Science.gov

Sample records for gas-source molecular-beam epitaxy

  1. Onset of stacking faults in InP nanowires grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cornet, D. M.; Mazzetti, V. G. M.; LaPierre, R. R.

    2007-01-01

    InP nanowires (NWs) were grown by gas source molecular beam epitaxy on InP (111)B substrates, using Au nanoparticles as a growth catalyst. The rod-shaped NWs exhibited hexagonal sidewall facets oriented along the {-211} family of crystal planes for all NW diameters, indicating minimal sidewall growth. Stacking faults, when present, were concentrated near the NW tips, while NWs with lengths less than 300nm were completely free of stacking faults.

  2. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  3. Effects of high source flow and high pumping speed on gas source molecular beam epitaxy / chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    McCollum, M. J.; Jackson, S. L.; Szafranek, I.; Stillman, G. E.

    1990-10-01

    We report the growth of GaAs by molecular beam epitaxy (MBE), gas source molecular beam epitaxy (GSMBE), and chemical beam epitaxy (CBE) in an epitaxial III-V reactor which features high pumping speed. The system is comprised of a modified Perkin-Elmer 430P molecular beam epitaxy system and a custom gas source panel from Emcore. The growth chamber is pumped with a 7000 1/s (He) diffusion pump (Varian VHS-10 with Monsanto Santovac 5 oil). The gas source panel includes pressure based flow controllers (MKS 1150) allowing triethylaluminum (TEA), triethylgallium (TEG), and trimethylindium (TMI) to be supplied without the use of hydrogen. All source lines, including arsine and phosphine, are maintained below atmospheric pressure. The high pumping speed allows total system flow rates as high as 100 SCCM and V/III ratios as high as 100. The purity of GaAs grown by MBE in this system increases with pumping speed. GaAs layers grown by GSMBE with arsine flows of 10 and 20 SCCM have electron concentrations of 1 × 10 15 cm -3 (μ 77=48,000 cm 2/V·) and 2 × 10 14 cm -3 (μ 77=78,000 cm 2/V·s) respectively. El ectron concentration varies with hydride injector temperature such that the minimum in electron concentration occurs for less than complete cracking. The effect of V/III ratio and the use of a metal eutectic bubbler on residual carrier concentration in GaAs grown by CBE is presented. Intentional Si and Be doping of CBE grown GaAs is demonstrated at a high growth rate of 5.4 μm/h.

  4. GaNAsP: An intermediate band semiconductor grown by gas-source molecular beam epitaxy

    SciTech Connect

    Kuang, Y. J.; Yu, K. M.; Walukiewicz, W.; Kudrawiec, R.; Luce, A. V.; Ting, M.; Tu, C. W.

    2013-03-18

    Dilute nitride GaNAsP thin films were grown via a GaAsP metamorphic buffer on GaP(100) substrate with gas-source molecular beam epitaxy. The compositions of this III-V-V-V compound were determined by channeling Rutherford backscattering spectroscopy and nuclear reaction analysis. Photoreflectance shows two distinctive transitions from the valence band to the split conduction bands due to N incorporation. Photoluminescence and optical absorption show the fundamental bandgap of Ga(N)AsP is largely tailored by the small amount of N. The observed multiband characteristics and the bandgap tunability of GaNAsP are two merits that fit into the intermediate-band solar cell roadmap, and GaNAsP of high crystal quality provides a strong candidate for intermediate band solar cell materials.

  5. Growth mechanisms of GaAs nanowires by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Plante, M. C.; LaPierre, R. R.

    2006-01-01

    GaAs nanowires were grown on GaAs (1 1 1)B substrates in a gas source molecular beam epitaxy system, using self-assembled Au particles with diameters between 20 and 800 nm as catalytic agents. The growth kinetics of the wires was investigated for substrate temperatures between 500 and 600 °C, and V/III flux ratios of 1.5 and 2.3. The broad distribution of Au particles enabled the first observation of two distinct growth regimes related to the size of the catalyst. The origins of this transition are discussed in terms of the various mass transport mechanisms that drive the wire growth. Diffusion of the growth species on the 2-D surface and up the wire sidewalls dominates for catalyst diameters smaller than ˜130 nm on average, while direct impingement on the catalyst followed by bulk diffusion through the Au particle appears to sustain the wire growth for larger catalyst diameters. A change in wire sidewall facets, indicating a probable transition in the crystal structure, is found to be primarily dependent on the V/III flux ratio.

  6. Gas source molecular beam epitaxy of scandium nitride on silicon carbide and gallium nitride surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Nemanich, Robert J.

    2014-11-01

    Scandium nitride (ScN) is a group IIIB transition metal nitride semiconductor with numerous potential applications in electronic and optoelectronic devices due to close lattice matching with gallium nitride (GaN). However, prior investigations of ScN have focused primarily on heteroepitaxial growth on substrates with a high lattice mismatch of 7%–20%. In this study, the authors have investigated ammonia (NH{sub 3}) gas source molecular beam epitaxy (NH{sub 3}-GSMBE) of ScN on more closely lattice matched silicon carbide (SiC) and GaN surfaces (<3% mismatch). Based on a thermodynamic analysis of the ScN phase stability window, NH{sub 3}-GSMBE conditions of 10{sup −5}–10{sup −4} Torr NH{sub 3} and 800–1050 °C where selected for initial investigation. In-situ x-ray photoelectron spectroscopy (XPS) and ex-situ Rutherford backscattering measurements showed all ScN films grown using these conditions were stoichiometric. For ScN growth on 3C-SiC (111)-(√3 × √3)R30° carbon rich surfaces, the observed attenuation of the XPS Si 2p and C 1s substrate core levels with increasing ScN thickness indicated growth initiated in a layer-by-layer fashion. This was consistent with scanning electron microscopy (SEM) images of 100–200 nm thick films that revealed featureless surfaces. In contrast, ScN films grown on 3C-SiC (111)-(3 × 3) and 3C-SiC (100)-(3 × 2) silicon rich surfaces were found to exhibit extremely rough surfaces in SEM. ScN films grown on both 3C-SiC (111)-(√3 × √3)R30° and 2H-GaN (0001)-(1 × 1) epilayer surfaces exhibited hexagonal (1 × 1) low energy electron diffraction patterns indicative of (111) oriented ScN. X-ray diffraction ω-2θ rocking curve scans for these same films showed a large full width half maximum of 0.29° (1047 arc sec) consistent with transmission electron microscopy images that revealed the films to be poly-crystalline with columnar grains oriented at ≈15° to the [0001] direction of the

  7. Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Matsubara, Yuya; Takahashi, Kei S.; Tokura, Yoshinori; Kawasaki, Masashi

    2014-12-01

    Thin BaTiO3 films were grown on GdScO3 (110) substrates by metalorganic gas-source molecular beam epitaxy. Titanium tetra-isopropoxide (TTIP) was used as a volatile precursor that provides a wide growth window of the supplied TTIP/Ba ratio for automatic adjustment of the film composition. Within the growth window, compressively strained films can be grown with excellent crystalline quality, whereas films grown outside of the growth window are relaxed with inferior crystallinity. This growth method will provide a way to study the intrinsic properties of ferroelectric BaTiO3 films and their heterostructures by precise control of the stoichiometry, structure, and purity.

  8. Control of GaP nanowire morphology by group V flux in gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kuyanov, P.; Boulanger, J.; LaPierre, R. R.

    2017-03-01

    GaP nanowires (NWs) were grown on a Si substrate by gas source molecular beam epitaxy using self-assisted growth. Selective-area growth was achieved using a patterned oxide mask. Periodic GaAsP marker layers were introduced during growth to study the growth progression using transmission electron microscopy. We demonstrate control of the NW morphology via the V/III flux ratio, the pattern pitch, and the oxide hole diameter. As the V/III flux ratio was increased from 1 to 6, the NWs showed a reduced top diameter and increased height. Reduced oxide hole diameter and increased V/III flux ratio caused the Ga droplet to be consumed partway through the growth for some NWs, leading to a switch from VLS group V limited growth to diffusion limited growth.

  9. Gas-source molecular beam epitaxy of MgZnSSe for fabricating blue/green laser diodes

    NASA Astrophysics Data System (ADS)

    Imaizumi, Masayuki; Endoh, Yasuyuki; Suita, Muneyoshi; Sugimoto, Hiroshi; Ohtsuka, Ken-ichi; Isu, Toshiro; Ozeki, Tatsuo

    1996-11-01

    MgZnSSe layers were successfully grown by gas-source molecular beam epitaxy using hydride group VI sources. Employing n-type dopant Ga, Mg xZn 1- xS 0.12Se 0.88 layers (0 ≤ x ≤ 0.12) with electron concentrations in the 10 17 cm -3 range were obtained. The electron mobility was around 200 cm 2/V · s. with an increase in the Mg composition, the Ga donor ionization energy increased markedly. Active nitrogen was doped into the MgZnSSe layers for p-type control. Net acceptor concentrations of the p-Mg xZn 1- xS 0.15Se 0.85 layers were 4.5 × 10 17 cm -3 for x = 0 and 1.8 × 10 17 cm -3 for x = 0.10, which were comparable to the highest values ever reported. ZnCdSeMgZnSSe SCH-SQW LDs have been fabricated. Lasing was observed up to 203 K. The threshold current density was 420 A/cm 2 at 77 K and 1.8 kA/cm 2 at 203 K.

  10. Epitaxial growth of GaAs and GaN by gas source molecular beam epitaxy using organic group V compounds

    NASA Astrophysics Data System (ADS)

    Okumura, H.; Yoshida, S.; Misawa, S.; Sakuma, E.

    1992-05-01

    GaAs and GaN epilayers were grown on GaAs substrates by gas source molecular beam epitaxy technique using triethylarsine (TEAs) and diethylarsine (DEAsH) as As sources, and dimethylhydrazine (DMHy) as an N source. It was found that GaAs grows layer by layer even when organic arsine molecular sources are used. Cubic GaN was found to grow epitaxially on sufficiently nitrided surfaces of GaAs (001) substrates, in contrast with the growth of hexagonal GaN on GaAs (111) surfaces. It was also found that nitridation of GaAs surfaces does not occur when DEAsH and DMHy beams are supplied onto the GaAs substrates, simultaneously. Thus, GaN/GaAs multilayers were obtained only by intermittent supply of a DEAsH beam.

  11. Temperature-Stable Wavelength TlInGaAs/InP Double Heterostructure Light-Emitting Diodes Grown by Gas Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Hui-Jae; Konishi, Kenta; Maeda, Osamu; Mizobata, Akiko; Asami, Kumiko; Asahi, Hajime

    2002-02-01

    TlInGaAs/InP double heterostructure light-emitting diodes were grown on (100) InP substrates by gas source molecular beam epitaxy. The Tl composition was 6%. They were operated at up to 340°C with a wavelength around 1.58 μm. Very small temperature dependence of the electroluminescence peak energy (-0.09 meV/K) was observed, which is similar to the temperature dependence of the photoluminescence peak energy.

  12. Dilute Nitride GaNP Wide Bandgap Solar Cells Grown by Gas-Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Sukrittanon, Supanee

    Integration of III-V semiconductors and Si is a very attractive means to achieve low-cost high-efficiency solar cells. A promising configuration is to utilize a dual-junction solar cell, in which Si is employed as the bottom junction and a wide-bandgap III-V semiconductor as the top junction. The use of a III-V semiconductor as a top junction offers the potential to achieve higher efficiencies than today's best Si solar cell. Dilute nitride GaNP is a promising candidate for the top cell in dual-junction solar cells because it possesses several extremely important attributes: a direct-bandgap that is also tunable as well as easily-attained lattice-match with Si. As a first step towards integration of GaNP solar cells onto Si, the goal of this dissertation is to optimize and demonstrate GaNP solar cells grown by gas-source molecular beam epitaxy (GSMBE) on GaP (001) substrate. The dissertation is divided into three major parts. In the first part, we demonstrate ˜ 2.05 eV ([N]˜ 1.8%) dilute nitride GaNP thin film solar cells, in which the GaNP is closely lattice-matched to Si, on GaP substrates. From transmission electron microscopy (TEM), the device exhibits defects only at the GaNP/GaP interface, and no threading dislocations in an active layer are observed. Our best GaNP solar cell achieved an efficiency of 7.9% with anti-reflection (AR) coating and no window layer. This GaNP solar cell's efficiency is higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance using GaNP are demonstrated. In the second part, we demonstrate the successful fabrication of GaP/GaNP core/shell microwires utilizing a novel technique: top-down reactive-ion etching (RIE) to create the cores and MBE to create the shells. Systematic studies have been

  13. Growth and electrical properties of high-quality InGaAsBi thin films using gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhou, Shuxing; Qi, Ming; Ai, Likun; Wang, Shumin; Xu, Anhuai; Guo, Qi

    2017-03-01

    The effects of Bi flux and In/Ga ratio on Bi incorporation and electrical properties of InGaAsBi grown by gas source molecular beam epitaxy were systematically studied. It is found that use of a low In/Ga ratio has an enhancement effect on the incorporation of Bi and its content increases linearly with Bi flux until reach a saturation. Incorporation of Bi induces p-type dopant that compensates the background electron concentration but does not degrade the electron mobility for the Bi content up to 6.2%. Up to 7.5% of Bi incorporation has been confirmed by Rutherford backscattering spectroscopy (RBS) and a maximum electron mobility of 5600 cm2·V‑1·s‑1 at room temperature was achieved in InGaAsBi with x Bi = 6.2%, which is the highest value reported in InGaAsBi with x Bi > 5%.

  14. InGaAsP/InAlAs type I/type II multiple quantum well structures grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kawamura, Yuichi; Iwamura, Hidetoshi

    1995-05-01

    In 1- xGa xAs 1- yP y/In 0.52Al 0.48As multiple quantum well (MQW) structures have been grown on InP substrates by gas source molecular beam epitaxy and the compositional dependence of the optical properties are studied by photoluminescence and optical absorption measurements. It is found that the type I/type II transition occurs at a P composition of 0.60. From the compositional dependence of the effective bandgap of the InGaAsP/InAlAs MQW structure, the valence band discontinuity ( ΔEv) of the InP/InAlAs hetero-interface is estimated to be 0.20 eV, which is consistent with the result for the conduction band discontinuity ( ΔEc) of In 1- w-zGa wAl zAs/InP MQW structures.

  15. Growth and photoluminescence of self-catalyzed GaP/GaNP core/shell nanowires on Si(111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kuang, Y. J.; Sukrittanon, S.; Li, H.; Tu, C. W.

    2012-01-01

    We report a study on self-catalyzed GaP/GaNP core/shell nanowires (NWs) grown on Si(111) by gas-source molecular beam epitaxy. Scanning electron microscopy images show that vertical and uniform GaP NWs and GaP/GaNP core/shell NWs are grown on Si(111). The density ranges from ˜1 × 107 to ˜5 × 108 cm-2 across the substrate. Typical diameters are ˜110 nm for GaP NWs and ˜220 nm for GaP/GaNP NWs. Room temperature photoluminescence (PL) signal from the GaP/GaNP core/shell NWs confirms that N is incorporated in the shell and the average N content is ˜0.9%. The PL low-energy tail is significantly reduced, compared to bulk GaNP.

  16. Infrared reflectivity spectra of gas-source molecular beam epitaxy grown dilute InN{sub x}As{sub 1-x}/InP (001)

    SciTech Connect

    Talwar, Devki N.; Yang, Tzuen-Rong; Hsiung Lin, Hao; Chuan Feng, Zhe

    2013-02-04

    Vibrational spectra of gas-source molecular beam epitaxy grown dilute InN{sub x}As{sub 1-x}/InP (001) alloys are obtained using a Fourier-transform infrared (IR) spectroscopy. A triply degenerate N{sub As} local vibrational mode of T{sub d}-symmetry is observed near 438 cm{sup -1} corresponding to the In-N bond energy. The analysis of composition dependent infrared reflectivity spectra in InNAs has predicted a two-phonon-mode behavior. In In(Ga)-rich GaInNAs alloys the observed splitting of the N{sub As} local mode into a doublet for the N{sub As}-Ga{sub 1}(In{sub 1})In{sub 3}(Ga{sub 3}) pair-defect of C{sub 3v}-symmetry is consistent with our simulated results based on a sophisticated Green's function theory.

  17. Effect of Growth Pause on Indium Gallium Phosphorus/gallium Arsenic Heterointerfaces during Gas-Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Hyong Yong

    Molecular beam epitaxial (MBE) growth of InGaP/GaAs quantum-well structures requires switching of the arsenic and phosphorus beams at each heterointerface. Using in -situ reflection high energy electron diffraction, double crystal X-ray (DCXR) diffraction, and transmission electron microscopy, the effects of a growth pause on the interfacial structure and composition of lattice-matched InGaP/GaAs multiple quantum well structures were studied. For the purpose of this study growth pause at each interface was divided into two time periods: the interval (denoted by t_1) after stopping growth by closing the group-III shutters but before switching the group-V beams, and the interval (t_2) after switching the group-V beams but before recommencing growth. The effect of the As_2 beam on the GaAs growth front and the P_2 beam on the InGaP growth front was first studied. An atomically smooth GaAs surface was obtained with about 30 sec of pause in an As_2 beam. With the experimental methods used, the InGaP growth front did not show any major structural changes with increasing growth pause time. The GaAs-to-InGaP interface is found to be composed of one to two monolayers of GaAs_ {y}P_{1-y} (0 < y < 0.05) and the InGaP-to-GaAs interface is composed of one to two monolayers of In_{.5}Ga_ {.5}As_{y}P _{1-y} (0 < y < 0.05). This requires an exchange of As and P in the uppermost group-V atoms. The effect of an As_2 beam on the InGaP surface and an P_2 beam on the GaAs surface was next studied. For t _2 < 20 sec, atomically flat heterointerfaces were obtained and both the GaAs-to-InGaP and the InGaP -to-GaAs interfaces were found to be composed of group-V exchange strained layers. For t_2 >=q 60 sec a wavy interface was obtained. The irregularities of the interface may be the result of the As and P exchange mechanism. The experimental results show that a combination of an As_2 beam on the InGaP surface and a P_2 beam on the GaAs surface lasting 2 min produces rougher growth fronts

  18. Deep UV AlGaN light emitting diodes grown by gas source molecular beam epitaxy on sapphire and AlGaN/sapphire substrates

    NASA Astrophysics Data System (ADS)

    Nikishin, S.; Borisov, B.; Kuryatkov, V.; Usikov, A.; Dmitriev, V.; Holtz, M.

    2006-02-01

    We report the electrical and optical properties of deep ultraviolet light emitting diodes (LEDs) based on digital alloy structures (DAS) of AlN/Al 0.08Ga 0.92N grown by gas source molecular beam epitaxy with ammonia on sapphire substrates and AlGaN/sapphire templates. AlGaN/sapphire templates were grown by recently developed stress controlled hydride vapor phase epitaxy (HVPE). For DAS with effective bandgap of 5.1 eV we obtain room temperature electron concentrations up to 1x10 19 cm -3 and hole concentrations of 1x10 18 cm -3. Based on these results we prepared double heterostructure (DHS) LEDs operating in the range of 250 to 290 nm. The emission wavelengths were controlled through the effective bandgap of the active region. The possible ways for increase of LED's efficiency are discussed. We observed significant improvement in the room temperature luminescence efficiency (by factor of 100) of AlGaN quantum wells when a transition growth mode is induced by reduced flux of ammonia. We found that active layer grown on HVPE AlGaN/sapphire substrates have higher luminescence efficiency (by factor of 3) than DAS grown on sapphire.

  19. Silicon carbon(001) gas-source molecular beam epitaxy from methyl silane and silicon hydride: The effects of carbon incorporation and surface segregation on growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Yong-Lim

    Si1-yCy alloys were grown on Si(001) by gas-source molecular-beam epitaxy (GS-MBE) from Si2H6/CH3 SiH3 mixtures as a function of C concentration y (0 to 2.6 at %) and deposition temperature Ts (500--600°C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In-situ isotopically-tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregates to the second-layer during steady-state Si1-y Cy(001) growth. This, in turn, results in charge-transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θ Si*(y, Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H 6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts, JSi2H6,J CH3SiH3 ) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in good agreement with the experimental data. At higher growth temperature (725 and 750°C), superlattice structures consisting of alternating Si-rich and C-rich sublayers form spontaneously during the gas-source molecular beam epitaxial growth of Si1-y Cy layers from constant Si2H6 and CH 3SiH3 precursor fluxes. The formation of a self-organized superstructure is due to a complex interaction among competing surface reactions. During growth of the initial Si-rich sublayer, C strongly segregates to the second layer resulting in charge transfer from surface Si atom dangling bonds of to C

  20. Photoluminescence of InGaAs/GaAsBi/InGaAs type-II quantum wells grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Pan, Wenwu; Zhang, Liyao; Zhu, Liang; Song, Yuxin; Li, Yaoyao; Wang, Chang; Wang, Peng; Wu, Xiaoyan; Zhang, Fan; Shao, Jun; Wang, Shumin

    2017-01-01

    In x Ga1-x As/GaAs1-y Bi y /In x Ga1-x As (0.20 ≤ x ≤ 0.22, 0.035 ≤ y ≤ 0.045) quantum wells (QWs) were grown on GaAs substrates by gas source molecular beam epitaxy for realizing the type-II band edge line-up. Both type-I and type-II transitions were observed in the Bi containing W QWs and the photoluminescence intensity was enhanced in the sample with a high Bi content, which is mainly due to the improvement of carrier confinement. The 8 band k · p model was used to analyze the electronic properties in the QWs and the calculated transition energies fit well with the experiment results. Our study shows that the proposed type-II QW is a promising candidate for realizing GaAs-based near infrared light emitting devices near 1.3 μm.

  1. Accurate tuning of emission of GaInAsP/InP heterostructures in multiwafer gas-source molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lelarge, F.; Gaborit, F.; Gentner, J. L.

    2005-03-01

    Photoluminescence wavelength emission of Ga xIn 1-xAs yP 1-y/InP heterostructures grown in multiwafer gas-source molecular-beam epitaxy (GSMBE) is studied in detail for both bulk and multiple quantum well (MQWs) heterostructures. Excellent photoluminescence wavelength uniformity is reported in 4×2-in. configuration, demonstrating the compatibility of GSMBE process with large-scale 1.55 μm telecom laser production. A strong dependence of wavelength uniformity on group-V/group-III flux ratio is reported and analyzed quantitatively. An empirical model based on the interplay between group-V elements incorporation and gas distribution is proposed to predict the influence of AsH 3 and PH 3 fluxes on As content in the solid. This understanding opens the way to an accurate tuning of wavelength dispersion of Ga xIn 1-xAs yP 1-y/InP MQWs grown in multiwafer GSMBE system.

  2. Gas source molecular-beam epitaxial growth of TlInGaAsN double quantum well light emitting diode structures and thallium incorporation characteristics

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Krishnamurthy, D.; Fujiwara, A.; Hasegawa, S.; Asahi, H.

    2006-10-01

    TlInGaAsN/GaAs double quantum well (DQW) structures were grown on GaAs (1 0 0) substrates by gas source molecular-beam epitaxy. It has been found that high Tl flux is needed for the incorporation of Tl into the films. Reduction in the temperature variation of electroluminescence (EL) peak energy has been observed by the addition of Tl into quantum well (QW) layers; -0.62 meV/K for the InGaAsN/GaAs DQW light emitting diodes (LEDs) and -0.53 meV/K for the TlInGaAsN/GaAs DQW LEDs. By replacing GaAs barrier layers with TlGaAs barrier layers, further reduction could be obtained; -0.35 meV/K for TlInGaAsN/TlGaAs DQW LEDs. SIMS measurements indicated that this improvement is caused by the increased incorporation of Tl into the QW layers.

  3. Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11mum), grown by Gas Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Neelanjan

    Quantum Cascade Laser (QCL) is a compact room temperature (RT) source of mid-infrared radiation, which can be used for spectroscopic detection of trace amount of chemicals. The mid-infrared spectral range between (3-11 microm), has a dense array of absorption lines of numerous molecules, due to the presence of fundamental vibrational modes. The goal of this thesis can be subdivided into two parts. Firstly, short wavelength QCLs, emitting below 4microm, perform poorly at RT, due to inter-valley Gamma --- L carrier scattering, carrier escape to the continuum, heat removal from the core region at high power density corresponding to short wavelength operation, and large interface scattering due to highly strained materials. Secondly, it is desirable to have a single QCL based source emitting between 6-10microm, which be used to detect multiple molecules having their peak absorptions far apart, inside this spectral range. However, gain bandwidth of a single core QCL is relatively small, so laser emission cannot be tuned over a wide spectral range. This thesis describes the working principle of a QCL based on superlattice transport, rate equations, scattering mechanism, and waveguide design. The choice of the material system for this work and the fundamentals of band structure engineering has been derived. Gas source molecular beam epitaxy - growth optimization and characterization is one of the most important features of this work, especially for short wavelength QCLs, and has been explained in depth. Different strategies for design of active region design of short wavelength QCL and heterogeneous broadband QCL has been explored. The major milestones, of this research was the world's first watt level continuous wave (CW), RT demonstration at 3.76 microm, which was followed by another milestone of the first CW, RT demonstration at 3.39microm and 3.55microm, and finally the elusive result of QCL emitting at CW, RT at a wavelength as short as lambda ~3microm, a record. In

  4. Molecular Beam Epitaxy of

    NASA Astrophysics Data System (ADS)

    Hsieh, Kuan Hsiung

    Ga(,0.48)In(,0.52)As recently emerges as a promising material for high speed applications. It also has a direct bandgap with gap energy suitable for optical applications. It is the purpose of this thesis to grow high quality Ga(,0.47)In(,0.53)As, lattice-matched Al(,0.48)In(,0.52)As and heterojunction structures by molecular beam epitaxy technique for applications in the areas of modulation-doped high mobility devices and internal photoemission Schottky diodes for infrared detection. Single crystal Al metal deposition on GaInAs by MBE is also studied for its electrical properties. Mobility enhancement has been demonstrated in modulation-doped structures at low temperatures. Very high mobilities were obtained: 10,900 cm('2)/Vs at room temperature, 55,500 cm('2)/Vs at 77K and 70,200 cm('2)/Vs at 10K with corresponding two-dimensional electron gas densities greater than 1 x 10('12) l/cm('2). The quality of Ga(,0.47)In(,0.53)As and the parallel conduction in this material are the limiting factors in its mobility. A new ohmic contact phenomenon has been observed in the MBE single crystal Al metal on Ga(,0.47)In(,0.53)AS samples. Its contact resistivity is measured to be as small as 1 x 10('-6) (OMEGA)-cm('2). The Fermi-level pinning near the conduction band edge might be caused by the interface defects. A planar doping technique has been employed to enhance the built-in barrier height to a value of about 0.5 eV in the single crystal Al on n-p('+)-n-Ga(,0.47)In(,0.52)As structures. This novel quasi-Schottky diode also shows a forward ideal factor of 1.03. As for optical detectors, four kinds of diodes were made for internal photoemission studies: Au Schottky on Ga(,0.47)In(,0.53)As in the wavelength range of 1.9 (mu)m to 2.5 (mu)m, Au Schottky on Al(,0.48)In(,0.52)As in 1.1 (mu)m to 2.0 (mu)m range, single crystal Al on (Al(,0.8)Ga(,0.2))(,0.48)In(,0.52)As with improved quantum yields and lastly a Ga(,0.47)In(,0.53)As/Al(,0.48)In(,0.52)As heterojunction with a measured

  5. Ultrahigh B doping ({<=}10{sup 22} cm{sup -3}) during Si(001) gas-source molecular-beam epitaxy: B incorporation, electrical activation, and hole transport

    SciTech Connect

    Glass, G.; Kim, H.; Desjardins, P.; Taylor, N.; Spila, T.; Lu, Q.; Greene, J. E.

    2000-03-15

    Si(001) layers doped with B concentrations C{sub B} between 1x10{sup 17} and 1.2x10{sup 22} cm{sup -3} (24 at %) were grown on Si(001)2x1 at temperatures T{sub s}=500-850 degree sign C by gas-source molecular-beam epitaxy from Si{sub 2}H{sub 6} and B{sub 2}H{sub 6}. C{sub B} increases linearly with the incident precursor flux ratio J{sub B{sub 2}}{sub H{sub 6}}/J{sub Si{sub 2}}{sub H{sub 6}} and B is incorporated into substitutional electrically active sites at concentrations up to C{sub B}{sup *}(T{sub s}) which, for T{sub s}=600 degree sign C, is 2.5x10{sup 20} cm{sup -3}. At higher B concentrations, C{sub B} increases faster than J{sub B{sub 2}}{sub H{sub 6}}/J{sub Si{sub 2}}{sub H{sub 6}} and there is a large and discontinuous decrease in the activated fraction of incorporated B. However, the total activated B concentration continues to increase and reaches a value of N{sub B}=1.3x10{sup 21} cm{sup -3} with C{sub B}=1.2x10{sup 22} cm{sup -3}. High-resolution x-ray diffraction (HR-XRD) and reciprocal space mapping measurements show that all films, irrespective of C{sub B} and T{sub s}, are fully strained. No B precipitates or misfit dislocations were detected by HR-XRD or transmission electron microscopy. The lattice constant in the film growth direction a{sub (perpendicular} {sub sign)} decreases linearly with increasing C{sub B} up to the limit of full electrical activation and continues to decrease, but nonlinearly, with C{sub B}>C{sub B}{sup *}. Room-temperature resistivity and conductivity mobility values are in good agreement with theoretical values for B concentrations up to C{sub B}=2.5x10{sup 20} and 2x10{sup 21} cm{sup -3}, respectively. All results can be explained on the basis of a model which accounts for strong B surface segregation to the second-layer with a saturation coverage {theta}{sub B,sat} of 0.5 ML (corresponding to C{sub B}=C{sub B}{sup *}). At higher C{sub B} (i.e., {theta}{sub B}>{theta}{sub B,sat}), B accumulates in the upper layer as

  6. Molecular-Beam-Epitaxy Program

    NASA Technical Reports Server (NTRS)

    Sparks, Patricia D.

    1988-01-01

    Molecular Beam Epitaxy (MBE) computer program developed to aid in design of single- and double-junction cascade cells made of silicon. Cascade cell has efficiency 1 or 2 percent higher than single cell, with twice the open-circuit voltage. Input parameters include doping density, diffusion lengths, thicknesses of regions, solar spectrum, absorption coefficients of silicon (data included for 101 wavelengths), and surface recombination velocities. Results include maximum power, short-circuit current, and open-circuit voltage. Program written in FORTRAN IV.

  7. Silicon Holder For Molecular-Beam Epitaxy

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.

    1993-01-01

    Simple assembly of silicon wafers holds silicon-based charge-coupled device (CCD) during postprocessing in which silicon deposited by molecular-beam epitaxy. Attains temperatures similar to CCD, so hotspots suppressed. Coefficients of thermal expansion of holder and CCD equal, so thermal stresses caused by differential thermal expansion and contraction do not develop. Holder readily fabricated, by standard silicon processing techniques, to accommodate various CCD geometries. Silicon does not contaminate CCD or molecular-beam-epitaxy vacuum chamber.

  8. Si1-yCy/Si(001) gas-source molecular beam epitaxy from Si2H6 and CH3SiH3: Surface reaction paths and growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Desjardins, P.; Greene, J. E.

    2003-04-01

    In situ surface probes and postdeposition analyses were used to follow surface reaction paths and growth kinetics of Si1-yCy alloys grown on Si(001) by gas-source molecular-beam epitaxy from Si2H6/CH3SiH3 mixtures as a function of C concentration y (0-2.6 at %) and temperature Ts (500-600 °C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In situ isotopically tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregation during steady-state Si1-yCy(001) growth results in charge transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θSi*(y,Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. θSi* increases with increasing y and Ts in the kinetically limited segregation regime while Ed decreases from 2.52 eV for H2 desorption from Si surface sites with Si back bonds to 2.22 eV from Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts,JSi2H6,JCH3SiH3) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in excellent agreement with the experimental data.

  9. C incorporation and segregation during Si 1- yC y/Si( 0 0 1 ) gas-source molecular beam epitaxy from Si 2H 6 and CH 3SiH 3

    NASA Astrophysics Data System (ADS)

    Foo, Y. L.; Bratland, K. A.; Cho, B.; Soares, J. A. N. T.; Desjardins, P.; Greene, J. E.

    2002-08-01

    We have used in situ D 2 temperature-programmed desorption (TPD) to probe C incorporation and surface segregation kinetics, as well as hydrogen desorption pathways, during Si 1- yC y(0 0 1) gas-source molecular beam epitaxy from Si 2H 6/CH 3SiH 3 mixtures at temperatures Ts between 500 and 650 °C. Parallel D 2 TPD results from C-adsorbed Si(0 0 1) wafers exposed to varying CH 3SiH 3 doses serve as reference data. Si 1- yC y(0 0 1) layer spectra consist of three peaks: first-order β 1 at 515 °C and second-order β 2 at 405 °C, due to D 2 desorption from Si monodeuteride and dideuteride phases, as well as a new second-order C-induced γ 1 peak at 480 °C. C-adsorbed Si(0 0 1) samples with very high CH 3SiH 3 exposures yielded a higher-temperature TPD feature, corresponding to D 2 desorption from surface C atoms, which was never observed in Si 1- yC y(0 0 1) layer spectra. The Si 1- yC y(0 0 1) γ 1 peak arises due to desorption from Si monodeuteride species with C backbonds. γ 1 occurs at a lower temperature than β 1 reflecting the lower D-Si * bond strength, where Si * represents surface Si atoms bonded to second-layer C atoms, as a result of charge transfer from dangling bonds. The total integrated monohydride (β 1+γ 1) intensity, and hence the dangling bond density, remains constant with y indicating that C does not deactivate surface dangling bonds as it segregates to the second-layer during Si 1- yC y(0 0 1) growth. Si * coverages increase with y at constant Ts and with Ts at constant y. The positive Ts-dependence shows that C segregation is kinetically limited at Ts⩽650 °C. D 2 desorption activation energies from β 1, γ 1 and β 2 sites are 2.52, 2.22 and 1.88 eV.

  10. Perspective: Oxide molecular-beam epitaxy rocks!

    SciTech Connect

    Schlom, Darrell G.

    2015-06-01

    Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  11. InPBi single crystals grown by molecular beam epitaxy.

    PubMed

    Wang, K; Gu, Y; Zhou, H F; Zhang, L Y; Kang, C Z; Wu, M J; Pan, W W; Lu, P F; Gong, Q; Wang, S M

    2014-06-26

    InPBi was predicted to be the most robust infrared optoelectronic material but also the most difficult to synthesize within In-VBi (V = P, As and Sb) 25 years ago. We report the first successful growth of InPBi single crystals with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InPBi thin films reveal excellent surface, structural and optical qualities making it a promising new III-V compound family member for heterostructures. The Bi concentration is found to be 2.4 ± 0.4% with 94 ± 5% Bi atoms at substitutional sites. Optical absorption indicates a band gap of 1.23 eV at room temperature while photoluminescence shows unexpectedly strong and broad light emission at 1.4-2.7 μm which can't be explained by the existing theory.

  12. Infrared Rugates by Molecular Beam Epitaxy

    NASA Technical Reports Server (NTRS)

    Rona, M.

    1993-01-01

    Rugates are optical structures that have a sinusoidal index of refraction (harmonic gradient-index field). As their discrete high/ low index filter counterparts, they can be used as narrow rejection band filters. However, since rugates do not have abrupt interfaces, they tend to have a smaller absorption, hence deliver a higher in band reflectivity. The absence of sharp interfaces makes rugates even more desirable for high-energy narrow band reflectors. In this application, the lack of a sharp interface at the maximum internal standing wave electric field results in higher breakdown strengths. Our method involves fabricating rugates, with molecular beam epitaxy, on GaAs wafers as an Al(x)Ga(1-x)As single-crystal film.

  13. Growth and characterization of dilute nitride GaN{sub x}P{sub 1−x} nanowires and GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowires on Si (111) by gas source molecular beam epitaxy

    SciTech Connect

    Sukrittanon, S.; Kuang, Y. J.; Dobrovolsky, A.; Chen, W. M.; Buyanova, I. A.; Kang, Won-Mo; Kim, Bong-Joong; Jang, Ja-Soon; Tu, C. W.

    2014-08-18

    We have demonstrated self-catalyzed GaN{sub x}P{sub 1−x} and GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowire growth by gas-source molecular beam epitaxy. The growth window for GaN{sub x}P{sub 1−x} nanowires was observed to be comparable to that of GaP nanowires (∼585 °C to ∼615 °C). Transmission electron microscopy showed a mixture of cubic zincblende phase and hexagonal wurtzite phase along the [111] growth direction in GaN{sub x}P{sub 1−x} nanowires. A temperature-dependent photoluminescence (PL) study performed on GaN{sub x}P{sub 1−x}/GaN{sub y}P{sub 1−y} core/shell nanowires exhibited an S-shape dependence of the PL peaks. This suggests that at low temperature, the emission stems from N-related localized states below the conduction band edge in the shell, while at high temperature, the emission stems from band-to-band transition in the shell as well as recombination in the GaN{sub x}P{sub 1−x} core.

  14. InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy.

    PubMed

    Natrella, Michele; Rouvalis, Efthymios; Liu, Chin-Pang; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2012-08-13

    We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz -3 dB bandwidth and -5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.

  15. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  16. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-01-10

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.

  17. Fundamental Study of Antimonide Nanostructures by Molecular Beam Epitaxy

    DTIC Science & Technology

    2016-02-04

    to conduct experimental work in molecular beam epitaxial growth of GaSb/GaAs and InSb/GaAs quantum dots (QDs) are conducted and compared with...Nanoelectronics, Quantum Nanostructures 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 10 19a.  NAME OF...September 2014 to July 2015 being conducted at Chulalongkorn University in Thailand. Following the research work on InAs quantum dots (QDs) and quantum

  18. Applying CLIPS to control of molecular beam epitaxy processing

    NASA Technical Reports Server (NTRS)

    Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.

    1990-01-01

    A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.

  19. Molecular-Beam Epitaxy Of IrSi3

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1991-01-01

    Molecular-beam epitaxy grows layers of iridium silicide (IrSi3) on silicon at temperatures of 630 to 800 degrees C. Particularly useful as photodetector material because it forms Schottky diodes having potential barriers of only 0.12 to 0.15 eV - lowest of any metal on silicon. Photodiodes sensitive to infrared radiation at wavelengths as large as 8 to 10 micrometers. New, lower formation temperature expected to enable growth of arrays of IrSi3/Si infrared detectors on Si wafers without thermally damaging image-processing circuitry integrated on wafers.

  20. Silicon surface preparation for III-V molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Madiomanana, K.; Bahri, M.; Rodriguez, J. B.; Largeau, L.; Cerutti, L.; Mauguin, O.; Castellano, A.; Patriarche, G.; Tournié, E.

    2015-03-01

    We report on a silicon substrate preparation for III-V molecular-beam epitaxy (MBE). It combines sequences of ex situ and in situ treatments. The ex situ process is composed of cycles of HF dip and O2 plasma treatments. Ellipsometry and atomic force microscopy performed after each step during the substrate preparation reveal surface cleaning and de-oxidation. The in situ treatment consists in flash annealing the substrate in the MBE chamber prior to epitaxial growth. GaSb-based multiple quantum well heterostructures emitting at 1.55 μm were grown by MBE on Si substrates prepared by different methods. Structural characterizations using XRD and TEM coupled with photoluminescence spectroscopy demonstrates the efficiency of our preparation process. This study thus unravels a simple and reproducible protocol to prepare the Si surface prior to III-V MBE.

  1. Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy.

    PubMed

    Gu, Yi; Wang, Kai; Zhou, Haifei; Li, Yaoyao; Cao, Chunfang; Zhang, Liyao; Zhang, Yonggang; Gong, Qian; Wang, Shumin

    2014-01-13

    InPBi thin films have been grown on InP by gas source molecular beam epitaxy. A maximum Bi composition of 2.4% is determined by Rutherford backscattering spectrometry. X-ray diffraction measurements show good structural quality for Bi composition up to 1.4% and a partially relaxed structure for higher Bi contents. The bandgap was measured by optical absorption, and the bandgap reduction caused by the Bi incorporation was estimated to be about 56 meV/Bi%. Strong and broad photoluminescence signals were observed at room temperature for samples with xBi < 2.4%. The PL peak position varies from 1.4 to 1.9 μm, far below the measured InPBi bandgap.

  2. Graphitic carbon grown on fluorides by molecular beam epitaxy.

    PubMed

    Jerng, Sahng-Kyoon; Lee, Jae Hong; Kim, Yong Seung; Chun, Seung-Hyun

    2013-01-03

    We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further systematic studies with other series of substrates. At the same growth temperature, the NCG on MgF2 has larger clusters than those on oxides. This is contrary to the general expectation because the bond strength of the carbon-fluorine bond is larger than that of the carbon-oxygen bond. Our results show that the growth of graphitic carbon does not simply depend on the chemical bonding between the carbon and the anion in the substrate.

  3. Effects of shutter transients in molecular beam epitaxy.

    PubMed

    Gozu, Shin-Ichiro; Mozume, Teruo; Kuwatsuka, Haruhiko; Ishikawa, Hiroshi

    2012-11-12

    : We have studied the effects of shutter transients (STs) in molecular beam epitaxy (MBE). Two series of samples were grown by MBE and evaluated by X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements. The effects of STs were evaluated by growth rate (GR) analysis using a combination of growth time (GT) and thickness evaluated by XRD and XRR measurements. We revealed two opposite effects of STs: (1) overshoot of GR and (2) increase in GR with GT and subsequent saturation. Each effect was consistent with the previous studies; however, the previous studies showed no relationships between these two effects. By considering closing time of the shutter, the two opposite effects were well understood.

  4. Indium antimonide doped with manganese grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Heremans, J.; Thrush, C. M.

    1997-05-01

    Indium antimonide is of interest for infrared detecting and emitting devices and for magnetic field sensors. In this study, indium antimonide doped with manganese and grown by molecular beam epitaxy was investigated. Secondary ion mass spectroscopy (SIMS) was used to show that the incorporation of managenese is near unity over a wide range of manganese concentrations. Manganese is observed to be an acceptor with a dopant efficiency which follows a power law in which the hole density is proportional to the manganese concentration raised to the power α. The power α depends on the growth temperature; at 300°C, α = 0.86 and at 360°C, α = 0.78. Lightly manganese doped samples have transport dominated by electrons at low temperatures due to hole freeze out, followed by holes at intermediate temperatures and finally by intrinsic electrons at high temperatures. Additional SIMS studies showed that manganese diffuses relatively slowly in indium antimonide.

  5. Porous ZnO nanonetworks grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, W. C. T.; Kendrick, C. E.; Millane, R. P.; Liu, Z.; Ringer, S. P.; Washburn, K.; Callaghan, P. T.; Durbin, S. M.

    2012-04-01

    Plasma-assisted molecular beam epitaxy was employed to create porous nanonetworks of ZnO directly on GaN epilayers without the use of catalysts or templates. Detailed analysis of scanning electron microscopy (SEM) images of both as-grown and etched samples reveals that the typical porous nanonetwork structure is multilayered, and suggests that dislocations originating at the GaN/sapphire heterointerface and/or defects characterizing an unusually rough GaN surface are responsible. The pore size distribution of the nanonetwork was measured using nuclear magnetic resonance (NMR) cryoporometry. A bimodal pore size distribution centred at 4 nm and 70 nm, respectively, was observed, consistent with the existence of small nanoscale pores in the bulk of the sample, and large open pores on the surface of the porous nanonetwork as observed by SEM.

  6. Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy

    SciTech Connect

    A. T. Bollinger; Wu, J.; Bozovic, I.

    2016-03-15

    In this study, the molecular beam epitaxy(MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.

  7. Metallic impurities in gallium nitride grown by molecular beam epitaxy

    SciTech Connect

    McHugo, S.A.; Krueger, J.; Kisielowski, C.

    1997-04-01

    Transition metals are often encountered in trace amounts in semiconductors. They have been extensively studied in most elemental and compound systems, since they form deep donor and/or acceptor levels which usually degrade the electronic and optical material properties. Only very little is known about transition metals in recent III-V semiconducting materials, such as GaN, AlN and InN. These few studies have been done exclusively on Metal-Organic Chemical Vapor Deposition (MOCVD) or Hybrid Vapor Phase Epitaxy HVPE-grown GaN. Preliminary x-ray fluorescence studies at the Advanced Light Source, beamline 10.3.1, Lawrence Berkeley National Laboratory have revealed that GaN materials grown by Molecular Beam Epitaxy (MBE) have Fe, Ni and Cr as the dominant transition metal contaminants. This finding is commensurate with the extremely high concentrations of hydrogen, carbon and oxygen (up to 10{sup 20} cm{sup {minus}3}) measured by Secondary Ion Mass Spectroscopy (SIMS). Preliminary work using the mapping capabilities of the x-ray fluorescence microprobe revealed the metal impurities were inhomogeneously distributed over the film. Future work of this collaboration will be to find a correlation between the existence of transition metals in MBE films, as revealed by x-ray fluorescence, and Photoluminescence (PL) spectra taken in the infrared region. Also, the authors will make use of the 1 {mu}m spatial resolution of x-ray microprobe to locate the contaminants in relation to structural defects in the GaN films. Because of the large strain caused by the lattice mismatch between the GaN films and the substrates, the films grow in a columnar order with high densities of grain boundaries and dislocations. These structural defects offer preferential sites for metal precipitation or agglomeration which could degrade the optical properties of this material more so than if the impurities were left dissolved in the GaN.

  8. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim; Engel-Herbert, Roman

    2016-07-01

    The synthesis of a 50 unit cell thick n = 4 Srn+1TinO3n+1 (Sr5Ti4O13) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO2 layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO2 layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried out over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO3 perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.

  9. On the Growth of Complex Oxides by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Fong, Dillon

    Functional materials based on complex oxides in thin film form offer new and exciting strategies for meeting many of our outstanding energy challenges through systematic control of layer sequencing, strain, etc. However, the synthesis of such oxide films can be a major challenge even when utilizing reactive molecular-beam epitaxy (MBE), a powerful deposition technique that allows the construction of materials atomic plane by atomic plane. To understand the fundamental physics of oxide growth by reactive MBE, we present in situ surface x-ray diffraction results on the growth of SrTiO3 and SrO-SrTiO3 thin films on (001)-oriented SrTiO3 substrates. For homoepitaxy, we compare sequential deposition (alternating Sr and Ti monolayer doses) with that of co-deposition of Sr and Ti, both in a background of oxygen pressure, and observe drastically different growth pathways due to the presence of a TiO2 double layer. For heteroepitaxial growth of Ruddlesden-Popper SrO-SrTiO3 films, we find that layers rearrange dynamically, resulting in layer sequences distinct from the shutter sequence. In general, the starting surface structure and composition, in combination with local thermodynamic considerations, strongly influence our ability to atomically construct new complex oxides.

  10. Growth of Atomically Flat DBCO Films Using Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Andrus, Aaron E.; Oh, Seongshik; Davidson, Bruce A.; O'Donnell, Jim; Eckstein, James N.

    2000-03-01

    We have grown atomically flat a-axis dysprosium barium copper oxide (DBCO) films by molecular beam epitaxy (MBE) using a pure ozone source. Such films can be used, for example, to exploit the inherent anisotropy of DBCO in spin injection devices using ferromagnetic polarized electron sources or all-superconducting Josephson junctions. The a-axis films are grown on a strontium titanate (STO) substrate using a low temperature DBCO template to achieve a-axis orientation. During growth, we use reflection high energy electron diffraction (RHEED) to observe the emergence of one-third order streaks in the diffraction pattern and a reduction in the surface roughness as we increase the growth temperature. Subsequent x-ray diffraction shows complete a-axis normal orientation with pseudomorphic growth (in-plane lattice constants identical to the substrate) and a slightly larger out of plane lattice constant than bulk crystals. Atomic force microscopy (AFM) shows an RMS roughness of 4 Å over several millimeters of the film surface, sufficient to construct tunnel junction devices.

  11. Molecular beam epitaxial growth of tin oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Medina, Gabriel A.

    In an effort to develop a method to utilize SnO in transparent electronic and optoelectronic applications, the molecular beam epitaxy method was used to grow a thin film SnO sample. Five samples were grown and studied using various conventional techniques. X-ray diffraction and Raman spectroscopy was used to identify the composition of the samples. The quality and thickness of the samples was studied using Scanning Electron Microscopy. This data was used to determine which samples were successful growths of SnO and how the growth conditions of each may have affected the outcomes. From the compiled data, single phase SnO was identified and selected for further study of it electrical properties. Previous studies have not been able to accurately identify the band gap energy of SnO due to its instability as an oxide. A bandgap energy of 2.56 eV was determined by photoluminescence analysis. This is consistent with reported estimates of between 2.5 to 3 eV for SnO.

  12. Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin

    DTIC Science & Technology

    2016-09-01

    heating. The α-Sn layers were also characterized with high-resolution X-ray diffraction, Hall, and atomic force microscopy (AFM) measurements...ARL-TR-7838 ● SEP 2016 US Army Research Laboratory Molecular Beam Epitaxy Growth and Characterization of Thin Layers of...Laboratory Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin by P Folkes, P Taylor, C Rong, B Nichols

  13. Growth of (111) GaAs on (111) Si using molecular-beam epitaxy

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, G.; Liu, J.; Grunthaner, F.; Katz, J.; Morkoc, H.

    1988-01-01

    (111) GaAs layers have been grown epitaxially on (111) Si wafers, both on-axis as well as 3-deg off-axis towards the 1 -1 0 direction, using molecular-beam epitaxy. The grown layers have been characterized by scanning electron microscopy, X-ray diffraction, and transmission electron microscopy.

  14. Growth and optical properties of AlN homoepitaxial layers grown by ammonia-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Iwata, Shiro; Nanjo, Yoshiyuki; Okuno, Toshihiro; Kurai, Satoshi; Taguchi, Tsunemasa

    2007-04-01

    We have performed the homoepitaxial growth of high-crystalline quality Aluminium nitride (AlN) epilayers by the ammonia-gas source (GS) molecular-beam epitaxy method using the hydride vapor-phase epitaxy (HVPE) grown AlN thin layers as substrates. Surface morphologies and step-bunching structures of the homoepitaxially grown AlN epilayers were evaluated using in situ reflection high-energy electron diffraction (RHEED) patterns and scanning probe microscopy. It is noted that the step height of several monolayers was achieved on the surface of homoepitaxial layers. The homoepitaxial AlN thin films had the same or improved crystalline quality compared with the HVPE-grown AlN layers from X-ray rocking curve measurements, and its optical properties were investigated using cathodoluminescence measurements. Excitonic emission, which originates from the A free-exciton transition, was clearly observed in the present high-quality homoepitaxial AlN epilayers.

  15. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Lu, Zhen-Yu; Chen, Ping-Ping; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-01

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  16. Molecular beam epitaxy for advanced gate stack materials and processes

    NASA Astrophysics Data System (ADS)

    Locquet, Jean-Pierre

    2005-03-01

    The material requirements for future CMOS generations - as given by the ITRS roadmap - are very challenging. This includes a high K dielectric without a low K interfacial layer, a high mobility channel and the appropriate metal gate. With the help of two projects INVEST and ET4US, we are building up a molecular beam epitaxy (MBE) infrastructure to grow this material set on large area wafers that can be further processed into small scale devices. In the INVEST project, we have developed an MBE system for the growth of complex oxides on semiconductors. The system follows the overall design of a production tool and is equipped with an RF atomic oxygen source, effusion cells, e-beam evaporators and a differential pumping stage. The oxide growth process starts with desorbing the initial surface oxide on the Si wafers in ultra-high vacuum and high temperature to create a clean reconstructed 2x1 surface. Using the atomic oxygen it is possible to oxidize the surface in a well controlled manner at low temperature and to grow very thin and dense SiOx layers, followed by the growth of 2-6 nm amorphous high K dielectrics. The process parameters permit to tune the interface layer from a SiOx rich to a silicide rich interface with a significant impact on the capacitance and the leakage. Initial focus is on developing an optimized growth recipe for high quality amorphous HfO2 and LaHfO3.5 films. This recipe was subsequently used to make wafers for a transistor batch that gave us the first N short channel MBE MOSFET's (100 nm) using an etched gate process flow. Some highlights of the first batch for 3nm HfO2 MOSFET are a high mobility (> 270 cm^2/Vs) with a corresponding low leakage current of 2 mA/cm^2). While there were some process issues for LaHfO3.5, the 3 nm MOSFET showed very low leakage currents below 10-6 A/cm^2. Interestingly all the LaHFO3.5 MOSFETs showed very low threshold voltage instabilities. In collaboration with C. Marchiori, M. Sousa, A.Guiller, H. Siegwart, D

  17. III-nitride ultraviolet emitters produced by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Anirban

    In this dissertation, the growth of III-Nitride based ultraviolet (UV) emitters by molecular beam epitaxy has been addressed. These devices can find applications in optical data storage, solid-state lighting, and in biological detection. A significant part of the research involved materials development, as there are several major scientific and technological hurdles that must be overcome in order to produce commercially viable devices. For emission in the wavelength region 330 nm to 350 nm, the devices were designed as electrically-injected light emitting diodes (LEDs). Each layer of this structure was individually optimized to improve the materials properties. To overcome the difficulties in p-type doping, a new growth regime has been explored which led to films with hole concentrations of up to 2 x 10 18/cm3. Multiple quantum wells (MQWs) were grown along polar and non-polar directions to understand the effects of the presence of built-in polarization fields. It was found that these detrimental effects are minimized for ultra thin wells. Use of an Indium flux as a surfactant was found to substantially improve the luminescence properties of bulk Aluminum Gallium Nitride (AlGaN) alloys and MQWs. UV-LEDs grown under these optimized conditions show an optical power output of 0.75 mW at 340 nm and 4.5 mW at 350nm. For emission in the wavelength region below 270 nm, due to the difficulty of doping AlGaN alloys with high Aluminum Nitride (AlN) mole fraction, edge or vertical emitting electron beam-pumped laser structures have been developed. Since it is difficult to cleave III-Nitrides deposited onto C-plane sapphire, edge emitting laser structures using a Graded-Index Separate Confinement Heterostructure (GRINSCH) based geometry have been deposited onto A-plane sapphire using a novel AlN buffer layer. An AlGaN bulk film or a set of AlN/AlGaN MQWs is used as the active region. For use in these devices, the growth of high Al content AlGaN was optimized to reduce the deep

  18. Molecular beam epitaxial growth of graphene and ridge-structure networks of graphene

    NASA Astrophysics Data System (ADS)

    Maeda, Fumihiko; Hibino, Hiroki

    2011-11-01

    By gas-source molecular beam epitaxy (MBE) using cracked ethanol, we grew graphene at substrate temperatures between 600 and 915 °C on graphene formed on SiC(0 0 0 1) by thermal decomposition. To investigate the substrate temperature dependence of graphene growth we analysed the MBE-grown graphene by Raman spectroscopy and in situ x-ray photoelectron spectroscopy (XPS) and observed it by atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (TEM). Analyses using the G-band peak and the peak intensity ratio between D- and G-band peaks in the Raman spectra revealed that growth at higher temperatures improved the crystallinity and increased the domain size. Although the growth rate decreased at higher temperatures, as revealed by XPS, these results indicated that growth at a higher temperature is effective in obtaining graphene of higher quality. Furthermore, the AFM and TEM observations revealed a network of fin-like ridge structures of graphene sticking out from the surface. The presence of these 'graphene nanofins' indicated that two-dimensional islands of graphene are surrounded by the nanofins, and the island size was estimated to be 67 nm using the average distance between the nanofins.

  19. Ex Situ Thermal Cycle Annealing of Molecular Beam Epitaxy Grown HgCdTe/Si Layers

    DTIC Science & Technology

    2010-01-01

    during the growth process itself, is an effective means to reduce etch pit den- sity (EPD) and improve overall crystal quality. Subjecting CdTe /Si...results of ex situ thermal cycle annealing (TCA) of molecular beam epitaxy grown mercury cadmium telluride (HgCdTe) on Cd (Se)Te/ Si(211) composite...present the results of ex situ thermal cycle annealing (TCA) of molecular beam epitaxy grown mercury cadmium telluride (HgCdTe) on Cd (Se)Te/ Si(211

  20. Mn-assisted molecular-beam epitaxy growth (Ga,Mn)As nanowires

    NASA Astrophysics Data System (ADS)

    Reznik, R. R.; Samsonenko, Yu B.; Khrebtov, A. I.; Bouravleuv, A. D.; Werner, P.; Cirlin, G. E.

    2016-11-01

    Arrays of (Ga,Mn)As crystal nanowires on a GaAs (100) substrate were obtained using molecular-beam epitaxy at the substrate temperature 485°C. From the high energy electron diffraction patterns, the crystallographic phase of the nanowires is detected to be cubic which is supporting by ex situ microscopy study.

  1. Large Area Synthesis of 1D-MoSe2 Using Molecular Beam Epitaxy.

    PubMed

    Poh, Sock Mui; Tan, Sherman J R; Zhao, Xiaoxu; Chen, Zhongxin; Abdelwahab, Ibrahim; Fu, Deyi; Xu, Hai; Bao, Yang; Zhou, Wu; Loh, Kian Ping

    2017-01-23

    Large area synthesis of 1D-MoSe2 nanoribbons on both insulating and conducting substrates via molecular beam epitaxy is presented. Dimensional controlled growth of 2D, 1D-MoSe2 , and 1D-2D-MoSe2 hybrid heterostructure is achieved by tuning the growth temperature or Mo:Se precursor ratio.

  2. Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth

    SciTech Connect

    Kamimura, J.; Kishino, K.; Kikuchi, A.

    2015-02-28

    Very thick InN (∼40 μm) was grown by molecular beam epitaxy using the epitaxial lateral overgrowth (ELO) technique. In some regions, the ELO of InN was observed as expected, indicating an important step toward fabricating quasi-bulk InN substrates. Interestingly, most parts of the sample consist of large flat-topped microcrystals and well-faceted microstructures. This is likely due to local growth condition variations during ELO, which is supported by an experiment where ELO of InN was performed on a substrate with various stripe mask patterns. TEM characterization of a flat top InN microcrystal revealed few stacking faults and only related threading dislocations. Defect-free small faceted microcrystals were also observed. The thick InN crystals show a narrow photoluminescence spectrum with a peak at 0.679 eV and linewidth of 16.8 meV at 4 K.

  3. Cyclotron resonance in epitaxial Bi1-xSbx films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Heremans, J.; Partin, D. L.; Thrush, C. M.; Karczewski, G.; Richardson, M. S.; Furdyna, J. K.

    1993-10-01

    The far-infrared magnetotransmission of thin films of semiconducting and semimetallic Bi1-xSbx alloys grown by molecular-beam epitaxy has been measured at fixed photon energies between 2.5 and 21.4 meV in magnetic fields up to 6 T, at T=1.8 K. The samples, grown on BaF2 substrates with composition 0<=x<=22.5%, were monocrystalline, with the trigonal axis perpendicular to the surface plane. The measurements were carried out in Faraday and Voigt geometries, with the magnetic field oriented parallel to binary, bisectrix, and trigonal axes of the films. Cyclotron-resonance lines of both electrons and holes were observed. From them, we establish the composition dependence of the effective-mass tensor, of the direct L-point band gap, and of the energy overlap in the semimetallic samples. We conclude that all band-structure parameters are the same in the films as in bulk Bi1-xSbx alloys, except for the energy overlap, which is increased by 16 meV independently of composition, possibly because of the strain induced by the substrate.

  4. ZnTe nanowires grown catalytically on GaAs (001) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Janik, E.; Sadowski, J.; DłuŻewski, P.; Kret, S.; Presz, A.; Baczewski, L. T.; Łusakowska, E.; Wróbel, J.; Karczewski, G.; Wojtowicz, T.

    2007-04-01

    We report on the first successful growth of ZnTe nanowires and on their basic structural properties. The nanowires were produced by molecular beam epitaxy (MBE) with the use of mechanism of catalytically enhanced growth. A thin layer of gold layer (3 to 20 Å thick) annealed in high vacuum prior to the nanowires growth was used as a source of catalytic nanoparticles. Annealing of GaAs substrate with gold layer, performed prior to the MBE growth, leads to formation of Au-Ga eutectic droplets. The presence of Au-Ga droplets on GaAs substrate surface induce the ZnTe nanowire growth via vapor-liquid-solid mechanism, in growth conditions differing form those used in the molecular beam epitaxial growth of ZnTe layers only in the substrate temperature.

  5. Antimony-assisted carbonization of Si(111) with solid source molecular beam epitaxy

    SciTech Connect

    Hackley, Justin; Richardson, Christopher J. K.; Sarney, Wendy L.

    2013-11-15

    The carbonization of an antimony-terminated Si (111) surface in a solid source molecular beam epitaxy system is presented. Reflection high-energy electron diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy are used to characterize samples grown with and without antimony termination. It is shown that the antimony-terminated surface promotes the formation of thin, smooth and continuous SiC films at a relatively low temperature of 800 °C.

  6. Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Liao, Zhi-Min; Sofin, R G Sumesh; Feng, Gen; Ma, Xiu-Mei; Shick, Alexander B; Mryasov, Oleg N; Shvets, Igor V

    2012-12-11

    Mn(2)Au, a layered bimetal, is successfully grown using molecular beam epitaxy (MBE). The experiments and theoretical calculations presented suggest that Mn(2)Au film is antiferromagnetic with a very low critical temperature. The antiferromagnetic nature is demonstrated by measuring the exchange-bias effect of Mn(2)Au/Fe bilayers. This study establishes a primary basis for further research of this new antiferromagnet in spin-electronic device applications.

  7. Pure electron-electron dephasing in percolative aluminum ultrathin film grown by molecular beam epitaxy.

    PubMed

    Lin, Shih-Wei; Wu, Yue-Han; Chang, Li; Liang, Chi-Te; Lin, Sheng-Di

    2015-01-01

    We have successfully grown ultrathin continuous aluminum film by molecular beam epitaxy. This percolative aluminum film is single crystalline and strain free as characterized by transmission electron microscopy and atomic force microscopy. The weak anti-localization effect is observed in the temperature range of 1.4 to 10 K with this sample, and it reveals that, for the first time, the dephasing is purely caused by electron-electron inelastic scattering in aluminum.

  8. Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs

    NASA Technical Reports Server (NTRS)

    Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.

    1988-01-01

    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.

  9. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOEpatents

    Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  10. UV ozone cleaning of silicon substrates in silicon molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tabe, Michiharu

    1984-11-01

    This letter reports UV ozone cleaning of Si substrates for obtaining defect-free molecular beam epitaxial films by low-temperature in vacuum preheating. By using UV ozone cleaning, the high temperatures above 1200 °C required for removing surface carbon in the conventional method can be significantly lowered to below 1000 °C, since the UV ozone cleaning functions to remove carbon.

  11. Lutetium-doped EuO films grown by molecular-beam epitaxy

    SciTech Connect

    Melville, A.; Heeg, T.; Mairoser, T.; Schmehl, A.; Shai, D. E.; Monkman, E. J.; Harter, J. W.; Hollaender, B.; Schubert, J.; Shen, K. M.; Mannhart, J.; Schlom, D. G.

    2012-05-28

    The effect of lutetium doping on the structural, electronic, and magnetic properties of epitaxial EuO thin films grown by reactive molecular-beam epitaxy is experimentally investigated. The behavior of Lu-doped EuO is contrasted with doping by lanthanum and gadolinium. All three dopants are found to behave similarly despite differences in electronic configuration and ionic size. Andreev reflection measurements on Lu-doped EuO reveal a spin-polarization of 96% in the conduction band, despite non-magnetic carriers introduced by 5% lutetium doping.

  12. Molecular-Beam Epitaxy Of CrSi2 on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; Grunthaner, Paula J.; Lin, True-Lon; Jamieson, David N.; Mazur, Jurek H.

    1989-01-01

    Crystalline layers grown in commercial apparatus. Experiments show CrSi2 grown on (111) face of single-crystal Si substrate by molecular-beam epitaxy. Epitaxial CrSi2 produced thus far not in desired single-crystal form. Because CrSi2 semiconductor with band gap of 0.3 eV, experimental process potential for monolitic integration of microelectronic devices based on CrSi2 (e.g., infrared detectors) with signal-processing circuitry based on Si.

  13. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-01

    Epitaxial silicon nanowires (NWs) of short heights (˜280nm) on Si ⟨111⟩ substrate were grown and doped in situ with boron on a concentration range of 1015-1019cm-3 by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (1015cm-3) and medium doped (3×1016 and 1×1017cm-3) NWs were heavily depleted by the surface states while the high doped (1018 and 1019cm-3) ones showed volume conductivities expected for the corresponding intended doping levels.

  14. Site-controlled Ag nanocrystals grown by molecular beam epitaxy-Towards plasmonic integration technology

    SciTech Connect

    Urbanczyk, Adam; Noetzel, Richard

    2012-12-15

    We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.

  15. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy.

    PubMed

    Zuo, Zheng; Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zheng, Jian-Guo; Liu, Jianlin

    2015-10-07

    Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitride (h-BN) heterostructures were synthesized on cobalt substrates by using molecular beam epitaxy. Various characterizations were carried out to evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°.

  16. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy

    PubMed Central

    Zuo, Zheng; Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zheng, Jian-Guo; Liu, Jianlin

    2015-01-01

    Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitride (h-BN) heterostructures were synthesized on cobalt substrates by using molecular beam epitaxy. Various characterizations were carried out to evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°. PMID:26442629

  17. Molecular beam epitaxy and properties of GaAsBi/GaAs quantum wells grown by molecular beam epitaxy: effect of thermal annealing.

    PubMed

    Makhloufi, Hajer; Boonpeng, Poonyasiri; Mazzucato, Simone; Nicolai, Julien; Arnoult, Alexandre; Hungria, Teresa; Lacoste, Guy; Gatel, Christophe; Ponchet, Anne; Carrère, Hélène; Marie, Xavier; Fontaine, Chantal

    2014-03-17

    We have grown GaAsBi quantum wells by molecular beam epitaxy. We have studied the properties of a 7% Bi GaAsBi quantum well and their variation with thermal annealing. High-resolution X-ray diffraction, secondary ion mass spectrometry, and transmission electron microscopy have been employed to get some insight into its structural properties. Stationary and time-resolved photoluminescence shows that the quantum well emission, peaking at 1.23 μm at room temperature, can be improved by a rapid annealing at 650°C, while the use of a higher annealing temperature leads to emission degradation and blue-shifting due to the activation of non-radiative centers and bismuth diffusion from the quantum well.

  18. High-mobility BaSnO{sub 3} grown by oxide molecular beam epitaxy

    SciTech Connect

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; Zhang, Jack Y.; Cain, Tyler A.; Stemmer, Susanne

    2016-01-01

    High-mobility perovskite BaSnO{sub 3} films are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO{sub 3} films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO{sub x}. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO{sub 3}. We demonstrate room temperature electron mobilities of 150 cm{sup 2} V{sup −1} s{sup −1} in films grown on PrScO{sub 3}. The results open up a wide range of opportunities for future electronic devices.

  19. The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schumann, T.; Lopes, J. M. J.; Wofford, J. M.; Oliveira, M. H.; Dubslaff, M.; Hanke, M.; Jahn, U.; Geelhaar, L.; Riechert, H.

    2015-09-01

    We examine how substrate selection impacts the resulting film properties in graphene growth by molecular beam epitaxy (MBE). Graphene growth on metallic as well as dielectric templates was investigated. We find that MBE offers control over the number of atomic graphene layers regardless of the substrate used. High structural quality could be achieved for graphene prepared on Ni (111) films which were epitaxially grown on MgO (111). For growth either on Al2O3 (0001) or on (6√3×6√3)R30°-reconstructed SiC (0001) surfaces, graphene with a higher density of defects is obtained. Interestingly, despite their defective nature, the layers possess a well defined epitaxial relation to the underlying substrate. These results demonstrate the feasibility of MBE as a technique for realizing the scalable synthesis of this two-dimensional crystal on a variety of substrates.

  20. Development of molecular beam epitaxy technology for III–V compound semiconductor heterostructure devices

    SciTech Connect

    Cheng, K. Y.

    2013-09-15

    Molecular beam epitaxy (MBE) is a versatile ultrahigh vacuum technique for growing multiple epitaxial layers of semiconductor crystals with high precision. The extreme control of the MBE technique over composition variation, interface sharpness, impurity doping profiles, and epitaxial layer thickness to the atomic level makes it possible to demonstrate a wide variety of novel semiconductor structures. Since its invention nearly 40 years ago, the MBE technique has evolved from a laboratory apparatus for exploring new materials and novel devices to a favored tool for the mass production of III–V high-speed devices. This paper will review some of the past developments in this technology and propose an outlook of future developments.

  1. Low temperature growth of crystalline magnesium oxide on hexagonal silicon carbide (0001) by molecular beam epitaxy

    SciTech Connect

    Goodrich, T. L.; Parisi, J.; Cai, Z.; Ziemer, K. S.

    2007-01-22

    Magnesium oxide (111) was grown epitaxially on hexagonal silicon carbide (6H-SiC) (0001) substrates at low temperatures by molecular beam epitaxy and a remote oxygen plasma source. The films were characterized by reflection high-energy electron diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. Crystal structure, morphology, and growth rate of the magnesium oxide (MgO) films were found to be dependent on the magnesium flux, indicating a magnesium adsorption controlled growth mechanism. The single crystalline MgO thin films had an epitaxial relationship where MgO (111) parallel 6H-SiC (0001) and were stable in both air and 10{sup -9} Torr up to 1023 K.

  2. Growth of EuO/Si and EuO/SrO/Si heteroepitaxial structures by molecular-beam epitaxy

    SciTech Connect

    Teterin, P. E. Averyanov, D. V.; Sadofyev, Yu. G. Parfenov, O. E.; Likhachev, I. A.; Storchak, V. G.

    2015-01-15

    Epitaxial EuO thin films with thickness up to 60 nm have been grown by molecular beam epitaxy both on SrO sublayers and directly on Si (001) substrates. Crystal structure has been controlled in situ by reflection high energy electron diffraction. Ex situ studies by X-ray diffraction and Rutherford backscattering have confirmed high crystalline quality of the films.

  3. Wurtzite Al xGa 1- xN bulk crystals grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Powell, R. E. L.; Akimov, A. V.; Luckert, F.; Edwards, P. R.; Martin, R. W.; Kent, A. J.; Foxon, C. T.

    2011-05-01

    We have studied the growth of wurtzite GaN and Al xGa 1- xN layers and bulk crystals by molecular beam epitaxy (MBE). MBE is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. However, we have used the MBE technique for bulk crystal growth and have produced 2 in diameter wurtzite Al xGa 1- xN layers up to 10 μm in thickness. Undoped wurtzite Al xGa 1- xN films were grown on GaAs (1 1 1)B substrates by a plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The fact that free-standing ternary Al xGa 1- xN wafers can be grown is very significant for the potential future production of wurtzite Al xGa 1- xN substrates optimized for AlGaN-based device structures.

  4. Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination

    NASA Astrophysics Data System (ADS)

    Debiossac, M.; Atkinson, P.; Zugarramurdi, A.; Eddrief, M.; Finocchi, F.; Etgens, V. H.; Momeni, A.; Khemliche, H.; Borisov, A. G.; Roncin, P.

    2017-01-01

    Two aspects of the contribution of grazing incidence fast atom diffraction (GIFAD) to molecular beam epitaxy (MBE) are reviewed here: the ability of GIFAD to provide in-situ a precise description of the atomic-scale surface topology, and its ability to follow larger-scale changes in surface roughness during layer-by-layer growth. Recent experimental and theoretical results obtained for the He atom beam incident along the highly corrugated [ 1 1 bar 0 ] direction of the β2(2 × 4) reconstructed GaAs(001) surface are summarized. We also discuss the measurements and calculations for the beam incidence along the weakly corrugated [010] direction where a periodicity twice smaller than expected is observed. The combination of the experiment, quantum scattering matrix calculations, and semiclassical analysis allows structural characteristics of the surface to be revealed. For the in situ measurements of GIFAD during molecular beam epitaxy of GaAs on GaAs surface we analyze the change in elastic and inelastic contributions in the scattered beam, and the variation of the diffraction pattern in polar angle scattering. This analysis outlines the robustness, the simplicity and the richness of the GIFAD as a technique to monitor the layer-by-layer epitaxial growth.

  5. Growth of layered superconductor β-PdBi2 films using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Denisov, N. V.; Matetskiy, A. V.; Tupkalo, A. V.; Zotov, A. V.; Saranin, A. A.

    2017-04-01

    Bulk β-PdBi2 layered material exhibits advanced properties and is supposed to be probable topological superconductor. We present a method based on molecular beam epitaxy that allows us to grow β-PdBi2 films from a single β-PdBi2 triple layer up to the dozens of triple layers, using Bi(111) film on Si(111) as a template. The grown films demonstrate structural, electronic and superconducting properties similar to those of bulk β-PdBi2 crystals. Ability to grow the β-PdBi2 films of desired thickness opens the promising possibilities to explore fascinating properties of this advanced material.

  6. Characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Lo, Ikai; Pang, Wen-Yuan; Hsu, Yu-Chi; Hsieh, Chia-Ho; Shih, Cheng-Hung; Chou, Mitch M. C.; Chen, Wen-Yen; Hsu, Tzu-Min; Hsu, Gary Z. L.

    2013-06-15

    The characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy on LiAlO{sub 2} substrate was studied by cathodoluminescence and photoluminescence measurements. We demonstrated that the cathodoluminescence from oblique semi-polar surfaces of mushroom-shaped GaN was much brighter than that from top polar surface due to the reduction of polarization field on the oblique semi-polar surfaces. It implies that the oblique semi-polar surface is superior for the light-emitting surface of wurtzite nano-devices.

  7. Molecular-Beam Epitaxial Growth and Device Potential of Polar/Nonpolar Semiconductor Heterostructures.

    DTIC Science & Technology

    2014-09-26

    SECURITY CLASSIFICATION OF THIS PAGE(Wlam Doa ntered) ?0. ABSTRACT "echniques for the molecular beam epitaxial growth of GaP and GaAs substrates were...of both GaAs and GaP was found to be the problem of avoiding antiphase domains (APDs) in the growing film, that is, of random domains containing...even better properties. Lattice-mismatched (4%) growth of GaAs on Si was achieved, using the clean Si surface technology and the (211) orientation

  8. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines

    SciTech Connect

    Slobodskyy, T.; Schroth, P.; Grigoriev, D.; Minkevich, A. A.; Baumbach, T.; Hu, D. Z.; Schaadt, D. M.

    2012-10-15

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  9. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines.

    PubMed

    Slobodskyy, T; Schroth, P; Grigoriev, D; Minkevich, A A; Hu, D Z; Schaadt, D M; Baumbach, T

    2012-10-01

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  10. Crystallographic dependence of photocatalytic activity of WO3 thin films prepared by molecular beam epitaxy.

    PubMed

    Li, Guoqiang; Varga, Tamas; Yan, Pengfei; Wang, Zhiguo; Wang, Chongmin; Chambers, Scott A; Du, Yingge

    2015-06-21

    We investigated the impact of crystallographic orientation on the photocatalytic activity of single crystalline WO3 thin films prepared by molecular beam epitaxy on the photodegradation of rhodamine B (RhB). A clear effect is observed, with (111) being the most reactive surface, followed by (110) and (001). Photoreactivity is directly correlated with the surface free energy determined by density functional theory calculations. The RhB photodegradation mechanism is found to involve hydroxyl radicals in solution formed from photo-generated holes and differs from previous studies performed on nanoparticles and composites.

  11. Growth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy

    SciTech Connect

    Cai, Y.; Wong, T. L.; Chan, S. K.; Sou, I. K.; Wang, N.; Su, D. S.

    2008-12-08

    Ultrathin ZnSe nanowires grown by Au-catalyzed molecular-beam epitaxy show an interesting growth behavior of diameter dependence of growth rates. The smaller the nanowire diameter, the faster is its growth rate. This growth behavior is totally different from that of the nanowires with diameters greater than 60 nm and cannot be interpreted by the classical theories of the vapor-liquid-solid mechanism. For the Au-catalyzed nanowire growth at low temperatures, we found that the surface and interface incorporation and diffusion of the source atoms at the nanowire tips controlled the growth of ultrathin ZnSe nanowires.

  12. Silicon dioxide embedded germanium nanocrystals grown using molecular beam epitaxy for floating gate memory devices.

    PubMed

    Das, S; Singha, R K; Das, K; Dhar, A; Ray, S K

    2009-09-01

    SiO2/Ge nanocrystals/SiO2 trilayer memory structure has been fabricated by oxidizing and subsequent annealing of self assembled SiGe nanoislands grown by molecular beam epitaxy. The optical and charge storage characteristics of trilayer structures have been studied through Raman spectroscopy and capacitance-voltage measurements, respectively. An anti-clockwise hysteresis in the C-V characteristics indicated the net electron trapping in the floating gate containing Ge nanocrystals. Frequency dependent measurements of device characteristics indicate that neither interface defects nor deep traps are dominant for the charging or discharging processes of nanocrystal floating gates.

  13. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    SciTech Connect

    Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.

    2011-01-15

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  14. Advanced Techniques to Decrease Defect Density in Molecular Beam Epitaxial Silicon Films

    NASA Astrophysics Data System (ADS)

    Tatsumi, Toru; Aizaki, Naoaki; Tsuya, Hideki

    1985-04-01

    Defect density dependence on various surface cleaning conditions for molecular beam epitaxial (MBE) silicon films was investigated. Defect-free films were obtained on (100) and (511) wafers, using a combination of ozone cleaning and predeposition process after the usual wet cleaning. On the (111) wafer, the defect density dependence on growth rate was examined. The two-step growth-rate procedure was effective in decreasing stacking faults on the (111) wafer. The difference in defect density between (100) and (111) wafers is also discussed.

  15. Hybrid semiconductor quantum dot-metal nanocrystal structures prepared by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Urbańczyk, A.; Hamhuis, G. J.; Nötzel, R.

    2011-05-01

    We report the formation of In nanocrystals and their alignment near dilute InAs quantum dots (QDs) on GaAs (0 0 1) by molecular beam epitaxy. The In nanocrystals exhibit surface plasmon resonances in the near-infrared range, which can be matched with the emission wavelength of In(Ga)As QDs. The alignment of the In nanocrystals near the InAs QDs is due to the strain-driven migration yielding single isolated QD-metal nanocrystal pairs and isolated QD-metal nanocrystal dimer structures, representing the basic hybrid QD-metal nanocrystal plasmonic nanostructures.

  16. Silicon sheet with molecular beam epitaxy for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Allen, F. G.

    1983-01-01

    The capabilities of the new technique of Molecular Beam Epitaxy (MBE) are applied to the growth of high efficiency silicon solar cells. Because MBE can provide well controlled doping profiles of any desired arbitrary design, including doping profiles of such complexity as built-in surface fields or tandem junction cells, it would appear to be the ideal method for development of high efficiency solar cells. It was proposed that UCLA grow and characterize silicon films and p-n junctions of MBE to determine whether the high crystal quality needed for solar cells could be achieved.

  17. Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bauer, Jan; Fleischer, Frank; Breitenstein, Otwin; Schubert, Luise; Werner, Peter; Gösele, Ulrich; Zacharias, Margit

    2007-01-01

    Single undoped Si nanowires were electrically characterized. The nanowires were grown by molecular-beam epitaxy on n+ silicon substrates and were contacted by platinum/iridium tips. I-V curves were measured and electron beam induced current investigations were performed on single nanowires. It was found that the nanowires have an apparent resistivity of 0.85Ωcm, which is much smaller than expected for undoped Si nanowires. The conductance is explained by hopping conductivity at the Si -SiO2 interface of the nanowire surface.

  18. Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)

    NASA Astrophysics Data System (ADS)

    Debnath, R. K.; Meijers, R.; Richter, T.; Stoica, T.; Calarco, R.; Lüth, H.

    2007-03-01

    GaN nanowires have been grown without external catalyst on Si(111) substrates by plasma-assisted molecular beam epitaxy. Nanowire aspect ratios (length/diameter) of about 250 have been achieved. During the initial stage of the growth, there is a nucleation process in which the number of wires increases and the most probable nucleation diameter of about 10nm has been observed, which slowly increases with deposition time. For deposition time longer than the nucleation stage, the nanowire length as a function of diameter monotonically decreases. This phenomenon can be explained by adatom diffusion on the nanowire lateral surface towards the tip.

  19. Molecular beam epitaxy growth and optical properties of AlN nanowires

    NASA Astrophysics Data System (ADS)

    Landré, O.; Fellmann, V.; Jaffrennou, P.; Bougerol, C.; Renevier, H.; Cros, A.; Daudin, B.

    2010-02-01

    Growth of catalyst-free AlN nanowires has been achieved by plasma-assisted molecular beam epitaxy on SiO2/Si (100), by taking advantage of Volmer-Weber growth mode of AlN on amorphous SiO2. Using a combination of high resolution transmission electron microscopy and Raman spectroscopy, it is found that AlN nanowires are completely relaxed, which has been assigned to the compliant character of SiO2. Elastic strain relaxation of AlN nanowires has been further confirmed by photoluminescence experiments, showing in addition that spectra are dominated by near-band edge emission.

  20. Structural and optoelectronic properties of germanium-rich islands grown on silicon using molecular beam epitaxy

    SciTech Connect

    Nataraj, L.; Sustersic, N.; Coppinger, M.; Gerlein, L. F.; Kolodzey, J.; Cloutier, S. G.

    2010-03-22

    We report on the structural and optoelectronic properties of self-assembled germanium-rich islands grown on silicon using molecular beam epitaxy. Raman, photocurrent, photoluminescence, and transient optical spectroscopy measurements suggest significant built-in strains and a well-defined interface with little intermixing between the islands and the silicon. The shape of these islands depends on the growth conditions and includes pyramid, dome, barn-shaped, and superdome islands. Most importantly, we demonstrate that these germanium-rich islands provide efficient light emission at telecommunication wavelengths on a complementary metal-oxide semiconductor-compatible platform.

  1. Graphene growth by molecular beam epitaxy on the carbon-face of SiC

    SciTech Connect

    Moreau, E.; Godey, S.; Ferrer, F. J.; Vignaud, D.; Wallart, X.; Avila, J.; Asensio, M. C.; Bournel, F.; Gallet, J.-J.

    2010-12-13

    Graphene layers have been grown by molecular beam epitaxy (MBE) on the (0001) C-face of SiC and have been characterized by atomic force microscopy, low energy electron diffraction (LEED), and UV photoelectron spectroscopy. Contrary to the graphitization process, the step-terrace structure of SiC is fully preserved during the MBE growth. LEED patterns show multiple orientation domains which are characteristic of graphene on SiC (0001), indicating non-Bernal rotated graphene planes. Well-defined Dirac cones, typical of single-layer graphene, have been observed in the valence band for few graphene layers by synchrotron spectroscopy, confirming the electronic decoupling of graphene layers.

  2. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  3. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  4. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    SciTech Connect

    Wu, J.; Božović, I.

    2015-06-01

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  5. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.

    1986-01-01

    A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).

  6. Molecular beam epitaxy of Cd3As2 on a III-V substrate

    NASA Astrophysics Data System (ADS)

    Schumann, Timo; Goyal, Manik; Kim, Honggyu; Stemmer, Susanne

    2016-12-01

    Epitaxial, strain-engineered Dirac semimetal heterostructures promise tuning of the unique properties of these materials. In this study, we investigate the growth of thin films of the recently discovered Dirac semimetal Cd3As2 by molecular beam epitaxy. We show that epitaxial Cd3As2 layers can be grown at low temperatures (110 °C-220 °C), in situ, on (111) GaSb buffer layers deposited on (111) GaAs substrates. The orientation relationship is described by ( 112 ) Cd3 As 2 || (111) GaSb and [ 1 1 ¯ 0 ] Cd3 As 2 || [ 1 ¯ 01 ] GaSb . The films are shown to grow in the low-temperature, vacancy ordered, tetragonal Dirac semimetal phase. They exhibit high room temperature mobilities of up to 19300 cm2/Vs, despite a three-dimensional surface morphology indicative of island growth and the presence of twin variants. The results indicate that epitaxial growth on more closely lattice matched buffer layers, such as InGaSb or InAlSb, which allow for imposing different degrees of epitaxial coherency strains, should be possible.

  7. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    SciTech Connect

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-30

    Epitaxial silicon nanowires (NWs) of short heights ({approx}280 nm) on Si <111> substrate were grown and doped in situ with boron on a concentration range of 10{sup 15}-10{sup 19} cm{sup -3} by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (10{sup 15} cm{sup -3}) and medium doped (3x10{sup 16} and 1x10{sup 17} cm{sup -3}) NWs were heavily depleted by the surface states while the high doped (10{sup 18} and 10{sup 19} cm{sup -3}) ones showed volume conductivities expected for the corresponding intended doping levels.

  8. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy.

    PubMed

    Guan, X; Becdelievre, J; Meunier, B; Benali, A; Saint-Girons, G; Bachelet, R; Regreny, P; Botella, C; Grenet, G; Blanchard, N P; Jaurand, X; Silly, M G; Sirotti, F; Chauvin, N; Gendry, M; Penuelas, J

    2016-04-13

    We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the nanowire facets. Reflection high energy electron diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to determine the structural, chemical, and morphological properties of the heterostructured nanowires. Using adapted oxide growth conditions, it is shown that most of the perovskite structure SrTiO3 shell appears to be oriented with respect to the GaAs lattice. These results are promising for achieving one-dimensional epitaxial semiconductor core/functional oxide shell nanostructures.

  9. Ge/GeSn heterostructures grown on Si (100) by molecular-beam epitaxy

    SciTech Connect

    Sadofyev, Yu. G. Martovitsky, V. P.; Bazalevsky, M. A.; Klekovkin, A. V.; Averyanov, D. V.; Vasil’evskii, I. S.

    2015-01-15

    The growth of GeSn layers by molecular-beam epitaxy on Si (100) wafers coated with a germanium buffer layer is investigated. The properties of the fabricated structures are controlled by reflection high-energy electron diffraction, atomic-force microscopy, X-ray diffractometry, Rutherford backscattering, and Raman scattering. It is shown that GeSn layers with thicknesses up to 0.5 μm and Sn molar fractions up to 0.073 manifest no sign of plastic relaxation upon epitaxy. The lattice constant of the GeSn layers within the growth plane is precisely the same as that of Ge. The effect of rapid thermal annealing on the conversion of metastable elastically strained GeSn layers into a plastically relaxed state is examined. Ge/GeSn quantum wells with Sn molar fraction up to 0.11 are obtained.

  10. Studies of molecular-beam epitaxy growth of GaAs on porous Si substrates

    NASA Technical Reports Server (NTRS)

    Mii, Y. J.; Kao, Y. C.; Wu, B. J.; Wang, K. L.; Lin, T. L.; Liu, J. K.

    1988-01-01

    GaAs has been grown on porous Si directly and on Si buffer layer-porous Si substrates by molecular-beam epitaxy. In the case of GaAs growth on porous Si, transmission electron microscopy (TEM) reveals that the dominant defects in GaAs layers grown on porous Si are microtwins and stacking faults, which originate from the GaAs/porous Si interface. GaAs is found to penetrate into the porous Si layers. By using a thin Si buffer layer (50 nm), GaAs penetration diminishes and the density of microtwins and stacking faults is largely reduced and localized at the GaAs/Si buffer interface. However, there is a high density of threading dislocations remaining. Both Si (100) aligned and four degree tilted substrates have been examined in this study. TEM results show no observable effect of the tilted substrates on the quality of the GaAs epitaxial layer.

  11. Cleaning chemistry of InSb(100) molecular beam epitaxy substrates

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    InSb has been used as a substrate for molecular beam epitaxy. For good epitaxial growth, a substrate surface which is smooth and clean on an atomic scale is required. Chemical cleaning procedures provide an oxide film to passivate the surface. This film is then desorbed by in situ heating. The material forming the film should, therefore, have a high vapor pressure at some temperature less than the substrate melting temperature. A chloride film appears to satisfy the latter requirement. The present investigation is, therefore, concerned with the formation of a chloride film rather than an oxide film. Carbon contamination has been found to cause problems in chemical cleaning procedures. The level of carbon contamination found in the case of chloride film formation, is therefore compared with the corresponding level observed in procedures using oxide films. It appears that a chloride film grown in connection with a short exposure time to a Cl2 plasma is preferable to other passivation films studied.

  12. Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy.

    PubMed

    Cho, Yong-Jin; Summerfield, Alex; Davies, Andrew; Cheng, Tin S; Smith, Emily F; Mellor, Christopher J; Khlobystov, Andrei N; Foxon, C Thomas; Eaves, Laurence; Beton, Peter H; Novikov, Sergei V

    2016-09-29

    We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp(2)-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.

  13. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  14. Molecular-beam epitaxial regrowth on oxygen-implanted GaAs substrates for device integration

    NASA Astrophysics Data System (ADS)

    Chen, C. L.; Mahoney, L. J.; Calawa, S. D.; Molvar, K. M.; Maki, P. A.; Mathews, R. H.; Sage, J. P.; Sollner, T. C. L. G.

    1999-06-01

    Device-quality layers were regrown on GaAs wafers by molecular-beam epitaxy over conductive pregrown areas and on selectively patterned high-resistivity areas formed by oxygen implantation. The regrowth over both areas resulted in comparable device-quality GaAs. The high resistivity of the oxygen-implanted area was maintained after the regrowth and no oxygen incorporation was observed in the regrown layer. The cutoff frequency of a 1.5-μm-gate metal-semiconductor field-effect transistor fabricated on the regrown layer over the high-resistivity areas is 7 GHz. This demonstration shows that planar technology can be used in epitaxial regrowth, simplifying the integration of vastly different devices into monolithic circuits.

  15. Cyan laser diode grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Turski, H. Muziol, G.; Wolny, P.; Cywiński, G.

    2014-01-13

    We demonstrate AlGaN-cladding-free laser diodes (LDs), operating in continuous wave (CW) mode at 482 nm grown by plasma-assisted molecular beam epitaxy (PAMBE). The maximum CW output power was 230 mW. LDs were grown on c-plane GaN substrates obtained by hydride vapor phase epitaxy. The PAMBE process was carried out in metal-rich conditions, supplying high nitrogen flux (Φ{sub N}) during quantum wells (QWs) growth. We found that high Φ{sub N} improves quality of high In content InGaN QWs. The role of nitrogen in the growth of InGaN on (0001) GaN surface as well as the influence of LDs design on threshold current density are discussed.

  16. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  17. Growth of MoO3 films by oxygen plasma assisted molecular beam epitaxy

    SciTech Connect

    Altman, Eric I.; Droubay, Timothy C.; Chambers, Scott A.

    2002-07-22

    The growth of MoO₃ films on SrLaAlO₄(0 0 1), a substrate lattice-matched to b-MoO , by oxygen plasma assisted molecular beam epitaxy was characterized using reflection high-energy electron diffraction (RHEED), X-ray photoelectron spectroscopy, Xray diffraction (XRD), and atomic force and scanning tunneling microscopies (AFM and STM).It was found that the flux of reactive oxygen species to the surface was not high enough to maintain the proper stoichiometry, even at the lowest measurable deposition rates. Therefore, the films were grown by depositing Mo in small increments and then allowing the Mo to oxidize. At 675 K, the films grew epitaxially but in a three-dimensional manner. XRD of films grown under these conditions revealed atetragonal structure that has not been previously observed in bulk MoO₃ samples.

  18. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    SciTech Connect

    Lastras-Martínez, A. E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F.; Lastras-Montaño, L. A.; Lastras-Montaño, M. A.

    2014-03-01

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  19. GaAs nanowires on Si substrates grown by a solid source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Young-Hun; Lee, Jeong Yong

    2006-07-01

    High-quality Au-catalyzed GaAs nanowires were grown on Si substrates by vapor-liquid-solid growth in a solid source molecular beam epitaxy system. X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy reveal that the GaAs nanowires were epitaxially grown on Si substrates with uniform diameters along the nanowires. While GaAs nanowires on Si(111) and (001) substrates were mainly grown along the ⟨111⟩ direction with zinc-blende and wurtzite structures, unusual GaAs nanowires grown along ⟨001⟩ with a pure zinc-blende structure were also observed. Strong photoluminescence was observed from GaAs nanowires grown on a Si(001) substrate at room temperature.

  20. Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Jin; Summerfield, Alex; Davies, Andrew; Cheng, Tin S.; Smith, Emily F.; Mellor, Christopher J.; Khlobystov, Andrei N.; Foxon, C. Thomas; Eaves, Laurence; Beton, Peter H.; Novikov, Sergei V.

    2016-09-01

    We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.

  1. Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy

    PubMed Central

    Cho, Yong-Jin; Summerfield, Alex; Davies, Andrew; Cheng, Tin S.; Smith, Emily F.; Mellor, Christopher J.; Khlobystov, Andrei N.; Foxon, C. Thomas; Eaves, Laurence; Beton, Peter H.; Novikov, Sergei V.

    2016-01-01

    We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate. PMID:27681943

  2. High-efficiency AlGaInP solar cells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Faucher, J.; Sun, Y.; Jung, D.; Martin, D.; Masuda, T.; Lee, M. L.

    2016-10-01

    AlGaInP is an ideal material for ultra-high efficiency, lattice-matched multi-junction solar cells grown by molecular beam epitaxy (MBE) because it can be grown lattice-matched to GaAs with a wide 1.9-2.2 eV bandgap. Despite this potential, AlGaInP grown by molecular beam epitaxy (MBE) has yet to be fully explored, with the initial 2.0 eV devices suffering from poor performance due to low minority carrier diffusion lengths in both the emitter and base regions of the solar cell. In this work, we show that implementing an AlGaInP graded layer to introduce a drift field near the front surface of the device enabled greatly improved internal quantum efficiency (IQE) across all wavelengths. In addition, optimizing growth conditions and post-growth annealing improved the long-wavelength IQE and the open-circuit voltage of the cells, corresponding to a 3× increase in diffusion length in the base. Taken together, this work demonstrates greatly improved IQE, attaining peak values of 95%, combined with an uncoated AM1.5G efficiency of 10.9%, double that of previously reported MBE-grown devices.

  3. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

    PubMed

    Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  4. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    SciTech Connect

    Lee, J. H.; Tung, I. C.; Chang, S. -H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  5. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    SciTech Connect

    Lee, J. H.; Freeland, J. W.; Hong, Hawoong; Tung, I. C.; Chang, S.-H.; Bhattacharya, A.; Fong, D. D.

    2016-01-15

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  6. Molecular beam epitaxy control of the structural, optical, and electronic properties of ScN(001)

    SciTech Connect

    Smith, Arthur R.; AL-Brithen, Hamad A. H.; Ingram, David C.; Gall, Daniel

    2001-08-15

    Scandium nitride (001) oriented layers have been grown on magnesium oxide (001) substrates by molecular beam epitaxy using a rf-plasma source and a scandium effusion cell. The Sc/N flux ratio is found to be critical in determining the structural, optical, and electronic properties of the grown epitaxial layers. A distinct transition occurs at the point where the Sc/N flux ratio equals 1, which defines the line between N-rich and Sc-rich growth. Under N-rich conditions, the growth is epitaxial, and the surface morphology is characterized by a densely packed array of square-shaped plateaus and four-faced pyramids with the terraces between steps being atomically smooth. The films are stoichiometric and transparent with a direct optical transition at 2.15 eV. Under Sc-rich conditions, the growth is also epitaxial, but the morphology is dominated by spiral growth mounds. The morphology change is consistent with increased surface diffusion due to a Sc-rich surface. Excess Sc leads to understoichiometric layers with N vacancies which act as donors. The increased carrier density results in an optical reflection edge at 1 eV, absorption below the 2.15 eV band gap, and a drop in electrical resistivity. {copyright} 2001 American Institute of Physics.

  7. Low angle incidence microchannel epitaxy of GaN grown by ammonia-based metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Abe, Ryota; Maruyama, Takahiro; Naritsuka, Shigeya

    2011-03-01

    GaN was grown by low angle incidence microchannel epitaxy (LAIMCE) using NH3-based metal-organic molecular beam epitaxy (NH3-based MOMBE). The growth mechanism was studied by varying the growth temperature and time. The effect of the incidence direction of precursors on lateral growth was also investigated by comparing the results obtained when precursors were supplied perpendicular and parallel to the openings in the mask. The thickness and width of lateral growth were largely influenced by the formation of a facet on the surface, which frequently terminates further growth. For example, a sample grown at 700 °C with a perpendicular supply of precursors stopped growing both vertically and laterally after a certain time despite continuous supply of the precursors. On the other hand, a sample grown at 820 °C with a parallel supply of precursors exhibited stable growth, and its width increased continuously with time. This is because inter-surface diffusion of adatoms occurred from the top to the sides, which enhanced the width of lateral growth. In contrast, low angle incidence supply of molecular beams perpendicular to the openings resulted in a Ga-rich condition on the side and formed the side facet, which terminated further LAIMCE growth.

  8. Control of the stacking fault areas in pseudomorphic ZnSe layers by photo-molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ohno, Y.; Taishi, T.; Yonenaga, I.; Ichikawa, S.; Hirai, R.; Takeda, S.

    2007-12-01

    Pseudomorphic ZnSe layers on GaAs(0 0 1) were grown by molecular beam epitaxy under the light illumination with photon energy of about 1.8 eV. In the layers, isolated Shockley-type stacking faults on (1 1 1), bordering not on the ZnSe/GaAs interface but on the ZnSe surface, as well as the well-known stacking fault pairs, were formed. The sum of the stacking fault areas was small in comparison with the layers grown by molecular beam epitaxy without light illumination.

  9. Molecular beam epitaxy growth of germanium junctions for multi-junction solar cell applications

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Faucher, J.; Lee, M. L.

    2016-11-01

    We report on the molecular beam epitaxy (MBE) growth and device characteristics of Ge solar cells. Integrating a Ge bottom cell beneath a lattice-matched triple junction stack grown by MBE could enable ultra-high efficiencies without metamorphic growth or wafer bonding. However, a diffused junction cannot be readily formed in Ge by MBE due to the low sticking coefficient of group-V molecules on Ge surfaces. We therefore realized Ge junctions by growth of homo-epitaxial n-Ge on p-Ge wafers within a standard III-V MBE system. We then fabricated Ge solar cells, finding growth temperature and post-growth annealing to be key factors for achieving high efficiency. Open-circuit voltage and fill factor values of ~0.175 V and ~0.59 without a window layer were obtained, both of which are comparable to diffused Ge junctions formed by metal-organic vapor phase epitaxy. We also demonstrate growth of high-quality, single-domain GaAs on the Ge junction, as needed for subsequent growth of III-V subcells, and that the surface passivation afforded by the GaAs layer slightly improves the Ge cell performance.

  10. Growth of (110) GaAs/GaAs by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Parechanian, L. T.; Weber, E. R.; Hierl, T. L.

    1985-04-01

    The simultaneous molecular beam epitaxy (MBE) growth of (100) and (110) GaAs/GaAs intentionally doped with Si(-1E16/cu cm) was studied as a function of substrate temperature, arsenic overpressure, and epitaxial growth rate. The films were analyzed by scanning electron and optical microscopy, liquid helium photoluminescence (PL), and electronic characterization. For the (110) epitaxial layers, an increase in morphological defect density and degradation of PL signal was observed with a lowering of the substrate temperature from 570 C. Capacitance-voltage (CV) and Hall effect measurements yield room temperature donor concentrations for the (100) films of n-7E15/ cu cm while the (110) layers exhibit electron concentrations of n-2E17/cu cm. Hall measuremtns at 77k on the (100) films show the expected mobility enhancement of Si donors, whereas the (110) epi layers become insulating or greatly compensated. This behavior suggests that room temperature conduction in the (110) films is due to a deeper donor partially compensated by an acceptor level whose concentration is of the smae order of magnitude as that of any electrically active Si. Temperature dependent Hall effect indicates that the activation energy of the deeper donor level lies -145 meV from the conduction band.

  11. Molecular beam epitaxy growth of SnO{sub 2} using a tin chemical precursor

    SciTech Connect

    Wang, Tianqi; Prakash, Abhinav; Jalan, Bharat; Warner, Ellis; Gladfelter, Wayne L.

    2015-03-15

    The authors report on the development of a molecular beam epitaxy approach for atomic layer controlled growth of phase-pure, single-crystalline epitaxial SnO{sub 2} films with scalable growth rates using a highly volatile precursor (tetraethyltin) for tin and rf-oxygen plasma for oxygen. Smooth, epitaxial SnO{sub 2} (101) films on r-sapphire (101{sup ¯}2) substrates were grown as a function of tin precursor flux and substrate temperatures between 300 and 900 °C. Three distinct growth regimes were identified where SnO{sub 2} films grew in a reaction-, flux-, and desorption-limited mode, respectively, with increasing substrate temperature. In particular, with increasing tin flux, the growth rates were found to increase and then saturate indicating any excess tin precursor desorbs above a critical beam equivalent pressure of tin precursor. Important implications of growth kinetic behaviors on the self-regulating stoichiometric growth of perovskite stannates are discussed.

  12. Molecular beam epitaxy of 2D-layered gallium selenide on GaN substrates

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; Krishnamoorthy, Sriram; O'Hara, Dante J.; Brenner, Mark R.; Johnson, Jared M.; Jamison, John S.; Myers, Roberto C.; Kawakami, Roland K.; Hwang, Jinwoo; Rajan, Siddharth

    2017-03-01

    Large area epitaxy of two-dimensional (2D) layered materials with high material quality is a crucial step in realizing novel device applications based on 2D materials. In this work, we report high-quality, crystalline, large-area gallium selenide (GaSe) films grown on bulk substrates such as c-plane sapphire and gallium nitride (GaN) using a valved cracker source for Se. (002)-Oriented GaSe with random in-plane orientation of domains was grown on sapphire and GaN substrates at a substrate temperature of 350-450 °C with complete surface coverage. Higher growth temperature (575 °C) resulted in the formation of single-crystalline ɛ-GaSe triangular domains with six-fold symmetry confirmed by in-situ reflection high electron energy diffraction and off-axis x-ray diffraction. A two-step growth method involving high temperature nucleation of single crystalline domains and low temperature growth to enhance coalescence was adopted to obtain continuous (002)-oriented GaSe with an epitaxial relationship with the substrate. While six-fold symmetry was maintained in the two step growth, β-GaSe phase was observed in addition to the dominant ɛ-GaSe in cross-sectional scanning transmission electron microscopy images. This work demonstrates the potential of growing high quality 2D-layered materials using molecular beam epitaxy and can be extended to the growth of other transition metal chalcogenides.

  13. Raman spectroscopic study of surfactant-mediated molecular beam epitaxially grown germanium/silicon

    NASA Astrophysics Data System (ADS)

    Brill, Gregory Nelson

    The epitaxial growth of Ge on Si substrates was carried out using surfactant-mediated epitaxy and standard growth procedures to study the effects of Si surface passivation prior to Ge nucleation. The growth experiments were conducted in a molecular beam epitaxy (MBE) chamber equipped with reflection high-energy electron diffraction (RHEED) to monitor the nucleation process. Arsenic was chosen as the surfactant material and Ge nucleation was conducted on both Si(001) and Si(211) orientated substrates. Post-growth experiments were conducted primarily utilizing Raman Spectroscopy, however scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction were also employed to gather information about the grown material. From these experiments, it was determined that passivating the Si surface prior to Ge deposition with a monolayer of As yields higher quality 2-dimensional material. Additionally, As acts as a suppressant to Ge - Si intermixing resulting in a highly ordered epilayer/substrate interface. If Ge is deposited directly on a clean Si substrate without As passivation, the resultant growth follows the theoretically predicted Stranski-Krastanov growth mode. A growth model is suggested that successfully describes the differences between surfactant-mediated and non-surfactant-mediated nucleation through a site-exchange mechanism between Ge and As atoms. Additionally, surfactant-mediated nucleation results as a function of substrate orientation are highlighted and a model for surface reconstruction of the As passivated Si(211) surface is proposed.

  14. Formation of GeSn alloy on Si(100) by low-temperature molecular beam epitaxy

    SciTech Connect

    Talochkin, A. B.; Mashanov, V. I.

    2014-12-29

    GeSn alloys grown on Si(100) by the low-temperature (100 °C) molecular beam epitaxy are studied using scanning tunneling microscopy and Raman spectroscopy. It is found that the effect of Sn as a surfactant modifies substantially the low-temperature growth mechanism of Ge on Si. Instead of the formation of small Ge islands surrounded by amorphous Ge, in the presence of Sn, the growth of pure Ge islands appears via the Stranski-Krastanov growth mode, and a partially relaxed Ge{sub 1−x}Sn{sub x} alloy layer with the high Sn-fraction up to 40 at. % is formed in the area between them. It is shown that the observed growth mode induced by high surface mobility of Sn and the large strain of the pseudomorphic state of Ge to Si ensures the minimum elastic-strain energy of the structure.

  15. Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy.

    PubMed

    Fernández-Garrido, Sergio; Kaganer, Vladimir M; Sabelfeld, Karl K; Gotschke, Tobias; Grandal, Javier; Calleja, Enrique; Geelhaar, Lutz; Brandt, Oliver

    2013-07-10

    We investigate the axial and radial growth of GaN nanowires upon a variation of the Ga flux during molecular beam epitaxial growth. An increase in the Ga flux promotes radial growth without affecting the axial growth rate. In contrast, a decrease in the Ga flux reduces the axial growth rate without any change in the radius. These results are explained by a kinetic growth model that accounts for both the diffusion of Ga adatoms along the side facets toward the nanowire tip and the finite amount of active N available for the growth. The model explains the formation of a new equilibrium nanowire radius after increasing the Ga flux and provides an explanation for two well-known but so far not understood experimental facts: the necessity of effectively N-rich conditions for the spontaneous growth of GaN nanowires and the increase in nanowire radius with increasing III/V flux ratio.

  16. Raman measurements of substrate temperature in a molecular beam epitaxy growth chamber.

    PubMed

    Hutchins, T; Nazari, M; Eridisoorya, M; Myers, T M; Holtz, M

    2015-01-01

    A method is described for directly measuring the temperature of a substrate in a molecular-beam epitaxy (MBE) growth system. The approach relies on the establishment of the temperature dependence of Raman-active phonons of the substrate material using independently known calibration points across the range of interest. An unknown temperature in this range is then determined based on the Raman peak position with the substrate in situ the MBE chamber. The apparatus relies on conventional optics and Raman components. Shifting and broadening of the Raman spectrum are described based on the effects of thermal expansion and anharmonic decay. The choice of reference temperature is discussed. The method is qualified by examining the substrate temperature dependence, relative to that of a standard thermocouple, during a commonly used ramp procedure. Both temperature difference and time lag are obtained.

  17. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    SciTech Connect

    Qi, Meng; Zhao, Yuning; Yan, Xiaodong; Li, Guowang; Verma, Jai; Fay, Patrick; Nomoto, Kazuki; Zhu, Mingda; Hu, Zongyang; Protasenko, Vladimir; Song, Bo; Xing, Huili Grace; Jena, Debdeep; Bader, Samuel

    2015-12-07

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm{sup 2} is obtained with reverse bias voltage up to −20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm{sup 2} is achieved, with a breakdown voltage corresponding to a peak electric field of ∼3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  18. Raman measurements of substrate temperature in a molecular beam epitaxy growth chamber

    SciTech Connect

    Hutchins, T.; Nazari, M.; Eridisoorya, M.; Myers, T. M.; Holtz, M.

    2015-01-15

    A method is described for directly measuring the temperature of a substrate in a molecular-beam epitaxy (MBE) growth system. The approach relies on the establishment of the temperature dependence of Raman-active phonons of the substrate material using independently known calibration points across the range of interest. An unknown temperature in this range is then determined based on the Raman peak position with the substrate in situ the MBE chamber. The apparatus relies on conventional optics and Raman components. Shifting and broadening of the Raman spectrum are described based on the effects of thermal expansion and anharmonic decay. The choice of reference temperature is discussed. The method is qualified by examining the substrate temperature dependence, relative to that of a standard thermocouple, during a commonly used ramp procedure. Both temperature difference and time lag are obtained.

  19. High electron mobility in Ga(In)NAs films grown by molecular beam epitaxy

    SciTech Connect

    Miyashita, Naoya; Ahsan, Nazmul; Monirul Islam, Muhammad; Okada, Yoshitaka; Inagaki, Makoto; Yamaguchi, Masafumi

    2012-11-26

    We report the highest mobility values above 2000 cm{sup 2}/Vs in Si doped GaNAs film grown by molecular beam epitaxy. To understand the feature of the origin which limits the electron mobility in GaNAs, temperature dependences of mobility were measured for high mobility GaNAs and referential low mobility GaInNAs. Temperature dependent mobility for high mobility GaNAs is similar to the GaAs case, while that for low mobility GaInNAs shows large decrease in lower temperature region. The electron mobility of high quality GaNAs can be explained by intrinsic limiting factor of random alloy scattering and extrinsic factor of ionized impurity scattering.

  20. Molecular beam epitaxy growth and scanning tunneling microscopy study of TiSe2 ultrathin films

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Ping; Guan, Jia-Qi; Zhang, Hui-Min; Song, Can-Li; Wang, Lili; He, Ke; Xue, Qi-Kun; Ma, Xu-Cun

    2015-03-01

    Molecular beam epitaxy is used to grow TiSe2 ultrathin films on a graphitized SiC(0001) substrate. TiSe2 films proceed via a nearly layer-by-layer growth mode and exhibit two dominant types of defects, identified as Se vacancy and interstitial, respectively. By means of scanning tunneling microscopy, we demonstrate that the well-established charge density waves can survive in a single unit-cell (one triple-layer) regime, and find a gradual reduction in their correlation length as the density of surface defects in TiSe2 ultrathin films increases. Our findings offer important insights into the nature of charge density waves in TiSe2, and also pave a material foundation for potential applications based on the collective electronic states.

  1. Improved tunneling magnetoresistance at low temperature in manganite junctions grown by molecular beam epitaxy

    SciTech Connect

    Werner, R.; Kleiner, R.; Koelle, D.; Petrov, A. Yu.; Davidson, B. A.; Mino, L. Alvarez

    2011-04-18

    We report resistance versus magnetic field measurements for a La{sub 0.65}Sr{sub 0.35}MnO{sub 3}/SrTiO{sub 3}/La{sub 0.65}Sr{sub 0.35}MnO{sub 3} tunnel junction grown by molecular-beam epitaxy, that show a large field window of extremely high tunneling magnetoresistance (TMR) at low temperature. Scanning the in-plane applied field orientation through 360 deg., the TMR shows fourfold symmetry, i.e., biaxial anisotropy, aligned with the crystalline axis but not the junction geometrical long axis. The TMR reaches {approx}1900% at 4 K, corresponding to an interfacial spin polarization of >95% assuming identical interfaces. These results show that uniaxial anisotropy is not necessary for large TMR, and lay the groundwork for future improvements in TMR in manganite junctions.

  2. Study of electrical properties of single GaN nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Mozharov, A. M.; Komissarenko, F. E.; Vasiliev, A. A.; Bolshakov, A. D.; Moiseev, E. I.; Mukhin, M. S.; Cirlin, G. E.; Mukhin, I. S.

    2016-08-01

    Electrical properties of single GaN nanowires grown by means of molecular beam epitaxy with N-plasma source were studied. Ohmic contacts connected to single n-type GaN wires were produced by the combination of electron beam lithography, metal vacuum evaporation and rapid thermal annealing technique. The optimal annealing temperature to produce ohmic contacts implemented in the form of Ti/Al/Ti/Au stack has been determined. By means of 2-terminal measurement wiring diagram the conductivity of single NW has been obtained for NWs with different growth parameters. The method of MESFET measurement circuit layout of single GaN nanowires (NWs) has been developed. In accordance with performed numerical calculation, free carriers' concentration and mobility of single NWs could be independently estimated using MESFET structure.

  3. Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chou, C. Y.; Torfi, A.; Pei, C.; Wang, W. I.

    2016-05-01

    In this work, the effects of substrate orientation on InSb quantum structure growth by molecular beam epitaxy (MBE) are presented. Motivated by the observation that (411) evolves naturally as a stable facet during MBE crystal growth, comparison studies have been carried out to investigate the effects of the crystal orientation of the underlying GaSb substrate on the growth of InSb by MBE. By depositing InSb on a number of different substrate orientations, namely: (100), (311), (411), and (511), a higher nanostructure density was observed on the (411) surface compared with the other orientations. This result suggests that the (411) orientation presents a superior surface in MBE growth to develop a super-flat GaSb buffer surface, naturally favorable for nanostructure growth.

  4. Photoluminescence properties of MgxZn1-xO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Chou, W. C.; Shen, J. L.

    2017-02-01

    The optical properties of MgxZn1-xO films with x=0.03, 0.06, 0.08, and 0.11 grown by molecular beam epitaxy (MBE) have been studied by temperature-dependent photoluminescence (PL) measurement. It is presented that the full-width at half-maximum (FWHM) of the 12 K PL spectrum of MgZnO films increases with increasing Mg concentration and would deviate significantly from the simulation curve of Schubert model with higher Mg contents. The abnormal broader PL FWHM is inferred from larger compositional fluctuation by incorporating higher Mg contents, which results in larger effect of excitonic localization to induce more significant S-shaped behavior of the PL peak energy with temperature dependence. Additionally, the degree of localization increases as the linear proportion of the PL FWHM, indicating that the excitonic behavior in MgZnO films belong to the strong localization effect.

  5. Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy

    SciTech Connect

    Lu, Zhenyu; Chen, Pingping E-mail: luwei@mail.sitp.ac.cn; Shi, Suixing; Yao, Luchi; Zhou, Xiaohao; Lu, Wei E-mail: luwei@mail.sitp.ac.cn; Zhang, Zhi; Zhou, Chen; Zou, Jin

    2014-10-20

    In this work, the crystal structure of GaAs nanowires grown by molecular beam epitaxy has been tailored only by bismuth without changing the growth temperature and V/III flux ratio. The introduction of bismuth can lead to the formation of zinc-blende GaAs nanowires, while the removal of bismuth changes the structure into a 4H polytypism before it turns back to the wurtzite phase eventually. The theoretical calculation shows that it is the steadiest for bismuth to adsorb on the GaAs(111){sub B} surface compared to the liquid gold catalyst surface and the interface between the gold catalyst droplet and the nanowire, and these adsorbed bismuth could decrease the diffusion length of adsorbed Ga and hence the supersaturation of Ga in the gold catalyst droplet.

  6. AlN Nanowall Structures Grown on Si (111) Substrate by Molecular Beam Epitaxy.

    PubMed

    Tamura, Yosuke; Hane, Kazuhiro

    2015-12-01

    AlN nanowall structures were grown on Si (111) substrate using molecular beam epitaxy at substrate temperature of 700 °C with N/Al flux ratios ranging from 50 to 660. A few types of other AlN nanostructures were also grown under the nitrogen-rich conditions. The AlN nanowalls were ranged typically 60-120 nm in width and from 190 to 470 nm in length by changing N/Al flux ratio. The AlN nanowall structures grown along the c-plane consisted of AlN (0002) crystal with full-width at half maximum of the rocking curve about 5000 arcsec.

  7. Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy.

    PubMed

    Gao, Xian; Wei, Zhipeng; Zhao, Fenghuan; Yang, Yahui; Chen, Rui; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Li, Ruixue; Ge, Xiaotian; Ma, Xiaohui; Wang, Xiaohua

    2016-07-06

    We report the carrier dynamics in GaAsSb ternary alloy grown by molecular beam epitaxy through comprehensive spectroscopic characterization over a wide temperature range. A detailed analysis of the experimental data reveals a complex carrier relaxation process involving both localized and delocalized states. At low temperature, the localized degree shows linear relationship with the increase of Sb component. The existence of localized states is also confirmed by the temperature dependence of peak position and band width of the emission. At temperature higher than 60 K, emissions related to localized states are quenched while the band to band transition dominates the whole spectrum. This study indicates that the localized states are related to the Sb component in the GaAsSb alloy, while it leads to the poor crystal quality of the material, and the application of GaAsSb alloy would be limited by this deterioration.

  8. Universality and dependence on initial conditions in the class of the nonlinear molecular beam epitaxy equation.

    PubMed

    Carrasco, I S S; Oliveira, T J

    2016-11-01

    We report extensive numerical simulations of growth models belonging to the nonlinear molecular beam epitaxy (nMBE) class, on flat (fixed-size) and expanding substrates (ES). In both d=1+1 and 2+1, we find that growth regime height distributions (HDs), and spatial and temporal covariances are universal, but are dependent on the initial conditions, while the critical exponents are the same for flat and ES systems. Thus, the nMBE class does split into subclasses, as does the Kardar-Parisi-Zhang (KPZ) class. Applying the "KPZ ansatz" to nMBE models, we estimate the cumulants of the 1+1 HDs. Spatial covariance for the flat subclass is hallmarked by a minimum, which is not present in the ES one. Temporal correlations are shown to decay following well-known conjectures.

  9. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  10. Photoluminescence studies of ZnO nanorods grown by plasma-assisted molecular beam epitaxy.

    PubMed

    Kim, Min Su; Nam, Giwoong; Leem, Jae-Young

    2013-05-01

    Metal catalyst-free ZnO nanorods were grown on PS with buffer layers grown at 450 degrees C by plasma-assisted molecular beam epitaxy. Room temperature and temperature-dependent photoluminescence were carried out to investigate the optical properties of the ZnO nanorods with the average diameter of 120 nm and length of 300 nm. Three emission peaks, free excition, neutral-donor exciton, and free electron-to-neutral acceptor, were observed at 10 K. Huang-Rhys factor S of the ZnO nanorods was 0.978, which is much higher than that of ZnO thin films. The values of Varshni's empirical equation fitting parameters were alpha = 4 x 10(-3) eV/K, beta = 4.1 x 10(4) K, and E9(0) = 3.388 eV and the activation energy was about 96 meV.

  11. Antimony segregation in stressed SiGe heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Drozdov, M. N.; Novikov, A. V.; Yurasov, D. V.

    2013-11-15

    The effects of the growth temperature, composition, and elastic strains in separate layers on the segregation of antimony are studied experimentally for stressed SiGe structures grown by molecular beam epitaxy. It is established that the growth conditions and parameters of the structures exert an interrelated influence on the segregation of Sb: the degree of the influence of the composition and elastic stresses in the SiGe layers on Sb segregation depends on the growth temperature. It is shown that usage of a method previously proposed by us for the selective doping of silicon structures with consideration for the obtained dependences of Sb segregation on the growth conditions and parameters of the SiGe layers makes it possible to form SiGe structures selectively doped with antimony.

  12. Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy.

    PubMed

    Kim, Sangcheol; Bhargava, Nupur; Gupta, Jay; Coppinger, Matthew; Kolodzey, James

    2014-05-05

    Heterojunction devices of Ge(1-x)Sn(x) / n-Ge were grown by solid source molecular beam epitaxy (MBE), and the mid-infrared (IR) photocurrent response was measured. With increasing Sn composition from 4% to 12%, the photocurrent spectra became red-shifted, suggesting that the bandgap of Ge(1-x)Sn(x) alloys was lowered compared to pure Ge. At a temperature of 100 K, the wavelengths of peak photocurrent were shifted from 1.42 µm for pure Ge (0% Sn) to 2.0 µm for 12% Sn. The bias dependence of the device response showed that the optimum reverse bias was > 0.5 volts for saturated photocurrent. The responsivity of the Ge(1-x)Sn(x) devices was estimated to be 0.17 A/W for 4% Sn. These results suggest that Ge(1-x)Sn(x) photodetectors may have practical applications in the near/mid IR wavelength regime.

  13. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.

    PubMed

    Dheeraj, D L; Munshi, A M; Scheffler, M; van Helvoort, A T J; Weman, H; Fimland, B O

    2013-01-11

    Control of the crystal phases of GaAs nanowires (NWs) is essential to eliminate the formation of stacking faults which deteriorate the optical and electronic properties of the NWs. In addition, the ability to control the crystal phase of NWs provides an opportunity to engineer the band gap without changing the crystal material. We show that the crystal phase of GaAs NWs grown on GaAs(111)B substrates by molecular beam epitaxy using the Au-assisted vapor-liquid-solid growth mechanism can be tuned between wurtzite (WZ) and zinc blende (ZB) by changing the V/III flux ratio. As an example we demonstrate the realization of WZ GaAs NWs with a ZB GaAs insert that has been grown without changing the substrate temperature.

  14. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy.

    PubMed

    Yue, Ruoyu; Barton, Adam T; Zhu, Hui; Azcatl, Angelica; Pena, Luis F; Wang, Jian; Peng, Xin; Lu, Ning; Cheng, Lanxia; Addou, Rafik; McDonnell, Stephen; Colombo, Luigi; Hsu, Julia W P; Kim, Jiyoung; Kim, Moon J; Wallace, Robert M; Hinkle, Christopher L

    2015-01-27

    In this work, we demonstrate the growth of HfSe2 thin films using molecular beam epitaxy. The relaxed growth criteria have allowed us to demonstrate layered, crystalline growth without misfit dislocations on other 2D substrates such as highly ordered pyrolytic graphite and MoS2. The HfSe2 thin films exhibit an atomically sharp interface with the substrates used, followed by flat, 2D layers with octahedral (1T) coordination. The resulting HfSe2 is slightly n-type with an indirect band gap of ∼ 1.1 eV and a measured energy band alignment significantly different from recent DFT calculations. These results demonstrate the feasibility and significant potential of fabricating 2D material based heterostructures with tunable band alignments for a variety of nanoelectronic and optoelectronic applications.

  15. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires

    SciTech Connect

    Fontcuberta i Morral, A.; Colombo, C.; Abstreiter, G.; Arbiol, J.; Morante, J. R.

    2008-02-11

    Molecular beam epitaxy Ga-assisted synthesis of GaAs nanowires is demonstrated. The nucleation and growth are seen to be related to the presence of a SiO{sub 2} layer previously deposited on the GaAs wafer. The interaction of the reactive gallium with the SiO{sub 2} pinholes induces the formation of nanocraters, found to be the key for the nucleation of the nanowires. With SiO{sub 2} thicknesses up to 30 nm, nanocraters reach the underlying substrate, resulting into a preferential growth orientation of the nanowires. Possibly related to the formation of nanocraters, we observe an incubation period of 258 s before the nanowires growth is initiated.

  16. Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by molecular beam epitaxy

    SciTech Connect

    Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.; Luna, E.; Trampert, A.

    2007-07-09

    High quality InN nanocolumns have been grown by molecular beam epitaxy on bare and AlN-buffered Si(111) substrates. The accommodation mechanism of the InN nanocolumns to the substrate was studied by transmission electron microscopy. Samples grown on AlN-buffered Si(111) show abrupt interfaces between the nanocolumns and the buffer layer, where an array of periodically spaced misfit dislocations develops. Samples grown on bare Si(111) exhibit a thin Si{sub x}N{sub y} at the InN nanocolumn/substrate interface because of Si nitridation. The Si{sub x}N{sub y} thickness and roughness may affect the nanocolumn relative alignment to the substrate. In all cases, InN nanocolumns grow strain- and defect-free.

  17. Growth regimes during homoepitaxial growth of GaN by ammonia molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Corrion, A. L.; Wu, F.; Speck, J. S.

    2012-09-01

    c-plane GaN films were grown by ammonia molecular beam epitaxy on metal-organic chemical vapor deposition templates for a wide range of NH3:Ga flux ratios and growth temperatures, and the resulting films were characterized using atomic force microscopy, reflection high-energy electron diffraction, and transmission electron microscopy. Three distinct nitrogen-rich growth regimes—unstable layer-by-layer, quasi-stable step flow, and dislocation-mediated pitting—were identified based on the growth mode and film properties. In addition, step flow growth was observed under conditions of gallium droplet accumulation. The results indicate the existence of two regimes for step-flow growth of GaN by ammonia MBE—both gallium-rich and nitrogen-rich. Growth mode instabilities and mound formation were observed and are discussed in the context of a step-edge energy barrier to adatom diffusion over a terrace.

  18. Microstructure of In x Ga1-x N nanorods grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Webster, R. F.; Soundararajah, Q. Y.; Griffiths, I. J.; Cherns, D.; Novikov, S. V.; Foxon, C. T.

    2015-11-01

    Transmission electron microscopy is used to examine the structure and composition of In x Ga1-x N nanorods grown by plasma-assisted molecular beam epitaxy. The results confirm a core-shell structure with an In-rich core and In-poor shell resulting from axial and lateral growth sectors respectively. Atomic resolution mapping by energy-dispersive x-ray microanalysis and high angle annular dark field imaging show that both the core and the shell are decomposed into Ga-rich and In-rich platelets parallel to their respective growth surfaces. It is argued that platelet formation occurs at the surfaces, through the lateral expansion of surface steps. Studies of nanorods with graded composition show that decomposition ceases for x ≥ 0.8 and the ratio of growth rates, shell:core, decreases with increasing In concentration.

  19. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  20. Synthesis of long group IV semiconductor nanowires by molecular beam epitaxy

    PubMed Central

    2011-01-01

    We report the growth of Si and Ge nanowires (NWs) on a Si(111) surface by molecular beam epitaxy. While Si NWs grow perpendicular to the surface, two types of growth axes are found for the Ge NWs. Structural studies of both types of NWs performed with electron microscopies reveal a marked difference between the roughnesses of their respective sidewalls. As the investigation of their length dependence on their diameter indicates that the growth of the NWs predominantly proceeds through the diffusion of adatoms from the substrate up along the sidewalls, difference in the sidewall roughness qualitatively explains the length variation measured between both types of NWs. The formation of atomically flat {111} sidewalls on the <110>-oriented Ge NWs accounts for a larger diffusion length. PMID:21711645

  1. Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy

    DOE PAGES

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; ...

    2016-01-06

    Layered materials are an actively pursued area of research for realizing highly scaled technologies involving both traditional device structures as well as new physics. Lately, non-equilibrium growth of 2D materials using molecular beam epitaxy (MBE) is gathering traction in the scientific community and here we aim to highlight one of its strengths, growth of abrupt heterostructures, and superlattices (SLs). In this work we present several of the firsts: first growth of MoTe2 by MBE, MoSe2 on Bi2Se3 SLs, transition metal dichalcogenide (TMD) SLs, and lateral junction between a quintuple atomic layer of Bi2Te3 and a triple atomic layer of MoTe2.more » In conclusion, reflected high electron energy diffraction oscillations presented during the growth of TMD SLs strengthen our claim that ultrathin heterostructures with monolayer layer control is within reach.« less

  2. Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy

    PubMed Central

    Gao, Xian; Wei, Zhipeng; Zhao, Fenghuan; Yang, Yahui; Chen, Rui; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Li, Ruixue; Ge, Xiaotian; Ma, Xiaohui; Wang, Xiaohua

    2016-01-01

    We report the carrier dynamics in GaAsSb ternary alloy grown by molecular beam epitaxy through comprehensive spectroscopic characterization over a wide temperature range. A detailed analysis of the experimental data reveals a complex carrier relaxation process involving both localized and delocalized states. At low temperature, the localized degree shows linear relationship with the increase of Sb component. The existence of localized states is also confirmed by the temperature dependence of peak position and band width of the emission. At temperature higher than 60 K, emissions related to localized states are quenched while the band to band transition dominates the whole spectrum. This study indicates that the localized states are related to the Sb component in the GaAsSb alloy, while it leads to the poor crystal quality of the material, and the application of GaAsSb alloy would be limited by this deterioration. PMID:27381641

  3. Concentration transient analysis of antimony surface segregation during Si(100) molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.

    1991-01-01

    Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.

  4. Molecular beam epitaxy of SrTiO3 with a growth window

    NASA Astrophysics Data System (ADS)

    Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne

    2009-07-01

    Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO3 films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO3 films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

  5. Molecular beam epitaxy of SrTiO{sub 3} with a growth window

    SciTech Connect

    Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne

    2009-07-20

    Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO{sub 3} films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO{sub 3} films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

  6. Metalorganic molecular beam epitaxy growth of GaAs on patterned GaAs substrates

    NASA Astrophysics Data System (ADS)

    Marx, D.; Asahi, H.; Liu, X. F.; Okuno, Y.; Inoue, K.; Gonda, S.; Shimomura, S.; Hiyamizu, S.

    1994-03-01

    GaAs layers were grown on etch-patterned (100) GaAs substrates by MOMBE (metalorganic molecular beam epitaxy) using TEGa (triethylgallium) and thermally cracked TEAs (triethylarsine). Morphology and orientation dependencies of the grown facets on the growth temperature (400-630°C) and V/III ratio (2-4) are investigated. Good morphology of grown layers was obtained on (111)A side facets at a low V/III ratio of 3 and low growth temperatures of 450-500°C. We also found strong evidence that the formation of facets is not only governed by the migration of Ga precursors and/or Ga atoms, but also by a preferential catalytic decomposition of Ga precursors on the facet edges.

  7. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  8. Indium antimonide doped with lead telluride grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Heremans, J.; Trush, C. M.

    1991-05-01

    A PbTe dopant source has been used to grow n-type InSb using the molecular beam epitaxy growth technique. From Auger electron spectroscopy studies, no surface segregation of tellurium or lead is observed up to ∽ 10 19 cm -3 doping levels. The correlation between the PbTe flux used during growth and the electron density in the grown films is very good, suggesting that the incorporation of tellurium is near unity. Six-probe Hall measurements of carrier transport gave room temperature mobilities as high as 51,300 cm 2 V -1 s -1 at an electron density of 2.9×10 16 cm -3 (54,300 at an electron density of 1.9×10 16 cm -3 at 110 K) for a film of 4.0 μm thickness on an InP substrate.

  9. n{sup +}-GaN grown by ammonia molecular beam epitaxy: Application to regrown contacts

    SciTech Connect

    Lugani, L.; Malinverni, M.; Giraud, E.; Carlin, J.-F.; Grandjean, N.; Tirelli, S.; Marti, D.; Bolognesi, C. R.

    2014-11-17

    We report on the low-temperature growth of heavily Si-doped (>10{sup 20 }cm{sup −3}) n{sup +}-type GaN by N-rich ammonia molecular beam epitaxy (MBE) with very low bulk resistivity (<4 × 10{sup −4} Ω·cm). This is applied to the realization of regrown ohmic contacts on InAlN/GaN high electron mobility transistors. A low n{sup +}-GaN/2 dimensional electron gas contact resistivity of 0.11 Ω·mm is measured, provided an optimized surface preparation procedure, which is shown to be critical. This proves the great potentials of ammonia MBE for the realization of high performance electronic devices.

  10. Mechanism of Charge Transport in Cobalt and Iron Phthalocyanine Thin Films Grown by Molecular Beam Epitaxy

    SciTech Connect

    Kumar, Arvind; Samanta, Soumen; Singh, Ajay; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.

    2011-12-12

    Cobalt phthalocyanine (CoPc), iron phthalocyanine (FePc) and their composite (CoPc-FePc) films have been grown by molecular beam epitaxy (MBE). Grazing incidence X-ray diffraction (GIXRD) and scanning electron microscope (SEM) studies showed that composite films has better structural ordering compared to individual CoPc and FePc films. The temperature dependence of resistivity (in the temperature range 25 K- 100 K) showed that composite films are metallic, while individual CoPc and FePc films are in the critical regime of metal-to-insulator (M-I) transition The composite films show very high mobility of 110 cm{sup 2} V{sup -1} s{sup -1} at room temperature i.e. nearly two order of magnitude higher compared to pure CoPc and FePc films.

  11. Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil

    NASA Astrophysics Data System (ADS)

    Calabrese, Gabriele; Corfdir, Pierre; Gao, Guanhui; Pfüller, Carsten; Trampert, Achim; Brandt, Oliver; Geelhaar, Lutz; Fernández-Garrido, Sergio

    2016-05-01

    We demonstrate the self-assembled growth of vertically aligned GaN nanowire ensembles on a flexible Ti foil by plasma-assisted molecular beam epitaxy. The analysis of single nanowires by transmission electron microscopy reveals that they are single crystalline. Low-temperature photoluminescence spectroscopy demonstrates that in comparison to standard GaN nanowires grown on Si, the nanowires prepared on the Ti foil exhibit an equivalent crystalline perfection, a higher density of basal-plane stacking faults, but a reduced density of inversion domain boundaries. The room-temperature photoluminescence spectrum of the nanowire ensemble is not influenced or degraded by the bending of the substrate. The present results pave the way for the fabrication of flexible optoelectronic devices based on GaN nanowires on metal foils.

  12. Ferromagnet-semiconductor nanowire coaxial heterostructures grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hilse, M.; Takagaki, Y.; Herfort, J.; Ramsteiner, M.; Herrmann, C.; Breuer, S.; Geelhaar, L.; Riechert, H.

    2009-09-01

    GaAs-MnAs core-shell structures are grown by molecular-beam epitaxy using wurtzite GaAs nanowires on GaAs(111)B. The nanowire structures curve due to the strain at the heterointerface when the substrate is not rotated during the growth, evidencing the diffusion length in the MnAs overgrowth being less than the perimeter of the columns. The MnAs growth is thus demonstrated to take place by direct deposition on the sidewall. The MnAs envelope is m-plane-oriented with the c-axis along the nanowire axis. The magnetic easy axis hence lies in the surface plane of the substrate, which is confirmed by magnetization measurements and magnetic-force microscopy.

  13. Ferromagnetic (Ga,Mn)As nanowires grown by Mn-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bouravleuv, Alexei; Cirlin, George; Sapega, Victor; Werner, Peter; Savin, Alexander; Lipsanen, Harri

    2013-04-01

    (Ga,Mn)As nanowires were grown by molecular beam epitaxy using Mn as a growth catalyst on GaAs(001) substrates at 485 °C, i.e., at intermediate temperatures higher than ones used for the growth of (Ga,Mn)As thin films, but lower than the ordinary temperatures of Au-assisted growth of GaAs nanowires. (Ga,Mn)As nanowires obtained with typical lengths between 0.8 and 4 μm and diameters 50-90 nm do not have defects, such as dislocations or precipitates, except for the stacking faults lying parallel to the growth direction. The investigation of magnetic and optical properties has been carried out not only for as-grown samples with nanowires but also for peeled off nanowires from the host substrate. The results obtained demonstrate that (Ga,Mn)As nanowires exhibit ferromagnetic ordering around 70 K.

  14. Electrical characterization of ensemble of GaN nanowires grown by the molecular beam epitaxy technique

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K.

    2013-08-01

    High quality Schottky contacts are formed on GaN nanowires (NWs) structures grown by the molecular beam epitaxy technique on Si(111) substrate. The current-voltage characteristics show the rectification ratio of about 103 and the leakage current of about 10-4 A/cm2 at room temperature. From the capacitance-voltage measurements the free carrier concentration in GaN NWs is determined as about 1016 cm-3. Two deep levels (H200 and E280) are found in the structures containing GaN NWs. H200 is attributed to an extended defect located at the interface between the substrate and SiNx or near the sidewalls at the bottom of the NWs whereas E280 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  15. Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy.

    PubMed

    Baiutti, Federico; Christiani, Georg; Logvenov, Gennady

    2014-01-01

    In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE) which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2- x Sr x NiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities in the deposition of atomically smooth single-crystal thin films of various complex oxides, artificial compounds and heterostructures, introducing our goal of pursuing a deep investigation of such systems with particular emphasis on structural defects, with the aim of tailoring their functional properties by precise defects control.

  16. Molecular beam epitaxial growth of CdZnS using elemental sources

    NASA Astrophysics Data System (ADS)

    Wu, B. J.; Cheng, H.; Guha, S.; Haase, M. A.; De Puydt, J. M.; Meis-Haugen, G.; Qiu, J.

    1993-11-01

    We report on the first molecular beam epitaxial (MBE) growth of CdZnS on (100) GaAs substrates using elemental Zn, Cd, and S sources. Single crystal cubic CdZnS layers lattice matched to GaAs have been successfully prepared. The competition in incorporation between Cd and Zn under different sulfur flux conditions is investigated. Under appropriate growth conditions, the Cd1-xZnxS composition is directly related only to the ratio of the group II beam equivalent pressures. The background sulfur in the MBE growth chamber is found to etch the freshly thermally cleaned GaAs substrates and generate high density of pits on the surfaces. Methods to prevent the sulfur etching are also discussed.

  17. Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy.

    PubMed

    Zhou, H L; Hoang, T B; Dheeraj, D L; van Helvoort, A T J; Liu, L; Harmand, J C; Fimland, B O; Weman, H

    2009-10-14

    We report the growth of GaAs/AlGaAs core-shell nanowires (NWs) on GaAs(111)B substrates by Au-assisted molecular beam epitaxy. Electron microscopy shows the formation of a wurtzite AlGaAs shell structure both in the radial and the axial directions outside a wurtzite GaAs core. With higher Al content, a lower axial and a higher radial growth rate of the AlGaAs shell were observed. Room temperature and low temperature (4.4 K) micro-photoluminescence measurements show a much higher radiative efficiency from the GaAs core after the NW is overgrown with a radial AlGaAs shell.

  18. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy

    SciTech Connect

    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J. Riechert, H.

    2015-05-25

    Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.

  19. Investigation of the silicon ion density during molecular beam epitaxy growth

    NASA Astrophysics Data System (ADS)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  20. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zuo, Zheng; Liu, Jianlin

    2015-11-23

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BN until it may cover entire h-BN flakes.

  1. Epitaxial Overgrowth of Gallium Nitride Nano-Rods on Silicon (111) Substrates by RF-Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Ku, Jui-Tai; Yang, Tsung-Hsi; Chang, Jet-Rung; Wong, Yuen-Yee; Chou, Wu-Ching; Chang, Chun-Yen; Chen, Chiang-Yao

    2010-04-01

    Strain-free gallium nitride (GaN) overgrowth on GaN nano-rods is realized by RF-plasma assisted molecular beam epitaxy (RF-MBE) on silicon (Si) substrate. The strain-free condition was identified by the strong free A exciton (FXA) photoluminescence (PL) peak at 3.478 eV and the E2 high phonon Raman shift of 567 cm-1. It is clearly demonstrated that the critical diameter of GaN nano-rods is around 80 nm for the overgrowth of strain-free GaN. The blue-shift of PL peak energy and phonon Raman energy with decreasing the diameter of nano-rod result from the strain relaxation of overgrowth GaN.

  2. Molecular-beam-epitaxy-grown ZnMgS ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Sou, I. K.; Wu, Marcus C. W.; Sun, T.; Wong, K. S.; Wong, G. K. L.

    2001-03-01

    Epitaxial growth of Zn1-xMgxS alloy thin films on GaP(100) substrates was carried out using the molecular-beam-epitaxy technique. In situ reflection high-energy electron diffraction studies show that the alloys can be grown with a stable zinc-blende structure up to x around 30%. For x>30%, a structural transition will occur at a critical thickness which is sensitively dependent on the x composition. A near-band-edge peak with a full width at half maximum of about 10 nm was observed in room-temperature photoluminescence measurements made on as-grown alloy thin films. Several Zn1-xMgxS-based Schottky barrier photodetectors were fabricated. Room-temperature photoresponse measurements were performed on these detectors and abrupt long-wavelength cutoffs covering 325, 305, 295, and 270 nm were achieved for devices with Mg composition of 16%, 44%, 57%, and 75%, respectively. The response curve of the Zn0.43Mg0.57S device offers a close match to the erythemal action spectrum that describes human skin sensitivity to UV radiation.

  3. An ultra-compact, high-throughput molecular beam epitaxy growth system

    SciTech Connect

    Baker, A. A.; Hesjedal, T.; Braun, W. E-mail: fischer@createc.de; Rembold, S.; Fischer, A. E-mail: fischer@createc.de; Gassler, G.

    2015-04-15

    We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined with ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr{sub 2}O{sub 3} on c-plane sapphire and ferrimagnetic Fe{sub 3}O{sub 4} on MgO (001)

  4. Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy.

    PubMed

    Summerfield, Alex; Davies, Andrew; Cheng, Tin S; Korolkov, Vladimir V; Cho, YongJin; Mellor, Christopher J; Foxon, C Thomas; Khlobystov, Andrei N; Watanabe, Kenji; Taniguchi, Takashi; Eaves, Laurence; Novikov, Sergei V; Beton, Peter H

    2016-03-01

    Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are highly strained. Topological defects in the moiré patterns are observed and attributed to the relaxation of graphene islands which nucleate at different sites and subsequently coalesce. In addition, cracks are formed leading to strain relaxation, highly anisotropic strain fields, and abrupt boundaries between regions with different moiré periods. These cracks can also be formed by modification of the layers with a local probe resulting in the contraction and physical displacement of graphene layers. The Raman spectra of regions with a large moiré period reveal split and shifted G and 2D peaks confirming the presence of strain. Our work demonstrates a new approach to the growth of epitaxial graphene and a means of generating and modifying strain in graphene.

  5. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy.

    PubMed

    Zhong, Aihua; Hane, Kazuhiro

    2012-12-27

    GaN nanowall network was epitaxially grown on Si (111) substrate by molecular beam epitaxy. GaN nanowalls overlap and interlace with one another, together with large numbers of holes, forming a continuous porous GaN nanowall network. The width of the GaN nanowall can be controlled, ranging from 30 to 200 nm by adjusting the N/Ga ratio. Characterization results of a transmission electron microscope and X-ray diffraction show that the GaN nanowall is well oriented along the C axis. Strong band edge emission centered at 363 nm is observed in the spectrum of room temperature photoluminescence, indicating that the GaN nanowall network is of high quality. The sheet resistance of the Si-doped GaN nanowall network along the lateral direction was 58 Ω/. The conductive porous nanowall network can be useful for integrated gas sensors due to the large surface area-to-volume ratio and electrical conductivity along the lateral direction by combining with Si micromachining.

  6. An ultra-compact, high-throughput molecular beam epitaxy growth system.

    PubMed

    Baker, A A; Braun, W; Gassler, G; Rembold, S; Fischer, A; Hesjedal, T

    2015-04-01

    We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined with ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr2O3 on c-plane sapphire and ferrimagnetic Fe3O4 on MgO (001).

  7. Formation of Ga droplets on patterned GaAs (100) by molecular beam epitaxy.

    PubMed

    Li, Ming-Yu; Hirono, Yusuke; Koukourinkova, Sabina D; Sui, Mao; Song, Sangmin; Kim, Eun-Soo; Lee, Jihoon; Salamo, Gregory J

    2012-10-03

    In this paper, the formation of Ga droplets on photo-lithographically patterned GaAs (100) and the control of the size and density of Ga droplets by droplet epitaxy using molecular beam epitaxy are demonstrated. In extension of our previous result from the journal Physical Status Solidi A, volume 209 in 2012, the sharp contrast of the size and density of Ga droplets is clearly observed by high-resolution scanning electron microscope, atomic force microscope, and energy dispersive X-ray spectrometry. Also, additional monolayer (ML) coverage is added to strength the result. The density of droplets is an order of magnitude higher on the trench area (etched area), while the size of droplets is much larger on the strip top area (un-etched area). A systematic variation of ML coverage results in an establishment of the control of size and density of Ga droplets. The cross-sectional line profile analysis and root mean square roughness analysis show that the trench area (etched area) is approximately six times rougher. The atomic surface roughness is suggested to be the main cause of the sharp contrast of the size and density of Ga droplets and is discussed in terms of surface diffusion.

  8. NO-assisted molecular-beam epitaxial growth of nitrogen substituted EuO

    NASA Astrophysics Data System (ADS)

    Wicks, R.; Altendorf, S. G.; Caspers, C.; Kierspel, H.; Sutarto, R.; Tjeng, L. H.; Damascelli, A.

    2012-04-01

    We have investigated a method for substituting oxygen with nitrogen in EuO thin films, which is based on molecular beam epitaxy distillation with NO gas as the oxidizer. By varying the NO gas pressure, we produce crystalline, epitaxial EuO1 -xNx films with good control over the films' nitrogen concentration. In situ x-ray photoemission spectroscopy reveals that nitrogen substitution is connected to the formation Eu3+4f6 and a corresponding decrease in the number of Eu2+4f7, indicating that nitrogen is being incorporated in its 3- oxidation state. While small amounts of Eu3+ in over-oxidized Eu1-δO thin films lead to a drastic suppression of the ferromagnetism, the formation of Eu3+ in EuO1-xNx still allows the ferromagnetic phase to exist with an unaffected Tc, thus providing an ideal model system to study the interplay between the magnetic f7 (J = 7/2) and the non-magnetic f6 (J = 0) states close to the Fermi level.

  9. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    SciTech Connect

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-23

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga{sub 2}O{sub 3}, In{sub 2}O{sub 3}, and SnO{sub 2} on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga{sub 2}O, In{sub 2}O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO{sub 2}, somewhat lower for In{sub 2}O{sub 3}, and the lowest for Ga{sub 2}O{sub 3}. Our findings can be generalized to further oxides that possess related sub-oxides.

  10. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dangwal Pandey, A.; Krausert, K.; Franz, D.; Grânäs, E.; Shayduk, R.; Müller, P.; Keller, T. F.; Noei, H.; Vonk, V.; Stierle, A.

    2016-08-01

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  11. High response solar-blind MgZnO photodetectors grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Winston V.; Wei, Ming; Boutwell, R. Casey; Liu, Huiyong

    2014-03-01

    High quality w-MgxZn1-xO thin films were grown epitaxially on c-plane sapphire substrates by plasma-assisted Molecular Beam Epitaxy. ZnO thin films with high crystalline quality, low defect and dislocation densities, and subnanometer surface roughness were achieved by applying a low temperature nucleation layer. By tuning Mg/Zn flux ratio, wurtzite MgxZn1-xO thin films with Mg composition as high as x=0.46 were obtained without phase segregation. Metal- Semiconductor-Metal (MSM) photoconductive and Schottky barrier devices with interdigitated electrode geometry and active surface area of 1 mm2 were fabricated and characterized. Resultant devices showed ~100 A/W peak responsivity at wavelength of ~260nm. We also report on cubic rock salt c-MgxZn1-xO thin films, following a non-traditional approach on MgO substrates, to demonstrate solar-blind photoresponse in MSM photodetectors, realizing a peak responsivity of 460 A/W (@ 250 nm) and 12.6 mA/W (@ 240nm) for mixed phase and single crystal films, respectively. A specific focus of the work is on identifying the impact of various growth parameters on the performance of the c- MgZnO detectors.

  12. Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3

    NASA Astrophysics Data System (ADS)

    Tellekamp, M. Brooks; Shank, Joshua C.; Goorsky, Mark S.; Doolittle, W. Alan

    2016-12-01

    Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.

  13. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO{sub 3}

    SciTech Connect

    Prakash, Abhinav Dewey, John; Yun, Hwanhui; Jeong, Jong Seok; Mkhoyan, K. Andre; Jalan, Bharat

    2015-11-15

    Owing to its high room-temperature electron mobility and wide bandgap, BaSnO{sub 3} has recently become of significant interest for potential room-temperature oxide electronics. A hybrid molecular beam epitaxy (MBE) approach for the growth of high-quality BaSnO{sub 3} films is developed in this work. This approach employs hexamethylditin as a chemical precursor for tin, an effusion cell for barium, and a radio frequency plasma source for oxygen. BaSnO{sub 3} films were thus grown on SrTiO{sub 3} (001) and LaAlO{sub 3} (001) substrates. Growth conditions for stoichiometric BaSnO{sub 3} were identified. Reflection high-energy electron diffraction (RHEED) intensity oscillations, characteristic of a layer-by-layer growth mode were observed. A critical thickness of ∼1 nm for strain relaxation was determined for films grown on SrTiO{sub 3} using in situ RHEED. Scanning transmission electron microscopy combined with electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy confirmed the cube-on-cube epitaxy and composition. The importance of precursor chemistry is discussed in the context of the MBE growth of BaSnO{sub 3}.

  14. Magnetotransport in MgO-based magnetic tunnel junctions grown by molecular beam epitaxy (invited)

    SciTech Connect

    Andrieu, S. Bonell, F.; Hauet, T.; Montaigne, F.; Lefevre, P.; Bertran, F.

    2014-05-07

    The strong impact of molecular beam epitaxy growth and Synchrotron Radiation characterization tools in the understanding of fundamental issues in nanomagnetism and spintronics is illustrated through the example of fully epitaxial MgO-based Magnetic Tunnel Junctions (MTJs). If ab initio calculations predict very high tunnel magnetoresistance (TMR) in such devices, some discrepancy between theory and experiments still exists. The influence of imperfections in real systems has thus to be considered like surface contaminations, structural defects, unexpected electronic states, etc. The influence of possible oxygen contamination at the Fe/MgO(001) interface is thus studied, and is shown to be not so detrimental to TMR as predicted by ab initio calculations. On the contrary, the decrease of dislocations density in the MgO barrier of MTJs using Fe{sub 1−x}V{sub x} electrodes is shown to significantly increase TMR. Finally, unexpected transport properties in Fe{sub 1−X}Co{sub x}/MgO/Fe{sub 1−X}Co{sub x} (001) are presented. With the help of spin and symmetry resolved photoemission and ab initio calculation, the TMR decrease for Co content higher than 25% is shown to come from the existence of an interface state and the shift of the empty Δ1 minority spin state towards the Fermi level.

  15. On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Alloing, B.; Vézian, S.; Tottereau, O.; Vennéguès, P.; Beraudo, E.; Zuniga-Pérez, J.

    2011-01-01

    The polarity of GaN micro- and nanowires grown epitaxially by metal organic vapor phase epitaxy on sapphire substrates and by molecular-beam epitaxy, using ammonia as a nitrogen source, on sapphire and silicon substrates has been investigated. On Al2O3(0001), whatever the growth technique employed, the GaN wires show a mixture of Ga and N polarities. On Si(111), the wires grown by ammonia-molecular beam epitaxy are almost entirely Ga-polar (around 90%) and do not show inversion domains. These results can be understood in terms of the growth conditions employed during the nucleation stage.

  16. On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy

    SciTech Connect

    Alloing, B.; Vezian, S.; Tottereau, O.; Vennegues, P.; Beraudo, E.; Zuniga-Perez, J.

    2011-01-03

    The polarity of GaN micro- and nanowires grown epitaxially by metal organic vapor phase epitaxy on sapphire substrates and by molecular-beam epitaxy, using ammonia as a nitrogen source, on sapphire and silicon substrates has been investigated. On Al{sub 2}O{sub 3}(0001), whatever the growth technique employed, the GaN wires show a mixture of Ga and N polarities. On Si(111), the wires grown by ammonia-molecular beam epitaxy are almost entirely Ga-polar (around 90%) and do not show inversion domains. These results can be understood in terms of the growth conditions employed during the nucleation stage.

  17. Development of the Hybrid Molecular Beam Epitaxy Approach for Stannate Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Jalan, Bharat

    2014-03-01

    Among many leading oxide candidates with s-band physics, stannate family with perovskite structure where conduction band is derived mainly from tin 5s-band has generated resurgence of interest in creating them in thin film form due to the recent demonstration of high room temperature electron mobility, largely attributable to their low electron effective mass. We employ the hybrid molecular beam epitaxy approach utilizing elemental solid source for Sr and Ba, a chemical precursor source for Sn and a rf plasma source for oxygen, for the growth of SrSnO3 and BaSnO3. In this talk, we will present a detailed MBE growth study of SnO2 films on r-plane sapphire as a function of tin precursor flux, oxygen pressure and substrate temperature. High-resolution x-ray diffraction and atomic force microscopy revealed single phase, epitaxial (101) SnO2 films and atomically smooth surfaces (rms roughness value between 0.3 - 0.9 nm) respectively between substrate temperatures of 300 to 900 °C. Three growth regimes were identified as a function of temperature where films grew in reaction- flux- and desorption-limited regime with increasing temperature. Further growth exploration at constant substrate temperature reveled that the growth rate first increases and then becomes constant with increasing tin precursor flux (i.e. any excess tin flux desorbs). We will discuss its implication on the growth, and structural quality of ternary stannate oxides by presenting a comprehensive growth study of SrSnO3.

  18. Chemical and molecular beam epitaxy of III-V nanowires on silicon for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Gokul

    Nanowires, due to their unique structure and carrier transport abilities, have sparked huge interest in the semiconductor industry. An array of nanometric size wires inserted between the p and n conductivity regions of a conventional solar cell or core shell type p-n junction nanowires synergized with semiconductor nanocrystals can lead to faster carrier collection, thereby improving device performance. This work investigates the growth of GaAs and InP semiconductor nanowires on silicon (111) using Chemical Beam Epitaxy (CBE) and Molecular Beam Epitaxy (MBE). Uniform gold nanoparticles acting as growth centers in the Vapor Liquid Solid mode of growth were generated by using the cheap and rapid technique called Nanosphere Lithography (NSL). Variation of the experimental parameters during NSL resulted in honeycomb and hexagonal patterns of gold nanoparticles. A high degree of selectivity was obtained for CBE grown nanowires whereas the MBE grown GaAs nanowires revealed the formation of a thick polycrystalline wetting layer at the interface. The CBE grown InP nanowires mostly maintained the honeycomb structure although they were found to be oriented contrary to the expected <111> direction. SEM analysis of GaAs nanowires grown by CBE showed that during growth, the nanowires may coalesce with each other resulting in unique structures such as bipods, tripods and multipods. High resolution TEM analysis of single GaAs nanowires revealed periodic formation of contrasting materials. Diffraction patterns recorded at these dark contrast areas confirmed the formation of hexagonal wurtzite single crystal structures interspaced with cubic zincblende single crystal structures. These nanowires can be used for photovoltaic applications or as light emitting devices. In addition, the formation of superlattices of different crystal structures can pave the way for novel quantum confined optoelectronic devices.

  19. Scaling Approach to Anomalous Surface Roughening of the (d+1)-DIMENSIONAL Molecular-Beam Epitaxy Growth Equations

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Tang, Gang; Han, Kui; Hao, Da-Peng; Chen, Hua; Zhang, Lei-Ming

    To determine anomalous dynamic scaling of continuum growth equations, López12 proposed an analytical approach, which is based on the scaling analysis introduced by Hentschel and Family.15 In this work, we generalize this scaling analysis to the (d+1)-dimensional molecular-beam epitaxy equations to determine their anomalous dynamic scaling. The growth equations studied here include the linear molecular-beam epitaxy (LMBE) and Lai-Das Sarma-Villain (LDV). We find that both the LMBE and LDV equations, when the substrate dimension d>2, correspond to a standard Family-Vicsek scaling, however, when d<2, exhibit anomalous dynamic roughening of the local fluctuations of the growth height. When the growth equations exhibit anomalous dynamic scaling, we obtain the local roughness exponents by using scaling relation αloc=α-zκ, which are consistent with the corresponding numerical results.

  20. InAlN/GaN Bragg reflectors grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Gacevic, Z.; Fernandez-Garrido, S.; Calleja, E.; Estrade, S.

    2010-12-01

    We report on molecular beam epitaxy growth and characterization of ten-period lattice-matched InAlN/GaN distributed Bragg reflectors (DBRs), with peak reflectivity centered around 400 nm. Thanks to the well tuned ternary alloy composition, crack-free surfaces have been obtained, as confirmed by both optical and transmission electron microscopy (TEM). Their good periodicity and well-defined interfaces have been confirmed by both x-ray diffraction and TEM measurements. Peak reflectivity values as high as 60% with stop bands of 30 nm have been demonstrated. Optical measurements revealed that discrepancy between the obtained (60%) and the theoretically expected ({approx}75%) reflectivity is a consequence of significant residual absorption ({approx}35%). TEM measurements revealed the coexistence of zinc-blende and wurtzite phases, as well as planar defects, mainly in GaN. These defects are suggested as the potential source of the undesired absorption and/or scattering effects that lowered the DBRs' peak reflectivity.

  1. Thermodynamic analysis of molecular beam epitaxy of compounds in the In-Se system

    NASA Astrophysics Data System (ADS)

    Chatillon, Christian; Emery, Jean-Yves

    1993-03-01

    The molecular beam epitaxy of the compounds In4Se3(s), InSe(s) and In2Se3(s) is analysed using thermodynamics of vaporization and condensation phenomena. The growth conditions are studied as referred to equilibrium conditions in order to identify the main gaseous species that compete in the condensation and evaporation processes and to indicate the species which may have a low sticking coefficient. The general behaviour of MBE growth parameters is well described by thermodynamics, the domains of existence of In4Se3(s), InSe(s) and In2Se3(s) being directly correlated to the experimental results. The sticking or condensation coefficient of selenium is determined to be 0.52 on InSe(s) and 0.41 to 0.28 on In2Se3(s). The origin of this coefficient value is analysed and discussed in terms of thermal accommodation of the polymeric Sen(g) incident gaseous species.

  2. Surface reconstructions in molecular beam epitaxy of SrTiO{sub 3}

    SciTech Connect

    Kajdos, Adam P.; Stemmer, Susanne

    2014-11-10

    We show that reflection high-energy electron diffraction (RHEED) can be used as a highly sensitive tool to track surface and resulting film stoichiometry in adsorption-limited molecular beam epitaxy of (001) SrTiO{sub 3} thin films. Even under growth conditions that yield films with a lattice parameter that is identical to that of stoichiometric bulk crystals within the detection limit of high-resolution x-ray diffraction (XRD), changes in surface reconstruction occur from (1 × 1) to (2 × 1) to c(4 × 4) as the equivalent beam pressure of the Ti metalorganic source is increased. These surface reconstructions are correlated with a shift from mixed SrO/TiO{sub 2} termination to pure TiO{sub 2} termination. The crossover to TiO{sub 2} surface termination is also apparent in a phase shift in RHEED oscillations observed at the beginning of growth. Comparison with prior results for carrier mobilities of doped films shows that the best films are grown under conditions of a TiO{sub 2}-saturated surface [c(4 × 4) reconstruction] within the XRD growth window.

  3. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Zhao, Jia; Wang, Qi

    2017-03-01

    The Molecular Beam Epitaxial model is derived from the variation of a free energy, that consists of either a fourth order Ginzburg-Landau double well potential or a nonlinear logarithmic potential in terms of the gradient of a height function. One challenge in solving the MBE model numerically is how to develop proper temporal discretization for the nonlinear terms in order to preserve energy stability at the time-discrete level. In this paper, we resolve this issue by developing a first and second order time-stepping scheme based on the "Invariant Energy Quadratization" (IEQ) method. The novelty is that all nonlinear terms are treated semi-explicitly, and the resulted semi-discrete equations form a linear system at each time step. Moreover, the linear operator is symmetric positive definite and thus can be solved efficiently. We then prove that all proposed schemes are unconditionally energy stable. The semi-discrete schemes are further discretized in space using finite difference methods and implemented on GPUs for high-performance computing. Various 2D and 3D numerical examples are presented to demonstrate stability and accuracy of the proposed schemes.

  4. Mapping growth windows in quaternary perovskite oxide systems by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brahlek, Matthew; Zhang, Lei; Zhang, Hai-Tian; Lapano, Jason; Dedon, Liv R.; Martin, Lane W.; Engel-Herbert, Roman

    2016-09-01

    Requisite to growing stoichiometric perovskite thin films of the solid-solution A'1-xAxBO3 by hybrid molecular beam epitaxy is understanding how the growth conditions interpolate between the end members A'BO3 and ABO3, which can be grown in a self-regulated fashion, but under different conditions. Using the example of La1-xSrxVO3, the two-dimensional growth parameter space that is spanned by the flux of the metal-organic precursor vanadium oxytriisopropoxide and composition, x, was mapped out. The evolution of the adsorption-controlled growth window was obtained using a combination of X-ray diffraction, atomic force microscopy, reflection high-energy electron-diffraction (RHEED), and Rutherford backscattering spectroscopy. It is found that the stoichiometric growth conditions can be mapped out quickly with a single calibration sample using RHEED. Once stoichiometric conditions have been identified, the out-of-plane lattice parameter can be utilized to precisely determine the composition x. This strategy enables the identification of growth conditions that allow the deposition of stoichiometric perovskite oxide films with random A-site cation mixing, which is relevant to a large number of perovskite materials with interesting properties, e.g., high-temperature superconductivity and colossal magnetoresistance, that emerge in solid solution A'1-xAxBO3.

  5. Thermal Stability of Annealed Germanium-Tin Alloys Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bhargava, Nupur; Gupta, Jay Prakash; Faleev, Nikolai; Wielunski, Leszek; Kolodzey, James

    2017-03-01

    The thermal stability of undoped and boron-doped germanium tin (Ge1- x Sn x ) alloys grown by molecular beam epitaxy with varying composition and layer thickness was investigated. The alloys were annealed in forming gas at various temperatures up to 800°C for 1 min using rapid thermal processing, and were characterized using high-resolution x-ray diffraction and Rutherford backscattering spectrometry. It was found that the Ge1- x Sn x alloys were stable to well above the growth temperature, but the stability decreased with increasing thickness, Sn content, and doping. Ge1- x Sn x alloys with low Sn composition ( x ˜ 0.025) were stable up to 700°C, and for a given Sn composition, the undoped alloys were more thermally stable than the doped alloys. As the thickness of the Ge0.975Sn0.025 alloys increased to about 950 nm, the temperature of thermal stability dropped to 500°C. As the Sn composition of the 90 nm-Ge1- x Sn x alloys increased up to x = 0.08, the temperature of thermal stability dropped to 300°C. At higher annealing temperatures, the Ge1- x Sn x alloy degraded with lower crystal quality, and a gradient in the Sn composition appeared, which may be due to Sn diffusion or segregation.

  6. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.; Dippo, Pat; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Barnes, Teresa M.; Myers, Thomas H.

    2016-08-29

    Heterostructures with CdTe and CdTe 1-xSex (x ~ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ~ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ~6 um, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 us with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 us.

  7. Growth of uniform CaGe2 films by alternating layer molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, Jinsong; Katoch, Jyoti; Ahmed, Adam S.; Pinchuk, Igor V.; Young, Justin R.; Johnston-Halperin, Ezekiel; Pelz, Jonathan; Kawakami, Roland K.

    2017-02-01

    Layered Zintl phase van der Waals (vdW) materials are of interest due to their strong spin-orbit coupling and potential for high mobility. Here, we report the successful growth of large area CaGe2 films, as a model of layered Zintl phase materials, on atomically flat Ge(111) substrates by molecular beam epitaxy (MBE) using an alternating layer growth (ALG) protocol. Reflection high energy electron diffraction (RHEED) patterns of the Ge buffer layer and CaGe2 indicate high quality two dimensional surfaces, which is further confirmed by atomic force microscopy (AFM), showing atomically flat and uniform CaGe2 films. The appearance of Laue oscillations in X-ray diffraction (XRD) and Kiessig fringes in the X-ray reflectivity (XRR), which are absent in co-deposited CaGe2, confirms the uniformity of the CaGe2 film and the smoothness of the interface. These results demonstrate a novel method of deposition of CaGe2 that could be also applied to other layered Zintl phase vdW materials. Also, the high quality of the CaGe2 film is promising for the exploration of novel properties of germanane.

  8. Temperature stabilized effusion cell evaporation source for thin film deposition and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tiedje, H. F.; Brodie, D. E.

    2000-05-01

    A simple effusion cell evaporation source for thin film deposition and molecular-beam epitaxy is described. The source consists of a crucible with a thermocouple temperature sensor heated by a resistive crucible heater. Radiation heat transfer from the crucible to the thermocouple produces a consistent and reproducible thermocouple temperature for a given crucible temperature, without direct contact between the thermocouple and the crucible. The thermocouple temperature is somewhat less than the actual crucible temperature because of heat flow from the thermocouple junction along the thermocouple lead wires. In a typical case, the thermocouple temperature is 1007 °C while the crucible is at 1083 °C. The crucible temperature stability is estimated from the measured sensitivity of the evaporation rate of indium to temperature, and the observed variations in the evaporation rate for a fixed thermocouple temperature. The crucible temperature peak-to-peak variation over a one hour period is 1.2 °C. Machined molybdenum crucibles were used in the indium and copper sources for depositing CuInSe2 thin films for solar cells.

  9. Magneto-Transport Studies of Molecular Beam Epitaxial Grown Osmium Silicides

    NASA Astrophysics Data System (ADS)

    Cottier, Ryan; Zhao, Wei; Amir, Fatima; Hossain, Khalid; Anibou, Noureddine; Donner, Wolfgang; Golding, Terry

    2006-03-01

    Semiconducting transition metal silicides present a possible solution to on-chip integration of optical and electronic Si-based circuitry. Two phases of osmium silicide (OsSi2 and Os2Si3) are predicted to have promising optical characteristics but require additional development to fully determine their feasibility for high-quality devices. This study has been motivated by reports that OsSi2 has a bandgap between 1.4--1.8eV [1, 2] and Os2Si3 may have a direct bandgap of 0.95 eV [3] or 2.3 eV [1]. In this paper we will present temperature dependent (20 < T < 300 K) magneto Hall measurements of molecular beam epitaxial grown osmium silicide thin films. Os and Si were coevaporated onto Si(100) substrates at varying growth rates and temperatures. XRD was performed in order to identify the silicide phases present. We will discuss our results in relation to the known phase diagrams and our growth parameters. [1] L. Schellenberg et al., J. Less-Common Met. 144, 341 (1988). [2] K. Mason and G. Müller-Vogt, J. Appl. Phys. 63, 34 (1983). [3] A. B. Filonov et al., Phys. Rev. B 60(24), 16494 (1999).

  10. Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxy.

    PubMed

    Zhuang, Qian D; Anyebe, Ezekiel A; Sanchez, Ana M; Rajpalke, Mohana K; Veal, Tim D; Zhukov, Alexander; Robinson, Benjamin J; Anderson, Frazer; Kolosov, Oleg; Fal'ko, Vladimir

    2014-01-01

    We report the self-catalysed growth of InAs nanowires (NWs) on graphite thin films using molecular beam epitaxy via a droplet-assisted technique. Through optimising metal droplets, we obtained vertically aligned InAs NWs with highly uniform diameter along their entire length. In comparison with conventional InAs NWs grown on Si (111), the graphite surface led to significant effects on the NWs geometry grown on it, i.e. larger diameter, shorter length with lower number density, which were ascribed to the absence of dangling bonds on the graphite surface. The axial growth rate of the NWs has a strong dependence on growth time, which increases quickly in the beginning then slows down after the NWs reach a length of approximately 0.8 μm. This is attributed to the combined axial growth contributions from the surface impingement and sidewall impingement together with the desorption of adatoms during the diffusion. The growth of InAs NWs on graphite was proposed following a vapour-solid mechanism. High-resolution transmission electron microscopy reveals that the NW has a mixture of pure zinc-blende and wurtzite insertions.

  11. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy.

    PubMed

    Lee, J H; Luo, G; Tung, I C; Chang, S H; Luo, Z; Malshe, M; Gadre, M; Bhattacharya, A; Nakhmanson, S M; Eastman, J A; Hong, H; Jellinek, J; Morgan, D; Fong, D D; Freeland, J W

    2014-09-01

    The A(n+1)B(n)O(3n+1) Ruddlesden-Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of the intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden-Popper phases. We demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La3Ni2O7.

  12. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.; Dippo, Pat; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Barnes, Teresa M.; Myers, Thomas H.

    2016-08-01

    Heterostructures with CdTe and CdTe1-xSex (x ˜ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ˜ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ˜6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.

  13. Growth of SrVO{sub 3} thin films by hybrid molecular beam epitaxy

    SciTech Connect

    Eaton, Craig; Brahlek, Matthew; Engel-Herbert, Roman; Moyer, Jarrett A.; Alipour, Hamideh M.; Grimley, Everett D.; LeBeau, James M.

    2015-11-15

    The authors report the growth of stoichiometric SrVO{sub 3} thin films on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (001) substrates using hybrid molecular beam epitaxy. This growth approach employs a conventional effusion cell to supply elemental A-site Sr and the metalorganic precursor vanadium oxytriisopropoxide (VTIP) to supply vanadium. Oxygen is supplied in its molecular form through a gas inlet. An optimal VTIP:Sr flux ratio has been identified using reflection high-energy electron-diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy, demonstrating stoichiometric SrVO{sub 3} films with atomically flat surface morphology. Away from the optimal VTIP:Sr flux, characteristic changes in the crystalline structure and surface morphology of the films were found, enabling identification of the type of nonstoichiometry. For optimal VTIP:Sr flux ratios, high quality SrVO{sub 3} thin films were obtained with smallest deviation of the lattice parameter from the ideal value and with atomically smooth surfaces, indicative of the good cation stoichiometry achieved by this growth technique.

  14. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  15. Thin film growth of CaFe2As2 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  16. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    SciTech Connect

    Feng, Wuwei Wang, Weihua; Zhao, Chenglong; Van Quang, Nguyen; Cho, Sunglae; Dung, Dang Duc

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  17. Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy

    SciTech Connect

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Basile, Leonardo; Lu, Ning; Azcatl, Angelica; Magno, Katrina; Wallace, Robert M.; Kim, Moon; Idrobo, Juan -Carlos; Furdyna, Jacek K.; Jena, Debdeep; Xing, Huili Grace

    2016-01-06

    Layered materials are an actively pursued area of research for realizing highly scaled technologies involving both traditional device structures as well as new physics. Lately, non-equilibrium growth of 2D materials using molecular beam epitaxy (MBE) is gathering traction in the scientific community and here we aim to highlight one of its strengths, growth of abrupt heterostructures, and superlattices (SLs). In this work we present several of the firsts: first growth of MoTe2 by MBE, MoSe2 on Bi2Se3 SLs, transition metal dichalcogenide (TMD) SLs, and lateral junction between a quintuple atomic layer of Bi2Te3 and a triple atomic layer of MoTe2. In conclusion, reflected high electron energy diffraction oscillations presented during the growth of TMD SLs strengthen our claim that ultrathin heterostructures with monolayer layer control is within reach.

  18. Usage of antimony segregation for selective doping of Si in molecular beam epitaxy

    SciTech Connect

    Yurasov, D. V.; Drozdov, M. N.; Murel, A. V.; Shaleev, M. V.; Novikov, A. V.; Zakharov, N. D.

    2011-06-01

    An original approach to selective doping of Si by antimony (Sb) in molecular beam epitaxy (MBE) is proposed and verified experimentally. This approach is based on controllable utilization of the effect of Sb segregation. In particular, the sharp dependence of Sb segregation on growth temperature in the range of 300-550 deg. C is exploited. The growth temperature variations between the kinetically limited and maximum segregation regimes are suggested to be utilized in order to obtain selectively doped structures with abrupt doping profiles. It is demonstrated that the proposed technique allows formation of selectively doped Si:Sb layers, including delta ({delta}-)doped layers in which Sb concentrations can be varied from 5 x 10{sup 15} to 10{sup 20} cm{sup -3}. The obtained doped structures are shown to have a high crystalline quality and the short-term growth interruptions, which are needed to change the substrate temperature, do not lead to any significant accumulation of background impurities in grown samples. Realization of the proposed approach requires neither too low (<300 deg. C), nor too high (>600 deg. C) growth temperatures or any special equipment for the MBE machines.

  19. Lattice-registered growth of GaSb on Si (211) with molecular beam epitaxy

    SciTech Connect

    Hosseini Vajargah, S.; Botton, G. A.; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.

    2012-11-01

    A GaSb film was grown on a Si(211) substrate using molecular beam epitaxy indicating full lattice relaxation as well as full lattice registration and dislocation-free growth in the plane perpendicular to the [01 - 1]-direction. Heteroepitaxy of GaSb on a Si(211) substrate is dominated by numerous first order and multiple higher order micro-twins. The atomic-resolved structural study of GaSb films by high-angle annular dark-field scanning transmission electron microscopy reveals that slight tilt, along with twinning, favors the lattice registry to Si(211) substrates. Preferential bonding of impinging Ga and Sb atoms at the interface due to two distinctive bonding sites on the Si(211) surface enables growth that is sublattice-ordered and free of anti-phase boundaries. The role of the substrate orientation on the strain distribution of GaSb epilayers is further elucidated by investigating the local change in the lattice parameter using the geometric phase analysis method and hence effectiveness of the lattice tilting in reducing the interfacial strain was confirmed further.

  20. Hopping conduction and its photoquenching in molecular beam epitaxial GaAs grown at low temperatures

    SciTech Connect

    Fang, Z.Q.; Look, D.C.

    1993-12-01

    As the growth temperature of molecular beam epitaxial GaAs is increased from 250 to 400{degrees}C, the dominant conduction changes from hopping conduction to band conduction with a donor activation energy of 0.65 eV. A 300{degrees}C grown layer is especially interesting because each conduction mechanism is dominant in a particular temperature range, hopping below 300K and band conduction above. Below 140K, the hopping conduction is greatly diminished (quenched) by irradiation with either infrared (hv {le} 1.12 eV) or 1.46 eV light, but then recovers above 140K with exactly the same thermal kinetics as are found for the famous EL2. Thus, the 0.65 eV donor, which is responsible for both the hopping and band conduction, is very similar to EL2, but not identical because of the different activation energy (0.65 eV vs 0.75 eV for EL2). 12 refs., 4 figs.

  1. Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy

    SciTech Connect

    Goodman, Kevin D.; Protasenko, Vladimir V.; Verma, Jai; Kosel, Thomas H.; Xing, Huili G.; Jena, Debdeep

    2011-04-15

    Indium gallium nitride nanowires show promise as being prime candidates for optical devices since they can be grown with band gaps spanning the visible spectra, while at the same time can be composed of stress free material. The goal of the work presented here was to obtain InGaN nanowires producing green emission at room temperature. Two growth recipes were found to yield InGaN nanowire growth on silicon substrates using plasma-assisted molecular beam epitaxy. At room temperature the photoluminescence (PL) of wire ensembles indeed peaked at 530 nm but, in addition, it was discovered that at low temperatures the emission often covered a broader (360-700 nm) spectrum. This broad optical range indicated indium content fluctuations in individual wires, wire-to-wire fluctuations, or a combination of the two. EDX measurements performed on single wires confirmed this hypothesis and correlated well with PL data. Low temperature PL studies of InGaN individual wires also revealed interwire and intrawire inhomogeneity of emission spectra stemming from a nonuniform indium distribution. The emission quantum yield for bright single wires was extracted to be more than 50% at 4 K. The findings suggest that the wire surfaces do not efficiently quench optical emission at low temperatures. These defect-free wires offer not only a potential path for green emitters, but also as integrated phosphors for broad spectral emission.

  2. Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxy

    PubMed Central

    2014-01-01

    We report the self-catalysed growth of InAs nanowires (NWs) on graphite thin films using molecular beam epitaxy via a droplet-assisted technique. Through optimising metal droplets, we obtained vertically aligned InAs NWs with highly uniform diameter along their entire length. In comparison with conventional InAs NWs grown on Si (111), the graphite surface led to significant effects on the NWs geometry grown on it, i.e. larger diameter, shorter length with lower number density, which were ascribed to the absence of dangling bonds on the graphite surface. The axial growth rate of the NWs has a strong dependence on growth time, which increases quickly in the beginning then slows down after the NWs reach a length of approximately 0.8 μm. This is attributed to the combined axial growth contributions from the surface impingement and sidewall impingement together with the desorption of adatoms during the diffusion. The growth of InAs NWs on graphite was proposed following a vapour-solid mechanism. High-resolution transmission electron microscopy reveals that the NW has a mixture of pure zinc-blende and wurtzite insertions. PMID:25024683

  3. Au-assisted molecular beam epitaxy of InAs nanowires: Growth and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Tchernycheva, Maria; Travers, Laurent; Patriarche, Gilles; Glas, Frank; Harmand, Jean-Christophe; Cirlin, George E.; Dubrovskii, Vladimir G.

    2007-11-01

    The Au-assisted molecular beam epitaxial growth of InAs nanowires is discussed. In situ reflection high-energy electron diffraction observations of phase transitions of the catalyst particles indicate that they can be liquid below the eutectic point of the Au-In alloy. The temperature range where the catalyst can be liquid covers the range where we observed nanowire formation (380-430 °C). The variation of nanowire growth rate with temperature is investigated. Pure axial nanowire growth is observed at high temperature while mixed axial/lateral growth occurs at low temperature. The change of the InAs nanowire shape with growth duration is studied. It is shown that significant lateral growth of the lower part of the nanowire starts when its length exceeds a critical value, so that their shape presents a steplike profile along their axis. A theoretical model is proposed to explain the nanowire morphology as a result of the axial and lateral contributions of the nanowire growth.

  4. Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Goodman, Kevin D.; Protasenko, Vladimir V.; Verma, Jai; Kosel, Thomas H.; Xing, Huili G.; Jena, Debdeep

    2011-04-01

    Indium gallium nitride nanowires show promise as being prime candidates for optical devices since they can be grown with band gaps spanning the visible spectra, while at the same time can be composed of stress free material. The goal of the work presented here was to obtain InGaN nanowires producing green emission at room temperature. Two growth recipes were found to yield InGaN nanowire growth on silicon substrates using plasma-assisted molecular beam epitaxy. At room temperature the photoluminescence (PL) of wire ensembles indeed peaked at 530 nm but, in addition, it was discovered that at low temperatures the emission often covered a broader (360-700 nm) spectrum. This broad optical range indicated indium content fluctuations in individual wires, wire-to-wire fluctuations, or a combination of the two. EDX measurements performed on single wires confirmed this hypothesis and correlated well with PL data. Low temperature PL studies of InGaN individual wires also revealed interwire and intrawire inhomogeneity of emission spectra stemming from a nonuniform indium distribution. The emission quantum yield for bright single wires was extracted to be more than 50% at 4 K. The findings suggest that the wire surfaces do not efficiently quench optical emission at low temperatures. These defect-free wires offer not only a potential path for green emitters, but also as integrated phosphors for broad spectral emission.

  5. Thermal Stability of Annealed Germanium-Tin Alloys Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bhargava, Nupur; Gupta, Jay Prakash; Faleev, Nikolai; Wielunski, Leszek; Kolodzey, James

    2017-01-01

    The thermal stability of undoped and boron-doped germanium tin (Ge1-x Sn x ) alloys grown by molecular beam epitaxy with varying composition and layer thickness was investigated. The alloys were annealed in forming gas at various temperatures up to 800°C for 1 min using rapid thermal processing, and were characterized using high-resolution x-ray diffraction and Rutherford backscattering spectrometry. It was found that the Ge1-x Sn x alloys were stable to well above the growth temperature, but the stability decreased with increasing thickness, Sn content, and doping. Ge1-x Sn x alloys with low Sn composition (x ˜ 0.025) were stable up to 700°C, and for a given Sn composition, the undoped alloys were more thermally stable than the doped alloys. As the thickness of the Ge0.975Sn0.025 alloys increased to about 950 nm, the temperature of thermal stability dropped to 500°C. As the Sn composition of the 90 nm-Ge1-x Sn x alloys increased up to x = 0.08, the temperature of thermal stability dropped to 300°C. At higher annealing temperatures, the Ge1-x Sn x alloy degraded with lower crystal quality, and a gradient in the Sn composition appeared, which may be due to Sn diffusion or segregation.

  6. Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Keen, B.; Makin, R.; Stampe, P. A.; Kennedy, R. J.; Sallis, S.; Piper, L. J.; McCombe, B.; Durbin, S. M.

    2014-04-01

    The alloying of bismuth with III-V semiconductors, in particular GaAs and InAs thin films grown by molecular beam epitaxy (MBE), has attracted considerable interest due to the accompanying changes in band structure and lattice constant. Specifically, bismuth incorporation in these compounds results in both a reduction in band gap (through shifting of the valence band) and an increase in the lattice constant of the alloy. To fully understand the composition of these alloys, a better understanding of the binary endpoints is needed. At present, a limited amount of literature exists on the III-Bi family of materials, most of which is theoretical work based on density functional theory calculations. The only III-Bi material known to exist (in bulk crystal form) is InBi, but its electrical properties have not been sufficiently studied and, to date, the material has not been fabricated as a thin film. We have successfully deposited crystalline InBi on (100) GaAs substrates using MBE. Wetting of the substrate is poor, and regions of varying composition exist across the substrate. To obtain InBi, the growth temperature had to be below 100 °C. It was found that film crystallinity improved with reduced Bi flux, into an In-rich regime. Additionally, attempts were made to grow AlBi and GaBi.

  7. Growth of ZnSnN2 by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Feldberg, N.; Aldous, J. D.; Stampe, P. A.; Kennedy, R. J.; Veal, T. D.; Durbin, S. M.

    2014-04-01

    The Zn-IV-N2 family of materials represents a potential earth abundant element alternative to conventional compound semiconductor materials that are based on gallium and indium. While both ZnSiN2 and ZnGeN2 have been studied to some degree, very little is known about the narrow-gap member ZnSnN2. Here, we investigate the growth dynamics of crystalline ZnSnN2 through plasma-assisted molecular beam epitaxy. All films exhibit some degree of crystalline order regardless of growth conditions, although significant tin coverage was observed for films grown with low Zn:Sn flux ratio; Zn flux in particular became increasingly problematic at increased substrate temperatures designed to improve crystallinity. Single-crystal material was achieved through careful optimization of growth parameters. Regardless of deposition conditions or substrate choice, however, all films exhibit a monoclinic structure as opposed to the predicted orthorhombic lattice; this can be directly attributed to sublattice disorder.

  8. Plasma-assisted molecular beam epitaxy growth of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Feldberg, Nathaniel; Aldous, James; Yao, Yuan; Tanveer, Imtiaz; Keen, Benjamin; Linhart, Wojciech; Veal, Tim; Song, Young-Wook; Reeves, Roger; Durbin, Steve

    2012-02-01

    The Zn-IV-nitrides are a promising series of ``earth abundant element'' semiconductors with a predicted band gap range of 0.6 eV to 5.4 eV, which, like the (Al,Ga,In)N family, spans the entire visible solar spectrum. Considering this alternative family has a number of advantages, including the avoidance of indium, the price of which has varied almost an order of magnitude over the past decade, and surface electron accumulation which is present in the In-rich alloys. Not all members of this family have yet been synthesized, in particular ZnSnN2, the most important member for PV with its predicted band gap of approximately 2 eV. We have successfully grown a series of these films using plasma-assisted molecular beam epitaxy using elemental Zn and Sn sources. In this report, we discuss the relationship between process parameters and microstructure, as well as stoichiometry as determined by Rutherford backscattering spectrometry. Additionally, we provide preliminary estimates for its bandgap energy based on photoluminescence and optical absorption.

  9. Molecular Beam Epitaxy Growth of GaBi, InBi and InGaBi

    NASA Astrophysics Data System (ADS)

    Keen, B.; Makin, R.; Stampe, P. A.; Kennedy, R. J.; Piper, L. F. J.; McCombe, B.; McConville, C. F.; Durbin, S. M.

    2014-03-01

    Recent interest in bismuth alloys of III-V semiconductors for infrared and far-infrared device applications, specifically GaAsBi and InAsBi, has indicated that further study of the III-Bi family of binary compounds would be of great help in improving the quality of these material systems. While immiscibility issues have so far frustrated the growth of GaBi and AlBi, InBi is less problematic, and we have grown it by molecular beam epitaxy on (001) GaAs substrates. However, regions of varying composition exist across the substrate due to poor wetting of the surface. In an effort to improve film quality we have continued to refine the growth parameters by adjusting substrate temperature, beam flux ratio, and deposition rate. Characterization of these films has been performed by x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). Additionally, we have explored growth of GaBi and In1-xGaxBi at low Ga mole fractions, and modeled this using molecular dynamics simulations. This work is supported by the Research Foundation of the State University of New York Collaborations Fund.

  10. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    SciTech Connect

    Umlor, M.T.; Keeble, D.J.; Asoka-Kumar, P.; Lynn, K.G.; Cooke, P.W.

    1994-08-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al{sub 0.32}Ga{sub 0.68}As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al{sub 0.32}Ga{sub 0.68}:Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700{degrees}C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450{degrees}C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500{degrees}C. The nature of the defect was shown to be different for material grown at 350 and 230{degrees}C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230{degrees}C, respectively.

  11. In-situ spectral reflectance for improving molecular beam epitaxy device growth

    SciTech Connect

    Breiland, W.G.; Hammons, B.E.; Hou, H.Q.; Killeen, K.P.; Klem, J.F.; Reno, J.L.; Sherwin, M.

    1997-05-01

    This report summarizes the development of in situ spectral reflectance as a tool for improving the quality, reproducibility, and yield of device structures grown from compound semiconductors. Although initially targeted at MBE (Molecular Beam Epitaxy) machines, equipment difficulties forced the authors to test most of their ideas on a MOCVD (Metal Organic Chemical Vapor Deposition) reactor. A pre-growth control strategy using in situ reflectance has led to an unprecedented demonstration of process control on one of the most difficult device structures that can be grown with compound semiconductor materials. Hundreds of vertical cavity surface emitting lasers (VCSEL`s) were grown with only {+-} 0.3% deviations in the Fabry-Perot cavity wavelength--a nearly ten-fold improvement over current calibration methods. The success of the ADVISOR (Analysis of Deposition using Virtual Interfaces and Spectroscopic Optical Reflectance) method has led to a great deal of interest from the commercial sector, including use by Hewlett Packard and Honeywell. The algorithms, software and reflectance design are being evaluated for patents and/or license agreements. A small company, Filmetrics, Inc., is incorporating the ADVISOR analysis method in its reflectometer product.

  12. Formation of Ge-Sn nanodots on Si(100) surfaces by molecular beam epitaxy

    PubMed Central

    2011-01-01

    The surface morphology of Ge0.96Sn0.04/Si(100) heterostructures grown at temperatures from 250 to 450°C by atomic force microscopy (AFM) and scanning tunnel microscopy (STM) ex situ has been studied. The statistical data for the density of Ge0.96Sn0.04 nanodots (ND) depending on their lateral size have been obtained. Maximum density of ND (6 × 1011 cm-2) with the average lateral size of 7 nm can be obtained at 250°C. Relying on the reflection of high energy electron diffraction, AFM, and STM, it is concluded that molecular beam growth of Ge1-xSnx heterostructures with the small concentrations of Sn in the range of substrate temperatures from 250 to 450°C follows the Stranski-Krastanow mechanism. Based on the technique of recording diffractometry of high energy electrons during the process of epitaxy, the wetting layer thickness of Ge0.96Sn0.04 films is found to depend on the temperature of the substrate. PMID:21711584

  13. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    NASA Technical Reports Server (NTRS)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  14. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    SciTech Connect

    Ganz, P. R.; Schaadt, D. M.

    2011-12-23

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  15. Influence of substrate orientation on the structural quality of GaAs nanowires in molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Shi, Sui-Xing; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2015-01-26

    In this study, the effect of substrate orientation on the structural quality of Au-catalyzed epitaxial GaAs nanowires grown by a molecular beam epitaxy reactor has been investigated. It was found that the substrate orientations can be used to manipulate the nanowire catalyst composition and the catalyst surface energy and, therefore, to alter the structural quality of GaAs nanowires grown on different substrates. Defect-free wurtzite-structured GaAs nanowires grown on the GaAs (110) substrate have been achieved under our growth conditions.

  16. Growth and characterization of GaAs layers on Si substrates by migration-enhanced molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Liu, John K.; Radhakrishnan, Gouri; Katz, Joseph; Sakai, Shiro

    1988-01-01

    Migration-enhanced molecular beam epitaxial (MEMBE) growth and characterization of the GaAs layer on Si substrates (GaAs/Si) are reported. The MEMBE growth method is described, and material properties are compared with those of normal two-step MBE-grown or in situ annealed layers. Micrographs of cross-section view transmission electron microscopy and scanning surface electron microscopy of MEMBE-grown GaAs/Si showed dislocation densities of 10 to the 7th/sq cm. AlGaAs/GaAs double heterostructures have been successfully grown on MEMBE GaAs/Si by both metalorganic chemical vapor deposition and liquid phase epitaxy.

  17. Structural and magnetic properties of magnetoelectric oxide heterostructures deposited by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sterbinsky, George Evan

    There is considerable interest in incorporating magnetic materials into electronic devices to achieve new functions such as nonvolatile memories. Electric field control of magnetism is of much interest for new low power electronic devices because it eliminates the need to apply magnetic fields. One approach to achieving electrical control of magnetism is to exploit magnetoelastic effects in composites of ferromagnetic and ferroelectric materials. Application of an electric field to the composite will induce a strain through the piezo-electric effect, and the strain will alter the magnetization of the ferromagnetic constituent through the magnetoelastic effect. In this work, we examine the relationships between growth, strain, and magnetic properties of epitaxial ferrimagnetic Fe3O4 (magnetite) and ferroelectric BaTiO3 thin film heterostructures. We find that altering the strain state of a magnetite layer deposited on a BaTiO3 substrate has a profound effect on its magnetization. Here, we demonstrate the interaction between strain and magnetization is mediated by magnetic anisotropy and the magnetic domains structure of the films. Epitaxial magnetite films were deposited on MgO, BaTiO3, and SrTiO3 substrates by molecular beam epitaxy between temperatures of 573 and 723 K. Examination of the morphologies of Fe3O 4 films indicates that island growth is favored. Films exhibit in-plane magnetic isotropy and reduced saturation magnetizations with respect to the bulk material, as demonstrated by superconducting quantum interference device magnetometry. Magnetic hysteresis measurements suggest that these differences originate from antiphase boundary defects within the films. The strain in magnetite films deposited on BaTiO3 single crystal substrates was measured by x-ray diffraction. Measurements reveal a dependence of magnetization (M) on strain (epsilon) with discontinuities in magnetization versus temperature curves resulting from changes in the domain structure of the

  18. Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH)

    DTIC Science & Technology

    2013-09-01

    Optimization of the Nonradiative Lifetime of Molecular- Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH) by P...it to the originator. Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-6660 September 2013 Optimization of the Nonradiative ...REPORT TYPE Final 3. DATES COVERED (From - To) FY2013 4. TITLE AND SUBTITLE Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy

  19. TiO2 as an electrostatic template for epitaxial growth of EuO on MgO(001) by reactive molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Swartz, Adrian; Wong, Jared; Pinchuk, Igor; Kawakami, Roland

    2012-02-01

    Interfacial electrostatics play a key role in determining epitaxial quality in the heteroepitaxy of ionic rock salt materials. We investigate the initial growth modes and the role of interfacial electrostatic interactions of EuO epitaxy on MgO(001) by reactive molecular beam epitaxy. A TiO2 interfacial monolayer is employed to alleviate electrostatic interactions between the ions of the EuO and MgO to produce high quality epitaxial growth of EuO on MgO(001) with a 45 degree in plane rotation. For comparison, direct deposition of EuO on MgO, without the TiO2 layer, is discussed. A key difference of EuO epitaxy on TiO2/MgO is the ability to form EuO by substrate assisted oxidation and without the introduction of external oxygen to the interface. Such ultrathin films are shown to have bulk like magnetic properties

  20. Growth of amorphous and epitaxial alternative gate dielectrics on silicon by molecular-beam epitaxy and their characterization

    NASA Astrophysics Data System (ADS)

    Edge, Lisa Friedman

    The continued scaling of SiO2 in metal-oxide-semiconductor field-effect transistors (MOSFETs) is approaching its fundamental limit and in the next few years will have to be replaced with an alternative gate dielectric if Moore's law is to continue. In a search for suitable alternative dielectrics, I have investigated the growth of amorphous and epitaxial LaAlO3, LaScO3, La2O3, and Sc2O3 thin films by molecular-beam epitaxy (MBE) on silicon. A major challenge in the growth of alternative gate dielectrics on silicon is the formation of SiO2 at the interface between silicon and the high- K gate dielectric. In this dissertation, I have established deposition conditions that yielded abrupt interfaces (< 0.1 A of SiO2) between amorphous LaAlO3 or LaScO3 thin films and silicon. These results demonstrate the thinnest gate dielectrics ever produced that are free of interfacial SiO2, despite exposure to air. The thermal stability between silicon and the abrupt amorphous LaAlO 3 and LaScO3 thin films was established for the first time. By 900°C, crystallization is clearly observed, but the LaAlO3/Si interface remains sharp with no detectable interfacial SiO2. The thermal stability results establish key processing windows for the integration of amorphous LaAlO3 and LaScO3 thin films into silicon-based MOSFETs. In this work, the following critical physical properties of amorphous LaAlO3 thin films deposited on silicon have been determined: dielectric constant (K = 16 +/- 2), bandgap (Eg = 6.2 +/- 0.1 eV), and band alignment (DeltaEc = 1.8 +/- 0.2 for electrons and DeltaEv = 3.2 +/- 0.1 eV for holes). The following critical physical properties of amorphous LaScO3 thin films deposited on silicon have been determined: bandgap (Eg = 5.7 +/- 0.1 eV) and band alignment (DeltaEc = 2.0 +/- 0.1 eV for electrons and DeltaEv = 3.1 +/- 0.1 eV for holes). In this dissertation, epitaxial (0001) La2O3 thin films with the hexagonal crystal structure were grown on (111) Si for the first time

  1. Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth

    NASA Astrophysics Data System (ADS)

    Ohashi, S.; Lippmaa, M.; Nakagawa, N.; Nagasawa, H.; Koinuma, H.; Kawasaki, M.

    1999-01-01

    A high-temperature, oxygen compatible, and compact laser molecular beam epitaxy (laser MBE) system has been developed. The 1.06 μm infrared light from a continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to achieve a wide range and rapid control of substrate temperature in ultrahigh vacuum and at up to 1 atm oxygen pressure. The maximum usable temperature was limited to 1453 °C by the melting point of the nickel sample holder. To our knowledge, this is the highest temperature reported for pulsed laser deposition of oxide films. The efficient laser heating combined with temperature monitoring by a pyrometer and feedback control of the Nd:YAG laser power by a personal computer made it possible to regulate the substrate temperature accurately and to achieve high sample heating and cooling rates. The oxygen pressure and ablation laser triggering were also controlled by the computer. The accurate growth parameter control was combined with real-time in situ surface structure monitoring by reflection high energy electron diffraction to investigate oxide thin film growth in detail over a wide range of temperatures, oxygen partial pressures, and deposition rates. We have demonstrated the performance of this system by the fabrication of homoepitaxial SrTiO3 films as well as heteroepitaxial Sr2RuO4, and SrRuO3 films on SrTiO3 substrates at temperatures of up to 1300 °C. This temperature was high enough to change the film growth mode from layer by layer to step flow.

  2. Incorporation of manganese into semiconducting ScN using radio frequency molecular beam epitaxy

    SciTech Connect

    AL-Brithen, Hamad A.; Yang Haiqiang; Smith, Arthur R.

    2004-10-01

    The incorporation of manganese into semiconducting ScN, using radio frequency molecular beam epitaxy, has been investigated. X-ray diffraction and reflection high energy electron diffraction measurements show the face-centered tetragonal rocksalt-type crystal structure with Sc and Mn cations and N anions. In addition to the solute incorporation into the lattice, which is clear from the positions of the diffraction peaks, atomic force microscopy images show that the surface of the alloy grown at T{sub S}{<=}518 deg. C contains dot-like features, indicating surface accumulation. The areal dot density is found to decrease as the growth temperature increases, whereas the Mn incorporation increases at 518 deg. C. This behavior is suggestive of a thermally activated process, and it is well explained by an Arrhenius law, giving an activation energy (diffusion barrier) of 0.67 eV. Increasing the growth temperature to 612 deg. C leads to an increased desorption rate, resulting in little Mn incorporation. It has been found that the growth is nearly optimized at T{sub S}=518 deg. C for high Mn incorporation, smooth growth, and small accumulate density. The alloy is found to have lattice parameters which depend on the Mn/(Mn+Sc) bulk ratio. The alloy lattice constants follow Vegard's law depending on the Mn bulk fraction and the lattice constants of ScN and {theta}-phase MnN. The Mn incorporation and Mn incorporation coefficient for films grown at T{sub S}=518 deg. C increase as the Mn/(Mn+Sc) flux ratio increases.

  3. Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe

    SciTech Connect

    Madni, I.; Umana-Membreno, G. A.; Lei, W.; Gu, R.; Antoszewski, J.; Faraone, L.

    2015-11-02

    The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.

  4. Study of optical properties of GaAsN layers prepared by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Pulzara-Mora, A.; Cruz-Hernández, E.; Rojas-Ramirez, J.; Contreras-Guerrero, R.; Meléndez-Lira, M.; Falcony-Guajardo, C.; Aguilar-Frutis, M. A.; López-López, M.

    2007-04-01

    We have grown GaAsN layers (with nitrogen concentration between 1.2% and 3.2%) on GaAs(1 0 0) substrates by molecular beam epitaxy (MBE) using a radio frequency (RF) plasma nitrogen source, and solid sources for Ga and As. The growth temperature was varied from 420 to 600 °C, and the GaAsN growth mode was in situ monitored by reflection high-energy electron diffraction (RHEED). The optical properties of the layers were studied by photoreflectance spectroscopy (PR) and phase modulated ellipsometry (PME). For the growth temperature of 420 °C the films grew in a three-dimensional (3D) mode as indicated by the appearance of transmission spots in the RHEED patterns. In contrast, GaAsN layers grown at higher temperatures presented a two-dimensional (2D) growth mode. These GaAsN layers are pseudomorphic according to high-resolution X-ray diffraction (HRXRD). The PR spectra of all samples exhibited Franz-Keldysh oscillations (FKO) above of the GaAs band gap energy. From these oscillations we obtained the built-in internal electric field intensity ( Fint) at the GaAsN/GaAs interface. In the low-energy region of the PR spectra we observed the transitions associated to fundamental band gap of the GaAsN layers. The variation of the GaAsN fundamental band gap obtained by PR as a function of the N content was explained according the band anti-crossing model (BAC). On the other hand, the E1 and E1+Δ E1 critical points were obtained from the analysis of spectra of the imaginary part of the dielectric function obtained by PME. We observed a shift of these critical points to higher energies with the increase of N content, which was explained by a combination of strain and alloying effects.

  5. Isotype InGaN/GaN heterobarrier diodes by ammonia molecular beam epitaxy

    SciTech Connect

    Fireman, Micha N.; Browne, David A.; Speck, James S.; Mishra, Umesh K.

    2016-02-07

    The design of isotype InGaN/GaN heterobarrier diode structures grown by ammonia molecular beam epitaxy is presented. On the (0001) Ga-polar plane, a structure consisting of a surface n{sup +} GaN contact layer, followed by a thin InGaN layer, followed by a thick unintentionally doped (UID) GaN layer, and atop a buried n{sup +} GaN contact layer induces a large conduction band barrier via a depleted UID GaN layer. Suppression of reverse and subthreshold current in such isotype barrier devices under applied bias depends on the quality of this composite layer polarization. Sample series were grown under fixed InGaN growth conditions that varied either the UID GaN NH{sub 3} flow rate or the UID GaN thickness, and under fixed UID GaN growth conditions that varied InGaN growth conditions. Decreases in subthreshold current and reverse bias current were measured for thicker UID GaN layers and increasing InGaN growth rates. Temperature-dependent analysis indicated that although extracted barrier heights were lower than those predicted by 1D Schrödinger Poisson simulations (0.9 eV–1.4 eV for In compositions from 10% to 15%), optimized growth conditions increased the extracted barrier height from ∼11% to nearly 85% of the simulated values. Potential subthreshold mechanisms are discussed, along with those growth factors which might affect their prevalence.

  6. The growth of strontium titanate and lutetium ferrite thin films by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brooks, Charles M.

    Included in this work is a range of studies on films of homoeptaxial and heteroepitaxial films of SrTiO3 and the first reported phase-pure films of LuFe2O4. We report the structural properties of homoepitaxial (100) SrTiO3 films grown by reactive molecular-beam epitaxy (MBE). The lattice spacing and x-ray diffraction (XRD) rocking curves of stoichiometric MBEgrown SrTiO3 films are indistinguishable from the underlying SrTiO3 substrates. The effect of off-stoichiometry for both strontium-rich and strontium-poor compositions results in lattice expansion with significant changes to the shuttered reflection high-energy electron diffraction oscillations, XRD, film microstructure, and thermal conductivity. Up to an 80% reduction in Sr(1+x)TiO3 film thermal conductivity is measured for x = -0.1 to 0.5. Significant reduction, from 11.5 to ˜2 W˙m-1K-1, occurs through the formation of Ruddlesden-Popper planar faults. The ability to deposit films with a reduction in thermal conductivity is applicable to thermal barrier coatings and thermoelectrics. Scanning transmission electron microscopy is used to examine the formation of Ruddlesden-Popper planar faults in films with strontium excess. We also show that the band gap of SrTiO3 can be altered by >10% (0.3 eV) by using experimentally realizable biaxial strains providing a new means to accomplish band gap engineering of SrTiO3 and related perovskites. Such band gap manipulation is relevant to applications in solar cells water splitting, transparent conducting oxides, superconductivity, two-dimensional electron liquids, and other emerging oxide electronics. This work also presents the adsorption-controlled growth of single-phase (0001)-oriented epitaxial films of charge ordered multiferroic, LuFe2O4, on (111) MgAl2O4, (111) MgO, and (0001) 6H-SiC substrates in an iron-rich environment at pressures and temperatures where excess iron desorbs from the film surface during growth. Scanning transmission electron microscopy reveals

  7. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy.

    PubMed

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L; Roy, Ajit K

    2016-05-05

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.

  8. Molecular beam epitaxy and metalorganic chemical vapor deposition growth of epitaxial CdTe on (100) GaAs/Si and (111) GaAs/Si substrates

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.

    1988-01-01

    Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.

  9. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    SciTech Connect

    McSkimming, Brian M. Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  10. Topological insulator engineering of Bi2Se3 through molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Oh, Seongshik

    2013-03-01

    Despite numerous reports proving the presence of the surface states on various topological insulator (TI) materials, all existing TI materials suffer from the bulk conductance problem at various levels. Therefore, achieving a truly insulating bulk state without degrading the surface state in their transport properties is one of the most important tasks of the TI materials research. In this talk, I will present how we address this problem by utilizing various molecular beam epitaxy (MBE) schemes with focus on Bi2Se3 family of materials. Considering that the bulk conductance problem originates mostly from the selenium vacancies in Bi2Se3, the typical MBE growth condition characterized by low growth temperature and high selenium vapor pressure is ideal for solving this bulk conductance problem. Moreover, thin films have another advantage of naturally reduced bulk effect due to the enhanced surface-to-bulk ratio. These intrinsic advantages of MBE-grown TI thin films recently led to a number of new findings. High quality Bi2Se3 thin films did show the expected dominant surface transport characters with negligible bulk conductance. However, the strong tendency toward downward band bending in undoped Bi2Se3 introduces trivial surface transport channels in addition to the topological surface states, leading to complications in the interpretations of transport results. Furthermore, even if reducing the thickness of TI samples helps reveal the surface transport channels by reducing the bulk contribution, it does not really solve the bulk conductance problem because regardless of how small it may be, the bulk state still remains metallic, shorting the top and bottom surfaces. According to the Mott-criterion of metal-insulator transition, in order to implement a truly insulating bulk state in the current generation TI materials, it is necessary to suppress the defect density below ~ 1014 cm-3, which might be fundamentally impossible considering the weak Van der Waals bonding

  11. Influence of thickness on crystallinity in wafer-scale GaTe nanolayers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bae, Che Jin; McMahon, Jonathan; Detz, Hermann; Strasser, Gottfried; Park, Junsung; Einarsson, Erik; Eason, D. B.

    2017-03-01

    We grew wafer-scale, uniform nanolayers of gallium telluride (GaTe) on gallium arsenide (GaAs) substrates using molecular beam epitaxy. These films initially formed in a hexagonal close-packed structure (h-GaTe), but monoclinic (m-GaTe) crystalline elements began to form as the film thicknesses increased to more than approximately 90 nm. We confirmed the coexistence of these two crystalline forms using x-ray diffraction and Raman spectroscopy, and we attribute the thickness-dependent structural change to internal stress induced by lattice mismatch with the substrate and to natural lattice relaxation at the growth conditions.

  12. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    SciTech Connect

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-10

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm{sup 2} has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  13. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  14. Catalyst-free growth of Bi{sub 2}Te{sub 3} nanostructures by molecular beam epitaxy

    SciTech Connect

    Harrison, S. E.; Schönherr, P.; Hesjedal, T.; Huo, Y.; Harris, J. S.

    2014-10-13

    We present the catalyst-free growth of binary Bi{sub 2}Te{sub 3} topological insulator nanostructures on c-plane sapphire substrates by molecular beam epitaxy. Dense arrays of single-crystalline nanostructures, growing along the [110] direction, are obtained for substrate temperatures ranging from ∼180 °C to 260 °C. The growth rate and shape of the nanostructures are highly temperature-dependent. The microscopic study of the nanostructures and their relationship to the underlying Bi{sub 2}Te{sub 3} thin film gives an insight into the growth mechanism.

  15. Nucleation, Growth, and Bundling of GaN Nanowires in Molecular Beam Epitaxy: Disentangling the Origin of Nanowire Coalescence.

    PubMed

    Kaganer, Vladimir M; Fernández-Garrido, Sergio; Dogan, Pinar; Sabelfeld, Karl K; Brandt, Oliver

    2016-06-08

    We investigate the nucleation, growth, and coalescence of spontaneously formed GaN nanowires in molecular beam epitaxy combining the statistical analysis of scanning electron micrographs with Monte Carlo growth models. We find that (i) the nanowire density is limited by the shadowing of the substrate from the impinging fluxes by already existing nanowires, (ii) shortly after the nucleation stage, nanowire radial growth becomes negligible, and (iii) coalescence is caused by bundling of nanowires. The latter phenomenon is driven by the gain of surface energy at the expense of the elastic energy of bending and becomes energetically favorable once the nanowires exceed a certain critical length.

  16. Optical properties of strain-free AlN nanowires grown by molecular beam epitaxy on Si substrates

    SciTech Connect

    Wang, Q.; Zhao, S.; Connie, A. T.; Shih, I.; Mi, Z.; Gonzalez, T.; Andrews, M. P.; Du, X. Z.; Lin, J. Y.; Jiang, H. X.

    2014-06-02

    The optical properties of catalyst-free AlN nanowires grown on Si substrates by molecular beam epitaxy were investigated. Such nanowires are nearly free of strain, with strong free exciton emission measured at room temperature. The photoluminescence intensity is significantly enhanced, compared to previously reported AlN epilayer. Moreover, the presence of phonon replicas with an energy separation of ∼100 meV was identified to be associated with the surface-optical phonon rather than the commonly reported longitudinal-optical phonon, which is further supported by the micro-Raman scattering experiments.

  17. Fabrication of IrSi(3)/p-Si Schottky diodes by a molecular beam epitaxy technique

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Iannelli, J. M.

    1990-01-01

    IrSi(3)/p-Si Schottky diodes have been fabricated by a molecular beam epitaxy technique at 630 C. Good surface morphology was observed for IrSi(3) layers grown at temperatures below 680 C, and an increasing tendency to form islands is observed in samples grown at higher temperatures. Good diode current-voltage characteristics were observed and Schottky barrier heights of 0.14-0.18 eV were determined by activation energy analysis and spectral response measurement.

  18. Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Woo, S. Y.; Sadaf, S. M.; Wu, Y.; Pofelski, A.; Laleyan, D. A.; Rashid, R. T.; Wang, Y.; Botton, G. A.; Mi, Z.

    2016-08-01

    Self-organized AlGaN nanowires by molecular beam epitaxy have attracted significant attention for deep ultraviolet optoelectronics. However, due to the strong compositional modulations under conventional nitrogen rich growth conditions, emission wavelengths less than 250 nm have remained inaccessible. Here we show that Al-rich AlGaN nanowires with much improved compositional uniformity can be achieved in a new growth paradigm, wherein a precise control on the optical bandgap of ternary AlGaN nanowires can be achieved by varying the substrate temperature. AlGaN nanowire LEDs, with emission wavelengths spanning from 236 to 280 nm, are also demonstrated.

  19. Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates

    SciTech Connect

    Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E.; Jahn, U.; Trampert, A.

    2011-09-26

    This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 deg. C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding white emission.

  20. High electron mobility GaN grown under N-rich conditions by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Koblmueller, G.; Wu, F.; Mates, T.; Speck, J. S.; Fernandez-Garrido, S.; Calleja, E.

    2007-11-26

    An alternative approach is presented for the plasma-assisted molecular beam epitaxy of high-quality GaN. Under N-rich growth conditions, an unexpected layer-by-layer growth mode was found for a wide range of growth temperatures in the GaN thermal decomposition regime (>750 deg. C). Consequently, superior surface morphologies with roughness of less than 1 nm (rms) have been achieved. For lightly Si-doped GaN films, room-temperature electron mobilities exceeding 1100 cm{sup 2}/V s were measured, surpassing the commonly insulating nature of GaN grown under N-rich conditions at low temperature.

  1. A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111)

    SciTech Connect

    Fernandez-Garrido, S.; Grandal, J.; Calleja, E.; Sanchez-Garcia, M. A.; Lopez-Romero, D.

    2009-12-15

    The morphology of GaN samples grown by plasma-assisted molecular beam epitaxy on Si(111) was systematically studied as a function of impinging Ga/N flux ratio and growth temperature (730-850 deg. C). Two different growth regimes were identified: compact and nanocolumnar. A growth diagram was established as a function of growth parameters, exhibiting the transition between growth regimes, and showing under which growth conditions GaN cannot be grown due to thermal decomposition and Ga desorption. Present results indicate that adatoms diffusion length and the actual Ga/N ratio on the growing surface are key factors to achieve nanocolumnar growth.

  2. Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs

    SciTech Connect

    Lee, Chao-Kuei; Lin, Yuan-Yao; Lin, Sung-Hui; Lin, Gong-Ru; Pan, Ci-Ling

    2014-04-28

    Chirped pulse controlled carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs are investigated by degenerate pump-probe technique. Varying the chirped condition of excited pulse from negative to positive increases the carrier relaxation time so as to modify the dispersion and reshape current pulse in time domain. The spectral dependence of carrier dynamics is analytically derived and explained by Shockley-Read Hall model. This observation enables the new feasibility of controlling carrier dynamics in ultrafast optical devices via the chirped pulse excitations.

  3. Insights in High-Temperature Superconductivity from the Study of Films and Heterostructures Synthesized by Molecular Beam Epitaxy

    SciTech Connect

    Bozovic,I.

    2009-01-09

    Using molecular beam epitaxy, we synthesize atomically smooth thin films, multilayers and superlattices of cuprate high-temperature superconductors (HTS). Such heterostructures enable novel experiments that probe the basicphysics of HTS. For example, we have established that HTS and antiferromagnetic phases separate on Ångstrom scale, while the pseudo-gap state apparently mixes with HTS over an anomalously large length scale ('Giant Proximity Effect'). Here, we briefly review our most recent experiments on such films and superlattices. The new results include an unambiguous demonstration of strong coupling of in-plane charge excitations to out-of-plane lattice vibrations and the discovery of interface HTS.

  4. Electrical properties of InAs1-xSbx and InSb nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Thelander, Claes; Caroff, Philippe; Plissard, Sébastien; Dick, Kimberly A.

    2012-06-01

    Results of electrical characterization of Au nucleated InAs1-xSbx nanowires grown by molecular beam epitaxy are reported. An almost doubling of the extracted field effect mobility compared to reference InAs nanowires is observed for a Sb content of x = 0.13. Pure InSb nanowires on the other hand show considerably lower, and strongly diameter dependent, mobility values. Finally, InAs of wurtzite crystal phase overgrown with an InAs1-xSbx shell is found to have a substantial positive shift in threshold voltage compared to reference nanowires.

  5. Inhomogeneous Si-doping of gold-seeded InAs nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rolland, Chloé; Caroff, Philippe; Coinon, Christophe; Wallart, Xavier; Leturcq, Renaud

    2013-06-01

    We have investigated in situ Si doping of InAs nanowires grown by molecular beam epitaxy from gold seeds. The effectiveness of n-type doping is confirmed by electrical measurements showing an increase of the electron density with the Si flux. We also observe an increase of the electron density along the nanowires from the tip to the base, attributed to the dopant incorporation on the nanowire facets whereas no detectable incorporation occurs through the seed. Furthermore, the Si incorporation strongly influences the lateral growth of the nanowires without giving rise to significant tapering, revealing the complex interplay between axial and lateral growth.

  6. Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy on semipolar GaN (2021) substrates

    SciTech Connect

    Sawicka, M.; Grzanka, S.; Skierbiszewski, C.; Turski, H.; Muziol, G.; Krysko, M.; Grzanka, E.; Sochacki, T.; Siekacz, M.; Kucharski, R.

    2013-03-18

    Multi-quantum well (MQW) structures and light emitting diodes (LEDs) were grown on semipolar (2021) and polar (0001) GaN substrates by plasma-assisted molecular beam epitaxy. The In incorporation efficiency was found to be significantly lower for the semipolar plane as compared to the polar one. The semipolar MQWs exhibit a smooth surface morphology, abrupt interfaces, and a high photoluminescence intensity. The electroluminescence of semipolar (2021) and polar (0001) LEDs fabricated in the same growth run peaks at 387 and 462 nm, respectively. Semipolar LEDs with additional (Al,Ga)N cladding layers exhibit a higher optical output power but simultaneously a higher turn-on voltage.

  7. Oxygen vacancy induced photoluminescence and ferromagnetism in SrTiO3 thin films by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, Wenfei; Yang, Jing; Bai, Wei; Tang, Kai; Zhang, Yuanyuan; Tang, Xiaodong

    2013-10-01

    SrTiO3 thin films were epitaxially grown on (100) SrTiO3 substrates using molecular beam epitaxy. The temperature for growth of the films was optimized, which was indicated by x-ray diffraction and further confirmed by microstructural characterization. Photoluminescence spectra show that oxygen-vacancy contributes to red and blue luminescence of oxygen-deficient post-annealed films, and a red shift was observed in blue region. On the other hand, ferromagnetism in film form SrTiO3 was observed from 5 K to 400 K and could be further enhanced with decreasing oxygen plasma partial pressure in annealing processes, which might be explained by the theory involving d0 magnetism related to oxygen-vacancy. From the cooperative investigations of optical and magnetic properties, we conclude that intrinsic defects, especially oxygen-vacancy, can induce and enhance luminescence and magnetism in SrTiO3 films.

  8. Molecular beam epitaxy deposition of Gd2O3 thin films on SrTiO3 (100) substrate

    NASA Astrophysics Data System (ADS)

    Wang, Jinxing; Hao, Jinghua; Zhang, Yangyang; Wei, Hongmei; Mu, Juyi

    2016-06-01

    Gd2O3 thin films are grown on the SrTiO3 (100) substrate by molecular beam epitaxy (MBE) deposition. X-ray diffraction (XRD) analysis, conventional transmission electron microscopy (TEM) and aberration-corrected scanning transmission electron microscopy (STEM) are performed to investigate the microstructure of deposited thin films. It is found that the as-deposited thin film possesses a very uniform thickness of ∼40 nm and is composed of single cubic phase Gd2O3 grains. STEM and TEM observations reveal that Gd2O3 thin film grows epitaxially on the SrTiO3 (100) substrate with (001)Gd2O3//(100)STO and [110]Gd2O3//[001]STO orientations. Furthermore, the Gd atoms are found to diffuse into the SrTiO3 substrate for a depth of one unit cell and substitute for the Sr atoms near the interface.

  9. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-11-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO3 film grown on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ˜12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness.

  10. Ultra-high frequency photoconductivity decay in GaAs/Ge/GaAs double heterostructure grown by molecular beam epitaxy

    SciTech Connect

    Hudait, M. K.; Zhu, Y.; Johnston, S. W.; Maurya, D.; Priya, S.; Umbel, R.

    2013-03-04

    GaAs/Ge/GaAs double heterostructures (DHs) were grown in-situ using two separate molecular beam epitaxy chambers. High-resolution x-ray rocking curve demonstrates a high-quality GaAs/Ge/GaAs heterostructure by observing Pendelloesung oscillations. The kinetics of the carrier recombination in Ge/GaAs DHs were investigated using photoconductivity decay measurements by the incidence excitation from the front and back side of 15 nm GaAs/100 nm Ge/0.5 {mu}m GaAs/(100)GaAs substrate structure. High-minority carrier lifetimes of 1.06-1.17 {mu}s were measured when excited from the front or from the back of the Ge epitaxial layer, suggests equivalent interface quality of GaAs/Ge and Ge/GaAs. Wavelength-dependent minority carrier recombination properties are explained by the wavelength-dependent absorption coefficient of Ge.

  11. Mid-infrared to ultraviolet optical properties of InSb grown on GaAs by molecular beam epitaxy

    SciTech Connect

    D'Costa, Vijay Richard Yeo, Yee-Chia; Tan, Kian Hua; Jia, Bo Wen; Yoon, Soon Fatt

    2015-06-14

    Spectroscopic ellipsometry was used to investigate the optical properties of an InSb film grown on a GaAs (100) substrate, and to compare the optical properties of InSb film with those of bulk InSb. The film was grown by molecular beam epitaxy under conditions intended to form 90° misfit dislocations at the InSb-GaAs interface. The complex dielectric function obtained in a wide spectroscopic range from 0.06–4.6 eV shows the critical point transitions E{sub 0}, E{sub 1}, E{sub 1} + Δ{sub 1}, E{sub 0}{sup ′}, and E{sub 2}. The amplitudes, energy transitions, broadenings, and phase angles have been determined using a derivative analysis. Comparing film and bulk critical point results reveal that the epitaxial film is nearly relaxed and has bulk-like optical characteristics.

  12. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    SciTech Connect

    Hirama, Kazuyuki Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-03

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp{sup 3}-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N{sub 2}{sup +} and Ar{sup +} ions is a key to selectively discriminate non-sp{sup 3} BN phases. At low acceleration voltage values, the sp{sup 2}-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  13. Strain relief and growth optimization of GaSb on GaP by molecular beam epitaxy.

    PubMed

    Wang, Y; Ruterana, P; Chen, J; Desplanque, L; El Kazzi, S; Wallart, X

    2012-08-22

    In this paper, the impact of growth parameters on the strain relaxation of highly lattice mismatched (11.8%) GaSb grown on GaP substrate by molecular beam epitaxy has been investigated. The surface morphology, misfit dislocation and strain relaxation of the GaSb islands are shown to be highly related to the initial surface treatment, growth rate and temperature. More specifically, Sb-rich surface treatment is shown to promote the formation of Lomer misfit dislocations. Analysis of the misfit dislocation and strain relaxation as functions of the growth temperature and rate led to an optimal growth window for a high quality GaSb epitaxial layer on (001) GaP. With this demonstrated optimized growth, a high mobility (25,500 cm(2) V (-1) s(-1) at room temperature) AlSb/InAs heterostructure on a semi-insulating (001) GaP substrate has been achieved.

  14. Growth of M-plane MnAs on GaAs(111)B by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Takagaki, Y.; Herrmann, C.; Jenichen, B.; Herfort, J.; Brandt, O.

    2008-03-01

    We describe a growth procedure utilizing molecular beam epitaxy that produces a (11¯00)-oriented MnAs layer on GaAs(111)B despite the incompatible unit mesh symmetry. An amorphous MnAs layer is deposited at a low temperature beyond the critical thickness for coherent growth. When solid-phase epitaxy is initiated by reducing the background As4 pressure, the layer crystalizes in the M-plane orientation with its c axis being along the {112¯} directions of the substrate. The magnetization components associated with the coexisting c-axis orientations are independent of each other, suggesting that the structural domains are much larger in size than the atomic scales.

  15. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  16. Growth modes in metal-organic molecular beam epitaxy of TiO{sub 2} on r-plane sapphire

    SciTech Connect

    Jalan, Bharat; Engel-Herbert, Roman; Cagnon, Joeel; Stemmer, Susanne

    2009-03-15

    Phase pure, epitaxial (101) rutile TiO{sub 2} films were grown on (012) sapphire substrates at temperatures between 485 and 725 deg. C using metal-organic molecular beam epitaxy with titanium tetraisopropoxide as the Ti source. Growth modes and rates were investigated as a function of substrate temperature using reflection high-energy electron diffraction, x-ray reflectivity, atomic force microscopy, and transmission electron microscopy. Growth rates were as high as 125 nm/h. The influence of additional oxygen supplied from a rf plasma source was investigated. Without oxygen plasma, the growth rate exhibited reaction and flux-limited regimes and layer-by-layer growth was observed in the initial stages of film growth. With oxygen plasma the growth rate became independent of temperature; films grew initially in step-flow mode and were insulating. The mechanisms for the different growth modes as a function of film thickness, temperature, and presence of oxygen are discussed.

  17. Molecular beam epitaxial growth of a three-dimensional topological Dirac semimetal Na{sub 3}Bi

    SciTech Connect

    Zhang, Yi; Liu, Zhongkai; Shen, Zhi-Xun; Zhou, Bo; Kim, Yeongkwan; Hussain, Zahid; Mo, Sung-Kwan; Chen, Yulin

    2014-07-21

    We report a molecular beam epitaxial growth of Na{sub 3}Bi single-crystal thin films on two different substrates—epitaxial bilayer graphene terminated 6H-SiC(0001) and Si(111). Using reflection high-energy electron diffraction, we found that the lattice orientation of the grown Na{sub 3}Bi thin film was rotated by 30° respect to the surface lattice orientations of these two substrates. An in-situ angle-resolved photoemission spectroscopy clearly revealed the 3-dimensional Dirac-cone band structure in such thin films. Our approach of growing Na{sub 3}Bi thin film provides a potential route for further studying its intriguing electronic properties and for fabricating it into practical devices in future.

  18. TiO2 as an electrostatic template for epitaxial growth of EuO on MgO(001) by reactive molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Swartz, Adrian G.; Wong, Jared J. I.; Pinchuk, Igor V.; Kawakami, Roland K.

    2012-04-01

    We investigate the initial growth modes and the role of interfacial electrostatic interactions of EuO epitaxy on MgO(001) by reactive molecular beam epitaxy. A TiO2 interfacial layer is employed to produce high quality epitaxial growth of EuO on MgO(001) with a 45° in plane rotation. For comparison, direct deposition of EuO on MgO, without the TiO2 layer shows a much slower time evolution in producing a single crystal film. Conceptual arguments of electrostatic repulsion of like-ions are introduced to explain the increased EuO quality at the interface with the TiO2 layer. It is shown that ultrathin EuO films in the monolayer regime can be produced on the TiO2 surface by substrate-supplied oxidation and that such films have bulk Curie temperatures.

  19. Photoconducting ultraviolet detectors based on GaN films grown by electron cyclotron resonance molecular beam epitaxy

    SciTech Connect

    Misra, M.; Shah, K.S.; Moustakas, T.D.; Vaudo, R.P.; Singh, R.

    1995-08-01

    We report for the first time, fabrication of photoconducting UV detectors made from GaN films grown by molecular beam epitaxy. Semi-instilating GaN films were grown by the method of electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-MBE). Photoconductive devices with interdigitated electrodes were fabricated and their photoconducting properties were investigated. In this paper we report on the performance of the detectors in terms of UV responsivity, gain-quantum efficiency product, spectral response and response time. We have measured responsivity of 125A/W and gain-quantum efficiency product of 600 at 254nm and 25V. The response time was measured to be on the order of 20ns for our detectors, corresponding to a bandwidth of 25Mhz. The spectral response showed a sharp long-wavelength cutoff at 365nm, and remained constant in the 200nm to 365nm range. The response of the detectors to low-energy x-rays was measured and found to be linear for x-rays with energies ranging from 60kVp to 90kVp.

  20. Interface kinetics in phase-field models: isothermal transformations in binary alloys and step dynamics in molecular-beam epitaxy.

    PubMed

    Boussinot, G; Brener, Efim A

    2013-08-01

    We present a unified description of interface kinetic effects in phase-field models for isothermal transformations in binary alloys and steps dynamics in molecular-beam-epitaxy. The phase-field equations of motion incorporate a kinetic cross-coupling between the phase field and the concentration field. This cross-coupling generalizes the phenomenology of kinetic effects and was omitted until recently in classical phase-field models. We derive general expressions (independent of the details of the phase-field model) for the kinetic coefficients within the corresponding macroscopic approach using a physically motivated reduction procedure. The latter is equivalent to the so-called thin-interface limit but is technically simpler. It involves the calculation of the effective dissipation that can be ascribed to the interface in the phase-field model. We discuss in detail the possibility of a nonpositive definite matrix of kinetic coefficients, i.e., a negative effective interface dissipation, although being in the range of stability of the underlying phase-field model. Numerically we study the step-bunching instability in molecular-beam-epitaxy due to the Ehrlich-Schwoebel effect, present in our model due to the cross-coupling. Using the reduction procedure we compare the results of the phase-field simulations with the analytical predictions of the macroscopic approach.

  1. Self-regulated growth of LaVO{sub 3} thin films by hybrid molecular beam epitaxy

    SciTech Connect

    Zhang, Hai-Tian; Engel-Herbert, Roman; Dedon, Liv R.; Martin, Lane W.

    2015-06-08

    LaVO{sub 3} thin films were grown on SrTiO{sub 3} (001) by hybrid molecular beam epitaxy. A volatile metalorganic precursor, vanadium oxytriisopropoxide (VTIP), and elemental La were co-supplied in the presence of a molecular oxygen flux. By keeping the La flux fixed and varying the VTIP flux, stoichiometric LaVO{sub 3} films were obtained for a range of cation flux ratios, indicating the presence of a self-regulated growth window. Films grown under stoichiometric conditions were found to have the largest lattice parameter, which decreased monotonically with increasing amounts of excess La or V. Energy dispersive X-ray spectroscopy and Rutherford backscattering measurements were carried out to confirm film compositions. Stoichiometric growth of complex vanadate thin films independent of cation flux ratios expands upon the previously reported self-regulated growth of perovskite titanates using hybrid molecular beam epitaxy, thus demonstrating the general applicability of this growth approach to other complex oxide materials, where a precise control over film stoichiometry is demanded by the application.

  2. Influence of substrate misorientation on defect and impurity incorporation in GaAs/AlGaAs heterostructures grown by molecular-beam epitaxy

    NASA Technical Reports Server (NTRS)

    Radulescu, D. C.; Wicks, G. W.; Schaff, W. J.; Calawa, A. R.; Eastman, L. F.

    1988-01-01

    GaAS/AlGaAs heterostructures have been grown by molecular-beam epitaxy on GaAs substrates intentionally oriented (tilted) a few degrees (0-6.5) off the (001) plane towards either (111)A, (111)B, or (011). It was observed that the 4-K photoluminescence and low-field electron transport properties of these structures may be functions of the substrate tilt angle and tilt direction, depending on the concentration of impurities incorporated during growth. A substrate tilt during molecular-beam epitaxy is observed to have the largest effect on these properties when the background impurity concentration in the molecular-beam epitaxial machine is high. This supports the contention that the observed changes in material characteristics are due to differences in the incorporation of defects and impurities. The incorporation of defects and impurities are reduced by using substrates tilted toward (111)A, in comparison to nominally flat (001) substrates or substrates tilted toward (111)B.

  3. Molecular Beam Epitaxial Growth and Characterization of the Modulated Structures for Detector Applications.

    NASA Astrophysics Data System (ADS)

    Piao, Jie

    Motivated by potential 8-12 μm IR detector applications as alternatives to the Hg _{rm x}Cd_ {rm 1-x}Te system, we have studied two types of material systems. One is the GeSn alloy, the other is the (Al,Ga)Sb system. The results of the GeSn study shows that substrate-stabilized, metastable, single-crystal Ge_{rm 1-x} Sn_{rm x} alloy can be grown by molecular-beam epitaxy (MBE). We have grown for the first time single crystal Ge _{rm 1-x}Sn_ {rm x} alloys on lattice matched GaSb (with x = 0.5) and InP (with x = 0.26) substrates up to a thickness of 0.3 mum. Our x-ray result suggests that the critical thickness of Grey Tin and Ge_{rm 1-x}Sn _{rm x} single crystal film is mainly determined by a phase transition mechanism, and that the dislocation generation equivalent critical thickness is an overestimate. We have shown theoretically that under practical MBE growth conditions, it is very difficult to grow thick film, due to the sensitivity of the critical thickness to composition fluctuations. The study of the (Al,Ga)Sb system shows the following results: (A) Above 540^circC, the Sb-stabilized surface (1 x 3) pattern changes to c(8 x 2), a Ga-stabilized surface. Because the c(8 x 2) surface has been observed on all other III-V arsenides, phosphides, and antimonides, the c(8 x 2) metal-stabilized surface is common to all III-V compounds, and this finding suggests that bond pairing is the universal reconstruction mechanism. (B) We have formulated/calculated under the envelope function approximation the oscillator strength and finite temperature absorption coefficient of indirect conduction band intersubband transition in L-like Al_{rm x }Ga_{rm 1-x} Sb/AlSb multiple quantum well (MQW), and proposed the indirect intersubband transition infrared detector based on L-like Al_{.3}Ga _{.7}Sb/AlSb MQW. Our calculations show that Al_{.3} Ga_{.7}Sb/AlSb system is superior than GaAs/AlGaAS system for potential 8-12mum infrared detector applications. (C) We have for the first

  4. Electrical transport studies of molecular beam epitaxy grown gallium manganese arsenide epilayers and heterostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Meng

    2008-10-01

    Diluted magnetic semiconductors (DMS) grown by molecular beam epitaxy have been drawing attention in the context of emerging spintronics, which utilizes electron spins to develop devices with new functionalities. The canonical DMS---(Ga,Mn)As---has been on center stage for almost a decade, and extensive efforts have been dedicated to understanding its hole-mediated ferromagnetism, optimizing growth and annealing conditions to achieve higher-Tc, studying the magneto-transport, exploiting its abundant magnetic anisotropy, and so on. This dissertation focuses on three aspects of the study of (Ga,Mn)As: (1) Magneto-transport under hard magnetization reversal; (2) Electrical noise properties; and (3) Exchange-biasing and spin-dependent transport in (Ga,Mn)As/MnAs hybrid structures. The first chapter provides the motivation for this dissertation and introduces several aspects of the current understanding of (Ga,Mn)As. Both the theoretical models and experimentally established observations are reviewed, focusing on the magnetic and transport properties of (Ga,Mn)As epilayers. Next, the hybrid ferromagnetic metal/semiconductor heterostructures are introduced. As an excellent candidate for making these heterostructures, the semi-metal MnAs is reviewed in terms of its structural and magnetic properties, which are essential for making the exchange-biased devices described in Chapter 5 and Chapter 6. The second chapter describes the experimental techniques encompassed in the scope of this dissertation. Several important techniques, such as MBE growth, device patterning, magnetometry and transport measurements are discussed. The third chapter reports the first experiment in this dissertation, which describes the longitudinal magnetoresistance (MR) anomalies of a (Ga,Mn)As epilayer experiencing hard axis magnetization reversal in an perpendicular magnetic field. By probing the MRs for currents running along different crystallographic directions, the origins of these anomalies

  5. Large array of single, site-controlled InAs quantum dots fabricated by UV-nanoimprint lithography and molecular beam epitaxy.

    PubMed

    Schramm, A; Tommila, J; Strelow, C; Hakkarainen, T V; Tukiainen, A; Dumitrescu, M; Mews, A; Kipp, T; Guina, M

    2012-05-04

    We present the growth of single, site-controlled InAs quantum dots on GaAs templates using UV-nanoimprint lithography and molecular beam epitaxy. A large quantum dot array with a period of 1.5 µm was achieved. Single quantum dots were studied by steady-state and time-resolved micro-photoluminescence experiments. We obtained single exciton emission with a linewidth of 45 µeV. In time-resolved experiments, we observed decay times of about 670 ps. Our results underline the potential of nanoimprint lithography and molecular beam epitaxy to create large-scale, single quantum dot arrays.

  6. Steady-State and Transient Photoconductivity in c-Axis GaN Nanowires Grown by Nitrogen-Plasma-Assisted Molecular Beam Epitaxy

    DTIC Science & Technology

    2010-02-01

    Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy N. A. Sanford,1,a P. T...assisted molecular beam epitaxy primarily from two separate growth runs were examined. The results revealed carrier concentration in the range of 3–61016...cm−3 for one growth run, roughly 51014–11015 cm−3 for the second, and drift mobility in the range of 500–700 cm2 / V s for both. Nanowires were

  7. Comparison of the In distribution in InGaN/GaN quantum well structures grown by molecular beam epitaxy and metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Potin, V.; Hahn, E.; Rosenauer, A.; Gerthsen, D.; Kuhn, B.; Scholz, F.; Dussaigne, A.; Damilano, B.; Grandjean, N.

    2004-02-01

    We have compared the In distribution in InGaN quantum wells grown by molecular beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOVPE). The samples were studied by conventional and high-resolution transmission electron microscopy (HRTEM). The local and average In concentrations and the In distribution in the quantum wells were determined using the digital analysis of lattice images (DALI) method based on the evaluation of HRTEM lattice-fringe images. Similar lateral fluctuations of the In concentration were observed in MBE- and MOVPE-grown samples. The In concentration varies on a small scale (In-rich clusters with lateral extensions below 4 nm) and on a larger scale of a few 10 nm, which is attributed to phase separation. In contrast, the In distribution in growth direction differs significantly in the MBE and MOVPE samples which is explained by different In-segregation efficiencies and In desorption before the GaN cap layer deposition during MBE.

  8. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V

    2014-11-12

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics.

  9. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  10. Low-Angle-Incidence Microchannel Epitaxy of a-Plane GaN Grown by Ammonia-Based Metal-Organic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-04-01

    Low-angle-incidence microchannel epitaxy (LAIMCE) of a-plane GaN was performed using ammonia-based metal-organic molecular beam epitaxy to obtain wide and thin lateral overgrowth over a SiO2 mask. Trimethylgallium (TMG) was supplied perpendicular to the openings cut in the mask with a low incident angle of 5° relative to the substrate plane. The [NH3]/[TMG] ratio (R) dependence of GaN LAIMCE was optimized by varying R from 5 to 30. A wide lateral overgrowth of 3.7 µm with a dislocation density below the transmission electron microscope detection limit was obtained at R=15 for a thickness of 520 nm.

  11. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Zheng, Jian-Guo; Liu, Jianlin

    2016-07-01

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5-6 nm)/G (26-27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ˜2.5-3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  12. Room-temperature ferromagneticlike behavior in Mn-implanted and postannealed InAs layers deposited by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    González-Arrabal, R.; González, Y.; González, L.; García-Hernández, M.; Munnik, F.; Martín-González, M. S.

    2009-04-01

    We report on the magnetic and structural properties of Ar- and Mn-implanted InAs epitaxial films grown on GaAs (100) by molecular beam epitaxy and the effect of rapid thermal annealing (RTA) for 30 s at 750 °C. Channeling particle induced x-ray emission (PIXE) experiments reveal that after Mn implantation almost all Mn atoms are substitutional in the In site of the InAs lattice, like in a diluted magnetic semiconductor. All of these samples show diamagnetic behavior. However, after RTA treatment the Mn-InAs films exhibit room-temperature magnetism. According to PIXE measurements the Mn atoms are no longer substitutional. When the same set of experiments was performed with Ar as implantation ion, all of the layers present diamagnetism without exception. This indicates that the appearance of room-temperature ferromagneticlike behavior in the Mn-InAs-RTA layer is not related to lattice disorder produced during implantation but to a Mn reaction produced after a short thermal treatment. X-ray diffraction patterns and Rutherford backscattering measurements evidence the segregation of an oxygen-deficient MnO2 phase (nominally MnO1.94) in the Mn-InAs-RTA epitaxial layers which might be the origin of the room-temperature ferromagneticlike response observed.

  13. Morphological and optical properties of titanyl phthalocyanine films deposited by supersonic molecular beam epitaxy (SuMBE)

    NASA Astrophysics Data System (ADS)

    Walzer, Karsten; Toccoli, Tullio; Pallaoro, Alessia; Verucchi, Roberto; Fritz, Torsten; Leo, Karl; Boschetti, Andrea; Iannotta, Salvatore

    2004-12-01

    We studied the growth and properties of titanyl phthalocyanine (TiOPc) thin films made by supersonic molecular beam epitaxy (SuMBE). Interesting differences in the growth properties on amorphous (quartz) and crystalline (mica) substrates were found, indicating that SuMBE gives rise to an epitaxy of disc-like organic molecules on crystalline substrates. The combined control of the kinetic energy of the molecules in the supersonic beam specific to SuMBE and of the substrate temperature during deposition are the key parameters used to determine the final properties of the films. We show that SuMBE is a well-suited epitaxy method for the deposition of relatively large organic molecules, leading to layers of thin organic (single-)crystals with lateral dimensions in the micrometer range. By SuMBE we can control the growth of different polymorphs of TiOPc. We found and studied two ways to produce films of red and infrared absorbing phase II TiOPc, which is of interest for applications in organic solar cells.

  14. Room-temperature ferromagneticlike behavior in Mn-implanted and postannealed InAs layers deposited by molecular beam epitaxy

    SciTech Connect

    Gonzalez-Arrabal, R.; Gonzalez, Y.; Gonzalez, L.; Martin-Gonzalez, M. S.; Munnik, F.

    2009-04-01

    We report on the magnetic and structural properties of Ar- and Mn-implanted InAs epitaxial films grown on GaAs (100) by molecular beam epitaxy and the effect of rapid thermal annealing (RTA) for 30 s at 750 deg. C. Channeling particle induced x-ray emission (PIXE) experiments reveal that after Mn implantation almost all Mn atoms are substitutional in the In site of the InAs lattice, like in a diluted magnetic semiconductor. All of these samples show diamagnetic behavior. However, after RTA treatment the Mn-InAs films exhibit room-temperature magnetism. According to PIXE measurements the Mn atoms are no longer substitutional. When the same set of experiments was performed with Ar as implantation ion, all of the layers present diamagnetism without exception. This indicates that the appearance of room-temperature ferromagneticlike behavior in the Mn-InAs-RTA layer is not related to lattice disorder produced during implantation but to a Mn reaction produced after a short thermal treatment. X-ray diffraction patterns and Rutherford backscattering measurements evidence the segregation of an oxygen-deficient MnO{sub 2} phase (nominally MnO{sub 1.94}) in the Mn-InAs-RTA epitaxial layers which might be the origin of the room-temperature ferromagneticlike response observed.

  15. Molecular beam epitaxy of thin HfTe2 semimetal films

    NASA Astrophysics Data System (ADS)

    Aminalragia-Giamini, S.; Marquez-Velasco, J.; Tsipas, P.; Tsoutsou, D.; Renaud, G.; Dimoulas, A.

    2017-03-01

    Epitaxial thin films of 1T-HfTe2 semimetal are grown by MBE on AlN(0001) substrates. The measured in-plane lattice parameter indicates an unstrained film which is also azimuthally aligned with the AlN substrate, albeit with an in-plane mosaic spread, as it would be expected for van der Waals epitaxy. Angle resolved photoemission spectroscopy combined with first principles electronic band structure calculations show steep linearly dispersing conduction and valence bands which cross near the Brillouin zone center, providing evidence that HfTe2/AlN is an epitaxial topological Dirac semimetal.

  16. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  17. High quality InAlN single layers lattice-matched to GaN grown by molecular beam epitaxy

    SciTech Connect

    Gacevic, Z.; Fernandez-Garrido, S.; Calleja, E.; Estrade, S.

    2011-07-18

    We report on properties of high quality {approx}60 nm thick InAlN layers nearly in-plane lattice-matched to GaN, grown on c-plane GaN-on-sapphire templates by plasma-assisted molecular beam epitaxy. Excellent crystalline quality and low surface roughness are confirmed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. High annular dark field observations reveal a periodic in-plane indium content variation (8 nm period), whereas optical measurements evidence certain residual absorption below the band-gap. The indium fluctuation is estimated to be {+-} 1.2% around the nominal 17% indium content via plasmon energy oscillations assessed by electron energy loss spectroscopy with sub-nanometric spatial resolution.

  18. Surface morphology of molecular-beam epitaxially grown Si(1-x)Ge(x) layers on (100) and (110) Si

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; Fathauer, R. W.; Anderson, M. S.

    1992-01-01

    The surface morphology and dislocation structure of Si(1-x)Ge(x) layers grown on (100) and (110) Si substrates have been investigated using atomic force microscopy, and scanning and transmission electron microscopy. The layers, which have up to a 1.2 percent lattice mismatch with the substrates, were grown by molecular-beam epitaxy at 550 C at thicknesses above those required for the introduction of dislocations. Si(1-x)Ge(x) layers grown on (100) show a crosshatch morphology which is correlated to the underlying misfit dislocation network. Annealing greatly enhances the surface roughness producing a partial islanding growing on the preexisting crosshatch morphology. On the (110) substrates no annealing is necessary to produce a roughened surface. The roughened surface morphology is analyzed as a strain-reducing growth mode which enables partial relaxation of the near-surface atomic planes.

  19. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process.

    PubMed

    Zettler, J K; Corfdir, P; Geelhaar, L; Riechert, H; Brandt, O; Fernández-Garrido, S

    2015-11-06

    We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires (NWs) on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased during the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN NW ensembles. Furthermore, we also demonstrate that the growth conditions employed during the incubation time that precedes nanowire nucleation do not influence the properties of the final nanowire ensemble. Therefore, when growing GaN NWs at elevated temperatures or with low Ga/N ratios, the total growth time can be reduced significantly by using more favorable growth conditions for nanowire nucleation during the incubation time.

  20. Effect of N2 microplasma treatment on initial growth of GaN by metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Suzuki, Yohei; Kusakabe, Yasuhiro; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya; Shimizu, Kazuo

    2016-08-01

    N2 atmospheric microplasma was applied to improve the yields and reproducibility of the initial growth of GaN by metal-organic molecular beam epitaxy (MOMBE). The plasma treatment was found to be effective in cleaning the surface, and excellent flat growth was achieved even in the early stage of the growth. The effect of the air exposure after plasma treatment was also studied, and the yield of the growth was found to be largely decreased by the air exposure even after the treatment. Therefore, the oxidation of the substrate is one of main causes of the poor initial growth and the installation of the microplasma equipment in the MBE loading chamber is useful for suppressing the oxidation after the treatment. Atomic force microscopy (AFM) measurement shows that the microplasma treatment is also effective for undoing the surface double steps through etching, which is helpful for a very smooth layer-by-layer growth in the early stage of growth.

  1. UVB-emitting InAlGaN multiple quantum well synthesized using plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kong, W.; Roberts, A. T.; Jiao, W. Y.; Fournelle, J.; Kim, T. H.; Losurdo, M.; Everitt, H. O.; Brown, A. S.

    2017-03-01

    A high Al-content (y > 0.4) multi-quantum-well (MQW) structure with a quaternary InxAlyGa(1-x-y)N active layer was synthesized using plasma-assisted molecular beam epitaxy. The MQW structure exhibits strong carrier confinement and room temperature ultraviolet-B (UVB) photoluminescence an order of magnitude stronger than that of a reference InxAlyGa(1-x-y)N thin film with comparable composition and thickness. The samples were characterized using spectroscopic ellipsometry, atomic force microscopy, and high-resolution X-ray diffraction. Numerical simulations suggest that the UVB emission efficiency is limited by dislocation-related non-radiative recombination centers in the MQW and at the MQW - buffer interface. Emission efficiency can be significantly improved by reducing the dislocation density from 109c m-2 to 107c m-2 and by optimizing the width and depth of the quantum wells.

  2. Electrical and Optical Studies of Defect Structure of HgCdTe Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Świątek, Z.; Ozga, P.; Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytsky, H. V.

    2016-07-01

    Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy (MBE) are performed. It is shown that the peculiarity of these films is the presence of neutral defects formed at the growth stage and inherent to the material grown by MBE. It is assumed that these neutral defects are the Te nanocomplexes. Under ion milling, they are activated by mercury interstitials and form the donor centers with the concentration of 1017 cm-3, which makes it possible to detect such defects by measurements of electrical parameters of the material. Under doping of HgCdTe with arsenic using high temperature cracking, the As2 dimers are present in the arsenic flow and block the neutral Te nanocomplexes to form donor As2Te3 complexes. The results of electrical studies are compared with the results of studies carried out by micro-Raman spectroscopy.

  3. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    NASA Astrophysics Data System (ADS)

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-08-01

    We report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Transport measurements of exfoliated graphene after SrO deposition show a strong dependence between the Dirac point and Sr oxidation. Subsequently, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  4. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  5. Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic

    SciTech Connect

    Izhnin, I. I.; Dvoretsky, S. A.; Mikhailov, N. N.; Varavin, V. S.; Mynbaev, K. D.; Fitsych, O. I.; Pociask-Bialy, M.; Sheregii, E.; Voitsekhovskii, A. V.

    2014-04-28

    A defect study was performed on molecular beam epitaxy-grown HgCdTe films in situ doped with arsenic. Doping was performed from either effusion cell or cracker cell, and studied were both as-grown samples and samples subjected to arsenic activation annealing. Electrical properties of the films were investigated with the use of ion milling as a means of “stirring” defects in the material. As a result of the study, it was confirmed that the most efficient incorporation of electrically active arsenic occurs at the cracking zone temperature of 700 °C. Interaction between arsenic and tellurium during the growth was observed and is discussed in the paper.

  6. Selective-area growth of heavily n-doped GaAs nanostubs on Si(001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, Yoon Jung; Simmonds, Paul J.; Beekley, Brett; Goorsky, Mark S.; Woo, Jason C. S.

    2016-04-01

    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth (SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growth parameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAs growth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grown GaAs nanostubs by fabricating heterogeneous p+-Si/n+-GaAs p-n diodes.

  7. High Growth Rate Metal-Organic Molecular Beam Epitaxy for the Fabrication of GaAs Space Solar Cells

    NASA Technical Reports Server (NTRS)

    Freundlich, A.; Newman, F.; Monier, C.; Street, S.; Dargan, P.; Levy, M.

    2005-01-01

    In this work it is shown that high quality GaAs photovoltaic devices can be produced by Molecular Beam Epitaxy (MBE) with growth rates comparable to metal-organic chemical vapor deposition (MOCVD) through the subsitution of group III solid sources by metal-organic compounds. The influence the III/V flux-ratio and growth temperatures in maintaining a two dimensional layer by layer growth mode and achieving high growth rates with low residual background impurities is investigated. Finally subsequent to the study of the optimization of n- and p doping of such high growth rate epilayers, results from a preliminary attempt in the fabrication of GaAs photovoltaic devices such as tunnel diodes and solar cells using the proposed high growth rate approach are reported.

  8. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L.

    2015-02-01

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  9. Molecular beam epitaxial growth of intermediate-band materials based on GaAs:N δ-doped superlattices

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya; Osada, Kazuki; Yagi, Shuhei; Naitoh, Shunya; Shoji, Yasushi; Hijikata, Yasuto; Okada, Yoshitaka; Yaguchi, Hiroyuki

    2015-08-01

    We fabricated GaAs:N δ-doped superlattices (SLs) by molecular beam epitaxy and investigated their potential as an intermediate-band photoabsorber in high-efficiency solar cells. The N area concentration in a N δ-doped layer was well controlled by adjusting the fabrication conditions, and the SLs with the average N composition of up to 1.5% were obtained. The SL minibands related to the N-induced E+ and E- conduction subbands were formed with well-separated bottom energies of up to 0.4 eV, indicating the suitability of this material system for use in intermediate-band solar cells. A two-step photoabsorption process in a solar cell with the SL absorber was successfully demonstrated through external quantum efficiency measurements under additional infrared illumination at room temperature.

  10. Role of native defects in nitrogen flux dependent carrier concentration of InN films grown by molecular beam epitaxy

    SciTech Connect

    Tangi, Malleswararao; Kuyyalil, Jithesh; Shivaprasad, S. M.

    2012-10-01

    We address the carrier concentration, strain, and bandgap issue of InN films grown on c-sapphire at different N-flux by molecular beam epitaxy using x-ray diffraction and x-ray photoelectron spectroscopy. We demonstrate that the strain in InN films arises due to point defects like nitrogen interstitials and nitrogen antisites. We report minimal biaxial strain due to relaxed growth morphology and a minimal hydrostatic strain arising due to interstitial nitrogen atoms being partially compensated by nitrogen antisites. We find that the variation in absorption edge can be attributed to defect induced carrier concentration and that nitrogen interstitials and nitrogen antisites act as donors that yield the respective absorption edge and Moss-Burstein shift. Our studies are a step towards the ability to form low carrier concentration strain-relaxed films and to determine the intrinsic band gap value for this technologically important material.

  11. Characterization of Si volume- and delta-doped InGaAs grown by molecular beam epitaxy

    SciTech Connect

    Fedoryshyn, Y.; Kaspar, P.; Jaeckel, H.; Beck, M.

    2010-05-15

    Bulk InGaAs layers were grown at 400 deg. C lattice-matched to InP semi-insulating substrates by molecular beam epitaxy. Si doping of the layers was performed by applying volume- and delta-doping techniques. The samples were characterized by capacitance-voltage, van der Pauw-Hall, secondary ion mass spectroscopy and photoluminescence measurements. Good agreement in terms of dependence of mobility and Burstein-Moss shift shift on doping concentration in samples doped by the two different techniques was obtained. Amphoteric behavior of Si was observed at doping concentrations higher than {approx}2.9x10{sup 19} cm{sup -3} in both delta- and volume-doped samples. Degradation of InGaAs crystalline quality occurred in samples with Si concentrations higher than {approx}4x10{sup 19} cm{sup -3}.

  12. Misfit dislocation free InAs/GaSb core-shell nanowires grown by molecular beam epitaxy.

    PubMed

    Rieger, T; Grützmacher, D; Lepsa, M I

    2015-01-07

    In this report, we present the growth and structural analyses of broken gap InAs/GaSb core-shell nanowires by molecular beam epitaxy using an Au-free approach. Depending on the shell growth temperature, two distinct growth regimes for the GaSb shells are identified resulting in conformal or tapered shells. Morphological analyses reveal a dodecagonal nanowire cross-section after GaSb shell growth. Detailed transmission electron microscope investigations from different zone axes confirm that the small lattice mismatch of 0.6% allows the deposition of 40 nm thick GaSb shells free of misfit dislocations. Additionally, an abrupt interface from InAs to GaSb is found. These nanowires are suitable for future devices such as TFETs.

  13. Structural and Electrical Properties of MoTe2 and MoSe2 Grown by Molecular Beam Epitaxy.

    PubMed

    Roy, Anupam; Movva, Hema C P; Satpati, Biswarup; Kim, Kyounghwan; Dey, Rik; Rai, Amritesh; Pramanik, Tanmoy; Guchhait, Samaresh; Tutuc, Emanuel; Banerjee, Sanjay K

    2016-03-23

    We demonstrate the growth of thin films of molybdenum ditelluride and molybdenum diselenide on sapphire substrates by molecular beam epitaxy. In situ structural and chemical analyses reveal stoichiometric layered film growth with atomically smooth surface morphologies. Film growth along the (001) direction is confirmed by X-ray diffraction, and the crystalline nature of growth in the 2H phase is evident from Raman spectroscopy. Transmission electron microscopy is used to confirm the layered film structure and hexagonal arrangement of surface atoms. Temperature-dependent electrical measurements show an insulating behavior that agrees well with a two-dimensional variable-range hopping model, suggesting that transport in these films is dominated by localized charge-carrier states.

  14. Cleaning chemistry of GaAs(100) and InSb(100) substrates for molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    Ploog (1980) and Bachrach and Krusor (1981) have pointed out the importance of substrate preparation and surface cleaning for obtaining high quality films with the aid of molecular beam epitaxial growth techniques. In the present investigation, high resolution X-ray photoemission (XPS) is used to determine the oxide removal mechanism for GaAs(100) substrates which have undergone a standardized cleaning procedure. Other objectives of the investigation are related to a comparison of different cleaning procedures in order to minimize carbon contamination, the extension of these cleaning techniques to other III-V compound semiconductors such as InSb, and the evaluation of the sensitivity of the compositional results to electron-induced damage effects.

  15. Nanoclusters of CaSe in calcium-doped Bi2Se3 grown by molecular-beam epitaxy.

    PubMed

    Shang, Panju; Guo, Xin; Zhao, Bao; Dai, Xianqi; Bin, Li; Jia, Jinfeng; Li, Quan; Xie, Maohai

    2016-02-26

    In calcium (Ca) doped Bi2Se3 films grown by molecular beam epitaxy, nanoclusters of CaSe are revealed by high-angle annular dark field imaging and energy dispersive x-ray spectroscopy analysis using a scanning transmission electron microscope. As the interface between the ordinary insulator CaSe and topological insulator, Bi2Se3, can host topological nontrivial interface state, this represents an interesting material system for further studies. We show by first principles total energy calculations that aggregation of Ca atoms in Bi2Se3 is driven by energy minimization and a preferential intercalation of Ca in the van der Waals gap between quintuple layers of Bi2Se3 induces reordering of atomic stacking and causes an increasing amount of stacking faults in film. The above findings also provide an explanation of less-than-expected electrical carrier (hole) concentrations in Ca-doped samples.

  16. InAs(1-x)P(x) nanowires grown by catalyst-free molecular-beam epitaxy.

    PubMed

    Isakov, I; Panfilova, M; Sourribes, M J L; Tileli, V; Porter, A E; Warburton, P A

    2013-03-01

    We report on the self-catalysed growth of vertical InAs(1-x)P(x) nanowires on Si(111) substrates by solid-source molecular-beam epitaxy. High-resolution transmission electron microscopy revealed the mixed wurtzite and zincblende structure of the nanowires. Energy dispersive x-ray spectroscopy and x-ray diffraction measurements were used to study the phosphorus content x in the InAs(1-x)P(x) nanowires, which was shown to be in the range 0-10 %. The dependence of phosphorus incorporation in the nanowires on the phosphorus flux in the growth chamber was investigated. The incorporation rate coefficients of As and P in InAs(1x)P(x) nanowires were found to be in the ratio 10 ± 5 to 1.

  17. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    SciTech Connect

    Du, Y. E-mail: scott.chambers@pnnl.gov; Liyu, A. V.; Droubay, T. C.; Chambers, S. A. E-mail: scott.chambers@pnnl.gov; Li, G.

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  18. Compositional variations in In(0.5)Ga(0.5)N nanorods grown by molecular beam epitaxy.

    PubMed

    Cherns, D; Webster, R F; Novikov, S V; Foxon, C T; Fischer, A M; Ponce, F A; Haigh, S J

    2014-05-30

    The composition of InxGa1 - xN nanorods grown by molecular beam epitaxy with nominal x = 0.5 has been mapped by electron microscopy using Z-contrast imaging and x-ray microanalysis. This shows a coherent and highly strained core-shell structure with a near-atomically sharp boundary between a Ga-rich shell (x ∼ 0.3) and an In-rich core (x ∼ 0.7), which itself has In- and Ga-rich platelets alternating along the growth axis. It is proposed that the shell and core regions are lateral and vertical growth sectors, with the core structure determined by spinodal decomposition.

  19. High-performance K-band GaAs power field-effect transistors prepared by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Saunier, P.; Shih, H. D.

    1983-01-01

    The maturity of the molecular beam epitaxy (MBE) technique for preparing device quality GaAs material for microwave applications is demonstrated by the excellent performance characteristics of K-band GaAs power field-effect transistors (FETs) fabricated on the MBE wafers. An output power of 710 mW with 4.5-dB gain and 17.7 percent power-added efficiency was achieved at 21 GHz with a 1.26-mm gate width pi-gate device. A similar device with a 0.56-mm gate width produced an output power of 320 mW with 5.0-dB gain and 26.6 percent power-added efficiency at 21 GHz. These are the best results yet reported to date for GaAs power FETs operated in the K-band frequency range.

  20. Heterostructures with CdTe/ZnTe quantum dots for single photon emitters grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sorokin, S. V.; Sedova, I. V.; Gronin, S. V.; Belyaev, K. G.; Rakhlin, M. V.; Toropov, A. A.; Mukhin, I. S.; Ivanov, S. V.

    2016-12-01

    We report on the molecular beam epitaxy (MBE) of heterostructures with CdTe/ZnTe quantum dots (QDs) with relatively low surface density, which could be used as single-photon emitters. The QDs were formed on the surface of a 3.1- to 4.5-monolayer-thick two-dimensional strained CdTe layer by depositing amorphous Te layer and its fast thermal desorption. Subsequent thermal annealing of the surface with QDs in the absence of external Te flux led to strong broadening and short-wavelength shift of the QD photoluminescence (PL) peak. Measurement of the micro-PL spectra of individual CdTe/ZnTe quantum dots in fabricated mesastructures with a diameter of 200—1000 nm allowed estimation of the QD surface density as 1010 cm-2.

  1. Toward Discrete Axial p- n Junction Nanowire Light-Emitting Diodes Grown by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Brubaker, Matt D.; Blanchard, Paul T.; Schlager, John B.; Sanders, Aric W.; Herrero, Andrew M.; Roshko, Alexana; Duff, Shannon M.; Harvey, Todd E.; Bright, Victor M.; Sanford, Norman A.; Bertness, Kris A.

    2013-05-01

    In this paper we investigate axial p- n junction GaN nanowires grown by plasma-assisted molecular beam epitaxy (MBE), with particular attention to the effect of Mg doping on the device characteristics of individual nanowire light-emitting diodes (LEDs). We observe that a significant fraction of single-nanowire LEDs produce measurable band-gap electroluminescence when a thin AlGaN electron blocking layer (EBL) is incorporated into the device structure near the junction. Similar devices with no EBL typically yield below-detection-limit electroluminescence, despite diode-like I- V characteristics and optically measured internal quantum efficiencies (IQEs) of ˜1%. I- V measurements of the p-regions in p- n junction nanowires, as well as nanowires doped with Mg only, indicate low p-type conductivity and asymmetric Schottky-like p-contacts. These observations suggest that imbalanced carrier injection from the junction and p-contact can produce significant nonradiative losses.

  2. Light emission and magnetic properties of aluminum films grown on SrTiO3 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Y. J.; Zhou, W. Q.; Meng, M.; Wu, S. X.; Li, S. W.

    2016-06-01

    Aluminum films were grown on SrTiO3 (100) substrates using a plasma-assisted molecular beam epitaxy system. We found that the intensity of defect emission coming through the Al films was enhanced to two fold. Although the surface plasmon energy is far from the defect emission, off-resonance enhancement is still possible from Al/SrTiO3. Moreover, the samples with Al films exhibits ferromagnetism, with wasp-waist hysteresis loops and exchange bias effects. The ferromagnetism may be attributed to the charge transfer between Al and the SrTiO3 matrix. This work is valuable in developing SrTiO3 which is a promising material used in optical and magnetic related application.

  3. Structural and magnetic properties of {eta}-phase manganese nitride films grown by molecular-beam epitaxy

    SciTech Connect

    Yang, Haiqiang; Al-Brithen, Hamad; Smith, Arthur R.; Borchers, J. A.; Cappelletti, R. L.; Vaudin, M. D.

    2001-06-11

    Face-centered tetragonal (fct) {eta}-phase manganese nitride films have been grown on magnesium oxide (001) substrates by molecular-beam epitaxy. For growth conditions described here, reflection high energy electron diffraction and neutron scattering show primarily two types of domains rotated by 90{degree} to each other with their c axes in the surface plane. Scanning tunneling microscopy images reveal surface domains consisting of row structures which correspond directly to the bulk domains. Neutron diffraction data confirm that the Mn moments are aligned in a layered antiferromagnetic structure. The data are consistent with the fct model of G. Kreiner and H. Jacobs for bulk Mn{sub 3}N{sub 2} [J. Alloys Compd. 183, 345 (1992)]. {copyright} 2001 American Institute of Physics.

  4. ScGaN alloy growth by molecular beam epitaxy: Evidence for a metastable layered hexagonal phase

    SciTech Connect

    Constantin, Costel; Al-Brithen, Hamad; Haider, Muhammad B.; Ingram, David; Smith, Arthur R.

    2004-11-15

    Alloy formation in ScGaN is explored using rf molecular beam epitaxy over the Sc fraction range x=0-100%. Optical and structural analysis show separate regimes of growth, namely (I) wurtzitelike but having local lattice distortions in the vicinity of the Sc{sub Ga} substitutions for small x (x{<=}0.17) (II) a transitional regime for intermediate x, and (III) cubic, rocksaltlike for large x(x{>=}0.54). In regimes I and III, the direct optical transition decreases approximately linearly with increasing x but with an offset over region II. Importantly, it is found that for regime I, an anisotropic lattice expansion occurs with increasing x in which a increases much more than c. These observations support the prediction of Farrer and Bellaiche [Phys. Rev. B 66, 201203-1 (2002)] of a metastable layered hexagonal phase of ScN, denoted h-ScN.

  5. In situ investigation of growth modes during plasma-assisted molecular beam epitaxy of (0001) GaN

    SciTech Connect

    Koblmueller, G.; Fernandez-Garrido, S.; Calleja, E.; Speck, J. S.

    2007-10-15

    Real-time analysis of the growth modes during homoepitaxial (0001) GaN growth by plasma-assisted molecular beam epitaxy was performed using reflection high energy electron diffraction. A growth mode map was established as a function of Ga/N flux ratio and growth temperature, exhibiting distinct transitions between three-dimensional (3D), layer-by-layer, and step-flow growth modes. The layer-by-layer to step-flow growth transition under Ga-rich growth was surfactant mediated and related to a Ga adlayer coverage of one monolayer. Under N-rich conditions the transition from 3D to layer-by-layer growth was predominantly thermally activated, facilitating two-dimensional growth at temperatures of thermal decomposition.

  6. A comprehensive diagram to grow InAlN alloys by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Fernandez-Garrido, S.; Gacevic, Z.; Calleja, E.

    2008-11-10

    Indium incorporation and surface morphology of InAlN layers grown on (0001) GaN by plasma-assisted molecular beam epitaxy were investigated as a function of the impinging In flux and the substrate temperature in the 450-610 deg. C range. In incorporation was found to decrease with substrate temperature due to thermal decomposition of the growing layer, while for a given temperature it increased with the impinging In flux until stoichiometry was reached at the growth front. The InN losses during growth followed an Arrhenius behavior characterized by an activation energy of 2.0 eV. A growth diagram highly instrumental to identify optimum growth conditions was established.

  7. Photoluminescence enhancement in quaternary III-nitrides alloys grown by molecular beam epitaxy with increasing Al content

    SciTech Connect

    Fernandez-Garrido, S.; Pereiro, J.; Gonzalez-Posada, F.; Munoz, E.; Calleja, E.

    2008-02-15

    Room temperature photoluminescence and optical absorption spectra have been measured in wurtzite In{sub x}Al{sub y}Ga{sub 1-x-y}N (x{approx}0.06, 0.02molecular beam epitaxy. Photoluminescence spectra show both an enhancement of the integrated intensity and an increasing Stokes shift with the Al content. Both effects arise from an Al-enhanced exciton localization revealed by the S- and W-shaped temperature dependences of the photoluminescence emission energy and bandwidth, respectively. Present results point to these materials as a promising choice for the active region in efficient light emitters. An In-related bowing parameter of 1.6 eV was derived from optical absorption data.

  8. Correlation of nanochemistry and electrical properties in HfO2 films grown by metalorganic molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Moon, Tae-Hyoung; Ham, Moon-Ho; Myoung, Jae-Min

    2005-03-01

    We present the annealing effects on nanochemistry and electrical properties in HfO2 dielectrics grown by metalorganic molecular-beam epitaxy. After the postannealing treatment of HfO2 films in the temperature range of 600-800°C, the thicknesses and chemical states of the films were examined by high-resolution transmission electron microscopy and angle-resolved x-ray photoelectron spectroscopy. By comparing the line shapes of core-level spectra for the samples with different annealing temperatures, the concentrations of SiO and Hf-silicate with high dielectric constant are found to be highest for HfO2 film annealed at 700°C. This result supports that the accumulation capacitance of the sample annealed at 700°C is not deteriorated in spite of a steep increase in interfacial layer thickness compared with that of the sample annealed at 600°C.

  9. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    SciTech Connect

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L.

    2015-02-09

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  10. Growth of wurtzite InP/GaP core-shell nanowires by metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Halder, Nripendra N.; Kelrich, Alexander; Kauffmann, Yaron; Cohen, Shimon; Ritter, Dan

    2017-04-01

    We report on the selective area vapor-liquid-solid (SA-VLS) growth of InP/GaP core shell nano-wires (NWs) by metal organic molecular beam epitaxy. Wurtzite crystal structure of the core InP was transferred to the GaP shell through layer by layer radial growth which eliminated bending of the NWs in random directions. Low growth temperature restricted surface segregation and kept the shell free from indium. Strain in the GaP shell was partially relaxed through formation of periodic misfit dislocations. From the periodicity of Moiré fringes and splitting of the fast-Fourier-transform of the transmission electron micrographs, the radial and axial strain were determined as 4.5% and 6.2%, respectively.

  11. Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Kaun, Stephen W.; Oshima, Yuichi; Short, Dane B.; Mishra, Umesh K.; Speck, James S.

    2017-04-01

    The Ge doping of β-Ga2O3(010) films was investigated using plasma-assisted molecular beam epitaxy as the growth method. The dependences of the amount of Ge incorporated on the substrate temperature, Ge-cell temperature, and growth regime were studied by secondary ion mass spectrometry. The electron concentration and mobility were investigated using Van der Pauw Hall patterns. Hall measurement confirmed that Ge acts as an n-dopant in β-Ga2O3(010) films. These results were compared with similar films doped by Sn. The Hall data showed an improved electron mobility for the same electron concentration when Ge is used instead of Sn as the dopant.

  12. Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Schörmann, Jörg; Hille, Pascal; Schäfer, Markus; Müßener, Jan; Becker, Pascal; Klar, Peter J.; Hofmann, Detlev M.; Teubert, Jörg; Eickhoff, Martin; Kleine-Boymann, Matthias; Rohnke, Marcus; Mata, Maria de la; Arbiol, Jordi

    2013-09-14

    Germanium doping of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) substrates is studied. Time of flight secondary ion mass spectrometry measurements reveal a constant Ge-concentration along the growth axis. A linear relationship between the applied Ge-flux and the resulting ensemble Ge-concentration with a maximum content of 3.3×10{sup 20} cm{sup −3} is extracted from energy dispersive X-ray spectroscopy measurements and confirmed by a systematic increase of the conductivity with Ge-concentration in single nanowire measurements. Photoluminescence analysis of nanowire ensembles and single nanowires reveals an exciton localization energy of 9.5 meV at the neutral Ge-donor. A Ge-related emission band at energies above 3.475 eV is found that is assigned to a Burstein-Moss shift of the excitonic emission.

  13. Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Zhao, S.; Woo, S. Y.; Bugnet, M.; Djavid, M.; Liu, X.; Kang, J.; Kong, X.; Ji, W.; Guo, H.; Liu, Z.; Botton, G. A.

    2016-09-01

    We report on the detailed molecular beam epitaxial growth and characterization of Al(Ga)N nanowire heterostructures on Si and their applications for deep ultraviolet light emitting diodes and lasers. The nanowires are formed under nitrogen-rich conditions without using any metal catalyst. Compared to conventional epilayers, Mg-dopant incorporation is significantly enhanced in nearly strain- and defect-free Al(Ga)N nanowire structures, leading to efficient p-type conduction. The resulting Al(Ga)N nanowire LEDs exhibit excellent performance, including a turn-on voltage of ∼5.5 V for an AlN nanowire LED operating at 207 nm. The design, fabrication, and performance of an electrically injected AlGaN nanowire laser operating in the UV-B band is also presented.

  14. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    SciTech Connect

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-04-27

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  15. Room temperature Ultraviolet B emission from InAlGaN films synthesized by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Kong, W. Jiao, W. Y.; Kim, T. H.; Brown, A. S.; Roberts, A. T.; Fournelle, J.; Losurdo, M.; Everitt, H. O.

    2015-09-28

    Thin films of the wide bandgap quaternary semiconductor In{sub x}Al{sub y}Ga{sub (1−x−y)}N with low In (x = 0.01–0.05) and high Al composition (y = 0.40–0.49) were synthesized on GaN templates by plasma-assisted molecular beam epitaxy. High-resolution X-ray diffraction was used to correlate the strain accommodation of the films to composition. Room temperature ultraviolet B (280 nm–320 nm) photoluminescence intensity increased with increasing In composition, while the Stokes shift remained relatively constant. The data suggest a competition between radiative and non-radiative recombination occurs for carriers, respectively, localized at centers produced by In incorporation and at dislocations produced by strain relaxation.

  16. Effect of in-situ oxygen on the electronic properties of graphene grown by carbon molecular beam epitaxy grown

    SciTech Connect

    Park, Jeongho; Mitchel, W. C.; Back, Tyson C.; Elhamri, Said

    2012-03-26

    We report that graphene grown by molecular beam epitaxy from solid carbon (CMBE) on (0001) SiC in the presence of unintentional oxygen exhibits a small bandgap on the order of tens of meV. The presence of bandgaps is confirmed by temperature dependent Hall effect and resistivity measurements. X-ray photoelectron spectroscopy (XPS) measurements suggest that oxygen incorporates into the SiC substrate in the form of O-Si-C and not into the graphene as graphene oxide or some other species. The effect is independent of the carrier type of the graphene. Temperature dependent transport measurements show the presence of hopping conduction in the resistivity and a concurrent disappearance of the Hall voltage. Interactions between the graphene layers and the oxidized substrate are believed to be responsible for the bandgap.

  17. Molecular beam epitaxy growth methods of wavelength control for InAs/(In)GaAsN/GaAs heterostructures.

    PubMed

    Mamutin, V V; Egorov, A Yu; Kryzhanovskaya, N V

    2008-11-05

    We discuss the molecular beam epitaxy (MBE) growth methods of emission wavelength control and property investigations for different types of InAs/(In)GaAsN/GaAs heterostructures containing InGaAsN quantum-size layers: (1) InGaAsN quantum wells deposited by the conventional mode in a GaAs matrix, (2) InAs quantum dots deposited in a GaAsN matrix or covered by an InGaAs(N) layer, and (3) InAs/InGaAsN/GaAsN strain-compensated superlattices with quantum wells and quantum dots. The structures under investigation have demonstrated photoluminescence emission in a wavelength range of ∼1.3-1.8 µm at room temperature without essential deterioration of the radiative properties.

  18. Molecular beam epitaxy engineered III-V semiconductor structures for low-power optically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Larsson, Anders G.; Maserjian, Joseph

    1992-01-01

    Device approaches are investigated for optically addressed SLMs based on molecular-beam epitaxy (MBE) engineered III-V materials and structures. Strong photooptic effects can be achieved in periodically delta-doped multiple-quantum-well structures, but are still insufficient for high-contrast modulation with only single- or double-pass absorption through active layers of practical thickness. The asymmetric Fabry-Perot cavity approach is employed to permit extinction of light due to interference of light reflected from the front and back surfaces of the cavity. This approach is realized with an all-MBE-grown structure consisting of GaAs/AlAs quarter-wave stack reflector grown over the GaAs substrate as the high reflectance mirror and the GaAs surface as the low reflectance mirror. High-contrast modulation is achieved using a low-power InGaAs/GaAs quantum well laser for the control signal.

  19. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers

    SciTech Connect

    Nicolaï, J.; Warot-Fonrose, B.; Gatel, C. Ponchet, A.; Teissier, R.; Baranov, A. N.; Magen, C.

    2015-07-21

    Structural and chemical properties of InAs/AlSb interfaces have been studied by transmission electron microscopy. InAs/AlSb multilayers were grown by molecular beam epitaxy with different growth sequences at interfaces. The out-of-plane strain, determined using high resolution microscopy and geometrical phase analysis, has been related to the chemical composition of the interfaces analyzed by high angle annular dark field imaging. Considering the local strain and chemistry, we estimated the interface composition and discussed the mechanisms of interface formation for the different growth sequences. In particular, we found that the formation of the tensile AlAs-type interface is spontaneously favored due to its high thermal stability compared to the InSb-type interface. We also showed that the interface composition could be tuned using an appropriate growth sequence.

  20. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Nicolaï, J.; Warot-Fonrose, B.; Gatel, C.; Teissier, R.; Baranov, A. N.; Magen, C.; Ponchet, A.

    2015-07-01

    Structural and chemical properties of InAs/AlSb interfaces have been studied by transmission electron microscopy. InAs/AlSb multilayers were grown by molecular beam epitaxy with different growth sequences at interfaces. The out-of-plane strain, determined using high resolution microscopy and geometrical phase analysis, has been related to the chemical composition of the interfaces analyzed by high angle annular dark field imaging. Considering the local strain and chemistry, we estimated the interface composition and discussed the mechanisms of interface formation for the different growth sequences. In particular, we found that the formation of the tensile AlAs-type interface is spontaneously favored due to its high thermal stability compared to the InSb-type interface. We also showed that the interface composition could be tuned using an appropriate growth sequence.

  1. Contactless electroreflectance studies of surface potential barrier for N- and Ga-face epilayers grown by molecular beam epitaxy

    SciTech Connect

    Kudrawiec, R.; Janicki, L.; Gladysiewicz, M.; Misiewicz, J.; Cywinski, G.; Boćkowski, M.; Muzioł, G.

    2013-07-29

    Two series of N- and Ga-face GaN Van Hoof structures were grown by plasma-assisted molecular beam epitaxy to study the surface potential barrier by contactless electroreflectance (CER). A clear CER resonance followed by strong Franz-Keldysh oscillation of period varying with the thickness of undoped GaN layer was observed for these structures. This period was much shorter for N-polar structures that means smaller surface potential barrier in these structures than in Ga-polar structures. From the analysis of built-in electric field it was determined that the Fermi-level is located 0.27 ± 0.05 and 0.60 ± 0.05 eV below the conduction band for N- and Ga-face GaN surface, respectively.

  2. Electrical properties of molecular beam epitaxial GaAs grown at 300-450{degrees}C

    SciTech Connect

    Look, D.C.; Robinson, G.D.; Sizelove, J.R.; Stutz, C.E.

    1993-12-01

    We use the Hall effect and a new charge-transfer technique to study molecular beam epitaxial GaAs grown at the low substrate temperatures of 300-450{degrees}C. Layers grown from 350-450{degrees}C are semi-insulating (resistivity greater than 10{sup 7}{Omega}-cm), as grown, because of an As{sub Ga}-related donor (not EL2) at E{sub c} - 0.65 eV. The donor concentrations are about 2 x 10{sup 18} cm{sup -3} and 2 x 10{sup 17} cm{sup -3} at growth temperatures of 300 and 400{degrees}C, respectively, and acceptor concentrations are about an order of magnitude lower. Relatively high mobilities ({approximately}5000 cm{sup 2}/V s) along with the high resistivities make this material potentially useful for certain device applications. 8 refs., 2 figs., 2 tabs.

  3. Formation of GaN quantum dots by molecular beam epitaxy using NH{sub 3} as nitrogen source

    SciTech Connect

    Damilano, B. Brault, J.; Massies, J.

    2015-07-14

    Self-assembled GaN quantum dots (QDs) in Al{sub x}Ga{sub 1−x}N (0.3 ≤ x ≤ 1) were grown on c-plane sapphire and Si (111) substrates by molecular beam epitaxy using ammonia as nitrogen source. The QD formation temperature was varied from 650 °C to 800 °C. Surprisingly, the density and size of QDs formed in this temperature range are very similar. This has been explained by considering together experimental results obtained from reflection high-energy electron diffraction, atomic force microscopy, and photoluminescence to discuss the interplay between thermodynamics and kinetics in the QD formation mechanisms. Finally, possible ways to better control the QD optical properties are proposed.

  4. Ultra-low resistance ohmic contacts to GaN with high Si doping concentrations grown by molecular beam epitaxy

    SciTech Connect

    Afroz Faria, Faiza; Guo Jia; Zhao Pei; Li Guowang; Kumar Kandaswamy, Prem; Wistey, Mark; Xing Huili; Jena, Debdeep

    2012-07-16

    Ti/Al/Ni/Au ohmic contacts were formed on heavily doped n{sup +} metal-polar GaN samples with various Si doping concentrations grown by molecular beam epitaxy. The contact resistivity (R{sub C}) and sheet resistance (R{sub sh}) as a function of corresponding GaN free carrier concentration (n) were measured. Very low R{sub C} values (<0.09 {Omega} mm) were obtained, with a minimum R{sub C} of 0.035 {Omega} mm on a sample with a room temperature carrier concentration of {approx}5 Multiplication-Sign 10{sup 19} cm{sup -3}. Based on the systematic study, the role of R{sub C} and R{sub sh} is discussed in the context of regrown n{sup +} GaN ohmic contacts for GaN based high electron mobility transistors.

  5. Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schörmann, Jörg; Hille, Pascal; Schäfer, Markus; Müßener, Jan; Becker, Pascal; Klar, Peter J.; Kleine-Boymann, Matthias; Rohnke, Marcus; de la Mata, Maria; Arbiol, Jordi; Hofmann, Detlev M.; Teubert, Jörg; Eickhoff, Martin

    2013-09-01

    Germanium doping of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) substrates is studied. Time of flight secondary ion mass spectrometry measurements reveal a constant Ge-concentration along the growth axis. A linear relationship between the applied Ge-flux and the resulting ensemble Ge-concentration with a maximum content of 3.3×1020 cm-3 is extracted from energy dispersive X-ray spectroscopy measurements and confirmed by a systematic increase of the conductivity with Ge-concentration in single nanowire measurements. Photoluminescence analysis of nanowire ensembles and single nanowires reveals an exciton localization energy of 9.5 meV at the neutral Ge-donor. A Ge-related emission band at energies above 3.475 eV is found that is assigned to a Burstein-Moss shift of the excitonic emission.

  6. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Heo, Junseok; Zhou, Zifan; Guo, Wei; Ooi, Boon S.; Bhattacharya, Pallab

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively.

  7. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey. J.; Wang, George T.

    2015-10-01

    Ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (1 1 bar 02) r-plane sapphire substrates. Dislocation free [ 11 2 bar 0 ] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar { 10 1 bar 0 } side facets, which appear due to a decrease in relative growth rate of the { 10 1 bar 0 } facets to the { 10 1 bar 1 } and { 10 1 bar 1 } facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal-organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.

  8. Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schlager, John B.; Sanford, Norman A.; Bertness, Kris A.; Barker, Joy M.; Roshko, Alexana; Blanchard, Paul T.

    2006-05-01

    Polarization- and temperature-dependent photoluminescence (PL) measurements were performed on individual GaN nanowires. These were grown by catalyst-free molecular beam epitaxy on Si(111) substrates, ultrasonically removed, and subsequently dispersed on sapphire substrates. The wires were typically 5-10μm in length, c-axis oriented, and 30-100nm in diameter. Single wires produced sufficient emission intensity to enable high signal-to-noise PL data. Polarized PL spectra differed for the σ and π polarization cases, illustrating the polarization anisotropy of the exciton emission associated with high-quality wurtzite GaN. This anisotropy in PL emission persisted even up to room temperature (4-296K). Additionally, the nanowire PL varied with excitation intensity and with (325nm) pump exposure time.

  9. Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films.

    PubMed

    Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritesh; Banerjee, Sanjay K

    2015-04-28

    Reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry, and other physical property measurements are used to investigate the structure, morphology, magnetic, and magnetotransport properties of (001)-oriented Cr2Te3 thin films grown on Al2O3(0001) and Si(111)-(7×7) surfaces by molecular beam epitaxy. Streaky RHEED patterns indicate flat smooth film growth on both substrates. STM studies show the hexagonal arrangements of surface atoms. Determination of the lattice parameter from the atomically resolved STM image is consistent with the bulk crystal structures. Magnetic measurements show the film is ferromagnetic, having a Curie temperature of about 180 K, and a spin glass-like behavior was observed below 35 K. Magnetotransport measurements show the metallic nature of the film with a perpendicular magnetic anisotropy along the c-axis.

  10. Optical characterization of GaAs pyramid microstructures formed by molecular beam epitaxial regrowth on pre-patterned substrates

    SciTech Connect

    Pritchard, R. E.; Oulton, R. F.; Stavrinou, P. N.; Parry, G.; Williams, R. S.; Ashwin, M. J.; Neave, J. H.; Jones, T. S.

    2001-07-01

    Arrays of GaAs pyramids with square (001) bases of length 1{endash}5 {mu}m have been fabricated by molecular beam epitaxy regrowth on pre-patterned GaAs (001) substrates. The optical properties of the pyramid faces have been studied by microreflection and microtransmission imaging measurements with light ({lambda}=900{endash}1000nm) incident through the pyramid base. Digitized charge coupled device images indicate that total internal reflection occurs at the {l_brace}110{r_brace} pyramid facets and that their reflectivities are greater than 80%, provided overgrowth of the facets does not occur. These properties suggest that such structures may be suitable as the top mirror in novel micron-scale vertical microcavity devices. {copyright} 2001 American Institute of Physics.

  11. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Du, Y.; Droubay, T. C.; Liyu, A. V.; Li, G.; Chambers, S. A.

    2014-04-01

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  12. On the phase shift of reflection high energy electron diffraction intensity oscillations during Ge(001) homoepitaxy by molecular beam epitaxy

    SciTech Connect

    Shin Byungha; Leonard, John P.; McCamy, James W.; Aziz, Michael J.

    2007-03-15

    The authors have conducted a systematic investigation of the phase shift of the reflection high energy electron diffraction (RHEED) intensity oscillations during homoepitaxy of Ge(001) by molecular beam epitaxy for a wide range of diffraction conditions. Their results show that for small incidence angles with a beam azimuth several degrees away from the <110> crystallographic symmetry direction, the phase is independent of incidence angle; however, it starts to shift once the incidence angle is high enough that the (004) Kikuchi line appears in the RHEED pattern. Moreover, under some conditions they observe the oscillations from only the Kikuchi feature and not from the specular spot, and the oscillatory behavior of the Kikuchi feature is almost out of phase with that of the specular spot. They conclude that the phase shift is caused by the overlap of the specular spot and the Kikuchi features, in contrast to models involving dynamical scattering theory for the phase shift. They discuss necessary conditions for avoiding interference.

  13. InGaN/GaN self-organized quantum dot lasers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Banerjee, Animesh; Frost, Thomas; Jahangir, Shafat; Stark, Ethan; Bhattacharya, Pallab

    2013-09-01

    Blue-and green-emitting quantum dots have been characterized and ridge waveguide lasers incorporating such quantum dots into the active region have been realized. The laser heteroscturctures were grown by plasma assisted molecular beam epitaxy. Injected carrier lifetimes in the quantum dots have also been measured by temperature dependent and time resolved photoluminescence. A threshold current density of 930 A/cm2 in the blue-emitting lasers was measured under pulsed bias. A tunnel injection scheme to inject holes has been incorporated in the design of the green quantum dot lasers, and a threshold current density of 945 A/cm2 in the green-emitting lasers has been measured under pulsed bias. Slope efficiencies of 0.41 W/A and 0.25 W/A have been measured, corresponding to differential quantum efficiencies of 13.9% and 11.3%, in the blue and green lasers, respectively.

  14. Evolution of strain and composition of Ge islands on Si (001) grown by molecular beam epitaxy during postgrowth annealing

    SciTech Connect

    Singha, R. K.; Das, S.; Majumdar, S.; Das, K.; Dhar, A.; Ray, S. K.

    2008-06-01

    Self-assembled Ge islands have been grown using a Stranski-Krastanov growth mechanism on Si (001) substrates by solid source molecular beam epitaxy. We performed time varying annealing experiments at a representative temperature of 650 deg. C to study the shape and size evolution of islands for a relatively high Ge coverage. Islands are found to coarsen due to heat treatment via structural and compositional changes through continuous strain relaxation. Different island morphologies, namely, 'pyramids', 'transitional domes', and 'domes' are found during the annealing sequence. The dominant coarsening mechanisms for the temporal evolution of islands of as-grown and annealed samples are explained by the comprehensive analysis of Rutherford back scattering, Raman spectroscopy, high-resolution x-ray diffraction, and atomic force microscopy. A correlation of the morphological evolution with the composition and strain relaxation of grown islands is presented.

  15. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOEpatents

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  16. Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths

    SciTech Connect

    Sadofev, Sergey; Kalusniak, Sascha; Schaefer, Peter; Henneberger, Fritz

    2013-05-06

    We demonstrate that Zn(Mg)O:Ga layers can be grown by molecular beam epitaxy in a two-dimensional mode with high structural perfection up to Ga mole fractions of about 6.5%. The doping efficiency is practically 100% so that free-carrier concentrations of almost 10{sup 21} cm{sup -3} can be realized providing a zero-crossover wavelength of the real part of the dielectric function as short as 1.36 {mu}m, while the plasmonic damping does not exceed 50 meV. Structural, electrical, and optical data consistently demonstrate a profound change of the Ga incorporation mode beyond concentrations of 10{sup 21} cm{sup -3} attended by deterioration of the plasmonic features.

  17. Low-damping sub-10-nm thin films of lutetium iron garnet grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Jermain, C. L.; Paik, H.; Aradhya, S. V.; Buhrman, R. A.; Schlom, D. G.; Ralph, D. C.

    2016-11-01

    We analyze the structural and magnetic characteristics of (111)-oriented lutetium iron garnet (Lu3Fe5O12) films grown by molecular-beam epitaxy, for films as thin as 2.8 nm. Thickness-dependent measurements of the in- and out-of-plane ferromagnetic resonance allow us to quantify the effects of two-magnon scattering, along with the surface anisotropy and the saturation magnetization. We achieve effective damping coefficients of 11.1 (9 )×10-4 for 5.3 nm films and 32 (3 )×10-4 for 2.8 nm films, among the lowest values reported to date for any insulating ferrimagnetic sample of comparable thickness.

  18. Long-wavelength PtSi infrared detectors fabricated by incorporating a p(+) doping spike grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Park, J. S.; George, T.; Jones, E. W.; Fathauer, R. W.; Maserjian, J.

    1993-01-01

    By incorporating a 1-nm-thick p(+) doping spike at the PtSi/Si interface, we have successfully demonstrated extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime for the first time. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p(+) doping spike and the Schottky image force. The p(+) doping spikes were grown by molecular beam epitaxy at 450 C, using elemental boron as the dopant source, with doping concentrations ranging from 5 x 10 exp 19 to 2 x 10 exp 20/cu cm. Transmission electron microscopy indicated good crystalline quality of the doping spikes. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p(+) spikes. Thermionic emission dark current characteristics were observed and photoresponses in the LWIR regime were demonstrated.

  19. Misfit dislocation free InAs/GaSb core-shell nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rieger, T.; Grützmacher, D.; Lepsa, M. I.

    2014-11-01

    In this report, we present the growth and structural analyses of broken gap InAs/GaSb core-shell nanowires by molecular beam epitaxy using an Au-free approach. Depending on the shell growth temperature, two distinct growth regimes for the GaSb shells are identified resulting in conformal or tapered shells. Morphological analyses reveal a dodecagonal nanowire cross-section after GaSb shell growth. Detailed transmission electron microscope investigations from different zone axes confirm that the small lattice mismatch of 0.6% allows the deposition of 40 nm thick GaSb shells free of misfit dislocations. Additionally, an abrupt interface from InAs to GaSb is found. These nanowires are suitable for future devices such as TFETs.In this report, we present the growth and structural analyses of broken gap InAs/GaSb core-shell nanowires by molecular beam epitaxy using an Au-free approach. Depending on the shell growth temperature, two distinct growth regimes for the GaSb shells are identified resulting in conformal or tapered shells. Morphological analyses reveal a dodecagonal nanowire cross-section after GaSb shell growth. Detailed transmission electron microscope investigations from different zone axes confirm that the small lattice mismatch of 0.6% allows the deposition of 40 nm thick GaSb shells free of misfit dislocations. Additionally, an abrupt interface from InAs to GaSb is found. These nanowires are suitable for future devices such as TFETs. Electronic supplementary information (ESI) available: Cross sectional shape along the nanowire axis, evolution of the cross sectional shape, comparison of the <110> and the <211> zone axis, HRTEM images, evolution of the GaSb platform ad multiple twinning induced defects in the GaSb platform. See DOI: 10.1039/c4nr05164e

  20. Molecular Beam Epitaxy on Gas Cluster Ion Beam Prepared GaSb Substrates: Towards Improved Surfaces and Interfaces

    SciTech Connect

    Krishnaswami, Kannan; Shivashankar, Vangala; Dauplaise, Helen; Allen, Lisa; Dallas, Gordon; Bakken, Daniel; Bliss, David; Goodhue, William

    2008-04-01

    A key problem in producing mid-infrared optoelectronic and low-power electronic devices in the GaSb material system is the lack of substrates with appropriate surfaces for epitaxial growth. Chemical mechanical polishing (CMP) of GaSb results in surface damage accompanied by tenacious oxides that do not easily desorb. To overcome this, we have developed a process using gas cluster ion beams (GCIB) to remove surface damage and produce engineered surface oxides. In this paper, we present surface modification results on GaSb substrates using O2-, CF4/O2-, and HBr-GCIB processes. X-ray photoelectron spectroscopy of GCIB produced surface layers showed the presence of mixed Ga- and Sb-oxides, with mostly Ga-oxides at the interface, desorbing at temperatures ranging 530°C to 560°C. Cross-sectional transmission electron microscopy of molecular beam epitaxy grown GaSb/AlGaSb layers showed that GCIB surfaces yielded smooth defect free substrate to epi transitions as compared to CMP surfaces. Furthermore, HBr-GCIB surfaces exhibited neither dislocation layers nor discernable interfaces, indicating complete oxide desorbtion prior to epigrowth on a clean single crystal template. Atomic force microscopy of GCIB epilayers exhibited smooth surfaces with characteristic step-terrace formations comprising monatomic steps and wide terraces. The HBr-GCIB process can be easily adapted to a large scale manufacturing process for epi-ready GaSb.

  1. Improvement of GaAsSb alloys on InP grown by molecular beam epitaxy with substrate tilting

    NASA Astrophysics Data System (ADS)

    Chou, C. Y.; Torfi, A.; Wang, W. I.

    2013-10-01

    GaAsSb alloys lattice-matched to InP substrate have been used in various electronic and optoelectronic applications due to their highly desirable band alignment for high-speed double heterojunction bipolar transistors. There is however an issue with GaAsSb alloys, composed approximately of 50% As and 50% Sb, lattice-matched to an InP substrate; it exhibits a miscibility gap, which is a significant problem for crystal growth. This paper addresses the effect of substrate tilting on the material properties of GaAsSb alloys closely lattice-matched to InP substrates by molecular beam epitaxy (MBE). InP(100) substrates tilted 0°off-(on-axis), 2°off-, 3°off-, and 4°off-axis were used for MBE growth, then the material qualities of GaAsSb epitaxial layers were compared using various techniques, including high resolution X-ray diffraction, photoluminescence (PL), Raman scattering, and transmission-line measurements (TLM). Substrate tilting improved the GaAsSb alloys with crystalline quality, shown by a narrower x-ray linewidth and enhanced optical quality as evidenced by a strong PL peak. The results of TLM show that the lowest sheet resistance was achieved at a 2° off-axis tilt. The results are expected to be applicable in devices that incorporate GaAsSb in the active layer grown by MBE.

  2. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    SciTech Connect

    Oliveira, F.; Fischer, I. A.; Schulze, J.; Benedetti, A.; Zaumseil, P.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.

    2015-12-28

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  3. Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy.

    PubMed

    Zhang, Yunyan; Aagesen, Martin; Holm, Jeppe V; Jørgensen, Henrik I; Wu, Jiang; Liu, Huiyun

    2013-08-14

    We realize the growth of self-catalyzed GaAsP nanowires (NWs) on silicon (111) substrates using solid-source molecular beam epitaxy. By optimizing the V/III and P/As flux ratios, as well as the Ga flux, high-crystal-quality GaAsP NWs have been demonstrated with almost pure zinc-blende phase. Comparing the growth of GaAsP NWs with that of the conventional GaAs NWs indicates that the incorporation of P has significant effects on catalyst nucleation energy, and hence the nanowire morphology and crystal quality. In addition, the incorporation ratio of P/As between vapor-liquid-solid NW growth and the vapor-solid thin film growth has been compared, and the difference between these two growth modes is explained through growth kinetics. The vapor-solid epitaxial growth of radial GaAsP shell on core GaAsP NWs is further demonstrated with room-temperature emission at ~710 nm. These results give valuable new information into the NW nucleation mechanisms and open up new perspectives for integrating III-V nanowire photovoltaics and visible light emitters on a silicon platform by using self-catalyzed GaAsP core-shell nanowires.

  4. Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors.

    PubMed

    Hardy, Matthew T; Storm, David F; Katzer, D Scott; Downey, Brian P; Nepal, Neeraj; Meyer, David J

    2016-11-24

    Plasma-assisted molecular beam epitaxy is well suited for the epitaxial growth of III-nitride thin films and heterostructures with smooth, abrupt interfaces required for high-quality high-electron-mobility transistors (HEMTs). A procedure is presented for the growth of N-polar InAlN HEMTs, including wafer preparation and growth of buffer layers, the InAlN barrier layer, AlN and GaN interlayers and the GaN channel. Critical issues at each step of the process are identified, such as avoiding Ga accumulation in the GaN buffer, the role of temperature on InAlN compositional homogeneity, and the use of Ga flux during the AlN interlayer and the interrupt prior to GaN channel growth. Compositionally homogeneous N-polar InAlN thin films are demonstrated with surface root-mean-squared roughness as low as 0.19 nm and InAlN-based HEMT structures are reported having mobility as high as 1,750 cm(2)/V∙sec for devices with a sheet charge density of 1.7 x 10(13) cm(-2).

  5. All-wurtzite (In,Ga)As-(Ga,Mn)As core-shell nanowires grown by molecular beam epitaxy.

    PubMed

    Siušys, Aloyzas; Sadowski, Janusz; Sawicki, Maciej; Kret, Sławomir; Wojciechowski, Tomasz; Gas, Katarzyna; Szuszkiewicz, Wojciech; Kaminska, Agnieszka; Story, Tomasz

    2014-08-13

    Structural and magnetic properties of (In,Ga)As-(Ga,Mn)As core-shell nanowires grown by molecular beam epitaxy on GaAs(111)B substrate with gold catalyst have been investigated. (In,Ga)As core nanowires were grown at high temperature (500 °C) whereas (Ga,Mn)As shells were deposited on the {11̅00} side facets of the cores at much lower temperature (220 °C). High-resolution transmission electron microscopy images and high spectral resolution Raman scattering data show that both the cores and the shells of the nanowires have wurtzite crystalline structure. Scanning and transmission electron microscopy observations show smooth (Ga,Mn)As shells containing 5% of Mn epitaxially deposited on (In,Ga)As cores containing about 10% of In without any misfit dislocations at the core-shell interface. With the In content in the (In,Ga)As cores larger than 5% the (In,Ga)As lattice parameter is higher than that of (Ga,Mn)As and the shell is in the tensile strain state. Elaborated magnetic studies indicate the presence of ferromagnetic coupling in (Ga,Mn)As shells at the temperatures in excess of 33 K. This coupling is maintained only in separated mesoscopic volumes resulting in an overall superparamagnetic behavior which gets blocked below ∼ 17 K.

  6. Arrayed van der Waals Vertical Heterostructures Based on 2D GaSe Grown by Molecular Beam Epitaxy.

    PubMed

    Yuan, Xiang; Tang, Lei; Liu, Shanshan; Wang, Peng; Chen, Zhigang; Zhang, Cheng; Liu, Yanwen; Wang, Weiyi; Zou, Yichao; Liu, Cong; Guo, Nan; Zou, Jin; Zhou, Peng; Hu, Weida; Xiu, Faxian

    2015-05-13

    Vertically stacking two-dimensional (2D) materials can enable the design of novel electronic and optoelectronic devices and realize complex functionality. However, the fabrication of such artificial heterostructures on a wafer scale with an atomically sharp interface poses an unprecedented challenge. Here, we demonstrate a convenient and controllable approach for the production of wafer-scale 2D GaSe thin films by molecular beam epitaxy. In situ reflection high-energy electron diffraction oscillations and Raman spectroscopy reveal a layer-by-layer van der Waals epitaxial growth mode. Highly efficient photodetector arrays were fabricated, based on few-layer GaSe on Si. These photodiodes show steady rectifying characteristics and a high external quantum efficiency of 23.6%. The resultant photoresponse is super-fast and robust, with a response time of 60 μs. Importantly, the device shows no sign of degradation after 1 million cycles of operation. We also carried out numerical simulations to understand the underlying device working principles. Our study establishes a new approach to produce controllable, robust, and large-area 2D heterostructures and presents a crucial step for further practical applications.

  7. Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN (0001)

    NASA Astrophysics Data System (ADS)

    Mula, Guido; Adelmann, C.; Moehl, S.; Oullier, J.; Daudin, B.

    2001-11-01

    We study the adsorption of Ga on (0001) GaN surfaces by reflection high-energy electron diffraction. It is shown that a dynamically stable Ga bilayer can be formed on the GaN surface for appropriate Ga fluxes and substrate temperatures. The influence of the presence of this Ga film on the growth mode of GaN on AlN(0001) by plasma-assisted molecular-beam epitaxy is studied. It is demonstrated that under nearly stoichiometric and N-rich conditions, the GaN layer relaxes elastically during the first stages of epitaxy. At high temperatures the growth follows a Stranski-Krastanov mode, whereas at lower temperatures kinetically formed flat platelets are observed. Under Ga-rich conditions-where a Ga bilayer is rapidly formed due to excess Ga accumulating on the surface-the growth follows a Frank-van der Merwe layer-by-layer mode at any growth temperature and no initial elastic relaxation occurs. Hence, it is concluded that excess Ga acts as a surfactant, effectively suppressing both Stranski-Krastanov islanding and platelet formation. It is further demonstrated that the Stranski-Krastanov transition is in competition with elastic relaxation by platelets, and it is only observed when relaxation by platelets is inefficient. As a result, a growth mode phase diagram is outlined for the growth of GaN on AlN(0001).

  8. Molecular Beam Epitaxial Growth of ZnO on Si Substrate Using Ozone as an Oxygen Source

    NASA Astrophysics Data System (ADS)

    Fujita, Miki; Kawamoto, Noriaki; Tatsumi, Tomohiko; Yamagishi, Katsumi; Horikoshi, Yoshiji

    2003-01-01

    Epitaxial ZnO films have been grown on Si (111) substrates by molecular beam epitaxy using ozone as an oxygen source. An initial deposition of a Zn layer followed by its oxidation produces a superior template for the subsequent ZnO growth. The reflection high-energy electron diffraction measurement suggests that the initial Zn layer and ZnO film are rotated by 30° with respect to the Si substrate orientation. The X-ray diffraction measurement reveals that the as-grown ZnO films are strongly c-oriented and include no rotational domains. Although there exists a small trace of ZnO (10\\bar{1}1) domains, it easily disappears upon annealing at 1100°C for 1 min after growth. Low-temperature photoluminescence measurements indicate that the emission property is improved significantly after annealing. The bound-exciton emission at 3.354 eV is dominant and its full-width at half maximum is as small as 11 meV.

  9. Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates

    NASA Technical Reports Server (NTRS)

    Oh, J. E.; Bhattacharya, P. K.; Chen, Y. C.; Tsukamoto, S.

    1989-01-01

    Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures.

  10. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  11. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  12. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    PubMed

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  13. Effect of residual impurities on transport properties of {beta}-FeSi{sub 2} epitaxial films grown by molecular beam epitaxy

    SciTech Connect

    Terai, Y.; Yoneda, K.; Noda, K.; Miura, N.; Fujiwara, Y.

    2012-07-01

    Unintentionally doped {beta}-FeSi{sub 2} epitaxial films were grown on silicon-on-insulator substrates by molecular beam epitaxy using a high-purity (5N) Fe source to investigate the effect of residual impurities on the transport properties of {beta}-FeSi{sub 2}. From secondary ion mass spectroscopy analysis, impurities of As, Al, and Mn ({approx}10{sup 17} cm{sup -3}); P and B ({approx}10{sup 16} cm{sup -3}); and Cr and Pb ({approx}10{sup 15} cm{sup -3}) were detected in the epitaxial layer. In Hall measurements at room temperature, the films exhibited n-type conduction with a carrier density of 4-6 Multiplication-Sign 10{sup 16} cm{sup -3} and a Hall mobility of 400-440 cm{sup 2}/Vs. In the temperature (T) dependence of the transport properties, a transition from band conduction to hopping conduction was observed at approximately T = 230 K. At temperatures of 110-150 K, both negative and positive magnetoresistance (MR) were observed depending on the temperature and magnetic field. The MR exhibits mixed conduction of defect band conduction and band conduction in this temperature range.

  14. Epitaxial growth of Ruddlesden-Popper Lan+1NinO3n+1 series using reactive molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, June Hyuk; Tung, I.-Cheng; Moyer, Jarrett; Luo, Guangfu; Chang, Seo Hyoung; Morgan, Dane; Hong, Hawoong; Schiffer, Peter; Fong, Dillon; Freeland, John

    2014-03-01

    We report the growth of single crystalline Lan+1NinO3n+1 epitaxial thin films using reactive molecular-beam epitaxy. Ruddlesden-Popper Lan+1NinO3n+1 compounds, consisting of LaO+ and NiO2- layers, have been considered a potential candidate for solid-oxide fuel cell cathodes and thermoelectrics. However, the growth of higher order Lan+1NinO3n+1 single crystals has not been possible so far. We utilize synchrotron x-ray diffraction at the Advanced Photon Source during layer?by?layer deposition together with density functional theory calculations to understand how LaO+ and NiO2- oxide layers re-arrange dynamically during growth. Using this layer re-arrangement, epitaxial La2NiO4, La3Ni2O7,andLaSUB>4Ni3O10 films on (001)-oriented SrTiO3 have been synthesized with the proper nickel valance state and structure. Here we will discuss the connection between structure and electrical transport properties. Work at the APS, Argonne is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  15. Crystal orientation mechanism of ZnTe epilayers formed on different orientations of sapphire substrates by molecular beam epitaxy

    SciTech Connect

    Nakasu, T. Yamashita, S.; Aiba, T.; Hattori, S.; Sun, W.; Taguri, K.; Kazami, F.; Kobayashi, M.

    2014-10-28

    The electrooptic effect in ZnTe has recently attracted research attention, and various device structures using ZnTe have been explored. For application to practical terahertz wave detector devices based on ZnTe thin films, sapphire substrates are preferred because they enable the optical path alignment to be simplified. ZnTe/sapphire heterostructures were focused upon, and ZnTe epilayers were prepared on highly mismatched sapphire substrates by molecular beam epitaxy. Epitaxial relationships between the ZnTe thin films and the sapphire substrates with their various orientations were investigated using an X-ray diffraction pole figure method. (0001) c-plane, (1-102) r-plane, (1-100) m-plane, and (11-20) a-plane oriented sapphire substrates were used in this study. The epitaxial relationship between ZnTe and c-plane sapphire was found to be (111) ZnTe//(0001) sapphire with an in-plane orientation relationship of [−211] ZnTe//[1-100] sapphire. It was found that the (211)-plane ZnTe layer was grown on the m-plane of the sapphire substrates, and the (100)-plane ZnTe layer was grown on the r-plane sapphire. When the sapphire substrates were inclined from the c-plane towards the m-axis direction, the orientation of the ZnTe thin films was then tilted from the (111)-plane to the (211)-plane. The c-plane of the sapphire substrates governs the formation of the (111) ZnTe domain and the ZnTe epilayer orientation. These crystallographic features were also related to the atom arrangements of ZnTe and sapphire.

  16. Au impact on GaAs epitaxial growth on GaAs (111)B substrates in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liao, Zhi-Ming; Chen, Zhi-Gang; Lu, Zhen-Yu; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-01

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {111}B substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {113}B faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  17. Growth of HgCdTe by Modified Molecular Beam Epitaxy

    DTIC Science & Technology

    1981-06-01

    15 3 Depth dependence of peak temperature ........................... 17 4 Surface of a thin film deposited by using very high power... film ............................ 54 22 Rutherford hackscattering of 3700 A Hg0 7Cdo 3Te on CdTe ......... 55 23 Surface of a HgCdTe film deposited at...single crystal CdTe boules. With this constraint, it is logical to extend the epitaxial growth technique to allow the growth of HgCdTe thin films on

  18. Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Pike, W. T.

    1992-01-01

    We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.

  19. Silicon sample holder for molecular beam epitaxy on pre-fabricated integrated circuits

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor)

    1994-01-01

    The sample holder of the invention is formed of the same semiconductor crystal as the integrated circuit on which the molecular beam expitaxial process is to be performed. In the preferred embodiment, the sample holder comprises three stacked micro-machined silicon wafers: a silicon base wafer having a square micro-machined center opening corresponding in size and shape to the active area of a CCD imager chip, a silicon center wafer micro-machined as an annulus having radially inwardly pointing fingers whose ends abut the edges of and center the CCD imager chip within the annulus, and a silicon top wafer micro-machined as an annulus having cantilevered membranes which extend over the top of the CCD imager chip. The micro-machined silicon wafers are stacked in the order given above with the CCD imager chip centered in the center wafer and sandwiched between the base and top wafers. The thickness of the center wafer is about 20% less than the thickness of the CCD imager chip. Preferably, four titanium wires, each grasping the edges of the top and base wafers, compress all three wafers together, flexing the cantilever fingers of the top wafer to accommodate the thickness of the CCD imager chip, acting as a spring holding the CCD imager chip in place.

  20. Molecular-beam epitaxy of CrSi2 on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Grunthaner, P. J.; Lin, T. L.; Chang, K. T.; Mazur, J. H.

    1988-01-01

    The growth of CrSi2 on Si(111) in a commercial MBE system with a base pressure in the low 10 to the -11th torr range is reported. CrSi2 layers grown on Si(111) exhibit a strong tendency to form islands. Two particular epitaxial relationships are identified. Thick (210 nm) layers have been grown by four different techniques, with best results obtained by codepositing Cr and Si at elevated temperature. The grain size is observed to increase with substrate temperature, reaching 1-2 microns in a layer deposited at 825 C.

  1. Au impact on GaAs epitaxial growth on GaAs (111){sub B} substrates in molecular beam epitaxy

    SciTech Connect

    Liao, Zhi-Ming; Chen, Zhi-Gang; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-11

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {l_brace}111{r_brace}{sub B} substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {l_brace}113{r_brace}{sub B} faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  2. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE PAGES

    Limbach, F.; Gotschke, T.; Stoica, T.; ...

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  3. Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001)

    NASA Astrophysics Data System (ADS)

    Hsu, Min-Hsiang Mark; Merckling, Clement; El Kazzi, Salim; Pantouvaki, Marianna; Richard, Oliver; Bender, Hugo; Meersschaut, Johan; Van Campenhout, Joris; Absil, Philippe; Van Thourhout, Dries

    2016-12-01

    In this work, we present a systematic study of the effect of the stoichiometry of BaTiO3 (BTO) films grown on the Ge(001) substrate by molecular-beam-epitaxy using different characterization methods relying on beam diffraction, including reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and selected-area electron diffraction in transmission electron microscopy. Surprisingly, over a wide range of [Ba]/[Ti] ratios, as measured by the Rutherford backscattering spectrometry, all the BTO layers exhibit the same epitaxial relationship <100>BTO(001)//<110>Ge(001) with the substrate, describing a 45° lattice rotation of the BTO lattice with respect to the Ge lattice. However, varying the [Ba]/[Ti] ratio does change the diffraction behavior. From RHEED patterns, we can derive that excessive [Ba] and [Ti] generate twinning planes and a rougher surface in the non-stoichiometric BTO layers. XRD allows us to follow the evolution of the lattice constants as a function of the [Ba]/[Ti] ratio, providing an option for tuning the tetragonality of the BTO layer. In addition, we found that the intensity ratio of the 3 lowest-order Bragg peaks I(001)/I(002), I(101)/I(002), and I(111)/I(002) derived from ω - 2θ scans characteristically depend on the BTO stoichiometry. To explain the relation between observed diffraction patterns and the stoichiometry of the BTO films, we propose a model based on diffraction theory explaining how excess [Ba] or [Ti] in the layer influences the diffraction response.

  4. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; Worschech, L.; Grutzmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  5. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy.

    PubMed

    Yu, Xuezhe; Li, Lixia; Wang, Hailong; Xiao, Jiaxing; Shen, Chao; Pan, Dong; Zhao, Jianhua

    2016-05-19

    For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by optimizing the surface oxide, vertically aligned GaAs NWs with a high yield are obtained at Ts = 620 °C. Then a two-temperature procedure is adopted to preserve Ga droplets at lower Ts, which leads to an extension of Ts down to 500 °C for GaAs NWs. Based on this procedure, systematic morphological and structural studies for Ga-catalyzed GaAs NWs in the largest Ts range could be presented. Then within the same growth scheme, for the first time, we demonstrate Ga-catalyzed GaAs/GaSb heterostructure NWs. These GaSb NWs are axially grown on the GaAs NW sections and are pure zinc-blende single crystals. Compositional measurements confirm that the catalyst particles indeed mainly consist of Ga and GaSb sections are of high purity but with a minor composition of As. In the end, we present GaAsSb NW growth with a tunable Sb composition. Our results provide useful information for the controllable synthesis of multi-compositional Ga-catalyzed III-V semiconductor NWs on Si for heterogeneous integration.

  6. Characterization of high quality InN grown on production-style plasma assisted molecular beam epitaxy system

    SciTech Connect

    Gherasoiu, I.; O'Steen, M.; Bird, T.; Gotthold, D.; Chandolu, A.; Song, D. Y.; Xu, S. X.; Holtz, M.; Nikishin, S. A.; Schaff, W. J.

    2008-05-15

    In this work, the authors report step-flow growth mode of InN on [0001] oriented GaN templates, using a production-style molecular beam epitaxy system, Veeco GEN200 registered , equipped with a plasma source. Using adaptive growth conditions, they have obtained a surface morphology that exhibits the step-flow features. The root mean squared roughness over an area of 5x5 {mu}m{sup 2} is 1.4 nm with monolayer height terrace steps (0.281 nm), based on atomic force microscopy. It has been found that the presence of In droplets leads to defective surface morphology. From x-ray diffraction, they estimate edge and screw dislocation densities. The former is dominant over the latter. Micro-Raman spectra reveal narrow E{sub 2}{sup 2} phonon lines consistent with excellent crystalline quality of the epitaxial layers. The Hall mobility of 1 {mu}m thick InN layers, grown in step-flow mode, is slightly higher than 1400 cm{sup 2}/V s, while for other growth conditions yielding a smooth surface with no well-defined steps, mobility as high as 1904 cm{sup 2}/V s at room temperature has been measured. The samples exhibit high intensity photoluminescence (PL) with a corresponding band edge that shifts with free carrier concentration. For the lowest carrier concentration of 5.6x10{sup 17} cm{sup -3}, they observe PL emission at {approx}0.64 eV.

  7. Structural and optical properties of InGaN-GaN nanowire heterostructures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Höfling, S.; Worschech, L.; Grützmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  8. Cost-effective, high-volume molecular beam epitaxy using a multi 6-in wafer reactor

    NASA Astrophysics Data System (ADS)

    Leung, Larry; Davison, Damian; Cornfeld, Arthur; Towner, Frederick; Hartzell, Dave

    2001-07-01

    The rapidly expanding market of wireless communication has drastically increased the demand for GaAs-based devices and circuits. This demand has driven the industry to increasingly larger diameter substrates for cost-effective, high-volume production. IQE Inc., a division of IQE plc has recently developed the technology to grow epitaxial structures on 150 mm (6-in) GaAs substrates using a multi 6-in wafer MBE platform with material characteristics exceeding those achieved on a multi 4-in platform. The new platform is configured to produce four 6-in epiwafers per platen and is projected to produce up to 21 000 wafers per year. This paper presents the methodology that was chosen to qualify the reactor for production. Discussions focus on machine performance, material quality, and capability. In-depth discussions of capacity, throughput, and reproducibility are included. The advantages of using statistical process control for high-volume production are presented.

  9. Control over the morphology of AlN during molecular beam epitaxy with the plasma activation of nitrogen on Si (111) substrates

    SciTech Connect

    Mizerov, A. M. Kladko, P. N.; Nikitina, E. V.; Egorov, A. Yu.

    2015-02-15

    The results of studies of the growth kinetics of AlN layers during molecular beam epitaxy with the plasma activation of nitrogen using Si (111) substrates are presented. The possibility of the growth of individual AlN/Si (111) nanocolumns using growth conditions with enrichment of the surface with metal near the formation mode of Al drops, at a substrate temperature close to maximal, during molecular beam epitaxy with the plasma activation of nitrogen (T{sub s} ≈ 850°C) is shown. The possibility of growing smooth AlN layers on a nanocolumnar AlN/Si (111) buffer with the use of T{sub s} ≈ 750°C and growth conditions providing enrichment with metal is shown.

  10. Effect of interaction in the Ga-As-O system on the morphology of a GaAs surface during molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Balakirev, S. V.; Solodovnik, M. S.; Eremenko, M. M.

    2016-05-01

    A thermodynamic analysis of processes of interphase interaction in the Ga-As-O system has been performed and their theoretical laws have been determined, taking into account nonlinear thermal physical properties of the compounds, the oxide film compositions, and modes of molecular-beam epitaxy of GaAs. The processes of interaction of the native oxide of GaAs with the substrate material and also with Ga and As4 from a vapor gaseous phase have been studied experimentally. The experimental results correlate with the results of the thermodynamic analysis. The laws of influence of the removal of the proper oxide on the evolution of the GaAs surface morphology under conditions of the molecular-beam epitaxy have been proposed.

  11. Transient-mode liquid phase epitaxial growth of GaAs on GaAs-coated Si substrates prepared by migration-enhanced molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Nakamura, Shuji; Sakai, Shiro; Chang, Shi S.; Ramaswamy, Ramu V.; Kim, Jae-Hoon; Radhakrishnan, Gouri; Liu, John K.; Katz, Joseph

    1989-01-01

    Planar oxide-maskless growth of GaAs was demonstrated by transient-mode liquid phase epitaxy (TMLPE) on GaAs-coated Si substrates that were prepared by migration-enhanced molecular beam epitaxy (MEMBE). In TMLPE, the cool substrate was brought into contact with hot melts for a short time. A GaAs layer as thick as 30 microns was grown in 10 sec. The etch pits observed in TMLPE-grown layers became longer in one direction and decreased in density with increasing the TMLPE epilayer thickness. The density of etch pits in a 20 micron-thick layer was approximately 5 x 10 the 6th/sq cm. Strong bandgap emission elliptically polarized with a major axis perpendicular to the surface was observed at about 910 nm, while deep-level emission from the TMLPE/MEMBE GaAs interface was detected at 980 nm. The photoluminescence intensity divided by the carrier concentration of the TMLPE-grown layer was about 270 times larger than that of the MEMBE-grown layer used as a substrate.

  12. Magnetic and transport properties of epitaxial thin film MgFe2O4 grown on MgO (100) by molecular beam epitaxy

    PubMed Central

    Wu, Han-Chun; Mauit, Ozhet; Coileáin, Cormac Ó; Syrlybekov, Askar; Khalid, Abbas; Mouti, Anas; Abid, Mourad; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V.

    2014-01-01

    Magnesium ferrite is a very important magnetic material due to its interesting magnetic and electrical properties and its chemical and thermal stability. Here we report on the magnetic and transport properties of epitaxial MgFe2O4 thin films grown on MgO (001) by molecular beam epitaxy. The structural properties and chemical composition of the MgFe2O4 films were characterized by X-Ray diffraction and X-Ray photoelectron spectroscopy, respectively. The nonsaturation of the magnetization in high magnetic fields observed for M (H) measurements and the linear negative magnetoresistance (MR) curves indicate the presence of anti-phase boundaries (APBs) in MgFe2O4. The presence of APBs was confirmed by transmission electron microscopy. Moreover, post annealing decreases the resistance and enhances the MR of the film, suggesting migration of the APBs. Our results may be valuable for the application of MgFe2O4 in spintronics. PMID:25388355

  13. Growth optimization toward low angle incidence microchannel epitaxy of GaN using ammonia-based metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Abe, Ryota; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-08-01

    Growth optimization toward low angle incidence microchannel epitaxy (LAIMCE) of GaN was accomplished using ammonia-based metal-organic molecular beam epitaxy (NH3-based MOMBE). Firstly, the [NH3]/[trimethylgallium (TMG)] ratio (R) dependence of selective GaN growth was studied. The growth temperature was set at 860 °C while R was varied from 5 to 200 with precursors being supplied parallel to the openings cut in the SiO2 mask. The selectivity of the growth was superior for all R, because TMG and NH3 preferably decompose on the GaN film. The formation of {112¯0}GaN or {112¯2}GaN sidewalls and (0001)GaN surface were observed by the change in R. The intersurface diffusion of Ga adatoms was also changed by a change in R. Ga adatoms migrate from the sidewalls to the top at R lower than 50, whereas the migration weakened with R greater than 100. Secondly, LAIMCE was optimized by changing the growth temperature. Consequently, 6 μm wide lateral overgrowth in the direction of precursor incidence was achieved with no pit after etching by H3PO4, which was six times wider than that in the opposite direction.

  14. High-Resistivity Semi-insulating AlSb on GaAs Substrates Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Vaughan, E. I.; Addamane, S.; Shima, D. M.; Balakrishnan, G.; Hecht, A. A.

    2016-04-01

    Thin-film structures containing AlSb were grown using solid-source molecular beam epitaxy and characterized for material quality, carrier transport optimization, and room-temperature radiation detection response. Few surface defects were observed, including screw dislocations resulting from shear strain between lattice-mismatched layers. Strain was also indicated by broadening of the AlSb peak in x-ray diffraction measurements. Threading dislocations and interfacial misfit dislocations were seen with transmission electron microscopy imaging. Doping of the AlSb layer was introduced during growth using GaTe and Be to determine the effect on Hall transport properties. Hall mobility and resistivity were largest for undoped AlSb samples, at 3000 cm2/V s and 106 Ω cm, respectively, and increased doping levels progressively degraded these values. To test for radiation response, p-type/intrinsic/ n-type (PIN) diode structures were grown using undoped AlSb on n-GaAs substrates, with p-GaSb cap layers to protect the AlSb from oxidation. Alpha-particle radiation detection was achieved and spectra were produced for 241Am, 252Cf, and 239Pu sources. Reducing the detector surface area increased the pulse height observed, as expected based on voltage-capacitance relationships for diodes.

  15. Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy.

    PubMed

    Bastiman, Faebian; Küpers, Hanno; Somaschini, Claudio; Geelhaar, Lutz

    2016-03-04

    For the Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy, growth temperature, As flux, and Ga flux have been systematically varied across the entire window of growth conditions that result in the formation of nanowires. A range of GaAs structures was observed, progressing from pure Ga droplets under negligible As flux through horizontal nanowires, tilted nanowires, vertical nanowires, and nanowires without droplets to crystallites as the As flux was increased. Quantitative analysis of the resulting sample morphology was performed in terms of nanowire number and volume density, number yield and volume yield of vertical nanowires, diameter, length, as well as the number and volume density of parasitic growth. The result is a growth map that comprehensively describes all nanowire and parasitic growth morphologies and hence enables growth of nanowire samples in a predictive manner. Further analysis indicates the combination of global Ga flux and growth temperature determines the total density of all objects, whereas the global As/Ga flux ratio independently determines the resultant sample morphology. Several dependencies observed here imply that all objects present on the substrate surface, i.e. both nanowires and parasitic structures, originate from Ga droplets.

  16. Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Hurni, C. A.; Arehart, A. R.; Yang, J.; Myers, R. C.; Speck, J. S.; Ringel, S. A.

    2012-01-01

    Deep level defects in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy were characterized using deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) and compared with polar c-plane GaN that was grown simultaneously in the same growth run. Significant differences in both the levels present and their concentrations were observed upon comparison of both growth orientations. DLTS revealed electron traps with activation energies of 0.14 eV, 0.20 eV, and 0.66 eV in the m-plane material, with concentrations that were ˜10-50 × higher than traps of similar activation energies in the c-plane material. Likewise, DLOS measurements showed ˜20 × higher concentrations of both a CN acceptor-like state at EC - 3.26 eV, which correlates with a high background carbon concentration observed by secondary ion mass spectroscopy for the m-plane material [A. Armstrong, A. R. Arehart, B. Moran, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. A. Ringel, Appl. Phys. Lett. 84, 374 (2004)], and the VGa-related state level at EC - 2.49 eV, which is consistent with an enhanced yellow luminescence observed by photoluminescence. The findings suggest a strong impact of growth dynamics on the incorporation of impurities and electrically active native point defects as a function of GaN growth plane polarity.

  17. Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH{sub 3}-molecular beam epitaxy

    SciTech Connect

    Fireman, Micha N.; Browne, David A.; Mazumder, Baishakhi; Speck, James S.; Mishra, Umesh K.

    2015-05-18

    The results of vertical transport through nitride heterobarrier structures grown by ammonia molecular beam epitaxy are presented. Structures are designed with binary layers to avoid the effects of random alloy fluctuations in ternary nitride barriers. The unintentional incorporation of Ga in the AlN growth is investigated by atom probe tomography and is shown to be strongly dependent on both the NH{sub 3} flowrate and substrate temperature growth parameters. Once nominally pure AlN layer growth conditions are achieved, structures consisting of unintentionally doped (UID) GaN spacer layers adjacent to a nominally pure AlN are grown between two layers of n+ GaN, from which isotype diodes are fabricated. Varying the design parameters of AlN layer thickness, UID spacer layer thickness, and threading dislocation density show marked effects on the vertical transport characteristics of these structures. The lack of significant temperature dependence, coupled with Fowler-Nordheim and/or Milliken-Lauritsen analysis, point to a prevalently tunneling field emission mechanism through the AlN barrier. Once flatband conditions in the UID layer are achieved, electrons leave the barrier with significant energy. This transport mechanism is of great interest for applications in hot electron structures.

  18. First-principles studies on molecular beam epitaxy growth of GaAs1-xBix

    DOE PAGES

    Luo, Guangfu; Yang, Shujiang; Li, Jincheng; ...

    2015-07-14

    We investigate the molecular beam epitaxy (MBE) growth of GaAs1-xBix film using density functional theory with spin-orbit coupling to understand the growth of this film, especially the mechanisms of Bi incorporation. We study the stable adsorption structures and kinetics of the incident molecules (As₂ molecule, Ga atom, Bi atom, and Bi₂ molecule) on the (2 x 1)-Gasub||Bi surface and a proposed q(1 x 1)-Gasub||AsAs surface has a quasi-(1 x 1) As layer above the Ga-terminated GaAs substrate and a randomly oriented As dimer layer on top. We obtain the desorption and diffusion barriers of the adsorbed molecules and also themore » reaction barriers of three key processes related to Bi evolution, namely, Bi incorporation, As/Bi exchange, and Bi clustering. The results help explain the experimentally observed dependence of Bi incorporation on the As/Ga ratio and growth temperature. Furthermore, we find that As₂ exchange with Bi of the (2 x 1)-Gasub||Bi surface is a key step controlling the kinetics of the Bi incorporation. Finally, we explore two possible methods to enhance the Bi incorporation, namely, replacing the MBE growth mode from codeposition of all fluxes with a sequential deposition of fluxes and applying asymmetric in-plane strain to the substrate.« less

  19. SiGe/Si heterojunction internal photoemission long-wavelength infrared detectors fabricated by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon; Ksendzov, A.; Dejewski, Suzan M.; Jones, Eric W.; Fathauer, Robert W.; Krabach, Timothy N.; Maserjian, Joseph

    1991-01-01

    A new SiGe/Si heterojunction internal photoemission (HIP) long-wavelength infrared (LWIR) detector has been fabricated by molecular beam epitaxy (MBE). The detection mechanism of the SiGe/Si HIP detector is infrared absorption in the degenerately doped p+-SiGe layer followed by internal photoemission of photoexcited holes over a heterojunction barrier. By adjusting the Ge concentration in the SiGe layer, and, consequently, the valence band offset between SiGe and Si, the cutoff wavelength of SiGe HIP detectors can be extended into the LWIR (8-17-micron) regime. Detectors were fabricated by growing p+-SiGe layers using MBE on patterned p-type Si substrates. The SiGe layers were boron-doped, with concentrations ranging from 10 to the 19th/cu cm to 4 x 10 to the 20th/cu cm. Infrared absorption of 5-25 percent in a 30-nm-thick p+-SiGe layer was measured in the 3-20-micron range using a Fourier transform infrared spectrometer. Quantum efficiencies of 3-5 percent have been obtained from test devices in the 8-12-micron range.

  20. Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy.

    PubMed

    Fan, Dingxun; Li, Sen; Kang, N; Caroff, Philippe; Wang, L B; Huang, Y Q; Deng, M T; Yu, C L; Xu, H Q

    2015-09-28

    We report on realization and transport spectroscopy study of single quantum dots (QDs) made from InSb nanowires grown by molecular beam epitaxy (MBE). The nanowires employed are 50-80 nm in diameter and the QDs are defined in the nanowires between the source and drain contacts on a Si/SiO2 substrate. We show that highly tunable QD devices can be realized with the MBE-grown InSb nanowires and the gate-to-dot capacitance extracted in the many-electron regimes is scaled linearly with the longitudinal dot size, demonstrating that the devices are of single InSb nanowire QDs even with a longitudinal size of ∼700 nm. In the few-electron regime, the quantum levels in the QDs are resolved and the Landég-factors extracted for the quantum levels from the magnetotransport measurements are found to be strongly level-dependent and fluctuated in a range of 18-48. A spin-orbit coupling strength is extracted from the magnetic field evolutions of a ground state and its neighboring excited state in an InSb nanowire QD and is on the order of ∼300 μeV. Our results establish that the MBE-grown InSb nanowires are of high crystal quality and are promising for the use in constructing novel quantum devices, such as entangled spin qubits, one-dimensional Wigner crystals and topological quantum computing devices.

  1. An Effective Approach to Improving Cadmium Telluride (111)A Surface by Molecular-Beam-Epitaxy Growth of Tellurium Monolayer.

    PubMed

    Ren, Jie; Fu, Li; Bian, Guang; Su, Jie; Zhang, Hao; Velury, Saavanth; Yukawa, Ryu; Zhang, Longxiang; Wang, Tao; Zha, Gangqiang; Guo, Rongrong; Miller, Tom; Hasan, M Zahid; Chiang, Tai-Chang

    2016-01-13

    The surface cleansing treatment of non-natural cleavage planes of semiconductors is usually performed in vacuum using ion sputtering and subsequent annealing. In this Research Article, we report on the evolution of surface atomic structure caused by different ways of surface treatment as monitored by in situ core-level photoemission measurements of Cd-4d and Te-4d atomic levels and reflection high-energy electron diffraction (RHEED). Sputtering of surface increases the density of the dangling bonds by 50%. This feature and the less than ideal ordering can be detrimental to device applications. An effective approach is employed to improve the quality of this surface. One monolayer (ML) of Te grown by the method of molecular beam epitaxy (MBE) on the target surface with heating at 300 °C effectively improves the surface quality as evidenced by the improved sharpness of RHEED pattern and a reduced diffuse background in the spectra measured by high-resolution ultraviolet photoemission spectroscopy (HRUPS). Calculations have been performed for various atomic geometries by employing first-principles geometry optimization. In conjunction with an analysis of the core level component intensities in terms the layer-attenuation model, we propose a "vacancy site" model of the modified 1 ML-Te/CdTe(111)A (2 × 2) surface.

  2. Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy.

    PubMed

    Schuster, Fabian; Hetzl, Martin; Weiszer, Saskia; Garrido, Jose A; de la Mata, María; Magen, Cesar; Arbiol, Jordi; Stutzmann, Martin

    2015-03-11

    In this work the position-controlled growth of GaN nanowires (NWs) on diamond by means of molecular beam epitaxy is investigated. In terms of growth, diamond can be seen as a model substrate, providing information of systematic relevance also for other substrates. Thin Ti masks are structured by electron beam lithography which allows the fabrication of perfectly homogeneous GaN NW arrays with different diameters and distances. While the wurtzite NWs are found to be Ga-polar, N-polar nucleation leads to the formation of tripod structures with a zinc-blende core which can be efficiently suppressed above a substrate temperature of 870 °C. A variation of the III/V flux ratio reveals that both axial and radial growth rates are N-limited despite the globally N-rich growth conditions, which is explained by the different diffusion behavior of Ga and N atoms. Furthermore, it is shown that the hole arrangement has no effect on the selectivity but can be used to force a transition from nanowire to nanotube growth by employing a highly competitive growth regime.

  3. Kinetic limitation of chemical ordering in Bi2Te3-x Se x layers grown by molecular beam epitaxy.

    PubMed

    Schreyeck, S; Brunner, K; Kirchner, A; Bass, U; Grauer, S; Schumacher, C; Gould, C; Karczewski, G; Geurts, J; Molenkamp, L W

    2016-04-13

    We study the chemical ordering in Bi2Te3-x Se x grown by molecular beam epitaxy on Si substrates. We produce films in the full composition range from x = 0 to 3, and determine their material properties using energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. By fitting the parameters of a kinetic growth model to these results, we obtain a consistent description of growth at a microscopic level. Our main finding is that despite the incorporation of Se in the central layer being much more probable than that of Te, the formation of a fully ordered Te-Bi-Se-Bi-Te layer is prevented by kinetic of the growth process. Indeed, the Se concentration in the central layer of Bi2Te2Se1 reaches a maximum of only ≈ 75% even under ideal growth conditions. A second finding of our work is that the intensity ratio of the 0 0 12 and 0 0 6 x-ray reflections serves as an experimentally accessible quantitative measure of the degree of ordering in these films.

  4. Controllable Growth of Vertical Heterostructure GaTe(x)Se(1-x)/Si by Molecular Beam Epitaxy.

    PubMed

    Liu, Shanshan; Yuan, Xiang; Wang, Peng; Chen, Zhi-Gang; Tang, Lei; Zhang, Enze; Zhang, Cheng; Liu, Yanwen; Wang, Weiyi; Liu, Cong; Chen, Chen; Zou, Jin; Hu, Weida; Xiu, Faxian

    2015-08-25

    Two dimensional (2D) alloys, especially transition metal dichalcogenides, have attracted intense attention owing to their band-gap tunability and potential optoelectrical applications. Here, we report the controllable synthesis of wafer-scale, few-layer GaTexSe1-x alloys (0 ≤ x ≤ 1) by molecular beam epitaxy (MBE). We achieve a layer-by-layer growth mode with uniform distribution of Ga, Te, and Se elements across 2 in. wafers. Raman spectroscopy was carried out to explore the composition-dependent vibration frequency of phonons, which matches well with the modified random-element-isodisplacement model. Highly efficient photodiode arrays were also built by depositing few-layer GaTe0.64Se0.36 on n-type Si substrates. These p-n junctions have steady rectification characteristics with a rectifying ratio exceeding 300 and a high external quantum efficiency around 50%. We further measured more devices on MBE-grown GaTexSe1-x/Si heterostructures across the full range to explore the composition-dependent external quantum efficiency. Our study opens a new avenue for the controllable growth of 2D alloys with wafer-scale homogeneity, which is a prominent challenge in 2D material research.

  5. Kinetic limitation of chemical ordering in Bi2Te3-x Se x layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schreyeck, S.; Brunner, K.; Kirchner, A.; Bass, U.; Grauer, S.; Schumacher, C.; Gould, C.; Karczewski, G.; Geurts, J.; Molenkamp, L. W.

    2016-04-01

    We study the chemical ordering in Bi2Te3-x Se x grown by molecular beam epitaxy on Si substrates. We produce films in the full composition range from x  =  0 to 3, and determine their material properties using energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. By fitting the parameters of a kinetic growth model to these results, we obtain a consistent description of growth at a microscopic level. Our main finding is that despite the incorporation of Se in the central layer being much more probable than that of Te, the formation of a fully ordered Te-Bi-Se-Bi-Te layer is prevented by kinetic of the growth process. Indeed, the Se concentration in the central layer of Bi2Te2Se1 reaches a maximum of only  ≈75% even under ideal growth conditions. A second finding of our work is that the intensity ratio of the 0 0 12 and 0 0 6 x-ray reflections serves as an experimentally accessible quantitative measure of the degree of ordering in these films.

  6. Photoluminescence study on heavily donor and acceptor impurity doped GaAs layers grown by molecular-beam epitaxy

    SciTech Connect

    Islam, A. Z. M. Touhidul; Jung, D. W.; Noh, J. P.; Otsuka, N.

    2009-05-01

    Gallium arsenide layers doped with high concentrations of Be and Si by molecular-beam epitaxy are studied by photoluminescence (PL) spectroscopy. PL peaks from doped layers are observed at energies significantly lower than the band-gap of GaAs. The growth and doping conditions suggest that the origin of these peaks is different from that of low energy PL peaks, which were observed in earlier studies and attributed to impurity-vacancy complexes. The dependence of the peak energy on the temperature and the annealing is found to differ from that of the peaks attributed to impurity-vacancy complexes. On the basis of these observations, it is suggested that the low energy peaks are attributed to short range ordered arrangements of impurity ions. This possibility is examined by calculations of the PL spectra with models of pairs of acceptor and donor delta-doped layers and PL experiments of a superlattice of pairs of Be and Si delta-doped layers.

  7. Composition and luminescence of AlInGaN layers grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Bejtka, K.; Edwards, P. R.; Martin, R. W.; Fernandez-Garrido, S.; Calleja, E.

    2008-10-01

    A study of AlInGaN epilayers, grown by plasma-assisted molecular beam epitaxy, was performed using spatially resolved x-ray microanalysis and luminescence spectroscopy in order to investigate competition between the incorporation of In, Al, and Ga as a function of the growth temperature in the 565-660 deg. C range and the nominal AlN mole fraction. The samples studied have AlN and InN mole fractions in the ranges of 4%-30% and 0%-16%, respectively. Composition measurements show the effect of decreasing temperature to be an increase in the incorporation of InN, accompanied by a small but discernible decrease in the ratio of GaN to AlN mole fractions. The incorporation of In is also shown to be significantly increased by decreasing the Al mole fraction. Optical emission peaks, observed by cathodoluminescence mapping and by photoluminescence, provide further information on the epilayer compositions as a function of substrate temperature, and the dependencies of peak energy and linewidth are plotted.

  8. Structural and Magnetotransport Study of SrTiO3-δ/Si Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Currie, Alex; Cottier, Ryan; Villarreal, Oscar; Cantu, Jesus; Ponce, Arturo; Theodoropoulou, Nikoleta; Texas State University, San Marcos Collaboration; University of Texas, San Antonio Collaboration

    2014-03-01

    SrTiO3 (STO) films were grown on p-Si (001) substrates using molecular beam epitaxy (MBE). Oxygen vacancies were introduced by controlling the Oxygen resulting in SrTiO3-δ with δ ~ 0.02% for the lowest pressure. The single phase STO/Si films were of high crystalline quality as verified by x-ray diffraction, transmission electron microscopy, and had an rms roughness of less than 0.5nm measured by atomic force microscopy. Transport measurements were performed on the STO/Si structures in a Van der Pauw configuration. We measured resistance as a function of temperature, T = 3K-300K and as a function of an applied magnetic field , H =0 to +/- 9T. The resistivity decreased from 1 Ohm cm to 3x10-2 Ohm cm as the film thickness increased (3nm-60nm) for all temperatures. The magnetoresistance (MR) shows a reproducible trend for all films, the MR is positive at 300K, becomes negative between 200K and 100K and at low temperatures T =3-20K the MR is positive at low H =0 to +/- 2T but at high fields, it starts decreasing again. The MR behavior combined with the Hall effect data indicates the presence of localized electrons that delocalize with H and T. This research was supported by NSF Carrer Award DMR-1255629.

  9. Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo

    2010-04-01

    ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.

  10. In situ monitoring of the surface reconstructions on InP(001) prepared by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ozanyan, K. B.; Parbrook, P. J.; Hopkinson, M.; Whitehouse, C. R.; Sobiesierski, Z.; Westwood, D. I.

    1997-07-01

    Reflection anisotropy spectroscopy (RAS) and reflection high-energy electron diffraction (RHEED) were applied to study clean InP(001) surfaces prepared by molecular beam epitaxy (MBE). At phosphorus beam equivalent pressures (BEPs) between 3.5×10-7 and 3.5×10-6 mbar and substrate temperature (Ts) falling from 590 to 150 °C, (2×4), (2×1), (2×2), and c(4×4) RHEED patterns are observed. The main RAS features, observed at 1.7-1.9 and 2.6-2.9 eV are assigned to In and P dimers, respectively. The above reconstruction sequence is associated closely with transformations identified in RAS signatures that are induced by progressively increasing the P surface coverage. The RAS results also imply the existence of (2×4)α and (2×4)β phases. A surface-phase diagram for MBE-grown (001) InP, in the whole range of Ts and phosphorus BEPs is proposed.

  11. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K.; Korona, K. P.

    2015-12-14

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 10{sup 2} and the leakage current of about 10{sup −4} A/cm{sup 2} at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through a ∼2 nm thick SiN{sub x} layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 10{sup 15 }cm{sup −3}. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiN{sub x} interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  12. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Korona, K. P.; Sobanska, M.; Klosek, K.

    2015-12-01

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 102 and the leakage current of about 10-4 A/cm2 at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through a ˜2 nm thick SiNx layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 1015 cm-3. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiNx interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  13. Molecular beam epitaxy of AlGaAsSb system for 1.55 $mu;m Bragg mirrors

    NASA Astrophysics Data System (ADS)

    Harmand, J. C.; Kohl, A.; Juhel, M.; Le Roux, G.

    1997-05-01

    The growth of AlGaAsSb materials on InP substrate was carried out by elemental source molecular beam epitaxy (MBE). The control of group-V composition appeared complex. In order to minimize the fluctuations of group-V composition, its dependence on growth temperature, cracking of the group-V species, growth rate and {Al}/{Ga} ratio were evaluated. Then we focused on AlAs xSb 1- x and Al zGa 1- zAs ySb 1- y alloys with x and y allowing lattice matching to InP, and with z around 0.10 in order to have transparency at 1.55 μm. Pairing these alloys, we built up Bragg mirrors with the reflectivity centered at 1.55 μm. A mirror consisting of 20 {1}/{2} pairs exhibited a reflectivity of 99.8% with a 200 nm stopband width. Doping studies of these materials demonstrated n- and p-type conductivities with carrier concentrations over 10 19 cm -3 where Te and Be were, respectively, the n- and p-type dopants.

  14. Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy

    SciTech Connect

    Bazioti, C.; Kehagias, Th.; Pavlidou, E.; Komninou, Ph.; Karakostas, Th.; Dimitrakopulos, G. P.; Papadomanolaki, E.; Iliopoulos, E.; Walther, T.; Smalc-Koziorowska, J.

    2015-10-21

    We investigate the structural properties of a series of high alloy content InGaN epilayers grown by plasma-assisted molecular beam epitaxy, employing the deposition temperature as variable under invariant element fluxes. Using transmission electron microscopy methods, distinct strain relaxation modes were observed, depending on the indium content attained through temperature adjustment. At lower indium contents, strain relaxation by V-pit formation dominated, with concurrent formation of an indium-rich interfacial zone. With increasing indium content, this mechanism was gradually substituted by the introduction of a self-formed strained interfacial InGaN layer of lower indium content, as well as multiple intrinsic basal stacking faults and threading dislocations in the rest of the film. We show that this interfacial layer is not chemically abrupt and that major plastic strain relaxation through defect introduction commences upon reaching a critical indium concentration as a result of compositional pulling. Upon further increase of the indium content, this relaxation mode was again gradually succeeded by the increase in the density of misfit dislocations at the InGaN/GaN interface, leading eventually to the suppression of the strained InGaN layer and basal stacking faults.

  15. Piezoelectric InAs (211)B quantum dots grown by molecular beam epitaxy: Structural and optical properties

    SciTech Connect

    Dialynas, G. E.; Kalliakos, S.; Xenogianni, C.; Androulidaki, M.; Kehagias, T.; Komninou, P.; Savvidis, P. G.; Pelekanos, N. T.; Hatzopoulos, Z.

    2010-11-15

    The structural and optical properties of piezoelectric (211)B InAs nanostructures grown by molecular beam epitaxy are systematically investigated as a function of the various growth parameters. Depending on the specific growth conditions, we show that the InAs nanostructures take the form of a quantum dot (QD) or a quantum dash, their height ranges between 2 and 20 nm, and their density varies from a few times 10{sup 8} cm{sup -2} all the way up to a few times 10{sup 10} cm{sup -2}. The (211)B QDs are characterized by large aspect ratios, which are compatible with a truncated pyramid morphology. By analyzing the QD emission spectrum, we conclude that only small size QDs, with heights less than 3 nm, are optically active. This is consistent with high resolution transmission electron microscopy observations showing that large QDs contain misfit dislocations, whereas small QDs are dislocation-free. The formation of a two-dimensional wetting layer is observed optically, and its thickness is determined to be between 0.30 and 0.39 nm. Finally, the large blueshift in the QD emission observed with increasing excitation power represents a clear evidence of the strong built-in piezoelectric field present in these dots.

  16. High indium content homogenous InAlN layers grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kyle, Erin C. H.; Kaun, Stephen W.; Wu, Feng; Bonef, Bastien; Speck, James S.

    2016-11-01

    InAlN grown by plasma-assisted molecular beam epitaxy often contains a honeycomb microstructure. The honeycomb microstructure consists of 5-10 nm diameter aluminum-rich regions which are surrounded by indium-rich regions. Layers without this microstructure were previously developed for nominally lattice-matched InAlN and have been developed here for higher indium content InAlN. In this study, InAlN was grown in a nitrogen-rich environment with high indium to aluminum flux ratios at low growth temperatures. Samples were characterized by high-resolution x-ray diffraction, atomic force microscopy, high-angle annular dark-field scanning transmission electron microscopy, and atom probe tomography. Atomic force microscopy showed InAlN layers grown at temperatures below 450 °C under nitrogen-rich conditions were free of droplets. InAlN films with indium contents up to 81% were grown at temperatures between 410 and 440 °C. High-angle annular dark-field scanning transmission electron microscopy and atom probe tomography showed no evidence of honeycomb microstructure for samples with indium contents of 34% and 62%. These layers are homogeneous and follow a random alloy distribution. A growth diagram for InAlN of all indium contents is reported.

  17. Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Wassner, Thomas A.; Laumer, Bernhard; Maier, Stefan; Stutzmann, Martin; Laufer, Andreas; Meyer, Bruno K.; Eickhoff, Martin

    2009-01-15

    Wurtzite Zn{sub 1-x}Mg{sub x}O thin films with Mg contents between x=0 and x=0.37 were grown on c-plane sapphire substrates by plasma assisted molecular beam epitaxy using a MgO/ZnMgO buffer layer. The a-lattice parameter is independent from the Mg concentration, whereas the c-lattice parameter decreases from 5.20 A for x=0 to 5.17 A for x=0.37, indicating pseudomorphic growth. The near band edge photoluminescence shows a blueshift with increasing Mg concentration to an emission energy of 4.11 eV for x=0.37. Simultaneously, the energetic position of the deep defect luminescence shows a linear shift from 2.2 to 2.8 eV. Low temperature transmission measurements reveal strong excitonic features for the investigated composition range and alloy broadening effects for higher Mg contents. The Stokes shift as well as the Urbach energy is increased to values of up to 125 and 54 meV for x=0.37, respectively, indicating exciton localization due to alloy fluctuations.

  18. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Liu, Z. T.; Fan, C. C.; Yao, Q.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Shen, D. W.

    2016-08-01

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO3 and iso-polarity LaAlO3 substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO3 (111) substrate was more suitable than Nb-doped SrTiO3. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO3 based superlattices.

  19. Growth of high-quality SrTiO{sub 3} films using a hybrid molecular beam epitaxy approach

    SciTech Connect

    Jalan, Bharat; Engel-Herbert, Roman; Wright, Nicholas J.; Stemmer, Susanne

    2009-05-15

    A hybrid molecular beam epitaxy approach for atomic-layer controlled growth of high-quality SrTiO{sub 3} films with scalable growth rates was developed. The approach uses an effusion cell for Sr, a plasma source for oxygen, and a metal-organic source (titanium tetra isopropoxide) for Ti. SrTiO{sub 3} films were investigated as a function of cation flux ratio on (001) SrTiO{sub 3} and (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates. Growth conditions for stoichiometric insulating films were identified. Persistent (>180 oscillations) reflection high-energy electron diffraction oscillation characteristic of layer-by-layer growth were observed. The full widths at half maximum of x-ray diffraction rocking curves were similar to those of the substrates, i.e., 34 arc sec on LSAT. The film surfaces were nearly ideal with root mean square surface roughness values of less than 0.1 nm. The relationship between surface reconstructions, growth modes, and stoichiometry is discussed.

  20. Antimony segregation in Ge and formation of n-type selectively doped Ge films in molecular beam epitaxy

    SciTech Connect

    Yurasov, D. V. Antonov, A. V.; Drozdov, M. N.; Schmagin, V. B.; Novikov, A. V.; Spirin, K. E.

    2015-10-14

    Antimony segregation in Ge(001) films grown by molecular beam epitaxy was studied. A quantitative dependence of the Sb segregation ratio in Ge on growth temperature was revealed experimentally and modeled theoretically taking into account both the terrace-mediated and step-edge-mediated segregation mechanisms. A nearly 5-orders-of-magnitude increase in the Sb segregation ratio in a relatively small temperature range of 180–350 °C was obtained, which allowed to form Ge:Sb doped layers with abrupt boundaries and high crystalline quality using the temperature switching method that was proposed earlier for Si-based structures. This technique was employed for fabrication of different kinds of n-type Ge structures which can be useful for practical applications like heavily doped n{sup +}-Ge films or δ-doped layers. Estimation of the doping profiles sharpness yielded the values of 2–5 nm per decade for the concentration gradient at the leading edge and 2–3 nm for the full-width-half-maximum of the Ge:Sb δ-layers. Electrical characterization of grown Ge:Sb structures revealed nearly full electrical activation of Sb atoms and the two-dimensional nature of charge carrier transport in δ-layers.

  1. InN nanorods prepared with CrN nanoislands by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Kuang-Wei; Chang, Shoou-Jinn; Young, Sheng-Joue; Hsueh, Tao-Hung; Hung, Hung; Mai, Yu-Chun; Wang, Shih-Ming; Chen, Kuan-Jen; Wu, Ya-Ling; Chen, Yue-Zhang

    2011-07-01

    The authors report the influence of CrN nanoisland inserted on growth of baseball-bat InN nanorods by plasma-assisted molecular beam epitaxy under In-rich conditions. By inserting CrN nanoislands between AlN nucleation layer and the Si (111) substrate, it was found that we could reduce strain form Si by inserting CrN nanoisland, FWHM of the x-ray rocking curve measured from InN nanorods from 3,299 reduced to 2,115 arcsec. It is due to the larger strain from lattice miss-match of the film-like InN structure; however, the strain from lattice miss-match was obvious reduced owing to CrN nanoisland inserted. The TEM images confirmed the CrN structures and In droplets dissociation from InN, by these results, we can speculate the growth mechanism of baseball-bat-like InN nanorods.

  2. Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers

    NASA Astrophysics Data System (ADS)

    Carmody, M.; Lee, D.; Zandian, M.; Phillips, J.; Arias, J.

    2003-07-01

    Lattice mismatch between the substrate and the absorber layer in single-color HgCdTe infrared (IR) detectors and between band 1 and band 2 in two-color detectors results in the formation of crosshatch lines on the surface and an array of misfit dislocations at the epi-interfaces. Threading dislocations originating in the substrate can also bend into the interface plane and result in misfit dislocations because of the lattice mismatch. The existence of dislocations threading through the junction region of HgCdTe IR-photovoltaic detectors can greatly affect device performance. High-quality CdZnTe substrates and controlled molecular-beam epitaxy (MBE) growth of HgCdTe can result in very low threading-dislocation densities as measured by the etch-pit density (EPD ˜ 104cm-2). However, dislocation gettering to regions of high stress (such as etched holes, voids, and implanted-junction regions) at elevated-processing temperatures can result in a high density of dislocations in the junction region that can greatly reduce detector performance. We have performed experiments to determine if the dislocations that getter to these regions of high stress are misfit dislocations at the substrate/absorber interface that have a threading component extending to the upper surface of the epilayer, or if the dislocations originate at the cap/absorber interface as misfit dislocations. The preceding mechanisms for dislocation motion are discussed in detail, and the possible diode-performance consequences are explored.

  3. MOMBE (metalorganic molecular beam epitaxy) growth of InGaAlAsSb system on GaSb

    NASA Astrophysics Data System (ADS)

    Asahi, Hajime; Kaneko, Tadaaki; Okuno, Yasutoshi; Gonda, Shun-ichi

    1991-01-01

    MOMBE (metalorganic molecular beam epitaxy) growth characteristics of materials in the InGaAlAsSb system on GaSb substrates are described. The studies on GaSb growth using TEGa (triethylgallium) and solid Sb sources show that the surface reconstructions and the excess Sb on the surface play important roles in the MOMBE growth process. This is explained by a model which includes group V chemistry. The use of TESb (triethylstibine) instead of solid Sb indicates that the alkyl species coming from thermally cracked TESb also play important roles. Crystalline AlSb films are obtained using TIBAl (triisobutylaluminium), while not when using TMAl (trimethylaluminium), which is related to the difference in the reaction process. In the growth of InAsSb using TMIn (trimethylindium), TEAs (triethylarsine) and TESb, mirror-like surfaces are obtained only in the narrow TEAs/TMIn flux ratio region close to the (2×4)-(4×2) surface reconstruction transition boundary in InAs growth, and it is found that the composition of InAsSb alloy films can be controlled precisely using TMIn, TEAs and TESb. The growth characteristics of InAs and InSb are also discussed. Finally, preliminary results on the electrical and optical properties of the layers are shown to be encouraging.

  4. Scanning tunneling microscope investigations of organic heterostructures prepared by a combination of self-assembly and molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Staub, R.; Toerker, M.; Fritz, T.; Schmitz-Hübsch, T.; Sellam, F.; Leo, K.

    2000-01-01

    We report the realization of organic-organic heteroepitaxy by combining liquid-phase self-assembly with ultrahigh vacuum (UHV) gas-phase molecular beam epitaxy. As a model system, we have used self-assembled monolayers (SAMs) prepared by exposing an Au(111)-mica substrate to a dilute solution of decanethiol in ethanol, with subsequent evaporation of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) dye molecules. The well-known (3×3)R30° superstructure of almost upright standing molecules after chemisorption is replaced by the 11.5×3 (33.2 Å) pin-stripe phase with flat lying molecules when the samples are annealed in UHV and coverage decreases. The deposition of PTCDA induces reordering and displacement in the decanethiol SAM. Additional to the 33.2 Å periodicity, the previously reported 22 Å thiol stripe phase can be observed by scanning tunneling microscopy. Several PTCDA structures are observed: single and double rows of PTCDA that grow along decanethiol stripes on top of the flat-lying alkane chain groups, as well as densely packed PTCDA monolayer domains embedded into the thiol layer. These exhibit the well-known herringbone structure or a novel square lattice structure. We have also investigated thicker PTCDA islands and observed molecular resolution for a thickness of several monolayers. The structure of the three-dimensional islands can be identified as the α bulk modification.

  5. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    DOE PAGES

    Lin, Yong; Leung, Benjamin; Li, Qiming; ...

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an ordermore » of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.« less

  6. Isolation and control of voids and void-hillocks during molecular beam epitaxial growth of HgCdTe

    NASA Astrophysics Data System (ADS)

    Chandra, D.; Aqariden, F.; Frazier, J.; Gutzler, S.; Orent, T.; Shih, H. D.

    2000-06-01

    Formation of small voids and defect complexes involving small voids during the molecular beam epitaxial growth of mercury cadmium telluride on cadmium zinc telluride was investigated. Some of these defects were demonstrated to form away from the substrate-epi interface. Other defects were demonstrated to close before reaching the top surface without leaving any perturbations on the surface, thus remaining completely hidden. The voids, which formed away from the substrate-epifilm fixed interface, nucleated on defects introduced into the film already grown, leading to the formation of defect complexes, unlike the voids which nucleated at the substrate-epifilm fixed interface. These defect complexes are decorated with high density dislocation nests. The voids which closed before reaching the film surface usually also nucleated slightly away from the film-substrate interface, continued to replicate for a while as the growth progressed, but then relatively rapidly closed off at a significant depth from the film surface. These voids also appeared to form defect complexes with other kinds of defects. Correlations between these materials defects and performance of individual vertically integrated photodiode (VIP) devices were demonstrated, where the relative location of these defects with respect to the junction boundary appears to be particularly important. Elimination or reduction of fluctuations in relative flux magnitudes or substrate temperature, more likely during multi-composition layer growth, yielded films with significantly lower defect concentrations.

  7. Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cirlin, G. E.; Dubrovskii, V. G.; Samsonenko, Yu. B.; Bouravleuv, A. D.; Durose, K.; Proskuryakov, Y. Y.; Mendes, Budhikar; Bowen, L.; Kaliteevski, M. A.; Abram, R. A.; Zeze, Dagou

    2010-07-01

    We report on the Au-free molecular beam epitaxy growth of coherent GaAs nanowires directly on Si(111) substrates. The growth is catalyzed by liquid Ga droplets formed in the openings of a native oxide layer at the initial growth stage. Transmission electron microscopy studies demonstrate that the nanowires are single crystals having the zincblende structure along their length (apart from a thin wurtzite region directly below the Ga droplet), regardless of their diameter (70-80 nm) and the growth temperature range (560-630°C) . We attribute the observed phase purity to a much lower surface energy of liquid Ga than that of Au-Ga alloys, which makes triple line nucleation energetically unfavorable. The change in growth catalyst to a liquid metal with a lower energy suppresses the (more usual) formation of wurtzite nuclei on surface energetic grounds. These results can provide a distinct method for the fabrication of chemically pure and stacking-fault-free zincblende nanowires of III-V compounds on silicon.

  8. Molecular Beam Epitaxy of Fe3Ga/Ga1-xAlxAs Heterostructures: Growth, Properties and Spin Transport

    NASA Astrophysics Data System (ADS)

    Palmstrøm, C. J.; Adelmann, C.; Lou, X.; Srivastava, S. K.; Crowell, P. A.

    2006-03-01

    Single crystal Fe3Ga thin films have been grown on Ga1-xAlxAs (001) by molecular beam epitaxy. The films are found to be pseudomorphic on Ga1-xAlxAs and grow in a tetragonally-distorted Heusler-like D03 crystal structure. The Fe3Ga films are ferromagnetic above room temperature with a saturation magnetization of 1200 emu/cm^3. They exhibit a perpendicular magnetic anisotropy due to the strain-induced tetragonal distortion. Rutherford backscattering spectrometry finds no interfacial reactions of Fe3Ga/GaAs heterostructures, suggesting that Fe3Ga is thermally stable on GaAs. Spin injection from Fe3Ga into GaAs has been assessed by using Fe3Ga/Ga1-xAlxAs spin light-emitting diode (LED) structures. A steady-state spin polarization of 20% is obtained at 2K. The bias dependence of spin injection is found to be very similar to that of Fe/Ga1-xAlxAs spin LEDs [1]. This work was supported in part by ONR and NSF-MRSEC. [1] C. Adelmann et al., Phys. Rev. B 71, 121301 (2005).

  9. Growth and characterization of molecular beam epitaxy-grown Bi2Te3-xSex topological insulator alloys

    NASA Astrophysics Data System (ADS)

    Tung, Y.; Chiang, Y. F.; Chong, C. W.; Deng, Z. X.; Chen, Y. C.; Huang, J. C. A.; Cheng, C.-M.; Pi, T.-W.; Tsuei, K.-D.; Li, Z.; Qiu, H.

    2016-02-01

    We report a systematic study on the structural and electronic properties of Bi2Te3-xSex topological insulator alloy grown by molecular beam epitaxy (MBE). A mixing ratio of Bi2Se3 to Bi2Te3 was controlled by varying the Bi:Te:Se flux ratio. X-ray diffraction and Raman spectroscopy measurements indicate the high crystalline quality for the as-grown Bi2Te3-xSex films. Substitution of Te by Se is also revealed from both analyses. The surfaces of the films exhibit terrace-like quintuple layers and their size of the characteristic triangular terraces decreases monotonically with increasing Se content. However, the triangular terrace structure gradually recovers as the Se content further increases. Most importantly, the angle-resolved photoemission spectroscopy results provide evidence of single-Dirac-cone like surface states in which Bi2Te3-xSex with Se/Te-substitution leads to tunable surface states. Our results demonstrate that by fine-tuned MBE growth conditions, Bi2Te3-xSex thin film alloys with tunable topological surface states can be obtained, providing an excellent platform for exploring the novel device applications based on this compound.

  10. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  11. Molecular beam epitaxial growth of oriented and uniform Ge2Sb2Te5 nanoparticles with compact dimensions

    NASA Astrophysics Data System (ADS)

    Zheng, Beining; Sun, Yu; Wu, Jie; Yuan, Long; Wu, Xiaofeng; Huang, Keke; Feng, Shouhua

    2017-02-01

    The scaling-down of phase change memory cell is critical to achieve high-performance and high-density memory devices. Herein, we report that Ge2Sb2Te5 nanoparticles along the [1 1 1] direction were synthesized without templates or etching in a molecular beam epitaxy system. Under non-stoichiometric Ge:Sb:Te beam ratio condition, the growth of high-density Ge2Sb2Te5 nanoparticles was achieved by Zn-doping. The average diameter of the nanoparticles is 8 nm, and the full width at half maximum of the size distribution is 2.7 nm. Our results suggest that the size and shape modifications of Ge2Sb2Te5 nanoparticles could be induced by Zn-doping which influences the nucleation in the growth process. In addition, the bonding states of Zn and Te verified by X-ray photoelectron spectroscopy proved that Zn atoms located in the Ge2Sb2Te5 matrix. This approach exemplified here can be applied to the sub-20 nm phase change memory devices and may also be extendable to be served in the design and development of more materials with phase transitions.

  12. Comparison of morphology evolution of Ge(001) homoepitaxial films grown by pulsed laser deposition and molecular-beam epitaxy

    SciTech Connect

    Shin Byungha; Leonard, John P.; McCamy, James W.; Aziz, Michael J.

    2005-10-31

    Using a dual molecular-beam epitaxy (MBE)-pulsed laser deposition (PLD) ultrahigh vacuum chamber, we have conducted the first experiments under identical thermal, background, and surface preparation conditions to compare Ge(001) homoepitaxial growth morphology in PLD and MBE. We find that in PLD with low kinetic energy and in MBE the film morphology evolves in a similar fashion: initially irregularly shaped mounds form, followed by pyramidal mounds with edges of the square-base along the <100> directions; the film roughness and mound separation increase with film thickness. In PLD with high kinetic energy, well-defined pyramidal mounds are not observed and the morphology rather resembles that of an ion-etched Ge(001) surface. The areal feature density is higher for PLD films than for MBE films grown at the same average growth rate and temperature. Furthermore, the dependence upon film thickness of roughness and feature separation differ for PLD and MBE. We attribute these differences to the higher yield of defect generation by energetic species in PLD.

  13. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    SciTech Connect

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey J.; Wang, George T.

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.

  14. Super-dense array of Ge quantum dots grown on Si(100) by low-temperature molecular beam epitaxy

    SciTech Connect

    Talochkin, A. B. Shklyaev, A. A.; Mashanov, V. I.

    2014-04-14

    Ge layer grown on Si(100) at the low temperature of ∼100 °C by molecular beam epitaxy is studied using scanning tunneling microscopy and Raman spectroscopy. It is found that crystalline and pseudomorphic to the Si substrate Ge islands are formed at the initial growth stage. The islands acquire the base size of 1.2–2.6 nm and they form arrays with the super-high density of (5–8) × 10{sup 12} cm{sup −2} at 1–2 nm Ge coverages. Such a density is at least 10 times higher than that of Ge “hut” clusters grown via the Stranski-Krastanov growth mode. It is shown that areas between the crystalline Ge islands are filled with amorphous Ge, which is suggested to create potential barrier for holes localized within the islands. As a result, crystalline Ge quantum dots appear being isolated from each other.

  15. Band lineup in GaAs(1-x)Sbx/GaAs strained-layer multiple quantum wells grown by molecular-beam epitaxy

    NASA Technical Reports Server (NTRS)

    Ji, G.; Agarwala, S.; Huang, D.; Chyi, J.; Morkoc, H.

    1988-01-01

    GaAs(1-x)Sbx/GaAs strained-layer multiple quantum wells have been grown by molecular-beam epitaxy and characterized by room-temperature photoreflectance (PR). The PR spectra denote that high-quality layers can be grown in the GaAs(1-x)Sbx/GaAs system. The method for determining the band offset Q(vh) is discussed in this strained-layer system.

  16. Effect of the annealing temperature on the low-temperature photoluminescence in Si:Er light-emitting structures grown by molecular-beam epitaxy

    SciTech Connect

    Andreev, B. A.; Sobolev, N. A. Denisov, D. V.; Shek, E. I.

    2013-10-15

    The photoluminescence spectra of light-emitting structures based on silicon doped with erbium during the course of molecular-beam epitaxy at a temperature of 500 Degree-Sign C are studied at 4.2 K on being annealed at 800-900 Degree-Sign C. Three sets of lines belonging to the emitting centers of erbium in silicon with a low oxygen-impurity concentration are revealed.

  17. Growth and optical properties of filamentary GaN nanocrystals grown on a hybrid SiC/Si(111) substrate by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Reznik, R. R.; Kotlyar, K. P.; Il'kiv, I. V.; Soshnikov, I. P.; Kukushkin, S. A.; Osipov, A. V.; Nikitina, E. V.; Cirlin, G. E.

    2016-10-01

    The potential to grow filamentary GaN nanocrystals by molecular beam epitaxy on a silicon substrate with a nanosized buffer layer of silicon carbide has been demonstrated. Morphological and optical properties of the obtained system have been studied. It has been shown that the intensity of the photoluminescence spectrum peak of such structures is higher than that of the best filamentary GaN nanocrystals without the buffer silicon carbide layer by a factor of more than two.

  18. Growth of Y3Fe5O12/GaN layers by laser molecular-beam epitaxy and characterization of their structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-12-01

    Laser molecular-beam epitaxy has been employed to obtain layers of yttrium-iron garnet (YIG) Y3Fe5O12 on gallium nitride substrates. It was found that there exists a polycrystalline YIG phase without admixtures of other structural phases. A magnetic anisotropy of films of the "easy-magnetic plane" type was found. The gyromagnetic ratio and the demagnetizing field 4π M S were calculated.

  19. High-efficiency broad-area single-quantum-well lasers with narrow single-lobed far-field patterns prepared by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Muttelstein, M.; Arakawa, Y.; Yariv, A.

    1986-01-01

    Broad-area single-quantum-well graded-index waveguide separate-confinement heterostructure lasers were fabricated by molecular beam epitaxy. A high external quantum efficiency of 79 percent and stable, single-lobed far-field patterns with a beam divergence as narrow as 0.8 deg (1.9 times diffraction limit) for a 100 micron-wide laser were obtained under pulsed conditions.

  20. Shadowing and mask opening effects during selective-area vapor-liquid-solid growth of InP nanowires by metalorganic molecular beam epitaxy.

    PubMed

    Kelrich, A; Calahorra, Y; Greenberg, Y; Gavrilov, A; Cohen, S; Ritter, D

    2013-11-29

    Indium phosphide nanowires were grown by metalorganic molecular beam epitaxy using the selective-area vapor-liquid-solid method. We show experimentally and theoretically that the size of the annular opening around the nanowire has a major impact on nanowire growth rate. In addition, we observed a considerable reduction of the growth rate in dense two-dimensional arrays, in agreement with a calculation of the shadowing of the scattered precursors. Due to the impact of these effects on growth, they should be considered during selective-area vapor-liquid-solid nanowire epitaxy.

  1. Magnetic properties of Fe-Cu alloys grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Grigorov, I. L.; Freeland, J. W.; Walker, J. C.

    1996-03-01

    Magnetic properties of Fe_xCu_1-x alloys are difficult to study due to the low mutual solid solubility of the components. These alloys can be formed by co-sputtering onto a cold substrate, however, they retain fcc phase only for x < 0.6footnote[1]C.L. Chien et. al. Phys.Rev. B 33, 3247 (1986). In this work Fe_xCu_1-x alloys were grown epitaxially by co-deposition onto the Cu(100) substrate. Using this technique we can stabilize the alloy in fcc phase across the entire Fe concentration range. During growth, the substrate was maintained at 0^0C to prevent clustering. Crystal structure was monitored by in-situ RHEED and ex-situ X-ray diffraction. The correlation between structural and magnetic properties of the alloys as well as their dependence on the film thickness were studied by SQUID magnetometry and Mössbauer spectroscopy. Initial results showed a non-zero quadrupole splitting of the room temperature Mössbauer absorption line indicating the random distribution of iron in the Cu matrix. Both low temperature Mössbauer and SQUID measurements on the alloys with low iron concentration showed significant reduction of the average magnetic moment and T_c.

  2. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  3. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-10-01

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO3) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000°C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO3, producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN /GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO3 modulators on compact optoelectronic/electronic chips.

  4. Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation

    NASA Astrophysics Data System (ADS)

    Park, Young Woon; Jerng, Sahng-Kyoon; Jeon, Jae Ho; Roy, Sanjib Baran; Akbar, Kamran; Kim, Jeong; Sim, Yumin; Seong, Maeng-Je; Kim, Jung Hwa; Lee, Zonghoon; Kim, Minju; Yi, Yeonjin; Kim, Jinwoo; Noh, Do Young; Chun, Seung-Hyun

    2017-03-01

    The interest in layered materials is largely based on the expectation that they will be beneficial for a variety of applications, from low-power-consuming, wearable electronics to energy harvesting. However, the properties of layered materials are highly dependent on thickness, and the difficulty of controlling thickness over a large area has been a bottleneck for commercial applications. Here, we report layer-by-layer growth of SnSe2, a layered semiconducting material, via van der Waals epitaxy. The films were fabricated on insulating mica substrates with substrate temperatures in the range of 210 °C-370 °C. The surface consists of a mixture of N and (N ± 1) layers, showing that the thickness of the film can be defined with monolayer accuracy (±0.6 nm). High-resolution transmission electron microscopy reveals a polycrystalline film with a grain size of ˜100 nm and clear Moiré patterns from overlapped grains with similar thickness. We also report field effect mobility values of 3.7 cm2 V-1 s-1 and 6.7 cm2 V-1 s-1 for 11 and 22 nm thick SnSe2, respectively. SnSe2 films with customizable thickness can provide valuable platforms for industry and academic researchers to fully exploit the potential of layered materials.

  5. Strain in epitaxial high-index Bi2Se3(221) films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Weiguang; Guo, Xin; Ho, Wingkin; Dai, Xianqi; Jia, Jinfeng; Xie, Maohai

    2017-02-01

    High-index Bi2Se3(221) film has been grown on In2Se3-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi2Se3(221) can be attributed to the layered structure of Bi2Se3 crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we reveal strong chemical bonding at the interface of Bi2Se3 and In2Se3 by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.

  6. Improved understanding and control of magnesium-doped gallium nitride by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Burnham, Shawn D.

    By an improved understanding of Mg-doped GaN through an exhaustive review of current limitations, increased control over the material was achieved by addressing several of these issues. To address the issues of the memory effect, low sticking coefficient and high vapor pressure of Mg, a new Mg dopant source was implemented, characterized and modeled for p-type doping of GaN. The device enhanced the sticking coefficient of Mg by energizing the outgoing Mg flux, and also allowed the first reported demonstration of an abrupt junction between two non-zero Mg concentrations and a graded Mg-doped GaN film. The significant compensation of Mg acceptors at high dopant concentrations was used advantageously to develop a new ex situ resistivity analysis technique using the energy distributions of SIMS to characterize doping of buried layers. The new technique was used to identify the barrier between conductive and resistive Mg doping for increased Mg concentration, which was then used to optimize Mg-doped GaN. Because Mg doping exhibits a dependence upon the growth regime, a new growth and regime characterization technique was developed using specific RHEED intensity responses to repeat growth conditions. During the development of this technique, a new surface kinetics growth model for III-nitrides was discovered based on DMS observations, which suggests preferential buildup of the metal bilayer before growth begins with an unfamiliar cation-anion exchange process initially upon metal shutter opening. Using the new RHEED growth and regime characterization technique, a new growth technique called metal modulated epitaxy (MME) was developed to increase repeatability, uniformity and smoothness. The MME technique was enhanced with a closed-loop control using real-time feedback from RHEED transients to control shutter transitions. This enhancement, called "smart shuttering," led to improved growth rate and further improvement of surface roughness and grain size, which were

  7. Scanning Tunneling Microscopy and Spectroscopy of Air Exposure Effects on Molecular Beam Epitaxy Grown WSe2 Monolayers and Bilayers.

    PubMed

    Park, Jun Hong; Vishwanath, Suresh; Liu, Xinyu; Zhou, Huawei; Eichfeld, Sarah M; Fullerton-Shirey, Susan K; Robinson, Joshua A; Feenstra, Randall M; Furdyna, Jacek; Jena, Debdeep; Xing, Huili Grace; Kummel, Andrew C

    2016-04-26

    The effect of air exposure on 2H-WSe2/HOPG is determined via scanning tunneling microscopy (STM). WSe2 was grown by molecular beam epitaxy on highly oriented pyrolytic graphite (HOPG), and afterward, a Se adlayer was deposited in situ on WSe2/HOPG to prevent unintentional oxidation during transferring from the growth chamber to the STM chamber. After annealing at 773 K to remove the Se adlayer, STM images show that WSe2 layers nucleate at both step edges and terraces of the HOPG. Exposure to air for 1 week and 9 weeks caused air-induced adsorbates to be deposited on the WSe2 surface; however, the band gap of the terraces remained unaffected and nearly identical to those on decapped WSe2. The air-induced adsorbates can be removed by annealing at 523 K. In contrast to WSe2 terraces, air exposure caused the edges of the WSe2 to oxidize and form protrusions, resulting in a larger band gap in the scanning tunneling spectra compared to the terraces of air-exposed WSe2 monolayers. The preferential oxidation at the WSe2 edges compared to the terraces is likely the result of dangling edge bonds. In the absence of air exposure, the dangling edge bonds had a smaller band gap compared to the terraces and a shift of about 0.73 eV in the Fermi level toward the valence band. However, after air exposure, the band gap of the oxidized WSe2 edges became about 1.08 eV larger than that of the WSe2 terraces, resulting in the electronic passivation of the WSe2.

  8. Photoluminescence and photoreflectance study of InGaAs/AlAsSb quantum wells grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Mozume, T.; Kasai, J.

    2004-02-01

    We report here on a photoluminescence (PL) and photoreflectance (PR) study in which we examined InGaAs/AlAsSb multiple quantum wells (MQWs) with both arsenic- and antimony-terminated interfaces that were grown by molecular-beam epitaxy. The PL spectra of the As-terminated MQWs are dominated by near-band-edge PL peaks over the temperature range between 8 and 300 K. The PL line shape and the temperature evolution of their PL peak energy show clear evidence of a feature that is characteristic of a band-tail localized exciton emission below 40 K. Conversely, the PL spectra of the Sb-terminated MQWs show broad spectra and also show excitation power dependence. Both samples show clear features that are characteristic of QW-related interband transitions in the PR spectra. The observed QW transition energies correspond well with the calculated interband transition energies. The temperature evolutions of the PR peak energies for both samples correspond well with the temperature dependence of the InGaAs bandgap. Although the PL peak energies correspond well with the PR peak energies at high temperature, Stokes shifts of 20 to 30 meV were observed at lower temperature, indicating strong localization of excitons due to potential fluctuations. The broad PL peak and the low activation energy that we observed for the PL integrated intensity quenching process suggest that enhanced incorporation of nonradiative centers at the InGaAs/AlAsSb interfaces was induced by the Sb interface termination.

  9. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    PubMed

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO.

  10. Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy

    SciTech Connect

    Gacevic, Z.; Kehagias, Th.; Koukoula, T.; Komninou, Ph.

    2011-05-15

    We present a study of the optical properties of GaN/AlN and InGaN/GaN quantum dot (QD) superlattices grown via plasma-assisted molecular-beam epitaxy, as compared to their quantum well (QW) counterparts. The three-dimensional/two-dimensional nature of the structures has been verified using atomic force microscopy and transmission electron microscopy. The QD superlattices present higher internal quantum efficiency as compared to the respective QWs as a result of the three-dimensional carrier localization in the islands. In the QW samples, photoluminescence (PL) measurements point out a certain degree of carrier localization due to structural defects or thickness fluctuations, which is more pronounced in InGaN/GaN QWs due to alloy inhomogeneity. In the case of the QD stacks, carrier localization on potential fluctuations with a spatial extension smaller than the QD size is observed only for the InGaN QD-sample with the highest In content (peak emission around 2.76 eV). These results confirm the efficiency of the QD three-dimensional confinement in circumventing the potential fluctuations related to structural defects or alloy inhomogeneity. PL excitation measurements demonstrate efficient carrier transfer from the wetting layer to the QDs in the GaN/AlN system, even for low QD densities ({approx}10{sup 10} cm{sup -3}). In the case of InGaN/GaN QDs, transport losses in the GaN barriers cannot be discarded, but an upper limit to these losses of 15% is deduced from PL measurements as a function of the excitation wavelength.

  11. Growth and characterization of metamorphic InAs/GaSb tunnel heterojunction on GaAs by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Jheng-Sin; Clavel, Michael B.; Pandey, Rahul; Datta, Suman; Meeker, Michael; Khodaparast, Giti A.; Hudait, Mantu K.

    2016-06-01

    The structural, morphological, optical, and electrical transport characteristics of a metamorphic, broken-gap InAs/GaSb p-i-n tunnel diode structure, grown by molecular beam epitaxy on GaAs, were demonstrated. Precise shutter sequences were implemented for the strain-balanced InAs/GaSb active layer growth on GaAs, as corroborated by high-resolution X-ray analysis. Cross-sectional transmission electron microscopy and detailed micrograph analysis demonstrated strain relaxation primarily via the formation of 90° Lomer misfit dislocations (MDs) exhibiting a 5.6 nm spacing and intermittent 60° MDs at the GaSb/GaAs heterointerface, which was further supported by a minimal lattice tilt of 180 arc sec observed during X-ray analysis. Selective area diffraction and Fast Fourier Transform patterns confirmed the full relaxation of the GaSb buffer layer and quasi-ideal, strain-balanced InAs/GaSb heteroepitaxy. Temperature-dependent photoluminescence measurements demonstrated the optical band gap of the GaSb layer. Strong optical signal at room temperature from this structure supports a high-quality material synthesis. Current-voltage characteristics of fabricated InAs/GaSb p-i-n tunnel diodes measured at 77 K and 290 K demonstrated two bias-dependent transport mechanisms. The Shockley-Read-Hall generation-recombination mechanism at low bias and band-to-band tunneling transport at high bias confirmed the p-i-n tunnel diode operation. This elucidated the importance of defect control in metamorphic InAs/GaSb tunnel diodes for the implementation of low-voltage and high-performance tunnel field effect transistor applications.

  12. Electrical and photovoltaic properties of CdTe/ZnTe n-i-p junctions grown by molecular beam epitaxy

    SciTech Connect

    Zielony, E. Płaczek-Popko, E.; Racino, A.; Gumienny, Z.; Olender, K.; Wosiński, T.; Karczewski, G.; Chusnutdinow, S.

    2014-06-28

    Preliminary studies have been performed on photoelectrical properties of CdTe/ZnTe n-i-p junctions grown using the molecular beam epitaxy technique. Photovoltaic properties of the cells have been investigated by the measurements of current-voltage (I-V) characteristics under 1-sun illumination. I-V characteristics yield efficiencies of the cells varying from 3.4% to 4.9%. The low efficiency can be due to the presence of electrically active defects. In order to study the origin of defects in CdTe/ZnTe photovoltaic junctions, space charge techniques (C-V and deep level transient spectroscopy (DLTS)) have been applied. From the C-V measurements, a doping profile was calculated confirming charge accumulation in the i-CdTe layer. The results of the DLTS studies revealed the presence of four traps within a temperature range from 77–420 K. Three of them with activation energies equal to 0.22 eV, 0.45 eV, and 0.78 eV have been ascribed to the hole traps present in the i-CdTe material and their possible origin has been discussed. The fourth, high-temperature DLTS peak observed at ∼350 K has been attributed to extended defects as its amplitude and temperature position depends on the value of the filling pulse width. It is assumed that the defects related to the trap are either located in the i-CdTe layer or at the i-CdTe/ZnTe interface. However, it was found that the trap exhibits twofold nature: it behaves as a majority or as a minority trap, depending on the filling pulse height, which is a characteristic feature of recombination centers. This trap is presumably responsible for the low efficiency of the cells.

  13. Deep traps in n-type GaN epilayers grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Kamyczek, P.; Placzek-Popko, E.; Zielony, E.; Gumienny, Z.; Zytkiewicz, Z. R.

    2014-01-14

    In this study, we present the results of investigations on Schottky Au-GaN diodes by means of conventional DLTS and Laplace DLTS methods within the temperature range of 77 K–350 K. Undoped GaN layers were grown using the plasma-assisted molecular beam epitaxy technique on commercial GaN/sapphire templates. The quality of the epilayers was studied by micro-Raman spectroscopy (μ-RS) which proved the hexagonal phase and good crystallinity of GaN epilayers as well as a slight strain. The photoluminescence spectrum confirmed a high crystal quality by intense excitonic emission but it also exhibited a blue emission band of low intensity. DLTS signal spectra revealed the presence of four majority traps: two high-temperature and two low-temperature peaks. Using the Laplace DLTS method and Arrhenius plots, the apparent activation energy and capture cross sections were obtained. For two high-temperature majority traps, they were equal to E{sub 1} = 0.65 eV, σ{sub 1} = 8.2 × 10{sup −16} cm{sup 2} and E{sub 2} = 0.58 eV, σ{sub 2} = 2.6 × 10{sup −15} cm{sup 2} whereas for the two low-temperature majority traps they were equal to E{sub 3} = 0.18 eV, σ{sub 3} = 9.7 × 10{sup −18} cm{sup 2} and E{sub 4} = 0.13 eV, σ{sub 4} = 9.2 × 10{sup −18} cm{sup 2}. The possible origin of the traps is discussed and the results are compared with data reported elsewhere.

  14. Localized Si enrichment in coherent self-assembled Ge islands grown by molecular beam epitaxy on (001)Si single crystal

    SciTech Connect

    Valvo, M.; Bongiorno, C.; Giannazzo, F.; Terrasi, A.

    2013-01-21

    Transmission electron microscopy (TEM), atomic force microscopy, and Rutherford backscattering spectrometry (RBS) have been used to investigate the morphology, structure, and composition of self-assembled Ge islands grown on Si (001) substrates by molecular beam epitaxy (MBE) at different temperatures. Increasing the temperature from 550 Degree-Sign C to 700 Degree-Sign C causes progressive size and shape uniformity, accompanied by enhanced Si-Ge intermixing within the islands and their wetting layer. Elemental maps obtained by energy filtered-TEM (EF-TEM) clearly show pronounced Si concentration not only in correspondence of island base perimeters, but also along their curved surface boundaries. This phenomenon is strengthened by an increase of the growth temperature, being practically negligible at 550 Degree-Sign C, while very remarkable already at 650 Degree-Sign C. The resulting island shape is affected, since this localized Si enrichment not only provides strain relief near their highly stressed base perimeters but it also influences the cluster surface energy by effective alloying, so as to form Si-enriched SiGe interfaces. Further increase to 700 Degree-Sign C causes a shape transition where more homogenous Si-Ge concentration profiles are observed. The crucial role played by local 'flattened' alloyed clusters, similar to truncated pyramids with larger bases and enhanced Si enrichment at coherently stressed interfaces, has been further clarified by EF-TEM analysis of a multi-layered Ge/Si structure containing stacked Ge islands grown at 650 Degree-Sign C. Sharp accumulation of Si has been here observed not only in proximity of the uncapped island surface in the topmost layer but also at the buried Ge/Si interfaces and even in the core of such capped Ge islands.

  15. Molecular beam epitaxy of GaNAs alloys with high As content for potential photoanode applications in hydrogen production

    SciTech Connect

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Yu, K. M.; Broesler, R.; Hawkridge, M.; Liliental-Weber, Z.; Walukiewicz, W.; Denlinger, J.; Demchenko, I.

    2009-10-06

    The authors have succeeded in growing GaN1?xAsx alloys over a large composition range (0 < x < 0.8) by plasma-assisted molecular beam epitaxy. The enhanced incorporation of As was achieved by growing the films with high As{sub 2} flux at low (as low as 100 C) growth temperatures, which is much below the normal GaN growth temperature range. Using x-ray and transmission electron microscopy, they found that the GaNAs alloys with high As content x > 0.17 are amorphous. Optical absorption measurements together with x-ray absorption and emission spectroscopy results reveal a continuous gradual decrease in band gap from -3.4 to < 1 eV with increasing As content. The energy gap reaches its minimum of -0.8 eV at x - 0.8. The composition dependence of the band gap of the crystalline GaN{sub 1?x}As{sub x} alloys follows the prediction of the band anticrossing model (BAC). However, our measured band gap of amorphous GaN{sub 1?x}As{sub x} with 0.3 < x < 0.8 are larger than that predicted by BAC. The results seem to indicate that for this composition range the amorphous GaN{sub 1?x}As{sub x} alloys have short-range ordering that resembles random crystalline GaN{sub 1?x}As{sub x} alloys. They have demonstrated the possibility of the growth of amorphous GaN{sub 1?x}As{sub x} layers with variable As content on glass substrates

  16. Growth and characteristics of self-assembly defect-free GaN surface islands by molecular beam epitaxy.

    PubMed

    Hsu, Kuang-Yuan; Wang, Cheng-Yu; Liu, Chuan-Pu

    2011-04-01

    GaN surface nano-islands of high crystal quality, without any dislocations or other extended defects, are grown on a c-plane sapphire substrate by plasma-assisted molecular beam epitaxy. Nano-island growth requires special conditions in terms of V/III ratio and substrate temperature, distinct from either film or nanocolumn growth. The insertion of a nitrided Ga layer can effectively improve the uniformity of the nano-islands in both shape and size. The islands are well faced truncated pyramids with island size ranged from 30 to 110 nm, and height ranged from 30 to 55 nm. On, the other hand, the density and facet of the GaN surface islands would be affected by the growth conditions. An increase of the V/III ratio from 30 to 40 led to an increase in density from 1.4 x 10(9) to 4.3 x 10(9) cm(-2) and an evolution from {1-21-1} facets to {1-21-2} facets. The GaN layers containing the surface islands can moderate the compressive strain due to the lattice and thermal mismatch between GaN and c-sapphire. Conductive atomic force microscopy shows that the off-axis sidewall facets are more electrically active than those at the island center. The formation of the GaN surface islands is strongly induced by the Ehrlich-Schwoebel barrier effect of preexisting islands grown in the early growth stage. GaN surface islands are ideal templates for growing nano-devices.

  17. Molecular beam epitaxy as a method for the growth of free-standing bulk zinc-blende GaN and AlGaN crystals

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Luckert, F.; Edwards, P. R.; Martin, R. W.; Kent, A. J.

    2011-05-01

    We have studied the growth of zinc-blende GaN and AlxGa1-xN layers, structures and bulk crystals by molecular beam epitaxy (MBE). MBE is normally regarded as an epitaxial technique for growth of very thin layers with monolayer control of their thickness. However, we have used the MBE technique for bulk crystal growth and have produced GaN layers up to 100 μm in thickness. Thick, undoped, cubic GaN films were grown on semi-insulating GaAs (0 0 1) substrates by a modified plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The resulting free-standing GaN wafers may be used as substrates for further epitaxy of cubic GaN-based structures and devices. We have demonstrated that the PA-MBE process, we had developed, also allows us to achieve free-standing zinc-blende AlxGa1-xN wafers.

  18. Low-temperature GaN growth on silicon substrates by single gas-source epitaxy and photo-excitation

    SciTech Connect

    Trivedi, R.A.; Tolle, J.; Chizmeshya, A.V.G.; Roucka, R.; Ritter, Cole; Kouvetakis, J.; Tsong, I.S.T.

    2005-08-15

    We report a unique low-temperature growth method for epitaxial GaN on Si(111) substrates via a ZrB{sub 2}(0001) buffer layer. The method utilizes the decomposition of a single gas-source precursor (D{sub 2}GaN{sub 3}){sub 3} on the substrate surface to form GaN. The film growth process is further promoted by irradiation of ultraviolet light to enhance the growth rate and ordering of the film. The best epitaxial film quality is achieved at a growth temperature of 550 deg. C with a growth rate of 3 nm/min. The films exhibit intense photoluminescence emission at 10 K with a single peak at 3.48 eV, indicative of band-edge emission for a single-phase hexagonal GaN film. The growth process achieved in this study is compatible with low Si processing temperatures and also enables direct epitaxy of GaN on ZrB{sub 2} in contrast to conventional metalorganic chemical vapor deposition based approaches.

  19. Growth of 1.5-1.55 micron gallium indium nitrogen arsenic antimonide lasers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bae, Hopil

    With the advent of new Internet services for exchaging not only texts and pictures but also home-made videos and high-definition movies, the appetite for more internet bandwidth is still growing at a fast pace. Satisfying these demands require extending the high-speed fiber optical networks all the way to the end users. This approach will require high-performance lasers, detectors, and modulators that are also very inexpensive and power-efficient. VCSELs are ideal light sources for this application due to their low power consumption, easier fiber coupling, ease of fabrication, and the possibility of dense 2-D integration. A new GaAs-based gain material, GaInNAsSb, can be an enabling technology for VCSELs in the 1.3-1.6mum wavelength range appropriate for optical communications. It can also enable high-power lasers for pumping Raman amplifiers, which can significantly increase the usable bandwidth of optical fibers. Growth of GaInNAsSb by molecular beam epitaxy has been very challenging, but various improvements in growth and annealing conditions lead to very low-threshold 1.55mum edge-emitting lasers and the first GaAs-based pulsed-mode 1.534mum VCSELs. Improving their temperature stability and achieving room-temperature continuous-wave(CW) VCSELs was the main objective of this thesis work. This thesis first discusses additional improvements in annealing and growth conditions, which led to a factor of 4 increase in the peak pholuminescence intensity. Edge-emitting lasers employing different numbers and structures of GaInNasSb QWs were compared, and the carrier leakage to the GaNAs barriers has been identified to be the dominant source of carrier recombination, by measurements using segmented contacts. Using the same triple QW structures and carefully designed AlGaAs/GaAs DBR mirrors, the first-ever all-epitaxial near-room-temperature CW VCSELs at 1528nm are realized on GaAs substrates.

  20. Self-assembly of InAs quantum dots on GaAs(001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Ju; Jin, Peng

    2015-02-01

    Currently, the nature of self-assembly of three-dimensional epitaxial islands or quantum dots (QDs) in a lattice-mismatched heteroepitaxial growth system, such as InAs/GaAs(001) and Ge/Si(001) as fabricated by molecular beam epitaxy (MBE), is still puzzling. The purpose of this article is to discuss how the self-assembly of InAs QDs in MBE InAs/GaAs(001) should be properly understood in atomic scale. First, the conventional kinetic theories that have traditionally been used to interpret QD self-assembly in heteroepitaxial growth with a significant lattice mismatch are reviewed briefly by examining the literature of the past two decades. Second, based on their own experimental data, the authors point out that InAs QD self-assembly can proceed in distinctly different kinetic ways depending on the growth conditions and so cannot be framed within a universal kinetic theory, and, furthermore, that the process may be transient, or the time required for a QD to grow to maturity may be significantly short, which is obviously inconsistent with conventional kinetic theories. Third, the authors point out that, in all of these conventional theories, two well-established experimental observations have been overlooked: i) A large number of "floating" indium atoms are present on the growing surface in MBE InAs/GaAs(001); ii) an elastically strained InAs film on the GaAs(001) substrate should be mechanically unstable. These two well-established experimental facts may be highly relevant and should be taken into account in interpreting InAs QD formation. Finally, the authors speculate that the formation of an InAs QD is more likely to be a collective event involving a large number of both indium and arsenic atoms simultaneously or, alternatively, a morphological/structural transformation in which a single atomic InAs sheet is transformed into a three-dimensional InAs island, accompanied by the rehybridization from the sp 2-bonded to sp 3-bonded atomic configuration of both indium

  1. Angle-resolved photoemission spectroscopy of strontium lanthanum copper oxide thin films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Harter, John Wallace

    Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi

  2. Improved crystalline properties of laser molecular beam epitaxy grown SrTiO{sub 3} by rutile TiO{sub 2} layer on hexagonal GaN

    SciTech Connect

    Luo, W. B.; Zhu, J.; Chen, H.; Wang, X. P.; Zhang, Y.; Li, Y. R.

    2009-11-15

    Epitaxial SrTiO{sub 3} films were fabricated by laser molecular beam epitaxy on bare and TiO{sub 2} buffered GaN(0002), respectively. The whole deposition processes were in situ monitored by reflection high energy electron diffraction (RHEED). X-ray diffraction (XRD) was carried out to study the growth orientation and crystalline quality of STO films. The interfacial characters and epitaxial relationships were also investigated by high revolution transition electron microscope and selected area electron diffraction (SAED). According to the RHEED observation, the lowest epitaxy temperature of STO on TiO{sub 2} buffered GaN was decreased compared with the direct deposited one. The epitaxial relationship was (111)[110]STO//(0002)[1120]GaN in both cases as confirmed by RHEED, XRD, and SAED. The full width at half maximum of omega-scan and PHI-scan of STO on TiO{sub 2} buffered GaN was reduced compared with that deposited on bare GaN, indicating that epitaxial quality of STO film is improved by inserting TiO{sub 2} layer. In summary, the lattice mismatch was reduced by inserting rutile TiO{sub 2}. As a result, the crystalline temperature was reduced and enhanced epitaxial quality of STO thin film was obtained.

  3. Atomic Layer Epitaxy of h-BN(0001) Multilayers on Co(0001) and Molecular Beam Epitaxy Growth of Graphene on h-BN(0001)/Co(0001).

    PubMed

    Driver, M Sky; Beatty, John D; Olanipekun, Opeyemi; Reid, Kimberly; Rath, Ashutosh; Voyles, Paul M; Kelber, Jeffry A

    2016-03-22

    The direct growth of hexagonal boron nitride (h-BN) by industrially scalable methods is of broad interest for spintronic and nanoelectronic device applications. Such applications often require atomically precise control of film thickness and azimuthal registry between layers and substrate. We report the formation, by atomic layer epitaxy (ALE), of multilayer h-BN(0001) films (up to 7 monolayers) on Co(0001). The ALE process employs BCl3/NH3 cycles at 600 K substrate temperature. X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) data show that this process yields an increase in h-BN average film thickness linearly proportional to the number of BCl3/NH3 cycles, with BN layers in azimuthal registry with each other and with the Co(0001) substrate. LEED diffraction spot profile data indicate an average BN domain size of at least 1900 Å. Optical microscopy data indicate the presence of some domains as large as ∼20 μm. Transmission electron microscopy (TEM) and ambient exposure studies demonstrate macroscopic and microscopic continuity of the h-BN film, with the h-BN film highly conformal to the Co substrate. Photoemission data show that the h-BN(0001) film is p-type, with band bending near the Co/h-BN interface. Growth of graphene by molecular beam epitaxy (MBE) is observed on the surface of multilayer h-BN(0001) at temperatures of 800 K. LEED data indicate azimuthal graphene alignment with the h-BN and Co(0001) lattices, with domain size similar to BN. The evidence of multilayer BN and graphene azimuthal alignment with the lattice of the Co(0001) substrate demonstrates that this procedure is suitable for scalable production of heterojunctions for spintronic applications.

  4. Critical issues for homoepitaxial GaN growth by molecular beam epitaxy on hydride vapor-phase epitaxy-grown GaN substrates

    NASA Astrophysics Data System (ADS)

    Storm, D. F.; Hardy, M. T.; Katzer, D. S.; Nepal, N.; Downey, B. P.; Meyer, D. J.; McConkie, Thomas O.; Zhou, Lin; Smith, David J.

    2016-12-01

    While the heteroepitaxial growth of gallium nitride-based materials and devices on substrates such as SiC, sapphire, and Si has been well-documented, the lack of a cost-effective source of bulk GaN crystals has hindered similar progress on homoepitaxy. Nevertheless, freestanding GaN wafers are becoming more widely available, and there is great interest in growing GaN films and devices on bulk GaN substrates, in order to take advantage of the greatly reduced density of threading dislocations, particularly for vertical devices. However, homoepitaxial GaN growth is far from a trivial task due to the reactivity and different chemical sensitivities of N-polar (000_1) and Ga-polar (0001) GaN surfaces, which can affect the microstructure and concentrations of impurities in homoepitaxial GaN layers. In order to achieve high quality, high purity homoepitaxial GaN, it is necessary to investigate the effect of the ex situ wet chemical clean, the use of in situ cleaning procedures, the sensitivity of the GaN surface to thermal decomposition, and the effect of growth temperature. We review the current understanding of these issues with a focus on homoepitaxial growth of GaN by molecular beam epitaxy (MBE) on c-plane surfaces of freestanding GaN substrates grown by hydride vapor phase epitaxy (HVPE), as HVPE-grown substrates are most widely available. We demonstrate methods for obtaining homoepitaxial GaN layers by plasma-assisted MBE in which no additional threading dislocations are generated from the regrowth interface and impurity concentrations are greatly reduced.

  5. High in-plane anisotropy of epitaxial CoPt(110) alloy films prepared by cosputtering or molecular beam epitaxy on MgO

    SciTech Connect

    Abes, M.; Ersen, O.; Meny, C.; Schmerber, G.; Acosta, M.; Arabski, J.; Ulhaq-Bouillet, C.; Dinia, A.; Panissod, P.; Pierron-Bohnes, V.

    2007-03-15

    We present structural and magnetic properties of three sets of structures: as-deposited CoPt films cosputtered at 900 K on MgO(110) substrates with a Pt(110) buffer layer and CoPt films deposited by molecular beam epitaxy directly on MgO(110) substrates at 900 K, as prepared and annealed at 900 K. All layers have the L1{sub 0} tetragonal structure. The chemical long-range ordering for the as-deposited CoPt films is incomplete in contrast with the annealed CoPt films, where long-range order is the highest. The structural study of these CoPt films grown on MgO(110) has pointed out that three variants of the L1{sub 0} phase coexist. The proportion of x and y variants, with the concentration modulation along a vector oriented at 45 degree sign with respect to the growth direction, is higher than the proportion of the z variant with the concentration modulation within the plane. The magnetic study shows an in-plane easy magnetization axis with a large magnetic anisotropy. This is interesting for the magnetic recording media with classical longitudinal writing and reading heads. The simulation of the magnetization loops confirms that the easy magnetization axis is within the plane and along the [110] direction, favored by the dominant x and y variants.

  6. Characterization of molecular beam epitaxy grown β-Nb2N films and AlN/β-Nb2N heterojunctions on 6H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Nepal, Neeraj; Katzer, D. Scott; Meyer, David J.; Downey, Brian P.; Wheeler, Virginia D.; Storm, David F.; Hardy, Matthew T.

    2016-02-01

    β-Nb2N films and AlN/β-Nb2N heterojunctions were grown by molecular beam epitaxy (MBE) on 6H-SiC. The epitaxial nature and β-Nb2N phase were determined by symmetric and asymmetric high-resolution X-ray diffraction (HRXRD) measurements, and were confirmed by grazing incidence diffraction measurements using synchrotron photons. Measured lattice parameters and the in-plane stress of β-Nb2N on 6H-SiC were c = 5.0194 Å, a = 3.0558 Å, and 0.2 GPa, respectively. The HRXRD, transmission electron microscopy, and Raman spectroscopy revealing epitaxial growth of AlN/β-Nb2N heterojunctions have identical orientations with the substrate, abrupt interfaces, and bi-axial stress of 0.88 GPa, respectively. The current finding opens up possibilities for the next generation of high-power devices that cannot be fabricated at present.

  7. Increased effective barrier heights in Schottky diodes by molecular-beam epitaxy of CoSi2 and Ga-doped Si on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Lin, T. L.; Grunthaner, P. J.; Andersson, P. O.; Iannelli, J. M.

    1988-01-01

    Increasing the effective Schottky-barrier height of epitaxial CoSi2/Si(111) diodes by the use of thin, highly doped Si layers in close proximity to the metal-semiconductor interface has been studied. Intrinsic Si, Si doped by coevaporation of Ga, and epitaxial CoSi2 layers have all been grown in the same molecular-beam epitaxy system. Current-voltage and photoresponse characterization yield barrier heights ranging from 0.61 eV for a sample with no p(+) layer to 0.89 eV for a sample with a 20-nm-thick p(+) layer. These results are compared to theoretical values based on a one-dimensional solution of Poisson's equation under the depletion approximation.

  8. Zinc-blende (Cubic) GaN and AlGaN Layers, Structures and Bulk Crystals by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, Sergei V.; Zainal, Norzaini; Akimov, Andrey V.; Staddon, Chris R.; Foxon, C. Thomas; Kent, Anthony J.

    2010-11-01

    We have studied the growth of zinc-blende GaN and AlGaN layers, structures and bulk crystals by molecular beam epitaxy (MBE). We have developed a process for growth by MBE of free-standing cubic GaN layers. Undoped thick cubic GaN films were grown on semi-insulating GaAs (001) substrates by a modified plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The resulting free-standing GaN wafers with thicknesses in the 30-100 μm range may be used as substrates for further epitaxy of cubic GaN-based structures and devices. We have developed procedures to cleave the wafers into 10×10 mm2 square substrates and to polish them to produce epi-ready surfaces. The first GaN/InGaN LEDs on our zinc-blende GaN substrates have been demonstrated by our collaborators at Sharp Laboratories of Europe.

  9. Study of the compositional control of the antimonide alloys InGaSb and GaAsSb grown by metalorganic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Itani, Y.; Asahi, H.; Kaneko, T.; Okuno, Y.; Gonda, S.

    1993-02-01

    MOMBE (metalorganic molecular beam epitaxy) growth characteristics of Sb containing ternary alloys, InGaSb, and GaAsSb are investigated. In the growth of InGaSb using TEGa (triethylgallium), TMIn (trimethylindium), and Sb4 (elemental antimony), the enhanced desorption of methyl-In molecules at a substrate temperature Tsub of around 500 °C as well as the enhanced desorption of ethyl-Ga molecules at around 515 °C are observed. They are due to the weak bond strength of antimonide compounds. Furthermore, the decrease of Ga solid composition with increasing Sb4 flux and the increase of GaSb partial growth rate with TMIn flow rate are also observed at as high as 500 °C. This is caused by the fact that the site blocking effect of excess Sb atoms exists up to higher Tsub. In the growth of GaAsSb using TEGa, TEAs (triethylarsine), and TESb (triethylstibine), the Sb composition versus TESb/(TEAs+TESb) curve exhibits a bowing characteristic, which is similar to that in the MOVPE (metalorganic vapor phase epitaxy) growth and is different from that in the MBE (molecular beam epitaxy) growth. Mass transport properties of Sb molecules in the MOMBE are considered to be similar to that in the MOVPE. It is found that the Tsub dependence of Sb composition is much weaker than that in the MBE, which is a superior point of MOMBE in the growth of antimonide alloys.

  10. Inverted vertical algan deep ultraviolet leds grown on p-SiC substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nothern, Denis Maurice

    Deep ultraviolet light emitting diodes (UV LEDs) are an important emerging technology for a number of applications such as water/air/surface disinfection, communications, and epoxy curing. However, as of yet, deep UV LEDs grown on sapphire substrates are neither efficient enough nor powerful enough to fully serve these and other potential applications. The majority of UV LEDs reported so far in the literature are grown on sapphire substrates and their design consists of AlGaN quantum wells (QWs) embedded in an AlGaN p-i-n junction with the n-type layer on the sapphire. These devices suffer from a high concentration of threading defects originating from the large lattice mismatch between the sapphire substrate and AlGaN alloys. Other issues include the poor doping efficiency of the n- and particularly the p-AlGaN alloys, the extraction of light through the sapphire substrate, and the heat dissipation through the thermally insulating sapphire substrate. These problems have historically limited the internal quantum efficiency (IQE), injection efficiency (IE), and light extraction efficiency (EE) of devices. As a means of addressing these efficiency and power challenges, I have contributed to the development of a novel inverted vertical deep UV LED design based on AlGaN grown on p-SiC substrates. Starting with a p-SiC substrate that serves as the p-type side of the p-i-n junction largely eliminates the necessity for the notoriously difficult p-type doping of AlGaN alloys, and allows for efficient heat dissipation through the highly thermally conductive SiC substrate. UV light absorption in the SiC substrate can be addressed by first growing p-type doped distributed Bragg reflectors (DBRs) on top of the substrate prior to the deposition of the active region of the device. A number of n-AlGaN films, AlGaN/AlGaN multiple quantum wells, and p-type doped AlGaN DBRs were grown by molecular beam epitaxy (MBE). These were characterized in situ by reflected high energy electron

  11. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.

    PubMed

    Bru-Chevallier, C; El Akra, A; Pelloux-Gervais, D; Dumont, H; Canut, B; Chauvin, N; Regreny, P; Gendry, M; Patriarche, G; Jancu, J M; Even, J; Noe, P; Calvo, V; Salem, B

    2011-10-01

    The aim of this study is to achieve homogeneous, high density and dislocation free InGaAs quantum dots grown by molecular beam epitaxy for light emission on silicon substrates. This work is part of a project which aims at overcoming the severe limitation suffered by silicon regarding its optoelectronic applications, especially efficient light emission device. For this study, one of the key points is to overcome the expected type II InGaAs/Si interface by inserting the InGaAs quantum dots inside a thin silicon quantum well in SiO2 fabricated on a SOI substrate. Confinement effects of the Si/SiO2 quantum well are expected to heighten the indirect silicon bandgap and then give rise to a type I interface with the InGaAs quantum dots. Band structure and optical properties are modeled within the tight binding approximation: direct energy bandgap is demonstrated in SiO2/Si/InAs/Si/SiO2 heterostructures for very thin Si layers and absorption coefficient is calculated. Thinned SOI substrates are successfully prepared using successive etching process resulting in a 2 nm-thick Si layer on top of silica. Another key point to get light emission from InGaAs quantum dots is to avoid any dislocations or defects in the quantum dots. We investigate the quantum dot size distribution, density and structural quality at different V/III beam equivalent pressure ratios, different growth temperatures and as a function of the amount of deposited material. This study was performed for InGaAs quantum dots grown on Si(001) substrates. The capping of InGaAs quantum dots by a silicon epilayer is performed in order to get efficient photoluminescence emission from quantum dots. Scanning transmission electronic microscopy images are used to study the structural quality of the quantum dots. Dislocation free In50Ga50As QDs are successfully obtained on a (001) silicon substrate. The analysis of QDs capped with silicon by Rutherford Backscattering Spectrometry in a channeling geometry is also presented.

  12. Feasibility study of III-nitride-based transistors grown by ammonia-based metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Billingsley, Daniel D.

    Although commercially available high-electron mobility transistors (HEMTs) based on the III-Nitride material system are available, there still remains areas for further optimization. These transistor devices are currently limited because of current leakage when the devices are operated at increased operating voltages. To reach the full potential of these devices, these leakage mechanisms need to be addressed. The objective of this work is to utilize the highly resistive properties of carbon-doped gallium nitride (GaN) as a low-leakage buffer layer for HEMTs. By increasing the resistivity of the underlying GaN layer, the source-drain current flow will be limited to electrons in the two-dimensional electron gas (2DEG) confined to the interface, reducing leakage paths through the GaN buffer layer, ultimately increasing the power density of the device. These films are deposited via a novel ammonia-based metal-organic molecular beam epitaxy (NH3-MOMBE) system capable of producing unintentionally carbon-doped GaN films with carbon concentrations ([C]) in excess of 10 21 atoms/cm3. These high levels of carbon incorporation lead to highly-resistive GaN buffer layers with a resistivity estimated at ˜10 12 O-cm. In addition, the deposition of aluminum gallium nitride (AlGaN) has been accomplished for the first time in an NH3-MOMBE environment. The AlGaN alloy is necessary for the production of a 2DEG, which is the source of electrons for the operation of the transistor. While providing the ability to produce highly-resistive buffer layers, the carbon which is unintentionally incorporated during the deposition of the films may also become a source of channel depletion if the incorporation levels cannot be controlled. The results of this work demonstrate that carbon-doped NH3-MOMBE thin films are extremely resistive, yet further optimization is necessary for the realization of transistor devices because of the trap states that are produced from the excessive carbon

  13. The Application of Iii-V Semiconductor Heterojunction Structures Grown by Molecular Beam Epitaxy to Microwave Devices

    NASA Astrophysics Data System (ADS)

    Schaff, William Joseph

    Semiconductor devices capable of higher speeds and higher frequency operation have been a subject of great interest for many years. New fabrication techniques have provided the tools for pushing conventional device performance to new limits. These new techniques have also made possible entirely new clases of devices such as inverted High Electron Mobility Transistors and AlGaAs buffered GaAs MESFETs. The production of such state of the art devices invariably leads to a discovery of materials and process limitations that need to be eliminated. The requirement for achieving changes in composition in semiconductor materials within a single atomic layer is central to the above devices as well as many proposed devices. Molecular Beam Epitaxy has already produced materials with atomic monolayer abruptness in some structures. There are however, some desirable structures that have not been successfully produced by this technique. The fundamental problem is that good quality AlGaAs/GaAs interfaces for GaAs on AlGaAs have not been obtained when the thickness of the AlGaAs is comparable to that needed for inverted High Electron Mobility Transistors or AlGaAs buffered power Field Effect Transistors. It has been found that impurity contamination of GaAs grown on top of AlGaAs can be a severe problem. The purpose of this work is to understand the difficulties which occur and demonstrate the successful application of some techniques which minimize, or eliminate, some of the limitations on current and anticipated device performance. The concept of impurity gettering by an interface and a form of strained layer superlattice effected lattice matching are explored for GaAs and AlGaAs structures. A GaAs MESFET has been fabricated on a superlattice buffer for the first time. It has superior performance to devices with simpler structures. The improved material properties obtained by substitution of a superlattice buffer for the homogeneous GaAs buffer are measured, as a final test, by

  14. Ultrafast all-optical switching based on indium gallium arsenic phosphide grown by helium plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Qian, Li

    We present the first experimental study of the optical properties of HELP InGaAsP (InGaAsP grown by He-plasma- assisted molecular beam epitaxy) relevant to all-optical switching, and the first demonstration of picosecond switching using this material. We observed an optical response time of 15 ps, a nonlinear index change as large as 0.077, a sharp absorption band edge, and a small absorption tail in HELP InGaAsP. The unique coexistence of ultrafast response, large interband nonlinearity, and small band-tail absorption, never before reported, makes HELP InGaAsP particularly suitable for ultrafast all-optical switching. Additionally, faster response (subpicosecond) was achieved by doping the material with beryllium, and moderate doping (up to ~1018 cm-3) did not significantly alter the absorption edge. We systematically studied the response time variations with doping concentration, annealing temperature, carrier density, and wavelength. We conclude that, (a)Be doping reduces the response time by compensating for donor-like mid-gap states, thus increasing the electron trap concentration; (b)annealing removes defects responsible for fast carrier trapping; (c)the response time increases with carrier density due to limited trap states; (d)the response time varies with wavelength due to difference in electron and hole trapping cross-sections, which were determined based on experimental results and a phenomenological two-trap- level rate equation model. We investigated two types of HELP-InGaAsP-based all- optical switching devices, the nonlinear directional coupler (NLDC) and the asymmetric Fabry-Pérot (AFP) switch. Based on numerical modelling and waveguide loss measurements, we conclude that, while HELP-InGaAsP-based passive NLDCs are in principle viable, practical devices will tend to require high switching energy, and will likely experience low contrast and high insertion loss. We demonstrated that AFP devices will outperform NLDCs in contrast ratio, throughput

  15. Electron scattering mechanisms in GZO films grown on a-sapphire substrates by plasma-enhanced molecular beam epitaxy

    SciTech Connect

    Liu, H. Y.; Avrutin, V.; Izyumskaya, N.; Oezguer, Ue.; Morkoc, H.; Yankovich, A. B.; Kvit, A. V.; Voyles, P. M.

    2012-05-15

    We report on the mechanisms governing electron transport using a comprehensive set of ZnO layers heavily doped with Ga (GZO) grown by plasma-enhanced molecular-beam epitaxy on a-plane sapphire substrates with varying oxygen-to-metal ratios and Ga fluxes. The analyses were conducted by temperature dependent Hall measurements which were supported by microstructural investigations as well. Highly degenerate GZO layers with n > 5 x 10{sup 20} cm{sup -3} grown under metal-rich conditions (reactive oxygen-to-metal ratio <1) show relatively larger grains ({approx}20-25 nm by x-ray diffraction) with low-angle boundaries parallel to the polar c-direction. For highly conductive GZO layers, ionized-impurity scattering with almost no compensation is the dominant mechanism limiting the mobility in the temperature range from 15 to 330 K and the grain-boundary scattering governed by quantum-mechanical tunnelling is negligible. However, due to the polar nature of ZnO having high crystalline quality, polar optical phonon scattering cannot be neglected for temperatures above 150 K, because it further reduces mobility although its effect is still substantially weaker than the ionized impurity scattering even at room temperature (RT). Analysis of transport measurements and sample microstructures by x-ray diffraction and transmission electron microscopy led to a correlation between the grain sizes in these layers and mobility even for samples with a carrier concentration in the upper 10{sup 20} cm{sup -3} range. In contrast, electron transport in GZO layers grown under oxygen-rich conditions (reactive oxygen-to-metal ratio >1), which have inclined grain boundaries and relatively smaller grain sizes of 10-20 nm by x-ray diffraction, is mainly limited by compensation caused by acceptor-type point-defect complexes, presumably (Ga{sub Zn}-V{sub Zn}), and scattering on grain boundaries. The GZO layers with n <10{sup 20} cm{sup -3} grown under metal-rich conditions with reduced Ga fluxes

  16. Incorporation model of N into GaInNAs alloys grown by radio-frequency plasma-assisted molecular beam epitaxy

    SciTech Connect

    Aho, A.; Korpijärvi, V.-M.; Tukiainen, A.; Puustinen, J.; Guina, M.

    2014-12-07

    We present a Maxwell-Boltzmann electron energy distribution based model for the incorporation rate of nitrogen into GaInNAs grown by molecular beam epitaxy (MBE) using a radio frequency plasma source. Nitrogen concentration is predicted as a function of radio-frequency system primary resistance, N flow, and RF power, and group III growth rate. The semi-empirical model is shown to be repeatable with a maximum error of 6%. The model was validated for two different MBE systems by growing GaInNAs on GaAs(100) with variable nitrogen composition of 0%–6%.

  17. Investigation of the optical properties of GaAs with δ-Si doping grown by molecular-beam epitaxy at low temperatures

    SciTech Connect

    Lavrukhin, D. V. Yachmenev, A. E.; Bugaev, A. S.; Galiev, G. B.; Klimov, E. A.; Khabibullin, R. A.; Ponomarev, D. S.; Maltsev, P. P.

    2015-07-15

    Molecular-beam epitaxy is used for the preparation of structures based on “low-temperature” grown GaAs with introduced d-Si doping. Specific features in the photon-energy range of 1.28–1.48 eV are observed in the photoluminescence spectrum after structures annealing at temperatures of 520 and 580°C; these features are related to the formation of point defects and their complexes. The “pump–probe” light transmission measurements reveal that the characteristic lifetimes of nonequilibrium carriers in the fabricated structures amount to T{sup c} ≈ 1.2–1.5 ps.

  18. The Utility of Droplet Elimination by Thermal Annealing Technique for Fabrication of GaN/AlGaN Terahertz Quantum Cascade Structure by Radio Frequency Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Terashima, Wataru; Hirayama, Hideki

    2010-12-01

    We investigated the utility of a droplet elimination by thermal annealing (DETA) technique during the radio-frequency molecular beam epitaxy growth of a quantum cascade laser (QCL) structure. DETA is a method in which droplets deposited on the surface are eliminated by temporarily increasing the substrate temperature. DETA is a useful method which makes it possible not only to increase the number of periods in the QC structure, but also to improve the surface and structural properties of the QC structure. We could successfully increase the radiant intensity from a QCL sample by increasing the number of periods in the stacked QC structure with the DETA method.

  19. In situ study of self-assembled GaN nanowires nucleation on Si(111) by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hestroffer, K.; Leclere, C.; Cantelli, V.; Bougerol, C.; Renevier, H.; Daudin, B.

    2012-05-01

    Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy is studied through a combination of two in situ tools: grazing incidence x-ray diffraction and reflection high energy electron diffraction. Growth on bare Si(111) and on AlN/Si(111) is compared. A significantly larger delay at nucleation is observed for nanowires grown on bare Si(111). The difference in the nucleation delay is correlated to a dissimilarity of chemical reactivity between Al and Ga with nitrided Si(111).

  20. In situ study of self-assembled GaN nanowires nucleation on Si(111) by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Hestroffer, K.; Daudin, B.; Leclere, C.; Renevier, H.; Cantelli, V.; Bougerol, C.

    2012-05-21

    Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy is studied through a combination of two in situ tools: grazing incidence x-ray diffraction and reflection high energy electron diffraction. Growth on bare Si(111) and on AlN/Si(111) is compared. A significantly larger delay at nucleation is observed for nanowires grown on bare Si(111). The difference in the nucleation delay is correlated to a dissimilarity of chemical reactivity between Al and Ga with nitrided Si(111).

  1. Donor and acceptor levels in ZnO homoepitaxial thin films grown by molecular beam epitaxy and doped with plasma-activated nitrogen

    SciTech Connect

    Muret, Pierre; Tainoff, Dimitri; Morhain, Christian; Chauveau, Jean-Michel

    2012-09-17

    Deep level transient spectroscopy of both majority and minority carrier traps is performed in a n-type, nitrogen doped homoepitaxial ZnO layer grown on a m-plane by molecular beam epitaxy. Deep levels, most of them being not detected in undoped ZnO, lie close to the band edges with ionization energies in the range 0.12-0.60 eV. The two hole traps with largest capture cross sections are likely acceptors, 0.19 and 0.48 eV from the valence band edge, able to be ionized below room temperature. These results are compared with theoretical predictions and other experimental data.

  2. Band gap tunability of molecular beam epitaxy grown lateral composition modulated GaInP structures by controlling V/III flux ratio

    SciTech Connect

    Park, K. W.; Park, C. Y.; Lee, Y. T.

    2012-07-30

    Lateral composition modulated (LCM) GaInP structures were grown on (001) GaAs substrate by molecular beam epitaxy with different V/III flux ratios. Band gap of LCM structures could be tuned from 1.93 eV to 1.83 eV by decreasing flux ratio while maintaining the same photoluminescence intensity, enhanced light absorption, and widened absorption spectrum. It is shown that for band gap tuning of LCM structures, flux ratio adjustment is a more viable method compared to growth temperature adjustment.

  3. Studies of arsenic incorporation and P-type doping in epitaxial mercury cadmium telluride thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zandian, Majid

    Doped layer semiconductor structures provide possibilities for novel electronic devices. Growth of Hg1-xCdxTe by molecular beam epitaxy (MBE) allows precise control over the doping profile and position of heterojunctions as well as structural properties of this ternary alloy. Even though n-type doping using indium is well established, little is known about p-type doping in this material system by MBE. Several elements such as Ag, Au, Sb, Bi and P have been previously used, however high diffusion coefficient and amphoteric behavior of these atoms in HgCdTe has restricted their use in heterojunction devices where control over doping profiles and concentrations is needed. We investigated arsenic incorporation efficiency as a function of As 4 flux and growth temperature. The sticking coefficient of As is substantially higher at lower growth temperature compared to growth at 190°C. For samples grown at 170°C, the etch pit density (EPD) is higher compared to p-type As doped samples grown at 190°C. Higher EPD is associated with columnar twin defects observed in transmission electron microscopy (TEM) studies of low growth temperature samples. Growth at low temperature of 170°C causes Hg rich condition promoting twin formation. Therefore, growth of p-type layers doped with As at low temperatures require optimization of II/VI flux ratio to eliminate columnar twin defects. It is possible to incorporate As at normal MBE growth temperature of 190°C but very high flux of As has to used to overcome low sticking coefficient of As at these temperatures. We proposed a mechanism for the activation of As involving Hg vacancies (VHg··) where Te is moved to a Hg vacancy, leaving behind a Te vacancy, which is then filled by an As atom. The Te that is now on a Hg site (i.e., Te antisite) migrates to the surface and leaves the crystal.

  4. Patterned growth of InGaN/GaN quantum wells on freestanding GaN grating by molecular beam epitaxy.

    PubMed

    Wang, Yongjin; Hu, Fangren; Hane, Kazuhiro

    2011-02-04

    We report here the epitaxial growth of InGaN/GaN quantum wells on freestanding GaN gratings by molecular beam epitaxy (MBE). Various GaN gratings are defined by electron beam lithography and realized on GaN-on-silicon substrate by fast atom beam etching. Silicon substrate beneath GaN grating region is removed from the backside to form freestanding GaN gratings, and the patterned growth is subsequently performed on the prepared GaN template by MBE. The selective growth takes place with the assistance of nanoscale GaN gratings and depends on the grating period P and the grating width W. Importantly, coalescences between two side facets are realized to generate epitaxial gratings with triangular section. Thin epitaxial gratings produce the promising photoluminescence performance. This work provides a feasible way for further GaN-based integrated optics devices by a combination of GaN micromachining and epitaxial growth on a GaN-on-silicon substrate.PACS81.05.Ea; 81.65.Cf; 81.15.Hi.

  5. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications.

    PubMed

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V; Schamm-Chardon, Sylvie; Dubourdieu, Catherine

    2015-06-01

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Finally, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric.

  6. Growth mechanisms of plasma-assisted molecular beam epitaxy of green emission InGaN/GaN single quantum wells at high growth temperatures

    SciTech Connect

    Yang, W. C.; Wu, C. H.; Tseng, Y. T.; Chiu, S. Y.; Cheng, K. Y.

    2015-01-07

    The results of the growth of thin (∼3 nm) InGaN/GaN single quantum wells (SQWs) with emission wavelengths in the green region by plasma-assisted molecular beam epitaxy are present. An improved two-step growth method using a high growth temperature up to 650 °C is developed to increase the In content of the InGaN SQW to 30% while maintaining a strong luminescence intensity near a wavelength of 506 nm. The indium composition in InGaN/GaN SQW grown under group-III-rich condition increases with increasing growth temperature following the growth model of liquid phase epitaxy. Further increase in the growth temperature to 670 °C does not improve the photoluminescence property of the material due to rapid loss of indium from the surface and, under certain growth conditions, the onset of phase separation.

  7. Two-dimensional semiconductor HfSe{sub 2} and MoSe{sub 2}/HfSe{sub 2} van der Waals heterostructures by molecular beam epitaxy

    SciTech Connect

    Aretouli, K. E.; Tsipas, P.; Tsoutsou, D.; Marquez-Velasco, J.; Xenogiannopoulou, E.; Giamini, S. A.; Vassalou, E.; Kelaidis, N.; Dimoulas, A.

    2015-04-06

    Using molecular beam epitaxy, atomically thin 2D semiconductor HfSe{sub 2} and MoSe{sub 2}/HfSe{sub 2} van der Waals heterostructures are grown on AlN(0001)/Si(111) substrates. Details of the electronic band structure of HfSe{sub 2} are imaged by in-situ angle resolved photoelectron spectroscopy indicating a high quality epitaxial layer. High-resolution surface tunneling microscopy supported by first principles calculations provides evidence of an ordered Se adlayer, which may be responsible for a reduction of the measured workfunction of HfSe{sub 2} compared to theoretical predictions. The latter reduction minimizes the workfunction difference between the HfSe{sub 2} and MoSe{sub 2} layers resulting in a small valence band offset of only 0.13 eV at the MoSe{sub 2}/HfSe{sub 2} heterointerface and a weak type II band alignment.

  8. Self-assembled growth of GaAs anti quantum dots in InAs matrix by migration enhanced molecular beam epitaxy.

    PubMed

    Lee, E H; Song, J D; Kim, S Y; Han, I K; Chang, S K; Lee, J I

    2012-02-01

    Self-assembled GaAs anti quantum dots (AQDs) were grown in an InAs matrix via migration enhanced molecular beam epitaxy. The transmission electron microscopy image showed that the 2D to 3D transition thickness is below 1.5 monolayers (MLs) of GaAs coverage. The average diameter and height of the GaAs AQDs for 1.5 ML GaAs coverage taken from the atomic force microscopy image were approximately 29.0 nm and 1.4 nm, respectively. The density was approximately 6.0 x 10(10) cm(-2). The size of the AQDs was enlarged in the InAs matrix compared with that on the surface. These results indicate that the GaAs AQDs in the InAs matrix under tensile strain can be effectively formed with the assistance of the migration enhanced epitaxy method.

  9. Molecular Beam Epitaxial Growth, Characterization and Electronic Device Processing of HgCdTe, HgZnTe, Related Heterojunctions and HgCdTe-CdTe Superlattices

    DTIC Science & Technology

    1989-11-13

    xI011 40 41 24.4 5 0. 1 0 C1" 166 2.7 x 1016 8.3X 101* 1.5 ... ... 36 27.6 3 3, 10 N. Vde . TomiaL A, VNL , Me. L MAN IM 313 b3oultercthe ofal...growth by molecular beam epitaxy of twin-free CdTe(111)B and HgCdTe(111)B epitaxial layers. HgCdTe( 1 11)B twin-free layers exhibit very different...OCT. 1 , 1987 - SEPT. 30, 1989 DARPA CONTRACT MONITORED BY AFOSR #F49620-87-C-0021 Acesion For 77 FINAL REPORT ?JI R& )TIC TAB J :-"tiicatiuf, 1 Jean

  10. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

    PubMed Central

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V; Schamm-Chardon, Sylvie; Dubourdieu, Catherine

    2015-01-01

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide–semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Finally, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric. PMID:27877816

  11. High-Tc and high-Jc SmFeAs(O,F) films on fluoride substrates grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ueda, Shinya; Takeda, Soichiro; Takano, Shiro; Yamamoto, Akiyasu; Naito, Michio

    2011-12-01

    Superconducting thin films of SmFeAs(O,F) were prepared by molecular beam epitaxy on fluoride substrates. In our process, F-free SmFeAsO films were grown first, and F was subsequently introduced to the films by diffusion from an overlayer of SmF3. By this simple process, record high Tc, namely, Tcon (Tcend) = 57.8 K (56.4 K) was obtained in a film on CaF2. Furthermore, the films on CaF2 showed high critical current density over 1 MA/cm2 in the self-field at 5 K. The correlation between superconductivity and epitaxial strain in SmFeAs(O,F) films is discussed.

  12. 60 mW continuous-wave operation of InGaN laser diodes made by plasma-assisted molecular-beam epitaxy

    SciTech Connect

    Skierbiszewski, C.; Wisniewski, P.; Siekacz, M.; Perlin, P.; Feduniewicz-Zmuda, A.; Nowak, G.; Grzegory, I.; Leszczynski, M.; Porowski, S.

    2006-05-29

    We demonstrate continuous-wave operation at 411 nm of InGaN multi-quantum-well laser diodes (LDs) made by plasma-assisted molecular-beam epitaxy (PAMBE). The threshold current density and voltage for these LDs are 4.2 kA/cm{sup 2} and 5.3 V, respectively. High optical output power of 60 mW is achieved. The LDs are fabricated on low-dislocation-density bulk GaN substrates, at growth conditions which resemble liquid-phase epitaxy. We show that use of such substrates eliminates spiral growth, which is the dominant growth mechanism for PAMBE on high-dislocation-density substrates. Therefore, PAMBE opens new perspectives for next generation of InGaN LDs.

  13. Use of ultraviolet/ozone cleaning to remove C and O from GaAs prior to metalorganic molecular beam epitaxy and metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Ren, F.; Abernathy, C. R.; Hobson, W. S.; Luftman, H. S.

    1991-04-01

    Ultraviolet/ozone cleaning of GaAs substrates prior to metalorganic molecular beam epitaxy at 500 °C is shown to reduce the interfacial C and O concentrations by more than two orders of magnitude. Metal-semiconductor field-effect transistors (MESFETs) utilizing this cleaning prior to growth of the component epitaxial layers display superior current voltage (I-V) saturation characteristics compared to identical devices grown without the cleaning step. By contrast, provided the GaAs surface is not contaminated with silicates, the atomic hydrogen generated at the growth surface during growth by metalorganic chemical vapor deposition (MOCVD) leads to lower O and C interfacial concentrations, thereby circumventing the need for ozone cleaning. MESFETs grown by MOCVD with or without this cleaning have excellent I-V characteristics.

  14. Electron spin resonance of Zn{sub 1-x}Mg{sub x}O thin films grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Wassner, T. A.; Stutzmann, M.; Brandt, M. S.; Laumer, B.; Althammer, M.; Goennenwein, S. T. B.; Eickhoff, M.

    2010-08-30

    Zn{sub 1-x}Mg{sub x}O thin films with a Mg content x between 0 and 0.42 grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates were investigated by electron spin resonance at 5 K. Above band gap illumination induces a persistent resonance signal, which is attributed to free conduction band electrons. The g-factors of the Zn{sub 1-x}Mg{sub x}O epitaxial layers and their anisotropy were determined experimentally and an increase from g{sub ||}=1.957 for x=0 to g{sub ||}=1.970 for x=0.42 was found, accompanied by a decrease in anisotropy. A comparison with g-factors of the Al{sub x}Ga{sub 1-x}N system is also given.

  15. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

    SciTech Connect

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V.; Schamm-Chardon, Sylvie; Dubourdieu, Catherine

    2015-06-30

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Lastly, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric.

  16. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

    DOE PAGES

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V.; ...

    2015-06-30

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Lastly, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics,more » which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric.« less

  17. Molecular beam epitaxy and characterization of thin Bi{sub 2}Se{sub 3} films on Al{sub 2}O{sub 3} (110)

    SciTech Connect

    Tabor, Phillip; Keenan, Cameron; Urazdhin, Sergei; Lederman, David

    2011-07-04

    The structural and electronic properties of thin Bi{sub 2}Se{sub 3} films grown on Al{sub 2}O{sub 3} (110) by molecular beam epitaxy are investigated. The epitaxial films grow in the Frank-van der Merwe mode and are c-axis oriented. They exhibit the highest crystallinity, the lowest carrier concentration, and optimal stoichiometry at a substrate temperature of 200 deg. C determined by the balance between surface kinetics and desorption of Se. The crystallinity of the films improves with increasing Se/Bi flux ratio. Our results enable studies of thin topological insulator films on inert, non-conducting substrates that allow optical access to both film surfaces.

  18. Growth of InP on GaAs (001) by hydrogen-assisted low-temperature solid-source molecular beam epitaxy

    SciTech Connect

    Postigo, P. A.; Suarez, F.; Sanz-Hervas, A.; Sangrador, J.; Fonstad, C. G.

    2008-01-01

    Direct heteroepitaxial growth of InP layers on GaAs (001) wafers has been performed by solid-source molecular beam epitaxy assisted by monoatomic hydrogen (H*). The epitaxial growth has been carried out using a two-step method: for the initial stage of growth the temperature was as low as 200 deg. C and different doses of H* were used; after this, the growth proceeded without H* while the temperature was increased slowly with time. The incorporation of H* drastically increased the critical layer thickness observed by reflection high-energy electron diffraction; it also caused a slight increase in the luminescence at room temperature, while it also drastically changed the low-temperature luminescence related to the presence of stoichiometric defects. The samples were processed by rapid thermal annealing. The annealing improved the crystalline quality of the InP layers measured by high-resolution x-ray diffraction, but did not affect their luminescent behavior significantly.

  19. High-T{sub c} and high-J{sub c} SmFeAs(O,F) films on fluoride substrates grown by molecular beam epitaxy

    SciTech Connect

    Ueda, Shinya; Takeda, Soichiro; Takano, Shiro; Naito, Michio; Yamamoto, Akiyasu

    2011-12-05

    Superconducting thin films of SmFeAs(O,F) were prepared by molecular beam epitaxy on fluoride substrates. In our process, F-free SmFeAsO films were grown first, and F was subsequently introduced to the films by diffusion from an overlayer of SmF{sub 3}. By this simple process, record high T{sub c}, namely, T{sub c}{sup on} (T{sub c}{sup end}) = 57.8 K (56.4 K) was obtained in a film on CaF{sub 2}. Furthermore, the films on CaF{sub 2} showed high critical current density over 1 MA/cm{sup 2} in the self-field at 5 K. The correlation between superconductivity and epitaxial strain in SmFeAs(O,F) films is discussed.

  20. Surface composition of BaTiO{sub 3}/SrTiO{sub 3}(001) films grown by atomic oxygen plasma assisted molecular beam epitaxy

    SciTech Connect

    Barbier, A.; Stanescu, D.; Jegou, P.; Magnan, H.; Mocuta, C.; Jedrecy, N.

    2012-12-01

    We have investigated the growth of BaTiO{sub 3} thin films deposited on pure and 1% Nb-doped SrTiO{sub 3}(001) single crystals using atomic oxygen assisted molecular beam epitaxy and dedicated Ba and Ti Knudsen cells. Thicknesses up to 30 nm were investigated for various layer compositions. We demonstrate 2D growth and epitaxial single crystalline BaTiO{sub 3} layers up to 10 nm before additional 3D features appear; lattice parameter relaxation occurs during the first few nanometers and is completed at {approx}10 nm. The presence of a Ba oxide rich top layer that probably favors 2D growth is evidenced for well crystallized layers. We show that the Ba oxide rich top layer can be removed by chemical etching. The present work stresses the importance of stoichiometry and surface composition of BaTiO{sub 3} layers, especially in view of their integration in devices.