Science.gov

Sample records for gas-source molecular-beam epitaxy

  1. Gas-source molecular beam epitaxy of III V nitrides

    NASA Astrophysics Data System (ADS)

    Davis, R. F.; Paisley, M. J.; Sitar, Z.; Kester, D. J.; Ailey, K. S.; Linthicum, K.; Rowland, L. B.; Tanaka, S.; Kern, R. S.

    1997-06-01

    Amorphous, hexagonal and cubic phases of BN were grown via ion beam assisted deposition on Si(1 0 0) substrates. Gas-source molecular beam epitaxy of the III-V nitrides is reviewed. Sapphire(0 0 0 1) is the most commonly employed substrate with 6H-SiC(0 0 0 1), ZnO(1 1 1) and Si(1 1 1) also being used primarily for the growth of wurtzite GaN(0 0 0 1) in tandem with previously deposited GaN(0 0 0 1) or AlN(0 0 0 1) buffer layers. Silicon(0 0 1), GaAs(0 0 1), GaP(0 0 1) and 3C-SiC(0 0 1) have been employed for growth of cubic (zincblende) β-GaN(0 0 1). The precursor materials are evaporated metals and reactive N species produced either via ECR or RF plasma decomposition of N 2 or from ammonia. However, point defect damage from the plasma-derived species has resulted in a steady increase in the number of investigators now using ammonia. The growth temperatures for wurtzite GaN have increased from 650 ± 50°C to 800 ± 50°C to enhance the surface mobility of the reactants and, in turn, the efficiency of decomposition of ammonia and the microstructure and the growth rate of the films. Doping has been achieved primarily with Si (donor) and Mg (acceptor); the latter has been activated without post-growth annealing. Simple heterostructures, a p-n junction LED and a modulation-doped field-effect transistor have been achieved using GSMBE-grown material.

  2. Onset of stacking faults in InP nanowires grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cornet, D. M.; Mazzetti, V. G. M.; LaPierre, R. R.

    2007-01-01

    InP nanowires (NWs) were grown by gas source molecular beam epitaxy on InP (111)B substrates, using Au nanoparticles as a growth catalyst. The rod-shaped NWs exhibited hexagonal sidewall facets oriented along the {-211} family of crystal planes for all NW diameters, indicating minimal sidewall growth. Stacking faults, when present, were concentrated near the NW tips, while NWs with lengths less than 300nm were completely free of stacking faults.

  3. Influence of phosphine flow rate on Si growth rate in gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gao, F.; Huang, D. D.; Li, J. P.; Lin, Y. X.; Kong, M. Y.; Sun, D. Z.; Li, J. M.; Lin, L. Y.

    2000-12-01

    As reported by other authors, we have also observed that the Si growth rate decreases with increasing phosphine (PH 3) flow rate in gas source Si molecular beam epitaxy using phosphorous (P) as a n-type dopant. Why small quantity PH 3 can affect Si growth rate? Up to now, the quantitative characterization of PH 3 flow influence on Si growth rate is little known. In this letter, the PH 3 influence will be analyzed in detail and a model considering strong P surface segregation and its absorption of hydrogen will be proposed to characterize the effect.

  4. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  5. Effects of high source flow and high pumping speed on gas source molecular beam epitaxy / chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    McCollum, M. J.; Jackson, S. L.; Szafranek, I.; Stillman, G. E.

    1990-10-01

    We report the growth of GaAs by molecular beam epitaxy (MBE), gas source molecular beam epitaxy (GSMBE), and chemical beam epitaxy (CBE) in an epitaxial III-V reactor which features high pumping speed. The system is comprised of a modified Perkin-Elmer 430P molecular beam epitaxy system and a custom gas source panel from Emcore. The growth chamber is pumped with a 7000 1/s (He) diffusion pump (Varian VHS-10 with Monsanto Santovac 5 oil). The gas source panel includes pressure based flow controllers (MKS 1150) allowing triethylaluminum (TEA), triethylgallium (TEG), and trimethylindium (TMI) to be supplied without the use of hydrogen. All source lines, including arsine and phosphine, are maintained below atmospheric pressure. The high pumping speed allows total system flow rates as high as 100 SCCM and V/III ratios as high as 100. The purity of GaAs grown by MBE in this system increases with pumping speed. GaAs layers grown by GSMBE with arsine flows of 10 and 20 SCCM have electron concentrations of 1 × 10 15 cm -3 (μ 77=48,000 cm 2/V·) and 2 × 10 14 cm -3 (μ 77=78,000 cm 2/V·s) respectively. El ectron concentration varies with hydride injector temperature such that the minimum in electron concentration occurs for less than complete cracking. The effect of V/III ratio and the use of a metal eutectic bubbler on residual carrier concentration in GaAs grown by CBE is presented. Intentional Si and Be doping of CBE grown GaAs is demonstrated at a high growth rate of 5.4 μm/h.

  6. GaNAsP: An intermediate band semiconductor grown by gas-source molecular beam epitaxy

    SciTech Connect

    Kuang, Y. J.; Yu, K. M.; Walukiewicz, W.; Kudrawiec, R.; Luce, A. V.; Ting, M.; Tu, C. W.

    2013-03-18

    Dilute nitride GaNAsP thin films were grown via a GaAsP metamorphic buffer on GaP(100) substrate with gas-source molecular beam epitaxy. The compositions of this III-V-V-V compound were determined by channeling Rutherford backscattering spectroscopy and nuclear reaction analysis. Photoreflectance shows two distinctive transitions from the valence band to the split conduction bands due to N incorporation. Photoluminescence and optical absorption show the fundamental bandgap of Ga(N)AsP is largely tailored by the small amount of N. The observed multiband characteristics and the bandgap tunability of GaNAsP are two merits that fit into the intermediate-band solar cell roadmap, and GaNAsP of high crystal quality provides a strong candidate for intermediate band solar cell materials.

  7. Growth of high-quality p-type GaAs epitaxial layers using carbon tetrabromide by gas source molecular-beam epitaxy and molecular-beam epitaxy

    SciTech Connect

    Houng, Y.M.; Lester, S.D.; Mars, D.E.

    1993-05-01

    Heavily C-doped p-type GaAs epitaxial films have been grown using carbon tetrabromide (CBr{sub 4}) as a dopant source in both gas source molecular-beam epitaxy (GSMBE) and molecular-beam epitaxy (MBE). It was found that CBr;{sub 4} has a great potential as a p-type dopant source for use in a conventional MBE chamber without any major modification of its pumping system because of its high-doping efficiency and low gas load. Hole concentrations in excess of 1x10{sup 20} cm{sup {minus}3} have been measured in CBr{sub 4}-doped GaAs grown from both the MBE or GSMBE techniques, using As{sub 4} or AsH{sub 3}, respectively. A Hall mobility of > 80 cm{sup 2}/V s was measured in layers with doping level of 5x10{sup 19} cm{sup {minus}3}, which is comparable to that from chemical beam exitaxially (CBE) grown TMGa-doped GaAs. Under GSMBE and MBE modes, the doping memory effect in AlGaAs was greatly reduced using CBr{sub 4} as compared to TMGa doping source. GSMBE grown heterojunction bipolar transistors with a CBr{sub 4} as compared to TMGa doping source. GSMBE grown heterojunction bipolar transistors with a CBr{sub 4}-doped base layer have a current gain as high as 79 and a base sheet resistance as low as 225 {Omega}/{open_square}. 15 refs., 4 figs., 1 tab.

  8. Growth mechanisms of GaAs nanowires by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Plante, M. C.; LaPierre, R. R.

    2006-01-01

    GaAs nanowires were grown on GaAs (1 1 1)B substrates in a gas source molecular beam epitaxy system, using self-assembled Au particles with diameters between 20 and 800 nm as catalytic agents. The growth kinetics of the wires was investigated for substrate temperatures between 500 and 600 °C, and V/III flux ratios of 1.5 and 2.3. The broad distribution of Au particles enabled the first observation of two distinct growth regimes related to the size of the catalyst. The origins of this transition are discussed in terms of the various mass transport mechanisms that drive the wire growth. Diffusion of the growth species on the 2-D surface and up the wire sidewalls dominates for catalyst diameters smaller than ˜130 nm on average, while direct impingement on the catalyst followed by bulk diffusion through the Au particle appears to sustain the wire growth for larger catalyst diameters. A change in wire sidewall facets, indicating a probable transition in the crystal structure, is found to be primarily dependent on the V/III flux ratio.

  9. Gas source molecular beam epitaxy of scandium nitride on silicon carbide and gallium nitride surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Nemanich, Robert J.

    2014-11-01

    Scandium nitride (ScN) is a group IIIB transition metal nitride semiconductor with numerous potential applications in electronic and optoelectronic devices due to close lattice matching with gallium nitride (GaN). However, prior investigations of ScN have focused primarily on heteroepitaxial growth on substrates with a high lattice mismatch of 7%–20%. In this study, the authors have investigated ammonia (NH{sub 3}) gas source molecular beam epitaxy (NH{sub 3}-GSMBE) of ScN on more closely lattice matched silicon carbide (SiC) and GaN surfaces (<3% mismatch). Based on a thermodynamic analysis of the ScN phase stability window, NH{sub 3}-GSMBE conditions of 10{sup −5}–10{sup −4} Torr NH{sub 3} and 800–1050 °C where selected for initial investigation. In-situ x-ray photoelectron spectroscopy (XPS) and ex-situ Rutherford backscattering measurements showed all ScN films grown using these conditions were stoichiometric. For ScN growth on 3C-SiC (111)-(√3 × √3)R30° carbon rich surfaces, the observed attenuation of the XPS Si 2p and C 1s substrate core levels with increasing ScN thickness indicated growth initiated in a layer-by-layer fashion. This was consistent with scanning electron microscopy (SEM) images of 100–200 nm thick films that revealed featureless surfaces. In contrast, ScN films grown on 3C-SiC (111)-(3 × 3) and 3C-SiC (100)-(3 × 2) silicon rich surfaces were found to exhibit extremely rough surfaces in SEM. ScN films grown on both 3C-SiC (111)-(√3 × √3)R30° and 2H-GaN (0001)-(1 × 1) epilayer surfaces exhibited hexagonal (1 × 1) low energy electron diffraction patterns indicative of (111) oriented ScN. X-ray diffraction ω-2θ rocking curve scans for these same films showed a large full width half maximum of 0.29° (1047 arc sec) consistent with transmission electron microscopy images that revealed the films to be poly-crystalline with columnar grains oriented at ≈15° to the [0001] direction of the

  10. Control of GaP nanowire morphology by group V flux in gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kuyanov, P.; Boulanger, J.; LaPierre, R. R.

    2017-03-01

    GaP nanowires (NWs) were grown on a Si substrate by gas source molecular beam epitaxy using self-assisted growth. Selective-area growth was achieved using a patterned oxide mask. Periodic GaAsP marker layers were introduced during growth to study the growth progression using transmission electron microscopy. We demonstrate control of the NW morphology via the V/III flux ratio, the pattern pitch, and the oxide hole diameter. As the V/III flux ratio was increased from 1 to 6, the NWs showed a reduced top diameter and increased height. Reduced oxide hole diameter and increased V/III flux ratio caused the Ga droplet to be consumed partway through the growth for some NWs, leading to a switch from VLS group V limited growth to diffusion limited growth.

  11. Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Matsubara, Yuya; Takahashi, Kei S.; Tokura, Yoshinori; Kawasaki, Masashi

    2014-12-01

    Thin BaTiO3 films were grown on GdScO3 (110) substrates by metalorganic gas-source molecular beam epitaxy. Titanium tetra-isopropoxide (TTIP) was used as a volatile precursor that provides a wide growth window of the supplied TTIP/Ba ratio for automatic adjustment of the film composition. Within the growth window, compressively strained films can be grown with excellent crystalline quality, whereas films grown outside of the growth window are relaxed with inferior crystallinity. This growth method will provide a way to study the intrinsic properties of ferroelectric BaTiO3 films and their heterostructures by precise control of the stoichiometry, structure, and purity.

  12. Behaviors of beryllium compensation doping in InGaAsP grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ma, Y. J.; Zhang, Y. G.; Gu, Y.; Xi, S. P.; Chen, X. Y.; Liang, Baolai; Juang, Bor-Chau; Huffaker, Diana L.; Du, B.; Shao, X. M.; Fang, J. X.

    2017-07-01

    We report structural properties as well as electrical and optical behaviors of beryllium (Be)-doped InGaAsP lattice-matched to InP grown by gas source molecular beam epitaxy. P type layers present a high degree of compensation on the order of 1018 cm-3, and for Be densities below 9.5×1017 cm-3, they are found to be n type. Enhanced incorporation of oxygen during Be doping is observed by secondary ion mass spectroscopy. Be in forms of interstitial donors or donor-like Be-O complexes for cell temperatures below 800°C is proposed to account for such anomalous compensation behaviors. A constant photoluminescence energy of 0.98 eV without any Moss-Burstein shift for Be doping levels up to 1018 cm-3 along with increased emission intensity due to passivation effect of Be is also observed. An increasing number of minority carriers tend to relax via Be defect state-related Shockley-Read-Hall recombination with the increase of Be doping density.

  13. Gas-source molecular beam epitaxy of MgZnSSe for fabricating blue/green laser diodes

    NASA Astrophysics Data System (ADS)

    Imaizumi, Masayuki; Endoh, Yasuyuki; Suita, Muneyoshi; Sugimoto, Hiroshi; Ohtsuka, Ken-ichi; Isu, Toshiro; Ozeki, Tatsuo

    1996-11-01

    MgZnSSe layers were successfully grown by gas-source molecular beam epitaxy using hydride group VI sources. Employing n-type dopant Ga, Mg xZn 1- xS 0.12Se 0.88 layers (0 ≤ x ≤ 0.12) with electron concentrations in the 10 17 cm -3 range were obtained. The electron mobility was around 200 cm 2/V · s. with an increase in the Mg composition, the Ga donor ionization energy increased markedly. Active nitrogen was doped into the MgZnSSe layers for p-type control. Net acceptor concentrations of the p-Mg xZn 1- xS 0.15Se 0.85 layers were 4.5 × 10 17 cm -3 for x = 0 and 1.8 × 10 17 cm -3 for x = 0.10, which were comparable to the highest values ever reported. ZnCdSeMgZnSSe SCH-SQW LDs have been fabricated. Lasing was observed up to 203 K. The threshold current density was 420 A/cm 2 at 77 K and 1.8 kA/cm 2 at 203 K.

  14. Epitaxial growth of GaAs and GaN by gas source molecular beam epitaxy using organic group V compounds

    NASA Astrophysics Data System (ADS)

    Okumura, H.; Yoshida, S.; Misawa, S.; Sakuma, E.

    1992-05-01

    GaAs and GaN epilayers were grown on GaAs substrates by gas source molecular beam epitaxy technique using triethylarsine (TEAs) and diethylarsine (DEAsH) as As sources, and dimethylhydrazine (DMHy) as an N source. It was found that GaAs grows layer by layer even when organic arsine molecular sources are used. Cubic GaN was found to grow epitaxially on sufficiently nitrided surfaces of GaAs (001) substrates, in contrast with the growth of hexagonal GaN on GaAs (111) surfaces. It was also found that nitridation of GaAs surfaces does not occur when DEAsH and DMHy beams are supplied onto the GaAs substrates, simultaneously. Thus, GaN/GaAs multilayers were obtained only by intermittent supply of a DEAsH beam.

  15. Temperature-Stable Wavelength TlInGaAs/InP Double Heterostructure Light-Emitting Diodes Grown by Gas Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Hui-Jae; Konishi, Kenta; Maeda, Osamu; Mizobata, Akiko; Asami, Kumiko; Asahi, Hajime

    2002-02-01

    TlInGaAs/InP double heterostructure light-emitting diodes were grown on (100) InP substrates by gas source molecular beam epitaxy. The Tl composition was 6%. They were operated at up to 340°C with a wavelength around 1.58 μm. Very small temperature dependence of the electroluminescence peak energy (-0.09 meV/K) was observed, which is similar to the temperature dependence of the photoluminescence peak energy.

  16. Microstructural and Electrical Characterization of Silicon Carbide and Aluminum Nitride Thin Films Grown by Gas-Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Kern, Richard Scott

    1996-08-01

    Monocrystalline thin films, multilayered heterostructures and solid solutions of silicon carbide (SiC) and aluminum nitride (AlN) have been grown on alpha(6H) -SiC(0001) substrates by gas-source molecular beam epitaxy. Growth mechanisms, defect formation, donor and acceptor doping, metal-insulator-semiconductor diodes, pseudomorphic heterostructures and solid solutions in these materials have been studied. Monocrystalline films of beta(3C) -SiC(111) and alpha(6H)-SiC(0001) have been controllably deposited on the silicon face of 6H-SiC(0001) substrates. Polytype control was achieved via changes in the substrate orientation, substrate temperature and gas phase chemistry. Step flow growth was achieved on vicinal substrates at growth temperatures of at least 1350^circC using the SiH _4-rm C_2H_4 -H_2 system. Step bunching, cubic SiC nucleation and double positioning boundaries were observed at all temperatures when H_2 was removed from the system or the growth was performed at below 1350^circC. In both cases, growth rate was strongly dependent on temperature. Films doped using either a NH_3/H _2 mixture or pure N_2 were n-type; Al, p-type. Uniform, controllable doping levels between 10^{15} and 10^{19} cm ^{-3} were achieved for both polytypes. The measured mobility in the undoped 6H polytype, 434 cm ^2 V^{-1} s ^{-1}, is the highest reported in this polytype. Monocrystalline AlN was deposited using aluminum evaporated from a modified MBE effusion cell and either activated nitrogen derived from a compact electron cyclotron resonance plasma source or ammonia. Growth using each of the nitrogen sources was optimized with respect to substrate temperature, reactant flux and system pressure. In general, very thin films (<=q50 A) grown on vicinal 6H-SiC had a higher defect density than those grown on nominally on-axis substrates due to defect formation at or near the steps on the SiC surface. Full-width half maximum (FWHM) values of the (0002)_ {AlN} X-ray diffraction Bragg

  17. Dilute Nitride GaNP Wide Bandgap Solar Cells Grown by Gas-Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Sukrittanon, Supanee

    Integration of III-V semiconductors and Si is a very attractive means to achieve low-cost high-efficiency solar cells. A promising configuration is to utilize a dual-junction solar cell, in which Si is employed as the bottom junction and a wide-bandgap III-V semiconductor as the top junction. The use of a III-V semiconductor as a top junction offers the potential to achieve higher efficiencies than today's best Si solar cell. Dilute nitride GaNP is a promising candidate for the top cell in dual-junction solar cells because it possesses several extremely important attributes: a direct-bandgap that is also tunable as well as easily-attained lattice-match with Si. As a first step towards integration of GaNP solar cells onto Si, the goal of this dissertation is to optimize and demonstrate GaNP solar cells grown by gas-source molecular beam epitaxy (GSMBE) on GaP (001) substrate. The dissertation is divided into three major parts. In the first part, we demonstrate ˜ 2.05 eV ([N]˜ 1.8%) dilute nitride GaNP thin film solar cells, in which the GaNP is closely lattice-matched to Si, on GaP substrates. From transmission electron microscopy (TEM), the device exhibits defects only at the GaNP/GaP interface, and no threading dislocations in an active layer are observed. Our best GaNP solar cell achieved an efficiency of 7.9% with anti-reflection (AR) coating and no window layer. This GaNP solar cell's efficiency is higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance using GaNP are demonstrated. In the second part, we demonstrate the successful fabrication of GaP/GaNP core/shell microwires utilizing a novel technique: top-down reactive-ion etching (RIE) to create the cores and MBE to create the shells. Systematic studies have been

  18. InGaAsP/InAlAs type I/type II multiple quantum well structures grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kawamura, Yuichi; Iwamura, Hidetoshi

    1995-05-01

    In 1- xGa xAs 1- yP y/In 0.52Al 0.48As multiple quantum well (MQW) structures have been grown on InP substrates by gas source molecular beam epitaxy and the compositional dependence of the optical properties are studied by photoluminescence and optical absorption measurements. It is found that the type I/type II transition occurs at a P composition of 0.60. From the compositional dependence of the effective bandgap of the InGaAsP/InAlAs MQW structure, the valence band discontinuity ( ΔEv) of the InP/InAlAs hetero-interface is estimated to be 0.20 eV, which is consistent with the result for the conduction band discontinuity ( ΔEc) of In 1- w-zGa wAl zAs/InP MQW structures.

  19. Growth and photoluminescence of self-catalyzed GaP/GaNP core/shell nanowires on Si(111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kuang, Y. J.; Sukrittanon, S.; Li, H.; Tu, C. W.

    2012-01-01

    We report a study on self-catalyzed GaP/GaNP core/shell nanowires (NWs) grown on Si(111) by gas-source molecular beam epitaxy. Scanning electron microscopy images show that vertical and uniform GaP NWs and GaP/GaNP core/shell NWs are grown on Si(111). The density ranges from ˜1 × 107 to ˜5 × 108 cm-2 across the substrate. Typical diameters are ˜110 nm for GaP NWs and ˜220 nm for GaP/GaNP NWs. Room temperature photoluminescence (PL) signal from the GaP/GaNP core/shell NWs confirms that N is incorporated in the shell and the average N content is ˜0.9%. The PL low-energy tail is significantly reduced, compared to bulk GaNP.

  20. Structural properties of AlGaP films on GaP grown by gas-source molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dadgostar, S.; Hussein, E. H.; Schmidtbauer, J.; Boeck, T.; Hatami, F.; Masselink, W. T.

    2015-09-01

    The growth of Al0.85Ga0.15P on GaP using gas-source molecular-beam epitaxy is investigated using in situ high-energy electron diffraction, high-resolution x-ray diffraction, atomic-force microscopy, and scanning electron microscopy. Growth temperature and phosphorus flux were varied. The 1.0-μm AlGaP films were grow on a GaP buffer layer and capped with GaP. The investigation indicates that a growth temperature of 490 °C and a cracked PH3 flux of 2.7 sccm resulted in the best AlGaP quality, while maintaining very good GaP quality.

  1. Infrared reflectivity spectra of gas-source molecular beam epitaxy grown dilute InN{sub x}As{sub 1-x}/InP (001)

    SciTech Connect

    Talwar, Devki N.; Yang, Tzuen-Rong; Hsiung Lin, Hao; Chuan Feng, Zhe

    2013-02-04

    Vibrational spectra of gas-source molecular beam epitaxy grown dilute InN{sub x}As{sub 1-x}/InP (001) alloys are obtained using a Fourier-transform infrared (IR) spectroscopy. A triply degenerate N{sub As} local vibrational mode of T{sub d}-symmetry is observed near 438 cm{sup -1} corresponding to the In-N bond energy. The analysis of composition dependent infrared reflectivity spectra in InNAs has predicted a two-phonon-mode behavior. In In(Ga)-rich GaInNAs alloys the observed splitting of the N{sub As} local mode into a doublet for the N{sub As}-Ga{sub 1}(In{sub 1})In{sub 3}(Ga{sub 3}) pair-defect of C{sub 3v}-symmetry is consistent with our simulated results based on a sophisticated Green's function theory.

  2. Growth and electrical properties of high-quality InGaAsBi thin films using gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhou, Shuxing; Qi, Ming; Ai, Likun; Wang, Shumin; Xu, Anhuai; Guo, Qi

    2017-03-01

    The effects of Bi flux and In/Ga ratio on Bi incorporation and electrical properties of InGaAsBi grown by gas source molecular beam epitaxy were systematically studied. It is found that use of a low In/Ga ratio has an enhancement effect on the incorporation of Bi and its content increases linearly with Bi flux until reach a saturation. Incorporation of Bi induces p-type dopant that compensates the background electron concentration but does not degrade the electron mobility for the Bi content up to 6.2%. Up to 7.5% of Bi incorporation has been confirmed by Rutherford backscattering spectroscopy (RBS) and a maximum electron mobility of 5600 cm2·V‑1·s‑1 at room temperature was achieved in InGaAsBi with x Bi = 6.2%, which is the highest value reported in InGaAsBi with x Bi > 5%.

  3. Self-catalyzed core-shell GaAs/GaNAs nanowires grown on patterned Si (111) by gas-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    La, Rui; Liu, Ren; Yao, Weichuan; Chen, Renjie; Jansson, Mattias; Pan, Janet L.; Buyanova, Irina A.; Xiang, Jie; Dayeh, Shadi A.; Tu, Charles W.

    2017-08-01

    We report structural studies on the epitaxial growth of GaAs/GaNAs core-shell nanowires (NWs) on patterned Si (111) substrates by self-catalyzed selective area growth using Gas-Source Molecular Beam Epitaxy. Epitaxial growth conditions were obtained using a combination of dry and time-sensitive wet etching of the SiO2 growth mask and native SiO2 layer, respectively. We found that higher growth temperatures resulted in a higher yield for the epitaxial growth of patterned self-catalyzed GaAs NWs on Si with an optimal temperature of 690 °C. The GaNAs shell growth at 500 °C was found to be conformal and maintained an epitaxial and dislocation-free interface with both the Si substrate and the GaAs nanowire. The micro-photoluminescence (μ-PL) measurement at 6 K revealed two bands peaking at 1.45 and 1.17 eV, which could be emission from the GaAs core and GaNAs shell. Transmission electron microscopy showed the zincblende crystal structure of GaAs and GaAs/GaNAs core-shell NWs with minimal twinning near the base of the GaAs nanowires and at the tips of the GaAs/GaNAs core/shell nanowires. This study illustrates the feasibility of the epitaxial growth of patterned GaAs with dilute nitride shells on Si substrates, which would have potential for Si-friendly intermediate band solar cells and telecom emitters.

  4. Effect of Growth Pause on Indium Gallium Phosphorus/gallium Arsenic Heterointerfaces during Gas-Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Hyong Yong

    Molecular beam epitaxial (MBE) growth of InGaP/GaAs quantum-well structures requires switching of the arsenic and phosphorus beams at each heterointerface. Using in -situ reflection high energy electron diffraction, double crystal X-ray (DCXR) diffraction, and transmission electron microscopy, the effects of a growth pause on the interfacial structure and composition of lattice-matched InGaP/GaAs multiple quantum well structures were studied. For the purpose of this study growth pause at each interface was divided into two time periods: the interval (denoted by t_1) after stopping growth by closing the group-III shutters but before switching the group-V beams, and the interval (t_2) after switching the group-V beams but before recommencing growth. The effect of the As_2 beam on the GaAs growth front and the P_2 beam on the InGaP growth front was first studied. An atomically smooth GaAs surface was obtained with about 30 sec of pause in an As_2 beam. With the experimental methods used, the InGaP growth front did not show any major structural changes with increasing growth pause time. The GaAs-to-InGaP interface is found to be composed of one to two monolayers of GaAs_ {y}P_{1-y} (0 < y < 0.05) and the InGaP-to-GaAs interface is composed of one to two monolayers of In_{.5}Ga_ {.5}As_{y}P _{1-y} (0 < y < 0.05). This requires an exchange of As and P in the uppermost group-V atoms. The effect of an As_2 beam on the InGaP surface and an P_2 beam on the GaAs surface was next studied. For t _2 < 20 sec, atomically flat heterointerfaces were obtained and both the GaAs-to-InGaP and the InGaP -to-GaAs interfaces were found to be composed of group-V exchange strained layers. For t_2 >=q 60 sec a wavy interface was obtained. The irregularities of the interface may be the result of the As and P exchange mechanism. The experimental results show that a combination of an As_2 beam on the InGaP surface and a P_2 beam on the GaAs surface lasting 2 min produces rougher growth fronts

  5. Deep UV AlGaN light emitting diodes grown by gas source molecular beam epitaxy on sapphire and AlGaN/sapphire substrates

    NASA Astrophysics Data System (ADS)

    Nikishin, S.; Borisov, B.; Kuryatkov, V.; Usikov, A.; Dmitriev, V.; Holtz, M.

    2006-02-01

    We report the electrical and optical properties of deep ultraviolet light emitting diodes (LEDs) based on digital alloy structures (DAS) of AlN/Al 0.08Ga 0.92N grown by gas source molecular beam epitaxy with ammonia on sapphire substrates and AlGaN/sapphire templates. AlGaN/sapphire templates were grown by recently developed stress controlled hydride vapor phase epitaxy (HVPE). For DAS with effective bandgap of 5.1 eV we obtain room temperature electron concentrations up to 1x10 19 cm -3 and hole concentrations of 1x10 18 cm -3. Based on these results we prepared double heterostructure (DHS) LEDs operating in the range of 250 to 290 nm. The emission wavelengths were controlled through the effective bandgap of the active region. The possible ways for increase of LED's efficiency are discussed. We observed significant improvement in the room temperature luminescence efficiency (by factor of 100) of AlGaN quantum wells when a transition growth mode is induced by reduced flux of ammonia. We found that active layer grown on HVPE AlGaN/sapphire substrates have higher luminescence efficiency (by factor of 3) than DAS grown on sapphire.

  6. Growth of InP, InGaAs, and InGaAsP on InP by gas-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Asonen, H.; Rakennus, K.; Tappura, K.; Hovinen, M.; Pessa, M.

    1990-10-01

    Gas-source molecular beam epitaxy (GSMBE), designating the method where the group III beams are derived from the evaporation of solid materials while the group V beams are derived from the high-temperature cracking of AsH 3 and PH 3, is a very promising method. We show in this work that using indium of high purity and optimizing the growth conditions, unintentional impurities in these films prepared by GSMBE can be reduced to a level comparable to that obtained by all-vapor-source chemical beam epitaxy (CBE). The films grown by GSMBE are of very high quality, as deduced from the measurements of electrical, optical, and structural properties. Furthermore, we have found that the alloy composition in InGaAsP for the wavelength λ of 1.1 μm changes significantly in a range of growth temperature from 525 to 530°C, likely due to an abrupt change in the sticking probability of phosphorus. We have also found that the phosphorus-to-gallium flux ratio strongly affects surface morphology of InGaAsP for λ = 1.3 μm.

  7. Silicon carbon(001) gas-source molecular beam epitaxy from methyl silane and silicon hydride: The effects of carbon incorporation and surface segregation on growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Yong-Lim

    Si1-yCy alloys were grown on Si(001) by gas-source molecular-beam epitaxy (GS-MBE) from Si2H6/CH3 SiH3 mixtures as a function of C concentration y (0 to 2.6 at %) and deposition temperature Ts (500--600°C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In-situ isotopically-tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregates to the second-layer during steady-state Si1-y Cy(001) growth. This, in turn, results in charge-transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θ Si*(y, Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H 6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts, JSi2H6,J CH3SiH3 ) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in good agreement with the experimental data. At higher growth temperature (725 and 750°C), superlattice structures consisting of alternating Si-rich and C-rich sublayers form spontaneously during the gas-source molecular beam epitaxial growth of Si1-y Cy layers from constant Si2H6 and CH 3SiH3 precursor fluxes. The formation of a self-organized superstructure is due to a complex interaction among competing surface reactions. During growth of the initial Si-rich sublayer, C strongly segregates to the second layer resulting in charge transfer from surface Si atom dangling bonds of to C

  8. Accurate tuning of emission of GaInAsP/InP heterostructures in multiwafer gas-source molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lelarge, F.; Gaborit, F.; Gentner, J. L.

    2005-03-01

    Photoluminescence wavelength emission of Ga xIn 1-xAs yP 1-y/InP heterostructures grown in multiwafer gas-source molecular-beam epitaxy (GSMBE) is studied in detail for both bulk and multiple quantum well (MQWs) heterostructures. Excellent photoluminescence wavelength uniformity is reported in 4×2-in. configuration, demonstrating the compatibility of GSMBE process with large-scale 1.55 μm telecom laser production. A strong dependence of wavelength uniformity on group-V/group-III flux ratio is reported and analyzed quantitatively. An empirical model based on the interplay between group-V elements incorporation and gas distribution is proposed to predict the influence of AsH 3 and PH 3 fluxes on As content in the solid. This understanding opens the way to an accurate tuning of wavelength dispersion of Ga xIn 1-xAs yP 1-y/InP MQWs grown in multiwafer GSMBE system.

  9. Gas source molecular-beam epitaxial growth of TlInGaAsN double quantum well light emitting diode structures and thallium incorporation characteristics

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Krishnamurthy, D.; Fujiwara, A.; Hasegawa, S.; Asahi, H.

    2006-10-01

    TlInGaAsN/GaAs double quantum well (DQW) structures were grown on GaAs (1 0 0) substrates by gas source molecular-beam epitaxy. It has been found that high Tl flux is needed for the incorporation of Tl into the films. Reduction in the temperature variation of electroluminescence (EL) peak energy has been observed by the addition of Tl into quantum well (QW) layers; -0.62 meV/K for the InGaAsN/GaAs DQW light emitting diodes (LEDs) and -0.53 meV/K for the TlInGaAsN/GaAs DQW LEDs. By replacing GaAs barrier layers with TlGaAs barrier layers, further reduction could be obtained; -0.35 meV/K for TlInGaAsN/TlGaAs DQW LEDs. SIMS measurements indicated that this improvement is caused by the increased incorporation of Tl into the QW layers.

  10. Synchrotron Radiation Irradiation Effects for SiHn on Si(100) Surface in the Synchrotron Radiation Stimulated Si Gas Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshigoe, Akitaka; Nagasono, Mitsuru; Mase, Kazuhiko; Urisu, Tsuneo

    1995-12-01

    SiH n on Si (100) surfaces during synchrotron radiation (SR) stimulated gas source molecular beam epitaxy (SR-GSMBE) using Si2H6 gas (1.0×10-3 Torr) are investigated in situ by means of infrared reflection absorption spectroscopy using CoSi2 buried metal layer substrates (BML-IRAS) in the low substrate temperature region (400° C-140° C). It has been found that SiH2 and SiH3 on the surface are easily decomposed by SR to SiH and the decomposition rate of SiH is extremely slow. The decomposition reaction cross sections for SiH2 and SiH3 for the total irradiating photon flux have been evaluated to be 5.7×10-20 cm2 and 1.7×10-19 cm2, respectively. Experimental results are discussed, considering the model of the localized multihole excitation and its quenching.

  11. Photoluminescence of InGaAs/GaAsBi/InGaAs type-II quantum wells grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Pan, Wenwu; Zhang, Liyao; Zhu, Liang; Song, Yuxin; Li, Yaoyao; Wang, Chang; Wang, Peng; Wu, Xiaoyan; Zhang, Fan; Shao, Jun; Wang, Shumin

    2017-01-01

    In x Ga1-x As/GaAs1-y Bi y /In x Ga1-x As (0.20 ≤ x ≤ 0.22, 0.035 ≤ y ≤ 0.045) quantum wells (QWs) were grown on GaAs substrates by gas source molecular beam epitaxy for realizing the type-II band edge line-up. Both type-I and type-II transitions were observed in the Bi containing W QWs and the photoluminescence intensity was enhanced in the sample with a high Bi content, which is mainly due to the improvement of carrier confinement. The 8 band k · p model was used to analyze the electronic properties in the QWs and the calculated transition energies fit well with the experiment results. Our study shows that the proposed type-II QW is a promising candidate for realizing GaAs-based near infrared light emitting devices near 1.3 μm.

  12. Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11mum), grown by Gas Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Neelanjan

    Quantum Cascade Laser (QCL) is a compact room temperature (RT) source of mid-infrared radiation, which can be used for spectroscopic detection of trace amount of chemicals. The mid-infrared spectral range between (3-11 microm), has a dense array of absorption lines of numerous molecules, due to the presence of fundamental vibrational modes. The goal of this thesis can be subdivided into two parts. Firstly, short wavelength QCLs, emitting below 4microm, perform poorly at RT, due to inter-valley Gamma --- L carrier scattering, carrier escape to the continuum, heat removal from the core region at high power density corresponding to short wavelength operation, and large interface scattering due to highly strained materials. Secondly, it is desirable to have a single QCL based source emitting between 6-10microm, which be used to detect multiple molecules having their peak absorptions far apart, inside this spectral range. However, gain bandwidth of a single core QCL is relatively small, so laser emission cannot be tuned over a wide spectral range. This thesis describes the working principle of a QCL based on superlattice transport, rate equations, scattering mechanism, and waveguide design. The choice of the material system for this work and the fundamentals of band structure engineering has been derived. Gas source molecular beam epitaxy - growth optimization and characterization is one of the most important features of this work, especially for short wavelength QCLs, and has been explained in depth. Different strategies for design of active region design of short wavelength QCL and heterogeneous broadband QCL has been explored. The major milestones, of this research was the world's first watt level continuous wave (CW), RT demonstration at 3.76 microm, which was followed by another milestone of the first CW, RT demonstration at 3.39microm and 3.55microm, and finally the elusive result of QCL emitting at CW, RT at a wavelength as short as lambda ~3microm, a record. In

  13. Molecular Beam Epitaxy of

    NASA Astrophysics Data System (ADS)

    Hsieh, Kuan Hsiung

    Ga(,0.48)In(,0.52)As recently emerges as a promising material for high speed applications. It also has a direct bandgap with gap energy suitable for optical applications. It is the purpose of this thesis to grow high quality Ga(,0.47)In(,0.53)As, lattice-matched Al(,0.48)In(,0.52)As and heterojunction structures by molecular beam epitaxy technique for applications in the areas of modulation-doped high mobility devices and internal photoemission Schottky diodes for infrared detection. Single crystal Al metal deposition on GaInAs by MBE is also studied for its electrical properties. Mobility enhancement has been demonstrated in modulation-doped structures at low temperatures. Very high mobilities were obtained: 10,900 cm('2)/Vs at room temperature, 55,500 cm('2)/Vs at 77K and 70,200 cm('2)/Vs at 10K with corresponding two-dimensional electron gas densities greater than 1 x 10('12) l/cm('2). The quality of Ga(,0.47)In(,0.53)As and the parallel conduction in this material are the limiting factors in its mobility. A new ohmic contact phenomenon has been observed in the MBE single crystal Al metal on Ga(,0.47)In(,0.53)AS samples. Its contact resistivity is measured to be as small as 1 x 10('-6) (OMEGA)-cm('2). The Fermi-level pinning near the conduction band edge might be caused by the interface defects. A planar doping technique has been employed to enhance the built-in barrier height to a value of about 0.5 eV in the single crystal Al on n-p('+)-n-Ga(,0.47)In(,0.52)As structures. This novel quasi-Schottky diode also shows a forward ideal factor of 1.03. As for optical detectors, four kinds of diodes were made for internal photoemission studies: Au Schottky on Ga(,0.47)In(,0.53)As in the wavelength range of 1.9 (mu)m to 2.5 (mu)m, Au Schottky on Al(,0.48)In(,0.52)As in 1.1 (mu)m to 2.0 (mu)m range, single crystal Al on (Al(,0.8)Ga(,0.2))(,0.48)In(,0.52)As with improved quantum yields and lastly a Ga(,0.47)In(,0.53)As/Al(,0.48)In(,0.52)As heterojunction with a measured

  14. Ultrahigh B doping ({<=}10{sup 22} cm{sup -3}) during Si(001) gas-source molecular-beam epitaxy: B incorporation, electrical activation, and hole transport

    SciTech Connect

    Glass, G.; Kim, H.; Desjardins, P.; Taylor, N.; Spila, T.; Lu, Q.; Greene, J. E.

    2000-03-15

    Si(001) layers doped with B concentrations C{sub B} between 1x10{sup 17} and 1.2x10{sup 22} cm{sup -3} (24 at %) were grown on Si(001)2x1 at temperatures T{sub s}=500-850 degree sign C by gas-source molecular-beam epitaxy from Si{sub 2}H{sub 6} and B{sub 2}H{sub 6}. C{sub B} increases linearly with the incident precursor flux ratio J{sub B{sub 2}}{sub H{sub 6}}/J{sub Si{sub 2}}{sub H{sub 6}} and B is incorporated into substitutional electrically active sites at concentrations up to C{sub B}{sup *}(T{sub s}) which, for T{sub s}=600 degree sign C, is 2.5x10{sup 20} cm{sup -3}. At higher B concentrations, C{sub B} increases faster than J{sub B{sub 2}}{sub H{sub 6}}/J{sub Si{sub 2}}{sub H{sub 6}} and there is a large and discontinuous decrease in the activated fraction of incorporated B. However, the total activated B concentration continues to increase and reaches a value of N{sub B}=1.3x10{sup 21} cm{sup -3} with C{sub B}=1.2x10{sup 22} cm{sup -3}. High-resolution x-ray diffraction (HR-XRD) and reciprocal space mapping measurements show that all films, irrespective of C{sub B} and T{sub s}, are fully strained. No B precipitates or misfit dislocations were detected by HR-XRD or transmission electron microscopy. The lattice constant in the film growth direction a{sub (perpendicular} {sub sign)} decreases linearly with increasing C{sub B} up to the limit of full electrical activation and continues to decrease, but nonlinearly, with C{sub B}>C{sub B}{sup *}. Room-temperature resistivity and conductivity mobility values are in good agreement with theoretical values for B concentrations up to C{sub B}=2.5x10{sup 20} and 2x10{sup 21} cm{sup -3}, respectively. All results can be explained on the basis of a model which accounts for strong B surface segregation to the second-layer with a saturation coverage {theta}{sub B,sat} of 0.5 ML (corresponding to C{sub B}=C{sub B}{sup *}). At higher C{sub B} (i.e., {theta}{sub B}>{theta}{sub B,sat}), B accumulates in the upper layer as

  15. Molecular-Beam-Epitaxy Program

    NASA Technical Reports Server (NTRS)

    Sparks, Patricia D.

    1988-01-01

    Molecular Beam Epitaxy (MBE) computer program developed to aid in design of single- and double-junction cascade cells made of silicon. Cascade cell has efficiency 1 or 2 percent higher than single cell, with twice the open-circuit voltage. Input parameters include doping density, diffusion lengths, thicknesses of regions, solar spectrum, absorption coefficients of silicon (data included for 101 wavelengths), and surface recombination velocities. Results include maximum power, short-circuit current, and open-circuit voltage. Program written in FORTRAN IV.

  16. High-quality AlGaN/GaN grown on sapphire by gas-source molecular beam epitaxy using a thin low-temperature AlN layer

    SciTech Connect

    Jurkovic, M.J.; Li, L.K.; Turk, B.; Wang, W.I.; Syed, S.; Simonian, D.; Stormer, H.L.

    2000-07-01

    Growth of high-quality AlGaN/GaN heterostructures on sapphire by ammonia gas-source molecular beam epitaxy is reported. Incorporation of a thin AlN layer grown at low temperature within the GaN buffer is shown to result in enhanced electrical and structural characteristics for subsequently grown heterostructures. AlGaN/GaN structures exhibiting reduced background doping and enhanced Hall mobilities (2100, 10310 and 12200 cm{sup 2}/Vs with carrier sheet densities of 6.1 x 10{sup 12} cm{sup {minus}2}, and 5.8 x 10{sup 12} cm{sup {minus}2} at 300 K, 77 K, and 0.3 K, respectively) correlate with dislocation filtering in the thin AlN layer. Magnetotransport measurements at 0.3 K reveal well-resolved Shubnikov-de Haas oscillations starting at 3 T.

  17. Silicon Holder For Molecular-Beam Epitaxy

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.

    1993-01-01

    Simple assembly of silicon wafers holds silicon-based charge-coupled device (CCD) during postprocessing in which silicon deposited by molecular-beam epitaxy. Attains temperatures similar to CCD, so hotspots suppressed. Coefficients of thermal expansion of holder and CCD equal, so thermal stresses caused by differential thermal expansion and contraction do not develop. Holder readily fabricated, by standard silicon processing techniques, to accommodate various CCD geometries. Silicon does not contaminate CCD or molecular-beam-epitaxy vacuum chamber.

  18. Surface segregation and growth-mode transitions during the initial stages of Si growth on Ge(001)2 × 1 by cyclic gas-source molecular beam epitaxy from Si2H6

    NASA Astrophysics Data System (ADS)

    Tsu, R.; Xiao, H. Z.; Kim, Y.-W.; Hasan, M.-A.; Birnbaum, H. K.; Greene, J. E.; Lin, D.-S.; Chiang, T.-C.

    1994-01-01

    Surface morphological and compositional evolution during the initial stages of Si growth on Ge(001)2×1 by cyclic gas-source molecular beam epitaxy from Si2H6 has been investigated using in situ reflection high-energy electron diffraction (RHEED), Auger electron spectroscopy, electron-energy-loss spectroscopy, and scanning tunneling microscopy, combined with post-deposition high-resolution cross-sectional transmission electron microscopy. The layers were deposited using repetitive cycles consisting of saturation Si2H6 dosing at room temperature, followed by annealing for 1 min at 550 °C. Film growth was observed to proceed via a mixed Stranski-Krastanov mode. Single-step-height two-dimensional growth was obtained for nominal Si deposition thicknesses tSi up to ≂1.5 monolayers (ML). However, the upper layer remained essentially pure Ge which segregated to the surface through site exchange with deposited Si as H was desorbed. At higher tSi, the Ge coverage decreased slowly, the surface roughened, and two-dimensional multilayer island growth was observed for tSi up to ≂7.5 ML, where bulk reflections in RHEED patterns provided evidence for the evolution of three-dimensional island formula.

  19. High-efficiency silicon doping of InP and In[sub 0. 53]Ga[sub 0. 47]As in gas source and metalorganic molecular beam epitaxy using silicon tetrabromide

    SciTech Connect

    Jackson, S.L.; Fresina, M.T.; Baker, J.E.; Stillman, G.E. )

    1994-05-23

    Efficient vapor source Si doping of InP and In[sub 0.53]Ga[sub 0.47]As have been demonstrated using SiBr[sub 4] as the Si source for both gas source (GSMBE) and metalorganic molecular beam epitaxy (MOMBE). Net electron concentrations ranging from [ital n]=2[times]10[sup 17] to 6.8[times]10[sup 19] cm[sup [minus]3] and from 9[times]10[sup 16] to 3[times]10[sup 19] cm[sup [minus]3] have been obtained for InP and In[sub 0.53]Ga[sub 0.47]As, respectively. Comparison of these data with those for Si[sub 2]H[sub 6] indicate that the Si incorporation efficiency with SiBr[sub 4] is more than 10 000 times greater than with Si[sub 2]H[sub 6] for substrate temperatures in the range of 475[le][ital T][sub [ital s

  20. Si1-yCy/Si(001) gas-source molecular beam epitaxy from Si2H6 and CH3SiH3: Surface reaction paths and growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Desjardins, P.; Greene, J. E.

    2003-04-01

    In situ surface probes and postdeposition analyses were used to follow surface reaction paths and growth kinetics of Si1-yCy alloys grown on Si(001) by gas-source molecular-beam epitaxy from Si2H6/CH3SiH3 mixtures as a function of C concentration y (0-2.6 at %) and temperature Ts (500-600 °C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In situ isotopically tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregation during steady-state Si1-yCy(001) growth results in charge transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θSi*(y,Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. θSi* increases with increasing y and Ts in the kinetically limited segregation regime while Ed decreases from 2.52 eV for H2 desorption from Si surface sites with Si back bonds to 2.22 eV from Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts,JSi2H6,JCH3SiH3) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in excellent agreement with the experimental data.

  1. C incorporation and segregation during Si 1- yC y/Si( 0 0 1 ) gas-source molecular beam epitaxy from Si 2H 6 and CH 3SiH 3

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Soares, J. A. N. T.; Desjardins, P.; Greene, J. E.

    2002-08-01

    We have used in situ D 2 temperature-programmed desorption (TPD) to probe C incorporation and surface segregation kinetics, as well as hydrogen desorption pathways, during Si 1- yC y(0 0 1) gas-source molecular beam epitaxy from Si 2H 6/CH 3SiH 3 mixtures at temperatures Ts between 500 and 650 °C. Parallel D 2 TPD results from C-adsorbed Si(0 0 1) wafers exposed to varying CH 3SiH 3 doses serve as reference data. Si 1- yC y(0 0 1) layer spectra consist of three peaks: first-order β 1 at 515 °C and second-order β 2 at 405 °C, due to D 2 desorption from Si monodeuteride and dideuteride phases, as well as a new second-order C-induced γ 1 peak at 480 °C. C-adsorbed Si(0 0 1) samples with very high CH 3SiH 3 exposures yielded a higher-temperature TPD feature, corresponding to D 2 desorption from surface C atoms, which was never observed in Si 1- yC y(0 0 1) layer spectra. The Si 1- yC y(0 0 1) γ 1 peak arises due to desorption from Si monodeuteride species with C backbonds. γ 1 occurs at a lower temperature than β 1 reflecting the lower D-Si * bond strength, where Si * represents surface Si atoms bonded to second-layer C atoms, as a result of charge transfer from dangling bonds. The total integrated monohydride (β 1+γ 1) intensity, and hence the dangling bond density, remains constant with y indicating that C does not deactivate surface dangling bonds as it segregates to the second-layer during Si 1- yC y(0 0 1) growth. Si * coverages increase with y at constant Ts and with Ts at constant y. The positive Ts-dependence shows that C segregation is kinetically limited at Ts⩽650 °C. D 2 desorption activation energies from β 1, γ 1 and β 2 sites are 2.52, 2.22 and 1.88 eV.

  2. Perspective: Oxide molecular-beam epitaxy rocks!

    SciTech Connect

    Schlom, Darrell G.

    2015-06-01

    Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  3. InPBi single crystals grown by molecular beam epitaxy.

    PubMed

    Wang, K; Gu, Y; Zhou, H F; Zhang, L Y; Kang, C Z; Wu, M J; Pan, W W; Lu, P F; Gong, Q; Wang, S M

    2014-06-26

    InPBi was predicted to be the most robust infrared optoelectronic material but also the most difficult to synthesize within In-VBi (V = P, As and Sb) 25 years ago. We report the first successful growth of InPBi single crystals with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InPBi thin films reveal excellent surface, structural and optical qualities making it a promising new III-V compound family member for heterostructures. The Bi concentration is found to be 2.4 ± 0.4% with 94 ± 5% Bi atoms at substitutional sites. Optical absorption indicates a band gap of 1.23 eV at room temperature while photoluminescence shows unexpectedly strong and broad light emission at 1.4-2.7 μm which can't be explained by the existing theory.

  4. Infrared Rugates by Molecular Beam Epitaxy

    NASA Technical Reports Server (NTRS)

    Rona, M.

    1993-01-01

    Rugates are optical structures that have a sinusoidal index of refraction (harmonic gradient-index field). As their discrete high/ low index filter counterparts, they can be used as narrow rejection band filters. However, since rugates do not have abrupt interfaces, they tend to have a smaller absorption, hence deliver a higher in band reflectivity. The absence of sharp interfaces makes rugates even more desirable for high-energy narrow band reflectors. In this application, the lack of a sharp interface at the maximum internal standing wave electric field results in higher breakdown strengths. Our method involves fabricating rugates, with molecular beam epitaxy, on GaAs wafers as an Al(x)Ga(1-x)As single-crystal film.

  5. Fundamental Study of Antimonide Nanostructures by Molecular Beam Epitaxy

    DTIC Science & Technology

    2016-02-04

    to conduct experimental work in molecular beam epitaxial growth of GaSb/GaAs and InSb/GaAs quantum dots (QDs) are conducted and compared with...September 2014 to July 2015 being conducted at Chulalongkorn University in Thailand. Following the research work on InAs quantum dots (QDs) and quantum ... dot molecules (QDMs) grown by molecular beam epitaxy (MBE), the research target is extended to GaSb QDs and InSb QDs which are type II quantum

  6. Growth and characterization of dilute nitride GaN{sub x}P{sub 1−x} nanowires and GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowires on Si (111) by gas source molecular beam epitaxy

    SciTech Connect

    Sukrittanon, S.; Kuang, Y. J.; Dobrovolsky, A.; Chen, W. M.; Buyanova, I. A.; Kang, Won-Mo; Kim, Bong-Joong; Jang, Ja-Soon; Tu, C. W.

    2014-08-18

    We have demonstrated self-catalyzed GaN{sub x}P{sub 1−x} and GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowire growth by gas-source molecular beam epitaxy. The growth window for GaN{sub x}P{sub 1−x} nanowires was observed to be comparable to that of GaP nanowires (∼585 °C to ∼615 °C). Transmission electron microscopy showed a mixture of cubic zincblende phase and hexagonal wurtzite phase along the [111] growth direction in GaN{sub x}P{sub 1−x} nanowires. A temperature-dependent photoluminescence (PL) study performed on GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowires exhibited an S-shape dependence of the PL peaks. This suggests that at low temperature, the emission stems from N-related localized states below the conduction band edge in the shell, while at high temperature, the emission stems from band-to-band transition in the shell as well as recombination in the GaN{sub x}P{sub 1−x} core.

  7. InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy.

    PubMed

    Natrella, Michele; Rouvalis, Efthymios; Liu, Chin-Pang; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2012-08-13

    We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz -3 dB bandwidth and -5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.

  8. Growth of strontium ruthenate films by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Marshall, Patrick B.; Kim, Honggyu; Ahadi, Kaveh; Stemmer, Susanne

    2017-09-01

    We report on the growth of epitaxial Sr2RuO4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional molecular beam epitaxy that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr2RuO4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electron microscopy. The method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.

  9. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  10. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-01-10

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.

  11. Carbon molecular beam epitaxy on various semiconductor substrates

    SciTech Connect

    Jerng, S.K.; Yu, D.S.; Lee, J.H.; Kim, Y.S.; Kim, C.; Yoon, S.; Chun, S.H.

    2012-10-15

    Direct graphene growth on semiconductor substrates is an important goal for successful integration of graphene with the existing semiconductor technology. We test the feasibility of this goal by using molecular beam epitaxy on various semiconductor substrates: group IV (Si, SiC), group III–V (GaAs, GaN, InP), and group II–VI (ZnSe, ZnO). Graphitic carbon has been formed on most substrates except Si. In general, the crystallinities of carbon layers are better on substrates of hexagonal symmetry than those on cubic substrates. The flatness of graphitic carbon grown by molecular beam epitaxy is noticeable, which may help the integration with semiconductor structures.

  12. Applying CLIPS to control of molecular beam epitaxy processing

    NASA Technical Reports Server (NTRS)

    Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.

    1990-01-01

    A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.

  13. Molecular-Beam Epitaxy Of IrSi3

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1991-01-01

    Molecular-beam epitaxy grows layers of iridium silicide (IrSi3) on silicon at temperatures of 630 to 800 degrees C. Particularly useful as photodetector material because it forms Schottky diodes having potential barriers of only 0.12 to 0.15 eV - lowest of any metal on silicon. Photodiodes sensitive to infrared radiation at wavelengths as large as 8 to 10 micrometers. New, lower formation temperature expected to enable growth of arrays of IrSi3/Si infrared detectors on Si wafers without thermally damaging image-processing circuitry integrated on wafers.

  14. Silicon surface preparation for III-V molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Madiomanana, K.; Bahri, M.; Rodriguez, J. B.; Largeau, L.; Cerutti, L.; Mauguin, O.; Castellano, A.; Patriarche, G.; Tournié, E.

    2015-03-01

    We report on a silicon substrate preparation for III-V molecular-beam epitaxy (MBE). It combines sequences of ex situ and in situ treatments. The ex situ process is composed of cycles of HF dip and O2 plasma treatments. Ellipsometry and atomic force microscopy performed after each step during the substrate preparation reveal surface cleaning and de-oxidation. The in situ treatment consists in flash annealing the substrate in the MBE chamber prior to epitaxial growth. GaSb-based multiple quantum well heterostructures emitting at 1.55 μm were grown by MBE on Si substrates prepared by different methods. Structural characterizations using XRD and TEM coupled with photoluminescence spectroscopy demonstrates the efficiency of our preparation process. This study thus unravels a simple and reproducible protocol to prepare the Si surface prior to III-V MBE.

  15. Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy.

    PubMed

    Gu, Yi; Wang, Kai; Zhou, Haifei; Li, Yaoyao; Cao, Chunfang; Zhang, Liyao; Zhang, Yonggang; Gong, Qian; Wang, Shumin

    2014-01-13

    InPBi thin films have been grown on InP by gas source molecular beam epitaxy. A maximum Bi composition of 2.4% is determined by Rutherford backscattering spectrometry. X-ray diffraction measurements show good structural quality for Bi composition up to 1.4% and a partially relaxed structure for higher Bi contents. The bandgap was measured by optical absorption, and the bandgap reduction caused by the Bi incorporation was estimated to be about 56 meV/Bi%. Strong and broad photoluminescence signals were observed at room temperature for samples with xBi < 2.4%. The PL peak position varies from 1.4 to 1.9 μm, far below the measured InPBi bandgap.

  16. Porous ZnO nanonetworks grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, W. C. T.; Kendrick, C. E.; Millane, R. P.; Liu, Z.; Ringer, S. P.; Washburn, K.; Callaghan, P. T.; Durbin, S. M.

    2012-04-01

    Plasma-assisted molecular beam epitaxy was employed to create porous nanonetworks of ZnO directly on GaN epilayers without the use of catalysts or templates. Detailed analysis of scanning electron microscopy (SEM) images of both as-grown and etched samples reveals that the typical porous nanonetwork structure is multilayered, and suggests that dislocations originating at the GaN/sapphire heterointerface and/or defects characterizing an unusually rough GaN surface are responsible. The pore size distribution of the nanonetwork was measured using nuclear magnetic resonance (NMR) cryoporometry. A bimodal pore size distribution centred at 4 nm and 70 nm, respectively, was observed, consistent with the existence of small nanoscale pores in the bulk of the sample, and large open pores on the surface of the porous nanonetwork as observed by SEM.

  17. Graphitic carbon grown on fluorides by molecular beam epitaxy.

    PubMed

    Jerng, Sahng-Kyoon; Lee, Jae Hong; Kim, Yong Seung; Chun, Seung-Hyun

    2013-01-03

    We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further systematic studies with other series of substrates. At the same growth temperature, the NCG on MgF2 has larger clusters than those on oxides. This is contrary to the general expectation because the bond strength of the carbon-fluorine bond is larger than that of the carbon-oxygen bond. Our results show that the growth of graphitic carbon does not simply depend on the chemical bonding between the carbon and the anion in the substrate.

  18. Effects of shutter transients in molecular beam epitaxy.

    PubMed

    Gozu, Shin-Ichiro; Mozume, Teruo; Kuwatsuka, Haruhiko; Ishikawa, Hiroshi

    2012-11-12

    : We have studied the effects of shutter transients (STs) in molecular beam epitaxy (MBE). Two series of samples were grown by MBE and evaluated by X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements. The effects of STs were evaluated by growth rate (GR) analysis using a combination of growth time (GT) and thickness evaluated by XRD and XRR measurements. We revealed two opposite effects of STs: (1) overshoot of GR and (2) increase in GR with GT and subsequent saturation. Each effect was consistent with the previous studies; however, the previous studies showed no relationships between these two effects. By considering closing time of the shutter, the two opposite effects were well understood.

  19. Indium antimonide doped with manganese grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Heremans, J.; Thrush, C. M.

    1997-05-01

    Indium antimonide is of interest for infrared detecting and emitting devices and for magnetic field sensors. In this study, indium antimonide doped with manganese and grown by molecular beam epitaxy was investigated. Secondary ion mass spectroscopy (SIMS) was used to show that the incorporation of managenese is near unity over a wide range of manganese concentrations. Manganese is observed to be an acceptor with a dopant efficiency which follows a power law in which the hole density is proportional to the manganese concentration raised to the power α. The power α depends on the growth temperature; at 300°C, α = 0.86 and at 360°C, α = 0.78. Lightly manganese doped samples have transport dominated by electrons at low temperatures due to hole freeze out, followed by holes at intermediate temperatures and finally by intrinsic electrons at high temperatures. Additional SIMS studies showed that manganese diffuses relatively slowly in indium antimonide.

  20. Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy

    SciTech Connect

    A. T. Bollinger; Wu, J.; Bozovic, I.

    2016-03-15

    In this study, the molecular beam epitaxy(MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.

  1. Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy

    DOE PAGES

    A. T. Bollinger; Wu, J.; Bozovic, I.

    2016-03-15

    In this study, the molecular beam epitaxy(MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.

  2. Metallic impurities in gallium nitride grown by molecular beam epitaxy

    SciTech Connect

    McHugo, S.A.; Krueger, J.; Kisielowski, C.

    1997-04-01

    Transition metals are often encountered in trace amounts in semiconductors. They have been extensively studied in most elemental and compound systems, since they form deep donor and/or acceptor levels which usually degrade the electronic and optical material properties. Only very little is known about transition metals in recent III-V semiconducting materials, such as GaN, AlN and InN. These few studies have been done exclusively on Metal-Organic Chemical Vapor Deposition (MOCVD) or Hybrid Vapor Phase Epitaxy HVPE-grown GaN. Preliminary x-ray fluorescence studies at the Advanced Light Source, beamline 10.3.1, Lawrence Berkeley National Laboratory have revealed that GaN materials grown by Molecular Beam Epitaxy (MBE) have Fe, Ni and Cr as the dominant transition metal contaminants. This finding is commensurate with the extremely high concentrations of hydrogen, carbon and oxygen (up to 10{sup 20} cm{sup {minus}3}) measured by Secondary Ion Mass Spectroscopy (SIMS). Preliminary work using the mapping capabilities of the x-ray fluorescence microprobe revealed the metal impurities were inhomogeneously distributed over the film. Future work of this collaboration will be to find a correlation between the existence of transition metals in MBE films, as revealed by x-ray fluorescence, and Photoluminescence (PL) spectra taken in the infrared region. Also, the authors will make use of the 1 {mu}m spatial resolution of x-ray microprobe to locate the contaminants in relation to structural defects in the GaN films. Because of the large strain caused by the lattice mismatch between the GaN films and the substrates, the films grow in a columnar order with high densities of grain boundaries and dislocations. These structural defects offer preferential sites for metal precipitation or agglomeration which could degrade the optical properties of this material more so than if the impurities were left dissolved in the GaN.

  3. Molecular Beam Epitaxy of GaN Nanowires on Epitaxial Graphene.

    PubMed

    Fernández-Garrido, Sergio; Ramsteiner, Manfred; Gao, Guanhui; Galves, Lauren A; Sharma, Bharat; Corfdir, Pierre; Calabrese, Gabriele; de Souza Schiaber, Ziani; Pfüller, Carsten; Trampert, Achim; Lopes, João Marcelo J; Brandt, Oliver; Geelhaar, Lutz

    2017-09-13

    We demonstrate an all-epitaxial and scalable growth approach to fabricate single-crystalline GaN nanowires on graphene by plasma-assisted molecular beam epitaxy. As substrate, we explore several types of epitaxial graphene layer structures synthesized on SiC. The different structures differ mainly in their total number of graphene layers. Because graphene is found to be etched under active N exposure, the direct growth of GaN nanowires on graphene is only achieved on multilayer graphene structures. The analysis of the nanowire ensembles prepared on multilayer graphene by Raman spectroscopy and transmission electron microscopy reveals the presence of graphene underneath as well as in between nanowires, as desired for the use of this material as contact layer in nanowire-based devices. The nanowires nucleate preferentially at step edges, are vertical, well aligned, epitaxial, and of comparable structural quality as similar structures fabricated on conventional substrates.

  4. Topological insulator film growth by molecular beam epitaxy: A review

    SciTech Connect

    Ginley, Theresa P.; Wang, Yong; Law, Stephanie

    2016-11-23

    In this article, we will review recent progress in the growth of topological insulator (TI) thin films by molecular beam epitaxy (MBE). The materials we focus on are the V2-VI3 family of TIs. These materials are ideally bulk insulating with surface states housing Dirac excitations which are spin-momentum locked. These surface states are interesting for fundamental physics studies (such as the search for Majorana fermions) as well as applications in spintronics and other fields. However, the majority of TI films and bulk crystals exhibit significant bulk conductivity, which obscures these states. In addition, many TI films have a high defect density. This review will discuss progress in reducing the bulk conductivity while increasing the crystal quality. We will describe in detail how growth parameters, substrate choice, and growth technique influence the resulting TI film properties for binary and ternary TIs. We then give an overview of progress in the growth of TI heterostructures. Furthermore, we close by discussing the bright future for TI film growth by MBE.

  5. Topological insulator film growth by molecular beam epitaxy: A review

    DOE PAGES

    Ginley, Theresa P.; Wang, Yong; Law, Stephanie

    2016-11-23

    In this article, we will review recent progress in the growth of topological insulator (TI) thin films by molecular beam epitaxy (MBE). The materials we focus on are the V2-VI3 family of TIs. These materials are ideally bulk insulating with surface states housing Dirac excitations which are spin-momentum locked. These surface states are interesting for fundamental physics studies (such as the search for Majorana fermions) as well as applications in spintronics and other fields. However, the majority of TI films and bulk crystals exhibit significant bulk conductivity, which obscures these states. In addition, many TI films have a high defectmore » density. This review will discuss progress in reducing the bulk conductivity while increasing the crystal quality. We will describe in detail how growth parameters, substrate choice, and growth technique influence the resulting TI film properties for binary and ternary TIs. We then give an overview of progress in the growth of TI heterostructures. Furthermore, we close by discussing the bright future for TI film growth by MBE.« less

  6. Growth of Atomically Flat DBCO Films Using Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Andrus, Aaron E.; Oh, Seongshik; Davidson, Bruce A.; O'Donnell, Jim; Eckstein, James N.

    2000-03-01

    We have grown atomically flat a-axis dysprosium barium copper oxide (DBCO) films by molecular beam epitaxy (MBE) using a pure ozone source. Such films can be used, for example, to exploit the inherent anisotropy of DBCO in spin injection devices using ferromagnetic polarized electron sources or all-superconducting Josephson junctions. The a-axis films are grown on a strontium titanate (STO) substrate using a low temperature DBCO template to achieve a-axis orientation. During growth, we use reflection high energy electron diffraction (RHEED) to observe the emergence of one-third order streaks in the diffraction pattern and a reduction in the surface roughness as we increase the growth temperature. Subsequent x-ray diffraction shows complete a-axis normal orientation with pseudomorphic growth (in-plane lattice constants identical to the substrate) and a slightly larger out of plane lattice constant than bulk crystals. Atomic force microscopy (AFM) shows an RMS roughness of 4 Å over several millimeters of the film surface, sufficient to construct tunnel junction devices.

  7. Molecular beam epitaxial growth of tin oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Medina, Gabriel A.

    In an effort to develop a method to utilize SnO in transparent electronic and optoelectronic applications, the molecular beam epitaxy method was used to grow a thin film SnO sample. Five samples were grown and studied using various conventional techniques. X-ray diffraction and Raman spectroscopy was used to identify the composition of the samples. The quality and thickness of the samples was studied using Scanning Electron Microscopy. This data was used to determine which samples were successful growths of SnO and how the growth conditions of each may have affected the outcomes. From the compiled data, single phase SnO was identified and selected for further study of it electrical properties. Previous studies have not been able to accurately identify the band gap energy of SnO due to its instability as an oxide. A bandgap energy of 2.56 eV was determined by photoluminescence analysis. This is consistent with reported estimates of between 2.5 to 3 eV for SnO.

  8. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim; Engel-Herbert, Roman

    2016-07-01

    The synthesis of a 50 unit cell thick n = 4 Srn+1TinO3n+1 (Sr5Ti4O13) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO2 layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO2 layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried out over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO3 perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.

  9. On the Growth of Complex Oxides by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Fong, Dillon

    Functional materials based on complex oxides in thin film form offer new and exciting strategies for meeting many of our outstanding energy challenges through systematic control of layer sequencing, strain, etc. However, the synthesis of such oxide films can be a major challenge even when utilizing reactive molecular-beam epitaxy (MBE), a powerful deposition technique that allows the construction of materials atomic plane by atomic plane. To understand the fundamental physics of oxide growth by reactive MBE, we present in situ surface x-ray diffraction results on the growth of SrTiO3 and SrO-SrTiO3 thin films on (001)-oriented SrTiO3 substrates. For homoepitaxy, we compare sequential deposition (alternating Sr and Ti monolayer doses) with that of co-deposition of Sr and Ti, both in a background of oxygen pressure, and observe drastically different growth pathways due to the presence of a TiO2 double layer. For heteroepitaxial growth of Ruddlesden-Popper SrO-SrTiO3 films, we find that layers rearrange dynamically, resulting in layer sequences distinct from the shutter sequence. In general, the starting surface structure and composition, in combination with local thermodynamic considerations, strongly influence our ability to atomically construct new complex oxides.

  10. Sodium chloride on Si(100) grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chung, Jen-Yang; Li, Hong-Dao; Chang, Wan-Heng; Leung, T. C.; Lin, Deng-Sung

    2011-02-01

    Sodium chloride (NaCl) films were grown on an Si(100)-(2 × 1) surface at near room temperature by molecular beam epitaxy (MBE). The atomic structure and growth mode of the prototypical ionic materials on the covalent bonded semiconductor surface is examined by synchrotron core-level x-ray photoemission spectrum (XPS), scanning tunneling microscopy (STM), and first-principles calculations. The Si 2p, Na 2p, and Cl 2p core-level spectra together indicate that adsorbed NaCl molecules at submonolayer coverage [i.e., below 0.4 monolayer (ML)] partially dissociate and form Si-Cl species, and that a significant portion of the dangling-bond characteristics of the clean surface remains after NaCl deposition of 1.8 MLs. The deposition of 0.65-ML NaCl forms a partially ordered adlayer, which includes NaCl networks, Si-Cl species, adsorbed Na species, and isolated dangling bonds. The STM results revealed that the first adlayer consists of bright protrusions which form small c(2 × 4) and (2 × 2) patches. Above 0.65 ML, the two-dimensional NaCl double-layer growth proceeds on top of the first adlayer.

  11. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    SciTech Connect

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim; Engel-Herbert, Roman

    2016-07-25

    The synthesis of a 50 unit cell thick n = 4 Sr{sub n+1}Ti{sub n}O{sub 3n+1} (Sr{sub 5}Ti{sub 4}O{sub 13}) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO{sub 2} layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO{sub 2} layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried out over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO{sub 3} perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.

  12. AlN grown by metalorganic molecular beam epitaxy

    SciTech Connect

    Mackenzie, J.D.; Abernathy, C.R.; Pearton, S.J.; Wilson, R.G.

    1995-08-01

    Thin film AlN has been grown on Al{sub 2}O{sub 3} and GaAs substrates by metalorganic molecular beam epitaxy (MOMBE) using amine bonded alane precursors, tertiarybutylamine, and nitrogen from a compact electron cyclotron resonance (ECR) plasma source operating at 2.45 GHz. Typical growth pressures were in the 0.5--1 {times} 10{sup {minus}4} Torr range. The growth rates, impurity backgrounds and surface morphologies were examined for both nitrogen sources and both the solid and liquid alanes. In general, growth efficiencies were good for both alane precursors, allowing for deposition of the low temperature, {approximately} 400 C, AlN buffers needed for subsequent growth of GaN and InGaAlN alloys. Low growth temperatures could not be obtained using tertiarybutylamine, presumably due to poor decomposition efficiency of the source at low temperatures. The structural quality of material grown at high temperatures from the ECR plasma was measured by atomic force microscopy (AFM) and high resolution x-ray diffraction (HRXRD), indicating a surface roughness of {approximately} 8 {angstrom} and an x-ray full width half maximum (FWHM) of 430 arcsec.

  13. Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin

    DTIC Science & Technology

    2016-09-01

    heating. The α-Sn layers were also characterized with high-resolution X-ray diffraction, Hall, and atomic force microscopy (AFM) measurements...ARL-TR-7838 ● SEP 2016 US Army Research Laboratory Molecular Beam Epitaxy Growth and Characterization of Thin Layers of...Laboratory Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin by P Folkes, P Taylor, C Rong, B Nichols

  14. Low temperature laser molecular beam epitaxy and characterization of AlGaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Tyagi, Prashant; Ch., Ramesh; Kushvaha, S. S.; Kumar, M. Senthil

    2017-05-01

    We have grown AlGaN (0001) epitaxial layers on sapphire (0001) by using laser molecular beam epitaxy (LMBE) technique. The growth was carried out using laser ablation of AlxGa1-x liquid metal alloy under r.f. nitrogen plasma ambient. Before epilayer growth, the sapphire nitradation was performed at 700 °C using r.f nitrogen plasma followed by AlGaN layer growth. The in-situ reflection high energy electron diffraction (RHEED) was employed to monitor the substrate nitridation and AlGaN epitaxial growth. High resolution x-ray diffraction showed wurtzite hexagonal growth of AlGaN layer along c-axis. An absorption bandgap of 3.97 eV is obtained for the grown AlGaN layer indicating an Al composition of more than 20 %. Using ellipsometry, a refractive index (n) value of about 2.19 is obtained in the visible region.

  15. Growth and optical properties of AlN homoepitaxial layers grown by ammonia-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Iwata, Shiro; Nanjo, Yoshiyuki; Okuno, Toshihiro; Kurai, Satoshi; Taguchi, Tsunemasa

    2007-04-01

    We have performed the homoepitaxial growth of high-crystalline quality Aluminium nitride (AlN) epilayers by the ammonia-gas source (GS) molecular-beam epitaxy method using the hydride vapor-phase epitaxy (HVPE) grown AlN thin layers as substrates. Surface morphologies and step-bunching structures of the homoepitaxially grown AlN epilayers were evaluated using in situ reflection high-energy electron diffraction (RHEED) patterns and scanning probe microscopy. It is noted that the step height of several monolayers was achieved on the surface of homoepitaxial layers. The homoepitaxial AlN thin films had the same or improved crystalline quality compared with the HVPE-grown AlN layers from X-ray rocking curve measurements, and its optical properties were investigated using cathodoluminescence measurements. Excitonic emission, which originates from the A free-exciton transition, was clearly observed in the present high-quality homoepitaxial AlN epilayers.

  16. Growth of (111) GaAs on (111) Si using molecular-beam epitaxy

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, G.; Liu, J.; Grunthaner, F.; Katz, J.; Morkoc, H.

    1988-01-01

    (111) GaAs layers have been grown epitaxially on (111) Si wafers, both on-axis as well as 3-deg off-axis towards the 1 -1 0 direction, using molecular-beam epitaxy. The grown layers have been characterized by scanning electron microscopy, X-ray diffraction, and transmission electron microscopy.

  17. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Lu, Zhen-Yu; Chen, Ping-Ping; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-01

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  18. Molecular beam epitaxy for advanced gate stack materials and processes

    NASA Astrophysics Data System (ADS)

    Locquet, Jean-Pierre

    2005-03-01

    The material requirements for future CMOS generations - as given by the ITRS roadmap - are very challenging. This includes a high K dielectric without a low K interfacial layer, a high mobility channel and the appropriate metal gate. With the help of two projects INVEST and ET4US, we are building up a molecular beam epitaxy (MBE) infrastructure to grow this material set on large area wafers that can be further processed into small scale devices. In the INVEST project, we have developed an MBE system for the growth of complex oxides on semiconductors. The system follows the overall design of a production tool and is equipped with an RF atomic oxygen source, effusion cells, e-beam evaporators and a differential pumping stage. The oxide growth process starts with desorbing the initial surface oxide on the Si wafers in ultra-high vacuum and high temperature to create a clean reconstructed 2x1 surface. Using the atomic oxygen it is possible to oxidize the surface in a well controlled manner at low temperature and to grow very thin and dense SiOx layers, followed by the growth of 2-6 nm amorphous high K dielectrics. The process parameters permit to tune the interface layer from a SiOx rich to a silicide rich interface with a significant impact on the capacitance and the leakage. Initial focus is on developing an optimized growth recipe for high quality amorphous HfO2 and LaHfO3.5 films. This recipe was subsequently used to make wafers for a transistor batch that gave us the first N short channel MBE MOSFET's (100 nm) using an etched gate process flow. Some highlights of the first batch for 3nm HfO2 MOSFET are a high mobility (> 270 cm^2/Vs) with a corresponding low leakage current of 2 mA/cm^2). While there were some process issues for LaHfO3.5, the 3 nm MOSFET showed very low leakage currents below 10-6 A/cm^2. Interestingly all the LaHFO3.5 MOSFETs showed very low threshold voltage instabilities. In collaboration with C. Marchiori, M. Sousa, A.Guiller, H. Siegwart, D

  19. III-nitride ultraviolet emitters produced by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Anirban

    In this dissertation, the growth of III-Nitride based ultraviolet (UV) emitters by molecular beam epitaxy has been addressed. These devices can find applications in optical data storage, solid-state lighting, and in biological detection. A significant part of the research involved materials development, as there are several major scientific and technological hurdles that must be overcome in order to produce commercially viable devices. For emission in the wavelength region 330 nm to 350 nm, the devices were designed as electrically-injected light emitting diodes (LEDs). Each layer of this structure was individually optimized to improve the materials properties. To overcome the difficulties in p-type doping, a new growth regime has been explored which led to films with hole concentrations of up to 2 x 10 18/cm3. Multiple quantum wells (MQWs) were grown along polar and non-polar directions to understand the effects of the presence of built-in polarization fields. It was found that these detrimental effects are minimized for ultra thin wells. Use of an Indium flux as a surfactant was found to substantially improve the luminescence properties of bulk Aluminum Gallium Nitride (AlGaN) alloys and MQWs. UV-LEDs grown under these optimized conditions show an optical power output of 0.75 mW at 340 nm and 4.5 mW at 350nm. For emission in the wavelength region below 270 nm, due to the difficulty of doping AlGaN alloys with high Aluminum Nitride (AlN) mole fraction, edge or vertical emitting electron beam-pumped laser structures have been developed. Since it is difficult to cleave III-Nitrides deposited onto C-plane sapphire, edge emitting laser structures using a Graded-Index Separate Confinement Heterostructure (GRINSCH) based geometry have been deposited onto A-plane sapphire using a novel AlN buffer layer. An AlGaN bulk film or a set of AlN/AlGaN MQWs is used as the active region. For use in these devices, the growth of high Al content AlGaN was optimized to reduce the deep

  20. Reclamation of a molecular beam epitaxy system and conversion for oxide epitaxy

    SciTech Connect

    Carver, Alexander G.; Henderson, Walter; Doolittle, W. Alan

    2008-11-15

    An early 1980s vintage molecular beam epitaxy system, a Varian Gen II system, originally used for HgCdTe epitaxy, was converted into a system capable of growing thin-film complex metal oxides. The nature of some of the alternative oxides requires a thorough cleaning and, in some cases, complete replacement of system components. Details are provided regarding the chemistry of the etchants used, safety requirements for properly handling, and disposal of large quantities of etchants and etch by-products, and components that can be reused versus components that require replacement are given. Following the given procedures, an ultimate base pressure of 2x10{sup -10} Torr was obtained. Films grown in the system after reclamation contained no evidence of previously present materials down to the detection limit of secondary ion mass spectrometry.

  1. Molecular beam epitaxial growth of graphene and ridge-structure networks of graphene

    NASA Astrophysics Data System (ADS)

    Maeda, Fumihiko; Hibino, Hiroki

    2011-11-01

    By gas-source molecular beam epitaxy (MBE) using cracked ethanol, we grew graphene at substrate temperatures between 600 and 915 °C on graphene formed on SiC(0 0 0 1) by thermal decomposition. To investigate the substrate temperature dependence of graphene growth we analysed the MBE-grown graphene by Raman spectroscopy and in situ x-ray photoelectron spectroscopy (XPS) and observed it by atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (TEM). Analyses using the G-band peak and the peak intensity ratio between D- and G-band peaks in the Raman spectra revealed that growth at higher temperatures improved the crystallinity and increased the domain size. Although the growth rate decreased at higher temperatures, as revealed by XPS, these results indicated that growth at a higher temperature is effective in obtaining graphene of higher quality. Furthermore, the AFM and TEM observations revealed a network of fin-like ridge structures of graphene sticking out from the surface. The presence of these 'graphene nanofins' indicated that two-dimensional islands of graphene are surrounded by the nanofins, and the island size was estimated to be 67 nm using the average distance between the nanofins.

  2. Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Vuong, T. Q. P.; Cassabois, G.; Valvin, P.; Rousseau, E.; Summerfield, A.; Mellor, C. J.; Cho, Y.; Cheng, T. S.; Albar, J. D.; Eaves, L.; Foxon, C. T.; Beton, P. H.; Novikov, S. V.; Gil, B.

    2017-06-01

    We investigate the opto-electronic properties of hexagonal boron nitride grown by high temperature plasma-assisted molecular beam epitaxy. We combine atomic force microscopy, spectroscopic ellipsometry, and photoluminescence spectroscopy in the deep ultraviolet to compare the quality of hexagonal boron nitride grown either on sapphire or highly oriented pyrolytic graphite. For both substrates, the emission spectra peak at 235 nm, indicating the high optical quality of hexagonal boron nitride grown by molecular beam epitaxy. The epilayers on highly oriented pyrolytic graphite demonstrate superior performance in the deep ultraviolet (down to 210 nm) compared to those on sapphire. These results reveal the potential of molecular beam epitaxy for the growth of hexagonal boron nitride on graphene, and more generally, for fabricating van der Waals heterostructures and devices by means of a scalable technology.

  3. Ex Situ Thermal Cycle Annealing of Molecular Beam Epitaxy Grown HgCdTe/Si Layers

    DTIC Science & Technology

    2010-01-01

    during the growth process itself, is an effective means to reduce etch pit den- sity (EPD) and improve overall crystal quality. Subjecting CdTe /Si...results of ex situ thermal cycle annealing (TCA) of molecular beam epitaxy grown mercury cadmium telluride (HgCdTe) on Cd (Se)Te/ Si(211) composite...present the results of ex situ thermal cycle annealing (TCA) of molecular beam epitaxy grown mercury cadmium telluride (HgCdTe) on Cd (Se)Te/ Si(211

  4. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  5. Large Area Synthesis of 1D-MoSe2 Using Molecular Beam Epitaxy.

    PubMed

    Poh, Sock Mui; Tan, Sherman J R; Zhao, Xiaoxu; Chen, Zhongxin; Abdelwahab, Ibrahim; Fu, Deyi; Xu, Hai; Bao, Yang; Zhou, Wu; Loh, Kian Ping

    2017-01-23

    Large area synthesis of 1D-MoSe2 nanoribbons on both insulating and conducting substrates via molecular beam epitaxy is presented. Dimensional controlled growth of 2D, 1D-MoSe2 , and 1D-2D-MoSe2 hybrid heterostructure is achieved by tuning the growth temperature or Mo:Se precursor ratio.

  6. Growth of b-axis rare earths on sapphire by molecular beam epitaxy

    SciTech Connect

    Ritley, K.A.; Flynn, C.P.

    1998-01-01

    A process is described whereby hcp rare-earth metals can be grown heteroepitaxially as high-quality single-crystal films with the b axis normal to the growth plane. The growth employs molecular beam epitaxy, starting from available sapphire substrates. The results of characterization by several techniques are described. {copyright} {ital 1998 American Institute of Physics.}

  7. Mn-assisted molecular-beam epitaxy growth (Ga,Mn)As nanowires

    NASA Astrophysics Data System (ADS)

    Reznik, R. R.; Samsonenko, Yu B.; Khrebtov, A. I.; Bouravleuv, A. D.; Werner, P.; Cirlin, G. E.

    2016-11-01

    Arrays of (Ga,Mn)As crystal nanowires on a GaAs (100) substrate were obtained using molecular-beam epitaxy at the substrate temperature 485°C. From the high energy electron diffraction patterns, the crystallographic phase of the nanowires is detected to be cubic which is supporting by ex situ microscopy study.

  8. Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth

    SciTech Connect

    Kamimura, J.; Kishino, K.; Kikuchi, A.

    2015-02-28

    Very thick InN (∼40 μm) was grown by molecular beam epitaxy using the epitaxial lateral overgrowth (ELO) technique. In some regions, the ELO of InN was observed as expected, indicating an important step toward fabricating quasi-bulk InN substrates. Interestingly, most parts of the sample consist of large flat-topped microcrystals and well-faceted microstructures. This is likely due to local growth condition variations during ELO, which is supported by an experiment where ELO of InN was performed on a substrate with various stripe mask patterns. TEM characterization of a flat top InN microcrystal revealed few stacking faults and only related threading dislocations. Defect-free small faceted microcrystals were also observed. The thick InN crystals show a narrow photoluminescence spectrum with a peak at 0.679 eV and linewidth of 16.8 meV at 4 K.

  9. Layer-by-Layer Epitaxial Growth of Scalable WSe2 on Sapphire by Molecular Beam Epitaxy.

    PubMed

    Nakano, Masaki; Wang, Yue; Kashiwabara, Yuta; Matsuoka, Hideki; Iwasa, Yoshihiro

    2017-09-13

    Molecular beam epitaxy (MBE) provides a simple but powerful way to synthesize large-area high-quality thin films and heterostructures of a wide variety of materials including accomplished group III-V and II-VI semiconductors as well as newly developing oxides and chalcogenides, leading to major discoveries in condensed-matter physics. For two-dimensional (2D) materials, however, main fabrication routes have been mechanical exfoliation and chemical vapor deposition by making good use of weak van der Waals bonding nature between neighboring layers, and MBE growth of 2D materials, in particular on insulating substrates for transport measurements, has been limited despite its fundamental importance for future advanced research. Here, we report layer-by-layer epitaxial growth of scalable transition-metal dichalocogenide (TMDC) thin films on insulating substrates by MBE and demonstrate ambipolar transistor operation. The proposed growth protocol is broadly applicable to other TMDCs, providing a key milestone toward fabrication of van der Waals heterostructures with various 2D materials for novel properties and functionalities.

  10. Cyclotron resonance in epitaxial Bi1-xSbx films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Heremans, J.; Partin, D. L.; Thrush, C. M.; Karczewski, G.; Richardson, M. S.; Furdyna, J. K.

    1993-10-01

    The far-infrared magnetotransmission of thin films of semiconducting and semimetallic Bi1-xSbx alloys grown by molecular-beam epitaxy has been measured at fixed photon energies between 2.5 and 21.4 meV in magnetic fields up to 6 T, at T=1.8 K. The samples, grown on BaF2 substrates with composition 0<=x<=22.5%, were monocrystalline, with the trigonal axis perpendicular to the surface plane. The measurements were carried out in Faraday and Voigt geometries, with the magnetic field oriented parallel to binary, bisectrix, and trigonal axes of the films. Cyclotron-resonance lines of both electrons and holes were observed. From them, we establish the composition dependence of the effective-mass tensor, of the direct L-point band gap, and of the energy overlap in the semimetallic samples. We conclude that all band-structure parameters are the same in the films as in bulk Bi1-xSbx alloys, except for the energy overlap, which is increased by 16 meV independently of composition, possibly because of the strain induced by the substrate.

  11. ZnTe nanowires grown catalytically on GaAs (001) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Janik, E.; Sadowski, J.; DłuŻewski, P.; Kret, S.; Presz, A.; Baczewski, L. T.; Łusakowska, E.; Wróbel, J.; Karczewski, G.; Wojtowicz, T.

    2007-04-01

    We report on the first successful growth of ZnTe nanowires and on their basic structural properties. The nanowires were produced by molecular beam epitaxy (MBE) with the use of mechanism of catalytically enhanced growth. A thin layer of gold layer (3 to 20 Å thick) annealed in high vacuum prior to the nanowires growth was used as a source of catalytic nanoparticles. Annealing of GaAs substrate with gold layer, performed prior to the MBE growth, leads to formation of Au-Ga eutectic droplets. The presence of Au-Ga droplets on GaAs substrate surface induce the ZnTe nanowire growth via vapor-liquid-solid mechanism, in growth conditions differing form those used in the molecular beam epitaxial growth of ZnTe layers only in the substrate temperature.

  12. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOEpatents

    Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  13. Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs

    NASA Technical Reports Server (NTRS)

    Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.

    1988-01-01

    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.

  14. (In,Mn)As quantum dots: Molecular-beam epitaxy and optical properties

    SciTech Connect

    Bouravleuv, A. D. Nevedomskii, V. N.; Ubyivovk, E. V.; Sapega, V. F.; Khrebtov, A. I.; Samsonenko, Yu. B.; Cirlin, G. E.; Ustinov, V. M.

    2013-08-15

    Self-assembled (In,Mn)As quantum dots are synthesized by molecular-beam epitaxy on GaAs (001) substrates. The experimental results obtained by transmission electron microscopy show that doping of the central part of the quantum dots with Mn does not bring about the formation of structural defects. The optical properties of the samples, including those in external magnetic fields, are studied.

  15. Room-temperature ferromagnetism in zincblende CrSb grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhao, J. H.; Matsukura, F.; Takamura, K.; Abe, E.; Chiba, D.; Ohno, H.

    2001-10-01

    Thin films of CrSb grown by solid-source molecular-beam epitaxy on GaAs, (Al, Ga)Sb, and GaSb are found to exhibit ferromagnetism. Reflection high-energy electron diffraction and high-resolution cross sectional transmission electron microscopy both indicate that the structure is zincblende. Temperature dependence of remanent magnetization shows that the ferromagnetic transition temperature is beyond 400 K.

  16. Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Liao, Zhi-Min; Sofin, R G Sumesh; Feng, Gen; Ma, Xiu-Mei; Shick, Alexander B; Mryasov, Oleg N; Shvets, Igor V

    2012-12-11

    Mn(2)Au, a layered bimetal, is successfully grown using molecular beam epitaxy (MBE). The experiments and theoretical calculations presented suggest that Mn(2)Au film is antiferromagnetic with a very low critical temperature. The antiferromagnetic nature is demonstrated by measuring the exchange-bias effect of Mn(2)Au/Fe bilayers. This study establishes a primary basis for further research of this new antiferromagnet in spin-electronic device applications.

  17. Pure electron-electron dephasing in percolative aluminum ultrathin film grown by molecular beam epitaxy.

    PubMed

    Lin, Shih-Wei; Wu, Yue-Han; Chang, Li; Liang, Chi-Te; Lin, Sheng-Di

    2015-01-01

    We have successfully grown ultrathin continuous aluminum film by molecular beam epitaxy. This percolative aluminum film is single crystalline and strain free as characterized by transmission electron microscopy and atomic force microscopy. The weak anti-localization effect is observed in the temperature range of 1.4 to 10 K with this sample, and it reveals that, for the first time, the dephasing is purely caused by electron-electron inelastic scattering in aluminum.

  18. Arsenic {delta}-doped HgTe/HgCdTe superlattices grown by molecular beam epitaxy

    SciTech Connect

    Tsen, G. K. O.; Musca, C. A.; Dell, J. M.; Antoszewski, J.; Faraone, L.; Becker, C. R.

    2008-02-25

    Arsenic incorporation in HgTe/Hg{sub 0.05}Cd{sub 0.95}Te superlattices grown by molecular beam epitaxy (MBE) is reported. The incorporation was carried out by a {delta}-doping approach where arsenic was incorporated during MBE growth as acceptors. The superlattices were characterized via high resolution x-ray diffraction, Fourier transform infrared spectroscopy, secondary ion mass spectrometry, and magnetotransport Hall measurements coupled with the quantitative mobility spectrum analysis algorithm.

  19. Antimony-assisted carbonization of Si(111) with solid source molecular beam epitaxy

    SciTech Connect

    Hackley, Justin; Richardson, Christopher J. K.; Sarney, Wendy L.

    2013-11-15

    The carbonization of an antimony-terminated Si (111) surface in a solid source molecular beam epitaxy system is presented. Reflection high-energy electron diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy are used to characterize samples grown with and without antimony termination. It is shown that the antimony-terminated surface promotes the formation of thin, smooth and continuous SiC films at a relatively low temperature of 800 °C.

  20. Single-crystal germanium grown on (1-1 0 2) sapphire by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Godbey, D. J.; Qadri, S. B.; Twigg, M. E.; Richmond, E. D.

    1989-06-01

    Crystalline germanium films have been successfully grown on the (1-1 0 2) sapphire surface using molecular beam epitaxy. Growth at temperatures above 700 C and after preannealing the sapphire substrates above 1100 C resulted in germanium films with a (110) orientation. A 500 nm germanium film grown at 800 C after preannealing the sapphire substrate at 1400 C gave an X-ray rocking curve width that measured 317 arcsec at half maximum for the (220) reflection.

  1. Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates

    SciTech Connect

    Cruz Hernandez, Esteban; Rojas Ramirez, Juan-Salvador; Contreras Hernandez, Rocio; Lopez Lopez, Maximo; Pulzara Mora, Alvaro; Mendez Garcia, Victor H.

    2007-02-09

    In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface.

  2. Site-controlled Ag nanocrystals grown by molecular beam epitaxy-Towards plasmonic integration technology

    SciTech Connect

    Urbanczyk, Adam; Noetzel, Richard

    2012-12-15

    We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.

  3. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-01

    Epitaxial silicon nanowires (NWs) of short heights (˜280nm) on Si ⟨111⟩ substrate were grown and doped in situ with boron on a concentration range of 1015-1019cm-3 by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (1015cm-3) and medium doped (3×1016 and 1×1017cm-3) NWs were heavily depleted by the surface states while the high doped (1018 and 1019cm-3) ones showed volume conductivities expected for the corresponding intended doping levels.

  4. Molecular-Beam Epitaxy Of CrSi2 on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; Grunthaner, Paula J.; Lin, True-Lon; Jamieson, David N.; Mazur, Jurek H.

    1989-01-01

    Crystalline layers grown in commercial apparatus. Experiments show CrSi2 grown on (111) face of single-crystal Si substrate by molecular-beam epitaxy. Epitaxial CrSi2 produced thus far not in desired single-crystal form. Because CrSi2 semiconductor with band gap of 0.3 eV, experimental process potential for monolitic integration of microelectronic devices based on CrSi2 (e.g., infrared detectors) with signal-processing circuitry based on Si.

  5. Lutetium-doped EuO films grown by molecular-beam epitaxy

    SciTech Connect

    Melville, A.; Heeg, T.; Mairoser, T.; Schmehl, A.; Shai, D. E.; Monkman, E. J.; Harter, J. W.; Hollaender, B.; Schubert, J.; Shen, K. M.; Mannhart, J.; Schlom, D. G.

    2012-05-28

    The effect of lutetium doping on the structural, electronic, and magnetic properties of epitaxial EuO thin films grown by reactive molecular-beam epitaxy is experimentally investigated. The behavior of Lu-doped EuO is contrasted with doping by lanthanum and gadolinium. All three dopants are found to behave similarly despite differences in electronic configuration and ionic size. Andreev reflection measurements on Lu-doped EuO reveal a spin-polarization of 96% in the conduction band, despite non-magnetic carriers introduced by 5% lutetium doping.

  6. Structural and electronic properties of molecular beam epitaxially grown Ni1+xTiSn films

    NASA Astrophysics Data System (ADS)

    Rice, A. D.; Kawasaki, J. K.; Verma, N.; Pennachio, D. J.; Schultz, B. D.; Palmstrøm, C. J.

    2017-06-01

    This paper demonstrates the molecular beam epitaxial growth of metallic full-Heusler Ni2TiSn precipitates within semiconducting NiTiSn host matrix, and discusses the structural and chemical stability of this biphasic epitaxial composite and its influence on the electronic properties. Structural properties of the epitaxial films were characterized by in-situ reflection high-energy electron diffraction and ex-situ by X-ray diffraction and transmission electron microscopy. The results indicate the presence of a secondary phase with full Heusler ordering within half-Heusler host matrix. Both the parent half-Heusler and the secondary full-Heusler phases in the epitaxial films are strained from their bulk lattice parameters. Electronic properties show an increase in resistivity at low Ni excess.

  7. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy.

    PubMed

    Zuo, Zheng; Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zheng, Jian-Guo; Liu, Jianlin

    2015-10-07

    Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitride (h-BN) heterostructures were synthesized on cobalt substrates by using molecular beam epitaxy. Various characterizations were carried out to evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°.

  8. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy

    PubMed Central

    Zuo, Zheng; Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zheng, Jian-Guo; Liu, Jianlin

    2015-01-01

    Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitride (h-BN) heterostructures were synthesized on cobalt substrates by using molecular beam epitaxy. Various characterizations were carried out to evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°. PMID:26442629

  9. Molecular beam epitaxy and properties of GaAsBi/GaAs quantum wells grown by molecular beam epitaxy: effect of thermal annealing.

    PubMed

    Makhloufi, Hajer; Boonpeng, Poonyasiri; Mazzucato, Simone; Nicolai, Julien; Arnoult, Alexandre; Hungria, Teresa; Lacoste, Guy; Gatel, Christophe; Ponchet, Anne; Carrère, Hélène; Marie, Xavier; Fontaine, Chantal

    2014-03-17

    We have grown GaAsBi quantum wells by molecular beam epitaxy. We have studied the properties of a 7% Bi GaAsBi quantum well and their variation with thermal annealing. High-resolution X-ray diffraction, secondary ion mass spectrometry, and transmission electron microscopy have been employed to get some insight into its structural properties. Stationary and time-resolved photoluminescence shows that the quantum well emission, peaking at 1.23 μm at room temperature, can be improved by a rapid annealing at 650°C, while the use of a higher annealing temperature leads to emission degradation and blue-shifting due to the activation of non-radiative centers and bismuth diffusion from the quantum well.

  10. Low temperature growth of crystalline magnesium oxide on hexagonal silicon carbide (0001) by molecular beam epitaxy

    SciTech Connect

    Goodrich, T. L.; Parisi, J.; Cai, Z.; Ziemer, K. S.

    2007-01-22

    Magnesium oxide (111) was grown epitaxially on hexagonal silicon carbide (6H-SiC) (0001) substrates at low temperatures by molecular beam epitaxy and a remote oxygen plasma source. The films were characterized by reflection high-energy electron diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. Crystal structure, morphology, and growth rate of the magnesium oxide (MgO) films were found to be dependent on the magnesium flux, indicating a magnesium adsorption controlled growth mechanism. The single crystalline MgO thin films had an epitaxial relationship where MgO (111) parallel 6H-SiC (0001) and were stable in both air and 10{sup -9} Torr up to 1023 K.

  11. High-mobility BaSnO3 grown by oxide molecular beam epitaxy

    DOE PAGES

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; ...

    2016-01-28

    High-mobility perovskite BaSnO3 films are of significant interest as newwide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO3 films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnOx. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO3. We demonstrate room temperature electron mobilities of 150 cm2 V-1 s-1 in films grown on PrScO3. Lastly, the results open upmore » a wide range of opportunities for future electronic devices.« less

  12. Temperature dependence of band gap in MoSe2 grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Choi, Byoung Ki; Kim, Minu; Jung, Kwang-Hwan; Kim, Jwasoon; Yu, Kyu-Sang; Chang, Young Jun

    2017-08-01

    We report on a temperature-dependent band gap property of epitaxial MoSe2 ultrathin films. We prepare uniform MoSe2 films epitaxially grown on graphenized SiC substrates with controlled thicknesses by molecular beam epitaxy. Spectroscopic ellipsometry measurements upon heating sample in ultra-high vacuum showed temperature-dependent optical spectra between room temperature to 850 °C. We observed a gradual energy shift of optical band gap depending on the measurement temperature for different film thicknesses. Fitting with the vibronic model of Huang and Rhys indicates that the constant thermal expansion accounts for the steady decrease of band gap. We also directly probe both optical and stoichiometric changes across the decomposition temperature, which should be useful for developing high-temperature electronic devices and fabrication process with the similar metal chalcogenide films.

  13. Development of molecular beam epitaxy technology for III–V compound semiconductor heterostructure devices

    SciTech Connect

    Cheng, K. Y.

    2013-09-15

    Molecular beam epitaxy (MBE) is a versatile ultrahigh vacuum technique for growing multiple epitaxial layers of semiconductor crystals with high precision. The extreme control of the MBE technique over composition variation, interface sharpness, impurity doping profiles, and epitaxial layer thickness to the atomic level makes it possible to demonstrate a wide variety of novel semiconductor structures. Since its invention nearly 40 years ago, the MBE technique has evolved from a laboratory apparatus for exploring new materials and novel devices to a favored tool for the mass production of III–V high-speed devices. This paper will review some of the past developments in this technology and propose an outlook of future developments.

  14. High-mobility BaSnO{sub 3} grown by oxide molecular beam epitaxy

    SciTech Connect

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; Zhang, Jack Y.; Cain, Tyler A.; Stemmer, Susanne

    2016-01-01

    High-mobility perovskite BaSnO{sub 3} films are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO{sub 3} films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO{sub x}. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO{sub 3}. We demonstrate room temperature electron mobilities of 150 cm{sup 2} V{sup −1} s{sup −1} in films grown on PrScO{sub 3}. The results open up a wide range of opportunities for future electronic devices.

  15. Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy

    SciTech Connect

    Lee, H; Ke, X; Misra, R.; Ihlefeld, J.F.; Xu, Xiaoshan; Mei, Z.G.; Heeg, T.; Roeckerath, M.; Musfeldt, J.L.; Schiffer, P.; Schlom, D.G.

    2010-01-01

    We have developed the means to grow BiMnO3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with rocking curve full width at half maximum values as narrow as 11 arc sec 0.003 . Optical absorption measurements reveal that BiMnO3 has a direct band gap of 1.1 0.1 eV.

  16. Adsorption-controlled molecular-beam epitaxial growth of BiFeO{sub 3}

    SciTech Connect

    Ihlefeld, J. F.; Kumar, A.; Gopalan, V.; Schlom, D. G.; Chen, Y. B.; Pan, X. Q.; Heeg, T.; Schubert, J.; Ke, X.; Schiffer, P.; Orenstein, J.; Martin, L. W.; Chu, Y. H.; Ramesh, R.

    2007-08-13

    BiFeO{sub 3} thin films have been deposited on (111) SrTiO{sub 3} single crystal substrates by reactive molecular-beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth overpressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO{sub 3} to control stoichiometry. Four-circle x-ray diffraction reveals phase-pure, untwinned, epitaxial (0001)-oriented films with rocking curve full width at half maximum values as narrow as 25 arc sec (0.007 deg.). Second harmonic generation polar plots combined with diffraction establish the crystallographic point group of these untwinned epitaxial films to be 3m at room temperature.

  17. The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schumann, T.; Lopes, J. M. J.; Wofford, J. M.; Oliveira, M. H.; Dubslaff, M.; Hanke, M.; Jahn, U.; Geelhaar, L.; Riechert, H.

    2015-09-01

    We examine how substrate selection impacts the resulting film properties in graphene growth by molecular beam epitaxy (MBE). Graphene growth on metallic as well as dielectric templates was investigated. We find that MBE offers control over the number of atomic graphene layers regardless of the substrate used. High structural quality could be achieved for graphene prepared on Ni (111) films which were epitaxially grown on MgO (111). For growth either on Al2O3 (0001) or on (6√3×6√3)R30°-reconstructed SiC (0001) surfaces, graphene with a higher density of defects is obtained. Interestingly, despite their defective nature, the layers possess a well defined epitaxial relation to the underlying substrate. These results demonstrate the feasibility of MBE as a technique for realizing the scalable synthesis of this two-dimensional crystal on a variety of substrates.

  18. Growth of EuO/Si and EuO/SrO/Si heteroepitaxial structures by molecular-beam epitaxy

    SciTech Connect

    Teterin, P. E. Averyanov, D. V.; Sadofyev, Yu. G. Parfenov, O. E.; Likhachev, I. A.; Storchak, V. G.

    2015-01-15

    Epitaxial EuO thin films with thickness up to 60 nm have been grown by molecular beam epitaxy both on SrO sublayers and directly on Si (001) substrates. Crystal structure has been controlled in situ by reflection high energy electron diffraction. Ex situ studies by X-ray diffraction and Rutherford backscattering have confirmed high crystalline quality of the films.

  19. Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination

    NASA Astrophysics Data System (ADS)

    Debiossac, M.; Atkinson, P.; Zugarramurdi, A.; Eddrief, M.; Finocchi, F.; Etgens, V. H.; Momeni, A.; Khemliche, H.; Borisov, A. G.; Roncin, P.

    2017-01-01

    Two aspects of the contribution of grazing incidence fast atom diffraction (GIFAD) to molecular beam epitaxy (MBE) are reviewed here: the ability of GIFAD to provide in-situ a precise description of the atomic-scale surface topology, and its ability to follow larger-scale changes in surface roughness during layer-by-layer growth. Recent experimental and theoretical results obtained for the He atom beam incident along the highly corrugated [ 1 1 bar 0 ] direction of the β2(2 × 4) reconstructed GaAs(001) surface are summarized. We also discuss the measurements and calculations for the beam incidence along the weakly corrugated [010] direction where a periodicity twice smaller than expected is observed. The combination of the experiment, quantum scattering matrix calculations, and semiclassical analysis allows structural characteristics of the surface to be revealed. For the in situ measurements of GIFAD during molecular beam epitaxy of GaAs on GaAs surface we analyze the change in elastic and inelastic contributions in the scattered beam, and the variation of the diffraction pattern in polar angle scattering. This analysis outlines the robustness, the simplicity and the richness of the GIFAD as a technique to monitor the layer-by-layer epitaxial growth.

  20. Wurtzite Al xGa 1- xN bulk crystals grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Powell, R. E. L.; Akimov, A. V.; Luckert, F.; Edwards, P. R.; Martin, R. W.; Kent, A. J.; Foxon, C. T.

    2011-05-01

    We have studied the growth of wurtzite GaN and Al xGa 1- xN layers and bulk crystals by molecular beam epitaxy (MBE). MBE is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. However, we have used the MBE technique for bulk crystal growth and have produced 2 in diameter wurtzite Al xGa 1- xN layers up to 10 μm in thickness. Undoped wurtzite Al xGa 1- xN films were grown on GaAs (1 1 1)B substrates by a plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The fact that free-standing ternary Al xGa 1- xN wafers can be grown is very significant for the potential future production of wurtzite Al xGa 1- xN substrates optimized for AlGaN-based device structures.

  1. Growth of chalcopyrite-structure semiconductors zinc tin arsenide and zinc tin phosphide by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Seryogin, Georgiy A.

    2000-10-01

    Present work is focused on the epitaxial growth of two closely related compounds: ZnSnAS2 and ZnSnP2. We focus on two structural modifications in which these materials can be obtained---the ordered structure (known as chalcopyrite) and the disordered (sphalerite) equivalent with the same macroscopic composition. To our knowledge no one has applied modern growth techniques to the epitaxial growth of AIIBIVCV2 materials in order to obtain high quality thin films. We decided to investigate the growth of thin films of ZnSnAs2 and ZnSnP2 using gas source molecular beam epitaxy (GS MBE). The most interesting property of ZnSnP2 is a large difference in the bandgap of material depending on the degree of ordering. The bandgap of bulk crystal can change by up to 0.42 eV simply by variation of the growth conditions. Custom designed MBE system was constructed to provide the necessary growth precursors. Conventional Knudsen cells were build to evaporate zinc, tin and arsenic. Gas lines were added later to supply phosphorus and arsenic. To determine the initial growth condition evaporation experiments were carried out using small pieces of bulk ZnSnP2. Optimum growth temperature was determined be in the range of 300--350°C. After the optimization of the growth process high quality epitaxial layers of ZnSnAs2 were grown on InP(001) substrates with the lattice mismatch of 3.4·10--4 . Following the developed procedures epitaxial ZnSnP2 was grown on GaAs(001) substrates. We observed a transition from the sphalerite to the chalcopyrite structure with increasing Sn/Zn flux ratio. This transition was investigated in detail by high resolution X-ray diffraction. Room temperature luminescence was observed on partially ordered samples at 1.35 eV. The growth model of ordered and disordered materials was suggested. High quality superlattices containing sphalerite structure ZnSnP 2 layers and GaAs spacers were grown to demonstrate the possibility of the epitaxial regrowth. In order to

  2. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.

    1986-01-01

    A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).

  3. Graphene growth by molecular beam epitaxy on the carbon-face of SiC

    SciTech Connect

    Moreau, E.; Godey, S.; Ferrer, F. J.; Vignaud, D.; Wallart, X.; Avila, J.; Asensio, M. C.; Bournel, F.; Gallet, J.-J.

    2010-12-13

    Graphene layers have been grown by molecular beam epitaxy (MBE) on the (0001) C-face of SiC and have been characterized by atomic force microscopy, low energy electron diffraction (LEED), and UV photoelectron spectroscopy. Contrary to the graphitization process, the step-terrace structure of SiC is fully preserved during the MBE growth. LEED patterns show multiple orientation domains which are characteristic of graphene on SiC (0001), indicating non-Bernal rotated graphene planes. Well-defined Dirac cones, typical of single-layer graphene, have been observed in the valence band for few graphene layers by synchrotron spectroscopy, confirming the electronic decoupling of graphene layers.

  4. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  5. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  6. Hybrid semiconductor quantum dot-metal nanocrystal structures prepared by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Urbańczyk, A.; Hamhuis, G. J.; Nötzel, R.

    2011-05-01

    We report the formation of In nanocrystals and their alignment near dilute InAs quantum dots (QDs) on GaAs (0 0 1) by molecular beam epitaxy. The In nanocrystals exhibit surface plasmon resonances in the near-infrared range, which can be matched with the emission wavelength of In(Ga)As QDs. The alignment of the In nanocrystals near the InAs QDs is due to the strain-driven migration yielding single isolated QD-metal nanocrystal pairs and isolated QD-metal nanocrystal dimer structures, representing the basic hybrid QD-metal nanocrystal plasmonic nanostructures.

  7. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    SciTech Connect

    Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.

    2011-01-15

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  8. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines.

    PubMed

    Slobodskyy, T; Schroth, P; Grigoriev, D; Minkevich, A A; Hu, D Z; Schaadt, D M; Baumbach, T

    2012-10-01

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  9. Characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Lo, Ikai; Pang, Wen-Yuan; Hsu, Yu-Chi; Hsieh, Chia-Ho; Shih, Cheng-Hung; Chou, Mitch M. C.; Chen, Wen-Yen; Hsu, Tzu-Min; Hsu, Gary Z. L.

    2013-06-15

    The characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy on LiAlO{sub 2} substrate was studied by cathodoluminescence and photoluminescence measurements. We demonstrated that the cathodoluminescence from oblique semi-polar surfaces of mushroom-shaped GaN was much brighter than that from top polar surface due to the reduction of polarization field on the oblique semi-polar surfaces. It implies that the oblique semi-polar surface is superior for the light-emitting surface of wurtzite nano-devices.

  10. Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bauer, Jan; Fleischer, Frank; Breitenstein, Otwin; Schubert, Luise; Werner, Peter; Gösele, Ulrich; Zacharias, Margit

    2007-01-01

    Single undoped Si nanowires were electrically characterized. The nanowires were grown by molecular-beam epitaxy on n+ silicon substrates and were contacted by platinum/iridium tips. I-V curves were measured and electron beam induced current investigations were performed on single nanowires. It was found that the nanowires have an apparent resistivity of 0.85Ωcm, which is much smaller than expected for undoped Si nanowires. The conductance is explained by hopping conductivity at the Si -SiO2 interface of the nanowire surface.

  11. Silicon sheet with molecular beam epitaxy for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Allen, F. G.

    1983-01-01

    The capabilities of the new technique of Molecular Beam Epitaxy (MBE) are applied to the growth of high efficiency silicon solar cells. Because MBE can provide well controlled doping profiles of any desired arbitrary design, including doping profiles of such complexity as built-in surface fields or tandem junction cells, it would appear to be the ideal method for development of high efficiency solar cells. It was proposed that UCLA grow and characterize silicon films and p-n junctions of MBE to determine whether the high crystal quality needed for solar cells could be achieved.

  12. Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)

    NASA Astrophysics Data System (ADS)

    Debnath, R. K.; Meijers, R.; Richter, T.; Stoica, T.; Calarco, R.; Lüth, H.

    2007-03-01

    GaN nanowires have been grown without external catalyst on Si(111) substrates by plasma-assisted molecular beam epitaxy. Nanowire aspect ratios (length/diameter) of about 250 have been achieved. During the initial stage of the growth, there is a nucleation process in which the number of wires increases and the most probable nucleation diameter of about 10nm has been observed, which slowly increases with deposition time. For deposition time longer than the nucleation stage, the nanowire length as a function of diameter monotonically decreases. This phenomenon can be explained by adatom diffusion on the nanowire lateral surface towards the tip.

  13. Molecular beam epitaxy growth and optical properties of AlN nanowires

    NASA Astrophysics Data System (ADS)

    Landré, O.; Fellmann, V.; Jaffrennou, P.; Bougerol, C.; Renevier, H.; Cros, A.; Daudin, B.

    2010-02-01

    Growth of catalyst-free AlN nanowires has been achieved by plasma-assisted molecular beam epitaxy on SiO2/Si (100), by taking advantage of Volmer-Weber growth mode of AlN on amorphous SiO2. Using a combination of high resolution transmission electron microscopy and Raman spectroscopy, it is found that AlN nanowires are completely relaxed, which has been assigned to the compliant character of SiO2. Elastic strain relaxation of AlN nanowires has been further confirmed by photoluminescence experiments, showing in addition that spectra are dominated by near-band edge emission.

  14. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines

    SciTech Connect

    Slobodskyy, T.; Schroth, P.; Grigoriev, D.; Minkevich, A. A.; Baumbach, T.; Hu, D. Z.; Schaadt, D. M.

    2012-10-15

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  15. Crystallographic dependence of photocatalytic activity of WO3 thin films prepared by molecular beam epitaxy.

    PubMed

    Li, Guoqiang; Varga, Tamas; Yan, Pengfei; Wang, Zhiguo; Wang, Chongmin; Chambers, Scott A; Du, Yingge

    2015-06-21

    We investigated the impact of crystallographic orientation on the photocatalytic activity of single crystalline WO3 thin films prepared by molecular beam epitaxy on the photodegradation of rhodamine B (RhB). A clear effect is observed, with (111) being the most reactive surface, followed by (110) and (001). Photoreactivity is directly correlated with the surface free energy determined by density functional theory calculations. The RhB photodegradation mechanism is found to involve hydroxyl radicals in solution formed from photo-generated holes and differs from previous studies performed on nanoparticles and composites.

  16. Molecular-Beam Epitaxial Growth and Device Potential of Polar/Nonpolar Semiconductor Heterostructures.

    DTIC Science & Technology

    2014-09-26

    SECURITY CLASSIFICATION OF THIS PAGE(Wlam Doa ntered) ?0. ABSTRACT "echniques for the molecular beam epitaxial growth of GaP and GaAs substrates were...of both GaAs and GaP was found to be the problem of avoiding antiphase domains (APDs) in the growing film, that is, of random domains containing...even better properties. Lattice-mismatched (4%) growth of GaAs on Si was achieved, using the clean Si surface technology and the (211) orientation

  17. Growth of layered superconductor β-PdBi2 films using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Denisov, N. V.; Matetskiy, A. V.; Tupkalo, A. V.; Zotov, A. V.; Saranin, A. A.

    2017-04-01

    Bulk β-PdBi2 layered material exhibits advanced properties and is supposed to be probable topological superconductor. We present a method based on molecular beam epitaxy that allows us to grow β-PdBi2 films from a single β-PdBi2 triple layer up to the dozens of triple layers, using Bi(111) film on Si(111) as a template. The grown films demonstrate structural, electronic and superconducting properties similar to those of bulk β-PdBi2 crystals. Ability to grow the β-PdBi2 films of desired thickness opens the promising possibilities to explore fascinating properties of this advanced material.

  18. Growth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy

    SciTech Connect

    Cai, Y.; Wong, T. L.; Chan, S. K.; Sou, I. K.; Wang, N.; Su, D. S.

    2008-12-08

    Ultrathin ZnSe nanowires grown by Au-catalyzed molecular-beam epitaxy show an interesting growth behavior of diameter dependence of growth rates. The smaller the nanowire diameter, the faster is its growth rate. This growth behavior is totally different from that of the nanowires with diameters greater than 60 nm and cannot be interpreted by the classical theories of the vapor-liquid-solid mechanism. For the Au-catalyzed nanowire growth at low temperatures, we found that the surface and interface incorporation and diffusion of the source atoms at the nanowire tips controlled the growth of ultrathin ZnSe nanowires.

  19. Ge surface segregation at low temperature during SiGe growth by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Godbey, D. J.; Lill, J. V.; Deppe, J.; Hobart, K. D.

    1994-08-01

    The temperature dependence of germanium surface segregation during growth by solid source SiGe molecular beam epitaxy (MBE) was studied by x-ray photoelectron spectroscopy and kinetic Monte Carlo (KMC) modeling. Germanium segregation persisted at temperatures 60 °C below that predicted by a two-state exchange model. KMC simulations, where film growth, surface diffusion, and surface segregation are modeled consistently, successfully describe the low temperature segregation of germanium. Realistic descriptions of MBE must follow the physical rates of the growth, surface diffusion, and surface segregation processes.

  20. Sb surface segregation and doping in Si(100) grown at reduced temperature by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hobart, K. D.; Godbey, D. J.; Thompson, P. E.; Simons, D. S.

    1993-09-01

    X-ray photoelectron spectroscopy, depth profiling with secondary ion mass spectrometry, and conductivity measurements have been performed on Sb-doped Si(100) films grown at low temperature (350 °C) by molecular beam epitaxy. The measurements reveal two important effects: (1) a significant increase in the surface segregation of Sb as the dopant concentration approaches 1×1020 cm-3, and (2) a decrease in surface segregation as the surface concentration of Sb reaches one monolayer. We believe that the presence of this monolayer of Sb is responsible for the surface segregation becoming self-limited and the associated bulk concentration exceeding 1×1020 cm-3.

  1. Silicon dioxide embedded germanium nanocrystals grown using molecular beam epitaxy for floating gate memory devices.

    PubMed

    Das, S; Singha, R K; Das, K; Dhar, A; Ray, S K

    2009-09-01

    SiO2/Ge nanocrystals/SiO2 trilayer memory structure has been fabricated by oxidizing and subsequent annealing of self assembled SiGe nanoislands grown by molecular beam epitaxy. The optical and charge storage characteristics of trilayer structures have been studied through Raman spectroscopy and capacitance-voltage measurements, respectively. An anti-clockwise hysteresis in the C-V characteristics indicated the net electron trapping in the floating gate containing Ge nanocrystals. Frequency dependent measurements of device characteristics indicate that neither interface defects nor deep traps are dominant for the charging or discharging processes of nanocrystal floating gates.

  2. Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy

    SciTech Connect

    D'Costa, Vijay Richard Wang, Wei; Yeo, Yee-Chia

    2016-08-14

    We investigated the compositional dependence of the near-bandgap dielectric function and the E{sub 0} critical point in pseudomorphic Ge{sub 1-x}Sn{sub x} alloys grown on Ge (100) substrate by molecular beam epitaxy. The complex dielectric functions were obtained using spectroscopic ellipsometry from 0.5 to 4.5 eV at room temperature. Analogous to the E{sub 1} and E{sub 1}+Δ{sub 1} transitions, a model consisting of the compositional dependence of relaxed alloys along with the strain contribution predicted by the deformation potential theory fully accounts for the observed compositional dependence in pseudomorphic alloys.

  3. Perspective. Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    DOE PAGES

    Wu, J.; Bozovic, I.

    2015-04-06

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  4. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    SciTech Connect

    Wu, J.; Božović, I.

    2015-06-01

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  5. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.

    1986-01-01

    A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).

  6. Structural and optoelectronic properties of germanium-rich islands grown on silicon using molecular beam epitaxy

    SciTech Connect

    Nataraj, L.; Sustersic, N.; Coppinger, M.; Gerlein, L. F.; Kolodzey, J.; Cloutier, S. G.

    2010-03-22

    We report on the structural and optoelectronic properties of self-assembled germanium-rich islands grown on silicon using molecular beam epitaxy. Raman, photocurrent, photoluminescence, and transient optical spectroscopy measurements suggest significant built-in strains and a well-defined interface with little intermixing between the islands and the silicon. The shape of these islands depends on the growth conditions and includes pyramid, dome, barn-shaped, and superdome islands. Most importantly, we demonstrate that these germanium-rich islands provide efficient light emission at telecommunication wavelengths on a complementary metal-oxide semiconductor-compatible platform.

  7. Molecular beam epitaxy of Cd3As2 on a III-V substrate

    NASA Astrophysics Data System (ADS)

    Schumann, Timo; Goyal, Manik; Kim, Honggyu; Stemmer, Susanne

    2016-12-01

    Epitaxial, strain-engineered Dirac semimetal heterostructures promise tuning of the unique properties of these materials. In this study, we investigate the growth of thin films of the recently discovered Dirac semimetal Cd3As2 by molecular beam epitaxy. We show that epitaxial Cd3As2 layers can be grown at low temperatures (110 °C-220 °C), in situ, on (111) GaSb buffer layers deposited on (111) GaAs substrates. The orientation relationship is described by ( 112 ) Cd3 As 2 || (111) GaSb and [ 1 1 ¯ 0 ] Cd3 As 2 || [ 1 ¯ 01 ] GaSb . The films are shown to grow in the low-temperature, vacancy ordered, tetragonal Dirac semimetal phase. They exhibit high room temperature mobilities of up to 19300 cm2/Vs, despite a three-dimensional surface morphology indicative of island growth and the presence of twin variants. The results indicate that epitaxial growth on more closely lattice matched buffer layers, such as InGaSb or InAlSb, which allow for imposing different degrees of epitaxial coherency strains, should be possible.

  8. Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Jin; Summerfield, Alex; Davies, Andrew; Cheng, Tin S.; Smith, Emily F.; Mellor, Christopher J.; Khlobystov, Andrei N.; Foxon, C. Thomas; Eaves, Laurence; Beton, Peter H.; Novikov, Sergei V.

    2016-09-01

    We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.

  9. Cyan laser diode grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Turski, H. Muziol, G.; Wolny, P.; Cywiński, G.

    2014-01-13

    We demonstrate AlGaN-cladding-free laser diodes (LDs), operating in continuous wave (CW) mode at 482 nm grown by plasma-assisted molecular beam epitaxy (PAMBE). The maximum CW output power was 230 mW. LDs were grown on c-plane GaN substrates obtained by hydride vapor phase epitaxy. The PAMBE process was carried out in metal-rich conditions, supplying high nitrogen flux (Φ{sub N}) during quantum wells (QWs) growth. We found that high Φ{sub N} improves quality of high In content InGaN QWs. The role of nitrogen in the growth of InGaN on (0001) GaN surface as well as the influence of LDs design on threshold current density are discussed.

  10. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  11. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    SciTech Connect

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-30

    Epitaxial silicon nanowires (NWs) of short heights ({approx}280 nm) on Si <111> substrate were grown and doped in situ with boron on a concentration range of 10{sup 15}-10{sup 19} cm{sup -3} by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (10{sup 15} cm{sup -3}) and medium doped (3x10{sup 16} and 1x10{sup 17} cm{sup -3}) NWs were heavily depleted by the surface states while the high doped (10{sup 18} and 10{sup 19} cm{sup -3}) ones showed volume conductivities expected for the corresponding intended doping levels.

  12. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  13. GaAs nanowires on Si substrates grown by a solid source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Young-Hun; Lee, Jeong Yong

    2006-07-01

    High-quality Au-catalyzed GaAs nanowires were grown on Si substrates by vapor-liquid-solid growth in a solid source molecular beam epitaxy system. X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy reveal that the GaAs nanowires were epitaxially grown on Si substrates with uniform diameters along the nanowires. While GaAs nanowires on Si(111) and (001) substrates were mainly grown along the ⟨111⟩ direction with zinc-blende and wurtzite structures, unusual GaAs nanowires grown along ⟨001⟩ with a pure zinc-blende structure were also observed. Strong photoluminescence was observed from GaAs nanowires grown on a Si(001) substrate at room temperature.

  14. Ge/GeSn heterostructures grown on Si (100) by molecular-beam epitaxy

    SciTech Connect

    Sadofyev, Yu. G. Martovitsky, V. P.; Bazalevsky, M. A.; Klekovkin, A. V.; Averyanov, D. V.; Vasil’evskii, I. S.

    2015-01-15

    The growth of GeSn layers by molecular-beam epitaxy on Si (100) wafers coated with a germanium buffer layer is investigated. The properties of the fabricated structures are controlled by reflection high-energy electron diffraction, atomic-force microscopy, X-ray diffractometry, Rutherford backscattering, and Raman scattering. It is shown that GeSn layers with thicknesses up to 0.5 μm and Sn molar fractions up to 0.073 manifest no sign of plastic relaxation upon epitaxy. The lattice constant of the GeSn layers within the growth plane is precisely the same as that of Ge. The effect of rapid thermal annealing on the conversion of metastable elastically strained GeSn layers into a plastically relaxed state is examined. Ge/GeSn quantum wells with Sn molar fraction up to 0.11 are obtained.

  15. Studies of molecular-beam epitaxy growth of GaAs on porous Si substrates

    NASA Technical Reports Server (NTRS)

    Mii, Y. J.; Kao, Y. C.; Wu, B. J.; Wang, K. L.; Lin, T. L.; Liu, J. K.

    1988-01-01

    GaAs has been grown on porous Si directly and on Si buffer layer-porous Si substrates by molecular-beam epitaxy. In the case of GaAs growth on porous Si, transmission electron microscopy (TEM) reveals that the dominant defects in GaAs layers grown on porous Si are microtwins and stacking faults, which originate from the GaAs/porous Si interface. GaAs is found to penetrate into the porous Si layers. By using a thin Si buffer layer (50 nm), GaAs penetration diminishes and the density of microtwins and stacking faults is largely reduced and localized at the GaAs/Si buffer interface. However, there is a high density of threading dislocations remaining. Both Si (100) aligned and four degree tilted substrates have been examined in this study. TEM results show no observable effect of the tilted substrates on the quality of the GaAs epitaxial layer.

  16. Cleaning chemistry of InSb(100) molecular beam epitaxy substrates

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    InSb has been used as a substrate for molecular beam epitaxy. For good epitaxial growth, a substrate surface which is smooth and clean on an atomic scale is required. Chemical cleaning procedures provide an oxide film to passivate the surface. This film is then desorbed by in situ heating. The material forming the film should, therefore, have a high vapor pressure at some temperature less than the substrate melting temperature. A chloride film appears to satisfy the latter requirement. The present investigation is, therefore, concerned with the formation of a chloride film rather than an oxide film. Carbon contamination has been found to cause problems in chemical cleaning procedures. The level of carbon contamination found in the case of chloride film formation, is therefore compared with the corresponding level observed in procedures using oxide films. It appears that a chloride film grown in connection with a short exposure time to a Cl2 plasma is preferable to other passivation films studied.

  17. Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy.

    PubMed

    Cho, Yong-Jin; Summerfield, Alex; Davies, Andrew; Cheng, Tin S; Smith, Emily F; Mellor, Christopher J; Khlobystov, Andrei N; Foxon, C Thomas; Eaves, Laurence; Beton, Peter H; Novikov, Sergei V

    2016-09-29

    We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp(2)-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.

  18. Optical band gap of BiFeO{sub 3} grown by molecular-beam epitaxy

    SciTech Connect

    Ihlefeld, J. F.; Podraza, N. J.; Liu, Z. K.; Schlom, D. G.; Rai, R. C.; Xu, X.; Musfeldt, J. L.; Heeg, T.; Schubert, J.; Chen, Y. B.; Pan, X. Q.; Li, J.; Collins, R. W.; Ramesh, R.

    2008-04-07

    BiFeO{sub 3} thin films have been deposited on (001) SrTiO{sub 3} substrates by adsorption-controlled reactive molecular-beam epitaxy. For a given bismuth overpressure and oxygen activity, single-phase BiFeO{sub 3} films can be grown over a range of deposition temperatures in accordance with thermodynamic calculations. Four-circle x-ray diffraction reveals phase-pure, epitaxial films with {omega} rocking curve full width at half maximum values as narrow as 29 arc sec (0.008 deg.). Multiple-angle spectroscopic ellipsometry reveals a direct optical band gap at 2.74 eV for stoichiometric as well as 5% bismuth-deficient single-phase BiFeO{sub 3} films.

  19. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  20. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    SciTech Connect

    Lastras-Martínez, A. E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F.; Lastras-Montaño, L. A.; Lastras-Montaño, M. A.

    2014-03-01

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  1. Growth of MoO3 films by oxygen plasma assisted molecular beam epitaxy

    SciTech Connect

    Altman, Eric I.; Droubay, Timothy C.; Chambers, Scott A.

    2002-07-22

    The growth of MoO₃ films on SrLaAlO₄(0 0 1), a substrate lattice-matched to b-MoO , by oxygen plasma assisted molecular beam epitaxy was characterized using reflection high-energy electron diffraction (RHEED), X-ray photoelectron spectroscopy, Xray diffraction (XRD), and atomic force and scanning tunneling microscopies (AFM and STM).It was found that the flux of reactive oxygen species to the surface was not high enough to maintain the proper stoichiometry, even at the lowest measurable deposition rates. Therefore, the films were grown by depositing Mo in small increments and then allowing the Mo to oxidize. At 675 K, the films grew epitaxially but in a three-dimensional manner. XRD of films grown under these conditions revealed atetragonal structure that has not been previously observed in bulk MoO₃ samples.

  2. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy.

    PubMed

    Guan, X; Becdelievre, J; Meunier, B; Benali, A; Saint-Girons, G; Bachelet, R; Regreny, P; Botella, C; Grenet, G; Blanchard, N P; Jaurand, X; Silly, M G; Sirotti, F; Chauvin, N; Gendry, M; Penuelas, J

    2016-04-13

    We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the nanowire facets. Reflection high energy electron diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to determine the structural, chemical, and morphological properties of the heterostructured nanowires. Using adapted oxide growth conditions, it is shown that most of the perovskite structure SrTiO3 shell appears to be oriented with respect to the GaAs lattice. These results are promising for achieving one-dimensional epitaxial semiconductor core/functional oxide shell nanostructures.

  3. Molecular-beam epitaxial regrowth on oxygen-implanted GaAs substrates for device integration

    NASA Astrophysics Data System (ADS)

    Chen, C. L.; Mahoney, L. J.; Calawa, S. D.; Molvar, K. M.; Maki, P. A.; Mathews, R. H.; Sage, J. P.; Sollner, T. C. L. G.

    1999-06-01

    Device-quality layers were regrown on GaAs wafers by molecular-beam epitaxy over conductive pregrown areas and on selectively patterned high-resistivity areas formed by oxygen implantation. The regrowth over both areas resulted in comparable device-quality GaAs. The high resistivity of the oxygen-implanted area was maintained after the regrowth and no oxygen incorporation was observed in the regrown layer. The cutoff frequency of a 1.5-μm-gate metal-semiconductor field-effect transistor fabricated on the regrown layer over the high-resistivity areas is 7 GHz. This demonstration shows that planar technology can be used in epitaxial regrowth, simplifying the integration of vastly different devices into monolithic circuits.

  4. Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy

    PubMed Central

    Cho, Yong-Jin; Summerfield, Alex; Davies, Andrew; Cheng, Tin S.; Smith, Emily F.; Mellor, Christopher J.; Khlobystov, Andrei N.; Foxon, C. Thomas; Eaves, Laurence; Beton, Peter H.; Novikov, Sergei V.

    2016-01-01

    We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate. PMID:27681943

  5. A visualization method for probing grain boundaries of single layer graphene via molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhan, Linjie; Wan, Wen; Zhu, Zhenwei; Zhao, Zhijuan; Zhang, Zhenhan; Shih, Tien-Mo; Cai, Weiwei

    2017-07-01

    Graphene, a member of layered two-dimensional (2D) materials, possesses high carrier mobility, mechanical flexibility, and optical transparency, as well as enjoying a wide range of promising applications in electronics. Adopting the chemical vaporization deposition method, the majority of investigators have ubiquitously grown single layer graphene (SLG), which inevitably involves polycrystalline properties. Here we demonstrate a simple method for the direct visualization of arbitrarily large-size SLG domains by synthesizing one-hundred-nm-scale MoS2 single crystals via a high-vacuum molecular beam epitaxy process. The present study based on epitaxial growth provides a guide for probing the grain boundaries of various 2D materials and implements higher potentials for the next-generation electronic devices.

  6. Continuum model of surface roughening and epitaxial breakdown during low-temperature Ge(001) molecular beam epitaxy

    SciTech Connect

    Bratland, K. A.; Spila, T.; Cahill, D. G.; Greene, J. E.; Desjardins, P.

    2011-03-15

    Numerical simulations based on a discrete model describing step edge motion are used to compute the surface morphological evolution of Ge(001) layers deposited by low-temperature (T{sub s} = 45-230 deg. C) molecular beam epitaxy and to probe the relationship between surface roughening and the onset of epitaxial breakdown - the abrupt growth mode transition from epitaxial to amorphous - at temperature-dependent critical film thicknesses h{sub 1}(T{sub s}). Computed surface widths w and in-plane coherence lengths d as a function of layer thickness h exhibit good agreement with experimental values. Inspired by experimental results indicating that epitaxial breakdown is initiated at facetted interisland trenches as the surface roughness reaches a T{sub s}-independent overall aspect ratio, we show that simulated data for w/d = 0.03 correspond to thicknesses h{sub 1{proportional_to}} exp (-E{sub 1}/kT{sub s}) with E{sub 1} = 0.63 eV, a value equal to the Ge adatom diffusion activation energy on Ge(001). Simulated h{sub 1} values agree well with experimental data. Above a critical growth temperature of 170 deg. C, computed w/d values saturate at large film thicknesses, never reaching the critical aspect ratio w/d = 0.03. Thus, the model also predicts that epitaxial breakdown does not occur for T{sub s} > 170 deg. C as observed experimentally.

  7. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    SciTech Connect

    Lee, J. H.; Tung, I. C.; Chang, S. -H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  8. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    SciTech Connect

    Lee, J. H.; Freeland, J. W.; Hong, Hawoong; Tung, I. C.; Chang, S.-H.; Bhattacharya, A.; Fong, D. D.

    2016-01-15

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  9. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

    PubMed

    Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  10. High-efficiency AlGaInP solar cells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Faucher, J.; Sun, Y.; Jung, D.; Martin, D.; Masuda, T.; Lee, M. L.

    2016-10-01

    AlGaInP is an ideal material for ultra-high efficiency, lattice-matched multi-junction solar cells grown by molecular beam epitaxy (MBE) because it can be grown lattice-matched to GaAs with a wide 1.9-2.2 eV bandgap. Despite this potential, AlGaInP grown by molecular beam epitaxy (MBE) has yet to be fully explored, with the initial 2.0 eV devices suffering from poor performance due to low minority carrier diffusion lengths in both the emitter and base regions of the solar cell. In this work, we show that implementing an AlGaInP graded layer to introduce a drift field near the front surface of the device enabled greatly improved internal quantum efficiency (IQE) across all wavelengths. In addition, optimizing growth conditions and post-growth annealing improved the long-wavelength IQE and the open-circuit voltage of the cells, corresponding to a 3× increase in diffusion length in the base. Taken together, this work demonstrates greatly improved IQE, attaining peak values of 95%, combined with an uncoated AM1.5G efficiency of 10.9%, double that of previously reported MBE-grown devices.

  11. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    DOE PAGES

    Lee, J. H.; Tung, I. C.; Chang, S. -H.; ...

    2016-01-05

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-raymore » and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Finally, additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.« less

  12. Epitaxial Growth of Aluminum on Silicon Substrates by Metalorganic Molecular Beam Epitaxy using Dimethyl-Ethylamine Alane

    NASA Astrophysics Data System (ADS)

    Neo, Yoichiro; Otoda, Toshihiro; Sagae, Katumi; Mimura, Hidenori; Yokoo, Kuniyoshi

    1998-05-01

    In this paper, the growth process of aluminum on a silicon substrate by metalorganic molecular beam epitaxy using dimethyl-ethylamine alane has been described. The crystallographic orientation of the aluminum grains strongly depends on the substrate temperature. The epitaxial single crystalline (111) Al grains grow on a (111) Si substrate at a substrate temperature between 450 and 500°C. The bi-crystalline (110) Al grains grow on a (100) Si substrate at the substrate temperature between 350 and 450°C. For a (100) Si substrate, the orientation of Al is related to the reconstruction of the Si substrate. Furthermore, the selective growth of Al into 1.5-µm-diameter via-holes is shown to be possible.

  13. Molecular beam epitaxy control of the structural, optical, and electronic properties of ScN(001)

    SciTech Connect

    Smith, Arthur R.; AL-Brithen, Hamad A. H.; Ingram, David C.; Gall, Daniel

    2001-08-15

    Scandium nitride (001) oriented layers have been grown on magnesium oxide (001) substrates by molecular beam epitaxy using a rf-plasma source and a scandium effusion cell. The Sc/N flux ratio is found to be critical in determining the structural, optical, and electronic properties of the grown epitaxial layers. A distinct transition occurs at the point where the Sc/N flux ratio equals 1, which defines the line between N-rich and Sc-rich growth. Under N-rich conditions, the growth is epitaxial, and the surface morphology is characterized by a densely packed array of square-shaped plateaus and four-faced pyramids with the terraces between steps being atomically smooth. The films are stoichiometric and transparent with a direct optical transition at 2.15 eV. Under Sc-rich conditions, the growth is also epitaxial, but the morphology is dominated by spiral growth mounds. The morphology change is consistent with increased surface diffusion due to a Sc-rich surface. Excess Sc leads to understoichiometric layers with N vacancies which act as donors. The increased carrier density results in an optical reflection edge at 1 eV, absorption below the 2.15 eV band gap, and a drop in electrical resistivity. {copyright} 2001 American Institute of Physics.

  14. Low angle incidence microchannel epitaxy of GaN grown by ammonia-based metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Abe, Ryota; Maruyama, Takahiro; Naritsuka, Shigeya

    2011-03-01

    GaN was grown by low angle incidence microchannel epitaxy (LAIMCE) using NH3-based metal-organic molecular beam epitaxy (NH3-based MOMBE). The growth mechanism was studied by varying the growth temperature and time. The effect of the incidence direction of precursors on lateral growth was also investigated by comparing the results obtained when precursors were supplied perpendicular and parallel to the openings in the mask. The thickness and width of lateral growth were largely influenced by the formation of a facet on the surface, which frequently terminates further growth. For example, a sample grown at 700 °C with a perpendicular supply of precursors stopped growing both vertically and laterally after a certain time despite continuous supply of the precursors. On the other hand, a sample grown at 820 °C with a parallel supply of precursors exhibited stable growth, and its width increased continuously with time. This is because inter-surface diffusion of adatoms occurred from the top to the sides, which enhanced the width of lateral growth. In contrast, low angle incidence supply of molecular beams perpendicular to the openings resulted in a Ga-rich condition on the side and formed the side facet, which terminated further LAIMCE growth.

  15. Raman spectroscopic study of surfactant-mediated molecular beam epitaxially grown germanium/silicon

    NASA Astrophysics Data System (ADS)

    Brill, Gregory Nelson

    The epitaxial growth of Ge on Si substrates was carried out using surfactant-mediated epitaxy and standard growth procedures to study the effects of Si surface passivation prior to Ge nucleation. The growth experiments were conducted in a molecular beam epitaxy (MBE) chamber equipped with reflection high-energy electron diffraction (RHEED) to monitor the nucleation process. Arsenic was chosen as the surfactant material and Ge nucleation was conducted on both Si(001) and Si(211) orientated substrates. Post-growth experiments were conducted primarily utilizing Raman Spectroscopy, however scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction were also employed to gather information about the grown material. From these experiments, it was determined that passivating the Si surface prior to Ge deposition with a monolayer of As yields higher quality 2-dimensional material. Additionally, As acts as a suppressant to Ge - Si intermixing resulting in a highly ordered epilayer/substrate interface. If Ge is deposited directly on a clean Si substrate without As passivation, the resultant growth follows the theoretically predicted Stranski-Krastanov growth mode. A growth model is suggested that successfully describes the differences between surfactant-mediated and non-surfactant-mediated nucleation through a site-exchange mechanism between Ge and As atoms. Additionally, surfactant-mediated nucleation results as a function of substrate orientation are highlighted and a model for surface reconstruction of the As passivated Si(211) surface is proposed.

  16. Growth of (110) GaAs/GaAs by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Parechanian, L. T.; Weber, E. R.; Hierl, T. L.

    1985-04-01

    The simultaneous molecular beam epitaxy (MBE) growth of (100) and (110) GaAs/GaAs intentionally doped with Si(-1E16/cu cm) was studied as a function of substrate temperature, arsenic overpressure, and epitaxial growth rate. The films were analyzed by scanning electron and optical microscopy, liquid helium photoluminescence (PL), and electronic characterization. For the (110) epitaxial layers, an increase in morphological defect density and degradation of PL signal was observed with a lowering of the substrate temperature from 570 C. Capacitance-voltage (CV) and Hall effect measurements yield room temperature donor concentrations for the (100) films of n-7E15/ cu cm while the (110) layers exhibit electron concentrations of n-2E17/cu cm. Hall measuremtns at 77k on the (100) films show the expected mobility enhancement of Si donors, whereas the (110) epi layers become insulating or greatly compensated. This behavior suggests that room temperature conduction in the (110) films is due to a deeper donor partially compensated by an acceptor level whose concentration is of the smae order of magnitude as that of any electrically active Si. Temperature dependent Hall effect indicates that the activation energy of the deeper donor level lies -145 meV from the conduction band.

  17. Molecular beam epitaxy growth of SnO{sub 2} using a tin chemical precursor

    SciTech Connect

    Wang, Tianqi; Prakash, Abhinav; Jalan, Bharat; Warner, Ellis; Gladfelter, Wayne L.

    2015-03-15

    The authors report on the development of a molecular beam epitaxy approach for atomic layer controlled growth of phase-pure, single-crystalline epitaxial SnO{sub 2} films with scalable growth rates using a highly volatile precursor (tetraethyltin) for tin and rf-oxygen plasma for oxygen. Smooth, epitaxial SnO{sub 2} (101) films on r-sapphire (101{sup ¯}2) substrates were grown as a function of tin precursor flux and substrate temperatures between 300 and 900 °C. Three distinct growth regimes were identified where SnO{sub 2} films grew in a reaction-, flux-, and desorption-limited mode, respectively, with increasing substrate temperature. In particular, with increasing tin flux, the growth rates were found to increase and then saturate indicating any excess tin precursor desorbs above a critical beam equivalent pressure of tin precursor. Important implications of growth kinetic behaviors on the self-regulating stoichiometric growth of perovskite stannates are discussed.

  18. Molecular beam epitaxy growth of germanium junctions for multi-junction solar cell applications

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Faucher, J.; Lee, M. L.

    2016-11-01

    We report on the molecular beam epitaxy (MBE) growth and device characteristics of Ge solar cells. Integrating a Ge bottom cell beneath a lattice-matched triple junction stack grown by MBE could enable ultra-high efficiencies without metamorphic growth or wafer bonding. However, a diffused junction cannot be readily formed in Ge by MBE due to the low sticking coefficient of group-V molecules on Ge surfaces. We therefore realized Ge junctions by growth of homo-epitaxial n-Ge on p-Ge wafers within a standard III-V MBE system. We then fabricated Ge solar cells, finding growth temperature and post-growth annealing to be key factors for achieving high efficiency. Open-circuit voltage and fill factor values of ~0.175 V and ~0.59 without a window layer were obtained, both of which are comparable to diffused Ge junctions formed by metal-organic vapor phase epitaxy. We also demonstrate growth of high-quality, single-domain GaAs on the Ge junction, as needed for subsequent growth of III-V subcells, and that the surface passivation afforded by the GaAs layer slightly improves the Ge cell performance.

  19. Molecular beam epitaxy of 2D-layered gallium selenide on GaN substrates

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; Krishnamoorthy, Sriram; O'Hara, Dante J.; Brenner, Mark R.; Johnson, Jared M.; Jamison, John S.; Myers, Roberto C.; Kawakami, Roland K.; Hwang, Jinwoo; Rajan, Siddharth

    2017-03-01

    Large area epitaxy of two-dimensional (2D) layered materials with high material quality is a crucial step in realizing novel device applications based on 2D materials. In this work, we report high-quality, crystalline, large-area gallium selenide (GaSe) films grown on bulk substrates such as c-plane sapphire and gallium nitride (GaN) using a valved cracker source for Se. (002)-Oriented GaSe with random in-plane orientation of domains was grown on sapphire and GaN substrates at a substrate temperature of 350-450 °C with complete surface coverage. Higher growth temperature (575 °C) resulted in the formation of single-crystalline ɛ-GaSe triangular domains with six-fold symmetry confirmed by in-situ reflection high electron energy diffraction and off-axis x-ray diffraction. A two-step growth method involving high temperature nucleation of single crystalline domains and low temperature growth to enhance coalescence was adopted to obtain continuous (002)-oriented GaSe with an epitaxial relationship with the substrate. While six-fold symmetry was maintained in the two step growth, β-GaSe phase was observed in addition to the dominant ɛ-GaSe in cross-sectional scanning transmission electron microscopy images. This work demonstrates the potential of growing high quality 2D-layered materials using molecular beam epitaxy and can be extended to the growth of other transition metal chalcogenides.

  20. Microstructure of In x Ga1-x N nanorods grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Webster, R. F.; Soundararajah, Q. Y.; Griffiths, I. J.; Cherns, D.; Novikov, S. V.; Foxon, C. T.

    2015-11-01

    Transmission electron microscopy is used to examine the structure and composition of In x Ga1-x N nanorods grown by plasma-assisted molecular beam epitaxy. The results confirm a core-shell structure with an In-rich core and In-poor shell resulting from axial and lateral growth sectors respectively. Atomic resolution mapping by energy-dispersive x-ray microanalysis and high angle annular dark field imaging show that both the core and the shell are decomposed into Ga-rich and In-rich platelets parallel to their respective growth surfaces. It is argued that platelet formation occurs at the surfaces, through the lateral expansion of surface steps. Studies of nanorods with graded composition show that decomposition ceases for x ≥ 0.8 and the ratio of growth rates, shell:core, decreases with increasing In concentration.

  1. Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil

    NASA Astrophysics Data System (ADS)

    Calabrese, Gabriele; Corfdir, Pierre; Gao, Guanhui; Pfüller, Carsten; Trampert, Achim; Brandt, Oliver; Geelhaar, Lutz; Fernández-Garrido, Sergio

    2016-05-01

    We demonstrate the self-assembled growth of vertically aligned GaN nanowire ensembles on a flexible Ti foil by plasma-assisted molecular beam epitaxy. The analysis of single nanowires by transmission electron microscopy reveals that they are single crystalline. Low-temperature photoluminescence spectroscopy demonstrates that in comparison to standard GaN nanowires grown on Si, the nanowires prepared on the Ti foil exhibit an equivalent crystalline perfection, a higher density of basal-plane stacking faults, but a reduced density of inversion domain boundaries. The room-temperature photoluminescence spectrum of the nanowire ensemble is not influenced or degraded by the bending of the substrate. The present results pave the way for the fabrication of flexible optoelectronic devices based on GaN nanowires on metal foils.

  2. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  3. Superconductivity in artificial cuprate structures grown by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tebano, A.; Aruta, C.; Boggio, N. G.; Medaglia, P. G.; Balestrino, G.

    2006-03-01

    Pulsed laser deposition in a molecular beam epitaxy environment has been used to deposit high quality thin films of BaCuO2+x,CaCuO2, and superconducting (BaCuO2+x)2/(CaCuO2)2 artificial superlattices. In situ reflection high energy electron diffraction (RHEED) has shown that the growth mechanism is two dimensional, and ex situ x-ray diffraction spectra confirmed the growth rate deduced from RHEED oscillations. The BaCuO2+x,CaCuO2 films alone are not superconducting; however, in infinite layer based heterostructures the occurrence of charge transfer amongst layers containing different alkaline earth ions can give rise to superconductivity. Structural features of these heterostructures can be engineered over a wide range and, consequently, their superconducting properties studied.

  4. Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy

    DOE PAGES

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; ...

    2016-01-06

    Layered materials are an actively pursued area of research for realizing highly scaled technologies involving both traditional device structures as well as new physics. Lately, non-equilibrium growth of 2D materials using molecular beam epitaxy (MBE) is gathering traction in the scientific community and here we aim to highlight one of its strengths, growth of abrupt heterostructures, and superlattices (SLs). In this work we present several of the firsts: first growth of MoTe2 by MBE, MoSe2 on Bi2Se3 SLs, transition metal dichalcogenide (TMD) SLs, and lateral junction between a quintuple atomic layer of Bi2Te3 and a triple atomic layer of MoTe2.more » In conclusion, reflected high electron energy diffraction oscillations presented during the growth of TMD SLs strengthen our claim that ultrathin heterostructures with monolayer layer control is within reach.« less

  5. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  6. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  7. Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

    PubMed Central

    Baiutti, Federico; Christiani, Georg

    2014-01-01

    Summary In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE) which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2− xSrxNiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities in the deposition of atomically smooth single-crystal thin films of various complex oxides, artificial compounds and heterostructures, introducing our goal of pursuing a deep investigation of such systems with particular emphasis on structural defects, with the aim of tailoring their functional properties by precise defects control. PMID:24995148

  8. Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy.

    PubMed

    Baiutti, Federico; Christiani, Georg; Logvenov, Gennady

    2014-01-01

    In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE) which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2- x Sr x NiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities in the deposition of atomically smooth single-crystal thin films of various complex oxides, artificial compounds and heterostructures, introducing our goal of pursuing a deep investigation of such systems with particular emphasis on structural defects, with the aim of tailoring their functional properties by precise defects control.

  9. Growth regimes during homoepitaxial growth of GaN by ammonia molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Corrion, A. L.; Wu, F.; Speck, J. S.

    2012-09-01

    c-plane GaN films were grown by ammonia molecular beam epitaxy on metal-organic chemical vapor deposition templates for a wide range of NH3:Ga flux ratios and growth temperatures, and the resulting films were characterized using atomic force microscopy, reflection high-energy electron diffraction, and transmission electron microscopy. Three distinct nitrogen-rich growth regimes—unstable layer-by-layer, quasi-stable step flow, and dislocation-mediated pitting—were identified based on the growth mode and film properties. In addition, step flow growth was observed under conditions of gallium droplet accumulation. The results indicate the existence of two regimes for step-flow growth of GaN by ammonia MBE—both gallium-rich and nitrogen-rich. Growth mode instabilities and mound formation were observed and are discussed in the context of a step-edge energy barrier to adatom diffusion over a terrace.

  10. Molecular beam epitaxial growth of CdZnS using elemental sources

    NASA Astrophysics Data System (ADS)

    Wu, B. J.; Cheng, H.; Guha, S.; Haase, M. A.; De Puydt, J. M.; Meis-Haugen, G.; Qiu, J.

    1993-11-01

    We report on the first molecular beam epitaxial (MBE) growth of CdZnS on (100) GaAs substrates using elemental Zn, Cd, and S sources. Single crystal cubic CdZnS layers lattice matched to GaAs have been successfully prepared. The competition in incorporation between Cd and Zn under different sulfur flux conditions is investigated. Under appropriate growth conditions, the Cd1-xZnxS composition is directly related only to the ratio of the group II beam equivalent pressures. The background sulfur in the MBE growth chamber is found to etch the freshly thermally cleaned GaAs substrates and generate high density of pits on the surfaces. Methods to prevent the sulfur etching are also discussed.

  11. Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy.

    PubMed

    Zhou, H L; Hoang, T B; Dheeraj, D L; van Helvoort, A T J; Liu, L; Harmand, J C; Fimland, B O; Weman, H

    2009-10-14

    We report the growth of GaAs/AlGaAs core-shell nanowires (NWs) on GaAs(111)B substrates by Au-assisted molecular beam epitaxy. Electron microscopy shows the formation of a wurtzite AlGaAs shell structure both in the radial and the axial directions outside a wurtzite GaAs core. With higher Al content, a lower axial and a higher radial growth rate of the AlGaAs shell were observed. Room temperature and low temperature (4.4 K) micro-photoluminescence measurements show a much higher radiative efficiency from the GaAs core after the NW is overgrown with a radial AlGaAs shell.

  12. Synthesis of long group IV semiconductor nanowires by molecular beam epitaxy

    PubMed Central

    2011-01-01

    We report the growth of Si and Ge nanowires (NWs) on a Si(111) surface by molecular beam epitaxy. While Si NWs grow perpendicular to the surface, two types of growth axes are found for the Ge NWs. Structural studies of both types of NWs performed with electron microscopies reveal a marked difference between the roughnesses of their respective sidewalls. As the investigation of their length dependence on their diameter indicates that the growth of the NWs predominantly proceeds through the diffusion of adatoms from the substrate up along the sidewalls, difference in the sidewall roughness qualitatively explains the length variation measured between both types of NWs. The formation of atomically flat {111} sidewalls on the <110>-oriented Ge NWs accounts for a larger diffusion length. PMID:21711645

  13. YCo5±x thin films with perpendicular anisotropy grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Hildebrandt, E.; Sharath, S. U.; Radulov, I.; Alff, L.

    2017-06-01

    The synthesis conditions of buffer-free (00l) oriented YCo5 and Y2Co17 thin films onto Al2O3 (0001) substrates have been explored by molecular beam epitaxy (MBE). The manipulation of the ratio of individual atomic beams of Yttrium, Y and Cobalt, Co, as well as growth rate variations allows establishing a thin film phase diagram. Highly textured YCo5±x thin films were stabilized with saturation magnetization of 517 emu/cm3 (0.517 MA/m), coercivity of 4 kOe (0.4 T), and anisotropy constant, K1, equal to 5.34 ×106 erg/cm3 (0.53 MJ/m3). These magnetic parameters and the perpendicular anisotropy obtained without additional underlayers make the material system interesting for application in magnetic recording devices.

  14. Ferromagnet-semiconductor nanowire coaxial heterostructures grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hilse, M.; Takagaki, Y.; Herfort, J.; Ramsteiner, M.; Herrmann, C.; Breuer, S.; Geelhaar, L.; Riechert, H.

    2009-09-01

    GaAs-MnAs core-shell structures are grown by molecular-beam epitaxy using wurtzite GaAs nanowires on GaAs(111)B. The nanowire structures curve due to the strain at the heterointerface when the substrate is not rotated during the growth, evidencing the diffusion length in the MnAs overgrowth being less than the perimeter of the columns. The MnAs growth is thus demonstrated to take place by direct deposition on the sidewall. The MnAs envelope is m-plane-oriented with the c-axis along the nanowire axis. The magnetic easy axis hence lies in the surface plane of the substrate, which is confirmed by magnetization measurements and magnetic-force microscopy.

  15. Ferromagnetic (Ga,Mn)As nanowires grown by Mn-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bouravleuv, Alexei; Cirlin, George; Sapega, Victor; Werner, Peter; Savin, Alexander; Lipsanen, Harri

    2013-04-01

    (Ga,Mn)As nanowires were grown by molecular beam epitaxy using Mn as a growth catalyst on GaAs(001) substrates at 485 °C, i.e., at intermediate temperatures higher than ones used for the growth of (Ga,Mn)As thin films, but lower than the ordinary temperatures of Au-assisted growth of GaAs nanowires. (Ga,Mn)As nanowires obtained with typical lengths between 0.8 and 4 μm and diameters 50-90 nm do not have defects, such as dislocations or precipitates, except for the stacking faults lying parallel to the growth direction. The investigation of magnetic and optical properties has been carried out not only for as-grown samples with nanowires but also for peeled off nanowires from the host substrate. The results obtained demonstrate that (Ga,Mn)As nanowires exhibit ferromagnetic ordering around 70 K.

  16. Electrical characterization of ensemble of GaN nanowires grown by the molecular beam epitaxy technique

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K.

    2013-08-01

    High quality Schottky contacts are formed on GaN nanowires (NWs) structures grown by the molecular beam epitaxy technique on Si(111) substrate. The current-voltage characteristics show the rectification ratio of about 103 and the leakage current of about 10-4 A/cm2 at room temperature. From the capacitance-voltage measurements the free carrier concentration in GaN NWs is determined as about 1016 cm-3. Two deep levels (H200 and E280) are found in the structures containing GaN NWs. H200 is attributed to an extended defect located at the interface between the substrate and SiNx or near the sidewalls at the bottom of the NWs whereas E280 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  17. Metalorganic molecular beam epitaxy growth of GaAs on patterned GaAs substrates

    NASA Astrophysics Data System (ADS)

    Marx, D.; Asahi, H.; Liu, X. F.; Okuno, Y.; Inoue, K.; Gonda, S.; Shimomura, S.; Hiyamizu, S.

    1994-03-01

    GaAs layers were grown on etch-patterned (100) GaAs substrates by MOMBE (metalorganic molecular beam epitaxy) using TEGa (triethylgallium) and thermally cracked TEAs (triethylarsine). Morphology and orientation dependencies of the grown facets on the growth temperature (400-630°C) and V/III ratio (2-4) are investigated. Good morphology of grown layers was obtained on (111)A side facets at a low V/III ratio of 3 and low growth temperatures of 450-500°C. We also found strong evidence that the formation of facets is not only governed by the migration of Ga precursors and/or Ga atoms, but also by a preferential catalytic decomposition of Ga precursors on the facet edges.

  18. Raman measurements of substrate temperature in a molecular beam epitaxy growth chamber.

    PubMed

    Hutchins, T; Nazari, M; Eridisoorya, M; Myers, T M; Holtz, M

    2015-01-01

    A method is described for directly measuring the temperature of a substrate in a molecular-beam epitaxy (MBE) growth system. The approach relies on the establishment of the temperature dependence of Raman-active phonons of the substrate material using independently known calibration points across the range of interest. An unknown temperature in this range is then determined based on the Raman peak position with the substrate in situ the MBE chamber. The apparatus relies on conventional optics and Raman components. Shifting and broadening of the Raman spectrum are described based on the effects of thermal expansion and anharmonic decay. The choice of reference temperature is discussed. The method is qualified by examining the substrate temperature dependence, relative to that of a standard thermocouple, during a commonly used ramp procedure. Both temperature difference and time lag are obtained.

  19. AlN Nanowall Structures Grown on Si (111) Substrate by Molecular Beam Epitaxy.

    PubMed

    Tamura, Yosuke; Hane, Kazuhiro

    2015-12-01

    AlN nanowall structures were grown on Si (111) substrate using molecular beam epitaxy at substrate temperature of 700 °C with N/Al flux ratios ranging from 50 to 660. A few types of other AlN nanostructures were also grown under the nitrogen-rich conditions. The AlN nanowalls were ranged typically 60-120 nm in width and from 190 to 470 nm in length by changing N/Al flux ratio. The AlN nanowall structures grown along the c-plane consisted of AlN (0002) crystal with full-width at half maximum of the rocking curve about 5000 arcsec.

  20. Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy.

    PubMed

    Gao, Xian; Wei, Zhipeng; Zhao, Fenghuan; Yang, Yahui; Chen, Rui; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Li, Ruixue; Ge, Xiaotian; Ma, Xiaohui; Wang, Xiaohua

    2016-07-06

    We report the carrier dynamics in GaAsSb ternary alloy grown by molecular beam epitaxy through comprehensive spectroscopic characterization over a wide temperature range. A detailed analysis of the experimental data reveals a complex carrier relaxation process involving both localized and delocalized states. At low temperature, the localized degree shows linear relationship with the increase of Sb component. The existence of localized states is also confirmed by the temperature dependence of peak position and band width of the emission. At temperature higher than 60 K, emissions related to localized states are quenched while the band to band transition dominates the whole spectrum. This study indicates that the localized states are related to the Sb component in the GaAsSb alloy, while it leads to the poor crystal quality of the material, and the application of GaAsSb alloy would be limited by this deterioration.

  1. Universality and dependence on initial conditions in the class of the nonlinear molecular beam epitaxy equation.

    PubMed

    Carrasco, I S S; Oliveira, T J

    2016-11-01

    We report extensive numerical simulations of growth models belonging to the nonlinear molecular beam epitaxy (nMBE) class, on flat (fixed-size) and expanding substrates (ES). In both d=1+1 and 2+1, we find that growth regime height distributions (HDs), and spatial and temporal covariances are universal, but are dependent on the initial conditions, while the critical exponents are the same for flat and ES systems. Thus, the nMBE class does split into subclasses, as does the Kardar-Parisi-Zhang (KPZ) class. Applying the "KPZ ansatz" to nMBE models, we estimate the cumulants of the 1+1 HDs. Spatial covariance for the flat subclass is hallmarked by a minimum, which is not present in the ES one. Temporal correlations are shown to decay following well-known conjectures.

  2. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  3. Photoluminescence studies of ZnO nanorods grown by plasma-assisted molecular beam epitaxy.

    PubMed

    Kim, Min Su; Nam, Giwoong; Leem, Jae-Young

    2013-05-01

    Metal catalyst-free ZnO nanorods were grown on PS with buffer layers grown at 450 degrees C by plasma-assisted molecular beam epitaxy. Room temperature and temperature-dependent photoluminescence were carried out to investigate the optical properties of the ZnO nanorods with the average diameter of 120 nm and length of 300 nm. Three emission peaks, free excition, neutral-donor exciton, and free electron-to-neutral acceptor, were observed at 10 K. Huang-Rhys factor S of the ZnO nanorods was 0.978, which is much higher than that of ZnO thin films. The values of Varshni's empirical equation fitting parameters were alpha = 4 x 10(-3) eV/K, beta = 4.1 x 10(4) K, and E9(0) = 3.388 eV and the activation energy was about 96 meV.

  4. Antimony segregation in stressed SiGe heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Drozdov, M. N.; Novikov, A. V.; Yurasov, D. V.

    2013-11-15

    The effects of the growth temperature, composition, and elastic strains in separate layers on the segregation of antimony are studied experimentally for stressed SiGe structures grown by molecular beam epitaxy. It is established that the growth conditions and parameters of the structures exert an interrelated influence on the segregation of Sb: the degree of the influence of the composition and elastic stresses in the SiGe layers on Sb segregation depends on the growth temperature. It is shown that usage of a method previously proposed by us for the selective doping of silicon structures with consideration for the obtained dependences of Sb segregation on the growth conditions and parameters of the SiGe layers makes it possible to form SiGe structures selectively doped with antimony.

  5. Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy.

    PubMed

    Kim, Sangcheol; Bhargava, Nupur; Gupta, Jay; Coppinger, Matthew; Kolodzey, James

    2014-05-05

    Heterojunction devices of Ge(1-x)Sn(x) / n-Ge were grown by solid source molecular beam epitaxy (MBE), and the mid-infrared (IR) photocurrent response was measured. With increasing Sn composition from 4% to 12%, the photocurrent spectra became red-shifted, suggesting that the bandgap of Ge(1-x)Sn(x) alloys was lowered compared to pure Ge. At a temperature of 100 K, the wavelengths of peak photocurrent were shifted from 1.42 µm for pure Ge (0% Sn) to 2.0 µm for 12% Sn. The bias dependence of the device response showed that the optimum reverse bias was > 0.5 volts for saturated photocurrent. The responsivity of the Ge(1-x)Sn(x) devices was estimated to be 0.17 A/W for 4% Sn. These results suggest that Ge(1-x)Sn(x) photodetectors may have practical applications in the near/mid IR wavelength regime.

  6. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.

    PubMed

    Dheeraj, D L; Munshi, A M; Scheffler, M; van Helvoort, A T J; Weman, H; Fimland, B O

    2013-01-11

    Control of the crystal phases of GaAs nanowires (NWs) is essential to eliminate the formation of stacking faults which deteriorate the optical and electronic properties of the NWs. In addition, the ability to control the crystal phase of NWs provides an opportunity to engineer the band gap without changing the crystal material. We show that the crystal phase of GaAs NWs grown on GaAs(111)B substrates by molecular beam epitaxy using the Au-assisted vapor-liquid-solid growth mechanism can be tuned between wurtzite (WZ) and zinc blende (ZB) by changing the V/III flux ratio. As an example we demonstrate the realization of WZ GaAs NWs with a ZB GaAs insert that has been grown without changing the substrate temperature.

  7. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy.

    PubMed

    Yue, Ruoyu; Barton, Adam T; Zhu, Hui; Azcatl, Angelica; Pena, Luis F; Wang, Jian; Peng, Xin; Lu, Ning; Cheng, Lanxia; Addou, Rafik; McDonnell, Stephen; Colombo, Luigi; Hsu, Julia W P; Kim, Jiyoung; Kim, Moon J; Wallace, Robert M; Hinkle, Christopher L

    2015-01-27

    In this work, we demonstrate the growth of HfSe2 thin films using molecular beam epitaxy. The relaxed growth criteria have allowed us to demonstrate layered, crystalline growth without misfit dislocations on other 2D substrates such as highly ordered pyrolytic graphite and MoS2. The HfSe2 thin films exhibit an atomically sharp interface with the substrates used, followed by flat, 2D layers with octahedral (1T) coordination. The resulting HfSe2 is slightly n-type with an indirect band gap of ∼ 1.1 eV and a measured energy band alignment significantly different from recent DFT calculations. These results demonstrate the feasibility and significant potential of fabricating 2D material based heterostructures with tunable band alignments for a variety of nanoelectronic and optoelectronic applications.

  8. Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy

    SciTech Connect

    Lu, Zhenyu; Chen, Pingping E-mail: luwei@mail.sitp.ac.cn; Shi, Suixing; Yao, Luchi; Zhou, Xiaohao; Lu, Wei E-mail: luwei@mail.sitp.ac.cn; Zhang, Zhi; Zhou, Chen; Zou, Jin

    2014-10-20

    In this work, the crystal structure of GaAs nanowires grown by molecular beam epitaxy has been tailored only by bismuth without changing the growth temperature and V/III flux ratio. The introduction of bismuth can lead to the formation of zinc-blende GaAs nanowires, while the removal of bismuth changes the structure into a 4H polytypism before it turns back to the wurtzite phase eventually. The theoretical calculation shows that it is the steadiest for bismuth to adsorb on the GaAs(111){sub B} surface compared to the liquid gold catalyst surface and the interface between the gold catalyst droplet and the nanowire, and these adsorbed bismuth could decrease the diffusion length of adsorbed Ga and hence the supersaturation of Ga in the gold catalyst droplet.

  9. n{sup +}-GaN grown by ammonia molecular beam epitaxy: Application to regrown contacts

    SciTech Connect

    Lugani, L.; Malinverni, M.; Giraud, E.; Carlin, J.-F.; Grandjean, N.; Tirelli, S.; Marti, D.; Bolognesi, C. R.

    2014-11-17

    We report on the low-temperature growth of heavily Si-doped (>10{sup 20 }cm{sup −3}) n{sup +}-type GaN by N-rich ammonia molecular beam epitaxy (MBE) with very low bulk resistivity (<4 × 10{sup −4} Ω·cm). This is applied to the realization of regrown ohmic contacts on InAlN/GaN high electron mobility transistors. A low n{sup +}-GaN/2 dimensional electron gas contact resistivity of 0.11 Ω·mm is measured, provided an optimized surface preparation procedure, which is shown to be critical. This proves the great potentials of ammonia MBE for the realization of high performance electronic devices.

  10. Molecular beam epitaxy of SrTiO3 with a growth window

    NASA Astrophysics Data System (ADS)

    Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne

    2009-07-01

    Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO3 films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO3 films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

  11. Molecular beam epitaxy of SrTiO{sub 3} with a growth window

    SciTech Connect

    Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne

    2009-07-20

    Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO{sub 3} films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO{sub 3} films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

  12. Indium antimonide doped with lead telluride grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Heremans, J.; Trush, C. M.

    1991-05-01

    A PbTe dopant source has been used to grow n-type InSb using the molecular beam epitaxy growth technique. From Auger electron spectroscopy studies, no surface segregation of tellurium or lead is observed up to ∽ 10 19 cm -3 doping levels. The correlation between the PbTe flux used during growth and the electron density in the grown films is very good, suggesting that the incorporation of tellurium is near unity. Six-probe Hall measurements of carrier transport gave room temperature mobilities as high as 51,300 cm 2 V -1 s -1 at an electron density of 2.9×10 16 cm -3 (54,300 at an electron density of 1.9×10 16 cm -3 at 110 K) for a film of 4.0 μm thickness on an InP substrate.

  13. InAs/InP nanowires grown by catalyst assisted molecular beam epitaxy on silicon substrates

    NASA Astrophysics Data System (ADS)

    Khmissi, H.; Naji, K.; Hadj Alouane, M. H.; Chauvin, N.; Bru-Chevallier, C.; Ilahi, B.; Patriarche, G.; Gendry, M.

    2012-04-01

    InP nanowires (NWs) with an InAs insertion were grown on (001)- and (111)-oriented silicon substrates by catalyst assisted molecular beam epitaxy. To prevent the crystallization of the catalyst droplet we propose a procedure based on the realization of the switching of the elements V flux during a growth interruption. With this procedure and with the growth conditions we have used, the crystal structure of the NWs is purely wurtzite without any stacking faults. With these growth conditions, both radial and axial growths occur simultaneously and we show that the growth time of the InAs insertion could be adjusted to obtain radial quantum well emitting in the 1.3-1.6 μm telecom band at room temperature.

  14. Ferromagnetic (Ga,Mn)As nanowires grown by Mn-assisted molecular beam epitaxy

    SciTech Connect

    Bouravleuv, Alexei; Cirlin, George; Sapega, Victor; Werner, Peter; Savin, Alexander; Lipsanen, Harri

    2013-04-14

    (Ga,Mn)As nanowires were grown by molecular beam epitaxy using Mn as a growth catalyst on GaAs(001) substrates at 485 Degree-Sign C, i.e., at intermediate temperatures higher than ones used for the growth of (Ga,Mn)As thin films, but lower than the ordinary temperatures of Au-assisted growth of GaAs nanowires. (Ga,Mn)As nanowires obtained with typical lengths between 0.8 and 4 {mu}m and diameters 50-90 nm do not have defects, such as dislocations or precipitates, except for the stacking faults lying parallel to the growth direction. The investigation of magnetic and optical properties has been carried out not only for as-grown samples with nanowires but also for peeled off nanowires from the host substrate. The results obtained demonstrate that (Ga,Mn)As nanowires exhibit ferromagnetic ordering around 70 K.

  15. Concentration transient analysis of antimony surface segregation during Si(100) molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.

    1991-01-01

    Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.

  16. Formation of GeSn alloy on Si(100) by low-temperature molecular beam epitaxy

    SciTech Connect

    Talochkin, A. B.; Mashanov, V. I.

    2014-12-29

    GeSn alloys grown on Si(100) by the low-temperature (100 °C) molecular beam epitaxy are studied using scanning tunneling microscopy and Raman spectroscopy. It is found that the effect of Sn as a surfactant modifies substantially the low-temperature growth mechanism of Ge on Si. Instead of the formation of small Ge islands surrounded by amorphous Ge, in the presence of Sn, the growth of pure Ge islands appears via the Stranski-Krastanov growth mode, and a partially relaxed Ge{sub 1−x}Sn{sub x} alloy layer with the high Sn-fraction up to 40 at. % is formed in the area between them. It is shown that the observed growth mode induced by high surface mobility of Sn and the large strain of the pseudomorphic state of Ge to Si ensures the minimum elastic-strain energy of the structure.

  17. Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy.

    PubMed

    Fernández-Garrido, Sergio; Kaganer, Vladimir M; Sabelfeld, Karl K; Gotschke, Tobias; Grandal, Javier; Calleja, Enrique; Geelhaar, Lutz; Brandt, Oliver

    2013-07-10

    We investigate the axial and radial growth of GaN nanowires upon a variation of the Ga flux during molecular beam epitaxial growth. An increase in the Ga flux promotes radial growth without affecting the axial growth rate. In contrast, a decrease in the Ga flux reduces the axial growth rate without any change in the radius. These results are explained by a kinetic growth model that accounts for both the diffusion of Ga adatoms along the side facets toward the nanowire tip and the finite amount of active N available for the growth. The model explains the formation of a new equilibrium nanowire radius after increasing the Ga flux and provides an explanation for two well-known but so far not understood experimental facts: the necessity of effectively N-rich conditions for the spontaneous growth of GaN nanowires and the increase in nanowire radius with increasing III/V flux ratio.

  18. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires

    SciTech Connect

    Fontcuberta i Morral, A.; Colombo, C.; Abstreiter, G.; Arbiol, J.; Morante, J. R.

    2008-02-11

    Molecular beam epitaxy Ga-assisted synthesis of GaAs nanowires is demonstrated. The nucleation and growth are seen to be related to the presence of a SiO{sub 2} layer previously deposited on the GaAs wafer. The interaction of the reactive gallium with the SiO{sub 2} pinholes induces the formation of nanocraters, found to be the key for the nucleation of the nanowires. With SiO{sub 2} thicknesses up to 30 nm, nanocraters reach the underlying substrate, resulting into a preferential growth orientation of the nanowires. Possibly related to the formation of nanocraters, we observe an incubation period of 258 s before the nanowires growth is initiated.

  19. Concentration transient analysis of antimony surface segregation during Si(100) molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.

    1991-01-01

    Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.

  20. Ge profile from the growth of SiGe buried layers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Godbey, D. J.; Ancona, M. G.

    1992-11-01

    X-ray photoelectron spectroscopy measurements were obtained and interpreted by a kinetic simulation to determine the germanium concentration profile of thin Si/SiGe heterostructures grown at 500 °C using elemental source molecular beam epitaxy. The primary finding is that there are significant segregation effects in these commonly grown structures which affect both the ``leading'' and ``trailing'' interfaces. Upon opening of the germanium shutter, the surface monolayer must be built up to a germanium composition of greater than 96% before the composition of the deposited alloy layer is equal to the flux composition for a Ge ratio of 0.3. This buildup causes the germanium depletion at the leading interface. Upon termination of the germanium flux, the incorporation of the germanium rich monolayer into the growing silicon cap layer causes a corresponding degradation of the trailing interface.

  1. InSb infrared photodetectors on Si substrates grown by molecular beam epitaxy

    SciTech Connect

    Michel, E.; Xu, J.; Kim, J.D.; Ferguson, I.; Razeghi, M.

    1996-05-01

    The InSb infrared photodetectors grown heteroepitaxially on Si substrates by molecular beam epitaxy (MBE) are reported. Excellent InSb material quality is obtained on 3-in Si substrates (with a GaAs predeposition) as confirmed by structural, optical, and electrical analysis. InSb infrared photodectors on Si substrates that can operate from 77 K to room temperature have been demonstrated. The peak voltage-responsivity at 4 {micro}m is about 1.0 {times} 10{sup 3} V/W and the corresponding Johnson-noise-limited detectivity is calculated to be 2.8 {times} 10{sup 10} cm-Hz{sup 1/2}/W. This is the first important stage in developing InSb detector arrays or monolithic focal plane arrays (FPA`s) on silicon. The development of this technology could provide a challenge to traditional hybrid FPA`s in the future.

  2. Study of electrical properties of single GaN nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Mozharov, A. M.; Komissarenko, F. E.; Vasiliev, A. A.; Bolshakov, A. D.; Moiseev, E. I.; Mukhin, M. S.; Cirlin, G. E.; Mukhin, I. S.

    2016-08-01

    Electrical properties of single GaN nanowires grown by means of molecular beam epitaxy with N-plasma source were studied. Ohmic contacts connected to single n-type GaN wires were produced by the combination of electron beam lithography, metal vacuum evaporation and rapid thermal annealing technique. The optimal annealing temperature to produce ohmic contacts implemented in the form of Ti/Al/Ti/Au stack has been determined. By means of 2-terminal measurement wiring diagram the conductivity of single NW has been obtained for NWs with different growth parameters. The method of MESFET measurement circuit layout of single GaN nanowires (NWs) has been developed. In accordance with performed numerical calculation, free carriers' concentration and mobility of single NWs could be independently estimated using MESFET structure.

  3. Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy

    PubMed Central

    Gao, Xian; Wei, Zhipeng; Zhao, Fenghuan; Yang, Yahui; Chen, Rui; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Li, Ruixue; Ge, Xiaotian; Ma, Xiaohui; Wang, Xiaohua

    2016-01-01

    We report the carrier dynamics in GaAsSb ternary alloy grown by molecular beam epitaxy through comprehensive spectroscopic characterization over a wide temperature range. A detailed analysis of the experimental data reveals a complex carrier relaxation process involving both localized and delocalized states. At low temperature, the localized degree shows linear relationship with the increase of Sb component. The existence of localized states is also confirmed by the temperature dependence of peak position and band width of the emission. At temperature higher than 60 K, emissions related to localized states are quenched while the band to band transition dominates the whole spectrum. This study indicates that the localized states are related to the Sb component in the GaAsSb alloy, while it leads to the poor crystal quality of the material, and the application of GaAsSb alloy would be limited by this deterioration. PMID:27381641

  4. Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chou, C. Y.; Torfi, A.; Pei, C.; Wang, W. I.

    2016-05-01

    In this work, the effects of substrate orientation on InSb quantum structure growth by molecular beam epitaxy (MBE) are presented. Motivated by the observation that (411) evolves naturally as a stable facet during MBE crystal growth, comparison studies have been carried out to investigate the effects of the crystal orientation of the underlying GaSb substrate on the growth of InSb by MBE. By depositing InSb on a number of different substrate orientations, namely: (100), (311), (411), and (511), a higher nanostructure density was observed on the (411) surface compared with the other orientations. This result suggests that the (411) orientation presents a superior surface in MBE growth to develop a super-flat GaSb buffer surface, naturally favorable for nanostructure growth.

  5. Improved tunneling magnetoresistance at low temperature in manganite junctions grown by molecular beam epitaxy

    SciTech Connect

    Werner, R.; Kleiner, R.; Koelle, D.; Petrov, A. Yu.; Davidson, B. A.; Mino, L. Alvarez

    2011-04-18

    We report resistance versus magnetic field measurements for a La{sub 0.65}Sr{sub 0.35}MnO{sub 3}/SrTiO{sub 3}/La{sub 0.65}Sr{sub 0.35}MnO{sub 3} tunnel junction grown by molecular-beam epitaxy, that show a large field window of extremely high tunneling magnetoresistance (TMR) at low temperature. Scanning the in-plane applied field orientation through 360 deg., the TMR shows fourfold symmetry, i.e., biaxial anisotropy, aligned with the crystalline axis but not the junction geometrical long axis. The TMR reaches {approx}1900% at 4 K, corresponding to an interfacial spin polarization of >95% assuming identical interfaces. These results show that uniaxial anisotropy is not necessary for large TMR, and lay the groundwork for future improvements in TMR in manganite junctions.

  6. Photoluminescence properties of MgxZn1-xO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Chou, W. C.; Shen, J. L.

    2017-02-01

    The optical properties of MgxZn1-xO films with x=0.03, 0.06, 0.08, and 0.11 grown by molecular beam epitaxy (MBE) have been studied by temperature-dependent photoluminescence (PL) measurement. It is presented that the full-width at half-maximum (FWHM) of the 12 K PL spectrum of MgZnO films increases with increasing Mg concentration and would deviate significantly from the simulation curve of Schubert model with higher Mg contents. The abnormal broader PL FWHM is inferred from larger compositional fluctuation by incorporating higher Mg contents, which results in larger effect of excitonic localization to induce more significant S-shaped behavior of the PL peak energy with temperature dependence. Additionally, the degree of localization increases as the linear proportion of the PL FWHM, indicating that the excitonic behavior in MgZnO films belong to the strong localization effect.

  7. Raman measurements of substrate temperature in a molecular beam epitaxy growth chamber

    SciTech Connect

    Hutchins, T.; Nazari, M.; Eridisoorya, M.; Myers, T. M.; Holtz, M.

    2015-01-15

    A method is described for directly measuring the temperature of a substrate in a molecular-beam epitaxy (MBE) growth system. The approach relies on the establishment of the temperature dependence of Raman-active phonons of the substrate material using independently known calibration points across the range of interest. An unknown temperature in this range is then determined based on the Raman peak position with the substrate in situ the MBE chamber. The apparatus relies on conventional optics and Raman components. Shifting and broadening of the Raman spectrum are described based on the effects of thermal expansion and anharmonic decay. The choice of reference temperature is discussed. The method is qualified by examining the substrate temperature dependence, relative to that of a standard thermocouple, during a commonly used ramp procedure. Both temperature difference and time lag are obtained.

  8. Molecular beam epitaxy growth and scanning tunneling microscopy study of TiSe2 ultrathin films

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Ping; Guan, Jia-Qi; Zhang, Hui-Min; Song, Can-Li; Wang, Lili; He, Ke; Xue, Qi-Kun; Ma, Xu-Cun

    2015-03-01

    Molecular beam epitaxy is used to grow TiSe2 ultrathin films on a graphitized SiC(0001) substrate. TiSe2 films proceed via a nearly layer-by-layer growth mode and exhibit two dominant types of defects, identified as Se vacancy and interstitial, respectively. By means of scanning tunneling microscopy, we demonstrate that the well-established charge density waves can survive in a single unit-cell (one triple-layer) regime, and find a gradual reduction in their correlation length as the density of surface defects in TiSe2 ultrathin films increases. Our findings offer important insights into the nature of charge density waves in TiSe2, and also pave a material foundation for potential applications based on the collective electronic states.

  9. Surface charge accumulation of InN films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lu, Hai; Schaff, William J.; Eastman, Lester F.; Stutz, C. E.

    2003-03-01

    A series of thin InN films down to 10 nm in thickness were prepared by molecular-beam epitaxy on either AlN or GaN buffers under optimized growth conditions. By extrapolating the fitted curve of sheet carrier density versus film thickness to zero film thickness, a strong excess sheet charge was derived, which must come from either the surface or the interface between InN and its buffer layer. Since metal contacts, including Ti, Al, Ni, and a Hg probe, can always form an ohmic contact on InN without any annealing, it is determined that at least part of the excess charge is surface charge, which was also confirmed by capacitance-voltage measurements.

  10. Preparation and rapid thermal annealing of AlN thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, B.; Gao, J.; Wu, K. M.; Liu, C.

    2009-05-01

    AlN films were grown at 785 ∘C on (0001) sapphire substrates by radio-frequency assisted molecular beam epitaxy. Post-growth rapid thermal annealing (RTA) was carried out from 900 to 1200 ∘C for 10 s in flowing N 2. The morphological and structural properties of the AlN epilayers before and after the RTA were studied by atomic force microscopy, x-ray diffraction and transmission electron microscopy. It is found that the threading dislocations can be decreased to an order of magnitude by using an interlayer growth method. The surface roughness (RMS) of the AlN thin films becomes larger with the increase of annealing temperature. The full width at half maximum of AlN (0002) rocking curve reaches its minimum after the RTA at 1000 ∘C.

  11. Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by molecular beam epitaxy

    SciTech Connect

    Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.; Luna, E.; Trampert, A.

    2007-07-09

    High quality InN nanocolumns have been grown by molecular beam epitaxy on bare and AlN-buffered Si(111) substrates. The accommodation mechanism of the InN nanocolumns to the substrate was studied by transmission electron microscopy. Samples grown on AlN-buffered Si(111) show abrupt interfaces between the nanocolumns and the buffer layer, where an array of periodically spaced misfit dislocations develops. Samples grown on bare Si(111) exhibit a thin Si{sub x}N{sub y} at the InN nanocolumn/substrate interface because of Si nitridation. The Si{sub x}N{sub y} thickness and roughness may affect the nanocolumn relative alignment to the substrate. In all cases, InN nanocolumns grow strain- and defect-free.

  12. Nickel enhanced graphene growth directly on dielectric substrates by molecular beam epitaxy

    SciTech Connect

    Wofford, Joseph M. E-mail: lopes@pdi-berlin.de; Lopes, Joao Marcelo J. E-mail: lopes@pdi-berlin.de; Riechert, Henning; Speck, Florian; Seyller, Thomas

    2016-07-28

    The efficacy of Ni as a surfactant to improve the crystalline quality of graphene grown directly on dielectric Al{sub 2}O{sub 3}(0001) substrates by molecular beam epitaxy is examined. Simultaneously exposing the substrate to a Ni flux throughout C deposition at 950 °C led to improved charge carrier mobility and a Raman spectrum indicating less structural disorder in the resulting nanocrystalline graphene film. X-ray photoelectron spectroscopy confirmed that no residual Ni could be detected in the film and showed a decrease in the intensity of the defect-related component of the C1s level. Similar improvements were not observed when a lower substrate temperature (850 °C) was used. A close examination of the Raman spectra suggests that Ni reduces the concentration of lattice vacancies in the film, possibly by catalytically assisting adatom incorporation.

  13. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    SciTech Connect

    Qi, Meng; Zhao, Yuning; Yan, Xiaodong; Li, Guowang; Verma, Jai; Fay, Patrick; Nomoto, Kazuki; Zhu, Mingda; Hu, Zongyang; Protasenko, Vladimir; Song, Bo; Xing, Huili Grace; Jena, Debdeep; Bader, Samuel

    2015-12-07

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm{sup 2} is obtained with reverse bias voltage up to −20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm{sup 2} is achieved, with a breakdown voltage corresponding to a peak electric field of ∼3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  14. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy

    SciTech Connect

    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J. Riechert, H.

    2015-05-25

    Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.

  15. High electron mobility in Ga(In)NAs films grown by molecular beam epitaxy

    SciTech Connect

    Miyashita, Naoya; Ahsan, Nazmul; Monirul Islam, Muhammad; Okada, Yoshitaka; Inagaki, Makoto; Yamaguchi, Masafumi

    2012-11-26

    We report the highest mobility values above 2000 cm{sup 2}/Vs in Si doped GaNAs film grown by molecular beam epitaxy. To understand the feature of the origin which limits the electron mobility in GaNAs, temperature dependences of mobility were measured for high mobility GaNAs and referential low mobility GaInNAs. Temperature dependent mobility for high mobility GaNAs is similar to the GaAs case, while that for low mobility GaInNAs shows large decrease in lower temperature region. The electron mobility of high quality GaNAs can be explained by intrinsic limiting factor of random alloy scattering and extrinsic factor of ionized impurity scattering.

  16. Growth regimes during homoepitaxial growth of GaN by ammonia molecular beam epitaxy

    SciTech Connect

    Corrion, A. L.; Wu, F.; Speck, J. S.

    2012-09-01

    c-plane GaN films were grown by ammonia molecular beam epitaxy on metal-organic chemical vapor deposition templates for a wide range of NH{sub 3}:Ga flux ratios and growth temperatures, and the resulting films were characterized using atomic force microscopy, reflection high-energy electron diffraction, and transmission electron microscopy. Three distinct nitrogen-rich growth regimes - unstable layer-by-layer, quasi-stable step flow, and dislocation-mediated pitting - were identified based on the growth mode and film properties. In addition, step flow growth was observed under conditions of gallium droplet accumulation. The results indicate the existence of two regimes for step-flow growth of GaN by ammonia MBE - both gallium-rich and nitrogen-rich. Growth mode instabilities and mound formation were observed and are discussed in the context of a step-edge energy barrier to adatom diffusion over a terrace.

  17. Metalorganic molecular beam epitaxy and etching of AlGaSb using trisdimethylaminoantimony

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Asahi, H.; Hidaka, K.; Satoh, J.; Gonda, S.

    1998-03-01

    Metalorganic molecular beam epitaxy and etching of AlGaSb using trisdimethylaminoantimony (TDMASb) are investigated. Etching rate of Al xGa 1- xSb by TDMASb rapidly decreases with an increase of x, and no etching is observed for x>0.3. Reflection high-energy electron diffraction (RHEED) intensity oscillation for the etching of AlGaSb is only observed during a few oscillations, and it attenuates rapidly showing a diffused RHEED pattern. This indicates that the etching of AlGaSb ( x≠0) stops after a few monolayers of etching due to the formation of AlN layer on the surface by the adsorption of nitrogen related species. No growth of AlSb is observed for the simultaneous supply of trimethylamine alane (TMAAl) and TDMASb. Successful growth of AlSb is achieved only by the supply of TMAAl and thermally precracked TDMASb.

  18. Mechanism of Charge Transport in Cobalt and Iron Phthalocyanine Thin Films Grown by Molecular Beam Epitaxy

    SciTech Connect

    Kumar, Arvind; Samanta, Soumen; Singh, Ajay; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.

    2011-12-12

    Cobalt phthalocyanine (CoPc), iron phthalocyanine (FePc) and their composite (CoPc-FePc) films have been grown by molecular beam epitaxy (MBE). Grazing incidence X-ray diffraction (GIXRD) and scanning electron microscope (SEM) studies showed that composite films has better structural ordering compared to individual CoPc and FePc films. The temperature dependence of resistivity (in the temperature range 25 K- 100 K) showed that composite films are metallic, while individual CoPc and FePc films are in the critical regime of metal-to-insulator (M-I) transition The composite films show very high mobility of 110 cm{sup 2} V{sup -1} s{sup -1} at room temperature i.e. nearly two order of magnitude higher compared to pure CoPc and FePc films.

  19. Investigation of the silicon ion density during molecular beam epitaxy growth

    NASA Astrophysics Data System (ADS)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  20. Epitaxial Overgrowth of Gallium Nitride Nano-Rods on Silicon (111) Substrates by RF-Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Jui-Tai Ku,; Tsung-Hsi Yang,; Jet-Rung Chang,; Yuen-Yee Wong,; Wu-Ching Chou,; Chun-Yen Chang,; Chiang-Yao Chen,

    2010-04-01

    Strain-free gallium nitride (GaN) overgrowth on GaN nano-rods is realized by RF-plasma assisted molecular beam epitaxy (RF-MBE) on silicon (Si) substrate. The strain-free condition was identified by the strong free A exciton (FXA) photoluminescence (PL) peak at 3.478 eV and the E2 high phonon Raman shift of 567 cm-1. It is clearly demonstrated that the critical diameter of GaN nano-rods is around 80 nm for the overgrowth of strain-free GaN. The blue-shift of PL peak energy and phonon Raman energy with decreasing the diameter of nano-rod result from the strain relaxation of overgrowth GaN.

  1. Fabrication and characterizations of nitrogen-doped BaSi2 epitaxial films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, Zhihao; Deng, Tianguo; Takabe, Ryota; Toko, Kaoru; Suemasu, Takashi

    2017-08-01

    Nitrogen doped BaSi2 layers are grown on high-resistivity n-Si (1 1 1) substrates by molecular beam epitaxy using a radio-frequency nitrogen plasma. The nitrogen concentration measured by secondary ion mass spectrometry is homogeneous throughout the grown layers. The carrier concentration is measured by Hall measurement using the van der Pauw method. Nitrogen-doped BaSi2 shows n- or p-type conductivity, depending on the intensity of nitrogen plasma. The hole concentration is of the order of 1016-1017 cm-3 at room temperature. The acceptor level is estimated to be approximately 64 meV from the temperature dependence of hole concentration. The temperature dependence of resistivity is explained by variable-range hopping conduction in p-BaSi2. First-principle calculation suggests that the nitrogen atoms are most likely to occupy the interstitial site in BaSi2.

  2. Epitaxial Overgrowth of Gallium Nitride Nano-Rods on Silicon (111) Substrates by RF-Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Ku, Jui-Tai; Yang, Tsung-Hsi; Chang, Jet-Rung; Wong, Yuen-Yee; Chou, Wu-Ching; Chang, Chun-Yen; Chen, Chiang-Yao

    2010-04-01

    Strain-free gallium nitride (GaN) overgrowth on GaN nano-rods is realized by RF-plasma assisted molecular beam epitaxy (RF-MBE) on silicon (Si) substrate. The strain-free condition was identified by the strong free A exciton (FXA) photoluminescence (PL) peak at 3.478 eV and the E2 high phonon Raman shift of 567 cm-1. It is clearly demonstrated that the critical diameter of GaN nano-rods is around 80 nm for the overgrowth of strain-free GaN. The blue-shift of PL peak energy and phonon Raman energy with decreasing the diameter of nano-rod result from the strain relaxation of overgrowth GaN.

  3. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zuo, Zheng; Liu, Jianlin

    2015-11-23

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BN until it may cover entire h-BN flakes.

  4. Growth, structural, and electrical properties of germanium-on-silicon heterostructure by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ghosh, Aheli; Clavel, Michael B.; Nguyen, Peter D.; Meeker, Michael A.; Khodaparast, Giti A.; Bodnar, Robert J.; Hudait, Mantu K.

    2017-09-01

    The growth, morphological, and electrical properties of thin-film Ge grown by molecular beam epitaxy on Si using a two-step growth process were investigated. High-resolution x-ray diffraction analysis demonstrated ˜0.10% tensile-strained Ge epilayer, owing to the thermal expansion coefficient mismatch between Ge and Si, and negligible epilayer lattice tilt. Micro-Raman spectroscopic analysis corroborated the strain-state of the Ge thin-film. Cross-sectional transmission electron microscopy revealed the formation of 90° Lomer dislocation network at Ge/Si heterointerface, suggesting the rapid and complete relaxation of Ge epilayer during growth. Atomic force micrographs exhibited smooth surface morphology with surface roughness < 2 nm. Temperature dependent Hall mobility measurements and the modelling thereof indicated that ionized impurity scattering limited carrier mobility in Ge layer. Capacitance- and conductance-voltage measurements were performed to determine the effect of epilayer dislocation density on interfacial defect states (Dit) and their energy distribution. Finally, extracted Dit values were benchmarked against published Dit data for Ge MOS devices, as a function of threading dislocation density within the Ge layer. The results obtained were comparable with Ge MOS devices integrated on Si via alternative buffer schemes. This comprehensive study of directly-grown epitaxial Ge-on-Si provides a pathway for the development of Ge-based electronic devices on Si.

  5. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO{sub 3}

    SciTech Connect

    Prakash, Abhinav Dewey, John; Yun, Hwanhui; Jeong, Jong Seok; Mkhoyan, K. Andre; Jalan, Bharat

    2015-11-15

    Owing to its high room-temperature electron mobility and wide bandgap, BaSnO{sub 3} has recently become of significant interest for potential room-temperature oxide electronics. A hybrid molecular beam epitaxy (MBE) approach for the growth of high-quality BaSnO{sub 3} films is developed in this work. This approach employs hexamethylditin as a chemical precursor for tin, an effusion cell for barium, and a radio frequency plasma source for oxygen. BaSnO{sub 3} films were thus grown on SrTiO{sub 3} (001) and LaAlO{sub 3} (001) substrates. Growth conditions for stoichiometric BaSnO{sub 3} were identified. Reflection high-energy electron diffraction (RHEED) intensity oscillations, characteristic of a layer-by-layer growth mode were observed. A critical thickness of ∼1 nm for strain relaxation was determined for films grown on SrTiO{sub 3} using in situ RHEED. Scanning transmission electron microscopy combined with electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy confirmed the cube-on-cube epitaxy and composition. The importance of precursor chemistry is discussed in the context of the MBE growth of BaSnO{sub 3}.

  6. Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3

    NASA Astrophysics Data System (ADS)

    Tellekamp, M. Brooks; Shank, Joshua C.; Goorsky, Mark S.; Doolittle, W. Alan

    2016-12-01

    Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.

  7. An ultra-compact, high-throughput molecular beam epitaxy growth system.

    PubMed

    Baker, A A; Braun, W; Gassler, G; Rembold, S; Fischer, A; Hesjedal, T

    2015-04-01

    We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined with ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr2O3 on c-plane sapphire and ferrimagnetic Fe3O4 on MgO (001).

  8. An ultra-compact, high-throughput molecular beam epitaxy growth system

    SciTech Connect

    Baker, A. A.; Hesjedal, T.; Braun, W. E-mail: fischer@createc.de; Rembold, S.; Fischer, A. E-mail: fischer@createc.de; Gassler, G.

    2015-04-15

    We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined with ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr{sub 2}O{sub 3} on c-plane sapphire and ferrimagnetic Fe{sub 3}O{sub 4} on MgO (001)

  9. Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy.

    PubMed

    Summerfield, Alex; Davies, Andrew; Cheng, Tin S; Korolkov, Vladimir V; Cho, YongJin; Mellor, Christopher J; Foxon, C Thomas; Khlobystov, Andrei N; Watanabe, Kenji; Taniguchi, Takashi; Eaves, Laurence; Novikov, Sergei V; Beton, Peter H

    2016-03-01

    Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are highly strained. Topological defects in the moiré patterns are observed and attributed to the relaxation of graphene islands which nucleate at different sites and subsequently coalesce. In addition, cracks are formed leading to strain relaxation, highly anisotropic strain fields, and abrupt boundaries between regions with different moiré periods. These cracks can also be formed by modification of the layers with a local probe resulting in the contraction and physical displacement of graphene layers. The Raman spectra of regions with a large moiré period reveal split and shifted G and 2D peaks confirming the presence of strain. Our work demonstrates a new approach to the growth of epitaxial graphene and a means of generating and modifying strain in graphene.

  10. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy.

    PubMed

    Zhong, Aihua; Hane, Kazuhiro

    2012-12-27

    GaN nanowall network was epitaxially grown on Si (111) substrate by molecular beam epitaxy. GaN nanowalls overlap and interlace with one another, together with large numbers of holes, forming a continuous porous GaN nanowall network. The width of the GaN nanowall can be controlled, ranging from 30 to 200 nm by adjusting the N/Ga ratio. Characterization results of a transmission electron microscope and X-ray diffraction show that the GaN nanowall is well oriented along the C axis. Strong band edge emission centered at 363 nm is observed in the spectrum of room temperature photoluminescence, indicating that the GaN nanowall network is of high quality. The sheet resistance of the Si-doped GaN nanowall network along the lateral direction was 58 Ω/. The conductive porous nanowall network can be useful for integrated gas sensors due to the large surface area-to-volume ratio and electrical conductivity along the lateral direction by combining with Si micromachining.

  11. Formation of Ga droplets on patterned GaAs (100) by molecular beam epitaxy.

    PubMed

    Li, Ming-Yu; Hirono, Yusuke; Koukourinkova, Sabina D; Sui, Mao; Song, Sangmin; Kim, Eun-Soo; Lee, Jihoon; Salamo, Gregory J

    2012-10-03

    In this paper, the formation of Ga droplets on photo-lithographically patterned GaAs (100) and the control of the size and density of Ga droplets by droplet epitaxy using molecular beam epitaxy are demonstrated. In extension of our previous result from the journal Physical Status Solidi A, volume 209 in 2012, the sharp contrast of the size and density of Ga droplets is clearly observed by high-resolution scanning electron microscope, atomic force microscope, and energy dispersive X-ray spectrometry. Also, additional monolayer (ML) coverage is added to strength the result. The density of droplets is an order of magnitude higher on the trench area (etched area), while the size of droplets is much larger on the strip top area (un-etched area). A systematic variation of ML coverage results in an establishment of the control of size and density of Ga droplets. The cross-sectional line profile analysis and root mean square roughness analysis show that the trench area (etched area) is approximately six times rougher. The atomic surface roughness is suggested to be the main cause of the sharp contrast of the size and density of Ga droplets and is discussed in terms of surface diffusion.

  12. NO-assisted molecular-beam epitaxial growth of nitrogen substituted EuO

    NASA Astrophysics Data System (ADS)

    Wicks, R.; Altendorf, S. G.; Caspers, C.; Kierspel, H.; Sutarto, R.; Tjeng, L. H.; Damascelli, A.

    2012-04-01

    We have investigated a method for substituting oxygen with nitrogen in EuO thin films, which is based on molecular beam epitaxy distillation with NO gas as the oxidizer. By varying the NO gas pressure, we produce crystalline, epitaxial EuO1 -xNx films with good control over the films' nitrogen concentration. In situ x-ray photoemission spectroscopy reveals that nitrogen substitution is connected to the formation Eu3+4f6 and a corresponding decrease in the number of Eu2+4f7, indicating that nitrogen is being incorporated in its 3- oxidation state. While small amounts of Eu3+ in over-oxidized Eu1-δO thin films lead to a drastic suppression of the ferromagnetism, the formation of Eu3+ in EuO1-xNx still allows the ferromagnetic phase to exist with an unaffected Tc, thus providing an ideal model system to study the interplay between the magnetic f7 (J = 7/2) and the non-magnetic f6 (J = 0) states close to the Fermi level.

  13. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    SciTech Connect

    Dangwal Pandey, A. Grånäs, E.; Shayduk, R.; Noei, H.; Vonk, V.; Krausert, K.; Franz, D.; Müller, P.; Keller, T. F.; Stierle, A.

    2016-08-21

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  14. Molecular-beam-epitaxy-grown ZnMgS ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Sou, I. K.; Wu, Marcus C. W.; Sun, T.; Wong, K. S.; Wong, G. K. L.

    2001-03-01

    Epitaxial growth of Zn1-xMgxS alloy thin films on GaP(100) substrates was carried out using the molecular-beam-epitaxy technique. In situ reflection high-energy electron diffraction studies show that the alloys can be grown with a stable zinc-blende structure up to x around 30%. For x>30%, a structural transition will occur at a critical thickness which is sensitively dependent on the x composition. A near-band-edge peak with a full width at half maximum of about 10 nm was observed in room-temperature photoluminescence measurements made on as-grown alloy thin films. Several Zn1-xMgxS-based Schottky barrier photodetectors were fabricated. Room-temperature photoresponse measurements were performed on these detectors and abrupt long-wavelength cutoffs covering 325, 305, 295, and 270 nm were achieved for devices with Mg composition of 16%, 44%, 57%, and 75%, respectively. The response curve of the Zn0.43Mg0.57S device offers a close match to the erythemal action spectrum that describes human skin sensitivity to UV radiation.

  15. Growth kinetics and island evolution during double-pulsed molecular beam epitaxy of InN

    SciTech Connect

    Kraus, A.; Hein, C.; Bremers, H.; Rossow, U.; Hangleiter, A.

    2016-06-21

    The kinetic processes of InN growth using alternating source fluxes with sub-monolayer In pulses in plasma-assisted molecular beam epitaxy have been investigated. Growth at various temperatures reveals the existence of two growth regimes. While growth at low temperatures is solely governed by surface diffusion, a combination of decomposition, desorption, and diffusion becomes decisive at growth temperatures of 470 °C and above. At this critical temperature, the surface morphology changes from a grainy structure to a structure made of huge islands. The formation of those islands is attributed to the development of an indium adlayer, which can be observed via reflection high energy electron diffraction monitoring. Based on the growth experiments conducted at temperatures below T{sub Growth} = 470 °C, an activation energy for diffusion of 0.54 ± 0.02 eV has been determined from the decreasing InN island density. A comparison between growth on metalorganic vapor phase epitaxy GaN templates and pseudo bulk GaN indicates that step edges and dislocations are favorable nucleation sites. Based on the results, we developed a growth model, which describes the main mechanisms of the growth.

  16. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dangwal Pandey, A.; Krausert, K.; Franz, D.; Grânäs, E.; Shayduk, R.; Müller, P.; Keller, T. F.; Noei, H.; Vonk, V.; Stierle, A.

    2016-08-01

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  17. High response solar-blind MgZnO photodetectors grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Winston V.; Wei, Ming; Boutwell, R. Casey; Liu, Huiyong

    2014-03-01

    High quality w-MgxZn1-xO thin films were grown epitaxially on c-plane sapphire substrates by plasma-assisted Molecular Beam Epitaxy. ZnO thin films with high crystalline quality, low defect and dislocation densities, and subnanometer surface roughness were achieved by applying a low temperature nucleation layer. By tuning Mg/Zn flux ratio, wurtzite MgxZn1-xO thin films with Mg composition as high as x=0.46 were obtained without phase segregation. Metal- Semiconductor-Metal (MSM) photoconductive and Schottky barrier devices with interdigitated electrode geometry and active surface area of 1 mm2 were fabricated and characterized. Resultant devices showed ~100 A/W peak responsivity at wavelength of ~260nm. We also report on cubic rock salt c-MgxZn1-xO thin films, following a non-traditional approach on MgO substrates, to demonstrate solar-blind photoresponse in MSM photodetectors, realizing a peak responsivity of 460 A/W (@ 250 nm) and 12.6 mA/W (@ 240nm) for mixed phase and single crystal films, respectively. A specific focus of the work is on identifying the impact of various growth parameters on the performance of the c- MgZnO detectors.

  18. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    SciTech Connect

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-23

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga{sub 2}O{sub 3}, In{sub 2}O{sub 3}, and SnO{sub 2} on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga{sub 2}O, In{sub 2}O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO{sub 2}, somewhat lower for In{sub 2}O{sub 3}, and the lowest for Ga{sub 2}O{sub 3}. Our findings can be generalized to further oxides that possess related sub-oxides.

  19. Magnetotransport in MgO-based magnetic tunnel junctions grown by molecular beam epitaxy (invited)

    SciTech Connect

    Andrieu, S. Bonell, F.; Hauet, T.; Montaigne, F.; Lefevre, P.; Bertran, F.

    2014-05-07

    The strong impact of molecular beam epitaxy growth and Synchrotron Radiation characterization tools in the understanding of fundamental issues in nanomagnetism and spintronics is illustrated through the example of fully epitaxial MgO-based Magnetic Tunnel Junctions (MTJs). If ab initio calculations predict very high tunnel magnetoresistance (TMR) in such devices, some discrepancy between theory and experiments still exists. The influence of imperfections in real systems has thus to be considered like surface contaminations, structural defects, unexpected electronic states, etc. The influence of possible oxygen contamination at the Fe/MgO(001) interface is thus studied, and is shown to be not so detrimental to TMR as predicted by ab initio calculations. On the contrary, the decrease of dislocations density in the MgO barrier of MTJs using Fe{sub 1−x}V{sub x} electrodes is shown to significantly increase TMR. Finally, unexpected transport properties in Fe{sub 1−X}Co{sub x}/MgO/Fe{sub 1−X}Co{sub x} (001) are presented. With the help of spin and symmetry resolved photoemission and ab initio calculation, the TMR decrease for Co content higher than 25% is shown to come from the existence of an interface state and the shift of the empty Δ1 minority spin state towards the Fermi level.

  20. The design, fabrication, and characterization of silicon-germanium optoelectronic devices grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sustersic, Nathan Anthony

    In recent years, Ge and SiGe devices have been actively investigated for potential optoelectronic applications such as germanium solar cells for long wavelength absorption, quantum-dot intermediate band solar cells (IBSCs), quantum-dot infrared photodetectors (QDIPs) and germanium light-emitting diodes (LEDs). Current research into SiGe based optoelectronic devices is heavily based on nanostructures which employ quantum confinement and is at a stage where basic properties are being studied in order to optimize growth conditions necessary for incorporation into future devices. Ge and SiGe based devices are especially attractive due to ease of monolithic integration with current Si-based CMOS processing technology, longer carrier lifetime, and reduced phonon scattering. Defect formation and transformation was studied in SiGe layers grown on Si and Ge (100) substrates. The epitaxial layers were grown with molecular beam epitaxy (MBE) and characterized by X-ray measurements in order to study the accommodation of elastic strain energy in the layers. The accommodation of elastic strain energy specifies the amount of point defects created on the growth surface which may transform into extended crystalline defects in the volume of the layers. An understanding of crystalline defects in high lattice mismatched epitaxial structures is critical in order to optimize growth procedures so that epitaxial structures can be optimized for specific devices such as Ge based solar cells. Considering the optimization of epitaxial layers based on the structural transformation of point defects, Ge solar cells were fabricated and investigated using current-voltage measurements and quantum efficiency data. These Ge solar cells, optimized for long wavelength absorption, were fabricated to be employed in a bonded Ge/Si solar cell device. The doping of self-assembled Ge quantum dot structures grown on Si (100) was investigated using atomic force microscopy (AFM) and photoluminescence (PL

  1. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    SciTech Connect

    Comes, Ryan; Liu Hongxue; Lu Jiwei; Gu, Man; Khokhlov, Mikhail; Wolf, Stuart A.

    2013-01-14

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  2. On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Alloing, B.; Vézian, S.; Tottereau, O.; Vennéguès, P.; Beraudo, E.; Zuniga-Pérez, J.

    2011-01-01

    The polarity of GaN micro- and nanowires grown epitaxially by metal organic vapor phase epitaxy on sapphire substrates and by molecular-beam epitaxy, using ammonia as a nitrogen source, on sapphire and silicon substrates has been investigated. On Al2O3(0001), whatever the growth technique employed, the GaN wires show a mixture of Ga and N polarities. On Si(111), the wires grown by ammonia-molecular beam epitaxy are almost entirely Ga-polar (around 90%) and do not show inversion domains. These results can be understood in terms of the growth conditions employed during the nucleation stage.

  3. On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy

    SciTech Connect

    Alloing, B.; Vezian, S.; Tottereau, O.; Vennegues, P.; Beraudo, E.; Zuniga-Perez, J.

    2011-01-03

    The polarity of GaN micro- and nanowires grown epitaxially by metal organic vapor phase epitaxy on sapphire substrates and by molecular-beam epitaxy, using ammonia as a nitrogen source, on sapphire and silicon substrates has been investigated. On Al{sub 2}O{sub 3}(0001), whatever the growth technique employed, the GaN wires show a mixture of Ga and N polarities. On Si(111), the wires grown by ammonia-molecular beam epitaxy are almost entirely Ga-polar (around 90%) and do not show inversion domains. These results can be understood in terms of the growth conditions employed during the nucleation stage.

  4. Investigations into molecular beam epitaxial growth of Indium Arsenide/Gallium antimonide superlattices

    NASA Astrophysics Data System (ADS)

    Murray, Lee Michael

    InAs/GaSb superlattices are a material system well suited to growth via molecular beam epitaxy. The ability to tune the band gap over the entire mid and long wave infrared spectrum gives a large number of applications for devices made from InAs/GaSb superlattice material. The growth of high quality InAs/GaSb superlattice material requires a careful study of the parameters used during epitaxial growth. This work investigates the growth of tunnel junctions for InAs/GaSb based superlattice light emitting diodes, the presence of defects in GaSb homoepitaxial layers, and variations in the growth rate of InAs/GaSb superlattice samples. Tunnel junctions in cascaded structures must provide adequate barriers to prevent carriers from leaking from one emission region to the next without first recombining radiatively, while at the same time remain low in tunneling resistance for current recycling. A variety of tunnel junction designs are compared in otherwise identical four stage InAs/GaSb superlattice light emitting diodes, which past studies have found hole confinement to be problematic. GaSb was used on the p-side of the junction, while various materials were used on the n-side. Al0.20In0.80As0.73Sb0.27 tunnel junctions function best due to the combination of favorable band alignment and ease of growth. Pyramidal defects have been observed in layers of GaSb grown by molecular beam epitaxy on GaSb substrates. These defects are typically 3-8 nanometers high, 1-3 microns in diameter, and shaped like pyramids. Their occurrence in the growth of GaSb buffer layers can propagate into subsequent layers. Defects are nucleated during the early stages of growth after the thermal desorption of native oxide from the GaSb substrate. These defects grow into pyramids due to a repulsive Ehrlich-Schwoebel potential on atomic step edges leading to an upward adatom current. The defects reduce in density with growth of GaSb. The insertion of a thin AlAsSb layer into the early stages of the Ga

  5. RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys

    NASA Astrophysics Data System (ADS)

    Nanishi, Yasushi; Saito, Yoshiki; Yamaguchi, Tomohiro

    2003-05-01

    The fundamental band gap of InN has been thought to be about 1.9 eV for a long time. Recent developments of metalorganic vapor phase epitaxy (MOVPE) and RF-molecular beam epitaxy (RF-MBE) growth technologies have made it possible to obtain high-quality InN films. A lot of experimental results have been presented very recently, suggesting that the true band-gap energy of InN should be less than 1.0 eV. In this paper, we review the results of the detailed study of RF-MBE growth conditions for obtaining high-quality InN films. The full widths at half maximum (FWHMs) of ω-mode X-ray diffraction (XRD), ω-2θ mode XRD and E2 (high-frequency)-phonon-mode peaks in the Raman scattering spectrum of the grown layer were 236.7 arcsec, 28.9 arcsec and 3.7 cm-1, respectively. The carrier concentration and room temperature electron mobility were 4.9× 1018 cm-3 and 1130 cm2/Vs, respectively. Photoluminescence and optical absorption measurements of these high-quality InN films have clearly demonstrated that the fundamental band gap of InN is about 0.8 eV. Studies on the growth and characterization of InGaN alloys over the entire alloy composition further supported that the fundamental band gap of InN is about 0.8 eV.

  6. Oxygen-plasma-assisted molecular beam epitaxial growth of the stable oxides of iron

    SciTech Connect

    Chambers, S.A.; Gao, Y.; Kim, Y.J.

    1997-12-31

    The need to synthesize well-defined, single-crystal surfaces of model minerals is becoming increasingly more critical as the surface science of these materials matures. Magnetite (Fe{sub 3}O{sub 4}) and {alpha}- and {gamma}-hematite (Fe{sub 2}O{sub 3}) are important surfaces for fundamental studies in molecular geochemistry. We have used oxygen-plasma-assisted molecular beam epitaxy (MBE) to synthesize pure, crystallographically well-defined surfaces of these three materials. {alpha}-Fe{sub 2}O{sub 3} has been grown on {alpha}Al{sub 2}O{sub 3} r- c-, and a-plane, and Fe{sub 3}O{sub 4} and {gamma}-Fe{sub 2}O{sub 3} were grown on MgO(100), MgO(110), and {alpha}-Al{sub 2}O{sub 3}(0001). The resulting surfaces, along with their interfaces to small molecules, have been studied by a number of techniques. In general, we find that lattice matching, minimization of film/substrate interface chemistry, matching of surface free energies, oxygen sublattice continuity across the interface, and careful flux control during growth are extremely important for successful epitaxy. High-quality Fe{sub 2}O{sub 3} growth requires oxygen-rich conditions whereas more iron-rich conditions are required for the growth of high-quality Fe{sub 3}O{sub 4}. In this talk, we discuss recent progress in our laboratory in the growth and detailed characterization of these important oxide surfaces and interfaces.

  7. Chemical and molecular beam epitaxy of III-V nanowires on silicon for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Gokul

    Nanowires, due to their unique structure and carrier transport abilities, have sparked huge interest in the semiconductor industry. An array of nanometric size wires inserted between the p and n conductivity regions of a conventional solar cell or core shell type p-n junction nanowires synergized with semiconductor nanocrystals can lead to faster carrier collection, thereby improving device performance. This work investigates the growth of GaAs and InP semiconductor nanowires on silicon (111) using Chemical Beam Epitaxy (CBE) and Molecular Beam Epitaxy (MBE). Uniform gold nanoparticles acting as growth centers in the Vapor Liquid Solid mode of growth were generated by using the cheap and rapid technique called Nanosphere Lithography (NSL). Variation of the experimental parameters during NSL resulted in honeycomb and hexagonal patterns of gold nanoparticles. A high degree of selectivity was obtained for CBE grown nanowires whereas the MBE grown GaAs nanowires revealed the formation of a thick polycrystalline wetting layer at the interface. The CBE grown InP nanowires mostly maintained the honeycomb structure although they were found to be oriented contrary to the expected <111> direction. SEM analysis of GaAs nanowires grown by CBE showed that during growth, the nanowires may coalesce with each other resulting in unique structures such as bipods, tripods and multipods. High resolution TEM analysis of single GaAs nanowires revealed periodic formation of contrasting materials. Diffraction patterns recorded at these dark contrast areas confirmed the formation of hexagonal wurtzite single crystal structures interspaced with cubic zincblende single crystal structures. These nanowires can be used for photovoltaic applications or as light emitting devices. In addition, the formation of superlattices of different crystal structures can pave the way for novel quantum confined optoelectronic devices.

  8. Development of the Hybrid Molecular Beam Epitaxy Approach for Stannate Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Jalan, Bharat

    2014-03-01

    Among many leading oxide candidates with s-band physics, stannate family with perovskite structure where conduction band is derived mainly from tin 5s-band has generated resurgence of interest in creating them in thin film form due to the recent demonstration of high room temperature electron mobility, largely attributable to their low electron effective mass. We employ the hybrid molecular beam epitaxy approach utilizing elemental solid source for Sr and Ba, a chemical precursor source for Sn and a rf plasma source for oxygen, for the growth of SrSnO3 and BaSnO3. In this talk, we will present a detailed MBE growth study of SnO2 films on r-plane sapphire as a function of tin precursor flux, oxygen pressure and substrate temperature. High-resolution x-ray diffraction and atomic force microscopy revealed single phase, epitaxial (101) SnO2 films and atomically smooth surfaces (rms roughness value between 0.3 - 0.9 nm) respectively between substrate temperatures of 300 to 900 °C. Three growth regimes were identified as a function of temperature where films grew in reaction- flux- and desorption-limited regime with increasing temperature. Further growth exploration at constant substrate temperature reveled that the growth rate first increases and then becomes constant with increasing tin precursor flux (i.e. any excess tin flux desorbs). We will discuss its implication on the growth, and structural quality of ternary stannate oxides by presenting a comprehensive growth study of SrSnO3.

  9. Scaling Approach to Anomalous Surface Roughening of the (d+1)-DIMENSIONAL Molecular-Beam Epitaxy Growth Equations

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Tang, Gang; Han, Kui; Hao, Da-Peng; Chen, Hua; Zhang, Lei-Ming

    To determine anomalous dynamic scaling of continuum growth equations, López12 proposed an analytical approach, which is based on the scaling analysis introduced by Hentschel and Family.15 In this work, we generalize this scaling analysis to the (d+1)-dimensional molecular-beam epitaxy equations to determine their anomalous dynamic scaling. The growth equations studied here include the linear molecular-beam epitaxy (LMBE) and Lai-Das Sarma-Villain (LDV). We find that both the LMBE and LDV equations, when the substrate dimension d>2, correspond to a standard Family-Vicsek scaling, however, when d<2, exhibit anomalous dynamic roughening of the local fluctuations of the growth height. When the growth equations exhibit anomalous dynamic scaling, we obtain the local roughness exponents by using scaling relation αloc=α-zκ, which are consistent with the corresponding numerical results.

  10. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    SciTech Connect

    Feng, Wuwei Wang, Weihua; Zhao, Chenglong; Van Quang, Nguyen; Cho, Sunglae; Dung, Dang Duc

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  11. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.; Dippo, Pat; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Barnes, Teresa M.; Myers, Thomas H.

    2016-08-01

    Heterostructures with CdTe and CdTe1-xSex (x ˜ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ˜ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ˜6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.

  12. InAlN/GaN Bragg reflectors grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Gacevic, Z.; Fernandez-Garrido, S.; Calleja, E.; Estrade, S.

    2010-12-01

    We report on molecular beam epitaxy growth and characterization of ten-period lattice-matched InAlN/GaN distributed Bragg reflectors (DBRs), with peak reflectivity centered around 400 nm. Thanks to the well tuned ternary alloy composition, crack-free surfaces have been obtained, as confirmed by both optical and transmission electron microscopy (TEM). Their good periodicity and well-defined interfaces have been confirmed by both x-ray diffraction and TEM measurements. Peak reflectivity values as high as 60% with stop bands of 30 nm have been demonstrated. Optical measurements revealed that discrepancy between the obtained (60%) and the theoretically expected ({approx}75%) reflectivity is a consequence of significant residual absorption ({approx}35%). TEM measurements revealed the coexistence of zinc-blende and wurtzite phases, as well as planar defects, mainly in GaN. These defects are suggested as the potential source of the undesired absorption and/or scattering effects that lowered the DBRs' peak reflectivity.

  13. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    NASA Technical Reports Server (NTRS)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  14. Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Keen, B.; Makin, R.; Stampe, P. A.; Kennedy, R. J.; Sallis, S.; Piper, L. J.; McCombe, B.; Durbin, S. M.

    2014-04-01

    The alloying of bismuth with III-V semiconductors, in particular GaAs and InAs thin films grown by molecular beam epitaxy (MBE), has attracted considerable interest due to the accompanying changes in band structure and lattice constant. Specifically, bismuth incorporation in these compounds results in both a reduction in band gap (through shifting of the valence band) and an increase in the lattice constant of the alloy. To fully understand the composition of these alloys, a better understanding of the binary endpoints is needed. At present, a limited amount of literature exists on the III-Bi family of materials, most of which is theoretical work based on density functional theory calculations. The only III-Bi material known to exist (in bulk crystal form) is InBi, but its electrical properties have not been sufficiently studied and, to date, the material has not been fabricated as a thin film. We have successfully deposited crystalline InBi on (100) GaAs substrates using MBE. Wetting of the substrate is poor, and regions of varying composition exist across the substrate. To obtain InBi, the growth temperature had to be below 100 °C. It was found that film crystallinity improved with reduced Bi flux, into an In-rich regime. Additionally, attempts were made to grow AlBi and GaBi.

  15. Growth of ZnSnN2 by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Feldberg, N.; Aldous, J. D.; Stampe, P. A.; Kennedy, R. J.; Veal, T. D.; Durbin, S. M.

    2014-04-01

    The Zn-IV-N2 family of materials represents a potential earth abundant element alternative to conventional compound semiconductor materials that are based on gallium and indium. While both ZnSiN2 and ZnGeN2 have been studied to some degree, very little is known about the narrow-gap member ZnSnN2. Here, we investigate the growth dynamics of crystalline ZnSnN2 through plasma-assisted molecular beam epitaxy. All films exhibit some degree of crystalline order regardless of growth conditions, although significant tin coverage was observed for films grown with low Zn:Sn flux ratio; Zn flux in particular became increasingly problematic at increased substrate temperatures designed to improve crystallinity. Single-crystal material was achieved through careful optimization of growth parameters. Regardless of deposition conditions or substrate choice, however, all films exhibit a monoclinic structure as opposed to the predicted orthorhombic lattice; this can be directly attributed to sublattice disorder.

  16. Plasma-assisted molecular beam epitaxy growth of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Feldberg, Nathaniel; Aldous, James; Yao, Yuan; Tanveer, Imtiaz; Keen, Benjamin; Linhart, Wojciech; Veal, Tim; Song, Young-Wook; Reeves, Roger; Durbin, Steve

    2012-02-01

    The Zn-IV-nitrides are a promising series of ``earth abundant element'' semiconductors with a predicted band gap range of 0.6 eV to 5.4 eV, which, like the (Al,Ga,In)N family, spans the entire visible solar spectrum. Considering this alternative family has a number of advantages, including the avoidance of indium, the price of which has varied almost an order of magnitude over the past decade, and surface electron accumulation which is present in the In-rich alloys. Not all members of this family have yet been synthesized, in particular ZnSnN2, the most important member for PV with its predicted band gap of approximately 2 eV. We have successfully grown a series of these films using plasma-assisted molecular beam epitaxy using elemental Zn and Sn sources. In this report, we discuss the relationship between process parameters and microstructure, as well as stoichiometry as determined by Rutherford backscattering spectrometry. Additionally, we provide preliminary estimates for its bandgap energy based on photoluminescence and optical absorption.

  17. Molecular Beam Epitaxy Growth of GaBi, InBi and InGaBi

    NASA Astrophysics Data System (ADS)

    Keen, B.; Makin, R.; Stampe, P. A.; Kennedy, R. J.; Piper, L. F. J.; McCombe, B.; McConville, C. F.; Durbin, S. M.

    2014-03-01

    Recent interest in bismuth alloys of III-V semiconductors for infrared and far-infrared device applications, specifically GaAsBi and InAsBi, has indicated that further study of the III-Bi family of binary compounds would be of great help in improving the quality of these material systems. While immiscibility issues have so far frustrated the growth of GaBi and AlBi, InBi is less problematic, and we have grown it by molecular beam epitaxy on (001) GaAs substrates. However, regions of varying composition exist across the substrate due to poor wetting of the surface. In an effort to improve film quality we have continued to refine the growth parameters by adjusting substrate temperature, beam flux ratio, and deposition rate. Characterization of these films has been performed by x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). Additionally, we have explored growth of GaBi and In1-xGaxBi at low Ga mole fractions, and modeled this using molecular dynamics simulations. This work is supported by the Research Foundation of the State University of New York Collaborations Fund.

  18. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    SciTech Connect

    Umlor, M.T.; Keeble, D.J.; Asoka-Kumar, P.; Lynn, K.G.; Cooke, P.W.

    1994-08-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al{sub 0.32}Ga{sub 0.68}As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al{sub 0.32}Ga{sub 0.68}:Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700{degrees}C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450{degrees}C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500{degrees}C. The nature of the defect was shown to be different for material grown at 350 and 230{degrees}C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230{degrees}C, respectively.

  19. Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy

    SciTech Connect

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Basile, Leonardo; Lu, Ning; Azcatl, Angelica; Magno, Katrina; Wallace, Robert M.; Kim, Moon; Idrobo, Juan -Carlos; Furdyna, Jacek K.; Jena, Debdeep; Xing, Huili Grace

    2016-01-06

    Layered materials are an actively pursued area of research for realizing highly scaled technologies involving both traditional device structures as well as new physics. Lately, non-equilibrium growth of 2D materials using molecular beam epitaxy (MBE) is gathering traction in the scientific community and here we aim to highlight one of its strengths, growth of abrupt heterostructures, and superlattices (SLs). In this work we present several of the firsts: first growth of MoTe2 by MBE, MoSe2 on Bi2Se3 SLs, transition metal dichalcogenide (TMD) SLs, and lateral junction between a quintuple atomic layer of Bi2Te3 and a triple atomic layer of MoTe2. In conclusion, reflected high electron energy diffraction oscillations presented during the growth of TMD SLs strengthen our claim that ultrathin heterostructures with monolayer layer control is within reach.

  20. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  1. Thin film growth of CaFe2As2 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  2. Thermal Stability of Annealed Germanium-Tin Alloys Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bhargava, Nupur; Gupta, Jay Prakash; Faleev, Nikolai; Wielunski, Leszek; Kolodzey, James

    2017-01-01

    The thermal stability of undoped and boron-doped germanium tin (Ge1-x Sn x ) alloys grown by molecular beam epitaxy with varying composition and layer thickness was investigated. The alloys were annealed in forming gas at various temperatures up to 800°C for 1 min using rapid thermal processing, and were characterized using high-resolution x-ray diffraction and Rutherford backscattering spectrometry. It was found that the Ge1-x Sn x alloys were stable to well above the growth temperature, but the stability decreased with increasing thickness, Sn content, and doping. Ge1-x Sn x alloys with low Sn composition (x ˜ 0.025) were stable up to 700°C, and for a given Sn composition, the undoped alloys were more thermally stable than the doped alloys. As the thickness of the Ge0.975Sn0.025 alloys increased to about 950 nm, the temperature of thermal stability dropped to 500°C. As the Sn composition of the 90 nm-Ge1-x Sn x alloys increased up to x = 0.08, the temperature of thermal stability dropped to 300°C. At higher annealing temperatures, the Ge1-x Sn x alloy degraded with lower crystal quality, and a gradient in the Sn composition appeared, which may be due to Sn diffusion or segregation.

  3. Usage of antimony segregation for selective doping of Si in molecular beam epitaxy

    SciTech Connect

    Yurasov, D. V.; Drozdov, M. N.; Murel, A. V.; Shaleev, M. V.; Novikov, A. V.; Zakharov, N. D.

    2011-06-01

    An original approach to selective doping of Si by antimony (Sb) in molecular beam epitaxy (MBE) is proposed and verified experimentally. This approach is based on controllable utilization of the effect of Sb segregation. In particular, the sharp dependence of Sb segregation on growth temperature in the range of 300-550 deg. C is exploited. The growth temperature variations between the kinetically limited and maximum segregation regimes are suggested to be utilized in order to obtain selectively doped structures with abrupt doping profiles. It is demonstrated that the proposed technique allows formation of selectively doped Si:Sb layers, including delta ({delta}-)doped layers in which Sb concentrations can be varied from 5 x 10{sup 15} to 10{sup 20} cm{sup -3}. The obtained doped structures are shown to have a high crystalline quality and the short-term growth interruptions, which are needed to change the substrate temperature, do not lead to any significant accumulation of background impurities in grown samples. Realization of the proposed approach requires neither too low (<300 deg. C), nor too high (>600 deg. C) growth temperatures or any special equipment for the MBE machines.

  4. Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy

    SciTech Connect

    Goodman, Kevin D.; Protasenko, Vladimir V.; Verma, Jai; Kosel, Thomas H.; Xing, Huili G.; Jena, Debdeep

    2011-04-15

    Indium gallium nitride nanowires show promise as being prime candidates for optical devices since they can be grown with band gaps spanning the visible spectra, while at the same time can be composed of stress free material. The goal of the work presented here was to obtain InGaN nanowires producing green emission at room temperature. Two growth recipes were found to yield InGaN nanowire growth on silicon substrates using plasma-assisted molecular beam epitaxy. At room temperature the photoluminescence (PL) of wire ensembles indeed peaked at 530 nm but, in addition, it was discovered that at low temperatures the emission often covered a broader (360-700 nm) spectrum. This broad optical range indicated indium content fluctuations in individual wires, wire-to-wire fluctuations, or a combination of the two. EDX measurements performed on single wires confirmed this hypothesis and correlated well with PL data. Low temperature PL studies of InGaN individual wires also revealed interwire and intrawire inhomogeneity of emission spectra stemming from a nonuniform indium distribution. The emission quantum yield for bright single wires was extracted to be more than 50% at 4 K. The findings suggest that the wire surfaces do not efficiently quench optical emission at low temperatures. These defect-free wires offer not only a potential path for green emitters, but also as integrated phosphors for broad spectral emission.

  5. Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxy

    PubMed Central

    2014-01-01

    We report the self-catalysed growth of InAs nanowires (NWs) on graphite thin films using molecular beam epitaxy via a droplet-assisted technique. Through optimising metal droplets, we obtained vertically aligned InAs NWs with highly uniform diameter along their entire length. In comparison with conventional InAs NWs grown on Si (111), the graphite surface led to significant effects on the NWs geometry grown on it, i.e. larger diameter, shorter length with lower number density, which were ascribed to the absence of dangling bonds on the graphite surface. The axial growth rate of the NWs has a strong dependence on growth time, which increases quickly in the beginning then slows down after the NWs reach a length of approximately 0.8 μm. This is attributed to the combined axial growth contributions from the surface impingement and sidewall impingement together with the desorption of adatoms during the diffusion. The growth of InAs NWs on graphite was proposed following a vapour-solid mechanism. High-resolution transmission electron microscopy reveals that the NW has a mixture of pure zinc-blende and wurtzite insertions. PMID:25024683

  6. Au-assisted molecular beam epitaxy of InAs nanowires: Growth and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Tchernycheva, Maria; Travers, Laurent; Patriarche, Gilles; Glas, Frank; Harmand, Jean-Christophe; Cirlin, George E.; Dubrovskii, Vladimir G.

    2007-11-01

    The Au-assisted molecular beam epitaxial growth of InAs nanowires is discussed. In situ reflection high-energy electron diffraction observations of phase transitions of the catalyst particles indicate that they can be liquid below the eutectic point of the Au-In alloy. The temperature range where the catalyst can be liquid covers the range where we observed nanowire formation (380-430 °C). The variation of nanowire growth rate with temperature is investigated. Pure axial nanowire growth is observed at high temperature while mixed axial/lateral growth occurs at low temperature. The change of the InAs nanowire shape with growth duration is studied. It is shown that significant lateral growth of the lower part of the nanowire starts when its length exceeds a critical value, so that their shape presents a steplike profile along their axis. A theoretical model is proposed to explain the nanowire morphology as a result of the axial and lateral contributions of the nanowire growth.

  7. Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Goodman, Kevin D.; Protasenko, Vladimir V.; Verma, Jai; Kosel, Thomas H.; Xing, Huili G.; Jena, Debdeep

    2011-04-01

    Indium gallium nitride nanowires show promise as being prime candidates for optical devices since they can be grown with band gaps spanning the visible spectra, while at the same time can be composed of stress free material. The goal of the work presented here was to obtain InGaN nanowires producing green emission at room temperature. Two growth recipes were found to yield InGaN nanowire growth on silicon substrates using plasma-assisted molecular beam epitaxy. At room temperature the photoluminescence (PL) of wire ensembles indeed peaked at 530 nm but, in addition, it was discovered that at low temperatures the emission often covered a broader (360-700 nm) spectrum. This broad optical range indicated indium content fluctuations in individual wires, wire-to-wire fluctuations, or a combination of the two. EDX measurements performed on single wires confirmed this hypothesis and correlated well with PL data. Low temperature PL studies of InGaN individual wires also revealed interwire and intrawire inhomogeneity of emission spectra stemming from a nonuniform indium distribution. The emission quantum yield for bright single wires was extracted to be more than 50% at 4 K. The findings suggest that the wire surfaces do not efficiently quench optical emission at low temperatures. These defect-free wires offer not only a potential path for green emitters, but also as integrated phosphors for broad spectral emission.

  8. Photoluminescence of localized excitons in ZnCdO thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Shen, J. L.; Chou, W. C.

    2016-07-01

    We have investigated the luminescence characteristics of Zn1-xCdxO thin films with different Cd contents grown by molecular beam epitaxy system. The temperature-dependent photoluminescence (PL) and excitation power-dependent PL spectra were measured to clarify the luminescence mechanisms of the Zn1-xCdxO thin films. The peak energy of the Zn1-xCdxO thin films with increasing the Cd concentration is observed as redshift and can be fitted by the quadratic function of alloy content. The broadened full-width at half-maximum (FWHM) estimated from the 15 K PL spectra as a function of Cd content shows a larger deviation between the experimental values and theoretical curve, which indicates that experimental FWHM values are affected not only by alloy compositional disorder but also by localized excitons occupying states in the tail of the density of states. The Urbach energy determined from an analysis of the lineshape of the low-energy side of the PL spectrum and the degree of localization effect estimated from the temperature-induced S-shaped PL peak position described an increasing mean exciton-localization effects in ZnCdO films with increasing the Cd content. In addition, the PL intensity and peak position as a function of excitation power are carried out to clarify the types of radiative recombination and the effects of localized exciton in the ZnCdO films with different Cd contents.

  9. Molecular beam epitaxy of InN dots on nitrided sapphire

    SciTech Connect

    Romanyuk, Yaroslav E.; Dengel, Radu-Gabriel; Stebounova, LarissaV.; Leone, Stephen R.

    2007-04-20

    A series of self-assembled InN dots are grown by radio frequency (RF) plasma-assisted molecular beam epitaxy (MBE) directly on nitrided sapphire. Initial nitridation of the sapphire substrates at 900 C results in the formation of a rough AlN surface layer, which acts as a very thin buffer layer and facilitates the nucleation of the InN dots according to the Stranski-Krastanow growth mode, with a wetting layer of {approx}0.9 nm. Atomic force microscopy (AFM) reveals that well-confined InN nanoislands with the greatest height/width at half-height ratio of 0.64 can be grown at 460 C. Lower substrate temperatures result in a reduced aspect ratio due to a lower diffusion rate of the In adatoms, whereas the thermal decomposition of InN truncates the growth at T>500 C. The densities of separated dots vary between 1.0 x 10{sup 10} cm{sup -2} and 2.5 x 10{sup 10} cm{sup -2} depending on the growth time. Optical response of the InN dots under laser excitation is studied with apertureless near-field scanning optical microscopy and photoluminescence spectroscopy, although no photoluminescence is observed from these samples. In view of the desirable implementation of InN nanostructures into photonic devices, the results indicate that nitrided sapphire is a suitable substrate for growing self-assembled InN nanodots.

  10. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.; Dippo, Pat; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Barnes, Teresa M.; Myers, Thomas H.

    2016-08-29

    Heterostructures with CdTe and CdTe 1-xSex (x ~ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ~ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ~6 um, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 us with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 us.

  11. Thermodynamic analysis of molecular beam epitaxy of compounds in the In-Se system

    NASA Astrophysics Data System (ADS)

    Chatillon, Christian; Emery, Jean-Yves

    1993-03-01

    The molecular beam epitaxy of the compounds In4Se3(s), InSe(s) and In2Se3(s) is analysed using thermodynamics of vaporization and condensation phenomena. The growth conditions are studied as referred to equilibrium conditions in order to identify the main gaseous species that compete in the condensation and evaporation processes and to indicate the species which may have a low sticking coefficient. The general behaviour of MBE growth parameters is well described by thermodynamics, the domains of existence of In4Se3(s), InSe(s) and In2Se3(s) being directly correlated to the experimental results. The sticking or condensation coefficient of selenium is determined to be 0.52 on InSe(s) and 0.41 to 0.28 on In2Se3(s). The origin of this coefficient value is analysed and discussed in terms of thermal accommodation of the polymeric Sen(g) incident gaseous species.

  12. Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxy.

    PubMed

    Zhuang, Qian D; Anyebe, Ezekiel A; Sanchez, Ana M; Rajpalke, Mohana K; Veal, Tim D; Zhukov, Alexander; Robinson, Benjamin J; Anderson, Frazer; Kolosov, Oleg; Fal'ko, Vladimir

    2014-01-01

    We report the self-catalysed growth of InAs nanowires (NWs) on graphite thin films using molecular beam epitaxy via a droplet-assisted technique. Through optimising metal droplets, we obtained vertically aligned InAs NWs with highly uniform diameter along their entire length. In comparison with conventional InAs NWs grown on Si (111), the graphite surface led to significant effects on the NWs geometry grown on it, i.e. larger diameter, shorter length with lower number density, which were ascribed to the absence of dangling bonds on the graphite surface. The axial growth rate of the NWs has a strong dependence on growth time, which increases quickly in the beginning then slows down after the NWs reach a length of approximately 0.8 μm. This is attributed to the combined axial growth contributions from the surface impingement and sidewall impingement together with the desorption of adatoms during the diffusion. The growth of InAs NWs on graphite was proposed following a vapour-solid mechanism. High-resolution transmission electron microscopy reveals that the NW has a mixture of pure zinc-blende and wurtzite insertions.

  13. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy.

    PubMed

    Lee, J H; Luo, G; Tung, I C; Chang, S H; Luo, Z; Malshe, M; Gadre, M; Bhattacharya, A; Nakhmanson, S M; Eastman, J A; Hong, H; Jellinek, J; Morgan, D; Fong, D D; Freeland, J W

    2014-09-01

    The A(n+1)B(n)O(3n+1) Ruddlesden-Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of the intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden-Popper phases. We demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La3Ni2O7.

  14. Temperature stabilized effusion cell evaporation source for thin film deposition and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tiedje, H. F.; Brodie, D. E.

    2000-05-01

    A simple effusion cell evaporation source for thin film deposition and molecular-beam epitaxy is described. The source consists of a crucible with a thermocouple temperature sensor heated by a resistive crucible heater. Radiation heat transfer from the crucible to the thermocouple produces a consistent and reproducible thermocouple temperature for a given crucible temperature, without direct contact between the thermocouple and the crucible. The thermocouple temperature is somewhat less than the actual crucible temperature because of heat flow from the thermocouple junction along the thermocouple lead wires. In a typical case, the thermocouple temperature is 1007 °C while the crucible is at 1083 °C. The crucible temperature stability is estimated from the measured sensitivity of the evaporation rate of indium to temperature, and the observed variations in the evaporation rate for a fixed thermocouple temperature. The crucible temperature peak-to-peak variation over a one hour period is 1.2 °C. Machined molybdenum crucibles were used in the indium and copper sources for depositing CuInSe2 thin films for solar cells.

  15. Hopping conduction and its photoquenching in molecular beam epitaxial GaAs grown at low temperatures

    SciTech Connect

    Fang, Z.Q.; Look, D.C.

    1993-12-01

    As the growth temperature of molecular beam epitaxial GaAs is increased from 250 to 400{degrees}C, the dominant conduction changes from hopping conduction to band conduction with a donor activation energy of 0.65 eV. A 300{degrees}C grown layer is especially interesting because each conduction mechanism is dominant in a particular temperature range, hopping below 300K and band conduction above. Below 140K, the hopping conduction is greatly diminished (quenched) by irradiation with either infrared (hv {le} 1.12 eV) or 1.46 eV light, but then recovers above 140K with exactly the same thermal kinetics as are found for the famous EL2. Thus, the 0.65 eV donor, which is responsible for both the hopping and band conduction, is very similar to EL2, but not identical because of the different activation energy (0.65 eV vs 0.75 eV for EL2). 12 refs., 4 figs.

  16. Mapping growth windows in quaternary perovskite oxide systems by hybrid molecular beam epitaxy

    SciTech Connect

    Brahlek, Matthew; Zhang, Lei; Zhang, Hai-Tian; Lapano, Jason; Engel-Herbert, Roman; Dedon, Liv R.; Martin, Lane W.

    2016-09-05

    Requisite to growing stoichiometric perovskite thin films of the solid-solution A′{sub 1-x}A{sub x}BO{sub 3} by hybrid molecular beam epitaxy is understanding how the growth conditions interpolate between the end members A'BO{sub 3} and ABO{sub 3}, which can be grown in a self-regulated fashion, but under different conditions. Using the example of La{sub 1-x}Sr{sub x}VO{sub 3}, the two-dimensional growth parameter space that is spanned by the flux of the metal-organic precursor vanadium oxytriisopropoxide and composition, x, was mapped out. The evolution of the adsorption-controlled growth window was obtained using a combination of X-ray diffraction, atomic force microscopy, reflection high-energy electron-diffraction (RHEED), and Rutherford backscattering spectroscopy. It is found that the stoichiometric growth conditions can be mapped out quickly with a single calibration sample using RHEED. Once stoichiometric conditions have been identified, the out-of-plane lattice parameter can be utilized to precisely determine the composition x. This strategy enables the identification of growth conditions that allow the deposition of stoichiometric perovskite oxide films with random A-site cation mixing, which is relevant to a large number of perovskite materials with interesting properties, e.g., high-temperature superconductivity and colossal magnetoresistance, that emerge in solid solution A′{sub 1-x}A{sub x}BO{sub 3}.

  17. Surface reconstructions in molecular beam epitaxy of SrTiO{sub 3}

    SciTech Connect

    Kajdos, Adam P.; Stemmer, Susanne

    2014-11-10

    We show that reflection high-energy electron diffraction (RHEED) can be used as a highly sensitive tool to track surface and resulting film stoichiometry in adsorption-limited molecular beam epitaxy of (001) SrTiO{sub 3} thin films. Even under growth conditions that yield films with a lattice parameter that is identical to that of stoichiometric bulk crystals within the detection limit of high-resolution x-ray diffraction (XRD), changes in surface reconstruction occur from (1 × 1) to (2 × 1) to c(4 × 4) as the equivalent beam pressure of the Ti metalorganic source is increased. These surface reconstructions are correlated with a shift from mixed SrO/TiO{sub 2} termination to pure TiO{sub 2} termination. The crossover to TiO{sub 2} surface termination is also apparent in a phase shift in RHEED oscillations observed at the beginning of growth. Comparison with prior results for carrier mobilities of doped films shows that the best films are grown under conditions of a TiO{sub 2}-saturated surface [c(4 × 4) reconstruction] within the XRD growth window.

  18. Growth of SrVO{sub 3} thin films by hybrid molecular beam epitaxy

    SciTech Connect

    Eaton, Craig; Brahlek, Matthew; Engel-Herbert, Roman; Moyer, Jarrett A.; Alipour, Hamideh M.; Grimley, Everett D.; LeBeau, James M.

    2015-11-15

    The authors report the growth of stoichiometric SrVO{sub 3} thin films on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (001) substrates using hybrid molecular beam epitaxy. This growth approach employs a conventional effusion cell to supply elemental A-site Sr and the metalorganic precursor vanadium oxytriisopropoxide (VTIP) to supply vanadium. Oxygen is supplied in its molecular form through a gas inlet. An optimal VTIP:Sr flux ratio has been identified using reflection high-energy electron-diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy, demonstrating stoichiometric SrVO{sub 3} films with atomically flat surface morphology. Away from the optimal VTIP:Sr flux, characteristic changes in the crystalline structure and surface morphology of the films were found, enabling identification of the type of nonstoichiometry. For optimal VTIP:Sr flux ratios, high quality SrVO{sub 3} thin films were obtained with smallest deviation of the lattice parameter from the ideal value and with atomically smooth surfaces, indicative of the good cation stoichiometry achieved by this growth technique.

  19. Diffusion-driven growth of nanowires by low-temperature molecular beam epitaxy

    SciTech Connect

    Rueda-Fonseca, P.; Orrù, M.; Bellet-Amalric, E.; Robin, E.; Den Hertog, M.; Genuist, Y.; André, R.; Tatarenko, S.; Cibert, J.

    2016-04-28

    With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires (NWs) by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nanowires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressions describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.

  20. Isotype InGaN/GaN heterobarrier diodes by ammonia molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fireman, Micha N.; Browne, David A.; Mishra, Umesh K.; Speck, James S.

    2016-02-01

    The design of isotype InGaN/GaN heterobarrier diode structures grown by ammonia molecular beam epitaxy is presented. On the (0001) Ga-polar plane, a structure consisting of a surface n+ GaN contact layer, followed by a thin InGaN layer, followed by a thick unintentionally doped (UID) GaN layer, and atop a buried n+ GaN contact layer induces a large conduction band barrier via a depleted UID GaN layer. Suppression of reverse and subthreshold current in such isotype barrier devices under applied bias depends on the quality of this composite layer polarization. Sample series were grown under fixed InGaN growth conditions that varied either the UID GaN NH3 flow rate or the UID GaN thickness, and under fixed UID GaN growth conditions that varied InGaN growth conditions. Decreases in subthreshold current and reverse bias current were measured for thicker UID GaN layers and increasing InGaN growth rates. Temperature-dependent analysis indicated that although extracted barrier heights were lower than those predicted by 1D Schrödinger Poisson simulations (0.9 eV-1.4 eV for In compositions from 10% to 15%), optimized growth conditions increased the extracted barrier height from ˜11% to nearly 85% of the simulated values. Potential subthreshold mechanisms are discussed, along with those growth factors which might affect their prevalence.

  1. Magneto-Transport Studies of Molecular Beam Epitaxial Grown Osmium Silicides

    NASA Astrophysics Data System (ADS)

    Cottier, Ryan; Zhao, Wei; Amir, Fatima; Hossain, Khalid; Anibou, Noureddine; Donner, Wolfgang; Golding, Terry

    2006-03-01

    Semiconducting transition metal silicides present a possible solution to on-chip integration of optical and electronic Si-based circuitry. Two phases of osmium silicide (OsSi2 and Os2Si3) are predicted to have promising optical characteristics but require additional development to fully determine their feasibility for high-quality devices. This study has been motivated by reports that OsSi2 has a bandgap between 1.4--1.8eV [1, 2] and Os2Si3 may have a direct bandgap of 0.95 eV [3] or 2.3 eV [1]. In this paper we will present temperature dependent (20 < T < 300 K) magneto Hall measurements of molecular beam epitaxial grown osmium silicide thin films. Os and Si were coevaporated onto Si(100) substrates at varying growth rates and temperatures. XRD was performed in order to identify the silicide phases present. We will discuss our results in relation to the known phase diagrams and our growth parameters. [1] L. Schellenberg et al., J. Less-Common Met. 144, 341 (1988). [2] K. Mason and G. Müller-Vogt, J. Appl. Phys. 63, 34 (1983). [3] A. B. Filonov et al., Phys. Rev. B 60(24), 16494 (1999).

  2. Growth of uniform CaGe2 films by alternating layer molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, Jinsong; Katoch, Jyoti; Ahmed, Adam S.; Pinchuk, Igor V.; Young, Justin R.; Johnston-Halperin, Ezekiel; Pelz, Jonathan; Kawakami, Roland K.

    2017-02-01

    Layered Zintl phase van der Waals (vdW) materials are of interest due to their strong spin-orbit coupling and potential for high mobility. Here, we report the successful growth of large area CaGe2 films, as a model of layered Zintl phase materials, on atomically flat Ge(111) substrates by molecular beam epitaxy (MBE) using an alternating layer growth (ALG) protocol. Reflection high energy electron diffraction (RHEED) patterns of the Ge buffer layer and CaGe2 indicate high quality two dimensional surfaces, which is further confirmed by atomic force microscopy (AFM), showing atomically flat and uniform CaGe2 films. The appearance of Laue oscillations in X-ray diffraction (XRD) and Kiessig fringes in the X-ray reflectivity (XRR), which are absent in co-deposited CaGe2, confirms the uniformity of the CaGe2 film and the smoothness of the interface. These results demonstrate a novel method of deposition of CaGe2 that could be also applied to other layered Zintl phase vdW materials. Also, the high quality of the CaGe2 film is promising for the exploration of novel properties of germanane.

  3. Lattice-registered growth of GaSb on Si (211) with molecular beam epitaxy

    SciTech Connect

    Hosseini Vajargah, S.; Botton, G. A.; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.

    2012-11-01

    A GaSb film was grown on a Si(211) substrate using molecular beam epitaxy indicating full lattice relaxation as well as full lattice registration and dislocation-free growth in the plane perpendicular to the [01 - 1]-direction. Heteroepitaxy of GaSb on a Si(211) substrate is dominated by numerous first order and multiple higher order micro-twins. The atomic-resolved structural study of GaSb films by high-angle annular dark-field scanning transmission electron microscopy reveals that slight tilt, along with twinning, favors the lattice registry to Si(211) substrates. Preferential bonding of impinging Ga and Sb atoms at the interface due to two distinctive bonding sites on the Si(211) surface enables growth that is sublattice-ordered and free of anti-phase boundaries. The role of the substrate orientation on the strain distribution of GaSb epilayers is further elucidated by investigating the local change in the lattice parameter using the geometric phase analysis method and hence effectiveness of the lattice tilting in reducing the interfacial strain was confirmed further.

  4. Dynamic grazing incidence fast atom diffraction during molecular beam epitaxial growth of GaAs

    SciTech Connect

    Atkinson, P. Eddrief, M.; Etgens, V. H.; Khemliche, H. Debiossac, M.; Mulier, M.; Lalmi, B.; Roncin, P.; Momeni, A.

    2014-07-14

    A Grazing Incidence Fast Atom Diffraction (GIFAD) system has been mounted on a commercial molecular beam epitaxy chamber and used to monitor GaAs growth in real-time. In contrast to the conventionally used Reflection High Energy Electron Diffraction, all the GIFAD diffraction orders oscillate in phase, with the change in intensity related to diffuse scattering at step edges. We show that the scattered intensity integrated over the Laue circle is a robust method to monitor the periodic change in surface roughness during layer-by-layer growth, with oscillation phase and amplitude independent of incidence angle and crystal orientation. When there is a change in surface reconstruction at the start of growth, GIFAD intensity oscillations show that there is a corresponding delay in the onset of layer-by-layer growth. In addition, changes in the relative intensity of different diffraction orders have been observed during growth showing that GIFAD has the potential to provide insight into the preferential adatom attachment sites on the surface reconstruction during growth.

  5. Optical investigations of Be doped ZnO films grown by molecular beam epitaxy

    SciTech Connect

    Chen, Mingming; Zhu, Yuan; Chen, Anqi; Shen, Zhen; Tang, Zikang

    2016-06-15

    Highlights: • The optical properties of Be doped ZnO films were investigated. • Low temperature photoluminescence spectrum was dominated by D°X and DAP emissions. • Shallow acceptor state with ionization energy of 116 meV was found in ZnO:Be films. • It is suggested that the incorporated Be atom might favor formation of Zn vacancies defects. • This work demonstrates that N doping BeZnO might be suitable for fabricating reliable p-type ZnO materials. - Abstract: In this article, the optical properties of ZnO:Be films grown by plasma-assisted molecular beam epitaxy were investigated by the excitation density-dependent and temperature-dependent photoluminescence measurements. The low temperature photoluminescence spectra showed a dominant excitons bound to neutral donors (D°X) emission centered at 3.3540 eV and strong donor-acceptor pair (DAP) transitions at 3.3000 eV. In addition, it showed that the intensity ratio of the DAP and D°X peaks changed with background electron concentration. Furthermore, a shallow acceptor state with ionization energy of 116 meV was found and attributed to Zn vacancy. The present study further suggests that Be and N codoping ZnO might be suitable for fabricating reliable p-type ZnO materials.

  6. Growth and magnetic property of antiperovskite manganese nitride films doped with Cu by molecular beam epitaxy

    SciTech Connect

    Yu, Fengmei; Ren, Lizhu; Meng, Meng; Wang, Yunjia; Yang, Mei; Wu, Shuxiang; Li, Shuwei

    2014-04-07

    Manganese nitrides thin films on MgO (100) substrates with and without Cu-doping have been fabricated by plasma assisted molecular beam epitaxy. Antiperovskite compounds Mn{sub 3.6}Cu{sub 0.4}N have been grown in the case of Cu-doping, and the pure Mn{sub 3}N{sub 2} single crystal has been obtained without Cu-doping. The Mn{sub 3.6}Cu{sub 0.4}N exhibits ferrimagnetism, and the magnetization of Mn{sub 3.6}Cu{sub 0.4}N increases upon the temperature decreasing from 300 K to 5 K, similar to Mn{sub 4}N. The exchange bias (EB) effects emerge in the Mn{sub 3.6}Cu{sub 0.4}N films. The EB behavior is originated from the interfaces between ferrimagnetic Mn{sub 3.6}Cu{sub 0.4}N and antiferromagnetic metal Mn, which is verified to be formed by the data of x-ray photoelectron spectroscopy. The present results not only provide a strategy for producing functional antiperovskite manganese nitrides, but also shed promising light on fabricating the exchange bias part of spintronic devices.

  7. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Zhao, Jia; Wang, Qi

    2017-03-01

    The Molecular Beam Epitaxial model is derived from the variation of a free energy, that consists of either a fourth order Ginzburg-Landau double well potential or a nonlinear logarithmic potential in terms of the gradient of a height function. One challenge in solving the MBE model numerically is how to develop proper temporal discretization for the nonlinear terms in order to preserve energy stability at the time-discrete level. In this paper, we resolve this issue by developing a first and second order time-stepping scheme based on the "Invariant Energy Quadratization" (IEQ) method. The novelty is that all nonlinear terms are treated semi-explicitly, and the resulted semi-discrete equations form a linear system at each time step. Moreover, the linear operator is symmetric positive definite and thus can be solved efficiently. We then prove that all proposed schemes are unconditionally energy stable. The semi-discrete schemes are further discretized in space using finite difference methods and implemented on GPUs for high-performance computing. Various 2D and 3D numerical examples are presented to demonstrate stability and accuracy of the proposed schemes.

  8. Nitride-based laser diodes grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Skierbiszewski, C.; Turski, H.; Muziol, G.; Siekacz, M.; Sawicka, M.; Cywiński, G.; Wasilewski, Z. R.; Porowski, S.

    2014-02-01

    The progress in the growth of nitride-based laser diodes (LDs) made by plasma-assisted molecular beam epitaxy (PAMBE) is reviewed. In this work we describe the GaN and InGaN growth peculiarities, p-type doping efficiency, and the properties of InGaN quantum wells (QWs) grown by PAMBE. We demonstrate continuous wave (cw) LDs operating in the range from 410 to 482 nm. These LDs were grown on low dislocation (0 0 0 1) c-plane bulk GaN substrate, which allow one to fabricate cw LDs with a lifetime exceeding 2000 h. Also, the ultraviolet LDs at 388 nm grown on (2 0 -2 1) semipolar substrates are discussed. The use of high active nitrogen fluxes up to 2 µm/h during the InGaN growth was essential for pushing the lasing wavelengths of PAMBE LDs above 460 nm. Recent advancement of InGaN growth by PAMBE allows one to demonstrate high-quality quantum QWs and excellent morphology for thick layers. We discuss the influence of LDs design on their parameters such as lasing threshold current and laser beam quality.

  9. Mapping growth windows in quaternary perovskite oxide systems by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brahlek, Matthew; Zhang, Lei; Zhang, Hai-Tian; Lapano, Jason; Dedon, Liv R.; Martin, Lane W.; Engel-Herbert, Roman

    2016-09-01

    Requisite to growing stoichiometric perovskite thin films of the solid-solution A'1-xAxBO3 by hybrid molecular beam epitaxy is understanding how the growth conditions interpolate between the end members A'BO3 and ABO3, which can be grown in a self-regulated fashion, but under different conditions. Using the example of La1-xSrxVO3, the two-dimensional growth parameter space that is spanned by the flux of the metal-organic precursor vanadium oxytriisopropoxide and composition, x, was mapped out. The evolution of the adsorption-controlled growth window was obtained using a combination of X-ray diffraction, atomic force microscopy, reflection high-energy electron-diffraction (RHEED), and Rutherford backscattering spectroscopy. It is found that the stoichiometric growth conditions can be mapped out quickly with a single calibration sample using RHEED. Once stoichiometric conditions have been identified, the out-of-plane lattice parameter can be utilized to precisely determine the composition x. This strategy enables the identification of growth conditions that allow the deposition of stoichiometric perovskite oxide films with random A-site cation mixing, which is relevant to a large number of perovskite materials with interesting properties, e.g., high-temperature superconductivity and colossal magnetoresistance, that emerge in solid solution A'1-xAxBO3.

  10. Thermal Stability of Annealed Germanium-Tin Alloys Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bhargava, Nupur; Gupta, Jay Prakash; Faleev, Nikolai; Wielunski, Leszek; Kolodzey, James

    2017-03-01

    The thermal stability of undoped and boron-doped germanium tin (Ge1- x Sn x ) alloys grown by molecular beam epitaxy with varying composition and layer thickness was investigated. The alloys were annealed in forming gas at various temperatures up to 800°C for 1 min using rapid thermal processing, and were characterized using high-resolution x-ray diffraction and Rutherford backscattering spectrometry. It was found that the Ge1- x Sn x alloys were stable to well above the growth temperature, but the stability decreased with increasing thickness, Sn content, and doping. Ge1- x Sn x alloys with low Sn composition ( x ˜ 0.025) were stable up to 700°C, and for a given Sn composition, the undoped alloys were more thermally stable than the doped alloys. As the thickness of the Ge0.975Sn0.025 alloys increased to about 950 nm, the temperature of thermal stability dropped to 500°C. As the Sn composition of the 90 nm-Ge1- x Sn x alloys increased up to x = 0.08, the temperature of thermal stability dropped to 300°C. At higher annealing temperatures, the Ge1- x Sn x alloy degraded with lower crystal quality, and a gradient in the Sn composition appeared, which may be due to Sn diffusion or segregation.

  11. GaN film growth on LiNbO3 surfaces using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hoai Nam, Man; Goo, Son Chul; Deock Kim, Moon; Yang, Woochul

    2009-09-01

    GaN has been used for high power, high frequency electronic and optoelectronic devices such as light emitting diodes and laser diodes. Most of the GaN films grow on sapphire (0001) and silicon (111) substrates. In these work, we are trying to grow GaN films on lithium niobate (LiNbO3) substrates using molecular beam epitaxy (MBE). As a ferroelectric materials, LiNbO3 has a spontaneous polarization which may provide excellent control of polarity of GaN. The growth of GaN films on LiNbO3 has been performed after the LiNbO3 substrates was annealed in air at 1000°C for 2 hours. The annealed substrates allowed us to prepare atomically flat surfaces and improve adhesion of GaN on LiNbO3. The AlN buffer layer was deposited to get a smaller lattice mismatch with the GaN films. Compared with GaN films grown without a AlN layer, the crystal qualities of GaN films with AlN buffer layers are extremely improved. The surface morphology of LiNbO3 substrates and the grown GaN films were characterized by atomic force microscopy (AFM), and the crystal structures were studied by X-ray diffraction (XRD).

  12. In-situ spectral reflectance for improving molecular beam epitaxy device growth

    SciTech Connect

    Breiland, W.G.; Hammons, B.E.; Hou, H.Q.; Killeen, K.P.; Klem, J.F.; Reno, J.L.; Sherwin, M.

    1997-05-01

    This report summarizes the development of in situ spectral reflectance as a tool for improving the quality, reproducibility, and yield of device structures grown from compound semiconductors. Although initially targeted at MBE (Molecular Beam Epitaxy) machines, equipment difficulties forced the authors to test most of their ideas on a MOCVD (Metal Organic Chemical Vapor Deposition) reactor. A pre-growth control strategy using in situ reflectance has led to an unprecedented demonstration of process control on one of the most difficult device structures that can be grown with compound semiconductor materials. Hundreds of vertical cavity surface emitting lasers (VCSEL`s) were grown with only {+-} 0.3% deviations in the Fabry-Perot cavity wavelength--a nearly ten-fold improvement over current calibration methods. The success of the ADVISOR (Analysis of Deposition using Virtual Interfaces and Spectroscopic Optical Reflectance) method has led to a great deal of interest from the commercial sector, including use by Hewlett Packard and Honeywell. The algorithms, software and reflectance design are being evaluated for patents and/or license agreements. A small company, Filmetrics, Inc., is incorporating the ADVISOR analysis method in its reflectometer product.

  13. Formation of Ge-Sn nanodots on Si(100) surfaces by molecular beam epitaxy

    PubMed Central

    2011-01-01

    The surface morphology of Ge0.96Sn0.04/Si(100) heterostructures grown at temperatures from 250 to 450°C by atomic force microscopy (AFM) and scanning tunnel microscopy (STM) ex situ has been studied. The statistical data for the density of Ge0.96Sn0.04 nanodots (ND) depending on their lateral size have been obtained. Maximum density of ND (6 × 1011 cm-2) with the average lateral size of 7 nm can be obtained at 250°C. Relying on the reflection of high energy electron diffraction, AFM, and STM, it is concluded that molecular beam growth of Ge1-xSnx heterostructures with the small concentrations of Sn in the range of substrate temperatures from 250 to 450°C follows the Stranski-Krastanow mechanism. Based on the technique of recording diffractometry of high energy electrons during the process of epitaxy, the wetting layer thickness of Ge0.96Sn0.04 films is found to depend on the temperature of the substrate. PMID:21711584

  14. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    NASA Technical Reports Server (NTRS)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  15. Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Sibirev, N. V.; Cirlin, G. E.; Harmand, J. C.; Ustinov, V. M.

    2006-02-01

    A theoretical model of nanowire formation by the vapor-liquid-solid mechanism during molecular beam epitaxy and related growth techniques is presented. The model unifies the conventional adsorption-induced model, the diffusion-induced model, and the model of nucleation-mediated growth on the liquid-solid interface. The concentration of deposit atoms in the liquid alloy, the nanowire diameter, and all other characteristics of the growth process are treated dynamically as functions of the growth time. The model provides theoretical length-diameter dependences of nanowires and the dependence of the nanowire length on the technologically controlled growth conditions, such as the surface temperature and the deposition thickness. In particular, it is shown that the length-diameter curves of nanowires might convert from decreasing to increasing at a certain critical diameter and that the nanowires taper when their length becomes comparable with the adatom diffusion length on the sidewalls. The theoretical dependence of the nanowire morphology on its lateral size and length and on the surface temperature are compared to the available experimental data obtained recently for Si and GaAs nanowires.

  16. Bandgap Tuning of GaAs/GaAsSb Core-Shell Nanowires Grown by Molecular Beam Epitaxy

    DTIC Science & Technology

    2015-09-21

    SECURITY CLASSIFICATION OF: Semiconductor nanowires have been identified as a viable technology for next-generation infrared (IR) photodetectors with... nanowires , by varying the Sb content using Ga-assisted molecular beam epitaxy. An increase in Sb content leads to strain accumulation in shell...manifesting in rough surface morphology, multifaceted growths, curved nanowires , and deterioration in the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE

  17. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    SciTech Connect

    Ganz, P. R.; Schaadt, D. M.

    2011-12-23

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  18. Growth and characterization of GaAs layers on Si substrates by migration-enhanced molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Liu, John K.; Radhakrishnan, Gouri; Katz, Joseph; Sakai, Shiro

    1988-01-01

    Migration-enhanced molecular beam epitaxial (MEMBE) growth and characterization of the GaAs layer on Si substrates (GaAs/Si) are reported. The MEMBE growth method is described, and material properties are compared with those of normal two-step MBE-grown or in situ annealed layers. Micrographs of cross-section view transmission electron microscopy and scanning surface electron microscopy of MEMBE-grown GaAs/Si showed dislocation densities of 10 to the 7th/sq cm. AlGaAs/GaAs double heterostructures have been successfully grown on MEMBE GaAs/Si by both metalorganic chemical vapor deposition and liquid phase epitaxy.

  19. Influence of substrate orientation on the structural quality of GaAs nanowires in molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Shi, Sui-Xing; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2015-01-26

    In this study, the effect of substrate orientation on the structural quality of Au-catalyzed epitaxial GaAs nanowires grown by a molecular beam epitaxy reactor has been investigated. It was found that the substrate orientations can be used to manipulate the nanowire catalyst composition and the catalyst surface energy and, therefore, to alter the structural quality of GaAs nanowires grown on different substrates. Defect-free wurtzite-structured GaAs nanowires grown on the GaAs (110) substrate have been achieved under our growth conditions.

  20. Structural and magnetic properties of magnetoelectric oxide heterostructures deposited by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sterbinsky, George Evan

    There is considerable interest in incorporating magnetic materials into electronic devices to achieve new functions such as nonvolatile memories. Electric field control of magnetism is of much interest for new low power electronic devices because it eliminates the need to apply magnetic fields. One approach to achieving electrical control of magnetism is to exploit magnetoelastic effects in composites of ferromagnetic and ferroelectric materials. Application of an electric field to the composite will induce a strain through the piezo-electric effect, and the strain will alter the magnetization of the ferromagnetic constituent through the magnetoelastic effect. In this work, we examine the relationships between growth, strain, and magnetic properties of epitaxial ferrimagnetic Fe3O4 (magnetite) and ferroelectric BaTiO3 thin film heterostructures. We find that altering the strain state of a magnetite layer deposited on a BaTiO3 substrate has a profound effect on its magnetization. Here, we demonstrate the interaction between strain and magnetization is mediated by magnetic anisotropy and the magnetic domains structure of the films. Epitaxial magnetite films were deposited on MgO, BaTiO3, and SrTiO3 substrates by molecular beam epitaxy between temperatures of 573 and 723 K. Examination of the morphologies of Fe3O 4 films indicates that island growth is favored. Films exhibit in-plane magnetic isotropy and reduced saturation magnetizations with respect to the bulk material, as demonstrated by superconducting quantum interference device magnetometry. Magnetic hysteresis measurements suggest that these differences originate from antiphase boundary defects within the films. The strain in magnetite films deposited on BaTiO3 single crystal substrates was measured by x-ray diffraction. Measurements reveal a dependence of magnetization (M) on strain (epsilon) with discontinuities in magnetization versus temperature curves resulting from changes in the domain structure of the

  1. Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH)

    DTIC Science & Technology

    2013-09-01

    Optimization of the Nonradiative Lifetime of Molecular- Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH) by P...it to the originator. Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-6660 September 2013 Optimization of the Nonradiative ...REPORT TYPE Final 3. DATES COVERED (From - To) FY2013 4. TITLE AND SUBTITLE Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy

  2. TiO2 as an electrostatic template for epitaxial growth of EuO on MgO(001) by reactive molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Swartz, Adrian; Wong, Jared; Pinchuk, Igor; Kawakami, Roland

    2012-02-01

    Interfacial electrostatics play a key role in determining epitaxial quality in the heteroepitaxy of ionic rock salt materials. We investigate the initial growth modes and the role of interfacial electrostatic interactions of EuO epitaxy on MgO(001) by reactive molecular beam epitaxy. A TiO2 interfacial monolayer is employed to alleviate electrostatic interactions between the ions of the EuO and MgO to produce high quality epitaxial growth of EuO on MgO(001) with a 45 degree in plane rotation. For comparison, direct deposition of EuO on MgO, without the TiO2 layer, is discussed. A key difference of EuO epitaxy on TiO2/MgO is the ability to form EuO by substrate assisted oxidation and without the introduction of external oxygen to the interface. Such ultrathin films are shown to have bulk like magnetic properties

  3. Growth of amorphous and epitaxial alternative gate dielectrics on silicon by molecular-beam epitaxy and their characterization

    NASA Astrophysics Data System (ADS)

    Edge, Lisa Friedman

    The continued scaling of SiO2 in metal-oxide-semiconductor field-effect transistors (MOSFETs) is approaching its fundamental limit and in the next few years will have to be replaced with an alternative gate dielectric if Moore's law is to continue. In a search for suitable alternative dielectrics, I have investigated the growth of amorphous and epitaxial LaAlO3, LaScO3, La2O3, and Sc2O3 thin films by molecular-beam epitaxy (MBE) on silicon. A major challenge in the growth of alternative gate dielectrics on silicon is the formation of SiO2 at the interface between silicon and the high- K gate dielectric. In this dissertation, I have established deposition conditions that yielded abrupt interfaces (< 0.1 A of SiO2) between amorphous LaAlO3 or LaScO3 thin films and silicon. These results demonstrate the thinnest gate dielectrics ever produced that are free of interfacial SiO2, despite exposure to air. The thermal stability between silicon and the abrupt amorphous LaAlO 3 and LaScO3 thin films was established for the first time. By 900°C, crystallization is clearly observed, but the LaAlO3/Si interface remains sharp with no detectable interfacial SiO2. The thermal stability results establish key processing windows for the integration of amorphous LaAlO3 and LaScO3 thin films into silicon-based MOSFETs. In this work, the following critical physical properties of amorphous LaAlO3 thin films deposited on silicon have been determined: dielectric constant (K = 16 +/- 2), bandgap (Eg = 6.2 +/- 0.1 eV), and band alignment (DeltaEc = 1.8 +/- 0.2 for electrons and DeltaEv = 3.2 +/- 0.1 eV for holes). The following critical physical properties of amorphous LaScO3 thin films deposited on silicon have been determined: bandgap (Eg = 5.7 +/- 0.1 eV) and band alignment (DeltaEc = 2.0 +/- 0.1 eV for electrons and DeltaEv = 3.1 +/- 0.1 eV for holes). In this dissertation, epitaxial (0001) La2O3 thin films with the hexagonal crystal structure were grown on (111) Si for the first time

  4. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Dippo, Pat; Barnes, Teresa M.; Swartz, Craig H.; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Myers, Thomas H.

    2016-08-29

    Heterostructures with CdTe and CdTe{sub 1-x}Se{sub x} (x ∼ 0.01) absorbers between two wider-band-gap Cd{sub 1-x}Mg{sub x}Te barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.

  5. Study of optical properties of GaAsN layers prepared by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Pulzara-Mora, A.; Cruz-Hernández, E.; Rojas-Ramirez, J.; Contreras-Guerrero, R.; Meléndez-Lira, M.; Falcony-Guajardo, C.; Aguilar-Frutis, M. A.; López-López, M.

    2007-04-01

    We have grown GaAsN layers (with nitrogen concentration between 1.2% and 3.2%) on GaAs(1 0 0) substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source, and solid sources for Ga and As. The growth temperature was varied from 420 to 600 °C, and the GaAsN growth mode was in situ monitored by reflection high-energy electron diffraction (RHEED). The optical properties of the layers were studied by photoreflectance spectroscopy (PR) and phase modulated ellipsometry (PME). For the growth temperature of 420 °C the films grew in a three-dimensional (3D) mode as indicated by the appearance of transmission spots in the RHEED patterns. In contrast, GaAsN layers grown at higher temperatures presented a two-dimensional (2D) growth mode. These GaAsN layers are pseudomorphic according to high-resolution X-ray diffraction (HRXRD). The PR spectra of all samples exhibited Franz-Keldysh oscillations (FKO) above of the GaAs band gap energy. From these oscillations we obtained the built-in internal electric field intensity ( Fint) at the GaAsN/GaAs interface. In the low-energy region of the PR spectra we observed the transitions associated to fundamental band gap of the GaAsN layers. The variation of the GaAsN fundamental band gap obtained by PR as a function of the N content was explained according the band anti-crossing model (BAC). On the other hand, the E1 and E1+Δ E1 critical points were obtained from the analysis of spectra of the imaginary part of the dielectric function obtained by PME. We observed a shift of these critical points to higher energies with the increase of N content, which was explained by a combination of strain and alloying effects.

  6. Atom probe tomography characterisation of a laser diode structure grown by molecular beam epitaxy

    SciTech Connect

    Bennett, Samantha E.; Humphreys, Colin J.; Oliver, Rachel A.; Smeeton, Tim M.; Hooper, Stewart E.; Heffernan, Jonathan; Saxey, David W.; Smith, George D. W.

    2012-03-01

    Atom probe tomography (APT) has been used to achieve three-dimensional characterization of a III-nitride laser diode (LD) structure grown by molecular beam epitaxy (MBE). Four APT data sets have been obtained, with fields of view up to 400 nm in depth and 120 nm in diameter. These data sets contain material from the InGaN quantum well (QW) active region, as well as the surrounding p- and n-doped waveguide and cladding layers, enabling comprehensive study of the structure and composition of the LD structure. Two regions of the same sample, with different average indium contents (18% and 16%) in the QW region, were studied. The APT data are shown to provide easy access to the p-type dopant levels, and the composition of a thin AlGaN barrier layer. Next, the distribution of indium within the InGaN QW was analyzed, to assess any possible inhomogeneity of the distribution of indium (''indium clustering''). No evidence for a statistically significant deviation from a random distribution was found, indicating that these MBE-grown InGaN QWs do not require indium clusters for carrier localization. However, the APT data show steps in the QW interfaces, leading to well-width fluctuations, which may act to localize carriers. Additionally, the unexpected presence of a small amount (x = 0.005) of indium in a layer grown intentionally as GaN was revealed. Finally, the same statistical method applied to the QW was used to show that the indium distribution within a thick InGaN waveguide layer in the n-doped region did not show any deviation from randomness.

  7. Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe

    SciTech Connect

    Madni, I.; Umana-Membreno, G. A.; Lei, W.; Gu, R.; Antoszewski, J.; Faraone, L.

    2015-11-02

    The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.

  8. Gold diffusion in mercury cadmium telluride grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Selamet, Yusuf; Singh, Rasdip; Zhao, Jun; Zhou, Yong D.; Sivananthan, Sivalingam; Dhar, Nibir K.

    2003-12-01

    The growth and characterization of Au-doped HgCdTe layers on (211)B CdTe/Si substrates grown by molecular beam epitaxy reported. The electrical properties of these layers studied for diffusion are presented. For ex-situ experiments, thin Au layers were deposited by evaporation and annealed at various temperatures and times to investigate the p-type doping properties and diffusion of Au in HgCdTe. The atomic distribution of the diffused Au was determined by secondary ion mass spectroscopy. We found clear evidence for p-type doping of HgCdTe:Au by in-situ and ex-situ methods. For in-situ doped layers, we found that, the Au cell temperature needs to be around 900°C to get p-type behavior. The diffusion coefficient of Au in HgCdTe was calculated by fitting SIMS profiles after annealing. Both complementary error functions and gaussian fittings were used, and were in full agreement. Diffusion coefficient as low as 8x10-14cm2/s observed for a sample annealed at 250°C and slow component of a diffusion coefficient as low as 2x10-15 cm2/s observed for a sample annealed at 300°C. Our preliminary results indicate no appreciable diffusion of Au in HgCdTe under the conditions used in these studies. Further work is in progress to confirm these results and to quantify our SIMS profiles.

  9. GaN Quantum Dot Superlattices Grown by Molecular Beam Epitaxy at High Temperature

    SciTech Connect

    Xu,T.; Zhou, L.; Wang, Y.; Ozcan, A.; Ludwig, K.; Smith, D.; Moustakas, T.

    2007-01-01

    In this paper, we report the growth of GaN quantum dot superlattices (QDSLs) with AlN barriers on (0001) sapphire substrates by molecular beam epitaxy at relatively high temperature (770? C) using the modified Stranski-Krastanov growth mode. Observations with atomic force microscopy show that the height distribution of the dots depends strongly on the number of GaN monolayers (MLs) grown on the AlN barriers. Specifically, the height distribution consists of two Gaussian distributions (bimodal) for coverages of 3 or 4 ML, and becomes a single Gaussian distribution for 5 and 6 ML of coverage. Furthermore, the density of quantum dots increases with the degree of coverage and saturates at 2x1011?dots/cm2. An increase in the number of stacks in the superlattice structure with 4 ML coverage also leads to a more pronounced bimodal height distribution. Electron microscopy observations indicate that the GaN QDs are truncated pyramids faceted along the {l_brace}1math03{r_brace} planes and suggest that larger dots are associated with threading dislocations which presumably provide low-energy nucleation sites. Transmission electron microscopy studies also indicate that most of the larger dots are nucleated next to edge-type dislocations, while most of the smaller dots are located in dislocation-free regions. These GaN QDSLs were also studied by grazing-incidence small angle x-ray scattering and grazing-incidence x-ray diffraction methods. The average lateral deviation and the vertical correlation length between QD positions for two successive layers were determined to be 1.4?nm and 190?nm, respectively. A GaN QD growth model is proposed to explain the phenomenon.

  10. Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth

    NASA Astrophysics Data System (ADS)

    Ohashi, S.; Lippmaa, M.; Nakagawa, N.; Nagasawa, H.; Koinuma, H.; Kawasaki, M.

    1999-01-01

    A high-temperature, oxygen compatible, and compact laser molecular beam epitaxy (laser MBE) system has been developed. The 1.06 μm infrared light from a continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to achieve a wide range and rapid control of substrate temperature in ultrahigh vacuum and at up to 1 atm oxygen pressure. The maximum usable temperature was limited to 1453 °C by the melting point of the nickel sample holder. To our knowledge, this is the highest temperature reported for pulsed laser deposition of oxide films. The efficient laser heating combined with temperature monitoring by a pyrometer and feedback control of the Nd:YAG laser power by a personal computer made it possible to regulate the substrate temperature accurately and to achieve high sample heating and cooling rates. The oxygen pressure and ablation laser triggering were also controlled by the computer. The accurate growth parameter control was combined with real-time in situ surface structure monitoring by reflection high energy electron diffraction to investigate oxide thin film growth in detail over a wide range of temperatures, oxygen partial pressures, and deposition rates. We have demonstrated the performance of this system by the fabrication of homoepitaxial SrTiO3 films as well as heteroepitaxial Sr2RuO4, and SrRuO3 films on SrTiO3 substrates at temperatures of up to 1300 °C. This temperature was high enough to change the film growth mode from layer by layer to step flow.

  11. Isotype InGaN/GaN heterobarrier diodes by ammonia molecular beam epitaxy

    SciTech Connect

    Fireman, Micha N.; Browne, David A.; Speck, James S.; Mishra, Umesh K.

    2016-02-07

    The design of isotype InGaN/GaN heterobarrier diode structures grown by ammonia molecular beam epitaxy is presented. On the (0001) Ga-polar plane, a structure consisting of a surface n{sup +} GaN contact layer, followed by a thin InGaN layer, followed by a thick unintentionally doped (UID) GaN layer, and atop a buried n{sup +} GaN contact layer induces a large conduction band barrier via a depleted UID GaN layer. Suppression of reverse and subthreshold current in such isotype barrier devices under applied bias depends on the quality of this composite layer polarization. Sample series were grown under fixed InGaN growth conditions that varied either the UID GaN NH{sub 3} flow rate or the UID GaN thickness, and under fixed UID GaN growth conditions that varied InGaN growth conditions. Decreases in subthreshold current and reverse bias current were measured for thicker UID GaN layers and increasing InGaN growth rates. Temperature-dependent analysis indicated that although extracted barrier heights were lower than those predicted by 1D Schrödinger Poisson simulations (0.9 eV–1.4 eV for In compositions from 10% to 15%), optimized growth conditions increased the extracted barrier height from ∼11% to nearly 85% of the simulated values. Potential subthreshold mechanisms are discussed, along with those growth factors which might affect their prevalence.

  12. Incorporation of manganese into semiconducting ScN using radio frequency molecular beam epitaxy

    SciTech Connect

    AL-Brithen, Hamad A.; Yang Haiqiang; Smith, Arthur R.

    2004-10-01

    The incorporation of manganese into semiconducting ScN, using radio frequency molecular beam epitaxy, has been investigated. X-ray diffraction and reflection high energy electron diffraction measurements show the face-centered tetragonal rocksalt-type crystal structure with Sc and Mn cations and N anions. In addition to the solute incorporation into the lattice, which is clear from the positions of the diffraction peaks, atomic force microscopy images show that the surface of the alloy grown at T{sub S}{<=}518 deg. C contains dot-like features, indicating surface accumulation. The areal dot density is found to decrease as the growth temperature increases, whereas the Mn incorporation increases at 518 deg. C. This behavior is suggestive of a thermally activated process, and it is well explained by an Arrhenius law, giving an activation energy (diffusion barrier) of 0.67 eV. Increasing the growth temperature to 612 deg. C leads to an increased desorption rate, resulting in little Mn incorporation. It has been found that the growth is nearly optimized at T{sub S}=518 deg. C for high Mn incorporation, smooth growth, and small accumulate density. The alloy is found to have lattice parameters which depend on the Mn/(Mn+Sc) bulk ratio. The alloy lattice constants follow Vegard's law depending on the Mn bulk fraction and the lattice constants of ScN and {theta}-phase MnN. The Mn incorporation and Mn incorporation coefficient for films grown at T{sub S}=518 deg. C increase as the Mn/(Mn+Sc) flux ratio increases.

  13. Hybrid Molecular Beam Epitaxy of Complex Oxide Heterostructures with Ultrahigh Electron Density

    NASA Astrophysics Data System (ADS)

    Xu, Peng

    Two-dimensional electron gases (2DEG) at complex oxide interfaces have attracted lots of attention for fundamental physics studies and potential applications in novel oxidebased electronics. While most researches focuses on LaAlO3/SrTiO3 heterostructures, many interesting phenomena were also discovered at titanates heterostructures, such as LaTiO 3/SrTIO3 and GdTiO3/SrTiO3. In this study, we chose another material system, NdTiO3/SrTiO 3, to investigate the 2DEG at the interfaces. NdTiO3 and SrTiO3 thin films and heterostructures were grown using the hybrid molecular beam epitaxy approach. 3x14 cm-2 (0.5 e-/u.c.) was realized at NdTiO3/SrTiO 3 interfaces, and precise control of carrier density and metal-to-insulator transition were achieved by intentionally introducing Nd vacancies. Moreover, ultrahigh carrier density (˜1015cm -2) was discovered by band engineering NdTiO3/SrTiO 3 heterostructures. The charge transfer model was proposed to explain such high carrier density. Both experimental results and computational modeling suggest the broken-gap type band offset drives charge transfer from NdTiO 3 to SrTiO3. Finally, we will also discuss environmental oxygen effects on electronic transport properties of NdTiO3/SrTiO 3.

  14. Molecular beam epitaxy of free-standing wurtzite AlxGa1-xN layers

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Martin, R. W.; Kent, A. J.; Foxon, C. T.

    2015-09-01

    Recent developments with group III nitrides present AlxGa1-xN based LEDs as realistic devices for new alternative deep ultra-violet light sources. Because there is a significant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to either GaN or AlN for ultraviolet device applications. We have studied the growth of free-standing wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE). Thick wurtzite AlxGa1-xN films were grown by PA-MBE on 2-in. GaAs (111)B substrates and were removed from the GaAs substrate after growth to provide free standing AlxGa1-xN samples. X-ray microanalysis measurements confirm that the AlN fraction is uniform across the wafer and mass spectroscopy measurements show that the composition is also uniform in depth. We have demonstrated that free-standing wurtzite AlxGa1-xN wafers can be achieved by PA-MBE for a wide range of AlN fractions. In order to develop a commercially viable process for the growth of wurtzite AlxGa1-xN substrates, we have used a novel Riber plasma source and have demonstrated growth rates of GaN up to 1.8 μm/h on 2-in. diameter GaAs and sapphire wafers.

  15. Copper ion implanted aluminum nitride dilute magnetic semiconductors (DMS) prepared by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shah, A.; Ahmad, Jamil; Ahmad, Ishaq; Mehmood, Mazhar; Mahmood, Arshad; Rasheed, Muhammad Asim

    2014-10-01

    Diluted magnetic semiconductor (DMS) AlN:Cu films were fabricated by implanting Cu+ ions into AlN thin films at various ion fluxes. AlN films were deposited on c-plane sapphire by molecular beam epitaxy followed by Cu+ ion implantation. The structural and magnetic characterization of the samples was performed through Rutherford backscattering and channeling spectrometry (RBS/C), X-ray diffraction (XRD), Raman spectroscopy, vibrating sample magnetometer (VSM) and SQUID. Incorporation of copper into the AlN lattice was confirmed by RBS, while XRD revealed that no new phase was formed as a result of ion implantation. RBS also indicated formation of defects as a result of implantation process and the depth and degree of damage increased with an increase in ion fluence. Raman spectra showed only E2 (high) and A1 (LO) modes of wurtzite AlN crystal structure and confirmed that no secondary phases were formed. It was found that both Raman modes shift with Cu+ fluences, indicating that Cu ion may go to interstitial or substitutional sites resulting in distortion or damage of lattice. Although as implanted samples showed no magnetization, annealing of the samples resulted in appearance of room temperature ferromagnetism. The saturation magnetization increased with both the annealing temperature as well as with ion fluence. FC/ZFC measurements indicated that the ferromagnetic effect was not related with superparamagnetic phase formation. In spite, it was due to the formation of AlN based DMS material. The Curie temperature (TC) of the sample prepared at an ion fluence of 5 × 1015 cm-2 and an annealing temperature of 950 °C was found to lie above 340 K.

  16. Plasma-assisted Molecular Beam Epitaxy Growth and Properties of Tin Oxide

    NASA Astrophysics Data System (ADS)

    Tsai, Min-Ying

    Currently, transparent conducting oxides (TCOs) ZnO, SnO2, In2O3, and Ga2O3 are widely used in electrical and optoelectronic devices. With a wide-bandgap of 3.6 eV transparent to the visible and near-UV spectrum, SnO2, has generated many interests not only due to the curiosity of fundamental research on material science but also potential technological uses in the industry. This dissertation focuses on the development of SnO2 epitaxy by plasma-assisted molecular beam epitaxy (PAMBE). The detailed growth mechanism, physical properties and electrical doping studies will be addressed along with the application as a transparent contact for GaN-based LEDs. High-quality single-crystalline SnO2 films were grown on TiO 2 in the Volmer--Weber growth mode. A growth rate diagram was constructed by the dependence of growth rate on tin flux under a constant oxygen BEP. This growth rate diagram consisted of two growth regimes: an increased growth rate under an oxygen-rich regime and a decreased growth rate under a tin-rich regime. The decreased growth rate was due to the formation of volatile SnO. No SnO2 growth was observed when the impinging tin flux was larger than twice the stoichiometric flux. A detailed study on transport properties was discussed to evaluate the origin of n-type conductivity in SnO2. Lowest electron concentration was measured on the oxygen-rich grown sample. Based on the evolution of the electron concentrations before and after annealing, oxygen vacancies were considered as the dominant donors in our SnO2 films. Controllable electrical conductivity by Ga-doping was performed. The decrease of electron concentrations with increasing Ga concentrations indicated Ga acted as a compensation center in SnO2. A semi-insulating SnO 2 film was achieved with the Ga concentration of 1.5 x10 18 cm-3. A deterioration of crystalline quality was observed beyond this concentration due to the formation of Ga2O 3 secondary phases. Finally, highly conductive Sb-doped SnO2 (ATO

  17. The growth of strontium titanate and lutetium ferrite thin films by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brooks, Charles M.

    Included in this work is a range of studies on films of homoeptaxial and heteroepitaxial films of SrTiO3 and the first reported phase-pure films of LuFe2O4. We report the structural properties of homoepitaxial (100) SrTiO3 films grown by reactive molecular-beam epitaxy (MBE). The lattice spacing and x-ray diffraction (XRD) rocking curves of stoichiometric MBEgrown SrTiO3 films are indistinguishable from the underlying SrTiO3 substrates. The effect of off-stoichiometry for both strontium-rich and strontium-poor compositions results in lattice expansion with significant changes to the shuttered reflection high-energy electron diffraction oscillations, XRD, film microstructure, and thermal conductivity. Up to an 80% reduction in Sr(1+x)TiO3 film thermal conductivity is measured for x = -0.1 to 0.5. Significant reduction, from 11.5 to ˜2 W˙m-1K-1, occurs through the formation of Ruddlesden-Popper planar faults. The ability to deposit films with a reduction in thermal conductivity is applicable to thermal barrier coatings and thermoelectrics. Scanning transmission electron microscopy is used to examine the formation of Ruddlesden-Popper planar faults in films with strontium excess. We also show that the band gap of SrTiO3 can be altered by >10% (0.3 eV) by using experimentally realizable biaxial strains providing a new means to accomplish band gap engineering of SrTiO3 and related perovskites. Such band gap manipulation is relevant to applications in solar cells water splitting, transparent conducting oxides, superconductivity, two-dimensional electron liquids, and other emerging oxide electronics. This work also presents the adsorption-controlled growth of single-phase (0001)-oriented epitaxial films of charge ordered multiferroic, LuFe2O4, on (111) MgAl2O4, (111) MgO, and (0001) 6H-SiC substrates in an iron-rich environment at pressures and temperatures where excess iron desorbs from the film surface during growth. Scanning transmission electron microscopy reveals

  18. Selective molecular beam epitaxy of germanium on oxide-covered silicon

    NASA Astrophysics Data System (ADS)

    Li, Qiming

    This study demonstrates that Ge can be selectively grown on Si through openings in SiO2 nanotemplates by molecular beam epitaxy without applying selectivity-control agents. The SiO2 nanotemplates are created either by interferometric lithography or by "touchdown" process. The "touchdown" process takes advantage of the unique interaction between Ge and an ultra-thin layer of chemical SiO2. Due to the high concentration of OH groups in the chemical oxide layer, Ge readily diffuses through the oxide, segregates at the SiO2/Si interface, and creates dense nanoscale windows in the chemical oxide. Ge then selectively grows in the windows and coalesces into a high-quality relaxed Ge epilayer over the remaining SiO2. The high-quality and relaxation are attributed to three mechanisms: (1) the strain at the junction pad decays below the critical limit within 2 nm due to the nanoscale heterojunction; (2) the remaining SiO2 serves as artificially introduced 60° dislocations; and (3) the intermixing between Ge and Si at the heterojunction reduces the effective lattice mismatch. To understand the surface phenomena governing the selectivity, we further experimentally measure the desorption activation energy (Edes = 42 +/- 3 kJ/mol) of Ge on SiO2 surface. The low Edes gives rise to a high Ge desorption flux from the SiO2 surface and a low diffusion barrier ( Edif ˜ 13 kJ/mol), which in turn leads to a long characteristic diffusion length. Based on these findings, we further demonstrate that hexagonally packed, single-crystal Ge rings can be grown at the contact region between self-assembled SiO2 spheres and chemical oxide covered Si substrates. These SiO2 spheres provide a surface diffusion path, which guides the Ge adspecies to the substrate. The Ge adspecies on SiO2 spheres undergo surface diffusion as well as desorption, and a fraction of Ge adspecies aggregate at the sphere/substrate contact region to form epitaxial rings by "touchdown" through the chemical SiO2.

  19. Single domain Bi2Se3 films grown on InP(111)A by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Guo, X.; Xu, Z. J.; Liu, H. C.; Zhao, B.; Dai, X. Q.; He, H. T.; Wang, J. N.; Liu, H. J.; Ho, W. K.; Xie, M. H.

    2013-04-01

    We report the growth of single-domain epitaxial Bi2Se3 films on InP(111)A substrate by molecular-beam epitaxy. Nucleation of Bi2Se3 proceeds at steps, so the lattices of the substrate play the guiding role for a unidirectional crystalline film in the step-flow growth mode. There exists a strong chemical interaction between atoms at the heterointerface, so the growth does not follow the van der Waals epitaxy process. A mounded morphology of thick Bi2Se3 epilayers suggests a growth kinetics dictated by the Ehrlich-Schwoebel barrier. The Schubnikov de Haas oscillations observed in magnetoresistance measurements are attributed to Landau quantization of the bulk states of electrons.

  20. Adsorption-controlled growth of BiMnO{sub 3} films by molecular-beam epitaxy

    SciTech Connect

    Lee, J. H.; Ke, X.; Misra, R.; Schiffer, P.; Ihlefeld, J. F.; Mei, Z. G.; Liu, Z. K.; Xu, X. S.; Musfeldt, J. L.; Heeg, T.; Schlom, D. G.; Roeckerath, M.; Schubert, J.

    2010-06-28

    We have developed the means to grow BiMnO{sub 3} thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO{sub 3} may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with omega rocking curve full width at half maximum values as narrow as 11 arc sec (0.003 deg. ). Optical absorption measurements reveal that BiMnO{sub 3} has a direct band gap of 1.1+-0.1 eV.

  1. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy.

    PubMed

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L; Roy, Ajit K

    2016-05-05

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.

  2. Molecular beam epitaxy and metalorganic chemical vapor deposition growth of epitaxial CdTe on (100) GaAs/Si and (111) GaAs/Si substrates

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.

    1988-01-01

    Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.

  3. Topological insulator engineering of Bi2Se3 through molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Oh, Seongshik

    2013-03-01

    Despite numerous reports proving the presence of the surface states on various topological insulator (TI) materials, all existing TI materials suffer from the bulk conductance problem at various levels. Therefore, achieving a truly insulating bulk state without degrading the surface state in their transport properties is one of the most important tasks of the TI materials research. In this talk, I will present how we address this problem by utilizing various molecular beam epitaxy (MBE) schemes with focus on Bi2Se3 family of materials. Considering that the bulk conductance problem originates mostly from the selenium vacancies in Bi2Se3, the typical MBE growth condition characterized by low growth temperature and high selenium vapor pressure is ideal for solving this bulk conductance problem. Moreover, thin films have another advantage of naturally reduced bulk effect due to the enhanced surface-to-bulk ratio. These intrinsic advantages of MBE-grown TI thin films recently led to a number of new findings. High quality Bi2Se3 thin films did show the expected dominant surface transport characters with negligible bulk conductance. However, the strong tendency toward downward band bending in undoped Bi2Se3 introduces trivial surface transport channels in addition to the topological surface states, leading to complications in the interpretations of transport results. Furthermore, even if reducing the thickness of TI samples helps reveal the surface transport channels by reducing the bulk contribution, it does not really solve the bulk conductance problem because regardless of how small it may be, the bulk state still remains metallic, shorting the top and bottom surfaces. According to the Mott-criterion of metal-insulator transition, in order to implement a truly insulating bulk state in the current generation TI materials, it is necessary to suppress the defect density below ~ 1014 cm-3, which might be fundamentally impossible considering the weak Van der Waals bonding

  4. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    SciTech Connect

    McSkimming, Brian M. Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  5. Molecular beam epitaxy of indium phosphide-based alloys for long-wavelength vertical cavity lasers

    NASA Astrophysics Data System (ADS)

    Buell, David Arthur

    Long-wavelength vertical cavity lasers (VCLs) can be an excellent source for fiber-optic telecommunications transmitters, thanks to their small footprint, ease of manufacturing, wafer scale testing, optical fiber coupling efficiency, and direct modulation bandwidth. Several approaches to realizing long-wavelength VCLs at both important telecommunications wavelengths, 1310 nm and 1550 nm, have been tried, including GaInNAs-based GaAs lasers and wafer bonded AlGaAs/InP structures. Both efforts are geared towards overcoming a traditional shortcoming of InP-based VCLs: the lack of high index-contrast distributed Bragg reflector (DBR) mirrors that can be grown lattice-matched to the substrate. Previously we had demonstrated 1550 nm VCLs grown via molecular beam epitaxy (MBE) which used AlGaAsSb alloys as the DBR material, and which laced up to 88°C with greater than 1mW output power at room temperature and 23% differential quantum efficiency. Devices operating at 1310 nm are now desired, to demonstrate the flexibility of this technology platform. In this dissertation the materials growth optimization for these associated alloys is described; in particular, the growth diagram for InP is defined. Interfaces between the various alloys of AlGaAsSb, AlInGaAs, and InP are explored and optimized to reduce defect density and roughness. Active region design and optimization for both 1310 nm and 1550 nm emission is presented as well. Aperture design to reduce optical scattering losses as low as possible is also outlined, with conclusions for optimum aperture thickness and placement. A tunnel junction was used as the aperture for our 1310 run VCLs, to combine optical and current confinement into one layer. This thin (35 nm) tunnel junction was then selectively etched with respect to the surrounding InP cladding, forming an air-gap aperture with ultra-low loss. A 1310 nm VCL grown using optimized MBE methods and interfacial transitions and processed to include the thin tunnel

  6. Hetero- and homo-epitaxial growth of III-nitride based junctions and devices by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sampath, Anand Venktesh

    2002-01-01

    The family of III-Nitrides semiconductors (InN, GaN, AlN and their alloys) is an area of intense interest for the development of power electronic, optoelectronic and mico-electromechanical systems (MEMS) based devices due to the unique properties of these materials. Presently, light emitting diodes (LEDs) and lasers emitting in the blue part or the electromagnetic spectrum have become available based on these wide band gap materials. Further interest exists in the development of p-n and Schottky based junctions for application as solar-blind ultraviolet (UV) detector arrays and power rectifiers. Solar blind UV detectors require the growth of high quality AlxGa1-x N alloys containing up to 60% AlN mole fraction. Both devices require the development of high-quality p-type doped material. This dissertation addresses the growth of GaN and AlxGa1-xN alloys by molecular beam epitaxy (MBE) as well as the processing of these materials for the fabrication of optoelectronic and power devices. The growth of III-Nitrides materials by MBE requires the development of an appropriate source of active nitrogen due to the large binding energy of molecular nitrogen (9.5 eV). Two methods for producing active N are the cracking of molecular nitrogen using a plasma source and the catalytic decomposition of ammonia on a heated substrate. The first method is explored using a compact electron cyclotron resonance (ECR) plasma source, and it is found that smooth films are grown by this technique under group-III rich conditions. The second method is explored using ammonia gas that enters the MBE system through an ammonia injector. In contrast to the plasma-assisted technique, smooth films can be grown under N-rich conditions. Due to the lack of native substrates for these materials, these films are generally deposited heteroepitaxially on c-plane sapphire or (0001) Si-face 6H-silicon carbide (SiC) substrates. The polarity of films grown on the former was observed to be dependent on the

  7. Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates

    SciTech Connect

    Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E.; Jahn, U.; Trampert, A.

    2011-09-26

    This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 deg. C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding white emission.

  8. Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy on semipolar GaN (2021) substrates

    SciTech Connect

    Sawicka, M.; Grzanka, S.; Skierbiszewski, C.; Turski, H.; Muziol, G.; Krysko, M.; Grzanka, E.; Sochacki, T.; Siekacz, M.; Kucharski, R.

    2013-03-18

    Multi-quantum well (MQW) structures and light emitting diodes (LEDs) were grown on semipolar (2021) and polar (0001) GaN substrates by plasma-assisted molecular beam epitaxy. The In incorporation efficiency was found to be significantly lower for the semipolar plane as compared to the polar one. The semipolar MQWs exhibit a smooth surface morphology, abrupt interfaces, and a high photoluminescence intensity. The electroluminescence of semipolar (2021) and polar (0001) LEDs fabricated in the same growth run peaks at 387 and 462 nm, respectively. Semipolar LEDs with additional (Al,Ga)N cladding layers exhibit a higher optical output power but simultaneously a higher turn-on voltage.

  9. A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111)

    SciTech Connect

    Fernandez-Garrido, S.; Grandal, J.; Calleja, E.; Sanchez-Garcia, M. A.; Lopez-Romero, D.

    2009-12-15

    The morphology of GaN samples grown by plasma-assisted molecular beam epitaxy on Si(111) was systematically studied as a function of impinging Ga/N flux ratio and growth temperature (730-850 deg. C). Two different growth regimes were identified: compact and nanocolumnar. A growth diagram was established as a function of growth parameters, exhibiting the transition between growth regimes, and showing under which growth conditions GaN cannot be grown due to thermal decomposition and Ga desorption. Present results indicate that adatoms diffusion length and the actual Ga/N ratio on the growing surface are key factors to achieve nanocolumnar growth.

  10. Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene

    SciTech Connect

    Song Canli; Jiang Yeping; Xue Qikun; Wang Yilin; Li Zhi; Wang Lili; He Ke; Ma Xucun; Chen Xi

    2011-07-01

    We report on molecular beam epitaxy growth of stoichiometric and superconducting FeSe crystalline thin films on double-layer graphene. Layer-by-layer growth of high-quality films has been achieved in a well-controlled manner by using Se-rich condition, which allow us to investigate the thickness-dependent superconductivity of FeSe. In situ low-temperature scanning tunneling spectra reveal that the local superconducting gap in the quasiparticle density of states is visible down to two triple layers for the minimum measurement temperature of 2.2 K, and that the transition temperature T{sub c} scales inversely with film thickness.

  11. Insights in High-Temperature Superconductivity from the Study of Films and Heterostructures Synthesized by Molecular Beam Epitaxy

    SciTech Connect

    Bozovic,I.

    2009-01-09

    Using molecular beam epitaxy, we synthesize atomically smooth thin films, multilayers and superlattices of cuprate high-temperature superconductors (HTS). Such heterostructures enable novel experiments that probe the basicphysics of HTS. For example, we have established that HTS and antiferromagnetic phases separate on Ångstrom scale, while the pseudo-gap state apparently mixes with HTS over an anomalously large length scale ('Giant Proximity Effect'). Here, we briefly review our most recent experiments on such films and superlattices. The new results include an unambiguous demonstration of strong coupling of in-plane charge excitations to out-of-plane lattice vibrations and the discovery of interface HTS.

  12. Electrical properties of InAs1-xSbx and InSb nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Thelander, Claes; Caroff, Philippe; Plissard, Sébastien; Dick, Kimberly A.

    2012-06-01

    Results of electrical characterization of Au nucleated InAs1-xSbx nanowires grown by molecular beam epitaxy are reported. An almost doubling of the extracted field effect mobility compared to reference InAs nanowires is observed for a Sb content of x = 0.13. Pure InSb nanowires on the other hand show considerably lower, and strongly diameter dependent, mobility values. Finally, InAs of wurtzite crystal phase overgrown with an InAs1-xSbx shell is found to have a substantial positive shift in threshold voltage compared to reference nanowires.

  13. Inhomogeneous Si-doping of gold-seeded InAs nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rolland, Chloé; Caroff, Philippe; Coinon, Christophe; Wallart, Xavier; Leturcq, Renaud

    2013-06-01

    We have investigated in situ Si doping of InAs nanowires grown by molecular beam epitaxy from gold seeds. The effectiveness of n-type doping is confirmed by electrical measurements showing an increase of the electron density with the Si flux. We also observe an increase of the electron density along the nanowires from the tip to the base, attributed to the dopant incorporation on the nanowire facets whereas no detectable incorporation occurs through the seed. Furthermore, the Si incorporation strongly influences the lateral growth of the nanowires without giving rise to significant tapering, revealing the complex interplay between axial and lateral growth.

  14. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  15. Catalyst-free growth of Bi{sub 2}Te{sub 3} nanostructures by molecular beam epitaxy

    SciTech Connect

    Harrison, S. E.; Schönherr, P.; Hesjedal, T.; Huo, Y.; Harris, J. S.

    2014-10-13

    We present the catalyst-free growth of binary Bi{sub 2}Te{sub 3} topological insulator nanostructures on c-plane sapphire substrates by molecular beam epitaxy. Dense arrays of single-crystalline nanostructures, growing along the [110] direction, are obtained for substrate temperatures ranging from ∼180 °C to 260 °C. The growth rate and shape of the nanostructures are highly temperature-dependent. The microscopic study of the nanostructures and their relationship to the underlying Bi{sub 2}Te{sub 3} thin film gives an insight into the growth mechanism.

  16. Nucleation, Growth, and Bundling of GaN Nanowires in Molecular Beam Epitaxy: Disentangling the Origin of Nanowire Coalescence.

    PubMed

    Kaganer, Vladimir M; Fernández-Garrido, Sergio; Dogan, Pinar; Sabelfeld, Karl K; Brandt, Oliver

    2016-06-08

    We investigate the nucleation, growth, and coalescence of spontaneously formed GaN nanowires in molecular beam epitaxy combining the statistical analysis of scanning electron micrographs with Monte Carlo growth models. We find that (i) the nanowire density is limited by the shadowing of the substrate from the impinging fluxes by already existing nanowires, (ii) shortly after the nucleation stage, nanowire radial growth becomes negligible, and (iii) coalescence is caused by bundling of nanowires. The latter phenomenon is driven by the gain of surface energy at the expense of the elastic energy of bending and becomes energetically favorable once the nanowires exceed a certain critical length.

  17. Optical properties of strain-free AlN nanowires grown by molecular beam epitaxy on Si substrates

    SciTech Connect

    Wang, Q.; Zhao, S.; Connie, A. T.; Shih, I.; Mi, Z.; Gonzalez, T.; Andrews, M. P.; Du, X. Z.; Lin, J. Y.; Jiang, H. X.

    2014-06-02

    The optical properties of catalyst-free AlN nanowires grown on Si substrates by molecular beam epitaxy were investigated. Such nanowires are nearly free of strain, with strong free exciton emission measured at room temperature. The photoluminescence intensity is significantly enhanced, compared to previously reported AlN epilayer. Moreover, the presence of phonon replicas with an energy separation of ∼100 meV was identified to be associated with the surface-optical phonon rather than the commonly reported longitudinal-optical phonon, which is further supported by the micro-Raman scattering experiments.

  18. Fabrication of IrSi(3)/p-Si Schottky diodes by a molecular beam epitaxy technique

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Iannelli, J. M.

    1990-01-01

    IrSi(3)/p-Si Schottky diodes have been fabricated by a molecular beam epitaxy technique at 630 C. Good surface morphology was observed for IrSi(3) layers grown at temperatures below 680 C, and an increasing tendency to form islands is observed in samples grown at higher temperatures. Good diode current-voltage characteristics were observed and Schottky barrier heights of 0.14-0.18 eV were determined by activation energy analysis and spectral response measurement.

  19. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    SciTech Connect

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-10

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm{sup 2} has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  20. Post-growth annealing of low temperature-grown Sb-doped Si molecular beam epitaxial films

    NASA Astrophysics Data System (ADS)

    Hobart, K. D.; Godbey, D. J.; Thompson, P. E.

    1992-07-01

    Sb-doped Si films have been grown on (100) Si substrates at low temperature (˜350 °C) by molecular beam epitaxy. Through coevaporation with Sb, very high doping efficiencies were achieved over a carrier concentration range of 1×1017 to 1×1020 cm-3. Through calibration of the beam flux we found that the incorporation of Sb was very near unity up to a concentration of ˜5×1019 cm-3. As-grown films are of good quality. However, furnace annealing was shown to improve the mobility and completely activate the Sb. Temperature dependent Hall measurements were used to further characterize the films.

  1. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  2. Effects of sapphire annealing on the structural properties of AIN thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhang, Jia

    2010-03-01

    The effects of sapphire annealing on high-quality AlN growth by molecular beam epitaxy have been studied. AlN thin films grown on annealed sapphire (1200 °C, 12 h) were hole-free. The full width at half maximum of the (0 0 0 2) and (1 0 1bar 5)ω-rocking curves for 260 nm-thick AlN thin films grown on annealed sapphires were 200 and 900 arcsec, respectively. The substantial improvement of AlN quality is ascribed to reduction of dislocation density by sapphire annealing.

  3. Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Woo, S. Y.; Sadaf, S. M.; Wu, Y.; Pofelski, A.; Laleyan, D. A.; Rashid, R. T.; Wang, Y.; Botton, G. A.; Mi, Z.

    2016-08-01

    Self-organized AlGaN nanowires by molecular beam epitaxy have attracted significant attention for deep ultraviolet optoelectronics. However, due to the strong compositional modulations under conventional nitrogen rich growth conditions, emission wavelengths less than 250 nm have remained inaccessible. Here we show that Al-rich AlGaN nanowires with much improved compositional uniformity can be achieved in a new growth paradigm, wherein a precise control on the optical bandgap of ternary AlGaN nanowires can be achieved by varying the substrate temperature. AlGaN nanowire LEDs, with emission wavelengths spanning from 236 to 280 nm, are also demonstrated.

  4. Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs

    SciTech Connect

    Lee, Chao-Kuei; Lin, Yuan-Yao; Lin, Sung-Hui; Lin, Gong-Ru; Pan, Ci-Ling

    2014-04-28

    Chirped pulse controlled carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs are investigated by degenerate pump-probe technique. Varying the chirped condition of excited pulse from negative to positive increases the carrier relaxation time so as to modify the dispersion and reshape current pulse in time domain. The spectral dependence of carrier dynamics is analytically derived and explained by Shockley-Read Hall model. This observation enables the new feasibility of controlling carrier dynamics in ultrafast optical devices via the chirped pulse excitations.

  5. High electron mobility GaN grown under N-rich conditions by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Koblmueller, G.; Wu, F.; Mates, T.; Speck, J. S.; Fernandez-Garrido, S.; Calleja, E.

    2007-11-26

    An alternative approach is presented for the plasma-assisted molecular beam epitaxy of high-quality GaN. Under N-rich growth conditions, an unexpected layer-by-layer growth mode was found for a wide range of growth temperatures in the GaN thermal decomposition regime (>750 deg. C). Consequently, superior surface morphologies with roughness of less than 1 nm (rms) have been achieved. For lightly Si-doped GaN films, room-temperature electron mobilities exceeding 1100 cm{sup 2}/V s were measured, surpassing the commonly insulating nature of GaN grown under N-rich conditions at low temperature.

  6. Material Design of Half-Metallic Zinc-Blende CrAs and the Synthesis by Molecular-Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Akinaga, Hiro; Manago, Takashi; Shirai, Masafumi

    2000-11-01

    A new class of half-metallic ferromagnets has been found in the zinc-blende crystal structure. The previously nonexistent zinc-blende CrAs thin films have been synthesized on GaAs (001) substrates by molecular-beam epitaxy, and show a ferromagnetic behavior at room temperature. The zinc-blende CrAs has been designed by ab initio calculations based on the local spin-density approximation, and the calculation predicts the highly spin-polarized electronic band structure.

  7. Influence of thickness on crystallinity in wafer-scale GaTe nanolayers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bae, Che Jin; McMahon, Jonathan; Detz, Hermann; Strasser, Gottfried; Park, Junsung; Einarsson, Erik; Eason, D. B.

    2017-03-01

    We grew wafer-scale, uniform nanolayers of gallium telluride (GaTe) on gallium arsenide (GaAs) substrates using molecular beam epitaxy. These films initially formed in a hexagonal close-packed structure (h-GaTe), but monoclinic (m-GaTe) crystalline elements began to form as the film thicknesses increased to more than approximately 90 nm. We confirmed the coexistence of these two crystalline forms using x-ray diffraction and Raman spectroscopy, and we attribute the thickness-dependent structural change to internal stress induced by lattice mismatch with the substrate and to natural lattice relaxation at the growth conditions.

  8. Growth Optimization of III-N Electronic Devices by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Elaheh

    InAlN has received significant attention due to its great potential for electronic and optoelectronic applications. In particular, In 0.18Al0.82N presents the advantage of being lattice-matched to GaN and simultaneously exhibiting a high spontaneous polarization charge, making In0.18 Al0.82N attractive for use as the barrier layer in high-electron-mobility transistors (HEMTs). However, in the case of InAlN growth by plasma-assisted molecular beam epitaxy (PAMBE), a strong non-uniformity in the in-plane In distribution was observed for both N-face and metal-face In0.18Al 0.82N. This compositional inhomogeneity manifests itself as a columnar microstructure with AlN-rich cores (5-10 nm in width) and InN-rich intercolumn boundaries. Because of the large differences between the bandgaps and polarization of InN and AlN, this non-uniformity in InAlN composition could be a source of scattering, leading to mobility degradation in HEMTs. In this work, the growth conditions for high quality lattice-matched InAlN layers on free-standing GaN substrates were explored by plasma-assisted molecular beam epitaxy (PAMBE) in the N-rich regime. The microstructure of N-face InAlN layers, lattice-matched to GaN, was investigated by scanning transmission electron microscopy and atom probe tomography. Microstructural analysis showed an absence of the lateral composition modulation that was previously observed in InAlN films grown by PAMBE. Using same growth conditions for InAlN layer, N-face GaN/AlN/GaN/InAlN high-electron-mobility transistors with lattice-matched InAlN back barriers were grown directly on SiC. A room temperature two-dimensional electron gas (2DEG) mobility of 1100cm2 V-1s-1 and 2DEG sheet charge density of 1.9 x1013 cm 2 was measured on these devices. However, the threading dislocation density (TDD) of GaN grown directly on SiC by PAMBE (≈2 x10 10 cm-2 ) is two orders of magnitude higher than GaN grown by MOCVD on SiC or sapphire (≈5 x10 8 cm-2). This high TDD can

  9. AlN grown on Si(1 1 1) by ammonia-molecular beam epitaxy in the 900-1200 °C temperature range

    NASA Astrophysics Data System (ADS)

    Tamariz, Sebastian; Martin, Denis; Grandjean, Nicolas

    2017-10-01

    We present a comprehensive study of AlN growth on Si(1 1 1) substrate by gas source molecular beam epitaxy with ammonia as nitrogen precursor in the high temperature range. We first demonstrate that the observation of the silicon 7 × 7 surface reconstruction by reflection high energy electron diffraction can be misleading as this technique is not sensitive to low density surface defects like SiC crystallites. A careful in situ cleaning procedure with annealing cycles at 1100 °C allows getting rid of any surface defects, as shown by atomic force microscopy imaging. Then, we explore the effect of the growth temperature on the surface morphology and structural properties of 100 nm thick AlN epilayers. At 1200 °C, the growth proceeds with the step flow mode regime, which induces spiral-growth around screw-type dislocations and therefore surface roughening. On the other hand, a smooth surface morphology can be achieved by setting the temperature at 1100 °C, which corresponds to the growth mode transition from two-dimensional nucleation to step flow. A further decrease of the growth temperature to 900 °C leads to surface defects ascribed to polarity inversion domains. Similar defects are observed for growths performed at 1100 °C when the NH3 flow is reduced below 100 sccm. This points out the sensitivity of AlN to the surface stoichiometry.

  10. Single-crystal N-polar GaN p-n diodes by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cho, YongJin; Hu, Zongyang; Nomoto, Kazuki; Xing, Huili Grace; Jena, Debdeep

    2017-06-01

    N-polar GaN p-n diodes are realized on single-crystal N-polar GaN bulk wafers by plasma-assisted molecular beam epitaxy growth. The current-voltage characteristics show high-quality rectification and electroluminescence characteristics with a high on currents ˜10 kA/cm2, low off currents <10-5 A/cm2, on/off current ratio of >109, and interband photon emission. The measured electroluminescence spectrum is dominated by a strong near-band edge emission, while deep level luminescence is greatly suppressed. A very low dislocation density leads to a high reverse breakdown electric field of ˜2.2 MV/cm without fields plates—the highest reported for N-polar epitaxial structures. The low leakage current N-polar diodes open up several potential applications in polarization-engineered photonic and electronic devices.

  11. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  12. Growth and Characterization of N-Polar GaN Films on Si(111) by Plasma Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Dasgupta, Sansaptak; Nidhi; Wu, Feng; Speck, James S.; Mishra, Umesh K.

    2012-11-01

    Smooth N-polar GaN films were epitaxially grown by plasma assisted molecular beam epitaxy (PAMBE) on on-axis p-Si(111). The structural quality of the as-grown GaN films was further improved by insertion of AlGaN/GaN superlattice structures, resulting in reduced threading dislocation density and also efficient stress management in the GaN film to mitigate crack formation. The structural quality of these films was comparable to N-polar GaN grown on C-SiC by MBE. Convergent beam electron diffraction (CBED) imaging and KOH etch studies were performed to confirm the N-polarity of the sample. Room temperature photoluminescence measurements revealed strong GaN band-edge emission.

  13. Molecular beam epitaxial growth of a three-dimensional topological Dirac semimetal Na{sub 3}Bi

    SciTech Connect

    Zhang, Yi; Liu, Zhongkai; Shen, Zhi-Xun; Zhou, Bo; Kim, Yeongkwan; Hussain, Zahid; Mo, Sung-Kwan; Chen, Yulin

    2014-07-21

    We report a molecular beam epitaxial growth of Na{sub 3}Bi single-crystal thin films on two different substrates—epitaxial bilayer graphene terminated 6H-SiC(0001) and Si(111). Using reflection high-energy electron diffraction, we found that the lattice orientation of the grown Na{sub 3}Bi thin film was rotated by 30° respect to the surface lattice orientations of these two substrates. An in-situ angle-resolved photoemission spectroscopy clearly revealed the 3-dimensional Dirac-cone band structure in such thin films. Our approach of growing Na{sub 3}Bi thin film provides a potential route for further studying its intriguing electronic properties and for fabricating it into practical devices in future.

  14. Growth modes in metal-organic molecular beam epitaxy of TiO{sub 2} on r-plane sapphire

    SciTech Connect

    Jalan, Bharat; Engel-Herbert, Roman; Cagnon, Joeel; Stemmer, Susanne

    2009-03-15

    Phase pure, epitaxial (101) rutile TiO{sub 2} films were grown on (012) sapphire substrates at temperatures between 485 and 725 deg. C using metal-organic molecular beam epitaxy with titanium tetraisopropoxide as the Ti source. Growth modes and rates were investigated as a function of substrate temperature using reflection high-energy electron diffraction, x-ray reflectivity, atomic force microscopy, and transmission electron microscopy. Growth rates were as high as 125 nm/h. The influence of additional oxygen supplied from a rf plasma source was investigated. Without oxygen plasma, the growth rate exhibited reaction and flux-limited regimes and layer-by-layer growth was observed in the initial stages of film growth. With oxygen plasma the growth rate became independent of temperature; films grew initially in step-flow mode and were insulating. The mechanisms for the different growth modes as a function of film thickness, temperature, and presence of oxygen are discussed.

  15. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    SciTech Connect

    Hirama, Kazuyuki Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-03

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp{sup 3}-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N{sub 2}{sup +} and Ar{sup +} ions is a key to selectively discriminate non-sp{sup 3} BN phases. At low acceleration voltage values, the sp{sup 2}-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  16. Molecular beam epitaxial regrowth on diffraction gratings for vertical-cavity, surface-emitting laser-based integrated optoelectronics

    SciTech Connect

    Pickrell, G.W.; Xu, C.F.; Louderback, D.A.; Lin, H.C.; Fish, M.A.; Hindi, J.J.; Simpson, M.C.; Guilfoyle, P.S.; Zhang, Z.H.; Hsieh, K.C.

    2004-10-15

    Epitaxial regrowth techniques, using molecular beam epitaxy, were optimized for the inclusion of submicron diffraction gratings within a vertically resonant structure. Various growth conditions including chemical surface preparation, growth rate, and regrown interfacial structure were studied to determine the quality of the regrown materials and structures. Characteristics such as dislocation density and growth planarity (flatness of the regrown layers) were of particular importance due to the vertical geometry and resonance requirements of the structure. Threading dislocation densities of {approx_equal}3x10{sup 6} cm{sup -2} were measured, by means of transmission electron microscopy, in the regrown structures using optimized regrowth processes. Layer thickness variations, due to growth on nonplanar surfaces (diffraction gratings), were characterized using modeling and optical reflectometry. With these results, inclusion of diffraction gratings has been demonstrated with the accurate control over layer thickness needed for use in vertically oriented devices such as vertical-cavity, surface-emitting lasers, and resonant cavity photodetectors.

  17. Strain relief and growth optimization of GaSb on GaP by molecular beam epitaxy.

    PubMed

    Wang, Y; Ruterana, P; Chen, J; Desplanque, L; El Kazzi, S; Wallart, X

    2012-08-22

    In this paper, the impact of growth parameters on the strain relaxation of highly lattice mismatched (11.8%) GaSb grown on GaP substrate by molecular beam epitaxy has been investigated. The surface morphology, misfit dislocation and strain relaxation of the GaSb islands are shown to be highly related to the initial surface treatment, growth rate and temperature. More specifically, Sb-rich surface treatment is shown to promote the formation of Lomer misfit dislocations. Analysis of the misfit dislocation and strain relaxation as functions of the growth temperature and rate led to an optimal growth window for a high quality GaSb epitaxial layer on (001) GaP. With this demonstrated optimized growth, a high mobility (25,500 cm(2) V (-1) s(-1) at room temperature) AlSb/InAs heterostructure on a semi-insulating (001) GaP substrate has been achieved.

  18. Growth of M-plane MnAs on GaAs(111)B by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Takagaki, Y.; Herrmann, C.; Jenichen, B.; Herfort, J.; Brandt, O.

    2008-03-01

    We describe a growth procedure utilizing molecular beam epitaxy that produces a (11¯00)-oriented MnAs layer on GaAs(111)B despite the incompatible unit mesh symmetry. An amorphous MnAs layer is deposited at a low temperature beyond the critical thickness for coherent growth. When solid-phase epitaxy is initiated by reducing the background As4 pressure, the layer crystalizes in the M-plane orientation with its c axis being along the {112¯} directions of the substrate. The magnetization components associated with the coexisting c-axis orientations are independent of each other, suggesting that the structural domains are much larger in size than the atomic scales.

  19. Ultra-high frequency photoconductivity decay in GaAs/Ge/GaAs double heterostructure grown by molecular beam epitaxy

    SciTech Connect

    Hudait, M. K.; Zhu, Y.; Johnston, S. W.; Maurya, D.; Priya, S.; Umbel, R.

    2013-03-04

    GaAs/Ge/GaAs double heterostructures (DHs) were grown in-situ using two separate molecular beam epitaxy chambers. High-resolution x-ray rocking curve demonstrates a high-quality GaAs/Ge/GaAs heterostructure by observing Pendelloesung oscillations. The kinetics of the carrier recombination in Ge/GaAs DHs were investigated using photoconductivity decay measurements by the incidence excitation from the front and back side of 15 nm GaAs/100 nm Ge/0.5 {mu}m GaAs/(100)GaAs substrate structure. High-minority carrier lifetimes of 1.06-1.17 {mu}s were measured when excited from the front or from the back of the Ge epitaxial layer, suggests equivalent interface quality of GaAs/Ge and Ge/GaAs. Wavelength-dependent minority carrier recombination properties are explained by the wavelength-dependent absorption coefficient of Ge.

  20. Mid-infrared to ultraviolet optical properties of InSb grown on GaAs by molecular beam epitaxy

    SciTech Connect

    D'Costa, Vijay Richard Yeo, Yee-Chia; Tan, Kian Hua; Jia, Bo Wen; Yoon, Soon Fatt

    2015-06-14

    Spectroscopic ellipsometry was used to investigate the optical properties of an InSb film grown on a GaAs (100) substrate, and to compare the optical properties of InSb film with those of bulk InSb. The film was grown by molecular beam epitaxy under conditions intended to form 90° misfit dislocations at the InSb-GaAs interface. The complex dielectric function obtained in a wide spectroscopic range from 0.06–4.6 eV shows the critical point transitions E{sub 0}, E{sub 1}, E{sub 1} + Δ{sub 1}, E{sub 0}{sup ′}, and E{sub 2}. The amplitudes, energy transitions, broadenings, and phase angles have been determined using a derivative analysis. Comparing film and bulk critical point results reveal that the epitaxial film is nearly relaxed and has bulk-like optical characteristics.

  1. Oxygen vacancy induced photoluminescence and ferromagnetism in SrTiO3 thin films by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, Wenfei; Yang, Jing; Bai, Wei; Tang, Kai; Zhang, Yuanyuan; Tang, Xiaodong

    2013-10-01

    SrTiO3 thin films were epitaxially grown on (100) SrTiO3 substrates using molecular beam epitaxy. The temperature for growth of the films was optimized, which was indicated by x-ray diffraction and further confirmed by microstructural characterization. Photoluminescence spectra show that oxygen-vacancy contributes to red and blue luminescence of oxygen-deficient post-annealed films, and a red shift was observed in blue region. On the other hand, ferromagnetism in film form SrTiO3 was observed from 5 K to 400 K and could be further enhanced with decreasing oxygen plasma partial pressure in annealing processes, which might be explained by the theory involving d0 magnetism related to oxygen-vacancy. From the cooperative investigations of optical and magnetic properties, we conclude that intrinsic defects, especially oxygen-vacancy, can induce and enhance luminescence and magnetism in SrTiO3 films.

  2. Molecular beam epitaxy deposition of Gd2O3 thin films on SrTiO3 (100) substrate

    NASA Astrophysics Data System (ADS)

    Wang, Jinxing; Hao, Jinghua; Zhang, Yangyang; Wei, Hongmei; Mu, Juyi

    2016-06-01

    Gd2O3 thin films are grown on the SrTiO3 (100) substrate by molecular beam epitaxy (MBE) deposition. X-ray diffraction (XRD) analysis, conventional transmission electron microscopy (TEM) and aberration-corrected scanning transmission electron microscopy (STEM) are performed to investigate the microstructure of deposited thin films. It is found that the as-deposited thin film possesses a very uniform thickness of ∼40 nm and is composed of single cubic phase Gd2O3 grains. STEM and TEM observations reveal that Gd2O3 thin film grows epitaxially on the SrTiO3 (100) substrate with (001)Gd2O3//(100)STO and [110]Gd2O3//[001]STO orientations. Furthermore, the Gd atoms are found to diffuse into the SrTiO3 substrate for a depth of one unit cell and substitute for the Sr atoms near the interface.

  3. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-11-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO3 film grown on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ˜12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness.

  4. Structure and optical band gaps of (Ba,Sr)SnO{sub 3} films grown by molecular beam epitaxy

    SciTech Connect

    Schumann, Timo; Raghavan, Santosh; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne

    2016-09-15

    Epitaxial growth of (Ba{sub x}Sr{sub 1−x})SnO{sub 3} films with 0 ≤ x ≤ 1 using molecular beam epitaxy is reported. It is shown that SrSnO{sub 3} films can be grown coherently strained on closely lattice and symmetry matched PrScO{sub 3} substrates. The evolution of the optical band gap as a function of composition is determined by spectroscopic ellipsometry. The direct band gap monotonously decreases with x from to 4.46 eV (x = 0) to 3.36 eV (x = 1). A large Burnstein-Moss shift is observed with La-doping of BaSnO{sub 3} films. The shift corresponds approximately to the increase in Fermi level and is consistent with the low conduction band mass.

  5. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  6. Growth of AlN/SiC/AlN quantum wells on Si(111) by molecular beam epitaxy

    SciTech Connect

    Cheng Yana; Beresford, Roderic

    2012-06-04

    AlN/SiC/AlN quantum well structures have been grown on Si(111) by molecular beam epitaxy at 700 deg. C. The microstructure is single-crystal wurtzite AlN and cubic SiC with stacking sequence disorder. Depth profiles taken by Auger electron spectroscopy indicate that the ratio of Si to C is about 5:4. Layers with lower carbon content exhibit regions with five-fold superstructures. Fourier transform infrared spectroscopy confirms the presence of Al-N and Si-C bonds. Our work demonstrates the feasibility of a low-temperature synthesis route for epitaxial SiC and AlN/SiC heterostructures on Si.

  7. TiO2 as an electrostatic template for epitaxial growth of EuO on MgO(001) by reactive molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Swartz, Adrian G.; Wong, Jared J. I.; Pinchuk, Igor V.; Kawakami, Roland K.

    2012-04-01

    We investigate the initial growth modes and the role of interfacial electrostatic interactions of EuO epitaxy on MgO(001) by reactive molecular beam epitaxy. A TiO2 interfacial layer is employed to produce high quality epitaxial growth of EuO on MgO(001) with a 45° in plane rotation. For comparison, direct deposition of EuO on MgO, without the TiO2 layer shows a much slower time evolution in producing a single crystal film. Conceptual arguments of electrostatic repulsion of like-ions are introduced to explain the increased EuO quality at the interface with the TiO2 layer. It is shown that ultrathin EuO films in the monolayer regime can be produced on the TiO2 surface by substrate-supplied oxidation and that such films have bulk Curie temperatures.

  8. Self-regulated growth of LaVO{sub 3} thin films by hybrid molecular beam epitaxy

    SciTech Connect

    Zhang, Hai-Tian; Engel-Herbert, Roman; Dedon, Liv R.; Martin, Lane W.

    2015-06-08

    LaVO{sub 3} thin films were grown on SrTiO{sub 3} (001) by hybrid molecular beam epitaxy. A volatile metalorganic precursor, vanadium oxytriisopropoxide (VTIP), and elemental La were co-supplied in the presence of a molecular oxygen flux. By keeping the La flux fixed and varying the VTIP flux, stoichiometric LaVO{sub 3} films were obtained for a range of cation flux ratios, indicating the presence of a self-regulated growth window. Films grown under stoichiometric conditions were found to have the largest lattice parameter, which decreased monotonically with increasing amounts of excess La or V. Energy dispersive X-ray spectroscopy and Rutherford backscattering measurements were carried out to confirm film compositions. Stoichiometric growth of complex vanadate thin films independent of cation flux ratios expands upon the previously reported self-regulated growth of perovskite titanates using hybrid molecular beam epitaxy, thus demonstrating the general applicability of this growth approach to other complex oxide materials, where a precise control over film stoichiometry is demanded by the application.

  9. Interface kinetics in phase-field models: Isothermal transformations in binary alloys and step dynamics in molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Boussinot, G.; Brener, Efim A.

    2013-08-01

    We present a unified description of interface kinetic effects in phase-field models for isothermal transformations in binary alloys and steps dynamics in molecular-beam-epitaxy. The phase-field equations of motion incorporate a kinetic cross-coupling between the phase field and the concentration field. This cross-coupling generalizes the phenomenology of kinetic effects and was omitted until recently in classical phase-field models. We derive general expressions (independent of the details of the phase-field model) for the kinetic coefficients within the corresponding macroscopic approach using a physically motivated reduction procedure. The latter is equivalent to the so-called thin-interface limit but is technically simpler. It involves the calculation of the effective dissipation that can be ascribed to the interface in the phase-field model. We discuss in detail the possibility of a nonpositive definite matrix of kinetic coefficients, i.e., a negative effective interface dissipation, although being in the range of stability of the underlying phase-field model. Numerically we study the step-bunching instability in molecular-beam-epitaxy due to the Ehrlich-Schwoebel effect, present in our model due to the cross-coupling. Using the reduction procedure we compare the results of the phase-field simulations with the analytical predictions of the macroscopic approach.

  10. Structural and magnetic phase transitions in chromium nitride thin films grown by rf nitrogen plasma molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Alam, Khan; Disseler, Steven M.; Ratcliff, William D.; Borchers, Julie A.; Ponce-Pérez, Rodrigo; Cocoletzi, Gregorio H.; Takeuchi, Noboru; Foley, Andrew; Richard, Andrea; Ingram, David C.; Smith, Arthur R.

    2017-09-01

    A magnetostructural phase transition is investigated in single-crystal chromium nitride (CrN) thin films grown by rf plasma molecular beam epitaxy on MgO(001) substrates. While still within the vacuum environment following molecular beam epitaxy growth, in situ low-temperature scanning tunneling microscopy, and in situ variable low-temperature reflection high-energy electron diffraction are applied, revealing an atomically smooth and metallic CrN(001) surface, and an in-plane structural transition from 1 ×1 (primitive CrN unit cell) to √{2 }×√{2 }-R 45∘ with a transition temperature of (278 ±3 ) K, respectively. Ex situ temperature-dependent measurements using neutron diffraction are also performed, looking at the structural peaks and likewise revealing a first-order structural transition along the [111] out-of-plane direction, with transition temperatures of (268 ± 3) K. Turning to the magnetic peaks, neutron diffraction confirms a clear magnetic transition from paramagnetic at room temperature to antiferromagnetic at low temperatures with a sharp, first-order phase transition and a Néel temperature of (270 ±2 ) K or (280 ±2 ) K for two different films. In addition to the experimental measurements of structural and magnetic ordering, we also discuss results from first-principles theoretical calculations which explore various possible magnetostructural models.

  11. Interface kinetics in phase-field models: isothermal transformations in binary alloys and step dynamics in molecular-beam epitaxy.

    PubMed

    Boussinot, G; Brener, Efim A

    2013-08-01

    We present a unified description of interface kinetic effects in phase-field models for isothermal transformations in binary alloys and steps dynamics in molecular-beam-epitaxy. The phase-field equations of motion incorporate a kinetic cross-coupling between the phase field and the concentration field. This cross-coupling generalizes the phenomenology of kinetic effects and was omitted until recently in classical phase-field models. We derive general expressions (independent of the details of the phase-field model) for the kinetic coefficients within the corresponding macroscopic approach using a physically motivated reduction procedure. The latter is equivalent to the so-called thin-interface limit but is technically simpler. It involves the calculation of the effective dissipation that can be ascribed to the interface in the phase-field model. We discuss in detail the possibility of a nonpositive definite matrix of kinetic coefficients, i.e., a negative effective interface dissipation, although being in the range of stability of the underlying phase-field model. Numerically we study the step-bunching instability in molecular-beam-epitaxy due to the Ehrlich-Schwoebel effect, present in our model due to the cross-coupling. Using the reduction procedure we compare the results of the phase-field simulations with the analytical predictions of the macroscopic approach.

  12. Photoconducting ultraviolet detectors based on GaN films grown by electron cyclotron resonance molecular beam epitaxy

    SciTech Connect

    Misra, M.; Shah, K.S.; Moustakas, T.D.; Vaudo, R.P.; Singh, R.

    1995-08-01

    We report for the first time, fabrication of photoconducting UV detectors made from GaN films grown by molecular beam epitaxy. Semi-instilating GaN films were grown by the method of electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-MBE). Photoconductive devices with interdigitated electrodes were fabricated and their photoconducting properties were investigated. In this paper we report on the performance of the detectors in terms of UV responsivity, gain-quantum efficiency product, spectral response and response time. We have measured responsivity of 125A/W and gain-quantum efficiency product of 600 at 254nm and 25V. The response time was measured to be on the order of 20ns for our detectors, corresponding to a bandwidth of 25Mhz. The spectral response showed a sharp long-wavelength cutoff at 365nm, and remained constant in the 200nm to 365nm range. The response of the detectors to low-energy x-rays was measured and found to be linear for x-rays with energies ranging from 60kVp to 90kVp.

  13. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    SciTech Connect

    Lee, J. H.; Tung, I. C.; Chang, S. -H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong

    2016-01-05

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Finally, additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  14. Influence of substrate misorientation on defect and impurity incorporation in GaAs/AlGaAs heterostructures grown by molecular-beam epitaxy

    NASA Technical Reports Server (NTRS)

    Radulescu, D. C.; Wicks, G. W.; Schaff, W. J.; Calawa, A. R.; Eastman, L. F.

    1988-01-01

    GaAS/AlGaAs heterostructures have been grown by molecular-beam epitaxy on GaAs substrates intentionally oriented (tilted) a few degrees (0-6.5) off the (001) plane towards either (111)A, (111)B, or (011). It was observed that the 4-K photoluminescence and low-field electron transport properties of these structures may be functions of the substrate tilt angle and tilt direction, depending on the concentration of impurities incorporated during growth. A substrate tilt during molecular-beam epitaxy is observed to have the largest effect on these properties when the background impurity concentration in the molecular-beam epitaxial machine is high. This supports the contention that the observed changes in material characteristics are due to differences in the incorporation of defects and impurities. The incorporation of defects and impurities are reduced by using substrates tilted toward (111)A, in comparison to nominally flat (001) substrates or substrates tilted toward (111)B.

  15. Molecular Beam Epitaxial Growth and Characterization of the Modulated Structures for Detector Applications.

    NASA Astrophysics Data System (ADS)

    Piao, Jie

    Motivated by potential 8-12 μm IR detector applications as alternatives to the Hg _{rm x}Cd_ {rm 1-x}Te system, we have studied two types of material systems. One is the GeSn alloy, the other is the (Al,Ga)Sb system. The results of the GeSn study shows that substrate-stabilized, metastable, single-crystal Ge_{rm 1-x} Sn_{rm x} alloy can be grown by molecular-beam epitaxy (MBE). We have grown for the first time single crystal Ge _{rm 1-x}Sn_ {rm x} alloys on lattice matched GaSb (with x = 0.5) and InP (with x = 0.26) substrates up to a thickness of 0.3 mum. Our x-ray result suggests that the critical thickness of Grey Tin and Ge_{rm 1-x}Sn _{rm x} single crystal film is mainly determined by a phase transition mechanism, and that the dislocation generation equivalent critical thickness is an overestimate. We have shown theoretically that under practical MBE growth conditions, it is very difficult to grow thick film, due to the sensitivity of the critical thickness to composition fluctuations. The study of the (Al,Ga)Sb system shows the following results: (A) Above 540^circC, the Sb-stabilized surface (1 x 3) pattern changes to c(8 x 2), a Ga-stabilized surface. Because the c(8 x 2) surface has been observed on all other III-V arsenides, phosphides, and antimonides, the c(8 x 2) metal-stabilized surface is common to all III-V compounds, and this finding suggests that bond pairing is the universal reconstruction mechanism. (B) We have formulated/calculated under the envelope function approximation the oscillator strength and finite temperature absorption coefficient of indirect conduction band intersubband transition in L-like Al_{rm x }Ga_{rm 1-x} Sb/AlSb multiple quantum well (MQW), and proposed the indirect intersubband transition infrared detector based on L-like Al_{.3}Ga _{.7}Sb/AlSb MQW. Our calculations show that Al_{.3} Ga_{.7}Sb/AlSb system is superior than GaAs/AlGaAS system for potential 8-12mum infrared detector applications. (C) We have for the first

  16. Electrical transport studies of molecular beam epitaxy grown gallium manganese arsenide epilayers and heterostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Meng

    2008-10-01

    Diluted magnetic semiconductors (DMS) grown by molecular beam epitaxy have been drawing attention in the context of emerging spintronics, which utilizes electron spins to develop devices with new functionalities. The canonical DMS---(Ga,Mn)As---has been on center stage for almost a decade, and extensive efforts have been dedicated to understanding its hole-mediated ferromagnetism, optimizing growth and annealing conditions to achieve higher-Tc, studying the magneto-transport, exploiting its abundant magnetic anisotropy, and so on. This dissertation focuses on three aspects of the study of (Ga,Mn)As: (1) Magneto-transport under hard magnetization reversal; (2) Electrical noise properties; and (3) Exchange-biasing and spin-dependent transport in (Ga,Mn)As/MnAs hybrid structures. The first chapter provides the motivation for this dissertation and introduces several aspects of the current understanding of (Ga,Mn)As. Both the theoretical models and experimentally established observations are reviewed, focusing on the magnetic and transport properties of (Ga,Mn)As epilayers. Next, the hybrid ferromagnetic metal/semiconductor heterostructures are introduced. As an excellent candidate for making these heterostructures, the semi-metal MnAs is reviewed in terms of its structural and magnetic properties, which are essential for making the exchange-biased devices described in Chapter 5 and Chapter 6. The second chapter describes the experimental techniques encompassed in the scope of this dissertation. Several important techniques, such as MBE growth, device patterning, magnetometry and transport measurements are discussed. The third chapter reports the first experiment in this dissertation, which describes the longitudinal magnetoresistance (MR) anomalies of a (Ga,Mn)As epilayer experiencing hard axis magnetization reversal in an perpendicular magnetic field. By probing the MRs for currents running along different crystallographic directions, the origins of these anomalies

  17. Steady-State and Transient Photoconductivity in c-Axis GaN Nanowires Grown by Nitrogen-Plasma-Assisted Molecular Beam Epitaxy

    DTIC Science & Technology

    2010-02-01

    Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy N. A. Sanford,1,a P. T...assisted molecular beam epitaxy primarily from two separate growth runs were examined. The results revealed carrier concentration in the range of 3–61016...cm−3 for one growth run, roughly 51014–11015 cm−3 for the second, and drift mobility in the range of 500–700 cm2 / V s for both. Nanowires were

  18. Large array of single, site-controlled InAs quantum dots fabricated by UV-nanoimprint lithography and molecular beam epitaxy.

    PubMed

    Schramm, A; Tommila, J; Strelow, C; Hakkarainen, T V; Tukiainen, A; Dumitrescu, M; Mews, A; Kipp, T; Guina, M

    2012-05-04

    We present the growth of single, site-controlled InAs quantum dots on GaAs templates using UV-nanoimprint lithography and molecular beam epitaxy. A large quantum dot array with a period of 1.5 µm was achieved. Single quantum dots were studied by steady-state and time-resolved micro-photoluminescence experiments. We obtained single exciton emission with a linewidth of 45 µeV. In time-resolved experiments, we observed decay times of about 670 ps. Our results underline the potential of nanoimprint lithography and molecular beam epitaxy to create large-scale, single quantum dot arrays.

  19. GaAs structures with InAs and As quantum dots produced in a single molecular beam epitaxy process

    SciTech Connect

    Nevedomskii, V. N. Bert, N. A.; Chaldyshev, V. V.; Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R.

    2009-12-15

    Epitaxial GaAs layers containing InAs semiconductor quantum dots and As metal quantum dots are grown by molecular beam epitaxy. The InAs quantum dots are formed by the Stranskii-Krastanow mechanism, whereas the As quantum dots are self-assembled in the GaAs layer grown at low temperature with a large As excess. The microstructure of the samples is studied by transmission electron microscopy. It is established that the As metal quantum dots formed in the immediate vicinity of the InAs semiconductor quantum dots are larger in size than the As quantum dots formed far from the InAs quantum dots. This is apparently due to the effect of strain fields of the InAs quantum dots upon the self-assembling of As quantum dots. Another phenomenon apparently associated with local strains around the InAs quantum dots is the formation of V-like defects (stacking faults) during the overgrowth of the InAs quantum dots with the GaAs layer by low-temperature molecular beam epitaxy. Such defects have a profound effect on the self-assembling of As quantum dots. Specifically, on high-temperature annealing needed for the formation of large-sized As quantum dots by Ostwald ripening, the V-like defects bring about the dissolution of the As quantum dots in the vicinity of the defects. In this case, excess arsenic most probably diffuses towards the open surface of the sample via the channels of accelerated diffusion in the planes of stacking faults.

  20. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V

    2014-11-12

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics.

  1. Comparison of the In distribution in InGaN/GaN quantum well structures grown by molecular beam epitaxy and metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Potin, V.; Hahn, E.; Rosenauer, A.; Gerthsen, D.; Kuhn, B.; Scholz, F.; Dussaigne, A.; Damilano, B.; Grandjean, N.

    2004-02-01

    We have compared the In distribution in InGaN quantum wells grown by molecular beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOVPE). The samples were studied by conventional and high-resolution transmission electron microscopy (HRTEM). The local and average In concentrations and the In distribution in the quantum wells were determined using the digital analysis of lattice images (DALI) method based on the evaluation of HRTEM lattice-fringe images. Similar lateral fluctuations of the In concentration were observed in MBE- and MOVPE-grown samples. The In concentration varies on a small scale (In-rich clusters with lateral extensions below 4 nm) and on a larger scale of a few 10 nm, which is attributed to phase separation. In contrast, the In distribution in growth direction differs significantly in the MBE and MOVPE samples which is explained by different In-segregation efficiencies and In desorption before the GaN cap layer deposition during MBE.

  2. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  3. Low-Angle-Incidence Microchannel Epitaxy of a-Plane GaN Grown by Ammonia-Based Metal-Organic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-04-01

    Low-angle-incidence microchannel epitaxy (LAIMCE) of a-plane GaN was performed using ammonia-based metal-organic molecular beam epitaxy to obtain wide and thin lateral overgrowth over a SiO2 mask. Trimethylgallium (TMG) was supplied perpendicular to the openings cut in the mask with a low incident angle of 5° relative to the substrate plane. The [NH3]/[TMG] ratio (R) dependence of GaN LAIMCE was optimized by varying R from 5 to 30. A wide lateral overgrowth of 3.7 µm with a dislocation density below the transmission electron microscope detection limit was obtained at R=15 for a thickness of 520 nm.

  4. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin; Zheng, Jian-Guo

    2016-07-25

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  5. Room-temperature ferromagneticlike behavior in Mn-implanted and postannealed InAs layers deposited by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    González-Arrabal, R.; González, Y.; González, L.; García-Hernández, M.; Munnik, F.; Martín-González, M. S.

    2009-04-01

    We report on the magnetic and structural properties of Ar- and Mn-implanted InAs epitaxial films grown on GaAs (100) by molecular beam epitaxy and the effect of rapid thermal annealing (RTA) for 30 s at 750 °C. Channeling particle induced x-ray emission (PIXE) experiments reveal that after Mn implantation almost all Mn atoms are substitutional in the In site of the InAs lattice, like in a diluted magnetic semiconductor. All of these samples show diamagnetic behavior. However, after RTA treatment the Mn-InAs films exhibit room-temperature magnetism. According to PIXE measurements the Mn atoms are no longer substitutional. When the same set of experiments was performed with Ar as implantation ion, all of the layers present diamagnetism without exception. This indicates that the appearance of room-temperature ferromagneticlike behavior in the Mn-InAs-RTA layer is not related to lattice disorder produced during implantation but to a Mn reaction produced after a short thermal treatment. X-ray diffraction patterns and Rutherford backscattering measurements evidence the segregation of an oxygen-deficient MnO2 phase (nominally MnO1.94) in the Mn-InAs-RTA epitaxial layers which might be the origin of the room-temperature ferromagneticlike response observed.

  6. Morphological and optical properties of titanyl phthalocyanine films deposited by supersonic molecular beam epitaxy (SuMBE)

    NASA Astrophysics Data System (ADS)

    Walzer, Karsten; Toccoli, Tullio; Pallaoro, Alessia; Verucchi, Roberto; Fritz, Torsten; Leo, Karl; Boschetti, Andrea; Iannotta, Salvatore

    2004-12-01

    We studied the growth and properties of titanyl phthalocyanine (TiOPc) thin films made by supersonic molecular beam epitaxy (SuMBE). Interesting differences in the growth properties on amorphous (quartz) and crystalline (mica) substrates were found, indicating that SuMBE gives rise to an epitaxy of disc-like organic molecules on crystalline substrates. The combined control of the kinetic energy of the molecules in the supersonic beam specific to SuMBE and of the substrate temperature during deposition are the key parameters used to determine the final properties of the films. We show that SuMBE is a well-suited epitaxy method for the deposition of relatively large organic molecules, leading to layers of thin organic (single-)crystals with lateral dimensions in the micrometer range. By SuMBE we can control the growth of different polymorphs of TiOPc. We found and studied two ways to produce films of red and infrared absorbing phase II TiOPc, which is of interest for applications in organic solar cells.

  7. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Zheng, Jian-Guo; Liu, Jianlin

    2016-07-01

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5-6 nm)/G (26-27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ˜2.5-3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  8. Room-temperature ferromagneticlike behavior in Mn-implanted and postannealed InAs layers deposited by molecular beam epitaxy

    SciTech Connect

    Gonzalez-Arrabal, R.; Gonzalez, Y.; Gonzalez, L.; Martin-Gonzalez, M. S.; Munnik, F.

    2009-04-01

    We report on the magnetic and structural properties of Ar- and Mn-implanted InAs epitaxial films grown on GaAs (100) by molecular beam epitaxy and the effect of rapid thermal annealing (RTA) for 30 s at 750 deg. C. Channeling particle induced x-ray emission (PIXE) experiments reveal that after Mn implantation almost all Mn atoms are substitutional in the In site of the InAs lattice, like in a diluted magnetic semiconductor. All of these samples show diamagnetic behavior. However, after RTA treatment the Mn-InAs films exhibit room-temperature magnetism. According to PIXE measurements the Mn atoms are no longer substitutional. When the same set of experiments was performed with Ar as implantation ion, all of the layers present diamagnetism without exception. This indicates that the appearance of room-temperature ferromagneticlike behavior in the Mn-InAs-RTA layer is not related to lattice disorder produced during implantation but to a Mn reaction produced after a short thermal treatment. X-ray diffraction patterns and Rutherford backscattering measurements evidence the segregation of an oxygen-deficient MnO{sub 2} phase (nominally MnO{sub 1.94}) in the Mn-InAs-RTA epitaxial layers which might be the origin of the room-temperature ferromagneticlike response observed.

  9. Molecular beam epitaxy of thin HfTe2 semimetal films

    NASA Astrophysics Data System (ADS)

    Aminalragia-Giamini, S.; Marquez-Velasco, J.; Tsipas, P.; Tsoutsou, D.; Renaud, G.; Dimoulas, A.

    2017-03-01

    Epitaxial thin films of 1T-HfTe2 semimetal are grown by MBE on AlN(0001) substrates. The measured in-plane lattice parameter indicates an unstrained film which is also azimuthally aligned with the AlN substrate, albeit with an in-plane mosaic spread, as it would be expected for van der Waals epitaxy. Angle resolved photoemission spectroscopy combined with first principles electronic band structure calculations show steep linearly dispersing conduction and valence bands which cross near the Brillouin zone center, providing evidence that HfTe2/AlN is an epitaxial topological Dirac semimetal.

  10. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  11. Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Schörmann, Jörg; Hille, Pascal; Schäfer, Markus; Müßener, Jan; Becker, Pascal; Klar, Peter J.; Hofmann, Detlev M.; Teubert, Jörg; Eickhoff, Martin; Kleine-Boymann, Matthias; Rohnke, Marcus; Mata, Maria de la; Arbiol, Jordi

    2013-09-14

    Germanium doping of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) substrates is studied. Time of flight secondary ion mass spectrometry measurements reveal a constant Ge-concentration along the growth axis. A linear relationship between the applied Ge-flux and the resulting ensemble Ge-concentration with a maximum content of 3.3×10{sup 20} cm{sup −3} is extracted from energy dispersive X-ray spectroscopy measurements and confirmed by a systematic increase of the conductivity with Ge-concentration in single nanowire measurements. Photoluminescence analysis of nanowire ensembles and single nanowires reveals an exciton localization energy of 9.5 meV at the neutral Ge-donor. A Ge-related emission band at energies above 3.475 eV is found that is assigned to a Burstein-Moss shift of the excitonic emission.

  12. High quality InAlN single layers lattice-matched to GaN grown by molecular beam epitaxy

    SciTech Connect

    Gacevic, Z.; Fernandez-Garrido, S.; Calleja, E.; Estrade, S.

    2011-07-18

    We report on properties of high quality {approx}60 nm thick InAlN layers nearly in-plane lattice-matched to GaN, grown on c-plane GaN-on-sapphire templates by plasma-assisted molecular beam epitaxy. Excellent crystalline quality and low surface roughness are confirmed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. High annular dark field observations reveal a periodic in-plane indium content variation (8 nm period), whereas optical measurements evidence certain residual absorption below the band-gap. The indium fluctuation is estimated to be {+-} 1.2% around the nominal 17% indium content via plasmon energy oscillations assessed by electron energy loss spectroscopy with sub-nanometric spatial resolution.

  13. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Du, Y.; Droubay, T. C.; Liyu, A. V.; Li, G.; Chambers, S. A.

    2014-04-01

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  14. High Growth Rate Metal-Organic Molecular Beam Epitaxy for the Fabrication of GaAs Space Solar Cells

    NASA Technical Reports Server (NTRS)

    Freundlich, A.; Newman, F.; Monier, C.; Street, S.; Dargan, P.; Levy, M.

    2005-01-01

    In this work it is shown that high quality GaAs photovoltaic devices can be produced by Molecular Beam Epitaxy (MBE) with growth rates comparable to metal-organic chemical vapor deposition (MOCVD) through the subsitution of group III solid sources by metal-organic compounds. The influence the III/V flux-ratio and growth temperatures in maintaining a two dimensional layer by layer growth mode and achieving high growth rates with low residual background impurities is investigated. Finally subsequent to the study of the optimization of n- and p doping of such high growth rate epilayers, results from a preliminary attempt in the fabrication of GaAs photovoltaic devices such as tunnel diodes and solar cells using the proposed high growth rate approach are reported.

  15. On the phase shift of reflection high energy electron diffraction intensity oscillations during Ge(001) homoepitaxy by molecular beam epitaxy

    SciTech Connect

    Shin Byungha; Leonard, John P.; McCamy, James W.; Aziz, Michael J.

    2007-03-15

    The authors have conducted a systematic investigation of the phase shift of the reflection high energy electron diffraction (RHEED) intensity oscillations during homoepitaxy of Ge(001) by molecular beam epitaxy for a wide range of diffraction conditions. Their results show that for small incidence angles with a beam azimuth several degrees away from the <110> crystallographic symmetry direction, the phase is independent of incidence angle; however, it starts to shift once the incidence angle is high enough that the (004) Kikuchi line appears in the RHEED pattern. Moreover, under some conditions they observe the oscillations from only the Kikuchi feature and not from the specular spot, and the oscillatory behavior of the Kikuchi feature is almost out of phase with that of the specular spot. They conclude that the phase shift is caused by the overlap of the specular spot and the Kikuchi features, in contrast to models involving dynamical scattering theory for the phase shift. They discuss necessary conditions for avoiding interference.

  16. Long-wavelength PtSi infrared detectors fabricated by incorporating a p(+) doping spike grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Park, J. S.; George, T.; Jones, E. W.; Fathauer, R. W.; Maserjian, J.

    1993-01-01

    By incorporating a 1-nm-thick p(+) doping spike at the PtSi/Si interface, we have successfully demonstrated extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime for the first time. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p(+) doping spike and the Schottky image force. The p(+) doping spikes were grown by molecular beam epitaxy at 450 C, using elemental boron as the dopant source, with doping concentrations ranging from 5 x 10 exp 19 to 2 x 10 exp 20/cu cm. Transmission electron microscopy indicated good crystalline quality of the doping spikes. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p(+) spikes. Thermionic emission dark current characteristics were observed and photoresponses in the LWIR regime were demonstrated.

  17. Photoluminescence enhancement in quaternary III-nitrides alloys grown by molecular beam epitaxy with increasing Al content

    SciTech Connect

    Fernandez-Garrido, S.; Pereiro, J.; Gonzalez-Posada, F.; Munoz, E.; Calleja, E.

    2008-02-15

    Room temperature photoluminescence and optical absorption spectra have been measured in wurtzite In{sub x}Al{sub y}Ga{sub 1-x-y}N (x{approx}0.06, 0.02molecular beam epitaxy. Photoluminescence spectra show both an enhancement of the integrated intensity and an increasing Stokes shift with the Al content. Both effects arise from an Al-enhanced exciton localization revealed by the S- and W-shaped temperature dependences of the photoluminescence emission energy and bandwidth, respectively. Present results point to these materials as a promising choice for the active region in efficient light emitters. An In-related bowing parameter of 1.6 eV was derived from optical absorption data.

  18. Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films.

    PubMed

    Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritesh; Banerjee, Sanjay K

    2015-04-28

    Reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry, and other physical property measurements are used to investigate the structure, morphology, magnetic, and magnetotransport properties of (001)-oriented Cr2Te3 thin films grown on Al2O3(0001) and Si(111)-(7×7) surfaces by molecular beam epitaxy. Streaky RHEED patterns indicate flat smooth film growth on both substrates. STM studies show the hexagonal arrangements of surface atoms. Determination of the lattice parameter from the atomically resolved STM image is consistent with the bulk crystal structures. Magnetic measurements show the film is ferromagnetic, having a Curie temperature of about 180 K, and a spin glass-like behavior was observed below 35 K. Magnetotransport measurements show the metallic nature of the film with a perpendicular magnetic anisotropy along the c-axis.

  19. Growth, Structural, and Electrical Characterizations of N-Polar InAlN by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Dasgupta, Sansaptak; Nidhi; Choi, Soojeong; Wu, Feng; Speck, James S.; Mishra, Umesh K.

    2011-04-01

    N-polar InxAl1-xN (0.02 < x < 0.65) films were grown and characterized by plasma-assisted molecular beam epitaxy (PAMBE). Indium incorporation in the films was characterized both as a function of the impinging In and Al flux and the growth temperature. In incorporation in the film was found to decrease with increasing growth temperature (Tgr) for Tgr > 560 °C. A smooth surface morphology was obtained for In0.18Al0.82N lattice-matched to GaN. Subsequently, N-polar In0.18Al0.82N was used as a charge-inducing barrier in a N-polar GaN HEMT structure and electrical characterizations including current-voltage (I-V) measurements were performed.

  20. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    DOE PAGES

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; ...

    2016-04-27

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  1. Ultra-low resistance ohmic contacts to GaN with high Si doping concentrations grown by molecular beam epitaxy

    SciTech Connect

    Afroz Faria, Faiza; Guo Jia; Zhao Pei; Li Guowang; Kumar Kandaswamy, Prem; Wistey, Mark; Xing Huili; Jena, Debdeep

    2012-07-16

    Ti/Al/Ni/Au ohmic contacts were formed on heavily doped n{sup +} metal-polar GaN samples with various Si doping concentrations grown by molecular beam epitaxy. The contact resistivity (R{sub C}) and sheet resistance (R{sub sh}) as a function of corresponding GaN free carrier concentration (n) were measured. Very low R{sub C} values (<0.09 {Omega} mm) were obtained, with a minimum R{sub C} of 0.035 {Omega} mm on a sample with a room temperature carrier concentration of {approx}5 Multiplication-Sign 10{sup 19} cm{sup -3}. Based on the systematic study, the role of R{sub C} and R{sub sh} is discussed in the context of regrown n{sup +} GaN ohmic contacts for GaN based high electron mobility transistors.

  2. Molecular Beam Epitaxy Growth of Tetragonal FeS Films on SrTiO3 (001) Substrates

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lin, Hai-Cheng; Huang, Wan-Tong; Hu, Xiao-Peng; Chen, Xi; Xue, Qi-Kun; Ji, Shuai-Hua

    2017-08-01

    We report the successful growth of tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO3(001) substrate by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single UC FeS, while it has been significantly reduced in double UC thick film due to the lattice relaxation. The scanning tunneling spectra on the surface of FeS thin film reveal the electronic doping effect of single UC FeS from the substrate. In addition, at the Fermi level, the energy gaps of approximate 1.5 meV are observed in films of both thicknesses at 4.6 K and below. The absence of coherence peaks of gap spectra may be related to the preformed Cooper-pairs without phase coherence.

  3. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    SciTech Connect

    Lutsev, L. V. Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S.

    2016-05-02

    Synthesis of nanosized yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10{sup −5}. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  4. Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths

    SciTech Connect

    Sadofev, Sergey; Kalusniak, Sascha; Schaefer, Peter; Henneberger, Fritz

    2013-05-06

    We demonstrate that Zn(Mg)O:Ga layers can be grown by molecular beam epitaxy in a two-dimensional mode with high structural perfection up to Ga mole fractions of about 6.5%. The doping efficiency is practically 100% so that free-carrier concentrations of almost 10{sup 21} cm{sup -3} can be realized providing a zero-crossover wavelength of the real part of the dielectric function as short as 1.36 {mu}m, while the plasmonic damping does not exceed 50 meV. Structural, electrical, and optical data consistently demonstrate a profound change of the Ga incorporation mode beyond concentrations of 10{sup 21} cm{sup -3} attended by deterioration of the plasmonic features.

  5. InGaN/GaN self-organized quantum dot lasers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Banerjee, Animesh; Frost, Thomas; Jahangir, Shafat; Stark, Ethan; Bhattacharya, Pallab

    2013-09-01

    Blue-and green-emitting quantum dots have been characterized and ridge waveguide lasers incorporating such quantum dots into the active region have been realized. The laser heteroscturctures were grown by plasma assisted molecular beam epitaxy. Injected carrier lifetimes in the quantum dots have also been measured by temperature dependent and time resolved photoluminescence. A threshold current density of 930 A/cm2 in the blue-emitting lasers was measured under pulsed bias. A tunnel injection scheme to inject holes has been incorporated in the design of the green quantum dot lasers, and a threshold current density of 945 A/cm2 in the green-emitting lasers has been measured under pulsed bias. Slope efficiencies of 0.41 W/A and 0.25 W/A have been measured, corresponding to differential quantum efficiencies of 13.9% and 11.3%, in the blue and green lasers, respectively.

  6. Evolution of strain and composition of Ge islands on Si (001) grown by molecular beam epitaxy during postgrowth annealing

    SciTech Connect

    Singha, R. K.; Das, S.; Majumdar, S.; Das, K.; Dhar, A.; Ray, S. K.

    2008-06-01

    Self-assembled Ge islands have been grown using a Stranski-Krastanov growth mechanism on Si (001) substrates by solid source molecular beam epitaxy. We performed time varying annealing experiments at a representative temperature of 650 deg. C to study the shape and size evolution of islands for a relatively high Ge coverage. Islands are found to coarsen due to heat treatment via structural and compositional changes through continuous strain relaxation. Different island morphologies, namely, 'pyramids', 'transitional domes', and 'domes' are found during the annealing sequence. The dominant coarsening mechanisms for the temporal evolution of islands of as-grown and annealed samples are explained by the comprehensive analysis of Rutherford back scattering, Raman spectroscopy, high-resolution x-ray diffraction, and atomic force microscopy. A correlation of the morphological evolution with the composition and strain relaxation of grown islands is presented.

  7. Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy

    PubMed Central

    Ma, Dingyu; Rong, Xin; Zheng, Xiantong; Wang, Weiying; Wang, Ping; Schulz, Tobias; Albrecht, Martin; Metzner, Sebastian; Müller, Mathias; August, Olga; Bertram, Frank; Christen, Jürgen; Jin, Peng; Li, Mo; Zhang, Jian; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Ge, Weikun; Shen, Bo; Wang, Xinqiang

    2017-01-01

    We investigate the emission from confined excitons in the structure of a single-monolayer-thick quasi-two-dimensional (quasi-2D) InxGa1−xN layer inserted in GaN matrix. This quasi-2D InGaN layer was successfully achieved by molecular beam epitaxy (MBE), and an excellent in-plane uniformity in this layer was confirmed by cathodoluminescence mapping study. The carrier dynamics have also been investigated by time-resolved and excitation-power-dependent photoluminescence, proving that the recombination occurs via confined excitons within the ultrathin quasi-2D InGaN layer even at high temperature up to ~220 K due to the enhanced exciton binding energy. This work indicates that such structure affords an interesting opportunity for developing high-performance photonic devices. PMID:28417975

  8. A comprehensive diagram to grow InAlN alloys by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Fernandez-Garrido, S.; Gacevic, Z.; Calleja, E.

    2008-11-10

    Indium incorporation and surface morphology of InAlN layers grown on (0001) GaN by plasma-assisted molecular beam epitaxy were investigated as a function of the impinging In flux and the substrate temperature in the 450-610 deg. C range. In incorporation was found to decrease with substrate temperature due to thermal decomposition of the growing layer, while for a given temperature it increased with the impinging In flux until stoichiometry was reached at the growth front. The InN losses during growth followed an Arrhenius behavior characterized by an activation energy of 2.0 eV. A growth diagram highly instrumental to identify optimum growth conditions was established.

  9. Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Zhao, S.; Woo, S. Y.; Bugnet, M.; Djavid, M.; Liu, X.; Kang, J.; Kong, X.; Ji, W.; Guo, H.; Liu, Z.; Botton, G. A.

    2016-09-01

    We report on the detailed molecular beam epitaxial growth and characterization of Al(Ga)N nanowire heterostructures on Si and their applications for deep ultraviolet light emitting diodes and lasers. The nanowires are formed under nitrogen-rich conditions without using any metal catalyst. Compared to conventional epilayers, Mg-dopant incorporation is significantly enhanced in nearly strain- and defect-free Al(Ga)N nanowire structures, leading to efficient p-type conduction. The resulting Al(Ga)N nanowire LEDs exhibit excellent performance, including a turn-on voltage of ∼5.5 V for an AlN nanowire LED operating at 207 nm. The design, fabrication, and performance of an electrically injected AlGaN nanowire laser operating in the UV-B band is also presented.

  10. Light emission and magnetic properties of aluminum films grown on SrTiO{sub 3} by molecular beam epitaxy

    SciTech Connect

    Wang, Y. J.; Zhou, W. Q.; Meng, M.; Wu, S. X.; Li, S. W.

    2016-06-15

    Aluminum films were grown on SrTiO{sub 3} (100) substrates using a plasma-assisted molecular beam epitaxy system. We found that the intensity of defect emission coming through the Al films was enhanced to two fold. Although the surface plasmon energy is far from the defect emission, off-resonance enhancement is still possible from Al/SrTiO{sub 3}. Moreover, the samples with Al films exhibits ferromagnetism, with wasp-waist hysteresis loops and exchange bias effects. The ferromagnetism may be attributed to the charge transfer between Al and the SrTiO{sub 3} matrix. This work is valuable in developing SrTiO{sub 3} which is a promising material used in optical and magnetic related application.

  11. Growth of wurtzite InP/GaP core-shell nanowires by metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Halder, Nripendra N.; Kelrich, Alexander; Kauffmann, Yaron; Cohen, Shimon; Ritter, Dan

    2017-04-01

    We report on the selective area vapor-liquid-solid (SA-VLS) growth of InP/GaP core shell nano-wires (NWs) by metal organic molecular beam epitaxy. Wurtzite crystal structure of the core InP was transferred to the GaP shell through layer by layer radial growth which eliminated bending of the NWs in random directions. Low growth temperature restricted surface segregation and kept the shell free from indium. Strain in the GaP shell was partially relaxed through formation of periodic misfit dislocations. From the periodicity of Moiré fringes and splitting of the fast-Fourier-transform of the transmission electron micrographs, the radial and axial strain were determined as 4.5% and 6.2%, respectively.

  12. Antimony segregation and n-type doping in Si/Si(111) films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yurasov, D. V.; Drozdov, M. N.; Schmagin, V. B.; Yunin, P. A.; Novikov, A. V.

    2017-10-01

    The temperature dependence of antimony segregation in Si/Si(111) films grown by molecular-beam epitaxy was investigated experimentally. The obtained results were found to be qualitatively similar to the previously reported data for Si(001) case, but rather significant quantitative differences were observed. It was obtained that segregation ratio, which is defined as surface-to-bulk impurity concentration ratio, varies by nearly 5 orders of magnitude in the relatively narrow temperature interval of 500-675 °C for Si(111). This finding allowed to disseminate the previously proposed technique of selective doping of Si(001) to the Si(111) case. Using this technique selectively n-type doped Si films were fabricated which have abrupt boundaries of the antimony concentration profiles. A profile abruptness as low as 1.5 nm/decade was obtained.

  13. Large-format multi-wafer production of 5" GaSb-based photodetectors by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Loubychev, Dmitri; Fastenau, Joel M.; Kattner, Michael; Frey, Phillip; Liu, Amy W. K.; Furlong, Mark J.

    2017-02-01

    GaSb and its heterostructures grown by molecular beam epitaxy (MBE) have received much attention given their application in a wide range of mid-wave and long-wave IR photodetector applications. With the maturation of the MBE growth process, focus is now turned to improving manufacturing readiness and the transition to the production of large-format wafers. We will discuss the transition from the development of early detector layer structures on 2" diameter GaSb substrates, through today's 3"/4" production standard, and to the onset of 5" pilot production from the perspective of volume compound semiconductor manufacturing. We will report on the growth of 5" GaSb-based MWIR nBn detector structures using a large format 5×5" production MBE platform. Structural and optical properties, as well as electrical data from large-area mesa diodes will be presented and compared with results achieved with smaller batch size MBE reactor platform.

  14. Room temperature Ultraviolet B emission from InAlGaN films synthesized by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Kong, W. Jiao, W. Y.; Kim, T. H.; Brown, A. S.; Roberts, A. T.; Fournelle, J.; Losurdo, M.; Everitt, H. O.

    2015-09-28

    Thin films of the wide bandgap quaternary semiconductor In{sub x}Al{sub y}Ga{sub (1−x−y)}N with low In (x = 0.01–0.05) and high Al composition (y = 0.40–0.49) were synthesized on GaN templates by plasma-assisted molecular beam epitaxy. High-resolution X-ray diffraction was used to correlate the strain accommodation of the films to composition. Room temperature ultraviolet B (280 nm–320 nm) photoluminescence intensity increased with increasing In composition, while the Stokes shift remained relatively constant. The data suggest a competition between radiative and non-radiative recombination occurs for carriers, respectively, localized at centers produced by In incorporation and at dislocations produced by strain relaxation.

  15. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    SciTech Connect

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-04-27

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  16. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    SciTech Connect

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L.

    2015-02-09

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  17. ZnO:Sb/ZnO:Ga Light Emitting Diode on c-Plane Sapphire by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, Zheng; Chu, Sheng; Chen, Winnie V.; Li, Lin; Kong, Jieying; Ren, Jingjian; Yu, Paul K. L.; Liu, Jianlin

    2010-03-01

    p-type Sb-doped ZnO (ZnO:Sb)/n-type Ga-doped ZnO (ZnO:Ga) junctions were grown on c-plane sapphire substrates using plasma-assisted molecular-beam epitaxy. Mesa geometry light emitting diodes (LEDs) were fabricated using standard photolithography and lift-off process, with ohmic contacts achieved using Au/Ni and Au/Ti for top ZnO:Sb and bottom ZnO:Ga layers, respectively. Rectifying current-voltage characteristics were achieved. Ultraviolet emission dominates in the electroluminescence spectra of the ZnO LED. An output power of ˜32 nW at an applied current of 60 mA was demonstrated. The enhanced output power, as compared to those made on silicon substrates, is attributed to the improved ZnO film quality on sapphire substrates, which is confirmed by X-ray diffraction rocking curve studies.

  18. Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xiu, F. X.; Yang, Z.; Mandalapu, L. J.; Zhao, D. T.; Liu, J. L.

    2005-12-01

    We investigated photoluminescence (PL) from reliable and reproducible Sb-doped p-type ZnO films grown on n-Si (100) by molecular-beam epitaxy. Well-resolved PL spectra were obtained from completely dopant-activated samples with hole concentrations above 1.0×1018cm-3. From free electron to acceptor transitions, acceptor binding energy of 0.14 eV is determined, which is in good agreement with analytical results of the temperature-dependent PL measurements. Another broad peak at 3.050 eV, which shifts to lower energy at higher temperatures, indicates the formation of deep acceptor level bands related to Zn vacancies, which are created by Sb doping.

  19. Effect of in-situ oxygen on the electronic properties of graphene grown by carbon molecular beam epitaxy grown

    SciTech Connect

    Park, Jeongho; Mitchel, W. C.; Back, Tyson C.; Elhamri, Said

    2012-03-26

    We report that graphene grown by molecular beam epitaxy from solid carbon (CMBE) on (0001) SiC in the presence of unintentional oxygen exhibits a small bandgap on the order of tens of meV. The presence of bandgaps is confirmed by temperature dependent Hall effect and resistivity measurements. X-ray photoelectron spectroscopy (XPS) measurements suggest that oxygen incorporates into the SiC substrate in the form of O-Si-C and not into the graphene as graphene oxide or some other species. The effect is independent of the carrier type of the graphene. Temperature dependent transport measurements show the presence of hopping conduction in the resistivity and a concurrent disappearance of the Hall voltage. Interactions between the graphene layers and the oxidized substrate are believed to be responsible for the bandgap.

  20. Precipitation growth of graphene under exfoliated hexagonal boron nitride to form heterostructures on cobalt substrate by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zheng, Renjing; Khanaki, Alireza; Tian, Hao; He, Yanwei; Cui, Yongtao; Xu, Zhongguang; Liu, Jianlin

    2017-07-01

    Research on graphene/hexagonal boron nitride (h-BN) heterostructures has attracted much attention for band engineering and device performance optimization of graphene. However, the growth of graphene/h-BN heterostructure is still challenging, which usually requires high growth temperature and long growth duration. In this paper, we demonstrate graphene/h-BN heterostructures by growing graphene onto the substrates which consist of exfoliated h-BN flakes on Co thin films using molecular beam epitaxy. The heterostructure samples grown at different temperatures and growth times were characterized by Raman, optical microscopy, atomic force microscopy, microwave impedance microscopy, and scanning tunneling microscopy. It is found that the graphene/h-BN heterostructures were formed by the formation of graphene underneath rather than on top of the h-BN flakes. The growth mechanism is discussed.

  1. Thermal conductivity of Bi2(SexTe1-x)3 alloy films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yoo, Taehee; Lee, Eungkyu; Dong, Sining; Li, Xiang; Liu, Xinyu; Furdyna, Jacek K.; Dobrowolska, Margaret; Luo, Tengfei

    2017-06-01

    We studied the thermal conductivity of Bi2Se3, Bi2Te3, and their alloy Bi2(SexTe1-x)3 at room temperature using time-domain thermoreflectance measurements. The Bi2(SexTe1-x)3 films with various concentrations of Se and Te prepared by molecular beam epitaxy on GaAs substrates were investigated to study the dependence of thermal conductivity on film composition. We observed that the Bi2(SexTe1-x)3 ternary alloys can have much lower thermal conductivity values compared to those of Bi2Se3 and Bi2Te3. These results may provide useful information for developing and engineering low thermal conductivity materials for thermoelectric applications.

  2. Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schörmann, Jörg; Hille, Pascal; Schäfer, Markus; Müßener, Jan; Becker, Pascal; Klar, Peter J.; Kleine-Boymann, Matthias; Rohnke, Marcus; de la Mata, Maria; Arbiol, Jordi; Hofmann, Detlev M.; Teubert, Jörg; Eickhoff, Martin

    2013-09-01

    Germanium doping of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) substrates is studied. Time of flight secondary ion mass spectrometry measurements reveal a constant Ge-concentration along the growth axis. A linear relationship between the applied Ge-flux and the resulting ensemble Ge-concentration with a maximum content of 3.3×1020 cm-3 is extracted from energy dispersive X-ray spectroscopy measurements and confirmed by a systematic increase of the conductivity with Ge-concentration in single nanowire measurements. Photoluminescence analysis of nanowire ensembles and single nanowires reveals an exciton localization energy of 9.5 meV at the neutral Ge-donor. A Ge-related emission band at energies above 3.475 eV is found that is assigned to a Burstein-Moss shift of the excitonic emission.

  3. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Heo, Junseok; Zhou, Zifan; Guo, Wei; Ooi, Boon S.; Bhattacharya, Pallab

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively.

  4. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey. J.; Wang, George T.

    2015-10-01

    Ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (1 1 bar 02) r-plane sapphire substrates. Dislocation free [ 11 2 bar 0 ] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar { 10 1 bar 0 } side facets, which appear due to a decrease in relative growth rate of the { 10 1 bar 0 } facets to the { 10 1 bar 1 } and { 10 1 bar 1 } facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal-organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.

  5. Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schlager, John B.; Sanford, Norman A.; Bertness, Kris A.; Barker, Joy M.; Roshko, Alexana; Blanchard, Paul T.

    2006-05-01

    Polarization- and temperature-dependent photoluminescence (PL) measurements were performed on individual GaN nanowires. These were grown by catalyst-free molecular beam epitaxy on Si(111) substrates, ultrasonically removed, and subsequently dispersed on sapphire substrates. The wires were typically 5-10μm in length, c-axis oriented, and 30-100nm in diameter. Single wires produced sufficient emission intensity to enable high signal-to-noise PL data. Polarized PL spectra differed for the σ and π polarization cases, illustrating the polarization anisotropy of the exciton emission associated with high-quality wurtzite GaN. This anisotropy in PL emission persisted even up to room temperature (4-296K). Additionally, the nanowire PL varied with excitation intensity and with (325nm) pump exposure time.

  6. The molecular beam epitaxy growth, structure, and magnetism of Si{sub 1-x}Mn{sub x} films

    SciTech Connect

    Chiu, S. H.; Hsu, H. S.; Huang, J. C. A.

    2008-04-01

    The type-IV diluted magnetic semiconductor (DMS) [Si(20 A)/Mn(x)]{sub 30} multilayers (MLs) with nominal thickness x=1, 1.5, and 2.0 A have been prepared by molecular beam epitaxy. The structure, magnetism, and electrical property of these MLs were investigated. Above room temperature ferromagnetism has been observed and structure probed by x-ray absorption spectroscopy. The Mn local structure is similar to Si simulation and the Mn chemical valences of the MLs are in the range from zero (Mn foil) to Mn{sup +2}. The relative carrier concentration is sensitive to the formation of room temperature ferromagnetism, suggesting that hole mediated mechanism play an important role in Si:Mn DMSs.

  7. Role of native defects in nitrogen flux dependent carrier concentration of InN films grown by molecular beam epitaxy

    SciTech Connect

    Tangi, Malleswararao; Kuyyalil, Jithesh; Shivaprasad, S. M.

    2012-10-01

    We address the carrier concentration, strain, and bandgap issue of InN films grown on c-sapphire at different N-flux by molecular beam epitaxy using x-ray diffraction and x-ray photoelectron spectroscopy. We demonstrate that the strain in InN films arises due to point defects like nitrogen interstitials and nitrogen antisites. We report minimal biaxial strain due to relaxed growth morphology and a minimal hydrostatic strain arising due to interstitial nitrogen atoms being partially compensated by nitrogen antisites. We find that the variation in absorption edge can be attributed to defect induced carrier concentration and that nitrogen interstitials and nitrogen antisites act as donors that yield the respective absorption edge and Moss-Burstein shift. Our studies are a step towards the ability to form low carrier concentration strain-relaxed films and to determine the intrinsic band gap value for this technologically important material.

  8. Characterization of Si volume- and delta-doped InGaAs grown by molecular beam epitaxy

    SciTech Connect

    Fedoryshyn, Y.; Kaspar, P.; Jaeckel, H.; Beck, M.

    2010-05-15

    Bulk InGaAs layers were grown at 400 deg. C lattice-matched to InP semi-insulating substrates by molecular beam epitaxy. Si doping of the layers was performed by applying volume- and delta-doping techniques. The samples were characterized by capacitance-voltage, van der Pauw-Hall, secondary ion mass spectroscopy and photoluminescence measurements. Good agreement in terms of dependence of mobility and Burstein-Moss shift shift on doping concentration in samples doped by the two different techniques was obtained. Amphoteric behavior of Si was observed at doping concentrations higher than {approx}2.9x10{sup 19} cm{sup -3} in both delta- and volume-doped samples. Degradation of InGaAs crystalline quality occurred in samples with Si concentrations higher than {approx}4x10{sup 19} cm{sup -3}.

  9. Misfit dislocation free InAs/GaSb core-shell nanowires grown by molecular beam epitaxy.

    PubMed

    Rieger, T; Grützmacher, D; Lepsa, M I

    2015-01-07

    In this report, we present the growth and structural analyses of broken gap InAs/GaSb core-shell nanowires by molecular beam epitaxy using an Au-free approach. Depending on the shell growth temperature, two distinct growth regimes for the GaSb shells are identified resulting in conformal or tapered shells. Morphological analyses reveal a dodecagonal nanowire cross-section after GaSb shell growth. Detailed transmission electron microscope investigations from different zone axes confirm that the small lattice mismatch of 0.6% allows the deposition of 40 nm thick GaSb shells free of misfit dislocations. Additionally, an abrupt interface from InAs to GaSb is found. These nanowires are suitable for future devices such as TFETs.

  10. Structural and Electrical Properties of MoTe2 and MoSe2 Grown by Molecular Beam Epitaxy.

    PubMed

    Roy, Anupam; Movva, Hema C P; Satpati, Biswarup; Kim, Kyounghwan; Dey, Rik; Rai, Amritesh; Pramanik, Tanmoy; Guchhait, Samaresh; Tutuc, Emanuel; Banerjee, Sanjay K

    2016-03-23

    We demonstrate the growth of thin films of molybdenum ditelluride and molybdenum diselenide on sapphire substrates by molecular beam epitaxy. In situ structural and chemical analyses reveal stoichiometric layered film growth with atomically smooth surface morphologies. Film growth along the (001) direction is confirmed by X-ray diffraction, and the crystalline nature of growth in the 2H phase is evident from Raman spectroscopy. Transmission electron microscopy is used to confirm the layered film structure and hexagonal arrangement of surface atoms. Temperature-dependent electrical measurements show an insulating behavior that agrees well with a two-dimensional variable-range hopping model, suggesting that transport in these films is dominated by localized charge-carrier states.

  11. Cleaning chemistry of GaAs(100) and InSb(100) substrates for molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    Ploog (1980) and Bachrach and Krusor (1981) have pointed out the importance of substrate preparation and surface cleaning for obtaining high quality films with the aid of molecular beam epitaxial growth techniques. In the present investigation, high resolution X-ray photoemission (XPS) is used to determine the oxide removal mechanism for GaAs(100) substrates which have undergone a standardized cleaning procedure. Other objectives of the investigation are related to a comparison of different cleaning procedures in order to minimize carbon contamination, the extension of these cleaning techniques to other III-V compound semiconductors such as InSb, and the evaluation of the sensitivity of the compositional results to electron-induced damage effects.

  12. Nanoclusters of CaSe in calcium-doped Bi2Se3 grown by molecular-beam epitaxy.

    PubMed

    Shang, Panju; Guo, Xin; Zhao, Bao; Dai, Xianqi; Bin, Li; Jia, Jinfeng; Li, Quan; Xie, Maohai

    2016-02-26

    In calcium (Ca) doped Bi2Se3 films grown by molecular beam epitaxy, nanoclusters of CaSe are revealed by high-angle annular dark field imaging and energy dispersive x-ray spectroscopy analysis using a scanning transmission electron microscope. As the interface between the ordinary insulator CaSe and topological insulator, Bi2Se3, can host topological nontrivial interface state, this represents an interesting material system for further studies. We show by first principles total energy calculations that aggregation of Ca atoms in Bi2Se3 is driven by energy minimization and a preferential intercalation of Ca in the van der Waals gap between quintuple layers of Bi2Se3 induces reordering of atomic stacking and causes an increasing amount of stacking faults in film. The above findings also provide an explanation of less-than-expected electrical carrier (hole) concentrations in Ca-doped samples.

  13. InAs(1-x)P(x) nanowires grown by catalyst-free molecular-beam epitaxy.

    PubMed

    Isakov, I; Panfilova, M; Sourribes, M J L; Tileli, V; Porter, A E; Warburton, P A

    2013-03-01

    We report on the self-catalysed growth of vertical InAs(1-x)P(x) nanowires on Si(111) substrates by solid-source molecular-beam epitaxy. High-resolution transmission electron microscopy revealed the mixed wurtzite and zincblende structure of the nanowires. Energy dispersive x-ray spectroscopy and x-ray diffraction measurements were used to study the phosphorus content x in the InAs(1-x)P(x) nanowires, which was shown to be in the range 0-10 %. The dependence of phosphorus incorporation in the nanowires on the phosphorus flux in the growth chamber was investigated. The incorporation rate coefficients of As and P in InAs(1x)P(x) nanowires were found to be in the ratio 10 ± 5 to 1.

  14. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    SciTech Connect

    Du, Y. E-mail: scott.chambers@pnnl.gov; Liyu, A. V.; Droubay, T. C.; Chambers, S. A. E-mail: scott.chambers@pnnl.gov; Li, G.

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  15. Compositional variations in In(0.5)Ga(0.5)N nanorods grown by molecular beam epitaxy.

    PubMed

    Cherns, D; Webster, R F; Novikov, S V; Foxon, C T; Fischer, A M; Ponce, F A; Haigh, S J

    2014-05-30

    The composition of InxGa1 - xN nanorods grown by molecular beam epitaxy with nominal x = 0.5 has been mapped by electron microscopy using Z-contrast imaging and x-ray microanalysis. This shows a coherent and highly strained core-shell structure with a near-atomically sharp boundary between a Ga-rich shell (x ∼ 0.3) and an In-rich core (x ∼ 0.7), which itself has In- and Ga-rich platelets alternating along the growth axis. It is proposed that the shell and core regions are lateral and vertical growth sectors, with the core structure determined by spinodal decomposition.

  16. High-performance K-band GaAs power field-effect transistors prepared by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Saunier, P.; Shih, H. D.

    1983-01-01

    The maturity of the molecular beam epitaxy (MBE) technique for preparing device quality GaAs material for microwave applications is demonstrated by the excellent performance characteristics of K-band GaAs power field-effect transistors (FETs) fabricated on the MBE wafers. An output power of 710 mW with 4.5-dB gain and 17.7 percent power-added efficiency was achieved at 21 GHz with a 1.26-mm gate width pi-gate device. A similar device with a 0.56-mm gate width produced an output power of 320 mW with 5.0-dB gain and 26.6 percent power-added efficiency at 21 GHz. These are the best results yet reported to date for GaAs power FETs operated in the K-band frequency range.

  17. Heterostructures with CdTe/ZnTe quantum dots for single photon emitters grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sorokin, S. V.; Sedova, I. V.; Gronin, S. V.; Belyaev, K. G.; Rakhlin, M. V.; Toropov, A. A.; Mukhin, I. S.; Ivanov, S. V.

    2016-12-01

    We report on the molecular beam epitaxy (MBE) of heterostructures with CdTe/ZnTe quantum dots (QDs) with relatively low surface density, which could be used as single-photon emitters. The QDs were formed on the surface of a 3.1- to 4.5-monolayer-thick two-dimensional strained CdTe layer by depositing amorphous Te layer and its fast thermal desorption. Subsequent thermal annealing of the surface with QDs in the absence of external Te flux led to strong broadening and short-wavelength shift of the QD photoluminescence (PL) peak. Measurement of the micro-PL spectra of individual CdTe/ZnTe quantum dots in fabricated mesastructures with a diameter of 200—1000 nm allowed estimation of the QD surface density as 1010 cm-2.

  18. Toward Discrete Axial p- n Junction Nanowire Light-Emitting Diodes Grown by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Brubaker, Matt D.; Blanchard, Paul T.; Schlager, John B.; Sanders, Aric W.; Herrero, Andrew M.; Roshko, Alexana; Duff, Shannon M.; Harvey, Todd E.; Bright, Victor M.; Sanford, Norman A.; Bertness, Kris A.

    2013-05-01

    In this paper we investigate axial p- n junction GaN nanowires grown by plasma-assisted molecular beam epitaxy (MBE), with particular attention to the effect of Mg doping on the device characteristics of individual nanowire light-emitting diodes (LEDs). We observe that a significant fraction of single-nanowire LEDs produce measurable band-gap electroluminescence when a thin AlGaN electron blocking layer (EBL) is incorporated into the device structure near the junction. Similar devices with no EBL typically yield below-detection-limit electroluminescence, despite diode-like I- V characteristics and optically measured internal quantum efficiencies (IQEs) of ˜1%. I- V measurements of the p-regions in p- n junction nanowires, as well as nanowires doped with Mg only, indicate low p-type conductivity and asymmetric Schottky-like p-contacts. These observations suggest that imbalanced carrier injection from the junction and p-contact can produce significant nonradiative losses.

  19. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L.

    2015-02-01

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  20. Molecular beam epitaxial growth of intermediate-band materials based on GaAs:N δ-doped superlattices

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya; Osada, Kazuki; Yagi, Shuhei; Naitoh, Shunya; Shoji, Yasushi; Hijikata, Yasuto; Okada, Yoshitaka; Yaguchi, Hiroyuki

    2015-08-01

    We fabricated GaAs:N δ-doped superlattices (SLs) by molecular beam epitaxy and investigated their potential as an intermediate-band photoabsorber in high-efficiency solar cells. The N area concentration in a N δ-doped layer was well controlled by adjusting the fabrication conditions, and the SLs with the average N composition of up to 1.5% were obtained. The SL minibands related to the N-induced E+ and E- conduction subbands were formed with well-separated bottom energies of up to 0.4 eV, indicating the suitability of this material system for use in intermediate-band solar cells. A two-step photoabsorption process in a solar cell with the SL absorber was successfully demonstrated through external quantum efficiency measurements under additional infrared illumination at room temperature.

  1. Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic

    SciTech Connect

    Izhnin, I. I.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Mynbaev, K. D.; Fitsych, O. I.; Pociask-Bialy, M.; Sheregii, E.; Voitsekhovskii, A. V.

    2014-04-28

    A defect study was performed on molecular beam epitaxy-grown HgCdTe films in situ doped with arsenic. Doping was performed from either effusion cell or cracker cell, and studied were both as-grown samples and samples subjected to arsenic activation annealing. Electrical properties of the films were investigated with the use of ion milling as a means of “stirring” defects in the material. As a result of the study, it was confirmed that the most efficient incorporation of electrically active arsenic occurs at the cracking zone temperature of 700 °C. Interaction between arsenic and tellurium during the growth was observed and is discussed in the paper.

  2. Focused ion beam supported growth of monocrystalline wurtzite InAs nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Scholz, Sven; Schott, Rüdiger; Labud, Patrick A.; Somsen, Christoph; Reuter, Dirk; Ludwig, Arne; Wieck, Andreas D.

    2017-07-01

    We investigate monocrystalline InAs nanowires (NWs) which are grown catalyst assisted by molecular beam epitaxy (MBE) and create the catalyst by focused ion beam (FIB) implanted Au spots. With this combination of methods an aspect ratio, i.e. the length to width ratio, of the grown NWs up to 300 was achieved. To control the morphology and crystalline structure of the NWs, the growth parameters like temperature, flux ratios and implantation fluence are varied and optimized. Furthermore, the influence of the used molecular arsenic species, in particular the As2 to As4 ratio, is investigated and adjusted. In addition to the high aspect ratio, this optimization results in the growth of monocrystalline InAs NWs with a negligible number of stacking faults. Single NWs were placed site-controlled by FIB implantation, which supplements the working field of area growth.

  3. Formation of GaN quantum dots by molecular beam epitaxy using NH{sub 3} as nitrogen source

    SciTech Connect

    Damilano, B. Brault, J.; Massies, J.

    2015-07-14

    Self-assembled GaN quantum dots (QDs) in Al{sub x}Ga{sub 1−x}N (0.3 ≤ x ≤ 1) were grown on c-plane sapphire and Si (111) substrates by molecular beam epitaxy using ammonia as nitrogen source. The QD formation temperature was varied from 650 °C to 800 °C. Surprisingly, the density and size of QDs formed in this temperature range are very similar. This has been explained by considering together experimental results obtained from reflection high-energy electron diffraction, atomic force microscopy, and photoluminescence to discuss the interplay between thermodynamics and kinetics in the QD formation mechanisms. Finally, possible ways to better control the QD optical properties are proposed.

  4. Electrical properties of molecular beam epitaxial GaAs grown at 300-450{degrees}C

    SciTech Connect

    Look, D.C.; Robinson, G.D.; Sizelove, J.R.; Stutz, C.E.

    1993-12-01

    We use the Hall effect and a new charge-transfer technique to study molecular beam epitaxial GaAs grown at the low substrate temperatures of 300-450{degrees}C. Layers grown from 350-450{degrees}C are semi-insulating (resistivity greater than 10{sup 7}{Omega}-cm), as grown, because of an As{sub Ga}-related donor (not EL2) at E{sub c} - 0.65 eV. The donor concentrations are about 2 x 10{sup 18} cm{sup -3} and 2 x 10{sup 17} cm{sup -3} at growth temperatures of 300 and 400{degrees}C, respectively, and acceptor concentrations are about an order of magnitude lower. Relatively high mobilities ({approximately}5000 cm{sup 2}/V s) along with the high resistivities make this material potentially useful for certain device applications. 8 refs., 2 figs., 2 tabs.

  5. Magnetic properties of low-moment ferrimagnetic Heusler Cr 2 CoGa thin films grown by molecular beam epitaxy

    DOE PAGES

    Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; ...

    2016-10-31

    Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87 meV.more » These results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.« less

  6. Electrical and Optical Studies of Defect Structure of HgCdTe Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Świątek, Z.; Ozga, P.; Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytsky, H. V.

    2016-07-01

    Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy (MBE) are performed. It is shown that the peculiarity of these films is the presence of neutral defects formed at the growth stage and inherent to the material grown by MBE. It is assumed that these neutral defects are the Te nanocomplexes. Under ion milling, they are activated by mercury interstitials and form the donor centers with the concentration of 1017 cm-3, which makes it possible to detect such defects by measurements of electrical parameters of the material. Under doping of HgCdTe with arsenic using high temperature cracking, the As2 dimers are present in the arsenic flow and block the neutral Te nanocomplexes to form donor As2Te3 complexes. The results of electrical studies are compared with the results of studies carried out by micro-Raman spectroscopy.

  7. Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ma, Dingyu; Rong, Xin; Zheng, Xiantong; Wang, Weiying; Wang, Ping; Schulz, Tobias; Albrecht, Martin; Metzner, Sebastian; Müller, Mathias; August, Olga; Bertram, Frank; Christen, Jürgen; Jin, Peng; Li, Mo; Zhang, Jian; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Ge, Weikun; Shen, Bo; Wang, Xinqiang

    2017-04-01

    We investigate the emission from confined excitons in the structure of a single-monolayer-thick quasi-two-dimensional (quasi-2D) InxGa1-xN layer inserted in GaN matrix. This quasi-2D InGaN layer was successfully achieved by molecular beam epitaxy (MBE), and an excellent in-plane uniformity in this layer was confirmed by cathodoluminescence mapping study. The carrier dynamics have also been investigated by time-resolved and excitation-power-dependent photoluminescence, proving that the recombination occurs via confined excitons within the ultrathin quasi-2D InGaN layer even at high temperature up to ~220 K due to the enhanced exciton binding energy. This work indicates that such structure affords an interesting opportunity for developing high-performance photonic devices.

  8. Ohmic contacts to p-GaAs with p + /p regrown structures formed by metalorganic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shimawaki, Hidenori; Furuhata, Naoki; Honjo, Kazuhiko

    1991-06-01

    Excellent ohmic contacts to p-GaAs are fabricated using selective growth by metalorganic molecular beam epitaxy. Specific contact resistance of about 5×10-8 Ω cm2 is achieved, without any heat treatment, at AuMn/Au and Ti/Pt/Au metal contacts, formed on p+-GaAs layers heavily carbon-doped to 4.4×1020 cm-3. Regrown contacts with planar and lateral p+/p structures are fabricated to clarify interface contact resistivities. A fairly low value of 7.1×10-8 Ω cm2 is established, using an equivalent circuit model, for the lateral contacts to thin p-GaAs layers, reasonably independent of its thicknesses in the range of 9.5-95 nm. These results, in addition to excellent growth selectivity, have confirmed prospects for practical use.

  9. Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Kaun, Stephen W.; Oshima, Yuichi; Short, Dane B.; Mishra, Umesh K.; Speck, James S.

    2017-04-01

    The Ge doping of β-Ga2O3(010) films was investigated using plasma-assisted molecular beam epitaxy as the growth method. The dependences of the amount of Ge incorporated on the substrate temperature, Ge-cell temperature, and growth regime were studied by secondary ion mass spectrometry. The electron concentration and mobility were investigated using Van der Pauw Hall patterns. Hall measurement confirmed that Ge acts as an n-dopant in β-Ga2O3(010) films. These results were compared with similar films doped by Sn. The Hall data showed an improved electron mobility for the same electron concentration when Ge is used instead of Sn as the dopant.

  10. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    NASA Astrophysics Data System (ADS)

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-08-01

    We report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Transport measurements of exfoliated graphene after SrO deposition show a strong dependence between the Dirac point and Sr oxidation. Subsequently, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  11. Nucleation of single GaN nanorods with diameters smaller than 35 nm by molecular beam epitaxy

    SciTech Connect

    Chen, Yen-Ting; Araki, Tsutomu; Palisaitis, Justinas; Persson, Per O. Å.; Olof Holtz, Per; Birch, Jens; Chen, Li-Chyong; Chen, Kuei-Hsien; Nanishi, Yasushi

    2013-11-11

    Nucleation mechanism of catalyst-free GaN nanorod grown on Si(111) is investigated by the fabrication of uniform and narrow (<35 nm) nanorods without a pre-defined mask by molecular beam epitaxy. Direct evidences show that the nucleation of GaN nanorods stems from the sidewall of the underlying islands down to the Si(111) substrate, different from commonly reported ones on top of the island directly. Accordingly, the growth and density control of the nanorods is exploited by a “narrow-pass” approach that only narrow nanorod can be grown. The optimal size of surrounding non-nucleation area around single nanorod is estimated as 88 nm.

  12. Effect of in-situ oxygen on the electronic properties of graphene grown by carbon molecular beam epitaxy grown

    NASA Astrophysics Data System (ADS)

    Park, Jeongho; Mitchel, W. C.; Elhamri, Said; Back, Tyson C.

    2012-03-01

    We report that graphene grown by molecular beam epitaxy from solid carbon (CMBE) on (0001) SiC in the presence of unintentional oxygen exhibits a small bandgap on the order of tens of meV. The presence of bandgaps is confirmed by temperature dependent Hall effect and resistivity measurements. X-ray photoelectron spectroscopy (XPS) measurements suggest that oxygen incorporates into the SiC substrate in the form of O-Si-C and not into the graphene as graphene oxide or some other species. The effect is independent of the carrier type of the graphene. Temperature dependent transport measurements show the presence of hopping conduction in the resistivity and a concurrent disappearance of the Hall voltage. Interactions between the graphene layers and the oxidized substrate are believed to be responsible for the bandgap.

  13. Correlation of nanochemistry and electrical properties in HfO2 films grown by metalorganic molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Moon, Tae-Hyoung; Ham, Moon-Ho; Myoung, Jae-Min

    2005-03-01

    We present the annealing effects on nanochemistry and electrical properties in HfO2 dielectrics grown by metalorganic molecular-beam epitaxy. After the postannealing treatment of HfO2 films in the temperature range of 600-800°C, the thicknesses and chemical states of the films were examined by high-resolution transmission electron microscopy and angle-resolved x-ray photoelectron spectroscopy. By comparing the line shapes of core-level spectra for the samples with different annealing temperatures, the concentrations of SiO and Hf-silicate with high dielectric constant are found to be highest for HfO2 film annealed at 700°C. This result supports that the accumulation capacitance of the sample annealed at 700°C is not deteriorated in spite of a steep increase in interfacial layer thickness compared with that of the sample annealed at 600°C.

  14. Structural and magnetic properties of {eta}-phase manganese nitride films grown by molecular-beam epitaxy

    SciTech Connect

    Yang, Haiqiang; Al-Brithen, Hamad; Smith, Arthur R.; Borchers, J. A.; Cappelletti, R. L.; Vaudin, M. D.

    2001-06-11

    Face-centered tetragonal (fct) {eta}-phase manganese nitride films have been grown on magnesium oxide (001) substrates by molecular-beam epitaxy. For growth conditions described here, reflection high energy electron diffraction and neutron scattering show primarily two types of domains rotated by 90{degree} to each other with their c axes in the surface plane. Scanning tunneling microscopy images reveal surface domains consisting of row structures which correspond directly to the bulk domains. Neutron diffraction data confirm that the Mn moments are aligned in a layered antiferromagnetic structure. The data are consistent with the fct model of G. Kreiner and H. Jacobs for bulk Mn{sub 3}N{sub 2} [J. Alloys Compd. 183, 345 (1992)]. {copyright} 2001 American Institute of Physics.

  15. ScGaN alloy growth by molecular beam epitaxy: Evidence for a metastable layered hexagonal phase

    SciTech Connect

    Constantin, Costel; Al-Brithen, Hamad; Haider, Muhammad B.; Ingram, David; Smith, Arthur R.

    2004-11-15

    Alloy formation in ScGaN is explored using rf molecular beam epitaxy over the Sc fraction range x=0-100%. Optical and structural analysis show separate regimes of growth, namely (I) wurtzitelike but having local lattice distortions in the vicinity of the Sc{sub Ga} substitutions for small x (x{<=}0.17) (II) a transitional regime for intermediate x, and (III) cubic, rocksaltlike for large x(x{>=}0.54). In regimes I and III, the direct optical transition decreases approximately linearly with increasing x but with an offset over region II. Importantly, it is found that for regime I, an anisotropic lattice expansion occurs with increasing x in which a increases much more than c. These observations support the prediction of Farrer and Bellaiche [Phys. Rev. B 66, 201203-1 (2002)] of a metastable layered hexagonal phase of ScN, denoted h-ScN.

  16. Selective-area growth of heavily n–doped GaAs nanostubs on Si(001) by molecular beam epitaxy

    SciTech Connect

    Chang, Yoon Jung Woo, Jason C. S.; Simmonds, Paul J.

    2016-04-18

    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO{sub 2} mask act as a template for GaAs-on-Si selective-area growth (SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growth parameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAs growth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grown GaAs nanostubs by fabricating heterogeneous p{sup +}–Si/n{sup +}–GaAs p–n diodes.

  17. Effect of N2 microplasma treatment on initial growth of GaN by metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Suzuki, Yohei; Kusakabe, Yasuhiro; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya; Shimizu, Kazuo

    2016-08-01

    N2 atmospheric microplasma was applied to improve the yields and reproducibility of the initial growth of GaN by metal-organic molecular beam epitaxy (MOMBE). The plasma treatment was found to be effective in cleaning the surface, and excellent flat growth was achieved even in the early stage of the growth. The effect of the air exposure after plasma treatment was also studied, and the yield of the growth was found to be largely decreased by the air exposure even after the treatment. Therefore, the oxidation of the substrate is one of main causes of the poor initial growth and the installation of the microplasma equipment in the MBE loading chamber is useful for suppressing the oxidation after the treatment. Atomic force microscopy (AFM) measurement shows that the microplasma treatment is also effective for undoing the surface double steps through etching, which is helpful for a very smooth layer-by-layer growth in the early stage of growth.

  18. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process.

    PubMed

    Zettler, J K; Corfdir, P; Geelhaar, L; Riechert, H; Brandt, O; Fernández-Garrido, S

    2015-11-06

    We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires (NWs) on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased during the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN NW ensembles. Furthermore, we also demonstrate that the growth conditions employed during the incubation time that precedes nanowire nucleation do not influence the properties of the final nanowire ensemble. Therefore, when growing GaN NWs at elevated temperatures or with low Ga/N ratios, the total growth time can be reduced significantly by using more favorable growth conditions for nanowire nucleation during the incubation time.

  19. VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy

    PubMed Central

    Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming

    2017-01-01

    Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673

  20. Molecular beam epitaxy engineered III-V semiconductor structures for low-power optically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Larsson, Anders G.; Maserjian, Joseph

    1992-01-01

    Device approaches are investigated for optically addressed SLMs based on molecular-beam epitaxy (MBE) engineered III-V materials and structures. Strong photooptic effects can be achieved in periodically delta-doped multiple-quantum-well structures, but are still insufficient for high-contrast modulation with only single- or double-pass absorption through active layers of practical thickness. The asymmetric Fabry-Perot cavity approach is employed to permit extinction of light due to interference of light reflected from the front and back surfaces of the cavity. This approach is realized with an all-MBE-grown structure consisting of GaAs/AlAs quarter-wave stack reflector grown over the GaAs substrate as the high reflectance mirror and the GaAs surface as the low reflectance mirror. High-contrast modulation is achieved using a low-power InGaAs/GaAs quantum well laser for the control signal.

  1. VO₂ Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy.

    PubMed

    Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming

    2017-03-19

    Vanadium dioxide (VO₂) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO₂-based smart windows.

  2. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    NASA Astrophysics Data System (ADS)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  3. Congruent evaporation temperature of molecular beam epitaxy grown GaAs (001) determined by local droplet etching

    NASA Astrophysics Data System (ADS)

    Heyn, Ch.; Jesson, D. E.

    2015-10-01

    The congruent evaporation temperature Tc of GaAs (001) is critical for many technological processes and is fundamental to the control and stability of Ga droplets for quantum structure fabrication. We apply the technique of local droplet etching (LDE) to measure Tc for technologically important molecular beam epitaxy (MBE) grown GaAs (001). Below Tc, Ga droplets deposited on the surface shrink and form nanoholes via LDE and thermal widening. Above Tc, droplets grow by capturing excess Ga. From the transition between both regimes, we determine Tc = 680 ± 10 °C. Additionally, we find that the nanohole/droplet densities follow an Arrhenius-type temperature dependence with an activation energy of 1.31 eV. The method probes the stability of pre-existing droplets formed by deposition and so avoids the complication of nucleation barriers and readily allows the measurement of Tc for technologically important planar GaAs surfaces in any standard MBE system.

  4. Light emission and magnetic properties of aluminum films grown on SrTiO3 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Y. J.; Zhou, W. Q.; Meng, M.; Wu, S. X.; Li, S. W.

    2016-06-01

    Aluminum films were grown on SrTiO3 (100) substrates using a plasma-assisted molecular beam epitaxy system. We found that the intensity of defect emission coming through the Al films was enhanced to two fold. Although the surface plasmon energy is far from the defect emission, off-resonance enhancement is still possible from Al/SrTiO3. Moreover, the samples with Al films exhibits ferromagnetism, with wasp-waist hysteresis loops and exchange bias effects. The ferromagnetism may be attributed to the charge transfer between Al and the SrTiO3 matrix. This work is valuable in developing SrTiO3 which is a promising material used in optical and magnetic related application.

  5. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers

    SciTech Connect

    Nicolaï, J.; Warot-Fonrose, B.; Gatel, C. Ponchet, A.; Teissier, R.; Baranov, A. N.; Magen, C.

    2015-07-21

    Structural and chemical properties of InAs/AlSb interfaces have been studied by transmission electron microscopy. InAs/AlSb multilayers were grown by molecular beam epitaxy with different growth sequences at interfaces. The out-of-plane strain, determined using high resolution microscopy and geometrical phase analysis, has been related to the chemical composition of the interfaces analyzed by high angle annular dark field imaging. Considering the local strain and chemistry, we estimated the interface composition and discussed the mechanisms of interface formation for the different growth sequences. In particular, we found that the formation of the tensile AlAs-type interface is spontaneously favored due to its high thermal stability compared to the InSb-type interface. We also showed that the interface composition could be tuned using an appropriate growth sequence.

  6. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Nicolaï, J.; Warot-Fonrose, B.; Gatel, C.; Teissier, R.; Baranov, A. N.; Magen, C.; Ponchet, A.

    2015-07-01

    Structural and chemical properties of InAs/AlSb interfaces have been studied by transmission electron microscopy. InAs/AlSb multilayers were grown by molecular beam epitaxy with different growth sequences at interfaces. The out-of-plane strain, determined using high resolution microscopy and geometrical phase analysis, has been related to the chemical composition of the interfaces analyzed by high angle annular dark field imaging. Considering the local strain and chemistry, we estimated the interface composition and discussed the mechanisms of interface formation for the different growth sequences. In particular, we found that the formation of the tensile AlAs-type interface is spontaneously favored due to its high thermal stability compared to the InSb-type interface. We also showed that the interface composition could be tuned using an appropriate growth sequence.

  7. Molecular beam epitaxy growth methods of wavelength control for InAs/(In)GaAsN/GaAs heterostructures.

    PubMed

    Mamutin, V V; Egorov, A Yu; Kryzhanovskaya, N V

    2008-11-05

    We discuss the molecular beam epitaxy (MBE) growth methods of emission wavelength control and property investigations for different types of InAs/(In)GaAsN/GaAs heterostructures containing InGaAsN quantum-size layers: (1) InGaAsN quantum wells deposited by the conventional mode in a GaAs matrix, (2) InAs quantum dots deposited in a GaAsN matrix or covered by an InGaAs(N) layer, and (3) InAs/InGaAsN/GaAsN strain-compensated superlattices with quantum wells and quantum dots. The structures under investigation have demonstrated photoluminescence emission in a wavelength range of ∼1.3-1.8 µm at room temperature without essential deterioration of the radiative properties.

  8. A comprehensive diagram to grow InAlN alloys by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fernández-Garrido, S.; Gačević, Ž.; Calleja, E.

    2008-11-01

    Indium incorporation and surface morphology of InAlN layers grown on (0001) GaN by plasma-assisted molecular beam epitaxy were investigated as a function of the impinging In flux and the substrate temperature in the 450-610 °C range. In incorporation was found to decrease with substrate temperature due to thermal decomposition of the growing layer, while for a given temperature it increased with the impinging In flux until stoichiometry was reached at the growth front. The InN losses during growth followed an Arrhenius behavior characterized by an activation energy of 2.0 eV. A growth diagram highly instrumental to identify optimum growth conditions was established.

  9. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  10. Selective-area growth of heavily n-doped GaAs nanostubs on Si(001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, Yoon Jung; Simmonds, Paul J.; Beekley, Brett; Goorsky, Mark S.; Woo, Jason C. S.

    2016-04-01

    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth (SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growth parameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAs growth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grown GaAs nanostubs by fabricating heterogeneous p+-Si/n+-GaAs p-n diodes.

  11. Polarity control and transport properties of Mg-doped (0001) InN by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Choi, Soojeong; Wu Feng; Bierwagen, Oliver; Speck, James S.

    2013-05-15

    The authors report on the plasma-assisted molecular beam epitaxy growth and carrier transport of Mg-doped In-face (0001) InN. The 1.2 {mu}m thick InN films were grown on GaN:Fe templates under metal rich conditions with Mg concentration from 1 Multiplication-Sign 10{sup 17}/cm{sup 3} to 3 Multiplication-Sign 10{sup 20}/cm{sup 3}. A morphological transition, associated with the formation of V-shape polarity inversion domains, was observed at Mg concentration over 7 Multiplication-Sign 10{sup 19}/cm{sup 3} by atomic force microscopy and transmission electron microscopy. Seebeck measurements indicated p-type conductivity for Mg-concentrations from 9 Multiplication-Sign 10{sup 17}/cm{sup 3} to 7 Multiplication-Sign 10{sup 19}/cm{sup 3}, i.e., as it exceeded the compensating (unintentional) donor concentration.

  12. UVB-emitting InAlGaN multiple quantum well synthesized using plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kong, W.; Roberts, A. T.; Jiao, W. Y.; Fournelle, J.; Kim, T. H.; Losurdo, M.; Everitt, H. O.; Brown, A. S.

    2017-03-01

    A high Al-content (y > 0.4) multi-quantum-well (MQW) structure with a quaternary InxAlyGa(1-x-y)N active layer was synthesized using plasma-assisted molecular beam epitaxy. The MQW structure exhibits strong carrier confinement and room temperature ultraviolet-B (UVB) photoluminescence an order of magnitude stronger than that of a reference InxAlyGa(1-x-y)N thin film with comparable composition and thickness. The samples were characterized using spectroscopic ellipsometry, atomic force microscopy, and high-resolution X-ray diffraction. Numerical simulations suggest that the UVB emission efficiency is limited by dislocation-related non-radiative recombination centers in the MQW and at the MQW - buffer interface. Emission efficiency can be significantly improved by reducing the dislocation density from 109c m-2 to 107c m-2 and by optimizing the width and depth of the quantum wells.

  13. In situ investigation of growth modes during plasma-assisted molecular beam epitaxy of (0001) GaN

    SciTech Connect

    Koblmueller, G.; Fernandez-Garrido, S.; Calleja, E.; Speck, J. S.

    2007-10-15

    Real-time analysis of the growth modes during homoepitaxial (0001) GaN growth by plasma-assisted molecular beam epitaxy was performed using reflection high energy electron diffraction. A growth mode map was established as a function of Ga/N flux ratio and growth temperature, exhibiting distinct transitions between three-dimensional (3D), layer-by-layer, and step-flow growth modes. The layer-by-layer to step-flow growth transition under Ga-rich growth was surfactant mediated and related to a Ga adlayer coverage of one monolayer. Under N-rich conditions the transition from 3D to layer-by-layer growth was predominantly thermally activated, facilitating two-dimensional growth at temperatures of thermal decomposition.

  14. CdSe/CdTe type-II superlattices grown on GaSb (001) substrates by molecular beam epitaxy

    SciTech Connect

    Li Jingjing; Liu Shi; Wang Shumin; Ding Ding; Johnson, Shane R.; Zhang Yonghang; Liu Xinyu; Furdyna, Jacek K.; Smith, David J.

    2012-03-19

    CdSe/CdTe superlattices are grown on GaSb substrates using molecular beam epitaxy. X-ray diffraction measurements and cross-sectional transmission electron microscopy images indicate high crystalline quality. Photoluminescence (PL) measurements show the effective bandgap varies with the superlattice layer thicknesses and confirm the CdSe/CdTe heterostructure has a type-II band edge alignment. The valence band offset between unstrained CdTe and CdSe is determined as 0.63 {+-} 0.06 eV by fitting the measured PL peak positions using the envelope function approximation and the Kronig-Penney model. These results suggest that CdSe/CdTe superlattices are promising candidates for multi-junction solar cells and other optoelectronic devices based on GaSb substrates.

  15. Formation of nonradiative defects in molecular beam epitaxial GaNxAs1-x studied by optically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Thinh, N. Q.; Buyanova, I. A.; Chen, W. M.; Xin, H. P.; Tu, C. W.

    2001-11-01

    The formation of two nonradiative defects (i.e., an AsGa-related complex and an unknown deep-level defect with g=2.03) in GaNxAs1-x epilayers and GaAs/GaNxAs1-x multiple-quantum-well structures, grown by molecular beam epitaxy, is studied by the optically detected magnetic resonance technique. It is shown that contributions by these defects in competing carrier recombination strongly vary with the nitrogen composition. An increase in the growth temperature or postgrowth rapid thermal annealing significantly reduces the influence of the nonradiative defects studied, and is accompanied by a remarkable improvement in the optical properties of the structures.

  16. Low-damping sub-10-nm thin films of lutetium iron garnet grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Jermain, C. L.; Paik, H.; Aradhya, S. V.; Buhrman, R. A.; Schlom, D. G.; Ralph, D. C.

    2016-11-01

    We analyze the structural and magnetic characteristics of (111)-oriented lutetium iron garnet (Lu3Fe5O12) films grown by molecular-beam epitaxy, for films as thin as 2.8 nm. Thickness-dependent measurements of the in- and out-of-plane ferromagnetic resonance allow us to quantify the effects of two-magnon scattering, along with the surface anisotropy and the saturation magnetization. We achieve effective damping coefficients of 11.1 (9 )×10-4 for 5.3 nm films and 32 (3 )×10-4 for 2.8 nm films, among the lowest values reported to date for any insulating ferrimagnetic sample of comparable thickness.

  17. Bending stability of GaN grown on a metallic flexible substrate by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. G.; Chávez-Veloz, S. G.; Compeán-García, V. D.; López-Luna, E.; Vidal, M. A.

    2017-08-01

    GaN thin films were grown on flexible metallic substrates by molecular beam epitaxy. MgO buffer layers were deposited by spin coating on Ni-Mo-Cr (Hastelloy C-276) alloy tapes that were used as substrates. The structural characterization of the GaN/MgO/hastelloy samples was performed by x-ray diffraction and Raman spectroscopy. The obtained nanometric films have the stable hexagonal phase (α-GaN) with an average crystallite size of 18 nm. The long and short range order of GaN decrease when the structure is bent. The most significant variations in the structural properties occur between 100 and 250 bending cycles.

  18. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOEpatents

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  19. Contactless electroreflectance studies of surface potential barrier for N- and Ga-face epilayers grown by molecular beam epitaxy

    SciTech Connect

    Kudrawiec, R.; Janicki, L.; Gladysiewicz, M.; Misiewicz, J.; Cywinski, G.; Boćkowski, M.; Muzioł, G.

    2013-07-29

    Two series of N- and Ga-face GaN Van Hoof structures were grown by plasma-assisted molecular beam epitaxy to study the surface potential barrier by contactless electroreflectance (CER). A clear CER resonance followed by strong Franz-Keldysh oscillation of period varying with the thickness of undoped GaN layer was observed for these structures. This period was much shorter for N-polar structures that means smaller surface potential barrier in these structures than in Ga-polar structures. From the analysis of built-in electric field it was determined that the Fermi-level is located 0.27 ± 0.05 and 0.60 ± 0.05 eV below the conduction band for N- and Ga-face GaN surface, respectively.

  20. Long-wavelength PtSi infrared detectors fabricated by incorporating a p(+) doping spike grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Park, J. S.; George, T.; Jones, E. W.; Fathauer, R. W.; Maserjian, J.

    1993-01-01

    By incorporating a 1-nm-thick p(+) doping spike at the PtSi/Si interface, we have successfully demonstrated extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime for the first time. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p(+) doping spike and the Schottky image force. The p(+) doping spikes were grown by molecular beam epitaxy at 450 C, using elemental boron as the dopant source, with doping concentrations ranging from 5 x 10 exp 19 to 2 x 10 exp 20/cu cm. Transmission electron microscopy indicated good crystalline quality of the doping spikes. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p(+) spikes. Thermionic emission dark current characteristics were observed and photoresponses in the LWIR regime were demonstrated.