

    PubMed Central

    Allison, Timothy M.; Reading, Eamonn; Liko, Idlir; Baldwin, Andrew J.; Laganowsky, Arthur; Robinson, Carol V.

    2015-01-01

    The effects of protein–ligand interactions on protein stability are typically monitored by a number of established solution-phase assays. Few translate readily to membrane proteins. We have developed an ion-mobility mass spectrometry approach, which discerns ligand binding to both soluble and membrane proteins directly via both changes in mass and ion mobility, and assesses the effects of these interactions on protein stability through measuring resistance to unfolding. Protein unfolding is induced through collisional activation, which causes changes in protein structure and consequently gas-phase mobility. This enables detailed characterization of the ligand-binding effects on the protein with unprecedented sensitivity. Here we describe the method and software required to extract from ion mobility data the parameters that enable a quantitative analysis of individual binding events. This methodology holds great promise for investigating biologically significant interactions between membrane proteins and both drugs and lipids that are recalcitrant to characterization by other means. PMID:26440106

  5. Carbonyl Diisocyanate CO(NCO)2: Synthesis and Structures in Solid State and Gas Phase.

    PubMed

    Klapötke, Thomas M; Krumm, Burkhard; Rest, Sebastian; Scharf, Regina; Schwabedissen, Jan; Stammler, Hans-Georg; Mitzel, Norbert W

    2016-07-01

    A modified synthesis for carbonyl diisocyanate, CO(NCO)2, starting from trichloroisocyanuric acid and diphosgene is described. In addition to the previously reported (13)C NMR resonances, the (15)N NMR shift is determined for the first time. The structure in the solid state was determined by X-ray diffraction (XRD) on in situ grown crystals, that in the gas phase was experimentally determined by electron diffraction (GED) and for single molecules theoretically by quantum-chemical calculations. The structures are compared and discussed with related systems. Quantum-chemical calculations as well as GED and XRD prove syn-syn to be the conformation of lowest energy. In quantum-chemical calculations and GED the presence of a syn-anti conformer was confirmed and the structure of this conformer was determined.

  6. Gas-phase rate constants for the reaction of NO 3 radicals with selected oxiranes

    NASA Astrophysics Data System (ADS)

    Kind, I.; Berndt, T.; Böge, O.; Rolle, W.

    1996-01-01

    The gas-phase reaction of NO 3 radicals with selected oxiranes has been studied in a flow system at T = 295 ± 2 K in the pressure range 3.4-50 mbar musing N 2 as carrier gas. The analysis of the organics was performed by means of on-line connected GC-FID. Rate constantswere obtained with the relative rate method: 3,4-epoxy-cyclohexene: (2.70 ± 0.18) × 10 -3; 2,2-dimethyl-vinyl)-oxirane; (4.74 ± 0.54) × 10 -12; 2-methyl-2-1(1-methyl-vinyl)-oxirane : (1.55 ± 0.12) × 10 -13; 2-methyl-2-vinyloxirane; (9.40 ± 2.62) × 10 -15; tetramethyloxirane: <5 × 10 -15; and cis-2,3-dimethyloxirane: <5 × 10 -15 cm -3 molecule -1 s -1.

  7. An overlooked series of gas phase diatomic metal oxide ions that are long-lived.

    PubMed

    Schofield, Keith

    2006-06-01

    Although the "Golden" years of spectroscopy and the major studies on ionization processes now are behind us, as with many branches of science, much yet remains to be gleaned from such topics that is both full of interest and of significance to present day research. Presented here is one such overlooked example, an observation that relates to both these fields. An analysis is presented for the periodic table concerning the gas-phase thermochemical nature of MO+ and MO2+ ions. Unexpectedly, a pattern of 18 elements has been identified that exhibit the potential for having long-lived MO+ ions. Normally such molecular ions are expected to decay extremely rapidly by dissociative recombination with electrons, but in particular, 12 of this group behave not like molecules but rather as atomic ions. These are the diatomic oxide ions of Sc, Y, La, Zr, Hf, Ce, Pr, Nd, Pm, Gd, Tb, and Th. In the gas phase, they decay by much slower three-body recombination channels. As may be noted, these elements are located in the first two columns of the transition elements, among the earlier rare earths and an actinide. From all the elements, UO2+ is the only dioxide ion that behaves similarly. These findings now elevate the potential importance of these ions and should facilitate their spectral characterization. Moreover, subsequent comparisons with spectra of well-known isoelectronic and isovalent neutral monoxides and other diatomics will help in the stimulation of further theoretical advances. In addition, once characterized, an ease of spectrally monitoring such ionic states will provide a useful analytical tool.

  8. Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling

    SciTech Connect

    Ge, Hai-Wen; Gutheil, Eva

    2008-04-15

    A joint mixture fraction-enthalpy probability density function (PDF) is proposed for the simulation of turbulent spray flames. The PDF transport equation is deduced and modeled. The interaction-by-exchange-with-the-mean (IEM) model that has been developed for gas-phase flows is extended to describe molecular mixing in nonreactive and reactive spray flows. The joint PDF transport equation is solved by a hybrid finite-volume and Lagrangian Monte Carlo method. Standard spray and turbulence models are used to describe the gas phase and the liquid phase. A turbulent methanol/air spray flame is simulated using the present method. Detailed chemistry is implemented through the spray flamelet model. The precalculated spray flamelet library for methanol/air combustion comprises 23 species and 168 elementary reactions. Thus, the model is capable of predicting the formation of radicals and of pollutants. Different values for the model constant C{sub {phi}} in the IEM model are tested. The numerical results for the gas velocity, the gas temperature, and the mass fraction of methanol vapor are compared with experimental data in the literature. Good agreement with experiment is obtained when C{sub {phi}}=2.0. Marginal PDFs of mixture fraction, enthalpy, and gas temperature are presented. The computed PDFs of mixture fraction are compared with the presumed standard {beta} function and modified {beta} function. The results show that the standard {beta} function fails to reproduce bimodal shapes observed in transported PDF computation, while the modified {beta} function, fits the computed PDFs very well. Moreover, joint PDFs of mixture fraction and enthalpy are presented and analyzed. The enthalpy and mixture fraction are strongly correlated. The samples that deviate from the linear correlation are due to the energy consumption of local spray evaporation. (author)

  9. Description and control of dissociation channels in gas-phase protein complexes

    NASA Astrophysics Data System (ADS)

    Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare

    2016-08-01

    Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.

  10. Dissociation of carbonic acid: gas phase energetics and mechanism from ab initio metadynamics simulations.

    PubMed

    Kumar, P Padma; Kalinichev, Andrey G; Kirkpatrick, R James

    2007-05-28

    A comprehensive metadynamics study of the energetics, stability, conformational changes, and mechanism of dissociation of gas phase carbonic acid, H2CO3, yields significant new insight into these reactions. The equilibrium geometries, vibrational frequencies, and conformer energies calculated using the density functional theory are in good agreement with the previous theoretical predictions. At 315 K, the cis-cis conformer has a very short life time and transforms easily to the cis-trans conformer through a change in the O=C-O-H dihedral angle. The energy difference between the trans-trans and cis-trans conformers is very small (approximately 1 kcal/mol), but the trans-trans conformer is resistant to dissociation to carbon dioxide and water. The cis-trans conformer has a relatively short path for one of its hydroxyl groups to accept the proton from the other end of the molecule, resulting in a lower activation barrier for dissociation. Comparison of the free and potential energies of dissociation shows that the entropic contribution to the dissociation energy is less than 10%. The potential energy barrier for dissociation of H2CO3 to CO2 and H2O from the metadynamics calculations is 5-6 kcal/mol lower than in previous 0 K studies, possibly due to a combination of a finite temperature and more efficient sampling of the energy landscape in the metadynamics calculations. Gas phase carbonic acid dissociation is triggered by the dehydroxylation of one of the hydroxyl groups, which reorients as it approaches the proton on the other end of the molecule, thus facilitating a favorable H-O-H angle for the formation of a product H2O molecule. The major atomic reorganization of the other part of the molecule is a gradual straightening of the O=C=O bond. The metadynamics results provide a basis for future simulation of the more challenging carbonic acid-water system.

  11. Conformational preferences of γ-aminobutyric acid in the gas phase and in water

    NASA Astrophysics Data System (ADS)

    Song, Il Keun; Kang, Young Kee

    2012-09-01

    The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.

  12. A Protocol for Detecting and Scavenging Gas-phase Free Radicals in Mainstream Cigarette Smoke

    PubMed Central

    Yu, Long-Xi; Dzikovski, Boris G.; Freed, Jack H.

    2012-01-01

    Cigarette smoking is associated with human cancers. It has been reported that most of the lung cancer deaths are caused by cigarette smoking 5,6,7,12. Although tobacco tars and related products in the particle phase of cigarette smoke are major causes of carcinogenic and mutagenic related diseases, cigarette smoke contains significant amounts of free radicals that are also considered as an important group of carcinogens9,10. Free radicals attack cell constituents by damaging protein structure, lipids and DNA sequences and increase the risks of developing various types of cancers. Inhaled radicals produce adducts that contribute to many of the negative health effects of tobacco smoke in the lung3. Studies have been conducted to reduce free radicals in cigarette smoke to decrease risks of the smoking-induced damage. It has been reported that haemoglobin and heme-containing compounds could partially scavenge nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke4. A 'bio-filter' consisted of haemoglobin and activated carbon was used to scavenge the free radicals and to remove up to 90% of the free radicals from cigarette smoke14. However, due to the cost-ineffectiveness, it has not been successfully commercialized. Another study showed good scavenging efficiency of shikonin, a component of Chinese herbal medicine8. In the present study, we report a protocol for introducing common natural antioxidant extracts into the cigarette filter for scavenging gas phase free radicals in cigarette smoke and measurement of the scavenge effect on gas phase free radicals in mainstream cigarette smoke (MCS) using spin-trapping Electron Spin Resonance (ESR) Spectroscopy1,2,14. We showed high scavenging capacity of lycopene and grape seed extract which could point to their future application in cigarette filters. An important advantage of these prospective scavengers is that they can be obtained in large quantities from byproducts of tomato or wine

  13. Gas Phase Thz Spectroscopy of Organosulfide and Organophosphorous Compounds Using a Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2011-06-01

    This study concerns the gas phase rovibrational spectroscopy of organosulfide and organophosphorous which are considered as non toxic model compounds in the analysis of chemical weapon materials, high pathogenic and mutagenic agents, and other environmentally interesting air-borne species. The coupling of the synchrotron radiation with multipass cells and the FTIR spectrometer allowed to obtain very conclusive results in term of sensitivity and resolution and improved the previous results obtained with classical sources. For DMSO, using an optical path of 150 m the spectra have been recorded at the ultimate resolution of 0.001 Cm-1 allowing to fully resolve the rotational structure of the lowest vibrational modes observed in the THz region. In the 290 - 420 Cm-1 region, the rovibrational spectrum of the "perpendicular" and "parallel" vibrational bands associated with, respectively, the asymmetric ν23 and symmetric ν11 bending modes of DMSO have been recorded with a resolution of 1.5× 10-3 Cm-1. The gas phase vibrational spectra of organophosphorous compounds were measured by FTIR spectroscopy using the vapor pressure of the compounds. Except for TBP, the room temperature vapor pressure was sufficient to detect all active vibrational modes from THz to NIR domain. Contrary to DMSO, the rotational patterns of alkyl phosphates and alkyl phosphonates could not be resolved; only a vibrational analysis may be performed. Nevertheless, the spectral fingerprints observed in the THz region allowed a clear discrimination between the molecules and between the different molecular conformations. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy and D. A. Sadovskií, Chem. Phys. Lett., 2010, 492: 30-34 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, J. Phys. Chem. B, 2010, 114: 16936-16947.

  14. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  15. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy.

    PubMed

    Stockett, M H; Houmøller, J; Brøndsted Nielsen, S

    2016-09-14

    Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm(-1)) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone. PMID:27634256

  16. LSPRAY: Lagrangian Spray Solver for Applications With Parallel Computing and Unstructured Gas-Phase Flow Solvers

    NASA Technical Reports Server (NTRS)

    Raju, Manthena S.

    1998-01-01

    Sprays occur in a wide variety of industrial and power applications and in the processing of materials. A liquid spray is a phase flow with a gas as the continuous phase and a liquid as the dispersed phase (in the form of droplets or ligaments). Interactions between the two phases, which are coupled through exchanges of mass, momentum, and energy, can occur in different ways at different times and locations involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the rate-controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as other phenomena. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on sprays to unstructured grids and parallel computing. LSPRAY, which was developed by M.S. Raju of Nyma, Inc., is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo probability density function (PDF) solver. The LSPRAY solver accommodates the use of an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements in the gas-phase solvers. It is used specifically for fuel sprays within gas turbine combustors, but it has many other uses. The spray model used in LSPRAY provided favorable results when applied to stratified-charge rotary combustion (Wankel) engines and several other confined and unconfined spray flames. The source code will be available with the National Combustion Code (NCC) as a complete package.

  17. An overlooked series of gas phase diatomic metal oxide ions that are long-lived.

    PubMed

    Schofield, Keith

    2006-06-01

    Although the "Golden" years of spectroscopy and the major studies on ionization processes now are behind us, as with many branches of science, much yet remains to be gleaned from such topics that is both full of interest and of significance to present day research. Presented here is one such overlooked example, an observation that relates to both these fields. An analysis is presented for the periodic table concerning the gas-phase thermochemical nature of MO+ and MO2+ ions. Unexpectedly, a pattern of 18 elements has been identified that exhibit the potential for having long-lived MO+ ions. Normally such molecular ions are expected to decay extremely rapidly by dissociative recombination with electrons, but in particular, 12 of this group behave not like molecules but rather as atomic ions. These are the diatomic oxide ions of Sc, Y, La, Zr, Hf, Ce, Pr, Nd, Pm, Gd, Tb, and Th. In the gas phase, they decay by much slower three-body recombination channels. As may be noted, these elements are located in the first two columns of the transition elements, among the earlier rare earths and an actinide. From all the elements, UO2+ is the only dioxide ion that behaves similarly. These findings now elevate the potential importance of these ions and should facilitate their spectral characterization. Moreover, subsequent comparisons with spectra of well-known isoelectronic and isovalent neutral monoxides and other diatomics will help in the stimulation of further theoretical advances. In addition, once characterized, an ease of spectrally monitoring such ionic states will provide a useful analytical tool. PMID:16722708

  18. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy.

    PubMed

    Stockett, M H; Houmøller, J; Brøndsted Nielsen, S

    2016-09-14

    Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm(-1)) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.

  19. Secondary structures of short peptide chains in the gas phase: Double resonance spectroscopy of protected dipeptides

    NASA Astrophysics Data System (ADS)

    Chin, Wutharath; Dognon, Jean-Pierre; Canuel, Clélia; Piuzzi, François; Dimicoli, Iliana; Mons, Michel; Compagnon, Isabelle; von Helden, Gert; Meijer, Gerard

    2005-02-01

    The conformational structure of short peptide chains in the gas phase is studied by laser spectroscopy of a series of protected dipeptides, Ac-Xxx-Phe-NH2, Xxx=Gly, Ala, and Val. The combination of laser desorption with supersonic expansion enables us to vaporize the peptide molecules and cool them internally; IR/UV double resonance spectroscopy in comparison to density functional theory calculations on Ac-Gly-Phe-NH2 permits us to identify and characterize the conformers populated in the supersonic expansion. Two main conformations, corresponding to secondary structures of proteins, are found to compete in the present experiments. One is composed of a doubly γ-fold corresponding to the 27 ribbon structure. Topologically, this motif is very close to a β-strand backbone conformation. The second conformation observed is the β-turn, responsible for the chain reversal in proteins. It is characterized by a relatively weak hydrogen bond linking remote NH and CO groups of the molecule and leading to a ten-membered ring. The present gas phase experiment illustrates the intrinsic folding properties of the peptide chain and the robustness of the β-turn structure, even in the absence of a solvent. The β-turn population is found to vary significantly with the residues within the sequence; the Ac-Val-Phe-NH2 peptide, with its two bulky side chains, exhibits the largest β-turn population. This suggests that the intrinsic stabilities of the 27 ribbon and the β-turn are very similar and that weakly polar interactions occurring between side chains can be a decisive factor capable of controlling the secondary structure.

  20. Gas-phase H2O and CO2 towards massive protostars

    NASA Astrophysics Data System (ADS)

    Boonman, A. M. S.; van Dishoeck, E. F.; Lahuis, F.; Wright, C. M.; Doty, S. D.

    2000-11-01

    We present a study of gas-phase H2O and CO2 towards a sample of 14 massive protostars with the ISO-SWS. Modeling of the H2O spectra using a homogeneous model with a constant excitation temperature Tex shows that the H2O abundances increase with temperature, up to a few times 10-5 with respect to H2 for the hottest sources (Tex~ 500 K). This is still a factor of 10 lower than the H2O ice abundances observed towards cold sources in which evaporation is not significant (Keane et al. 2000). Gas-phase CO2 is not abundant in our sources. The abundances are nearly constant for Tex >~ 100 K at a value of a few times 10-7, much lower than the solid-state abundances of ~1-3× 10-6 (Gerakines et al. 1999). Gas/solid ratios have been determined, using the solid-state features of H2O (Keane et al. 2000) and CO2 (Gerakines et al. 1999) as observed with ISO-SWS towards the same objects. For both H2O and CO2 the gas/solid ratio increases with temperature, but the increase is much stronger for H2O than for CO2, suggesting a different type of chemistry. In addition to the homogeneous models, a power law model has been developed for one of our sources, based on the physical structure of this region as determined from submillimeter data by van der Tak et al. (1999). The resulting H2O model spectrum gives a good fit to the data.